This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Hybrid estimation of single exponential sums, exceptional characters and primes in short intervals

Runbo Li The High School Affiliated to Renmin University of China International Curriculum Center, Beijing 100080, People’s Republic of China [email protected]
Abstract.

We provide a new hybrid estimation of single exponential sums, combining Van der Corput, Huxley and Bourgain’s result. We also focus on primes in short intervals (xxα,x](x-x^{\alpha},x] under the assumption of the existence of exceptional Dirichlet characters and get a small improvement of a 2004 result of Friedlander and Iwaniec. By using our new estimation of exponential sums, we extend the previous admissible range 0.4937α10.4937\leqslant\alpha\leqslant 1 to 0.4923α10.4923\leqslant\alpha\leqslant 1.

Key words and phrases:
primes, short intervals, exponential sums, exceptional characters
2020 Mathematics Subject Classification:
11M06, 11N05, 11N37

1. Introduction

The famous Riemann Hypothesis is equivalent to the asymptotic formulas

ψ(x):=nxΛ(n)=x+O(x12+ε)andπ(x)=xlogx+O(x12+ε),\psi(x):=\sum_{n\leqslant x}\Lambda(n)=x+O\left(x^{\frac{1}{2}+\varepsilon}\right)\quad\operatorname{and}\quad\pi(x)=\frac{x}{\log x}+O\left(x^{\frac{1}{2}+\varepsilon}\right), (1)

where Λ(n)\Lambda(n) denotes the von Mangoldt function. These imply that

ψ(x)ψ(xxα)=xα+O(x12+ε)andπ(x)π(xxα)=xαlogx+O(x12+ε)\psi(x)-\psi(x-x^{\alpha})=x^{\alpha}+O\left(x^{\frac{1}{2}+\varepsilon}\right)\quad\operatorname{and}\quad\pi(x)-\pi(x-x^{\alpha})=\frac{x^{\alpha}}{\log x}+O\left(x^{\frac{1}{2}+\varepsilon}\right) (2)

for 12+ε<α1\frac{1}{2}+\varepsilon<\alpha\leqslant 1. Clearly this shows that there is always a prime number in the short interval (xx12+ε,x](x-x^{\frac{1}{2}+\varepsilon},x]. Unfortunately, we can’t prove (2) unconditionally. Now the best unconditional result is due to Baker, Harman and Pintz. In [1] they showed that 0.525α10.525\leqslant\alpha\leqslant 1 is admissible. But even we assume the Riemann Hypothesis, we can’t extend the range 12+ε<α1\frac{1}{2}+\varepsilon<\alpha\leqslant 1 anymore.

In 2004, under the assumption of the existence of exceptional Dirichlet characters, Friedlander and Iwaniec [3] first extended the range of α\alpha to some numbers below 12\frac{1}{2}. Actually they proved the following theorem:

Theorem 1.1.

([[3], Theorem 1.1]). Let χ=χD\chi=\chi_{D} denotes the real primitive character of conductor D, xDrx\geqslant D^{r} with r=18289r=18289 and 3979α1\frac{39}{79}\leqslant\alpha\leqslant 1. Then we have

ψ(x)ψ(xxα)=xα{1+O(L(1,χ)(logx)rr)}\psi(x)-\psi(x-x^{\alpha})=x^{\alpha}\left\{1+O\left(L(1,\chi)(\log x)^{r^{r}}\right)\right\}

and

π(x)π(xxα)=xαlogx{1+O(L(1,χ)(logx)rr)},\pi(x)-\pi(x-x^{\alpha})=\frac{x^{\alpha}}{\log x}\left\{1+O\left(L(1,\chi)(\log x)^{r^{r}}\right)\right\},

where L(s,χ)L(s,\chi) is the Dirichlet L-function.

In fact, their result strongly depends on a deep result involving product of three Dirichlet LL-series by themselves ([4], with only classical Van der Corput method):

Theorem 1.2.

([[4], Theorem 4.2]). Let χj(modDj)\chi_{j}\left(\bmod D_{j}\right) denote primitive characters and D=D1D2D3D=D_{1}D_{2}D_{3}. For any x1x\geqslant 1, we have

Δ:=\displaystyle\Delta:= n1n2n3xχ1(n1)χ2(n2)χ3(n3)Ress=1(L(s,χ1)L(s,χ2)L(s,χ3)xss)\displaystyle\sum_{n_{1}n_{2}n_{3}\leqslant x}\chi_{1}\left(n_{1}\right)\chi_{2}\left(n_{2}\right)\chi_{3}\left(n_{3}\right)-\operatorname{Res}_{s=1}\left(L\left(s,\chi_{1}\right)L\left(s,\chi_{2}\right)L\left(s,\chi_{3}\right)\frac{x^{s}}{s}\right)
\displaystyle\ll D3875x3775+ε.\displaystyle D^{\frac{38}{75}}x^{\frac{37}{75}+\varepsilon}.

