This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Homogeneous ACM bundles on exceptional Grassmannians

Xinyi Fang , Yusuke Nakayama and Peng Ren Department of Mathematics, Nanjing University, No. 22, Hankou Road, Nanjing, 210093, P. R. China, [email protected]. The research is sponsored by Excellent Postdoctoral Plan of Jiangsu Province. School of Fundamental Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555, [email protected] Center for Mathematical Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China, [email protected] The first author is sponsored by Innovation Action Plan (Basic research projects) of Science and Technology Commission of Shanghai Municipality (Grant No. 21JC1401900) and Excellent Postdoctoral Plan of Jiangsu Province.
Abstract

In this paper, we characterize homogeneous arithmetically Cohen-Macaulay (ACM) bundles over exceptional Grassmannians in terms of their associated data. We show that there are only finitely many irreducible homogeneous ACM bundles by twisting line bundles over exceptional Grassmannians. As a consequence, we prove that some exceptional Grassmannians are of wild representation type.

MSC: Primary 14F05; Secondary 14M17

Key words: homogeneous ACM bundles, exceptional Grassmannians, representation type

1 Introduction

Vector bundles over projective varieties have been studied for many years. For instance, Horrocks 16 showed that vector bundles on a projective space over a field of characteristic zero split as the direct sum of line bundles if and only if they have no intermediate cohomology. Since this result was established, research on indecomposable bundles without intermediate cohomology on projective varieties has garnered considerable attention. Such bundles are called arithmetically Cohen–Macaulay (ACM) bundles, which have have been studied extensively. ACM bundles correspond to maximal Cohen–Macaulay modules over the associated graded ring.

ACM bundles have been studied over particular varieties. The first nontrivial case involves two-dimensional varieties. For example, Casanellas–Hartshorne 5 proved the existence of stable ACM bundles of arbitrary rank on smooth cubic surfaces. This was the first example of indecomposable ACM bundles of arbitrarily high rank on varieties except curves. Various other studies have also been conducted on this case (see 1, 7, 13, 25, 26). In the case of three -dimensional varieties, Casnati–Faenzi–Malaspina 6 classified all rank-two indecomposable ACM bundles on the del Pezzo threefold with Picard number three. In addition, Filip 14 classified rank-two indecomposable ACM bundles on the general complete intersection of Calabi–Yau threefolds. Other studies have also been conducted on this topic (see 3 and 23).

The problem of classifying ACM bundles has also been studied on homogeneous varieties. Using the Borel–Bott–Weil Theorem, Costa–Miró-Roig 9 classified irreducible homogeneous ACM bundles on Grassmannian varieties. Recently, such bundles on isotropic Grassmannians of types BB, CC and DD were classified by Du–Fang–Ren 11.

The aim of this study is to classify all irreducible homogeneous ACM bundles over homogeneous varieties X=G/PX=G/P, where GG is a semi-simple linear algebraic group and PP is a maximal parabolic subgroup. This is a generalization of the work of Costa–Miró-Roig and Du–Fang–Ren. We derive the necessary and sufficient conditions for an irreducible homogeneous bundle on a homogeneous variety XX to be an ACM bundle. The result indicates that only finitely many irreducible homogeneous ACM bundles up to twisting line bundles exist over homogeneous varieties. In addition, we derive the conditions for the highest weight of an irreducible homogeneous vector bundle on an exceptional Grassmannian to be an ACM bundle. Moreover, we show that some exceptional Grassmannians are of wild representation type. Here, it would be appropriate to mention that there is another interesting class called Ulrich bundles. Such bundles on a homogeneous variety were studied by 8, 15 and 17.

1.1 Statement of results

Let GG be a semi-simple linear algebraic group over the complex field and P(αk)P({\alpha_{k}}) be the maximal parabolic subgroup associated to the simple root, αk\alpha_{k}. A vector bundle, EE, over G/P(αk)G/P({\alpha_{k}}) is homogeneous if the action of GG over G/P(αk)G/P({\alpha_{k}}) can be lifted to EE. This can be represented by G×υVG\times_{\upsilon}V, where υ:P(αk)GL(V)\upsilon:P({\alpha_{k}})\to GL(V) is a representation of P(αk)P({\alpha_{k}}). If this representation is irreducible, we call EE an irreducible homogeneous bundle. We use EλE_{\lambda} to denote the irreducible homogeneous vector bundle arising from the irreducible representation of P(αk)P({\alpha_{k}}) with highest weight, λ\lambda. We define set Φk,G+\Phi_{k,G}^{+} as follows:

Φk,G+:={αΦG+|(λk,α)0},\Phi_{k,G}^{+}:=\{\alpha\in\Phi^{+}_{G}\ |\ (\lambda_{k},\alpha)\neq 0\},

where ΦG+\Phi_{G}^{+} is the set of positive roots, λk\lambda_{k} is the kk-th fundamental weight and (,)(,) denotes the Killing form. Moreover, for any irreducible homogeneous vector bundle, EλE_{\lambda}, on G/P(αk)G/P({\alpha_{k}}) with highest weight, λ\lambda, we define its associated datum Tλ,kGT^{G}_{\lambda,k} as follows:

Tλ,kG:={(λ+ρ,α)(λk,α)|αΦk,G+},T^{G}_{\lambda,k}:=\left\{\frac{(\lambda+\rho,\alpha)}{(\lambda_{k},\alpha)}\ |\ \alpha\in\Phi_{k,G}^{+}\right\},

where ρ\rho is the sum of all fundamental weights. Note that Tλ,kGT^{G}_{\lambda,k} essentially corresponds to the stepmatrixstep\ matrix in 9 and 11. We now state the main result of this study.

Theorem 1.1.

Let EλE_{\lambda} be an initialized irreducible homogeneous vector bundle with highest weight λ\lambda over G/P(αk)G/P(\alpha_{k}). Let Tk,λGT_{k,\lambda}^{G} be its associated datum. Denote nl:=#{tTk,λG|t=l}n_{l}:=\#\{t\in T_{k,\lambda}^{G}|t=l\}. Then EλE_{\lambda} is an ACM bundle if and only if nl1n_{l}\geq 1 for any integer l[1,Mk,λG],l\in[1,M^{G}_{k,\lambda}], where Mk,λG=max{t|tTk,λG}M_{k,\lambda}^{G}=\max\{t|t\in T_{k,\lambda}^{G}\}.

This result was obtained by Costa and Miró-Roig for the case in which G/P(αk)G/P({\alpha_{k}}) is an Grassmannian. Moreover, when G/P(αk)G/P({\alpha_{k}}) is an isotropic Grassmannian of type B,CB,\ C or DD , this result was obtained by Du, Fang and Ren. Therefore, the novelty of the result lies in proving the statement over other varieties of exceptional types (i.e., exceptional Grassmannians). In this paper, we present a unified proof. From this theorem, we can obtain the following corollary.

Corollary 1.2.

Only finitely many irreducible homogeneous ACM bundles up to tensoring a line bundle exist on G/P(αk)G/P({\alpha_{k}}).

In addition, based on the aforementioned theorem, we use these irreducible homogeneous vector bundles as a building block to construct families of indecomposable ACM bundles on some exceptional Grassmannians of arbitrary high rank and dimension (see Section 44).

𝐀𝐜𝐤𝐧𝐨𝐰𝐥𝐞𝐝𝐠𝐦𝐞𝐧𝐭:\mathbf{Acknowledgment:} We are grateful to Takeshi Ikeda for their helpful advice and comments, to Hajime Kaji for beneficial comments, and to Satoshi Naito and Takafumi Kouno for useful advice. We would like to thank Editage (www.editage.com) for English language editing.

Notation and convention

  • EnE_{n}: the simple Lie group with Dynkin diagram En(n=6,7,8)E_{n}~{}(n=6,7,8);

  • F4F_{4}: the simple Lie group with Dynkin diagram F4F_{4};

  • G2G_{2}: the simple Lie group with Dynkin diagram G2G_{2};

  • αi\alpha_{i}: the ii-th simple roots;

  • (a1,,an)(a_{1},\dots,a_{n}): a1α1++anαna_{1}\alpha_{1}+\dots+a_{n}\alpha_{n};

  • ΦG+\Phi^{+}_{G}: the set of positive roots of GG;

  • λk\lambda_{k}: the kk-th fundamental weight;

  • ρ\rho: λ1++λn\lambda_{1}+\dots+\lambda_{n}

  • (,)(\cdot,\cdot): the Killing form;

  • EλE_{\lambda}: the irreducible homogeneous vector bundle with highest weight λ\lambda;

  • G/P(αk)G/P(\alpha_{k}): the homogeneous variety with semisimple complex Lie group GG and parabolic subgroup P(αk)P(\alpha_{k});

  • Tλ,kGT_{\lambda,k}^{G}: the associated datum of EλE_{\lambda} on G/P(αk)G/P(\alpha_{k}).

