This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

How Are Gamma-Ray Burst Radio Afterglows Populated?

K. Zhang1,3, Z. B. Zhang1, Y. F. Huang2, L. M. Song3, S. J. Zheng3, and X. J. Li1
1College of Physics and Engineering, Qufu Normal University, Qufu 273165, P. R. China
2School of Astronomy and Space Science, Nanjing University, Nanjing 210023, P. R. China
3Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
E-mail: [email protected]: [email protected]
(Accepted XXX. Received YYY; in original form ZZZ)
Abstract

We systematically analyze three GRB samples named as radio-loud, radio-quiet and radio-none afterglows, respectively. It is shown that dichotomy of the radio-loud afterglows is not necessary. Interestingly, we find that the intrinsic durations (TintT_{int}), isotropic energies of prompt gamma-rays (Eγ,isoE_{\gamma,iso}) and redshifts (zz) of their host galaxies are log-normally distributed for both the radio-loud and radio-quiet samples except those GRBs without any radio detections. Based on the distinct distributions of TintT_{int}, Eγ,isoE_{\gamma,iso}, the circum-burst medium density (nn) and the isotropic equivalent energy of radio afterglows (Lν,pL_{\nu,p}), we confirm that the GRB radio afterglows are really better to be divided into the dim and the bright types. However, it is noticeable that the distributions of flux densities (FhostF_{host}) from host galaxies of both classes of radio afterglows are intrinsically quite similar. Meanwhile, we point out that the radio-none sample is also obviously different from the above two samples with radio afterglows observed, according to the cumulative frequency distributions of the TintT_{int} and the Eγ,isoE_{\gamma,iso}, together with correlations between TintT_{int} and zz. In addition, a positive correlation between Eγ,isoE_{\gamma,iso} and Lν,pL_{\nu,p} is found in the radio-loud samples especially for the supernova-associated GRBs. Besides, we also find this positive correlation in the radio-quiet sample. A negative correlation between TintT_{int} and zz is confirmed to hold for the radio-quiet sample too. The dividing line between short and long GRBs in the rest frame is at TintT_{int}\simeq1 s. Consequently, we propose that the radio-loud, the radio-quiet and the radio-none GRBs could be originated from different progenitors.

keywords:
gamma-ray burst: general — radio continuum: transients — radio continuum: individual — methods: data analysis
pubyear: 2019pagerange: How Are Gamma-Ray Burst Radio Afterglows Populated?12

1 Introduction

Gamma-Ray Bursts(GRBs) are instantaneous brightening event of gamma rays in the distant universe. After it was reported in 1973 (Klebesadel et al., 1973), a lot of properties of progenitors have been investigated by many previously theoretical and observational researches, see review papers (e.g., Piran, 1999; Zhang, 2014) for details. Study of GRB afterglows is crucial to understand the central engine and the environment of distinct progenitors. The general interpretation is that a sudden energy release will produce a high temperature fireball expanding at a relativistic speed. The internal dissipation of the fireball leads to the gamma-rays, and the blast wave against the external medium produce the afterglow (Mészáros 2006, Rees & Meszaros 1992, Rees & Meszaros 1994). The hydrodynamic evolution of the jetted outflows from the ultra-relativistic phase to the non-relativistic phase has been studied by a few authors (e.g., Huang et al. 1999, 2003). But there are many questions remaining for GRBs, such as how the inner engine runs, the reason of flares in afterglow and so on (Woosley 1993, Paczynski 1990, Duncan & Thompson 1992, Becerra et al. 2019, Hascoët et al. 2017, Mu et al. 2016). As illustrated in Chandra et al. (2012), the detecting rates of X-ray and optical afterglows are higher than that of radio afterglows. Due to the relatively longer timescale of radio afterglows, one can have more opportunities to observe the radio afterglows in detail at a later period. In particular, the rebrightening phenomena of some radio afterglows caused by multiple activities of the inner engine of GRBs (Li et al., 2015), energy injection(Geng et al., 2018), supernova (SN) components or the forward and reverse shock can be detected and utilized to constrain the above theoretical rebrightening models. At the same time, the statistical classifications of radio afterglows become more and more important and feasible with the data accumulation of the radio afterglows.

Chandra et al. (2012) sorted 304 GRBs radio afterglows, and found the detection rate to be about 31% that is obviously lower than those of X-ray and optical afterglows even after the Swift satellite was launched to detect more X-ray and optical afterglows than before. Also, they sorted radio afterglows at 8.5 GHz for detection and 3σ\sigma upper limit between 5 and 10 days and found that there was only little difference between them. The tiny difference was thought to be resulted from the telescope sensitivity (Chandra et al. 2012). However, Hancock et al (2013) pointed out that the instrumental sensitivity was not the intrinsic reason for the difference mentioned above and they found that 60% \sim 70% of the radio selected GRB samples are truly radio bright, while the convinced fraction of the radio faint GRBs is about one third. Chandra et al. (2012) found that there was an apparent correlation between the detectability and the energy of GRBs which may cause the diverse detection rates for the radio bright and faint GRB samples. To reduce the influence of many unknown reasons on classifications in terms of the radio brightness, Lloyd et al. (2017) and Lloyd et al. (2019) selected the GRBs with larger isotropic energy(Eγ,iso>1052ergE_{\gamma,iso}>10^{52}erg) in prompt gamma-rays, and divided them into two sub-samples, that is radio-loud and radio-quiet types. They proposed that the two subsamples might be generated from different progenitors; that is the radio-loud GRBs might be produced from the He-merger while the radio-quiet GRBs may be interpreted by the core-collapse of massive stars.

Owing to the relatively less brightness of GRBs in radio bands, whether the radio afterglows can be classified into any subclasses is still controversial. With the increase of radio afterglow numbers, statistical study becomes more and more reliable and important. Motivated by the above incongruous results, we do a similar analysis but for different samples of GRB radio afterglows in very detail. In addition, we will examine the effects of surrounding mediums and GRB host galaxies on the GRB classifications in radio bands. In order to deduce their potential progenitors, several supernova-associated GRBs with radio afterglow measurements are also included. Simultaneously, we also pay attention to GW170817/GRB170817A detected by Laser Interferometer Gravitational-Wave Observatory (LIGO) and Fermi/Integral satellites (Goldstein et al. 2017; Savchenko et al. 2017) as the first short GRB associated with Kilonova originated from a binary neutron star merger system (Abbott et al., 2017).

2 DATA PREPARATION

First of all, we define our sampling criteria in the following: (1) GRBs with radio flux density larger than 3σ\sigma error bars constitute the radio-loud sample; (2) those radio afterglows with flux density lower than 3σ\sigma levels belong to the radio-quiet (including upper limits) sample; (3) other GRBs without any radio flux detections comprise our radio-none sample. The fact that no radio afterglow is reported (not even an upper limit) for a given burst could be because the telescope was down, or the PI ran out of their budget, or the burst did not fulfill the team’s observational criteria which may be a bright optical/X-ray afterglows, or proximity, or something like that. However, each burst involved in our radio-none sample was indeed observed by some radio telescopes or array, but no meaningful flux densities were reported according to Chandra et al. (2012). Most probably, radio afterglows of the radio-none sample could exist but are extremely too weaker to be detected by the current instruments due to sensitivity limits. We choose the GRBs with measured redshift (zz) to calculate the intrinsic duration TintT_{int} and isotropic equivalent energy Eγ,isoE_{\gamma,iso} (the intrinsic duration defined as Tint=T90/(1+z)T_{int}=T_{90}/(1+z), where T90T_{90} is defined as the time that the burst takes from 5 to 95 percent counts of the total gamma-rays, Kouveliotou et al 1993).

Chandra et al. (2012) reported a large sample of GRB radio afterglows, of which the majority were detected by the Very Large Array (VLA) or Expanded Very Large Array (EVLA), and a small fraction of these radio afterglows were successfully observed by the Australia Telescope Compact Array (ATCA), Westerbork Synthesis Radio Telescope (WSRT), Giant Metrewave Radio Telescope (GMRT) and the Very Long Baseline Array (VLBA). Out of the 304 GRBs in Chandra et al. (2012), we have selected 84 detections and 63 upper limits from the VLA-based afterglows, of which 79 radio-loud, 48 radio-quiet and 25 radio-none bursts with known redshift are involved (hereafter called the VLA-based sample). To compare with the recent high-frequency radio afterglows detected by the Arcminute Microkelvin Imager (AMI) telescope, we have taken 45 detections and 74 upper limits out of 139 bursts at 15.7 GHz from Anderson et al. (2018), from which 21 radio-loud and 34 radio-quiet AMI afterglows with measured redshift are picked out to study the rest-frame features (hereafter called the AMI sample). It is likely that the lower Eγ,isoE_{\gamma,iso} bursts in the SN-associated GRB sample are relatively brighter in radio bands in contrast with other bursts. To explore the interesting issue, we have paid particular attention to the SN-associated GRBs and chosen 23 SN/GRBs as a unique subgroup including 21 radio-loud and 2 radio-quiet GRBs. It is noticeable that more than 90 percent of SN/GRB afterglows are radio-loud and the redshifts of all the SN/GRBs in our sample are well known. Moreover, Lloyd et al. (2017) and Lloyd et al. (2019) only chose those energetic bursts with Eγ,iso>1052E_{\gamma,iso}>10^{52} ergs, which will inevitably bias the results of radio quiet afterglows since the Eγ,isoE_{\gamma,iso} and radio peak luminosity are positively correlated for different kinds of bursts as described in Sec. 3.6.

All the above samples of radio afterglows are compiled in Tables LABEL:Table1:radio-loud and LABEL:Table2:radio-quiet, in which the key parameters of radio-loud and radio-quiet GRBs are similarly presented. Column 1 gives the name of GRBs; Columns 2 and 3 are respectively the duration (T90T_{90}) and the redshift (zz); In Column 4, we list the kk-corrected isotropic energies (Eγ,isoE_{\gamma,iso}) in γ\gamma-ray band; Column 5 gives the medium densities nn; Column 6 provides the spectral peak luminosity (Lν,pL_{\nu,p}) of radio afterglows at a frequency of 8.5 GHz or 15.7 GHz; In Columns 7 and 8, we present the peak radio flux density together 1σ1\sigma RMS at 8.5 GHz or 15.7 GHz; Column 9 list the radio telescopes which were used to carry out observations; References are given in Column 10. In Table LABEL:Table3:radio-none, we only provide the values of T90T_{90}, zz, Eγ,isoE_{\gamma,iso} and nn along with the employed radio telescope in order for the radio-none bursts. If there is no any parameters measured, we just leave them blank. To investigate the properties of host galaxies for different kinds of radio samples, we directly utilize the data of radio flux densities for host galaxies in Li et al. (2015) and Zhang et al. (2018).

3 RESULTS

3.1 Flux density of radio afterglows

We first plot the distributions of radio afterglows for detections and 3σ\sigma upper limits between 0 and 10 days at 8.5 GHz in top-left panel of Figure 1, where it is found that our distributions are similar to those in Chandra et al. (2012) and Hancock et al (2013), in which the upper limits are confirmed again to peak at 50-100 μ\muJy in and the detections peaked around 200 μ\muJy with a long extending tail. We also find that there is an obvious truncation at \sim 400 μ\muJy in the VLA-based detection sample, which motivates us to examine whether the distribution of the flux densities less than 400 μ\muJy is associated with that of the upper-limit sample. For the purpose, we try to define the detection sample whose flux density larger than 400 μ\muJy as radio-loud I sample, and other detections with radio flux density less than 400 μ\muJy to be radio-loud II sample, temporally. It is interestingly found from the bottom panels of Figure 1 that the flux density distributions of radio-loud and radio-quiet AMI afterglows are also bimodally distributed and resemble those of the VLA-based sample. However, the AMI peak flux densities of both detections and upper limits are on average two times larger than those VLA-based ones, correspondingly.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: The distributions of peak flux densities for detections and upper limits of radio-loud (filled) and radio-quiet (hatched) afterglows between 0-10 days taken from Chandra et al. (2012) at 8.5 GHz and Anderson et al. (2018) at 15.7 GHz are shown on the top-left and top-right panels, respectively. The vertical shadow on the top-left panel represents the distributional histogram of SN/GRBs. Two bottom panels display the peak flux comparisons of radio afterglows at different frequencies for radio-loud (left) and radio-quiet (right) samples in the logarithmic scale.