In 2017, based on his previous work on higher order derivative tests for exponential sums [7], Nowak [8] [9] combined the classic Van der Corput method with Huxley’s ”Discrete Hardy–Littlewood method” (see [5]) and obtained the following two estimations of Δ\Delta:

Theorem 1.3.

([[8], Theorem 1], [[9], Theorem 3]). Put Dmax:=max(D1,D2,D3)D_{\max}:=\max\left(D_{1},D_{2},D_{3}\right), then for any x1x\geqslant 1, we have

Δxε(D11535073Dmax4741691x24985073+D1407781168Dmax54661162336x2650754112+D38017144981Dmax398616109x71090144981+D8566792404602Dmax12816764x21850554809204)\Delta\ll x^{\varepsilon}\left(D^{\frac{1153}{5073}}D_{\max}^{\frac{474}{1691}}x^{\frac{2498}{5073}}+D^{\frac{14077}{81168}}D_{\max}^{\frac{54661}{162336}}x^{\frac{26507}{54112}}+D^{\frac{38017}{144981}}D_{\max}^{\frac{3986}{16109}}x^{\frac{71090}{144981}}+D^{\frac{856679}{2404602}}D_{\max}^{\frac{1281}{6764}}x^{\frac{2185055}{4809204}}\right) (A)

and

Δ\displaystyle\Delta\ll xε(D11535073Dmax4741691x24985073+D304312387Dmax10864129x608612387+D271913362Dmax27198908x1312926724+D14Dmax12x14\displaystyle x^{\varepsilon}\left(D^{\frac{1153}{5073}}D_{\max}^{\frac{474}{1691}}x^{\frac{2498}{5073}}+D^{\frac{3043}{12387}}D_{\max}^{\frac{1086}{4129}}x^{\frac{6086}{12387}}+D^{\frac{2719}{13362}}D_{\max}^{\frac{2719}{8908}}x^{\frac{13129}{26724}}+D^{\frac{1}{4}}D_{\max}^{\frac{1}{2}}x^{\frac{1}{4}}\right.
+D27Dmax27x37+D13x13+D16Dmax12x13+D3282719Dmax12x20635438+D2051422Dmax12x253711).\displaystyle\left.+D^{\frac{2}{7}}D_{\max}^{\frac{2}{7}}x^{\frac{3}{7}}+D^{\frac{1}{3}}x^{\frac{1}{3}}+D^{\frac{1}{6}}D_{\max}^{\frac{1}{2}}x^{\frac{1}{3}}+D^{\frac{328}{2719}}D_{\max}^{\frac{1}{2}}x^{\frac{2063}{5438}}+D^{\frac{205}{1422}}D_{\max}^{\frac{1}{2}}x^{\frac{253}{711}}\right). (B)

Obviously, both (A) and (B) in Theorem 1.3 imply the same bound ΔD25755073x24985073+ε\Delta\ll D^{\frac{2575}{5073}}x^{\frac{2498}{5073}+\varepsilon}. In this paper, we further combine Nowak’s work with Bourgain’s new bound (see [2]) and get some improvement on Theorem 1.3. We will give a detailed proof of one of our results which is the following one:

Theorem 1.4.

Put Dmax:=max(D1,D2,D3)D_{\max}:=\max\left(D_{1},D_{2},D_{3}\right), then for any x1x\geqslant 1, we have

Δ\displaystyle\Delta\ll xε(D118519Dmax97346x5111038+D121692Dmax4671384x6751384+D56039213309Dmax69941284412x419257853236+D1793650343Dmax131692x91507201372)\displaystyle x^{\varepsilon}\left(D^{\frac{118}{519}}D_{\max}^{\frac{97}{346}}x^{\frac{511}{1038}}+D^{\frac{121}{692}}D_{\max}^{\frac{467}{1384}}x^{\frac{675}{1384}}+D^{\frac{56039}{213309}}D_{\max}^{\frac{69941}{284412}}x^{\frac{419257}{853236}}+D^{\frac{17936}{50343}}D_{\max}^{\frac{131}{692}}x^{\frac{91507}{201372}}\right)
\displaystyle\ll D5271038x5111038+ε.\displaystyle D^{\frac{527}{1038}}x^{\frac{511}{1038}+\varepsilon}.