  • EE^{\vee} : the dual of EE;

  • hi(X,E)h^{i}(X,E): the dimension of ii-th sheaf cohomology of EE.

2 Preliminaries

We begin this section by reviewing some definitions and introducing some notations. All algebraic varieties in this study are defined over the field of complex numbers, \mathbb{C}.

2.1 Exceptional Grassmannians

Let GG be a semisimple complex Lie group and HH be a fixed maximal torus of GG. Denote their Lie algebras by 𝔤\mathfrak{g} and 𝔥\mathfrak{h} respectively. Let Φ\Phi be its root system and Δ={α1,,αn}Φ\Delta=\{\alpha_{1},...,\alpha_{n}\}\subset\Phi be a set of fixed simple roots.

Let IΔI\subset\Delta be a subset of simple roots. Define

Φ(I):={αΦ|α=αiIpiαi}.\Phi^{-}(I):=\{\alpha\in\Phi^{-}|\alpha=\sum\limits_{\alpha_{i}\notin I}p_{i}\alpha_{i}\}.

Let

𝒫(I):=𝔥(αΦ+𝔤α)(αΦ(I)𝔤α)\mathcal{P}(I):=\mathfrak{h}\bigoplus(\oplus_{\alpha\in\Phi^{+}}\mathfrak{g}_{\alpha})\bigoplus(\oplus_{\alpha\in\Phi^{-}(I)}\mathfrak{g}_{\alpha})

and P(I)P(I) be the subgroup of GG such that the Lie algebra of P(I)P(I) is 𝒫(I).\mathcal{P}(I). Recall that a closed subgroup PP of GG is called parabolic if the quotient space G/PG/P is projective. We have the following theorem to describe all parabolic subgroups of GG.

Theorem 2.1.

(see 19 Theorem 7.8) Let GG be a semisimple simply connected Lie group and PP be a parabolic subgroup of G. Then there exists gGg\in G and IΔI\subset\Delta such that

g1Pg=P(I).g^{-1}Pg=P(I).

From this classification theorem, we always use P(I)P(I) to denote the parabolic subgroup of GG. It’s not hard to see that P(I)P(I) is a maximal parabolic subgroup of GG when #|I|=1\#|I|=1. In this paper, we denote P(αk)P({\alpha_{k}}) by the maximal parabolic subgroup associated to the simple root, αk\alpha_{k}. It’s known that when GG is a simple Lie group of type AA, G/P(αk)G/P({\alpha_{k}}) is the usual Grassmannian. We call G/P(αk)G/P({\alpha_{k}}) an isotropic Grassmannian if GG is of type BB, CC or DD. We call G/P(αk)G/P({\alpha_{k}}) an exceptional Grassmannian if GG is of type En(n=6,7,8)E_{n}~{}(n=6,7,8), F4F_{4} or G2G_{2}.

In this paper, we focus on the exceptional Grassmannians G/P(αk)G/P({\alpha_{k}}) where the Dynkin diagrams of GG are as follows.

E6:E_{6}:134562F4:F_{4}:1234
E7:E_{7}:1345672G2:G_{2}:12
E8:E_{8}:13456782

2.2 Homogeneous vector bundles

Now we want to introduce an important class of vector bundles on G/PG/P.

Definition 2.2.

Over G/PG/P, a vector bundle EE is called homogeneous if there exists an action GG over EE such that the following diagram commutes

G×E\textstyle{G\times E\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E\textstyle{E\ignorespaces\ignorespaces\ignorespaces\ignorespaces}G×G/P\textstyle{G\times G/P\ignorespaces\ignorespaces\ignorespaces\ignorespaces}G/P.\textstyle{G/P.}

Remark 2.3.
  1. 1.

    There is a one-to-one correspondence between homogeneous vector bundles on G/PG/P with holomorphic representations of PP (see 19 Theorem 9.7).

    {homogeneous bundles onG/P}\displaystyle\{\text{homogeneous bundles on}~{}G/P\} 1:1{representations ofP}\displaystyle\stackrel{{\scriptstyle 1:1}}{{\longleftrightarrow}}\{\text{representations of}~{}P\} (2.1)
    E\displaystyle E υ:PGL(π1(P))\displaystyle\longmapsto\upsilon:P\rightarrow GL(\pi^{-1}(P))
    Eυ\displaystyle E_{\upsilon} υ:PGL(V)\displaystyle\longmapsfrom\upsilon:P\rightarrow GL(V)
    Eυ:=G×υV={[g,v]|[g,v][gp,υ(p1)v]forpP}.E_{\upsilon}:=G\times_{\upsilon}V=\{[g,v]|[g,v]\sim[gp,\upsilon(p^{-1})v]~{}for~{}p\in P\}.
  2. 2.

    If a representation υ:PGL(V)\upsilon:P\to GL(V) is irreducible, then we call the corresponding bundle EυE_{\upsilon} an irreducible homogeneous vector bundle.

Let us first recall that the weight lattice Λ\Lambda of GG is the set of all linear functions λ:𝔥\lambda:\mathfrak{h}\to\mathbb{C} for which 2(λ,α)(α,α)\frac{2(\lambda,\alpha)}{(\alpha,\alpha)}\in\mathbb{Z} for any αΦ\alpha\in\Phi, where (,)(,) denotes the Killing form. An element in Λ\Lambda is called a weight. A weight λΛ\lambda\in\Lambda is said to be dominant if 2(λ,α)(α,α)\frac{2(\lambda,\alpha)}{(\alpha,\alpha)} are non-negative for αΔ\alpha\in\Delta and strongly dominant if these integers are positive. Let λ1,,λnΛ\lambda_{1},\ldots,\lambda_{n}\in\Lambda be the fundamental weights, i.e., 2(λi,αj)(αj,αj)=δij\frac{2(\lambda_{i},\alpha_{j})}{(\alpha_{j},\alpha_{j})}=\delta_{ij}. From this definition, λ=i=1naiλi\lambda=\sum_{i=1}^{n}a_{i}\lambda_{i} is a dominant weight if and only if ai0a_{i}\geq 0 and a strongly dominant weight if and only if ai>0a_{i}>0 for 1in1\leq i\leq n.

Let VV be a representation of 𝔤.\mathfrak{g}. The weight lattice of Λ(V)={λΛ|h.v=λ(h)v for all h𝔥}\Lambda(V)=\{\lambda\in\Lambda|h.v=\lambda(h)v\text{ for all }h\in\mathfrak{h}\}. A weight λΛ(V)\lambda\in\Lambda(V) is called the highest weight of VV if λ+α\lambda+\alpha is not a weight in Λ(V)\Lambda(V) for any αΦ+\alpha\in\Phi^{+}.

Generally, homogeneous vector bundles over G/PG/P can be classified by the filtration of the irreducible homogeneous vector bundles. Hence we only consider the irreducible homogeneous vector bundles. We now introduce the classification of the irreducible representations of parabolic subgroups.

Proposition 2.4.

(See 19 Proposition 10.9) Let I={α1,,αk}I=\{\alpha_{1},\dots,\alpha_{k}\} be a subset of simple roots. Let λ1,,λk\lambda_{1},\dots,\lambda_{k} be the corresponding fundamental weights. Then all the irreducible representations of P(I)P(I) are

VLλ1n1Lλknk,V\otimes L^{n_{1}}_{\lambda_{1}}\otimes\dots\otimes L^{n_{k}}_{\lambda_{k}},

where VV is a representation of SPS_{P} (the semisimple part of P(I)P(I)), nin_{i}\in\mathbb{Z} and LλiL_{\lambda_{i}} is a one-dimensional representation with weight λi\lambda_{i}.

Notice that the weight lattice of SPS_{P} can be embedded in the weight lattice of GG. If λ\lambda is the highest weight of an irreducible representation VV of SPS_{P}, then λ+u=1knuλu\lambda+\sum\limits_{u=1}^{k}n_{u}\lambda_{u} is the highest weight of VLλ1n1LλknkV\otimes L^{n_{1}}_{\lambda_{1}}\otimes\dots\otimes L^{n_{k}}_{\lambda_{k}}.

Remark 2.5.

  1. 1.

    In this paper, we denote EλE_{\lambda} by the homogeneous bundle arising from the irreducible representation of PP with highest weight λ.\lambda.

  2. 2.

    If EλE_{\lambda} is an irreducible homogeneous vector bundle over G/P(I)G/P(I) with λ=aiλi\lambda=\sum a_{i}\lambda_{i}, then ai0a_{i}\geq 0 for αiI\alpha_{i}\notin I. Because EλE_{\lambda} is determined by the representation of the semisimple part whose highest weight is dominant.

2.3 ACM bundles

We introduce ACM bundles on a projective variety as this is the main focus of this study.

Definition 2.6.