To check if it is necessary to reclassify radio-loud GRBs into two subsamples, we display the cumulative fractions of the intrinsic duration TintT_{int} and the Eγ,isoE_{\gamma,iso} for radio-loud I, radio-loud II and radio-quiet GRBs (upper limits) in Figure 2. As shown in Table LABEL:Table5:k-s_test, the Kolmogorov-Smirnov (K-S) tests return the statistic D=0.48D=0.48 (0.31) and P=7×104P=7\times 10^{-4} (0.031) between the TintT_{int} distributions of the radio-loud I (II) and the radio-quiet samples showing the radio-quiet bursts are different from either radio-loud I or II. Similarly, the statistic and p-value of the Eγ,isoE_{\gamma,iso} distributions are D=0.35D=0.35 (0.38) and P=0.037P=0.037 (0.004) for comparisons between the radio-quiet and the radio-loud I (II) samples. Surprisingly, the K-S test to the radio-loud I and the radio-loud II samples returns D=0.27D=0.27 with P=0.24P=0.24 for the TintT_{int} distribution and D=0.14D=0.14 with P=0.92P=0.92 for the Eγ,isoE_{\gamma,iso} distribution, indicating that the two radio-loud sub-samples should be taken from the same parent distribution. In other words, dividing radio-loud bursts into two classes is not necessary. Consequently, we shall only investigate the radio-loud, the radio-quiet and the radio-none samples in the subsequent sections, and explore in statistics whether they are basically different kinds of bursts on basis of their observational properties.

Refer to caption
Refer to caption
Figure 2: The cumulative fractions of TintT_{int} and Eγ,isoE_{\gamma,iso} are shown for different radio-selected GRBs in left and right panels, respectively.

3.2 Distributions of zz, TintT_{int} and Eγ,isoE_{\gamma,iso} revisited

Using the total sample of 206 GRBs including 151 VLA-based and 55 AMI bursts, we plot the histograms of zz, Eγ,isoE_{\gamma,iso} and TintT_{int} for radio-loud, radio-quiet and radio-none samples in Figure 12, where one can find that the distributions of zz, TintT_{int} and Eγ,isoE_{\gamma,iso} of radio-loud and radio-quiet samples are well fitted by a gaussian function, but the radio-none sample seems to be eccentric (see Appendix for a detail). The fitting results are summarized in Table 4, from which we notice that the mean values of zz, Eγ,isoE_{\gamma,iso} and TintT_{int} of radio-none GRBs are systematically smaller than those of the other two samples. In particular, the isotropic energies of radio-none bursts are on average one order of magnitude lower than the Eγ,isoE_{\gamma,iso} values of either radio-loud or radio-quiet bursts.

Following Hancock et al (2013) and Lloyd et al. (2019), we also analyze the cumulative fractions of the TintT_{int} and the Eγ,isoE_{\gamma,iso} but for different radio-loud, radio-quiet and radio-none VLA-based samples in Figure 3 and Table LABEL:Table5:k-s_test, where we see that the radio-quiet samples are evidently different from the radio-loud ones in terms of the TintT_{int} distribution, on average the radio-loud GRBs have relatively longer TintT_{int} as found before (Hancock et al, 2013; Lloyd et al., 2019). However, the K-S test demonstrates that the TintT_{int} distributions of radio-quiet and radio-none GRBs are indistinguishable. Regarding the Eγ,isoE_{\gamma,iso} distributions, we also perform the K-S tests to any two of the above three VLA-based samples and find from Table LABEL:Table5:k-s_test that they are drawn from different parent distributions. In addition, the median discrepancy of Eγ,isoE_{\gamma,iso} between the radio-loud and the radio-none bursts is about two orders of magnitude. With the increase of frequency, it is interestingly found that two AMI samples of radio-loud and radio-quiet GRBs at 15.7 GHz are consistent with being drawn from the same parent Eγ,isoE_{\gamma,iso} distribution.

Refer to caption
Refer to caption
Figure 3: Cumulative fractions of TintT_{int} (left panel) and Eγ,isoE_{\gamma,iso} (right panel) are plotted for the VLA-based radio-loud (red solid line), radio-quiet (blue dashed line), radio-none (black dot-dashed line) bursts and for the AMI Radio-loud (purple short dash-dotted line) and AMI Radio-quiet (green short dashed line) GRBs.

3.3 Radio fluxes of host galaxies

We notice that some GRBs with radio flux densities of host galaxies in Zhang et al. (2018) were not included in our initial radio-loud, radio-quiet or none samples. To increase the reliability in statistics, we assume them to be radio-none or radio-quiet because they don’t have radio afterglows detected. In order to analyze the radio flux density of host galaxies for the three samples, we combine the data of radio-none and radio-quiet into a simple radio-faint sample. Then we plot the cumulative fractions for the radio-loud, radio-faint samples in Figure 4 where we find when the radio (flux density of the host galaxies, FhostF_{host}) is less than 50 μ\muJy the radio-loud, the radio-faint samples share the same distribution, but when it is more than 50μ\muJy the Cumulative fractions of these two samples are significantly different. A K-S test shows that the probability of those two samples from the same distribution is 0.19, so that in terms of host galaxies the two samples might be taken from the same distribution.

Refer to caption
Figure 4: Cumulative fractions of FhostF_{host} for radio-loud (solid red line), radio-faint (black dashed line) samples.

Li et al. (2015) found the host flux density FhostF_{host} is positively correlated with the observed peak flux density (Fo,peakF_{o,peak}) or the pure flux density(Fb,peakF_{b,peak}) of GRBs at a given radio frequency ν\nu as follows

Fhost=(a+bν)Fo,peak,F_{host}=(a+b\nu)F_{o,peak}, (1)

and

Fhost=a+bν1(a+bν)Fb,peak,F_{host}=\frac{a+b\nu}{1-(a+b\nu)}F_{b,peak}, (2)

where a0.3a\simeq 0.3, b0.02b\simeq-0.02, and Fo,peak=Fb,peak+FhostF_{o,peak}=F_{b,peak}+F_{host}. The Eq. (1) can be used to estimate the host flux density once the peak values of radio afterglows are measured. Figure 5 displays the relationships of FhostF_{host} with Fo,peakF_{o,peak} or Fb,peakF_{b,peak} for the radio-loud and radio-quiet samples. One can find that the radio flux densities of the radio-quiet GRBs and their host galaxies are relatively lower than those of the radio-loud ones. It is noticeable that the very famous nearby short GRB (sGRB) 170817A seen off-axis with an estimated viewing angle of 204020^{\circ}\sim 40^{\circ} (Alexander et al., 2017) is the first electromagnetic counterpart of gravitational-wave event. It has peak flux densities of \sim84.5 μ\muJy and \sim58.6 μ\muJy observed correspondingly at ν=\nu=3 GHz and 5.5 GHz around 130 days since the merge of double neutron stars (Li et al., 2018). Using the above Eq. (1) and (2), one can easily predict the host flux densities to be about 20.3 μ\muJy at ν=\nu=3 GHz and 11.1 μ\muJy at ν=\nu=5.5 GHz. Interestingly, GW 170817/sGRB170817A as a radio-loud burst has relatively weaker radio afterglows and lower host fluxes in contrast with other normal radio-loud GRBs. However, it is located near the radio-quiet bursts as shown in Figure 5, which indicates that galactic types or circum-burst environment of different radio-selected GRBs could be diverse although their dominant radiation mechanisms might be the same.

Refer to caption
Refer to caption
Figure 5: The relations of FhostF_{host} versus Fo,peakF_{o,peak} and FhostF_{host} versus Fb,peakF_{b,peak} are displayed on left and right panels respectively for different radio frequencies. Three correspondingly empirical power-low relations at frequencies of ν\nu=8.5GHz (solid line), 5.5GHz (dashed line) and 3.0GHz (dotted line) are compared. Those upper limits are marked with different downward arrows. The radio-loud and the radio-quiet bursts are denoted with filled and empty symbols, individually. The off-axis GRB 170817A is symbolized with large triangle for ν=5\nu=5 GHz and large square for ν=3\nu=3 GHz.

3.4 The surrounding medium density

As pointed out by Chandra et al. (2012), the centimeter radio afterglow emission is the brightest for circum-burst densities from 1 to 10 cm-3. Beyond the narrow density range, the flux density will become weak due to either a low intrinsic emission strength (for lower densities) or the increased synchrotron self-absorption (for higher densities). From the literatures, it is well known that the circum-burst medium densities (nn) of GRBs usually span serval orders of magnitude and are hard to be determined (e.g. Wijers & Galama, 1999; Chandra et al., 2012; Fong et al., 2015; Zhang et al., 2018). In our samples, the circum-burst densities are distributed in a fairly wide scope spanning \sim10 orders of magnitude seen from Table LABEL:Table1:radio-loud to LABEL:Table3:radio-none. Because the number of radio-none GRBs with estimated densities is extremely limited, we thus combine the radio-quiet and the radio-none samples into a newly-formed radio faint sample in order to increase the statistical confidence level. Then we plot the cumulative fractions for the two samples in Figure 6 and apply a K-S test to get DD= 0.55 with a probability of 0.002, which demonstrates that the radio-loud and radio faint samples are significantly incongruous with each other. In contrast, the medium densities of the radio-loud host galaxies are relatively larger than those of the radio faint ones. Furthermore, the fraction of low densities of nn\leq 0.1 cm-3 for the radio faint sample is around six times more than that for the radio-loud sample. On the contrary, about 90 percent of radio-loud afterglows are surrounded by relatively denser mediums of n101102n\simeq 10^{-1}-10^{2} cm-3.

Refer to caption
Figure 6: Cumulative fractions of lognn for radio-loud (red solid line) and radio faint (black dashed line) samples.

3.5 Spectral luminosity of radio afterglows

We utilize all the GRBs with measured isotropic γ\gamma-ray energy instead of Eγ,isoE_{\gamma,iso} >\textgreater 105210^{52} (Lloyd et al., 2019) only to ensure our samples to be as complete as possible. Simultaneously, we calculate the spectral peak luminosity at radio band (Lν,pL_{\nu,p}) for the radio-loud and the radio-quiet (or upper limit) samples as (Zhang et al., 2018)

Lν,p=4πDL2fm,radio(1+z)1k,L_{\nu,\text{p}}=4\pi D_{L}^{2}f_{m,radio}(1+z)^{-1}k, (3)

where fm,radiof_{m,radio} denotes the peak flux density Fo,peakF_{o,peak} of the radio-loud afterglows or the upper limits of radio-quiet afterglows, kk is a KK-correction factor determined by

k=(1+z)αβ,k=(1+z)^{\alpha-\beta}, (4)

where α\alpha \sim 0 and β\beta \sim 1/3 are assumed to be the normal temporal and spectral indexes, respectively. DLD_{L} denoting the luminosity distance of a burst is given by

DL=cH01(1+z)0z𝑑z[(1+z)3ΩM+ΩΛ]1/2,D_{L}=cH_{0}^{-1}(1+z)\int_{0}^{z}dz^{{}^{\prime}}[(1+z^{{}^{\prime}})^{3}\Omega_{M}+\Omega_{\Lambda}]^{-1/2}, (5)

in which cc=3.0×1083.0\times 10^{8} m/s is the speed of light, H0H_{0} is the Hubble constant taken as 70 km/s/Mpc, other cosmological parameters ΩM\Omega_{M}=0.27 and ΩΛ\Omega_{\Lambda}=0.73 have been assumed for a flat universe (Schaefer, 2007). Consequently, the Lν,pL_{\nu,p} values can be obtained from Eq. (3) for the VLA-based GRBs at 8.5 GHz since most afterglows were detected at this frequency. For the AMI bursts reported in Anderson et al. (2018), their Lν,pL_{\nu,p} values are calculated at a frequency of 15.7 GHz. Owing to lack of measurement of the radio afterglows with the upper limits, the Lν,pL_{\nu,p} values of radio-quiet afterglows can be only estimated as the upper limits too. Figure 7 displays the Lν,pL_{\nu,p} distributions of radio-loud, radio-quiet and SN-associated GRBs respectively. On average, the peak luminosity of radio-loud bursts is relatively larger than the other two, while the mean values of radio-quiet and SN-associated GRBs are comparable. The cumulative fractions of all the above samples are shown in Figure 8. A K-S test to them shows that the luminosity distributions of radio-loud and radio-quiet GRBs are largely different for the VLA-based samples since D=0.4D=0.4 (>Dα=0.05=0.25D_{\alpha=0.05}=0.25) with P6.6×105P\simeq 6.6\times 10^{-5} and are however consistent with each other for the AMI samples. It needs to be emphasized that the distributional consistency of Lν,pL_{\nu,p} for different kinds of radio-selected GRBs is similar to that of the Eγ,isoE_{\gamma,iso} distributions in Figure 3. Moreover, the actual deviation between them would become more significant since the accumulative line of the radio-quiet sample consisted of the upper limits should move leftward in a certain sense. The median Lν,pL_{\nu,p} of radio-quiet sample is about one order of magnitude smaller than that of radio-loud sample. Interestingly, this is similar to the one order of magnitude difference between radio fluxes of host galaxies and GRB afterglows (Zhang et al., 2018). Hence, we conclude that the majority of radio-quiet emissions should be contributed by their surrounding host galaxies.