Then by the similar arguments as in [3], we can get the following result on primes in short intervals:

Theorem 1.5.

Let χ=χD\chi=\chi_{D} denotes the real primitive character of conductor D, xDrx\geqslant D^{r} with r=433433r=433433 and 0.4923α10.4923\leqslant\alpha\leqslant 1. Then we have

ψ(x)ψ(xxα)=xα{1+O(L(1,χ)(logx)rr)}.\psi(x)-\psi(x-x^{\alpha})=x^{\alpha}\left\{1+O\left(L(1,\chi)(\log x)^{r^{r}}\right)\right\}.

and

π(x)π(xxα)=xαlogx{1+O(L(1,χ)(logx)rr)}.\pi(x)-\pi(x-x^{\alpha})=\frac{x^{\alpha}}{\log x}\left\{1+O\left(L(1,\chi)(\log x)^{r^{r}}\right)\right\}.
remark.

We have 0.4936<3979<0.49370.4936<\frac{39}{79}<0.4937 and 0.4924<25005077<0.49250.4924<\frac{2500}{5077}<0.4925.

Compare our Theorem 1.5 with Theorem 1.1, we can find that our result is non-trivial if

L(1,χ)(logx)4334334334331L(1,\chi)\ll(\log x)^{-433433^{433433}-1} (3)

or

L(1,χ)(logD)4334334334331L(1,\chi)\ll(\log D)^{-433433^{433433}-1} (4)

if DD is a positive power of xx. Unfortunately, Zhang [10] posited that there is no LL-function with

L(1,χ)(logD)2022.L(1,\chi)\ll(\log D)^{-2022}. (5)
Corollary 1.6.

If the condition (3) holds, then there is always a prime number in the interval (xx0.4923,x](x-x^{0.4923},x].

2. Higher order derivative tests for single exponential sums

Lemma 2.1.

For r4r\geqslant 4 a fixed integer, and positive real parameters M1M\geqslant 1 and TT, suppose that FF is a real function on some compact interval II^{*} of length MM, with r+1r+1 continuous derivatives satisfying throughout

F(j)TMjforj=r2,r1,r.F^{(j)}\asymp TM^{-j}\quad\operatorname{for}\quad j=r-2,r-1,r.

Then, for every interval III\subseteq I^{*},

E:=mIe2πiF(m)MarTbr+MξrTηr+Mαr+MγrTδrE:=\sum_{m\in I}\mathrm{e}^{2\pi\mathrm{i}F(m)}\ll M^{a_{r}}T^{b_{r}}+M^{\xi_{r}}T^{\eta_{r}}+M^{\alpha_{r}}+M^{\gamma_{r}}T^{-\delta_{r}}

where a4=12,b4=1384+ε,ξ4=0,η4=3184+ε,α4=334411,γ4=1,δ4=12a_{4}=\frac{1}{2},b_{4}=\frac{13}{84}+\varepsilon,\xi_{4}=0,\eta_{4}=\frac{31}{84}+\varepsilon,\alpha_{4}=\frac{334}{411},\gamma_{4}=1,\delta_{4}=\frac{1}{2}, and for every j>4j>4,

aj=aj1+bj1+12(bj1+1),bj=bj12(bj1+1),ξj=(ξj1+1)(bj1+1)aj1ηj12(bj1+1),ηj=ηj12(bj1+1),αj=αj1+12,γj=aj1δj1+(bj1+1)(γj1+1)2(bj1+1),δj=δj12(bj1+1).\begin{gathered}a_{j}=\frac{a_{j-1}+b_{j-1}+1}{2\left(b_{j-1}+1\right)},\quad b_{j}=\frac{b_{j-1}}{2\left(b_{j-1}+1\right)},\\ \xi_{j}=\frac{\left(\xi_{j-1}+1\right)\left(b_{j-1}+1\right)-a_{j-1}\eta_{j-1}}{2\left(b_{j-1}+1\right)},\quad\eta_{j}=\frac{\eta_{j-1}}{2\left(b_{j-1}+1\right)},\quad\alpha_{j}=\frac{\alpha_{j-1}+1}{2},\\ \gamma_{j}=\frac{a_{j-1}\delta_{j-1}+\left(b_{j-1}+1\right)\left(\gamma_{j-1}+1\right)}{2\left(b_{j-1}+1\right)},\quad\delta_{j}=\frac{\delta_{j-1}}{2\left(b_{j-1}+1\right)}.\end{gathered}
Proof.