Let ι:XN\iota:X\subset\mathbb{P}^{N} be a projective variety with 𝒪X(1):=ι𝒪N(1)\mathcal{O}_{X}(1):=\iota^{*}\mathcal{O}_{\mathbb{P}^{N}}(1). A vector bundle, EE, over XX is called arithmetically Cohen Macauley (ACM) if

Hi(X,E(t))=0,whereE(t):=E𝒪X𝒪X(t),foralli=1,,dimX1andallt.H^{i}(X,E(t))=0,\ {\rm where}\ E(t):=E\otimes_{\mathcal{O}_{X}}\mathcal{O}_{X}(t),\ {\rm for\ all}\ i=1,\ldots,{\rm dim}\ X-1\ {\rm and\ all}\ t\in\mathbb{Z}.

By definition, EE being an ACM bundle over a projective variety, XX, is equivalent to E(t)E(t) being an ACM bundle over XX for tt\in\mathbb{Z}. So for simplicity, we introduce the following definition.

Definition 2.7.

Given a projective variety (X,𝒪X(1))(X,\mathcal{O}_{X}(1)), a vector bundle EE on X is called initialized if

H0(X,E(1))=0H^{0}(X,E(-1))=0

and

H0(X,E)0.H^{0}(X,E)\neq 0.

For an initialized homogeneous vector bundle on a homogeneous variety, the following result is known (see 11).

Lemma 2.8.

Let EλE_{\lambda} be an initialized homogeneous vector bundle on G/P(αk)G/P(\alpha_{k}) with λ=a1λ1++anλn\lambda=a_{1}\lambda_{1}+\dots+a_{n}\lambda_{n}. Then ak=0.a_{k}=0.

3 Characterization of homogeneous ACM bundles on G/P(αk)G/P(\alpha_{k})

3.1 Proof of Theorem 1.1

In this section, we prove the main result of this work by using the Borel–Bott–Weil Theorem, which is a powerful tool to compute the sheaf cohomology groups of irreducible homogeneous bundles. First, some definitions are presented.

Definition 3.1.

Let λ\lambda be a weight.
(i) λ\lambda is called singular if there exists αΦ+\alpha\in\Phi^{+} such that (λ,α)=0(\lambda,\alpha)=0.
(ii) λ\lambda is called regular of index pp if it is not singular and if there are exactly pp roots α1,,αpΦ+\alpha_{1},\ldots,\alpha_{p}\in\Phi^{+} such that (λ,αi)<0(\lambda,\alpha_{i})<0.

Now we can introduce the Borel–Bott–Weil Theorem.

Theorem 3.2 (Borel–Bott–Weil, see 19 Theorem 11.4).

Let EλE_{\lambda} be an irreducible homogeneous vector bundle over G/P.G/P.

  1. 1)

    If λ+ρ\lambda+\rho is singular, then

    Hi(G/P,Eλ)=0,i.H^{i}(G/P,E_{\lambda})=0,\forall i\in\mathbb{Z}.
  2. 2)

    If λ+ρ\lambda+\rho is regular of index p, then

    Hi(G/P,Eλ)=0,ip,H^{i}(G/P,E_{\lambda})=0,\forall i\neq p,

    and

    Hp(G/P,Eλ)=Gw(λ+ρ)ρ,H^{p}(G/P,E_{\lambda})=G_{w(\lambda+\rho)-\rho},

    where ρ=i=1nλi\rho=\sum\limits_{i=1}^{n}\lambda_{i}, w(λ+ρ)w(\lambda+\rho) is the unique element of the fundamental Weyl chamber of G which is congruent to λ+ρ\lambda+\rho under the action of the Weyl group and Gw(λ+ρ)ρG_{w(\lambda+\rho)-\rho} is the irreducible representation of GG with highest weight w(λ+ρ)ρw(\lambda+\rho)-\rho.

The following lemma is crucial to the proof of the main result.

Lemma 3.3.

Let EλE_{\lambda} be an irreducible homogeneous vector bundle on a homogeneous variety G/P(αk)G/P({\alpha_{k}}) with highest weight λ\lambda. Then, EλE_{\lambda} is an ACM bundle if and only if one of the following conditions holds for each tt\in\mathbb{Z}:
   1)λ+ρtλk1)\ \lambda+\rho-t\lambda_{k} is regular of index 0;
   2)λ+ρtλk2)\ \lambda+\rho-t\lambda_{k} is regular of index dim G/P(αk)G/P({\alpha_{k}}); and
   3)λ+ρtλk3)\ \lambda+\rho-t\lambda_{k} is singular.

Proof.

The result follows from the definition of ACM bundles and the Borel–Bott–Weil Theorem. ∎

Proof of Theorem 1.1.

We examine these conditions by using Lemma 3.3.

Lemma 3.4.

λ+ρtλk\lambda+\rho-t\lambda_{k} is regular of index 0 if and only if t<1t<1.

Proof.

Suppose that λ+ρtλk\lambda+\rho-t\lambda_{k} is regular of index 0. Then, λ+ρtλk=ik(1+ai)λi+(1t+ak)λk\lambda+\rho-t\lambda_{k}=\sum_{i\neq k}(1+a_{i})\lambda_{i}+(1-t+a_{k})\lambda_{k} is strongly dominant, i.e., ai+1>0(ik)a_{i}+1>0~{}(i\neq k) and 1+akt>01+a_{k}-t>0. Now, as ai0a_{i}\geq 0 for iki\neq k (Remark 2.5), we only consider the case 1+akt>01+a_{k}-t>0. By initializing (Lemma 2.8), we obtain ak=0a_{k}=0. Therefore, t<1t<1. Conversely, suppose t<1t<1. Using the same argument, λ+ρtλk\lambda+\rho-t\lambda_{k} is regular of index 0. Hence, λ+ρtλk\lambda+\rho-t\lambda_{k} is regular of index 0 if and only if t<1t<1. ∎

Next, we consider case (2)(2).

Lemma 3.5.

λ+ρtλk\lambda+\rho-t\lambda_{k} is regular of index dimG/P(αk)\dim G/P({\alpha_{k}}) if and only if t>Mλ,kGt>M^{G}_{\lambda,k}.

Proof.

Since dimG/P(αk)=|Φk,G+|\dim G/P({\alpha_{k}})=|\Phi_{k,G}^{+}|, it’s equivalent to prove that λ+ρtλk\lambda+\rho-t\lambda_{k} is regular of index |Φk,G+||\Phi_{k,G}^{+}| if and only if t>Mλ,kGt>M^{G}_{\lambda,k}. Note that (λ+ρtλk,α)=(λ+ρ,α)(λk,α)t(\lambda+\rho-t\lambda_{k},\alpha)=(\lambda+\rho,\alpha)-(\lambda_{k},\alpha)\cdot t. Thus, for any αΦG+Φk,G+\alpha\in\Phi^{+}_{G}\setminus\Phi_{k,G}^{+}, (λ+ρtλk,α)=(λ+ρ,α)>0(\lambda+\rho-t\lambda_{k},\alpha)=(\lambda+\rho,\alpha)>0, because ai0(ik)a_{i}\geq 0~{}(i\neq k) and (ρ,α)>0(\rho,\alpha)>0.

Suppose that t>Mλ,kGt>M^{G}_{\lambda,k}. By the definition of Mλ,kGM^{G}_{\lambda,k}, the pairing value (λ+ρtλk,α)(\lambda+\rho-t\lambda_{k},\alpha) is negative for any αΦk,G+\alpha\in\Phi_{k,G}^{+}. Therefore, λ+ρtλk\lambda+\rho-t\lambda_{k} is regular of index |Φk,G+||\Phi_{k,G}^{+}|. Conversely, if λ+ρtλk\lambda+\rho-t\lambda_{k} is regular of index |Φk,G+||\Phi_{k,G}^{+}|, then the pairing value (λ+ρtλk,α)(\lambda+\rho-t\lambda_{k},\alpha) is negative for all αΦk,G+\alpha\in\Phi_{k,G}^{+}. In particular, t>Mλ,kGt>M^{G}_{\lambda,k}. ∎

Therefore, EλE_{\lambda} being an ACM bundle is equivalent to λ+ρtλk\lambda+\rho-t\lambda_{k} being singular for all integers t[1,Mλ,kG]t\in[1,M^{G}_{\lambda,k}] (i.e., there exists a positive root α\alpha such that (λ+ρtλk,α)=0(\lambda+\rho-t\lambda_{k},\alpha)=0 for any integer t[1,Mλ,kG]t\in[1,M^{G}_{\lambda,k}]). If α\alpha is in ΦG+Φk,G+\Phi^{+}_{G}\setminus\Phi_{k,G}^{+}, then the pairing value (λ+ρtλk,α)=(λ+ρ,α)(\lambda+\rho-t\lambda_{k},\alpha)=(\lambda+\rho,\alpha). As ai0(ik)a_{i}\geq 0~{}(i\neq k) and (ρ,α)>0(\rho,\alpha)>0, this is positive. Hence, we consider only the case in which α\alpha is in Φk,G+\Phi_{k,G}^{+}.