Refer to caption
Refer to caption
Figure 7: The left panel shows the distribution of spectral peak luminosity of the VLA-based radio afterglows. The right panel displays the distribution of spectral peak luminosity of the AMI GRBs. The filled and hatched histograms respectively represent the upper limit and detection samples, and the vertical-line hatched histogram corresponds to the SN/GRBs.
Refer to caption
Figure 8: Cumulative fractions of Lν,pL_{\nu,p} for the VLA-based radio-loud (red solid line)and radio-quiet (black dashed line) samples, the AMI radio-loud (purple dash-dotted line), the AMI radio-quiet (green dotted line) and the SN-associated GRBs (blue short dash-dotted line). Note that the arrows denote that the Lν,pL_{\nu,p} distributions of radio-quiet GRBs are just the upper limits.

3.6 The Lν,pL_{\nu,p}-Eγ,isoE_{\gamma,iso} relationship

As shown in Figures 2, 3, 7 and 8, the averaged energies of Eγ,isoE_{\gamma,iso} and Lν,pL_{\nu,p} of radio-loud bursts are larger than the corresponding values of radio-quiet ones. In the section, we will testify the possible correlation between the Eγ,isoE_{\gamma,iso} and the Lν,pL_{\nu,p} of radio-loud (N=100) and radio-quiet (N=76) GRB samples. For this purpose, the radio peak flux densities at 8.5 GHz and 15.7 GHz have been utilized. Figure 9 displays the relations of Eγ,isoE_{\gamma,iso} with Lν,pL_{\nu,p} for all the radio-loud/quiet VLA-based bursts including 95 long GRBs (lGRBs), 23 SN/GRBs, 2 X-Ray Flashes (XRFs) and 6 short GRBs (sGRBs), and 50 AMI GRBs. Interestingly, we find on the left panel that Eγ,isoE_{\gamma,iso} is positively correlated with Lν,pL_{\nu,p} with a Pearson correlation coefficient of R=R=0.76 (SL=2.2×1016SL=2.2\times 10^{-16}) or Spearman rank correlation coefficient of 0.55 (SL=1.08×107SL=1.08\times 10^{-7}). The correlation function can be roughly written as Lν,pEγ,iso0.41±0.04L_{\nu,p}\propto E_{\gamma,iso}^{0.41\pm 0.04} for the whole radio-loud sample with χν2=0.23\chi^{2}_{\nu}=0.23. On the right panel, a positive correlation, Lν,pEγ,iso0.48±0.09L_{\nu,p}\propto E_{\gamma,iso}^{0.48\pm 0.09} with a χν2=0.42\chi^{2}_{\nu}=0.42, weakly exists for the radio-quiet bursts, of which the Pearson and the Spearman correlation coefficients are respectively R=R=0.62 (SL=5.48×106SL=5.48\times 10^{-6}) and R=R=0.47 (SL=1.2×103SL=1.2\times 10^{-3}) that are very close to those of the radio-loud bursts. This demonstrates that the radio peak luminosities and the prompt γ\gamma-ray energies are highly associated. It is notable that our finding here is different from Chandra et al. (2012), where they claimed no obvious correlation between Eγ,isoE_{\gamma,iso} and Lν,pL_{\nu,p} in their Figure 20 possibly owing to the limit of sample size. Recently, Tang et al. (2019) found that the X-ray peak luminosity is positively correlated with the Eγ,isoE_{\gamma,iso} as LXEγ,iso0.97L_{X}\propto E_{\gamma,iso}^{0.97}. It is valuable to mention that the radio peak luminosities of 21 SN/GRBs in our sample and 6 SN/GRBs in Chandra et al. (2012) exhibit a consistent dependence of Eγ,isoE_{\gamma,iso}. This may imply these SN/GRBs should undergo with the same processes of energy dissipations. Data points of the sGRBs and the XRFs are too limited to show if they behave a positive interdependency as the lGRBs did.

Refer to caption
Refer to caption
Figure 9: The correlations of Lν,pL_{\nu,p} versus Eγ,isoE_{\gamma,iso} for radio-loud sample (the left panel) and radio-quiet sample (the right panel). All illustrations are marked on the insert. Note that the inverted triangles stand for the upper limits. Except the AMI radio-loud (cross circles) and radio-quiet (empty triangles) GRBs, all other symbols represent the VLA-based bursts. GRB 170817A detected at ν=\nu=3 and 5.5 GHz has been marked with two empty stars. The solid lines are the best power-law fits to all bursts but GRB 170817A. The light shaded regions are 2σ\sigma confidence ranges and the heavy shaded areas show the 2σ\sigma prediction ranges.

3.7 The correlation between TintT_{int} and 1+z1+z

Lloyd et al. (2019) found that there was a negative correlation between TintT_{int} and 1+z1+z for the radio-loud rather than radio-quiet GRB sample. They concluded that if this negative correlation indeed exists, other than affected by the selection effect, it could reflect that the systems at higher redshift have less angular momentum or less materials accreted to the GRB disks. Recently, Zhang et al. (2018) investigated the correlations between the intrinsic peak times of radio afterglows at 8.5 GHz and the redshift factor (1+z)(1+z) and found that they are fully uncorrelated, which seems to conflict with the negative correlation of TintT_{int} versus 1+z1+z. Meanwhile, the TintT_{int} distribution of Swift/BAT bursts was still bimodal in that all the durations move towards to the short end once the T90T_{90} over 1+z was considered (Zhang & Choi, 2008). It is well known that the sGRBs are usually observed at nearby universe unlike the lGRBs. Strictly speaking, the negative dependence of the TintT_{int} on the redshift is hard to understand unless a fraction of sGRBs have extremely small redshift while parts of lGRBs have very high redshift.

As mentioned in Section 2, our current samples as an expansion of Lloyd et al. (2019) are relatively complete. Therefore, it is timely and essential to check if the correlations between TintT_{int} and 1+z1+z coexist in both radio-loud, radio-quiet and radio-none samples as plotted in Figure 10. In statistics, the Pearson correlations of TintT_{int} vs. 1+z1+z for the radio-loud and the radio-quiet samples give the R-indexes as -0.29 (SLSL=0.012), -0.35 (SLSL=0.018) and -0.15 (SLSL=0.53) for the radio-loud, the radio-quiet and radio-none lGRB samples, respectively. This demonstrates that the radio-loud GRBs do have a weaker negative correlation of TintT_{int} with redshift, of which this result is in good agreement with Lloyd et al. (2019). Additionally, our radio-quiet sample also hold the similar anti-correlation with a 95.4% confidence level like the radio-loud GRBs. It is surprisingly found that there is very weak correlation between TintT_{int} and 1+z1+z for the radio-none sample. We notice that the sGRBs in any case of our samples are outliers of the TintT_{int}-(1+z)(1+z) correlation of the lGRBs and the sGRBs with smaller TintT_{int} and 1+z1+z are systematically located at the bottom-left side of plane. Particularly, the radio-loud sGRB 170817A is situated in the region of normal sGRBs. Hence, the TintT_{int} distributions of two kinds of GRBs are well in agreement with Zhang & Choi (2008).

Refer to caption
Refer to caption
Refer to caption
Figure 10: Panel (a), (b) and (c) respectively show the correlations between TintT_{int} and 1+z1+z for the radio-loud, radio-quiet and radio-none samples. The filled circles and diamonds denote lGRBs and the filled stars represent sGRBs. The red solid lines are the best fits to the observed data with a confidence level of 95.4% (heavy shadow region) and a prediction of 2σ\sigma range (light shadow region). The AMI data at 15.7 GHz have been symbolized with blue diamonds. The radio-loud sGRB 170817A characterized with empty star is displayed in Panel (a).

4 Conclusion and Discussion

Based on the above systematic investigations of a relatively “complete” sample of radio-selected GRBs, we briefly summarize our main results as follows:

  • According to the distributions of zz, TintT_{int}, Eγ,isoE_{\gamma,iso} and Lν,pL_{\nu,p}, we find that the radio-loud, the radio-quiet and the radio-none samples observationally differ with each other, particulary for the two energies Eγ,isoE_{\gamma,iso} and Lν,pL_{\nu,p}. The radio-loud sample is not required to be redivided into two subgroups.

  • It is also supported that the radio-loud and the radio-faint (radio-quiet plus radio-none) GRBs have largely different distributions of the radio isotropic energies and the surrounding medium densities, and could be thus originated from diverse central engines.

  • Although the radio flux density distributions of host galaxies for the radio-loud and the radio-faint samples are not significantly different, the flux densities of the radio-quiet GRBs and their host galaxies are relatively lower than those of the radio-loud ones, which indicates the host types of the radio-loud and the radio-faint GRBs might be diverse in essence.

  • The mean values of zz, Fo,peakF_{o,peak}, TintT_{int}, Eγ,isoE_{\gamma,iso}, nn and Lν,pL_{\nu,p} for the radio-faint GRBs are comparatively smaller than those of the radio-loud sample correspondingly. Especially, it can be seen from Figures 3, 10 and 12 that the radio-none GRBs with the lowest means of zz and TintT_{int} are unique and different from other radio-selected bursts.

  • Interestingly, we find Eγ,isoE_{\gamma,iso} and Lν,pL_{\nu,p} are correlated with the power law relations of Lν,pEγ,iso0.41L_{\nu,p}\propto E_{\gamma,iso}^{0.41} for the radio-loud sample and Lν,pEγ,iso0.48L_{\nu,p}\propto E_{\gamma,iso}^{0.48} for the radio-quiet sample, which were not distinguished by Chandra et al. (2012) for the correlation between Eγ,isoE_{\gamma,iso} and the peak radio spectral luminosity.

  • We follow Lloyd et al. (2019) to study the dependencies of TintT_{int} with zz for different radio-selected samples. Excitingly, we not only gain the anti-correlation between TintT_{int} and zz for the radio-loud sample as Lloyd et al. (2019) proposed, but also find that this dependency holds for the radio-quiet instead of the radio-none sample.

  • Despite of the AMI radio afterglows detected at higher frequency, all the above conclusions based on the VLA-based GRB samples are well supported.

Most of our radio-selected GRBs are lGRBs that are thought be produced from core collapse of massive stars to form a black hole (Woosley 1993, MacFadyen & Woosley 1999). In the collapsar model, the intrinsic time TintT_{int} relies on the accretion rate that is related with the momentum of the progenitor system, namely larger momentum corresponds to longer TintT_{int}, and the masses forming the accretion disk (Janiuk & Proga, 2008). The collapsing progress exits in either a single stellar system or a binary system with three scenarios (Fryer et al., 1999), i.e. Scenario I: a single star evolves off main sequence and its winds blow off the hydrogen envelope to form a helium core, and then this helium core collapses to produce the GRBs; Scenario II: a binary system with primary evolving off main sequence evolves into a common envelope phase, and then after the H envelope was ejected the primary becomes a helium core collapsing and accreting the secondary to produce GRBs; Scenario III: this is also a binary system with primary evolving off main sequence into a common system, and then the secondary evolving off main sequence too, subsequently the system enter into a double-helium-star binary system. Finally, the two helium stars merge into one helium star and then the helium core collapse to cause the GRBs (Fryer et al., 1999). Because TintT_{int} is tightly determined by the momentum of collapsing systems, together with more masses accreted on the disk, Scenario I would readily lead to the longer TintT_{int} even though its angular momentum is expected to be less than the other two Scenarios (Fryer & Woosley 1998, Zhang & Fryer 2001)).