The proof is very similar to that of [[7], Theorem 1]. The only difference is that we use the bound EM12T1384+εE\ll M^{\frac{1}{2}}T^{\frac{13}{84}+\varepsilon} in the range T1742+εMT12T^{\frac{17}{42}+\varepsilon}\ll M\ll T^{\frac{1}{2}} and the bound EM12T32205+εM333410+εM334411E\ll M^{\frac{1}{2}}T^{\frac{32}{205}+\varepsilon}\ll M^{\frac{333}{410}+\varepsilon}\ll M^{\frac{334}{411}} in the range T12MT181328+εT^{\frac{1}{2}}\ll M\ll T^{\frac{181}{328}+\varepsilon}. We remark that Bourgain and Huxley considered the exponential sums defined on different summation ranges of mm. For this, we just need to set a function gg by g(m)=f(2m)g(m)=f(2m) or g(m/2M)=F(m/M)g(m/2M)=F(m/M) in the range T1742+εMT12T^{\frac{17}{42}+\varepsilon}\ll M\ll T^{\frac{1}{2}}, where the function ff is defined by F(m)=Tf(m/M)F(m)=Tf(m/M) as the same as in Nowak’s papers. ∎

Lemma 2.2.

For positive real parameters M1M\geqslant 1 and TT, suppose that FF is a real function on some compact interval II^{*} of length MM, with 6 continuous derivatives satisfying throughout

F(j)TMjforj=3,4,5.F^{(j)}\asymp TM^{-j}\quad\operatorname{for}\quad j=3,4,5.

Then, for every interval III\subseteq I^{*},

EM139194T13194+ε+M163388T31194+ε+M745822+M215194T2197.E\ll M^{\frac{139}{194}}T^{\frac{13}{194}+\varepsilon}+M^{\frac{163}{388}}T^{\frac{31}{194}+\varepsilon}+M^{\frac{745}{822}}+M^{\frac{215}{194}}T^{-\frac{21}{97}}.
Proof.

This is the case r=5r=5 of our Lemma 2.1. ∎

3. A problem considered by Friedlander, Iwaniec and Nowak

We follow in all essentials the argument of [8] and using our Lemma 2.2. We write e(w):=e2πiwe(w):=\mathrm{e}^{2\pi\mathrm{i}w} and start from the estimate

Δ|D16x13n1n2n3Nχ¯1(n1)χ¯2(n2)χ¯3(n3)(n1n2n3)23e(±3(n1n2n3xD)13)|+xε(Dx2N)13\Delta\ll\left|D^{\frac{1}{6}}x^{\frac{1}{3}}\sum_{n_{1}n_{2}n_{3}\leqslant N}\frac{\bar{\chi}_{1}\left(n_{1}\right)\bar{\chi}_{2}\left(n_{2}\right)\bar{\chi}_{3}\left(n_{3}\right)}{\left(n_{1}n_{2}n_{3}\right)^{\frac{2}{3}}}e\left(\pm 3\left(\frac{n_{1}n_{2}n_{3}x}{D}\right)^{\frac{1}{3}}\right)\right|+x^{\varepsilon}\left(\frac{Dx^{2}}{N}\right)^{\frac{1}{3}} (6)

where the sign ±\pm is chosen so that the modulus involved becomes maximal. This result is immediate from [[4], Proposition 3.2]. The exponential sum here can be split up into O(log3x)O\left(\log^{3}x\right) subsums

S(N1,N2,N3):=njNjj=1,2,3χ¯1(n1)χ¯2(n2)χ¯3(n3)(n1n2n3)23e(±3(n1n2n3xD)13)S\left(N_{1},N_{2},N_{3}\right):=\sum_{\begin{subarray}{c}n_{j}\sim N_{j}\\ j=1,2,3\end{subarray}}\frac{\bar{\chi}_{1}\left(n_{1}\right)\bar{\chi}_{2}\left(n_{2}\right)\bar{\chi}_{3}\left(n_{3}\right)}{\left(n_{1}n_{2}n_{3}\right)^{\frac{2}{3}}}e\left(\pm 3\left(\frac{n_{1}n_{2}n_{3}x}{D}\right)^{\frac{1}{3}}\right)

with N1N2N3NN_{1}N_{2}N_{3}\leqslant N throughout. Without loss of generality we assume that N1N2N3N_{1}\leqslant N_{2}\leqslant N_{3}, and put P=N1N2N3P=N_{1}N_{2}N_{3}. Then obviously

S(N1,N2,N3)P23njNjj=1,2|n3N3χ¯3(n3)e(±3(n1n2n3xD)13)|.S\left(N_{1},N_{2},N_{3}\right)\ll P^{-\frac{2}{3}}\sum_{\begin{subarray}{c}n_{j}\sim N_{j}\\ j=1,2\end{subarray}}\left|\sum_{n_{3}\sim N_{3}}\bar{\chi}_{3}\left(n_{3}\right)e\left(\pm 3\left(\frac{n_{1}n_{2}n_{3}x}{D}\right)^{\frac{1}{3}}\right)\right|. (7)

Here integration by parts has been used with respect to n3n_{3}, and trivial estimation with respect to n1,n2n_{1},n_{2}. For each fixed pair (n1,n2)\left(n_{1},n_{2}\right), the range for n3n_{3} is chosen in such a way that the absolute value on the right hand side becomes maximal.