Lemma 3.6.

λ+ρtλk\lambda+\rho-t\lambda_{k} is singular if and only if tTλ,kGt\in T_{\lambda,k}^{G}.

Proof.

If λ+ρtλk\lambda+\rho-t\lambda_{k} is singular, there exists a positive root α\alpha in Φk,G+\Phi_{k,G}^{+} such that

0=(λ+ρtλk,α)=(λ+ρ,α)(λk,α)t.0=(\lambda+\rho-t\lambda_{k},\alpha)=(\lambda+\rho,\alpha)-(\lambda_{k},\alpha)\cdot t.

As α\alpha is in Φk,G+\Phi_{k,G}^{+}, (λk,α)(\lambda_{k},\alpha) is not equal to zero. Thus, t=1(λk,α)(λ+ρ,α)t=\frac{1}{(\lambda_{k},\alpha)}(\lambda+\rho,\alpha). By the definition of Tλ,kGT_{\lambda,k}^{G}, tTλ,kGt\in T_{\lambda,k}^{G}. Conversely, if tt is in Tλ,kGT_{\lambda,k}^{G}, there exists a positive root α\alpha in Φk,G+\Phi_{k,G}^{+} such that t=1(λk,α)(λ+ρ,α)t=\frac{1}{(\lambda_{k},\alpha)}(\lambda+\rho,\alpha). Then,

0=(λ+ρ,α)(λk,α)t=(λ+ρtλk,α).0=(\lambda+\rho,\alpha)-(\lambda_{k},\alpha)\cdot t=(\lambda+\rho-t\lambda_{k},\alpha).

Therefore, λ+ρtλk\lambda+\rho-t\lambda_{k} is singular. ∎

Therefore, in summary, EλE_{\lambda} is an ACM vector bundle if and only if nl1n_{l}\geq 1 for any integer l[1,Mk,λG]l\in[1,M^{G}_{k,\lambda}]. ∎

Now we can prove Corollary 1.2 which is directly induced by our main theorem.

Proof of Corollary 1.2.

Let EλE_{\lambda} be an irreducible homogeneous vector bundle with λ=i=1naiλi\lambda=\sum_{i=1}^{n}a_{i}\lambda_{i}. We assume that ak=0a_{k}=0, without loss of generality. As dimG/P(αk)=|Φk,G+|\dim G/P({\alpha_{k}})=|\Phi_{k,G}^{+}|, Tλ,kGT^{G}_{\lambda,k} has at most dimG/P(αk)\dim G/P({\alpha_{k}}) different elements. Thus if Mλ,kG>dimG/P(αk)M^{G}_{\lambda,k}>{\dim}\ G/P(\alpha_{k}), there exists an integer l[1,Mλ,kG]l\in[1,M^{G}_{\lambda,k}] such that nl=0n_{l}=0. By the main theorem, EλE_{\lambda} is not an ACM bundle. Therefore, if EλE_{\lambda} is an ACM bundle, then Mλ,kGdimG/P(αk)M^{G}_{\lambda,k}\leq{\rm dim}\ G/P(\alpha_{k}). As Mλ,kGM^{G}_{\lambda,k} is a linear combination of ai(ik)a_{i}~{}(i\neq k) with positive coefficients and ai0(ik)a_{i}\geq 0~{}(i\neq k), there exist only a finite number of choices for aia_{i}. Therefore, there exist only a finite number of irreducible homogeneous ACM bundles. ∎

3.2 Homogeneous ACM bundles on exceptional Grassmannians

In this subsection, we give a further observation of Tλ,kGT_{\lambda,k}^{G} on homogeneous varieties of different types. When GG is a simple Lie group of type AA, BB, CC or DD, the concrete form of Tλ,kGT_{\lambda,k}^{G} has already been given in 9 and 11 (see the definition of step matrix). Therefore, we only need to consider the concrete form of Tλ,kGT_{\lambda,k}^{G} when GG is a simple Lie group of type En(n=6,7,8)E_{n}(n=6,7,8), F4F_{4} or G2G_{2}.

To give a more concrete description, we need to know the explicit form of positive roots. In 2 Plate V-IX, we have already know the form of the positive roots under orthonormal basis.

Lemma 3.7.
ΦE6+={±eiej(1i<j5),12(e8e7e6+k=15(1)v(k)ek)};\Phi_{E_{6}}^{+}=\{\pm e_{i}-e_{j}~{}(1\leq i<j\leq 5),\frac{1}{2}(e_{8}-e_{7}-e_{6}+\sum_{k=1}^{5}(-1)^{v(k)}e_{k})\};
ΦE7+=ΦE6+{±ei+e6(i<6),e8e7,12(e8e7+e6+k=15(1)v(k)ek)};\Phi_{E_{7}}^{+}=\Phi_{E_{6}}^{+}\cup\{\pm e_{i}+e_{6}~{}(i<6),e_{8}-e_{7},\frac{1}{2}(e_{8}-e_{7}+e_{6}+\sum_{k=1}^{5}(-1)^{v(k)}e_{k})\};
ΦE8+=ΦE7+{±ei+e7,±ei+e8(i<7),e8+e7,12(e8+e7+k=16(1)u(k)ek)},\Phi_{E_{8}}^{+}=\Phi_{E_{7}}^{+}\cup\{\pm e_{i}+e_{7},\pm e_{i}+e_{8}~{}(i<7),e_{8}+e_{7},\frac{1}{2}(e_{8}+e_{7}+\sum_{k=1}^{6}(-1)^{u(k)}e_{k})\},

where k=15v(k)\sum_{k=1}^{5}v(k) is even and k=16u(k)\sum_{k=1}^{6}u(k) is odd.

ΦF4+={ei(1i4),ei±ej(1i<j4),12(e1±e2±e3±e4)}.\Phi_{F_{4}}^{+}=\{e_{i}~{}(1\leq i\leq 4),e_{i}\pm e_{j}(1\leq i<j\leq 4),\frac{1}{2}(e_{1}\pm e_{2}\pm e_{3}\pm e_{4})\}.
ΦG2+={e1e2,2e1+e2+e3,e1+e3,e2+e3,e12e2+e3,e1e2+2e3}.\Phi^{+}_{G_{2}}=\{e_{1}-e_{2},-2e_{1}+e_{2}+e_{3},-e_{1}+e_{3},-e_{2}+e_{3},e_{1}-2e_{2}+e_{3},-e_{1}-e_{2}+2e_{3}\}.

For convenience, we express positive roots as combinations of simple roots. After some simple calculations, we can get the following lemma (we use (m1,,mn)(m_{1},\dots,m_{n}) to represent m1α1++mnαnm_{1}\alpha_{1}+\dots+m_{n}\alpha_{n} and list them in terms of the lexicographical order).

Lemma 3.8.
  1. 1.

    Let α1,,α8\alpha_{1},\dots,\alpha_{8} be the simple roots of E8E_{8} and ΦP+,\Phi_{P}^{+}, ΦQ+\Phi_{Q}^{+} and ΦR+\Phi_{R}^{+} be the subset of the positive roots of E8E_{8}, where