Note that the soft lGRBs associated with core-collapse supernovae (Galama et al., 1998; Woosley et al., 1999; Fryer et al., 1999; Stanek et al., 2003; Hjorth et al., 2003; Campana et al., 2006; Xu et al., 2013) are generally believed to result from the deaths of massive stars. However, the hard sGRBs are usually thought to occur owing to the coalescence of two compact stars, such as double neutron stars, or a neutron star plus black hole system (Lee et al., 2007; Berger et al., 2014). Therefore, the sGRBs with lower redshifts and isotropic γ\gamma-ray energies would be expected to have relatively shorter TintT_{int} in comparison with the lGRBs. We investigate the association of Eγ,isoE_{\gamma,iso} with TintT_{int} in Figure 11, from which we can see that there are no any correlations for either the sGRBs or the lGRBs. However, they can be separated by a horizontal line of Tint=1T_{int}=1 s and a vertical line of Eγ,iso=4×1051E_{\gamma,iso}=4\times 10^{51} erg. All sGRBs but GRB 170817A possessing smaller Eγ,isoE_{\gamma,iso} and TintT_{int} are located at the bottom-left corner. In comparison, the lGRBs with longer TintT_{int} relatively generate larger Eγ,isoE_{\gamma,iso} spanning from 1048\sim 10^{48} erg to 1055\sim 10^{55} erg. Even though some lGRBs and sGRBs have comparable Eγ,isoE_{\gamma,iso}, their TintT_{int} values are completely distinct. It is valuable to focus on GRB 090429B, lying at the bottom-right corner, that is the farthest burst detected so far with z9.4z\approx 9.4 and T90=5.5T_{90}=5.5 s (Cucchiara et al., 2011), whose progenitor is expected to be different from other lower redshift, especially short GRBs. Furthermore, we caution that sGRB 170817A differs from both the normal sGRBs and the low energy lGRBs as depicted in Figure 11. Very recently, Tang et al. (2019) found that the Eγ,isoE_{\gamma,iso} and the T90T_{90} are positively correlated, and they explained that this might happen when the observed intensities of γ\gamma-rays were constrained within a certain range. We nevertheless find that the positive correlation trend disappears for the lGRBs in the co-moving frame. In principal, one may pursue to convert the observed Eγ,isoE_{\gamma,iso} into the co-moving quantity by use of Eγ,isoEγ,iso/ΓE_{\gamma,iso}^{{}^{\prime}}\simeq E_{\gamma,iso}/\Gamma, where Γ\Gamma is the bulk Lorentz factor (Ghirlanda et al., 2012). Unfortunately, the Lorentz factor is still very hard to be determined precisely and uniquely although many authors have made great efforts (e.g., Sari & Piran 1999; Pe’er 2007; Liang et al. 2010; Zou et al. 2010, 2015; Ghirlanda et al. 2018), which will be confirmed by further observations of the next-generation telescopes.

Refer to caption
Figure 11: Relations of TintT_{int} with Eγ,isoE_{\gamma,iso} for the radio-loud (triangles), radio-quiet (squares) and radio-none (circles) lGRB (filled symbols) and sGRB (empty symbols) in the VLA-based samples. Vertical and horizontal lines stand for Eγ,iso=4×1051E_{\gamma,iso}=4\times 10^{51} erg and Tint=1T_{int}=1 s, correspondingly. The radio-loud and radio-quiet bursts in the AMI samples are identified with small stars and diamonds, respectively. sGRB 170817A is marked with a large star.

5 acknowledge

This work is supported by the Research Foundation of China (grant Nos. ZR2018MA030, XKJJC201901 and 201909118), the National Natural Science Foundation of China (grant No. U1938201, 11873030, 11673023, U1838201, U1838202 and U1838104), the Strategic Priority Research Program of the Chinese Academy of Sciences ("Multiwaveband Gravitational Wave Universe", grant No.XDB23040000; Grant No. XDA15360300) and the National Key R&D Program of China (2016YFA0400800). We thank Poonam Chandra for kindly offering the data of GRB radio afterglows observed by VLA. We also acknowledge E. W. Liang, L. B. Li and H. Y. Chang for helpful discussions.