The next step is to express the character χ¯3\bar{\chi}_{3} by means of the Gauss sums G(m,χ¯3)G\left(m,\bar{\chi}_{3}\right):

χ¯3(n3)=1D3m=1D3G(m,χ¯3)e(mn3D3),G(m,χ¯3):=k=1D3χ¯3(k)e(kmD3)\bar{\chi}_{3}\left(n_{3}\right)=\frac{1}{D_{3}}\sum_{m=1}^{D_{3}}G\left(m,\bar{\chi}_{3}\right)e\left(-\frac{mn_{3}}{D_{3}}\right),\quad G\left(m,\bar{\chi}_{3}\right):=\sum_{k=1}^{D_{3}}\bar{\chi}_{3}(k)e\left(\frac{km}{D_{3}}\right)

Since |G(m,χ¯3)|D312Dmax12\left|G\left(m,\bar{\chi}_{3}\right)\right|\leqslant D_{3}^{\frac{1}{2}}\leqslant D_{\max}^{\frac{1}{2}}, it follows that for each fixed (n1,n2)\left(n_{1},n_{2}\right), with n1N1n_{1}\sim N_{1}, n2N2n_{2}\sim N_{2},

n3N3χ¯3(n3)e(±3(n1n2n3xD)13)Dmax12maxm=1,,D3|n3N3e(3(n1n2n3xD)13mn3D3)|.\sum_{n_{3}\sim N_{3}}\bar{\chi}_{3}\left(n_{3}\right)e\left(\pm 3\left(\frac{n_{1}n_{2}n_{3}x}{D}\right)^{\frac{1}{3}}\right)\ll D_{\max}^{\frac{1}{2}}\max_{m=1,\ldots,D_{3}}\left|\sum_{n_{3}\sim N_{3}}e\left(3\left(\frac{n_{1}n_{2}n_{3}x}{D}\right)^{\frac{1}{3}}\mp\frac{mn_{3}}{D_{3}}\right)\right|.

The last exponential sums will now be bounded by Lemma 2.2. The conditions of Lemma 2.2 are satisfied with

M=N3,T=(PxD)13.M=N_{3},\quad T=\left(\frac{Px}{D}\right)^{\frac{1}{3}}.

Therefore, by Lemma 2.2 we have

n3N3χ¯3(n3)e(3(n1n2n3xD)13)\displaystyle\sum_{n_{3}\sim N_{3}}\bar{\chi}_{3}\left(n_{3}\right)e\left(3\left(\frac{n_{1}n_{2}n_{3}x}{D}\right)^{\frac{1}{3}}\right)
\displaystyle\ll Dmax12(N3139194((PxD)13)13194+ε+N3163388((PxD)13)31194+ε+N3745822+N3215194((PxD)13)2197).\displaystyle D_{\max}^{\frac{1}{2}}\left(N_{3}^{\frac{139}{194}}\left(\left(\frac{Px}{D}\right)^{\frac{1}{3}}\right)^{\frac{13}{194}+\varepsilon}+N_{3}^{\frac{163}{388}}\left(\left(\frac{Px}{D}\right)^{\frac{1}{3}}\right)^{\frac{31}{194}+\varepsilon}+N_{3}^{\frac{745}{822}}+N_{3}^{\frac{215}{194}}\left(\left(\frac{Px}{D}\right)^{\frac{1}{3}}\right)^{-\frac{21}{97}}\right). (8)