    ΦP+={\Phi_{P}^{+}=\{

    (0,0,0,0,0,1,0,0),(0,0,0,0,1,0,0,0),(0,0,0,0,1,1,0,0),(0,0,0,1,0,0,0,0),(0,0,0,1,1,0,0,0),(0,0,0,1,1,1,0,0),(0,0,1,0,0,0,0,0),(0,0,1,1,0,0,0,0),(0,0,1,1,1,0,0,0),(0,0,1,1,1,1,0,0),(0,1,0,0,0,0,0,0),(0,1,0,1,0,0,0,0),(0,1,0,1,1,0,0,0),(0,1,0,1,1,1,0,0),(0,1,1,1,0,0,0,0),(0,1,1,1,1,0,0,0),(0,1,1,1,1,1,0,0),(0,1,1,2,1,0,0,0),(0,1,1,2,1,1,0,0),(0,1,1,2,2,1,0,0),(1,0,0,0,0,0,0,0),(1,0,1,0,0,0,0,0),(1,0,1,1,0,0,0,0),(1,0,1,1,1,0,0,0),(1,0,1,1,1,1,0,0),(1,1,1,1,0,0,0,0),(1,1,1,1,1,0,0,0),(1,1,1,1,1,1,0,0),(1,1,1,2,1,0,0,0),(1,1,1,2,1,1,0,0),(1,1,1,2,2,1,0,0),(1,1,2,2,1,0,0,0),(1,1,2,2,1,1,0,0),(1,1,2,2,2,1,0,0),(1,1,2,3,2,1,0,0),(1,2,2,3,2,1,0,0)};\begin{matrix}(0,0,0,0,0,1,0,0),&(0,0,0,0,1,0,0,0),&(0,0,0,0,1,1,0,0),&(0,0,0,1,0,0,0,0),&(0,0,0,1,1,0,0,0),\\ (0,0,0,1,1,1,0,0),&(0,0,1,0,0,0,0,0),&(0,0,1,1,0,0,0,0),&(0,0,1,1,1,0,0,0),&(0,0,1,1,1,1,0,0),\\ (0,1,0,0,0,0,0,0),&(0,1,0,1,0,0,0,0),&(0,1,0,1,1,0,0,0),&(0,1,0,1,1,1,0,0),&(0,1,1,1,0,0,0,0),\\ (0,1,1,1,1,0,0,0),&(0,1,1,1,1,1,0,0),&(0,1,1,2,1,0,0,0),&(0,1,1,2,1,1,0,0),&(0,1,1,2,2,1,0,0),\\ (1,0,0,0,0,0,0,0),&(1,0,1,0,0,0,0,0),&(1,0,1,1,0,0,0,0),&(1,0,1,1,1,0,0,0),&(1,0,1,1,1,1,0,0),\\ (1,1,1,1,0,0,0,0),&(1,1,1,1,1,0,0,0),&(1,1,1,1,1,1,0,0),&(1,1,1,2,1,0,0,0),&(1,1,1,2,1,1,0,0),\\ (1,1,1,2,2,1,0,0),&(1,1,2,2,1,0,0,0),&(1,1,2,2,1,1,0,0),&(1,1,2,2,2,1,0,0),&(1,1,2,3,2,1,0,0),\\ (1,2,2,3,2,1,0,0)\};&&&&\end{matrix}

    ΦQ+={\Phi_{Q}^{+}=\{

    (0,0,0,0,0,0,1,0),(0,0,0,0,0,1,1,0),(0,0,0,0,1,1,1,0),(0,0,0,1,1,1,1,0),(0,0,1,1,1,1,1,0),(0,1,0,1,1,1,1,0),(0,1,1,1,1,1,1,0),(0,1,1,2,1,1,1,0),(0,1,1,2,2,1,1,0),(0,1,1,2,2,2,1,0),(1,0,1,1,1,1,1,0),(1,1,1,1,1,1,1,0),(1,1,1,2,1,1,1,0),(1,1,1,2,2,1,1,0),(1,1,1,2,2,2,1,0),(1,1,2,2,1,1,1,0),(1,1,2,2,2,1,1,0),(1,1,2,2,2,2,1,0),(1,1,2,3,2,1,1,0),(1,1,2,3,2,2,1,0),(1,1,2,3,3,2,1,0),(1,2,2,3,2,1,1,0),(1,2,2,3,2,2,1,0),(1,2,2,3,3,2,1,0),(1,2,2,4,3,2,1,0),(1,2,3,4,3,2,1,0),(2,2,3,4,3,2,1,0)};\begin{matrix}(0,0,0,0,0,0,1,0),&(0,0,0,0,0,1,1,0),&(0,0,0,0,1,1,1,0),&(0,0,0,1,1,1,1,0),&(0,0,1,1,1,1,1,0),&\\ (0,1,0,1,1,1,1,0),&(0,1,1,1,1,1,1,0),&(0,1,1,2,1,1,1,0),&(0,1,1,2,2,1,1,0),&(0,1,1,2,2,2,1,0),&\\ (1,0,1,1,1,1,1,0),&(1,1,1,1,1,1,1,0),&(1,1,1,2,1,1,1,0),&(1,1,1,2,2,1,1,0),&(1,1,1,2,2,2,1,0),&\\ (1,1,2,2,1,1,1,0),&(1,1,2,2,2,1,1,0),&(1,1,2,2,2,2,1,0),&(1,1,2,3,2,1,1,0),&(1,1,2,3,2,2,1,0),&\\ (1,1,2,3,3,2,1,0),&(1,2,2,3,2,1,1,0),&(1,2,2,3,2,2,1,0),&(1,2,2,3,3,2,1,0),&(1,2,2,4,3,2,1,0),&\\ (1,2,3,4,3,2,1,0),&(2,2,3,4,3,2,1,0)\};&\end{matrix}

    ΦR+={\Phi_{R}^{+}=\{

    (0,0,0,0,0,0,0,1),(0,0,0,0,0,0,1,1),(0,0,0,0,0,1,1,1),(0,0,0,0,1,1,1,1),(0,0,0,1,1,1,1,1),(0,0,1,1,1,1,1,1),(0,1,0,1,1,1,1,1),(0,1,1,1,1,1,1,1),(0,1,1,2,1,1,1,1),(0,1,1,2,2,1,1,1),(0,1,1,2,2,2,1,1),(0,1,1,2,2,2,2,1),(1,0,1,1,1,1,1,1),(1,1,1,1,1,1,1,1),(1,1,1,2,1,1,1,1),(1,1,1,2,2,1,1,1),(1,1,1,2,2,2,1,1),(1,1,1,2,2,2,2,1),(1,1,2,2,1,1,1,1),(1,1,2,2,2,1,1,1),(1,1,2,2,2,2,1,1),(1,1,2,2,2,2,2,1),(1,1,2,3,2,1,1,1),(1,1,2,3,2,2,1,1),(1,1,2,3,2,2,2,1),(1,1,2,3,3,2,1,1),(1,1,2,3,3,2,2,1),(1,1,2,3,3,3,2,1),(1,2,2,3,2,1,1,1),(1,2,2,3,2,2,1,1),(1,2,2,3,2,2,2,1),(1,2,2,3,3,2,1,1),(1,2,2,3,3,2,2,1),(1,2,2,3,3,3,2,1),(1,2,2,4,3,2,1,1),(1,2,2,4,3,2,2,1),(1,2,2,4,3,3,2,1),(1,2,2,4,4,3,2,1),(1,2,3,4,3,2,1,1),(1,2,3,4,3,2,2,1),(1,2,3,4,3,3,2,1),(1,2,3,4,4,3,2,1),(1,2,3,5,4,3,2,1),(1,3,3,5,4,3,2,1),(2,2,3,4,3,2,1,1),(2,2,3,4,3,2,2,1),(2,2,3,4,3,3,2,1),(2,2,3,4,4,3,2,1),(2,2,3,5,4,3,2,1),(2,2,4,5,4,3,2,1),(2,3,3,5,4,3,2,1),(2,3,4,5,4,3,2,1),(2,3,4,6,4,3,2,1),(2,3,4,6,5,3,2,1),(2,3,4,6,5,4,2,1),(2,3,4,6,5,4,3,1),(2,3,4,6,5,4,3,2)}.\begin{matrix}(0,0,0,0,0,0,0,1),&(0,0,0,0,0,0,1,1),&(0,0,0,0,0,1,1,1),&(0,0,0,0,1,1,1,1),&(0,0,0,1,1,1,1,1),&\\ (0,0,1,1,1,1,1,1),&(0,1,0,1,1,1,1,1),&(0,1,1,1,1,1,1,1),&(0,1,1,2,1,1,1,1),&(0,1,1,2,2,1,1,1),&\\ (0,1,1,2,2,2,1,1),&(0,1,1,2,2,2,2,1),&(1,0,1,1,1,1,1,1),&(1,1,1,1,1,1,1,1),&(1,1,1,2,1,1,1,1),&\\ (1,1,1,2,2,1,1,1),&(1,1,1,2,2,2,1,1),&(1,1,1,2,2,2,2,1),&(1,1,2,2,1,1,1,1),&(1,1,2,2,2,1,1,1),&\\ (1,1,2,2,2,2,1,1),&(1,1,2,2,2,2,2,1),&(1,1,2,3,2,1,1,1),&(1,1,2,3,2,2,1,1),&(1,1,2,3,2,2,2,1),&\\ (1,1,2,3,3,2,1,1),&(1,1,2,3,3,2,2,1),&(1,1,2,3,3,3,2,1),&(1,2,2,3,2,1,1,1),&(1,2,2,3,2,2,1,1),&\\ (1,2,2,3,2,2,2,1),&(1,2,2,3,3,2,1,1),&(1,2,2,3,3,2,2,1),&(1,2,2,3,3,3,2,1),&(1,2,2,4,3,2,1,1),&\\ (1,2,2,4,3,2,2,1),&(1,2,2,4,3,3,2,1),&(1,2,2,4,4,3,2,1),&(1,2,3,4,3,2,1,1),&(1,2,3,4,3,2,2,1),&\\ (1,2,3,4,3,3,2,1),&(1,2,3,4,4,3,2,1),&(1,2,3,5,4,3,2,1),&(1,3,3,5,4,3,2,1),&(2,2,3,4,3,2,1,1),&\\ (2,2,3,4,3,2,2,1),&(2,2,3,4,3,3,2,1),&(2,2,3,4,4,3,2,1),&(2,2,3,5,4,3,2,1),&(2,2,4,5,4,3,2,1),&\\ (2,3,3,5,4,3,2,1),&(2,3,4,5,4,3,2,1),&(2,3,4,6,4,3,2,1),&(2,3,4,6,5,3,2,1),&(2,3,4,6,5,4,2,1),&\\ (2,3,4,6,5,4,3,1),&(2,3,4,6,5,4,3,2)\}.&\end{matrix}

    Then ΦE6+=ΦP+\Phi_{E_{6}}^{+}=\Phi_{P}^{+}, ΦE7+=ΦP+ΦQ+\Phi_{E_{7}}^{+}=\Phi_{P}^{+}\cup\Phi_{Q}^{+} and ΦE8+=ΦP+ΦQ+ΦR+\Phi_{E_{8}}^{+}=\Phi_{P}^{+}\cup\Phi_{Q}^{+}\cup\Phi_{R}^{+}.