References

  • Abbott et al. (2017) Abbott B. P., Abbott R., Abbott T. D., et al., 2017, ApJ, 848, L13
  • Alexander et al. (2017) Alexander K. D., Berger E., Fong W., et al., 2017, ApJ, 848, L21
  • Anderson et al. (2018) Anderson G. E., Staley T.D., van der Horst A.J., et al., 2018, MNRAS, 473, 1512
  • Becerra et al. (2019) Becerra R. L., Watson A.M., Fraija N., et al., 2019, ApJ, 872, 118
  • Berger et al. (2014) Berger E., 2014, ARA&A, 52, 43
  • Berger et al. (2003) Berger E., Kulkarni S.R., Pooley G., et al., 2003, Nature, 426, 154
  • Berger et al. (2005) Berger E., Price P.A., Cenko S.B., et al., 2005, Nature, 438, 988
  • Bloom et al. (2003) Bloom J.S., Frail D.A., Blustin A. J., Kulkarni S.R., 2003, ApJ, 594, 674
  • Campana et al. (2006) Campana S., Mangano V., Blustin A. J., et al, 2006, Nature, 442, 1008
  • Cenko et al. (2006) Cenko S.B., Kasliwal M., Harrison F.A., et al., 2006, ApJ, 652, 490
  • Cenko et al. (2011) Cenko S.B., Frail D.A., Harrison F.A., et al., 2011, ApJ, 732, 29
  • Chandra et al. (2008) Chandra P., Cenko S.B., Frail D. A et al., 2008, ApJ, 683, 924
  • Chandra et al. (2010) Chandra P., Frail D. A., Fox D., et al., 2010, ApJ, 712, L31
  • Chandra et al. (2012) Chandra P., Frail D. A, 2012, ApJ, 746, 156
  • Cusumano et al. (2007) Cusumano G., Mangano V., Chincarini G., et al., 2007, A&A, 462, 73
  • Cucchiara et al. (2011) Cucchiara A.,Levan A. J., Fox D. B., et al., 2011, ApJ, 736, 7
  • Duncan & Thompson (1992) Duncan R. C., Thompson C., 1992, ApJ, 392, L9
  • Fong et al. (2015) Fong W., Berger E., Margutti R., Zauderer B. A., 2015, ApJ, 815, 102
  • Frail et al. (2000) Frail, D. A.,Waxman, E., Kulkarni, S. R. 2000, ApJ, 537, 191
  • Frail et al. (2003) Frail, D. A., Yost S.A., Berger E., et al. 2003, ApJ, 590, 992
  • Frail et al. (2006) Frail, D. A., Cameron P.B., Kasliwal M., et al. 2006, ApJ, 646, L99
  • Friedman & Bloom (2005) Friedman A. S., Bloom J. S., 2005, ApJ, 627, 1
  • Fryer & Woosley (1998) Fryer C. L, Woosley S. E., 1998, ApJ, 502, L9
  • Fryer et al. (1999) Fryer C. L, Woosley S. E., Hartmann D. H., 1999, ApJ, 526, 152
  • Geng et al. (2018) Geng J. J, Dai Z, G, Huang Y. F et al., 2018, ApJ, 856, L33
  • Ghisellini et al. (2009) Ghisellini G., Nardini M., Ghirlanda G., Celotti A., 2009, MNRAS, 393, 253
  • Galama et al. (1998) Galama T. J., Vreeswijk P. M., van Paradijs J., et al. 1998, Nature, 395, 670
  • Ghirlanda et al. (2012) Ghirlanda G., Nava L., Ghisellini G., et al. 2012, MNRAS, 420, 483
  • Ghirlanda et al. (2018) Ghirlanda G., Nappo F., Ghisellini G., et al. 2018, A&A, 609, 112
  • Goldstein et al. (2017) Goldstein A., Veres P., Burns E., et al., 2017, ApJ 848, L14
  • Hancock et al (2013) Hancock P. J, Geansler B. M, Murphy T, 2013, ApJ, 776, 106
  • Hascoët et al. (2017) Hascoët R., Beloborodov A. M, Daigne F., Mochkovitch R, 2017, MNRAS, 472, L94
  • Hjorth et al. (2003) Hjorth J., Sollerman J., Møller, P., et al. 2003, Nature, 423, 847
  • Huang et al. (1999) Huang Y. F., Dai Z. G., Lu T, 1999, A&A 309, 513
  • Huang et al. (2003) Huang Y. F., Gou L. J., Dai Z. G., Lu T, 2003, ApJ 543, 90
  • Janiuk & Proga (2008) Janiuk A., Proga D, 2008, ApJ, 675, 519
  • Klebesadel et al. (1973) Klebesadel R. W., Strong I. B., Olson R. A.,1973, ApJ, 182, L85
  • Kouveliotou et al (1993) Kouveliotou C. Meegan C.A., Eishman G.J., et al, 1993, ApJ, 413, 101
  • Laskar et al. (2018) Laskar T., Alexander K.D., Berger E., et al., 2018, ApJ, 862, 94
  • Laskar et al. (2020) Laskar T., Hull C.L.H., Cortes P., et al., 2020, ApJ, 895,64
  • Lee et al. (2007) Lee William H., Ramirez-Ruiz Enrico, 2007, New Journal of Physics, 9, 17
  • Li et al. (2015) Li L. B., Zhang Z. B., Huang Y. F., et al, 2015, MNRAS, 451, 1815
  • Li et al. (2018) Li L. B., Geng J. J., Huang Y. F., et al, 2018, ApJ, 880, 39
  • Liang et al. (2010) Liang E. W., Yi S. X., Zhang J., et al, 2010, ApJ, 725, 2209
  • Lloyd et al. (2017) Lloyd-Ronning N. M., Fryer C. L., 2017, MNRAS, 467, 3413
  • Lloyd et al. (2019) Lloyd-Ronning N. M., Gompertz B., Pe’er A., et al., 2019, ApJ, 871, 118
  • MacFadyen & Woosley (1999) MacFadyen A. I., Woosley S. E., 1999, ApJ, 524, 262
  • Mészáros (2006) Mészáros P., 2006, RPPh 69, 2259
  • Mu et al. (2016) Mu H. J,Lin D.B., Xi S.Q., et al. 2016, ApJ, 831, 111
  • Paczynski (1990) Paczynski B., 1990, ApJ, 363, 218
  • Panaitescu et al. (2002) Panaitescu A., Kumar P., 2002, ApJ, 571, 779
  • Pe’er (2007) Pe’er A., Ryde F., Wijers Ralph A. M. J., et al., 2007, ApJ, 664, L1
  • Piran (1999) Piran T., 1999, PhR, 314, 575
  • Rees & Meszaros (1992) Rees M. J., Meszaros P., 1992, MNRAS, 258, 41
  • Rees & Meszaros (1994) Rees M. J., Meszaros P., 1994, ApJ, 430, L93
  • Rhodes ( et al.) Rhodes L. et al., van der Horst A.J., Fender R., et al., 2020, MNRAS, 496, 3326
  • Sari & Piran (1999) Sari R., Piran T., 1999, ApJ, 517, L109
  • Schaefer (2007) Schaefer B. E., 2007, ApJ, 660, 16
  • Schaefer et al. (2003) Schaefer B. E., Brandley E., Gerardy C.L., et al. 2003, ApJ, 588, 387
  • Savchenko (2017) Savchenko V., Ferrigno C., Kuulkers E., et al., 2017, ApJ, 848, L15
  • Soderberg et al. ( 2004) Soderberg A. M., Kulkarni S.R., Berger E., et al, 2004, Nature, 430, 648
  • Soderberg et al. (2006a) Soderberg A. M., Berger E., Kasliwal M., et al, 2006a, ApJ, 650, 261
  • Soderberg et al. (2006b) Soderberg A. M., Kulkarni S.R., Nakar E., et al, 2006b, Nature, 442, 1014
  • Stanek et al. (2003) Stanek K. Z., Matheson T., Garnavich P. M., et al, 2003, ApJ, 591, L17
  • Tang et al. (2019) Tang C. H., Huang Y. F., Geng J. J., Zhang Z. B., et al., 2019, ApJS, 245, 1
  • Tashiro M.S., et al. (2007) Tashiro M. S, Abe K., Angelini L., et al., 2007, PASJ, 59,S361
  • de Ugarte Postigo et al (2007) de Ugarte Postigo A., Fatkhullin T.A., Johannesson G., et al., 2007, A&A, 462, L57
  • Urata et al (2019) Urata Y. J, Toma K., Huang K. Y., et al., 2019, ApJ, 884, L58
  • Wijers & Galama (1999) Wijers R. A. M. J., Galama T. J., 1999, ApJ, 523, 177
  • Woosley (1993) Woosley S. E., 1993, ApJ, 405, 273
  • Woosley et al. (1999) Woosley S. E., MacFadyen A. I., 1999, A&AS, 138, 499
  • Xu et al. (2013) Xu D., de Ugarte Postigo A., Leloudas G., et al, 2013, ApJ, 776, 98
  • Zhang & Choi (2008) Zhang Z. B., Choi C. S., 2008, A&A, 484, 293
  • Zhang et al. (2018) Zhang Z. B., Chandra P., Huang Y. F., & Li D., 2018, ApJ, 865, 82
  • Zhang & Fryer (2001) Zhang W., Fryer C. L., 2001, ApJ, 550, 357
  • Zhang (2014) Zhang B., 2014, IJMPD, 23, 2
  • Zou et al. (2010) Zou Y. C., piran T., 2010, MNRAS, 402, 1854
  • Zou et al. (2015) Zou Y. C., Cheng K. S., Wang F.Y., 2015, ApJ, 800, 23
Table 1: Physical parameters of radio-loud GRBs
GRB T90T_{90} zz Eγ,isoE_{\gamma,iso} nn Lν,pL_{\nu,p} fp,radiof_{p,radio} RMSRMS Radio Telescope reference
(s)(s) (erg)(erg) (cm3cm^{-3}) (erg/s/Hz)(erg/s/Hz) (uJy)(uJy) (uJy)(uJy)
970508 14 0.835 7.10E+51 1 9.40E+30 1270 33 VLA 1,4
970828 147 0.958 2.96E+53 \cdots 2.93E+30 147 33 VLA 1
980329 58 2-3.9 2.10E+54 20+1010{}_{-10}^{+10} 4.76E+31 465 16 VLA 1,5
980425 31 0.009 1.60E+48 \cdots 8.56E+28 49400 1000 ATCA 1
980519 30 \cdots \cdots 0.14+0.320.03{}_{-0.03}^{+0.32} 1.95E+31 1050 20 VLA 1,5
980703 90 0.966 6.90E+52 28+1010{}_{-10}^{+10} 1.95E+31 1050 55 VLA 1,6
981226 20 1.11 5.90E+51 \cdots 4.40E+30 169 28 VLA 1
990123 100 1.6 2.39E+54 \cdots 1.28E+31 260 32 VLA 1
990506 220 1.307 9.49E+53 \cdots 2.02E+31 581 45 VLA 1
990510 75 1.619 1.78E+53 0.29+0.110.15{}_{-0.15}^{+0.11} 1.14E+31 127 30 ATCA 1,7
991208991208^{\star} 60 0.706 1.10E+53 18+186{}_{-6}^{+18} 2.23E+31 1990 33 VLA 1,7
991216 25 1.02 6.75E+53 4.7+6.81.8{}_{-1.8}^{+6.8} 2.14E+31 960 67 VLA 1,7
000131 110 4.5 1.84E+54 \cdots 4.64E+31 207 46 ATCA 1