By (7)–(8) we get that

D16x13S(N1,N2,N3)\displaystyle D^{\frac{1}{6}}x^{\frac{1}{3}}S\left(N_{1},N_{2},N_{3}\right)
\displaystyle\ll D16x13P13Dmax12(D13582N355194P13582x13582+D31582N3225388P31582x31582+N377822+D797N321194P797x797)\displaystyle D^{\frac{1}{6}}x^{\frac{1}{3}}P^{\frac{1}{3}}D_{\max}^{\frac{1}{2}}\left(D^{-\frac{13}{582}}N_{3}^{-\frac{55}{194}}P^{\frac{13}{582}}x^{\frac{13}{582}}+D^{-\frac{31}{582}}N_{3}^{-\frac{225}{388}}P^{\frac{31}{582}}x^{\frac{31}{582}}+N_{3}^{-\frac{77}{822}}+D^{\frac{7}{97}}N_{3}^{\frac{21}{194}}P^{-\frac{7}{97}}x^{-\frac{7}{97}}\right)
\displaystyle\ll Dmax12(D1497N355194P69194x69194+D1197N3225388P75194x75194+D16N377822P13x13+D139582N321194P76291x76291).\displaystyle D_{\max}^{\frac{1}{2}}\left(D^{\frac{14}{97}}N_{3}^{-\frac{55}{194}}P^{\frac{69}{194}}x^{\frac{69}{194}}+D^{\frac{11}{97}}N_{3}^{-\frac{225}{388}}P^{\frac{75}{194}}x^{\frac{75}{194}}+D^{\frac{1}{6}}N_{3}^{-\frac{77}{822}}P^{\frac{1}{3}}x^{\frac{1}{3}}+D^{\frac{139}{582}}N_{3}^{\frac{21}{194}}P^{\frac{76}{291}}x^{\frac{76}{291}}\right). (9)

By the trivial facts P13N3NP^{\frac{1}{3}}\leqslant N_{3}\leqslant N to get rid of N3N_{3} and PNP\ll N, we have

Δ\displaystyle\Delta\ll (Dx2N)13+Dmax12(D1497N76291x69194+D1197N75388x75194+D16N7452466x13+D139582N215582x76291).\displaystyle\left(\frac{Dx^{2}}{N}\right)^{\frac{1}{3}}+D_{\max}^{\frac{1}{2}}\left(D^{\frac{14}{97}}N^{\frac{76}{291}}x^{\frac{69}{194}}+D^{\frac{11}{97}}N^{\frac{75}{388}}x^{\frac{75}{194}}+D^{\frac{1}{6}}N^{\frac{745}{2466}}x^{\frac{1}{3}}+D^{\frac{139}{582}}N^{\frac{215}{582}}x^{\frac{76}{291}}\right). (10)

Finally, by choosing

N=D55173Dmax291346x181346,N=D^{\frac{55}{173}}D_{\max}^{-\frac{291}{346}}x^{\frac{181}{346}},

we obtain the bound

Δ\displaystyle\Delta\ll xε(D118519Dmax97346x5111038+D121692Dmax4671384x6751384+D56039213309Dmax69941284412x419257853236+D1793650343Dmax131692x91507201372)\displaystyle x^{\varepsilon}\left(D^{\frac{118}{519}}D_{\max}^{\frac{97}{346}}x^{\frac{511}{1038}}+D^{\frac{121}{692}}D_{\max}^{\frac{467}{1384}}x^{\frac{675}{1384}}+D^{\frac{56039}{213309}}D_{\max}^{\frac{69941}{284412}}x^{\frac{419257}{853236}}+D^{\frac{17936}{50343}}D_{\max}^{\frac{131}{692}}x^{\frac{91507}{201372}}\right)
\displaystyle\ll D5271038x5111038+ε,\displaystyle D^{\frac{527}{1038}}x^{\frac{511}{1038}+\varepsilon}, (11)

which is our Theorem 1.4, improves Nowak’s Theorem 1.3 (we have 0.4924<24985073<0.49250.4924<\frac{2498}{5073}<0.4925 and 0.4922<5111038<0.49230.4922<\frac{511}{1038}<0.4923).

4. A new application: Primes in Short Intervals

In his articles [7][9], Nowak considered several problems concerning products of LL-series and pointed that his method is more powerful in the case of exponential sums depending on several parameters. For exponential sums depending on one parameter only, multiple sum estimations are often more powerful. (see [[9], Concluding Remark]). Clearly our new estimation can improve these results. Now we follow Friedlander and Iwaniec directly and show that our Theorem 1.4 can be used to extend the range of α\alpha. We first introduce some arithmetic functions:

λ(n):=ad=nχ(d),ν(m):=ad=mμ(a)μ(d)χ(d),ρ(n):=lm=nλ(m),\lambda(n):=\sum_{ad=n}\chi(d),\quad\nu(m):=\sum_{ad=m}\mu(a)\mu(d)\chi(d),\quad\rho(n):=\sum_{lm=n}\lambda(m),

and a close relative of λ(d)\lambda(d), namely

λ(d):=kl=dχ(k)logl\lambda^{\prime}(d):=\sum_{kl=d}\chi(k)\log l

which has the following properties:

λ(d)=bc=dλ(b)Λ(c),Λ(n)=dm=nλ(d)ν(m),0λ(d)τ(d)logd.\lambda^{\prime}(d)=\sum_{bc=d}\lambda(b)\Lambda(c),\quad\Lambda(n)=\sum_{dm=n}\lambda^{\prime}(d)\nu(m),\quad 0\leqslant\lambda^{\prime}(d)\leqslant\tau(d)\log d.