  2. 2.

    Let α1,,α4\alpha_{1},\dots,\alpha_{4} be the simple roots of F4F_{4}. Then

    ΦF4+={\Phi_{F_{4}}^{+}=\{

    (0,0,0,1),(0,0,1,0),(0,0,1,1),(0,1,0,0),(0,1,1,0),(0,1,1,1),(0,1,2,0),(0,1,2,1),(0,1,2,2),(1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1),(1,1,2,0),(1,1,2,1),(1,1,2,2),(1,2,2,0),(1,2,2,1),(1,2,2,2),(1,2,3,1),(1,2,3,2),(1,2,4,2),(1,3,4,2),(2,3,4,2)};\begin{matrix}(0,0,0,1),&(0,0,1,0),&(0,0,1,1),&(0,1,0,0),&(0,1,1,0),&(0,1,1,1),\\ (0,1,2,0),&(0,1,2,1),&(0,1,2,2),&(1,0,0,0),&(1,1,0,0),&(1,1,1,0),\\ (1,1,1,1),&(1,1,2,0),&(1,1,2,1),&(1,1,2,2),&(1,2,2,0),&(1,2,2,1),\\ (1,2,2,2),&(1,2,3,1),&(1,2,3,2),&(1,2,4,2),&(1,3,4,2),&(2,3,4,2)\};\end{matrix}
  3. 3.

    Let α1\alpha_{1} and α2\alpha_{2} be the simple roots of G2G_{2}. Then

    ΦG2+={(0,1),(1,0),(1,1),(2,1),(3,1),(3,2)}.\Phi^{+}_{G_{2}}=\{(0,1),(1,0),(1,1),(2,1),(3,1),(3,2)\}.
Remark 3.9.

Here we embed the roots of E6E_{6} and E7E_{7} into the roots of E8E_{8}. Hence we only use the roots of E8E_{8} to represent others.

From the definition of the fundamental weight, it is not hard to see that

Φk,G+={α=miαiΦG+|mk0},\Phi_{k,G}^{+}=\{\alpha=\sum m_{i}\alpha_{i}\in\Phi^{+}_{G}|m_{k}\neq 0\},
(λk,α)=(λk,miαi)=12mk(αk,αk)(\lambda_{k},\alpha)=(\lambda_{k},\sum m_{i}\alpha_{i})=\frac{1}{2}m_{k}(\alpha_{k},\alpha_{k})

and for λ=a1λ1++anλn\lambda=a_{1}\lambda_{1}+\dots+a_{n}\lambda_{n},

(λ+ρ,α)=12(ai+1)mi(αi,αi).(\lambda+\rho,\alpha)=\frac{1}{2}\sum(a_{i}+1)m_{i}(\alpha_{i},\alpha_{i}).

Combining Lemma 3.8 and the Killing forms of positive roots, we can write down the concrete form of Tλ,kGT^{G}_{\lambda,k} as follows.

Remark 3.10.

Let EλE_{\lambda} be an irreducible homogeneous vector bundle over G/P(αk)G/P(\alpha_{k}) with λ=a1λ1++anλn\lambda=a_{1}\lambda_{1}+\dots+a_{n}\lambda_{n}. Then

  • Tλ,kEn={i(ai+1)mimk|(m1,,mn)ΦEn+,mk0}(n=6,7,8).T^{E_{n}}_{\lambda,k}=\big{\{}\frac{\sum_{i}(a_{i}+1)m_{i}}{m_{k}}|(m_{1},\ldots,m_{n})\in\Phi^{+}_{E_{n}},~{}m_{k}\neq 0\big{\}}~{}(n=6,7,8).
  • If k=1,2k=1,2, then

    Tλ,kF4={2(a1+1)m1+2(a2+1)m2+(a3+1)m3+(a4+1)m42mk|(m1,,m4)ΦF4+,mk0}.T^{F_{4}}_{\lambda,k}=\big{\{}\frac{2(a_{1}+1)m_{1}+2(a_{2}+1)m_{2}+(a_{3}+1)m_{3}+(a_{4}+1)m_{4}}{2m_{k}}\ |(m_{1},\ldots,m_{4})\in\Phi^{+}_{F_{4}},~{}m_{k}\neq 0\big{\}}.

    If k=3,4k=3,4, then

    Tλ,kF4={2(a1+1)m1+2(a2+1)m2+(a3+1)m3+(a4+1)m4mk|(m1,,m4)ΦF4+,mk0}.T^{F_{4}}_{\lambda,k}=\big{\{}\frac{2(a_{1}+1)m_{1}+2(a_{2}+1)m_{2}+(a_{3}+1)m_{3}+(a_{4}+1)m_{4}}{m_{k}}\ |(m_{1},\ldots,m_{4})\in\Phi^{+}_{F_{4}},~{}m_{k}\neq 0\big{\}}.
  • Tλ,1G2={(a1+1)m1+3(a2+1)m2m1|(m1,m2)ΦG2+,m10}T^{G_{2}}_{\lambda,1}=\big{\{}\frac{(a_{1}+1)m_{1}+3(a_{2}+1)m_{2}}{m_{1}}\ |(m_{1},m_{2})\in\Phi^{+}_{G_{2}},~{}m_{1}\neq 0\big{\}}

    and

    Tλ,2G2={(a1+1)m1+3(a2+1)m23m2|(m1,m2)ΦG2+,m20}.T^{G_{2}}_{\lambda,2}=\big{\{}\frac{(a_{1}+1)m_{1}+3(a_{2}+1)m_{2}}{3m_{2}}\ |(m_{1},m_{2})\in\Phi^{+}_{G_{2}},~{}m_{2}\neq 0\big{\}}.

Let’s illustrate the power of this result by means of some examples.

Example 3.11.

Let EλE_{\lambda} and EμE_{\mu} be initialized irreducible homogeneous vector bundles on E6/P(α2)E_{6}/P(\alpha_{2}) with μ=2λ1+λ3\mu=2\lambda_{1}+\lambda_{3} and ν=λ4+λ5\nu=\lambda_{4}+\lambda_{5}. Then by Lemma 3.8 and Remark 3.10, we know that for λ=a1λ1++a6λ6\lambda=a_{1}\lambda_{1}+\dots+a_{6}\lambda_{6},

Tλ,2E6\displaystyle T_{\lambda,2}^{E_{6}} ={a2+1,a2+a4+2,a2+i=45ai+3,a2+i=46ai+4,i=24ai+3,i=25ai+4,i=26ai+5,\displaystyle=\big{\{}a_{2}+1,a_{2}+a_{4}+2,a_{2}+\sum_{i=4}^{5}a_{i}+3,a_{2}+\sum_{i=4}^{6}a_{i}+4,\sum_{i=2}^{4}a_{i}+3,\sum_{i=2}^{5}a_{i}+4,\sum_{i=2}^{6}a_{i}+5,
i=23ai+2a4+a5+5,i=23ai+2a4+i=56ai+6,i=23ai+2i=45ai+a6+7,i=14ai+4,\displaystyle\sum_{i=2}^{3}a_{i}+2a_{4}+a_{5}+5,\sum_{i=2}^{3}a_{i}+2a_{4}+\sum_{i=5}^{6}a_{i}+6,\sum_{i=2}^{3}a_{i}+2\sum_{i=4}^{5}a_{i}+a_{6}+7,\sum_{i=1}^{4}a_{i}+4,
i=15ai+5,i=16ai+6,i=13ai+2a4+a5+6,i=13ai+2a4+i=56ai+7,i=13ai+2i=45ai+a6+8,\displaystyle\sum_{i=1}^{5}a_{i}+5,\sum_{i=1}^{6}a_{i}+6,\sum_{i=1}^{3}a_{i}+2a_{4}+a_{5}+6,\sum_{i=1}^{3}a_{i}+2a_{4}+\sum_{i=5}^{6}a_{i}+7,\sum_{i=1}^{3}a_{i}+2\sum_{i=4}^{5}a_{i}+a_{6}+8,
i=12ai+2i=34ai+a5+7,i=12ai+2i=34ai+i=56ai+8,i=12ai+2i=35ai+a6+9,\displaystyle\sum_{i=1}^{2}a_{i}+2\sum_{i=3}^{4}a_{i}+a_{5}+7,\sum_{i=1}^{2}a_{i}+2\sum_{i=3}^{4}a_{i}+\sum_{i=5}^{6}a_{i}+8,\sum_{i=1}^{2}a_{i}+2\sum_{i=3}^{5}a_{i}+a_{6}+9,
i=12ai+2a3+3a4+2a5+a6+10,12(a1+2i=23ai+3a4+2a5+a6+11)}.\displaystyle\sum_{i=1}^{2}a_{i}+2a_{3}+3a_{4}+2a_{5}+a_{6}+10,\frac{1}{2}(a_{1}+2\sum_{i=2}^{3}a_{i}+3a_{4}+2a_{5}+a_{6}+11)\big{\}}.