000210 10 0.85 2.00E+53 \cdots 1.48E+30 93 21 VLA 1
000301C 10 2.034 4.37E+52 27+55{}_{-5}^{+5} 2.29E+31 483 41 VLA 1
000418 30 1.119 7.51E+52 27+25014{}_{-14}^{+250} 2.26E+31 1240 33 VLA 1,7
000911000911^{\star} 500 1.059 8.80E+53 \cdots 6.65E+30 278 36 VLA 1
000926 25 2.039 2.70E+53 27+33{}_{-3}^{+3} 4.84E+31 666 60 VLA 1,7
001007 375 \cdots \cdots \cdots \cdots 222 33 VLA 1
001018 31 \cdots \cdots \cdots \cdots 405 50 VLA 1
010222 170 1.477 1.33E+54 1.7 1.48E+31 344 39 VLA 1,7
010921 24 0.45 9.00E+51 \cdots 1.06E+30 229 22 VLA 1
011030 \cdots <\textless3 \cdots \cdots 2.26E+31 219 20 VLA 1
011121 105 0.362 4.55E+52 \cdots 1.83E+30 610 39 ATCA 1
011211 400 2.14 6.30E+52 \cdots 1.18E+31 163 17 VLA 1
020305 247 \cdots \cdots \cdots \cdots 76 15 VLA 1
020405020405^{\star} 40 0.69 1.10E+53 8 5.22E+30 487 34 VLA 1,5
020813 113 1.254 8.00E+53 \cdots 1.04E+31 323 39 VLA 1
020819B 50 0.41 7.90E+51 \cdots 1.22E+30 315 18 VLA 1
020903020903^{\star} 13 0.25 2.30E+49 \cdots 1.51E+30 1058 19 VLA 1
021004 50 2.33 3.80E+52 30+27027{}_{-27}^{+270} 5.35E+31 691 33 VLA 1,8
021206 20 \cdots \cdots \cdots \cdots 1377 47 VLA 1
030115 36 2.5 3.91E+52 \cdots 9.34E+30 94 22 VLA 1
030226 69 1.986 1.20E+53 \cdots 9.14E+30 131 27 VLA 1
030323 20 3.372 3.39E+52 \cdots 4.28E+30 530 170 VLA 1
030329030329^{\star} 63 0.169 1.80E+52 1.8 1.01E+31 19150 80 VLA 1,9
030723 31 \cdots \cdots \cdots \cdots 219 22 VLA 1
031203031203^{\star} 30 0.105 1.15E+50 0.6 1.34E+29 811 40 VLA 1,10
040812 19 \cdots \cdots \cdots \cdots 450 80 VLA 1
041219A 6 \cdots \cdots \cdots \cdots 518 150 VLA 1
050315 96 1.95 5.70E+52 \cdots 2.03E+31 300 62 VLA 1
050401 33 2.898 3.20E+53 10 1.51E+31 122 33 VLA 1,3
050416A 3 0.65 1.00E+51 3 4.12E+30 431 46 VLA 1,3
050509C 25 \cdots \cdots \cdots \cdots 404 58 VLA 1
050525A 9 0.606 2.04E+52 1.0×108\times 10^{-8} 1.37E+30 178 46 VLA 1,3
050603 12 2.821 5.00E+53 \cdots 3.11E+31 316 45 VLA 1
050713B 125 \cdots \cdots \cdots \cdots 426 45 VLA 1
050724 96 0.258 9.00E+49 0.1 7.08E+29 465 29 VLA 1,11
050730 157 3.968 9.00E+52 8 4.04E+31 212 35 VLA 1,3
050820A 240 2.615 2.00E+53 0.1 6.74E+31 634 62 VLA 1,12
050824 23 0.83 1.50E+51 1 2.32E+30 152 34 VLA 1,3
050904 174 6.29 1.30E+54 680 3.01E+31 116 18 VLA 1,13
050922C 5 2.199 3.90E+52 2 1.15E+31 140 42 VLA 1,3
051022 200 0.809 6.30E+53 \cdots 8.49E+30 585 49 VLA 1
051109A 37 2.346 2.30E+52 \cdots 1.06E+31 117 24 VLA 1
051111 46 1.55 6.00E+52 5.00×109\times 10^{-9} 4.56E+30 98 28 VLA 1,3
051211B 80 \cdots \cdots \cdots \cdots 68 19 VLA 1
051221A 1.4 0.547 2.80E+51 0.001 6.01E+29 88 26 VLA 1,14
060116 106 \cdots \cdots \cdots \cdots 363 28 VLA 1
060218060218^{\star} 128 0.033 2.90E+48 5 1.09E+28 453 77 VLA 1,15
060418 103 1.49 1.00E+53 10 9.41E+30 216 48 VLA 1,3
061121 81 1.315 1.90E+53 3 1.07E+31 304 48 VLA 1,3
061222A 72 2.088 1.03E+53 \cdots 2.15E+31 285 68 VLA 1
070125 60 1.548 9.55E+53 42 2.61E+31 660 39 VLA 1,16
070612A 369 0.617 9.12E+51 \cdots 5.09E+30 589 54 VLA 1
071003 148 1.604 3.24E+53 \cdots 2.12E+31 431 51 VLA 1
071010B 36 0.947 2.60E+52 \cdots 6.43E+30 330 52 VLA 1
071020 4 2.146 8.91E+52 \cdots 1.47E+31 186 22 VLA 1
071021 229 <\textless5.6 \cdots \cdots 4.39E+31 149 44 VLA 1
071109 30 \cdots \cdots \cdots \cdots 188 42 VLA 1
071122 80 1.14 3.47E+51 \cdots 6.96E+30 255 45 VLA 1
080229 64 \cdots \cdots \cdots \cdots 635 44 VLA 1
080319B080319B^{\star} 125 0.937 1.45E+54 10 4.43E+30 232 42 VLA 1,3
080603A 150 1.687 \cdots \cdots 1.23E+31 230 29 VLA 1
080810 108 3.35 5.37E+53 \cdots 2.29E+31 151 50 VLA 1
081203B 23 \cdots \cdots \cdots \cdots 162 44 VLA 1
081221 34 \cdots \cdots \cdots \cdots 167 27 VLA 1
090313 71 3.375 4.57E+52 0.6 8.81E+31 576 44 VLA 1
090323 133 3.57 4.10E+54 0.1 3.72E+31 225 35 VLA 1,17
090328 57 0.736 1.00E+53 0.26 9.81E+30 809 39 VLA 1,17
090418 56 1.608 2.57E+53 \cdots 1.08E+31 219 44 VLA 1
090423 10 8.26 1.10E+53 0.9 4.63E+31 92.4 22.7 VLA 1,18
090424 50 0.544 4.47E+52 \cdots 4.54E+30 673 39 VLA 1
090618090618^{\star} 113 0.54 2.21E+53 \cdots 3.67E+30 551 51 VLA 1
090709A 89 <6.1 \cdots \cdots 5.68E+31 174 53 VLA 1
090715B 265 3 2.36E+53 \cdots 3.33E+31 257 57 VLA 1
090902B \cdots 1.883 3.09E+54 \cdots 8.33E+30 130 34 VLA 1
091020 39 1.71 4.56E+52 \cdots 2.47E+31 451 44 VLA 1
100413A 191 <\textless3.5 \cdots \cdots 2.56E+31 159 15 EVLA 1
100414A 26 1.368 7.79E+53 \cdots 1.56E+31 415 15 EVLA 1
100418A 7 0.62 5.20E+50 \cdots 3.99E+30 458 22 EVLA 1
100805A 15 \cdots \cdots \cdots \cdots 108 32 EVLA 1
100814A 175 1.44 5.97E+52 \cdots 1.90E+31 462 25 EVLA 1
100901A 439 1.408 1.78E+52 \cdots 1.74E+31 440 27 EVLA 1
100906A 114 1.727 1.34E+53 \cdots 1.20E+31 215 28 EVLA 1
101219B 34 0.552 2.96E+52 \cdots 4.93E+29 71 15 EVLA 1
110428A 5.6 \cdots \cdots \cdots \cdots 69 18 EVLA 1
120320A 25.74 \cdots \cdots \cdots \cdots 380 80 AMI 19,20
120326A 69.6 1.798 3.82E+52 \cdots 5.12E+31 860 80 AMI 19,20
120514A 164.4 \cdots \cdots \cdots \cdots 460 130 AMI 19,20
121031A 62.5 0.1126 \cdots \cdots 1.91E+29 670 220 AMI 19,20
121128A 23 2.2 8.20E+52 \cdots 2.62E+31 320 90 AMI 19,20
130216A 6.5 \cdots \cdots \cdots \cdots 990 100 AMI 19,20
130427A 162.83 0.338 8.50E+53 \cdots 1.19E+31 4540 80 AMI 19,20
130419A 75.7 \cdots \cdots \cdots \cdots 1700 120 AMI 19,20
130508A 42 \cdots \cdots \cdots \cdots 550 140 AMI 19,20
130603A \cdots \cdots \cdots \cdots \cdots 470 130 AMI 19,20
130604A 37.7 1.06 \cdots \cdots 9.34E+30 390 70 AMI 19,20
130606A 276.58 5.91 2.83E+53 \cdots 8.17E+31 260 70 AMI 19,20
130608A 44.4 \cdots \cdots \cdots \cdots 240 80 AMI 19,20
130612A 110 2.006 7.19E+51 \cdots 2.34E+31 330 90 AMI 19,20
130625A 38.1 \cdots \cdots \cdots \cdots 590 110 AMI 19,20
130702A 59 0.145 6.36E+50 \cdots 7.42E+29 1560 130 AMI 19,20
130907A 115 1.238 3.30E+54 \cdots 3.29E+31 1040 100 AMI 19,20
131024B 64 \cdots \cdots \cdots \cdots 610 70 AMI 19,20
140108A 97.8 0.6 4.00E+52 \cdots 3.03E+30 370 50 AMI 19,20
140209A 21.3 \cdots \cdots \cdots \cdots 430 90 AMI 19,20
140215A 84.2 \cdots \cdots \cdots \cdots 240 50 AMI 19,20
140304A 32 5.28 1.03E+53 \cdots 1.04E+32 380 40 AMI 19,20
140305A 13.7 \cdots \cdots \cdots \cdots 420 40 AMI 19,20
140318A 8.43 1.02 \cdots \cdots 6.25E+30 280 40 AMI 19,20
140320B \cdots \cdots \cdots \cdots \cdots 470 30 AMI 19,20
140320C \cdots \cdots \cdots \cdots \cdots 140 40 AMI 19,20
140423A 134 3.26 4.38E+53 \cdots 3.35E+31 230 70 AMI 19,20
140430A 173.6 1.6 \cdots \cdots 1.37E+32 2800 110 AMI 19,20
140606A 0.34 \cdots \cdots \cdots \cdots 530 50 AMI 19,20
140606B 23.6 0.384 2.50E+51 \cdots 1.69E+29 50 60 AMI 19,20
140607A 109.9 \cdots \cdots \cdots \cdots 590 80 AMI 19,20
140629A 42 2.275 4.40E+52 \cdots 1.29E+31 150 50 AMI 19,20
140703A 84 3.14 1.84E+53 \cdots 6.78E+31 490 60 AMI 19,20
140709A 98.6 \cdots \cdots \cdots \cdots 460 40 AMI 19,20
140713A 5.3 \cdots \cdots \cdots \cdots 1370 40 AMI 19,20
140903A 0.3 0.351 4.40E+49 \cdots 2.04E+30 720 70 AMI 19,20
141015A 11 \cdots \cdots \cdots \cdots 280 60 AMI 19,20
141020A 15.55 \cdots \cdots \cdots \cdots 300 60 AMI 19,20
141109B 54.2 \cdots \cdots \cdots \cdots 910 250 AMI 19,20
141121A 549 1.47 8.00E+52 \cdots 1.57E+31 370 40 AMI 19,20
141212A 0.3 0.596 6.80E+49 \cdots 1.37E+30 170 40 AMI 19,20
141212B 10.5 \cdots \cdots \cdots \cdots 110 30 AMI 19,20
150110B 10.6 \cdots \cdots \cdots \cdots 530 40 AMI 19,20
150413A 263.6 3.139 6.53E+53 \cdots 3.18E+31 230 40 AMI 19,20
150213B 181 \cdots \cdots \cdots \cdots 140 40 AMI 19,20
161219B 6.94 0.1475 1.16E+50 1.37E+29 278.1 28.6 VLA 19,21
171205A 189.4 0.0368 2.18E+49 1.71E+29 5710 50 VLA 19,22
180720B 49 0.654 3.40E+53 1.06E+31 1096 62 AMI 19,23
190114C 361.5 0.42 2.40E+53 2.46E+30 607 17.3 VLA 19,23
190829A 58.2 0.0785 2.00E+50 5.36E+29 3889 197 AMI 19,24