In the classical divisor problem, one need to get an asymptotic formula for the functions:

𝒟(x;λ):=nxλ(n),𝒟(x;λ):=nxλ(n)\mathcal{D}\left(x;\lambda\right):=\sum_{n\leqslant x}\lambda(n),\quad\mathcal{D}\left(x;\lambda^{\prime}\right):=\sum_{n\leqslant x}\lambda^{\prime}(n)

and we also need the asymptotic formula for

𝒟(x;ρ):=nxρ(n).\mathcal{D}\left(x;\rho\right):=\sum_{n\leqslant x}\rho(n).
Lemma 4.1.

For x1x\geqslant 1 we have

𝒟(x;λ)=\displaystyle\mathcal{D}\left(x;\lambda\right)= L(1,χ)x+O(D13x13+ε),\displaystyle L(1,\chi)x+O\left(D^{\frac{1}{3}}x^{\frac{1}{3}+\varepsilon}\right), (12)
𝒟(x;λ)=\displaystyle\mathcal{D}\left(x;\lambda^{\prime}\right)= L(1,χ)xlogx+(L(1,χ)L(1,χ))x+O(D13x13+ε),\displaystyle L(1,\chi)x\log x+\left(L^{\prime}(1,\chi)-L(1,\chi)\right)x+O\left(D^{\frac{1}{3}}x^{\frac{1}{3}+\varepsilon}\right), (13)
𝒟(x;ρ)=\displaystyle\mathcal{D}\left(x;\rho\right)= L(1,χ)xlogx+(L(1,χ)+(2γ1)L(1,χ))x+O(D5271038x5111038+ε),\displaystyle L(1,\chi)x\log x+\left(L^{\prime}(1,\chi)+(2\gamma-1)L(1,\chi)\right)x+O\left(D^{\frac{527}{1038}}x^{\frac{511}{1038}+\varepsilon}\right), (14)

where γ\gamma is the Euler constant and the implied constant depends only on ε\varepsilon.

Proof.

These can be proved by similar arguments as in [4], and the only difference is that we use our Theorem 1.4 instead of Theorem 1.2 in order to prove the formula (14). ∎

Now we split the functions ρ=ρ+ρ\rho=\rho^{*}+\rho_{*}, Λ=Λ+Λ\Lambda=\Lambda^{*}+\Lambda_{*} and further define

ρ(n):=lm=nmD2λ(m),ρ(n):=lm=nm>D2λ(m),\rho^{*}(n):=\sum_{\begin{subarray}{c}lm=n\\ m\leqslant D^{2}\end{subarray}}\lambda(m),\quad\rho_{*}(n):=\sum_{\begin{subarray}{c}lm=n\\ m>D^{2}\end{subarray}}\lambda(m),
Λ(n):=dm=nmD2λ(d)ν(m),Λ(n):=dm=nm>D2λ(d)ν(m),\Lambda^{*}(n):=\sum_{\begin{subarray}{c}dm=n\\ m\leqslant D^{2}\end{subarray}}\lambda^{\prime}(d)\nu(m),\quad\Lambda_{*}(n):=\sum_{\begin{subarray}{c}dm=n\\ m>D^{2}\end{subarray}}\lambda^{\prime}(d)\nu(m),
ψ(x):=nxΛ(n),ψ(x):=nxΛ(n).\psi^{*}(x):=\sum_{n\leqslant x}\Lambda^{*}(n),\quad\psi_{*}(x):=\sum_{n\leqslant x}\Lambda_{*}(n).
Lemma 4.2.

[[3], Corollary 4.2]. For D52x38<yxD^{\frac{5}{2}}x^{\frac{3}{8}}<y\leqslant x we have

ψ(x)ψ(xy)=y+O(L(1,χ)y(logx)9),\psi^{*}(x)-\psi^{*}(x-y)=y+O\left(L(1,\chi)y(\log x)^{9}\right), (15)

where the implied constant is absolute.