Hence

Tμ,2E6={1,2,3,4,4,5,6,6,7,8,7,8,9,9,10,11,11,12,13,14,152}andMμ,2E6=14,T_{\mu,2}^{E_{6}}=\{1,2,3,4,4,5,6,6,7,8,7,8,9,9,10,11,11,12,13,14,\frac{15}{2}\}~{}\text{and}~{}M_{\mu,2}^{E_{6}}=14,
Tν,2E6={1,3,5,6,4,6,7,8,9,11,5,7,8,9,10,12,10,11,13,15,8}andMν,2E6=15.T_{\nu,2}^{E_{6}}=\{1,3,5,6,4,6,7,8,9,11,5,7,8,9,10,12,10,11,13,15,8\}~{}\text{and}~{}M_{\nu,2}^{E_{6}}=15.

It’s easy to verify that nl1n_{l}\geq 1 for any integer l[1,Mμ,2E6]l\in[1,M_{\mu,2}^{E_{6}}] and n2=n14=0n_{2}=n_{14}=0 for Tν,2E6T_{\nu,2}^{E_{6}}. Therefore, by Theorem 1.1, EμE_{\mu} is an ACM bundle, but EνE_{\nu} is not an ACM bundle.

Example 3.12.
  1. 1.

    The irreducible homogeneous ACM vector bundles over G2/P(α1)G_{2}/P(\alpha_{1}) are line bundles.

  2. 2.

    The irreducible homogeneous ACM vector bundles over G2/P(α2)G_{2}/P(\alpha_{2}) are line bundles, Eλ1E_{\lambda_{1}} and E2λ1E_{2\lambda_{1}} (up to tensoring a line bundle).

Proof.
  1. 1.

    For simplicity, we may assume that Eλ=Ea1λ1+a2λ2E_{\lambda}=E_{a_{1}\lambda_{1}+a_{2}\lambda_{2}} be an initialized irreducible homogeneous ACM bundle on G2/P(α1).G_{2}/P(\alpha_{1}). Then a1=0.a_{1}=0. By Lemma 3.8 and Remark 3.10, we have

    T1,λG={1,3a2+4,3a22+52,a2+2,2a2+3}T_{1,\lambda}^{G}=\{1,3a_{2}+4,\frac{3a_{2}}{2}+\frac{5}{2},a_{2}+2,2a_{2}+3\}

    By Theorem 1.1, 2T2,λG2\in T_{2,\lambda}^{G}, then the only choice of a2a_{2} is 0. Then

    T1,λG={1,4,52,2,3}.T_{1,\lambda}^{G}=\{1,4,\frac{5}{2},2,3\}.

    Hence the first statement follows from Theorem 1.1.

  2. 2.

    As above, we still assume that Eλ=Ea1λ1+a2λ2E_{\lambda}=E_{a_{1}\lambda_{1}+a_{2}\lambda_{2}} is initialized which means a2=0a_{2}=0. Then we have

    T2,λG={1,a13+43,2a13+53,a1+2,a12+32}T_{2,\lambda}^{G}=\{1,\frac{a_{1}}{3}+\frac{4}{3},\frac{2a_{1}}{3}+\frac{5}{3},a_{1}+2,\frac{a_{1}}{2}+\frac{3}{2}\}

    By Theorem 1.1, 2T2,λG2\in T_{2,\lambda}^{G}, then the only choices of a1a_{1} are 0,1 and 2. One can check

    T2,λG={1,43,53,2,32},{1,53,73,3,2}and{1,2,3,4,52}T_{2,\lambda}^{G}=\{1,\frac{4}{3},\frac{5}{3},2,\frac{3}{2}\},\{1,\frac{5}{3},\frac{7}{3},3,2\}~{}\text{and}~{}\{1,2,3,4,\frac{5}{2}\}

    in these three cases. We therefore conclude by Theorem 1.1.

In general, it is not hard to use computer to help us classify all irreducible homogeneous ACM bundles on exceptional Grassmannians. We list part of them in the appendix. For convenience, we only give the following corollary which we will use in the next section.

Corollary 3.13.

Let XX be an exceptional Grassmannian and F1F_{1}, F2F_{2} be two irreducible homogeneous vector bundles with the forms in Table 1. Then F1F_{1} and F2F_{2} are ACM bundles.

XX F1F_{1} F2F_{2}
E7/P(α1)E_{7}/P(\alpha_{1}) E2λ2E_{2\lambda_{2}} E2λ72λ1E_{2\lambda_{7}-2\lambda_{1}}
En/P(α2)E_{n}/P(\alpha_{2}) E3λ1E_{3\lambda_{1}} Eλ32λ2E_{\lambda_{3}-2\lambda_{2}}
En/P(α3)E_{n}/P(\alpha_{3}) E2λ1E_{2\lambda_{1}} Eλ42λ3E_{\lambda_{4}-2\lambda_{3}}
En/P(α4)E_{n}/P(\alpha_{4}) Eλ1+λ2+λ3E_{\lambda_{1}+\lambda_{2}+\lambda_{3}} Eλ52λ4E_{\lambda_{5}-2\lambda_{4}}
En/P(α5)E_{n}/P(\alpha_{5}) Eλ1+λ4E_{\lambda_{1}+\lambda_{4}} Eλ62λ5E_{\lambda_{6}-2\lambda_{5}}
En/P(α6)E_{n}/P(\alpha_{6}) (n6)(n\neq 6) Eλ1+λ5E_{\lambda_{1}+\lambda_{5}} Eλ72λ6E_{\lambda_{7}-2\lambda_{6}}
E8/P(α7)E_{8}/P(\alpha_{7}) Eλ1+λ6E_{\lambda_{1}+\lambda_{6}} Eλ82λ7E_{\lambda_{8}-2\lambda_{7}}
F4/P(α1)F_{4}/P(\alpha_{1}) E3λ4E_{3\lambda_{4}} Eλ42λ1E_{\lambda_{4}-2\lambda_{1}}
F4/P(α2)F_{4}/P(\alpha_{2}) E2λ1E_{2\lambda_{1}} E2λ32λ2E_{2\lambda_{3}-2\lambda_{2}}
F4/P(α3)F_{4}/P(\alpha_{3}) Eλ1+λ2E_{\lambda_{1}+\lambda_{2}} Eλ42λ3E_{\lambda_{4}-2\lambda_{3}}
Table 1: Choices of F1F_{1} and F2F_{2}

4 Representation type of exceptional Grassmannians

In this section, we present certain applications for the main theorem. First, let’s recall that a subscheme XNX\subset\mathbb{P}^{N} is ACM if its homogeneous coordinate ring RXR_{X} is a local Cohen-Macauley ring (See 18 Definition 1.2.2). We also note that exceptional Grassmannians are ACM schemes (22). Mimicking an analogus trichotomy in Representation Theory, a classification of ACM schemes was proposed as finite, tame or wild according to the complexity of their associated category of ACM bundles. Let us recall the definitions:

Definition 4.1.

Let XnX\subset\mathbb{P}^{n} be an nonsingular ACM subscheme of dimension dd. XX is said to be of finite representation type if it has, up to twist and isomorphism, only a finite number of indecomposable ACM bundles. It is said to be of tame representation type if either it has, up to twist and isomorphism, an infinite discrete set of indecomposable ACM bundles or, for each rank rr, the indecomposable ACM bundles of rank rr form a finite number of families of dimension at most d.d. Finally, XX is said to be of wild representation type if there exist ll-dimensional families of non-isomorphic indecomposable ACM bundles for arbitrary large l.l.