Note. In Column 1, \star presents the SN/GRB. References are given in order for duration time (T90T_{90}), redshift(zz), isotropic equivalent energy(Eγ,isoE_{\gamma,iso}), peak flux density(fp,radiof_{p,radio}) and medium density(nn), repectively. [1]Chandra et al. (2012); [2]Friedman & Bloom (2005); [3]Ghisellini et al. (2009);[4]Frail et al. (2000);[5]Bloom et al. (2003);[6]Frail et al. (2003);[7]Panaitescu et al. (2002);[8]Schaefer et al. (2003);[9]Berger et al. (2003);[10]Soderberg et al. (2004);[11]Berger et al. (2005);[12]Cenko et al. (2006);[13]Frail et al. (2006);[14]Soderberg et al. (2006a);[15]Soderberg et al. (2006b);[16]Chandra et al. (2008);[17]Cenko et al. (2011);[18]Chandra et al. (2010);[19]https://gcn.gsfc.nasa.gov/gcn3_archive.html;[20]Anderson et al. (2018);[21]Laskar et al. (2018);[22]Urata et al (2019);[23]Rhodes (et al.);[24]Laskar et al. (2020).

Table 2: Physical parameters of radio-quiet GRBs
GRB T90T_{90} zz Eγ,isoE_{\gamma,iso} nn Lν,pL_{\nu,p} fp,radiof_{p,radio} RMS Radio Telescope reference
(s)(s) (erg)(erg) (cm3cm^{-3}) (erg/s/Hz)(erg/s/Hz) (uJy)(uJy) (uJy)(uJy)
970228 56 0.695 1.60E+52 \cdots 8.26E+29 76 50 VLA 1
971214 35 3.42 2.11E+53 \cdots 1.14E+31 73 50 VLA 1
980613 50 1.097 6.90E+51 \cdots 1.78E+29 7 28 VLA 1
990705 42 0.84 1.82E+53 \cdots 1.71E+29 11 36 ATCA 1
990712 30 0.433 6.72E+51 \cdots 2.58E+29 60 50 ATCA 1
000630 20 \cdots \cdots \cdots \cdots 70 62 VLA 1
020124 41 3.2 3.00E+53 3 1.19E+31 84 30 VLA 1,7
020305 247 <\textless2.8 \cdots \cdots \cdots 76 15 VLA 1
020410 1800 \cdots \cdots \cdots \cdots 64 51 ATCA 1
021211 8 1.01 1.10E+52 \cdots 1.32E+30 60 28 VLA 1
030131 124 \cdots \cdots \cdots \cdots 8 35 VLA 1
030227 33 \cdots \cdots \cdots \cdots 64 24 VLA 1
030418 110 \cdots \cdots \cdots \cdots 69 27 VLA 1
030429 25 2.658 2.19E+52 \cdots 9.14E+30 84 54 VLA 1
040106 47 \cdots \cdots \cdots \cdots 5 50 VLA 1
050215B 8 \cdots \cdots \cdots \cdots 59 181 VLA 1
050306 158 \cdots \cdots \cdots \cdots 56 28 VLA 1
050408 15 1.236 3.44E+52 0.01 1.58E+29 5 39 VLA 1,6
050607 26 \cdots \cdots \cdots \cdots 59 23 VLA 1
050713A 120 \cdots \cdots 3 \cdots 17 58 VLA 1,3
050801 19 1.38 3.24E+51 1.00×108\times 10^{-8} 5.31E+30 139 50 VLA 1,5
050814 151 5.3 6.00E+52 \cdots 2.01E+31 73 36 VLA 1
050815 3 \cdots \cdots \cdots \cdots 77 45 VLA 1
050915A 52 \cdots \cdots \cdots \cdots 43 31 VLA 1
051016B 4 0.936 3.70E+50 \cdots 6.67E+29 35 13 VLA 1
051021A 27 \cdots \cdots \cdots \cdots 36 25 VLA 1
051109B 14 0.08 3.60E+48 \cdots 3.58E+27 25 23 VLA 1
051227 115 0.714 8.00E+50 \cdots 2.06E+29 18 25 VLA 1
060105 54 \cdots \cdots 3 \cdots 49 47 VLA 1,4
060108 14 <\textless2.8 \cdots \cdots \cdots 12 25 VLA 1
060124 \cdots \cdots \cdots \cdots \cdots <\textless59 31 VLA 1
060522 71 5.11 7.00E+52 \cdots 1.00E+31 38 17 VLA 1
060604 95 2.68 4.37E+51 \cdots 1.43E+31 130 65 VLA 1
060605 79 3.773 2.50E+52 \cdots 1.67E+31 94 47 VLA 1
060707 66 3.43 6.10E+52 \cdots 1.28E+31 82 41 VLA 1
060719 67 <\textless4.6 \cdots \cdots 4.15E+31 180 60 ATCA 1
060801 0.5 1.131 3.09E+51 \cdots 2.83E+30 105 35 VLA 1
060825 8 \cdots \cdots \cdots \cdots 94 47 VLA 1
060908 19 1.884 7.00E+52 10 3.27E+30 51 26 VLA 1,5
060912A 5 0.937 8.00E+51 \cdots 1.24E+30 65 32 VLA 1
060923A 52 \cdots \cdots \cdots \cdots 110 55 VLA 1
060923C 76 \cdots \cdots \cdots \cdots 100 50 VLA 1
060926 8 3.209 1.00E+52 \cdots 1.34E+31 94 56 VLA 1
061028 106 0.76 2.29E+51 \cdots 1.03E+30 80 40 VLA 1
061126 71 1.159 8.00E+52 1.00×108\times 10^{-8} 2.81E+29 10 36 VLA 1,5
061210 85 0.41 9.00E+50 \cdots 2.62E+29 68 34 VLA 1
070220 129 \cdots \cdots \cdots \cdots 15 50 VLA 1
070223 89 \cdots \cdots \cdots \cdots <\textless11 47 VLA 1
070311 50 \cdots \cdots \cdots \cdots 21 51 VLA 1
070429B 0.5 0.902 1.35E+50 \cdots 7.12E+28 4 100 VLA 1
070610 10 \cdots \cdots \cdots \cdots 80 100 VLA 1
070714B 3 0.923 1.10E+52 0.056+0.0240.011{}_{-0.011}^{+0.024} 1.67E+30 <\textless48 45 VLA 1,2
070724B 50 \cdots \cdots \cdots \cdots <\textless47 36 VLA 1
070729 0.9 \cdots \cdots \cdots \cdots <\textless99 85 VLA 1
071010A 6 0.985 1.32E+51 3 1.47E+30 <\textless66 35 VLA 1,5
071011 81 \cdots \cdots \cdots \cdots <\textless106 60 VLA 1
071018 288 \cdots \cdots \cdots \cdots <\textless3 39 VLA 1
071112C 15 0.823 1.95E+52 \cdots 1.14E+30 <\textless57 38 VLA 1
080212 117 \cdots \cdots \cdots \cdots 83 51 VLA 1
080413B 8 1.101 1.59E+52 \cdots 2.21E+30 86 36 VLA 1
080430 14 0.767 3.00E+51 \cdots 8.92E+29 68 46 VLA 1
080503 0.3 \cdots \cdots \cdots \cdots 3 30 VLA 1
080506 152 \cdots \cdots \cdots \cdots <\textless40 40 VLA 1
080507 30 \cdots \cdots \cdots \cdots 44 49 VLA 1
080603B 59 2.689 7.70E+52 \cdots 1.22E+30 11 41 VLA 1
080604 69 1.417 7.08E+51 \cdots 3.12E+30 <\textless70 39 VLA 1
080613A 30 \cdots \cdots \cdots \cdots 7 46 VLA 1
080702A 0.5 \cdots \cdots \cdots \cdots <\textless82 52 VLA 1
080721 176 2.591 1.23E+54 \cdots 9.75E+30 93 48 VLA 1
080913 8 6.733 6.46E+52 \cdots 4.07E+31 111 51 VLA 1
081024 2 \cdots \cdots 8.1+1507.7{}_{-7.7}^{+150}×105\times 10^{-5} \cdots <\textless68 52 VLA 1,2
081118 49 2.58 2.82E+52 \cdots 1.25E+31 <\textless50 60 VLA 1
081126 58 \cdots \cdots \cdots \cdots 24 64 VLA 1
081203A 223 2.05 3.47E+53 \cdots 5.57E+30 76 54 VLA 1
081222 33 2.77 3.54E+53 \cdots 6.24E+30 54 53 VLA 1
090102 29 1.547 1.99E+53 \cdots 4.22E+30 91 49 VLA 1
090205 9 4.65 2.95E+52 \cdots 4.91E+30 21 47 VLA 1
090429B 5.5 9.4 5.56E+52 \cdots 2.93E+31 55 37 VLA 1
090809 8 2.737 1.39E+52 \cdots 9.09E+29 8 39 VLA 1
090812 75 2.452 4.40E+53 \cdots 5.99E+30 104 43 VLA 1
100420 48 <\textless20 \cdots \cdots \cdots 24 17 EVLA 1
100528A 25 \cdots \cdots \cdots \cdots <\textless48 46 EVLA 1
101112A 35 \cdots \cdots \cdots \cdots 149 54 EVLA 1
110106B 25 0.618 3.05E+52 \cdots 4.16E+29 <\textless21 24 EVLA 1
110731A 38.8 2.83 1.18E+54 \cdots 3.82E+30 32 21 EVLA 1
120305A 0.1 \cdots \cdots \cdots \cdots 260±\pm90 110 AMI 8,9
120311A 3.5 \cdots \cdots \cdots \cdots 210±\pm80 80 AMI 8,9
120324A 118 \cdots \cdots \cdots \cdots 110±\pm70 90 AMI 8,9
120308A 60.6 \cdots \cdots \cdots \cdots 80±\pm50 60 AMI 8,9
120403A 1.25 \cdots \cdots \cdots \cdots 190±\pm100 90 AMI 8,9
120404A 38.7 2.876 \cdots \cdots 6.71E+31 330±\pm1090 100 AMI 8,9
120422A 5.35 0.28 4.40E+49 \cdots 1.79E+28 30±\pm30 410 AMI 8,9
120521C 26.7 \cdots \cdots \cdots \cdots 150±\pm250 130 AMI 8,9
120711B 60 \cdots \cdots \cdots \cdots 230±\pm60 80 AMI 8,9
120722A 42.4 \cdots \cdots \cdots \cdots 670±\pm1090 510 AMI 8,9
120724A 72.8 1.48 6.02E+51 \cdots 4.30E+30 80±\pm70 350 AMI 8,9
120729A 71.5 0.8 2.30E+52 \cdots 2.56E+30 180±\pm100 100 AMI 8,9
120802A 50 3.796 \cdots \cdots 1.40E+32 20±\pm20 130 AMI 8,9
120803B 37.5 \cdots \cdots \cdots \cdots 210±\pm110 120 AMI 8,9
120805A 48 \cdots \cdots \cdots \cdots 370±\pm140 170 AMI 8,9
120811C 26.8 2.671 8.80E+52 \cdots 1.86E+31 350±\pm300 440 AMI 8,9
120816A 7.6 \cdots \cdots \cdots \cdots 440±\pm730 190 AMI 8,9
120819A 71 \cdots \cdots \cdots \cdots 120±\pm140 210 AMI 8,9
120907A 16.9 0.97 \cdots \cdots 3.46E+30 60±\pm50 110 AMI 8,9
120911A 17.8 \cdots \cdots \cdots \cdots 100±\pm50 90 AMI 8,9
120913A 30.1 \cdots \cdots \cdots \cdots 160±\pm80 70 AMI 8,9
120923A 27.2 \cdots \cdots \cdots \cdots 50±\pm60 100 AMI 8,9
120927A 43 \cdots \cdots \cdots \cdots 210±\pm100 160 AMI 8,9
121001A 147 \cdots \cdots \cdots \cdots 190±\pm130 230 AMI 8,9
121011A 75.6 \cdots \cdots \cdots \cdots 190±\pm100 150 AMI 8,9
121017A 4.2 \cdots \cdots \cdots \cdots 310±\pm870 150 AMI 8,9
121028A 3.8 \cdots \cdots \cdots \cdots 20±\pm20 90 AMI 8,9
121108A 89 \cdots \cdots \cdots \cdots 50±\pm70 90 AMI 8,9
121125A 52.2 \cdots \cdots \cdots \cdots 370±\pm150 170 AMI 8,9
121202A 17.7 \cdots \cdots \cdots \cdots 550±\pm240 290 AMI 8,9
121211A 182 1.023 \cdots \cdots 2.24E+30 20±\pm20 70 AMI 8,9
121212A 6.8 \cdots \cdots \cdots \cdots \cdots 70 AMI 8,9
130102A 77.5 \cdots \cdots \cdots \cdots 110±\pm220 60 AMI 8,9
130122A 64 \cdots \cdots \cdots \cdots 10±\pm10 70 AMI 8,9
130131A 51.6 \cdots \cdots \cdots \cdots 60±\pm40 70 AMI 8,9
130131B 4.3 2.539 \cdots \cdots 1.02E+31 200±\pm360 160 AMI 8,9
130327A 9 \cdots \cdots \cdots \cdots 50±\pm40 90 AMI 8,9
130418A 300 1.218 6.30E+52 \cdots 2.76E+30 180±\pm100 130 AMI 8,9
130420A 123.5 1.297 6.20E+52 \cdots 2.74E+30 160±\pm100 120 AMI 8,9
130420B 10.2 \cdots \cdots \cdots \cdots 260±\pm90 100 AMI 8,9
130502A 3 \cdots \cdots \cdots \cdots 300±\pm180 180 AMI 8,9
130505A 88 2.27 3.80E+54 \cdots 1.03E+31 40±\pm30 110 AMI 8,9
130511A 5.43 1.3 \cdots \cdots 2.69E+31 780±\pm1800 390 AMI 8,9
130514A 204 3.6 4.95E+53 \cdots \cdots \cdots 1310 AMI 8,9
130521A 11 \cdots \cdots \cdots \cdots 220±\pm520 110 AMI 8,9
130603B 0.18 0.356 2.10E+51 \cdots 6.11E+29 90±\pm50 60 AMI 8,9
130609A 7 \cdots \cdots \cdots \cdots 90±\pm60 90 AMI 8,9
130610A 46.4 2.092 5.78E+52 \cdots 1.06E+31 140±\pm70 100 AMI 8,9
130701A 4.38 1.155 2.10E+52 \cdots 4.75E+30 170±\pm70 70 AMI 8,9
130806A \cdots \cdots \cdots \cdots \cdots 640±\pm2470 150 AMI 8,9
130829A 42.56 \cdots \cdots \cdots \cdots 20±\pm20 110 AMI 8,9
130831A 32.5 0.479 4.60E+51 \cdots 1.37E+30 120±\pm70 70 AMI 8,9
130912A 0.28 \cdots \cdots \cdots \cdots 40±\pm50 50 AMI 8,9
131002A 55.59 \cdots \cdots \cdots \cdots 170±\pm80 90 AMI 8,9
131127A 92.1 \cdots \cdots \cdots \cdots 30±\pm20 70 AMI 8,9
131128A 3 \cdots \cdots \cdots \cdots 70±\pm50 70 AMI 8,9
140103A 17.3 \cdots \cdots \cdots \cdots 50±\pm70 40 AMI 8,9
140114A 139.7 \cdots \cdots \cdots \cdots 90±\pm60 60 AMI 8,9
140129B 1.36 1.5 \cdots \cdots 6.17E+30 50±\pm30 40 AMI 8,9
140206A 93.6 2.74 2.78E+54 \cdots 2.96E+31 180±\pm80 90 AMI 8,9
140211A 89.4 \cdots \cdots \cdots \cdots 100±\pm30 40 AMI 8,9
140311B 70 \cdots \cdots \cdots \cdots 20±\pm30 60 AMI 8,9
140419A 94.7 3.956 1.90E+52 \cdots 3.98E+31 100±\pm50 60 AMI 8,9
140428A 17.42 4.7 \cdots \cdots 2.61E+31 100±\pm40 40 AMI 8,9
140502A 16.9 \cdots \cdots \cdots \cdots 500±\pm1750 60 AMI 8,9
140508A 44.3 1.03 2.10E+53 \cdots 2.50E+30 80±\pm40 50 AMI 8,9
140515A 23.4 6.32 5.38E+52 \cdots \cdots 460±\pm960 120 AMI 8,9
140516A 0.19 \cdots \cdots \cdots \cdots 170±\pm90 70 AMI 8,9
140518A 60.5 4.707 5.98E+52 \cdots 4.51E+31 80±\pm40 40 AMI 8,9
140521A 9.88 \cdots \cdots \cdots \cdots 120±\pm90 40 AMI 8,9
140623A \cdots \cdots \cdots \cdots \cdots 140±\pm40 50 AMI 8,9
140709B 155 \cdots \cdots \cdots \cdots 10±\pm10 60 AMI 8,9
140710A 3.52 0.558 \cdots \cdots 5.68E+29 80±\pm50 70 AMI 8,9
140801A 7 1.32 4.90E+52 \cdots 4.51E+31 140±\pm50 50 AMI 8,9
140817A 244 \cdots \cdots \cdots \cdots 20±\pm20 50 AMI 8,9
140824A 3.09 \cdots \cdots \cdots \cdots 80±\pm50 90 AMI 8,9
140907A 79.2 1.21 2.71E+52 \cdots 2.12E+30 140±\pm100 110 AMI 8,9
140930B \cdots \cdots \cdots \cdots \cdots 40±\pm30 50 AMI 8,9
141005A 4.34 \cdots \cdots \cdots \cdots 270±\pm900 70 AMI 8,9
141026A 146 3.35 \cdots \cdots 5.60E+31 70±\pm40 40 AMI 8,9
141031B 16 \cdots \cdots \cdots \cdots 50±\pm30 40 AMI 8,9
141130A 62.9 \cdots \cdots \cdots \cdots \cdots 50 AMI 8,9
141220A 7.21 1.3195 2.29E+52 \cdots 2.82E+30 20±\pm30 40 AMI 8,9
141225A 40.24 0.915 8.59E+51 \cdots 1.65E+30 30±\pm30 150 AMI 8,9
150101A 0.06 \cdots \cdots \cdots \cdots \cdots 80 AMI 8,9
150120A 1.2 0.46 1.90E+50 \cdots 8.73E+29 50±\pm30 40 AMI 8,9
150211A 13.6 \cdots \cdots \cdots \cdots 80±\pm40 50 AMI 8,9
150212A 11.4 \cdots \cdots \cdots \cdots 370±\pm1810 40 AMI 8,9
150302A 23.74 \cdots \cdots \cdots \cdots \cdots 40 AMI 8,9
150309A 242 \cdots \cdots \cdots \cdots 70±\pm30 40 AMI 8,9
150314A 14.79 1.758 6.70E+53 \cdots 9.17E+30 110±\pm60 70 AMI 8,9
150317A 23.29 \cdots \cdots \cdots \cdots 80±\pm40 40 AMI 8,9
150323A 149.6 0.593 1.00E+52 \cdots 5.59E+29 30±\pm20 40 AMI 8,9
150323C 159.4 \cdots \cdots \cdots \cdots 10±\pm10 50 AMI 8,9

Note.In Column 1, \star presents the SN/GRB. The peak flux density in Column 7 is upper limit. References are given in order for duration time(T90T_{90}), redshift(zz), isotropic equivalent energy(Eγ,isoE_{\gamma,iso}) and medium density(nn), respectively. [1]Chandra et al. (2012); [2]Fong et al. (2015); [3]Cusumano et al. (2007); [4]Tashiro M.S., et al. (2007); [5]Ghisellini et al. (2009);[6]de Ugarte Postigo et al (2007);[7]Bloom et al. (2003);[8]https://gcn.gsfc.nasa.gov/gcn3_archive.html;[9]Anderson et al. (2018).