By Lemma 4.1 and similar arguments as in [3], for D2x4922931000000<yxD^{2}x^{\frac{492293}{1000000}}<y\leqslant x we obtain the following asymptotic formula

𝒟(x;ρ)𝒟(xy;ρ)=L(1,χ)y{logx+O(1)}.\mathcal{D}\left(x;\rho_{*}\right)-\mathcal{D}\left(x-y;\rho_{*}\right)=L(1,\chi)y\{\log x+O(1)\}. (16)

Now by (16) and

|ψ(x)ψ(xy)|(logx)δΔ(2τ(δ))A[𝒟(xδ1;ρ)𝒟((xy)δ1;ρ)]\left|\psi_{*}(x)-\psi_{*}(x-y)\right|\leqslant(\log x)\sum_{\delta\leqslant\Delta}(2\tau(\delta))^{A}\left[\mathcal{D}\left(x\delta^{-1};\rho_{*}\right)-\mathcal{D}\left((x-y)\delta^{-1};\rho_{*}\right)\right] (17)

with the bound

δΔτ(δ)Aδ1(logΔ)2A+1\sum_{\delta\leqslant\Delta}\tau(\delta)^{A}\delta^{-1}\ll(\log\Delta)^{2^{A}+1} (18)

where Δ=x1r,A=rlogrlog2\Delta=x^{\frac{1}{r}},A=\frac{r\log r}{\log 2} and rr is a positive integer, we have

Lemma 4.3.

For D52x4922931000000+5077071000000r<yxD^{\frac{5}{2}}x^{\frac{492293}{1000000}+\frac{507707}{1000000r}}<y\leqslant x with r1r\geqslant 1, we have

ψ(x)ψ(xy)=O(L(1,χ)y(logx)rr+3),\psi_{*}(x)-\psi_{*}(x-y)=O\left(L(1,\chi)y(\log x)^{r^{r}+3}\right), (19)

where the implied constant depends only on rr.

Adding (19) to (15) we find that

ψ(x)ψ(xy)=O(L(1,χ)y(logx)rr+3),\psi(x)-\psi(x-y)=O\left(L(1,\chi)y(\log x)^{r^{r}+3}\right), (20)

subject to the conditions of Lemma 4.3. We require Dx1rD\leqslant x^{\frac{1}{r}} and then choose a number θ\theta with 4922931000000<θ<12\frac{492293}{1000000}<\theta<\frac{1}{2} satisfies

52r+4922931000000+5077071000000rθ.\frac{5}{2r}+\frac{492293}{1000000}+\frac{507707}{1000000r}\leqslant\theta.

By choosing θ=0.4923\theta=0.4923 and r=433433r=433433, we complete the proof of Theorem 1.5. We remark that the range 0.4923α10.4923\leqslant\alpha\leqslant 1 is rather near to the limit obtained by this method. In his preprint [6], Merikoski mentioned that some sieve arguments can be used to this problem.

References

  • [1] R. Baker, G. Harman, and J. Pintz. The difference between consecutive primes, II. Proceedings of the London Mathematical Society, 83(3):532–562, 2001.
  • [2] J. Bourgain. Decoupling, exponential sums and the Riemann zeta function. Journal of the American Mathematical Society, 30(1):205–224, 2017.
  • [3] J. B. Friedlander and H. Iwaniec. Exceptional characters and prime numbers in short intervals. Selecta Mathematica, 10:61–69, 2004.
  • [4] J. B. Friedlander and H. Iwaniec. Summation formulae for coefficients of LL-functions. Canadian Journal of Mathematics, 57:494–505, 2005.
  • [5] M. N. Huxley. Exponential sums and the Riemann zeta function V. Proceedings of the London Mathematical Society, 90:1–41, 2005.
  • [6] J. Merikoski. Exceptional characters and prime numbers in sparse sets. arXiv e-prints, page arXiv:2108.01355, August 2021.
  • [7] W. G. Nowak. Higher order derivative tests for exponential sums incorporating the discrete Hardy-Littlewood method. Acta Mathematica Hungarica, 134:12–28, 2012.
  • [8] W. G. Nowak. A problem considered by Friedlander & Iwaniec and the discrete Hardy-Littlewood method. Mathematica Slovaca, 67(2):533–539, 2017.
  • [9] W. G. Nowak. Refined estimates for exponential sums and a problem concerning the product of three LL-series. In Number Theory - Diophantine Problems, Uniform Distribution and Applications: Festschrift in Honour of Robert F. Tichy’s 60th Birthday, pages 333–345. Springer Cham, 2017.
  • [10] Y. Zhang. Discrete mean estimates and the Landau-Siegel zero. arXiv e-prints, page arXiv:2211.02515, November 2022.