Table 3: Physical parameters of radio-none GRBs
GRB T90T_{90} zz Eγ,isoE_{\gamma,iso} nn Radio Telescope reference
(s)(s) (erg)(erg) (cm3cm^{-3})
970111 31 \cdots \cdots \cdots VLA 1
970402 105 \cdots \cdots \cdots ATCA 1
970616 200 \cdots \cdots \cdots VLA 1
970815 130 \cdots \cdots \cdots VLA 1
971227 7 \cdots \cdots \cdots VLA 1
980109 20 \cdots \cdots \cdots ATCA 1
980326 9 0.9 5.60E+51 \cdots VLA 1
980515 15 \cdots \cdots \cdots ATCA 1
981220 15 \cdots \cdots \cdots VLA 1
990217 \cdots \cdots \cdots \cdots ATCA -
990520 10 \cdots \cdots \cdots VLA 1
990627 59 \cdots \cdots \cdots ATCA 1
990704 23 \cdots \cdots \cdots VLA 1
991014 3 \cdots \cdots \cdots VLA 1
991106 \cdots \cdots \cdots \cdots VLA -
000115 15 \cdots \cdots \cdots VLA 1
000126 70 \cdots \cdots \cdots VLA 1
000214 115 0.47 8.00E+51 \cdots ATCA 1
000226 131 \cdots \cdots \cdots VLA 1
000301A 6 \cdots \cdots \cdots VLA 1
000315 60 \cdots \cdots \cdots VLA 1
000326 2 \cdots \cdots \cdots VLA 1
000424 \cdots \cdots \cdots \cdots VLA -
000519 15 \cdots \cdots \cdots VLA 1
000528 80 \cdots \cdots \cdots VLA 1
000529 4 \cdots \cdots \cdots ATCA 1
000604 15 \cdots \cdots \cdots VLA 1
000607 0.2 \cdots \cdots \cdots VLA 1
000615A 12 \cdots \cdots \cdots VLA 1
000620 15 \cdots \cdots \cdots VLA 1
000727 10 \cdots \cdots \cdots VLA 1
000801 30 \cdots \cdots \cdots VLA 1
000812 80 \cdots \cdots \cdots VLA 1
000830 9 \cdots \cdots \cdots VLA 1
001025B 0.3 \cdots \cdots \cdots VLA 1
001109 60 \cdots \cdots \cdots VLA 1
001204 0.5 \cdots \cdots \cdots VLA 1
010119 0.2 \cdots \cdots \cdots VLA 1
010213 34 \cdots \cdots \cdots VLA 1
010214 15 \cdots \cdots \cdots VLA 1
010220 40 \cdots \cdots \cdots VLA 1
010728 8 \cdots \cdots \cdots VLA 1
011130 <\textless3 \cdots \cdots \cdots VLA 1
020127 26 1.9 3.57E+52 \cdots VLA 1
020321 70 \cdots \cdots \cdots ATCA 1
020322 75 \cdots \cdots \cdots VLA 1
020331 75 \cdots \cdots \cdots VLA 1
020409B \cdots \cdots \cdots \cdots VLA -
020427 66 \cdots \cdots \cdots ATCA 1
020525 25 \cdots \cdots \cdots VLA 1
020531 1 1 \cdots \cdots VLA 1
021008 30 \cdots \cdots \cdots VLA 1
021020 20 \cdots \cdots \cdots VLA 1
021125 25 \cdots \cdots \cdots VLA 1
021201 0.3 \cdots \cdots \cdots VLA 1
021219 6 \cdots \cdots \cdots VLA 1
030306 20 \cdots \cdots \cdots VLA 1
030324 16 \cdots \cdots VLA 1
030528 84 0.782 3.04E+52 \cdots VLA 1
031111 10 \cdots \cdots \cdots VLA 1
040223 258 \cdots \cdots \cdots VLA 1
040701 60 0.21 8.02E+49 \cdots VLA 1
040827 49 \cdots \cdots \cdots VLA 1
040912 127 1.563 1.65E+51 \cdots VLA 1
040916 450 \cdots \cdots \cdots VLA 1
040924 5 0.859 1.10E+52 \cdots VLA 1
041006 25 0.716 3.50E+52 \cdots VLA 1
041218 60 \cdots \cdots \cdots VLA 1
050117A 167 \cdots \cdots \cdots VLA 1
050124 4 \cdots \cdots \cdots VLA 1
050126 25 1.29 8.00E+51 \cdots VLA 1
050128 19 \cdots \cdots \cdots VLA 1
050202 0.3 \cdots \cdots \cdots VLA 1
050319 153 3.24 4.60E+52 1.00E-08 VLA 1,3
050410 43 \cdots \cdots \cdots VLA 1
050412 27 \cdots \cdots \cdots VLA 1
050421 15 \cdots \cdots \cdots VLA 1
050509B 0.07 0.225 2.40E+48 \cdots VLA 1
050520 80 \cdots \cdots \cdots VLA 1
050522 15 \cdots \cdots \cdots VLA 1
050709 0.07 0.161 1.00E+51 1+0.50.4{}_{-0.4}^{+0.5} VLA 1,2
050712 52 \cdots \cdots \cdots VLA 1
050714B 54 \cdots \cdots \cdots VLA 1
050803 88 \cdots \cdots \cdots VLA 1
050813 0.5 0.72 1.50E+50 \cdots VLA 1
050906 0.3 \cdots \cdots \cdots VLA 1
050911 16.2 0.165 2.69E+49 \cdots VLA 1
050922B 151 \cdots \cdots \cdots VLA 1
051006 35 \cdots \cdots \cdots VLA 1
051008 280 \cdots \cdots \cdots VLA 1
051016A 23 \cdots \cdots \cdots VLA 1
051103 0.2 \cdots \cdots \cdots VLA 1
051105A 0.09 \cdots \cdots \cdots VLA 1
051114 \cdots \cdots \cdots \cdots VLA -
051117A 136 \cdots \cdots \cdots VLA 1
051117B 9 \cdots \cdots \cdots VLA 1
060110 26 \cdots \cdots \cdots VLA 1
060123 900 1.099 \cdots \cdots VLA 1
060206 8 4.05 4.07E+52 2 VLA 1,3
060210 255 3.91 4.20E+53 1.00E-08 VLA 1,3
060213 60 \cdots \cdots \cdots VLA 1
060313 0.7 \cdots \cdots 0.0033+10.5{}_{-0.5}^{+1} VLA 1,2
060421 12 \cdots \cdots \cdots VLA 1
060428B 58 \cdots \cdots \cdots VLA 1
060502B 0.13 0.287 3.00E+49 \cdots VLA 1
060505 4 0.089 4.37E+49 \cdots VLA 1
070306 210 1.497 6.00E+52 \cdots VLA 1
070518 5.5 \cdots \cdots \cdots VLA 1
070721B 32 3.63 3.13E+53 \cdots VLA 1
070724B 0.4 0.457 2.45E+49 1.90+121.6{}_{-1.6}^{+12}×1005\times 10^{-05} VLA 1,2
070923 0.2 \cdots \cdots \cdots VLA 1
071018 288 \cdots \cdots \cdots VLA 1
071112B 0.3 \cdots \cdots \cdots VLA 1
080120 15 \cdots \cdots \cdots VLA 1
080723B 95 \cdots \cdots \cdots ATCA 1
081024B 0.8 \cdots \cdots \cdots VLA 1
090417A 0.07 \cdots \cdots \cdots VLA 1
090417B 283 0.345 1.10E+51 \cdots VLA 1
100424A 104 2.465 \cdots \cdots EVLA 1
110721A \cdots \cdots \cdots \cdots EVLA -

Note. References are given in order for duration time(T90T_{90}), redshift(zz), isotropic equivalent energy(Eγ,isoE_{\gamma,iso}) and medium density(nn), respectively. [1]Chandra et al. (2012); [2]Fong et al. (2015); [3]Ghisellini et al. (2009)

Table 4: Statistical parameters of the distributions of zz, TintT_{int} and Eγ,isoE_{\gamma,iso}
sample logz\langle logz\rangle σlogz\sigma_{logz} χ2/dof\chi^{2}/dof logEγ,iso\langle logE_{\gamma,iso}\rangle σlogEγ,iso\sigma_{logE_{\gamma,iso}} χ2/dof\chi^{2}/dof logTint\langle logT_{int}\rangle σlogTint\sigma_{logT_{int}} χ2/dof\chi^{2}/dof
radio-loud(N=100) 0.18±\pm0.014 0.69±\pm0.031 1.84 53.0±\pm0.04 1.80±\pm0.09 1.94 1.48±\pm0.02 0.86±\pm0.04 1.72
radio-quiet(N=82) 0.16±\pm0.01 0.70±\pm0.025 1.054 52.33±\pm0.029 1.76±\pm0.063 0.85 1.08±\pm0.02 1.06±\pm0.048 1.82
radio-none(N=25) -0.12 0.48 51.36 1.46 0.8 1.13
Table 5: The relevant parameters of K-S tests
Fig. N1N_{1} N2N_{2} DD PP Dα(N1,N2)D_{\alpha}(N_{1},N_{2}) NoteNote^{{\ddagger}}
1L 84a 63b 0.88 3.84 ×\times 101910^{-19} 0.23 rejected
1R 45a 74b 0.71 3.87×1014\times 10^{-14} 0.26 rejected
2L 31c 46d 0.26 0.17 0.32 accepted
2L 46d 48e 0.33 8.5×\times10-3 0.28 rejected
2L 31c 48e 0.41 2.5×\times10-4 0.31 rejected
2R 31c 43d 0.23 0.26 0.32 accepted
2R 43d 45e 0.40 1×\times10-4 0.29 rejected
2R 31c 45e 0.35 2.7×\times10-2 0.32 rejected
3L 77f 48e 0.34 1×\times10-3 0.25 rejected
3L 77f 25g 0.30 5×102\times 10^{-2} 0.31 rejected
3L 48e 25g 0.23 0.24 0.33 accepted
3L 21h 34i 0.30 0.15 0.37 accepted
3R 74f 45e 0.32 3.9×104\times 10^{-4} 0.26 rejected
3R 74f 25g 0.50 7.7×105\times 10^{-5} 0.31 rejected
3R 45e 25g 0.35 3.2×102\times 10^{-2} 0.34 rejected
3R 21h 34i 0.25 0.31 0.38 accepted
4 25f 21e 0.31 0.19 0.40 accepted
6 34f 15e 0.49 1.4×102\times 10^{-2} 0.45 rejected
7L 79f 48e 0.40 6.6×105\times 10^{-5} 0.25 rejected
7R 21h 31i 0.27 0.27 0.38 accepted

Note: N1N_{1} and N2N_{2} are two sample sizes. DD is the K-S test statistic with a PP value showing whether the two samples are taken from the same parent distribution. Dα(N1,N2)D_{\alpha}(N_{1},N_{2}) is the critical value in contrast with DD for a significant level (SL) of α=0.05\alpha=0.05. The diverse samples characterized by whether the radio afterglows are detected or not are denoted by a for detection, b for upper limit, c for radio-loud I, d for radio-loud II, e for radio-quiet, f for radio-loud all, g for radio-none, h for AMI radio-loud and i for AMI radio-quiet.
The capital letters represent the right (R) and left (L) panels in the corresponding figures.
The bold face indicates those sample pairs with poor K-S test in a lower confidence level.

Appendix A Comparisons of timescales and energies between different radio-selected GRBs

Here, we combine the VLA-based and the AMI GRBs to expand our sample and explore how the basic parameters of three radio-selected GRBs with known redshift are distributed. In total, 100 radio-loud, 81 radio-quiet and 25 radio-none bursts have been included and compared in Figure 12. Interestingly, the mean values of zz, TintT_{int} and Eγ,isoE_{\gamma,iso} become smaller and smaller and are ranked in order for radio-loud, radio-quiet and radio-none GRBs. More importantly, this implies that radio-none GRBs with the lower γ\gamma-ray energy output and the shorter intrinsic duration time often occur in the nearby universe in contrast with other two kinds of GRBs with radio afterglows. However, only 24% of radio-none sources belong to short GRBs, which hints that a significant fraction of long GRBs without any radio detections have lower values of TintT_{int} and Eγ,isoE_{\gamma,iso}. The new type of long GRBs is obviously different from most SN-associated GRBs with bright radio afterglow but lower Eγ,isoE_{\gamma,iso} as shown in Figure 9.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 12: The histograms of zz, Eγ,isoE_{\gamma,iso} and TintT_{int} for the radio-loud, radio-quiet and radio-none samples, respectively. The solid lines represent the best fit with a Gaussian function.