Varieties of finite representation type have been completely classified and they fall into a short list: three or less reduced points on 2\mathbb{P}^{2}, a rational normal curve, a projective space, a non-singular quadric hypersurface, a cubic scroll in 4\mathbb{P}^{4} and the Veronese surface in 5\mathbb{P}^{5} (4, 12). Recently, Joan Pons-Llopis and Daniele Faenzi showed that most ACM varieties are of wild representation type (20). However, we can also use our classification theorem to construct ll-dimensional families of non-isomorphic indecomposable ACM bundles for arbitrary large ll on some exceptional Grassmannians, which means they are of wild representation type.

In this section, we suppose that XX is one of the following exceptional Grassmannians:

En/P(αk),F4/(P(αl)),E_{n}/P(\alpha_{k})~{},F_{4}/(P(\alpha_{l})),

where (n,k)(6,1),(7,7),(8,1),(8,8)(n,k)\neq(6,1),(7,7),(8,1),(8,8) and l4l\neq 4 (i.e., XX is the variety listed in Table 1).

We need the following lemma which can be found in 24.

Lemma 4.2.

The canonical bundle on X=G/P(αk)X=G/P(\alpha_{k}) is 𝒪X(m)\mathcal{O}_{X}(m). Here we list their relations as follows.

  1. 1.

    For E6E_{6},

    k 1 2 3 4 5 6
    m -12 -11 -9 -7 -9 -12
  2. 2.

    For E7E_{7},

    k 1 2 3 4 5 6 7
    m -17 -14 -11 -8 -10 -13 -18
  3. 3.

    For E8E_{8},

    k 1 2 3 4 5 6 7 8
    m -23 -17 -13 -9 -11 -14 -19 -29
  4. 4.

    For F4F_{4},

    k 1 2 3 4
    m -8 -5 -7 -11
Proposition 4.3.

With the choice of XX, F1F_{1} and F2F_{2} as in Table 1, then we have

  1. 1.

    F1F_{1} and F2F_{2} are simple ACM bundles on X.X.

  2. 2.

    h1(X,F1F2)4h^{1}(X,F_{1}\otimes F_{2})\geq 4 and hi(X,F1F2)=0h^{i}(X,F_{1}\otimes F_{2})=0 for any i1.i\neq 1.

  3. 3.

    hi(X,F1F2)=0h^{i}(X,F_{1}^{\vee}\otimes F_{2}^{\vee})=0 for any ii\in\mathbb{Z}.

Proof.
  1. 1.

    Since F1F_{1} and F2F_{2} are irreducible homogenenous vector bundles, then first statement follows from Corollary 3.13 and Theorem 12.3 in 19.

  2. 2.

    Since F1F_{1} and F2F_{2} are irreducible P(αk)P(\alpha_{k})-modules, then, by Proposition 10.5 in 19, F1F2F_{1}\otimes F_{2} is completely reducible and can be decomposed into the direct sum of irreducible P(αk)P(\alpha_{k})-modules.

    If D(G){k}D(G)-\{k\} is a disconnected Dynkin diagram, then in terms of the choice in Table 1, we find F1=Eu1F_{1}=E_{u_{1}} and F2=Eu2F_{2}=E_{u_{2}} where

    u1=λ1+j<k,j adjacent to kλj,u_{1}=\lambda_{1}+\sum\limits_{j<k,j\text{ adjacent to }k}\lambda_{j},

    and

    u2={2λk+12λk,ifX=F4/P(α2),λk+12λk,otherwise.u_{2}=\left\{\begin{matrix}2\lambda_{k+1}-2\lambda_{k},&\text{if}~{}X=F_{4}/P(\alpha_{2}),\\ \lambda_{k+1}-2\lambda_{k},&otherwise.\end{matrix}\right.

    In this case, F1F_{1} and F2F_{2} comes from different simple parts of the semisimple part. Hence F1F2=Eu1+u2F_{1}\otimes F_{2}=E_{u_{1}+u_{2}}. Because there is only one poistive root αk\alpha_{k} such that (u1+u2+ρ,αk)<0(u_{1}+u_{2}+\rho,\alpha_{k})<0 and (u1+u2+ρ,α)>0(u_{1}+u_{2}+\rho,\alpha)>0 for any positive root ααk\alpha\neq\alpha_{k}, u1+u2+ρu_{1}+u_{2}+\rho is regular of index 1. By the Borel–Bott–Weil Theorem,

    h1(X,Eu1+u2)=dimGsαk(u1+u2+ρ)ρ.h^{1}(X,E_{u_{1}+u_{2}})=\dim G_{s_{\alpha_{k}}(u_{1}+u_{2}+\rho)-\rho}.

    Note that here sαk(u1+u2+ρ)=u1+u2+ρ2(u1+u2+ρ,αk)(αk,αk)αk=λ1+ρ.s_{\alpha_{k}}(u_{1}+u_{2}+\rho)=u_{1}+u_{2}+\rho-\frac{2(u_{1}+u_{2}+\rho,\alpha_{k})}{(\alpha_{k},\alpha_{k})}\alpha_{k}=\lambda_{1}+\rho. Then, by Weyl’s formula (see 19 Remark 10.18), it is not hard to get that h1(X,Eu1+u2)4.h^{1}(X,E_{u_{1}+u_{2}})\geq 4.

    If D(G){k}D(G)-\{k\} is a connected Dynkin diagram, then F1F_{1} and F2F_{2}, as we choose in Table 1, comes from the same simple part. Hence we use Magma which is based on the Klymik’s formula (See 10 Proposition 8.12.3) to get the decomposition of F1F2F_{1}\otimes F_{2} as follows.

    F1F2={E2λ1+2λ2+2λ7E2λ1+2λ3E2λ1+λ2+λ3+λ7,ifX=E7/P(α1),E3λ12λ2+λ3E2λ12λ2+λ4,ifX=En/P(α2),E2λ1+λ3+3λ4E2λ1+λ2+2λ4Eλ1+3λ4Eλ1+λ3+λ4,ifX=F4/P(α1).F_{1}\otimes F_{2}=\left\{\begin{matrix}E_{-2\lambda_{1}+2\lambda_{2}+2\lambda_{7}}\oplus E_{-2\lambda_{1}+2\lambda_{3}}\oplus E_{-2\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{7}},&\text{if}~{}X=E_{7}/P(\alpha_{1}),\\ E_{3\lambda_{1}-2\lambda_{2}+\lambda_{3}}\oplus E_{2\lambda_{1}-2\lambda_{2}+\lambda_{4}},&\text{if}~{}X=E_{n}/P(\alpha_{2}),\\ E_{-2\lambda_{1}+\lambda_{3}+3\lambda_{4}}\oplus E_{-2\lambda_{1}+\lambda_{2}+2\lambda_{4}}\oplus E_{-\lambda_{1}+3\lambda_{4}}\oplus E_{-\lambda_{1}+\lambda_{3}+\lambda_{4}},&\text{if}~{}X=F_{4}/P(\alpha_{1}).\\ \end{matrix}\right.

    Then Hi(X,F1F2)=lHi(X,Eμl).H^{i}(X,F_{1}\otimes F_{2})=\bigoplus_{l}H^{i}(X,E_{\mu_{l}}).

    Now it suffices to show that either μl+ρ\mu_{l}+\rho is regular of index 1 or μl+ρ\mu_{l}+\rho is singular. We show this by find specific positive roots as Table 2.

    XX Weight μl\mu_{l} of the tensor decomposition α\alpha (μl+ρ,α)(\mu_{l}+\rho,\alpha)
    E7/P(α1)E_{7}/P(\alpha_{1}) 2λ1+2λ2+2λ7-2\lambda_{1}+2\lambda_{2}+2\lambda_{7} α1+α3\alpha_{1}+\alpha_{3} 0
    2λ1+2λ3-2\lambda_{1}+2\lambda_{3} α1\alpha_{1} -1
    2λ1+λ2+λ3+λ7-2\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{7} α1\alpha_{1} -1
    En/P(α2)E_{n}/P(\alpha_{2}) 3λ12λ2+λ33\lambda_{1}-2\lambda_{2}+\lambda_{3} α2+α4\alpha_{2}+\alpha_{4} 0
    2λ12λ2+λ42\lambda_{1}-2\lambda_{2}+\lambda_{4} α2\alpha_{2} -1
    F4/P(α1)F_{4}/P(\alpha_{1}) 2λ1+λ3+3λ4-2\lambda_{1}+\lambda_{3}+3\lambda_{4} α1+α2\alpha_{1}+\alpha_{2} 0
    2λ1+λ2+2λ4-2\lambda_{1}+\lambda_{2}+2\lambda_{4} α1\alpha_{1} -1
    λ1+3λ4-\lambda_{1}+3\lambda_{4} α1\alpha_{1} 0
    λ1+λ3+λ4-\lambda_{1}+\lambda_{3}+\lambda_{4} α1\alpha_{1} 0
    Table 2: Killing forms with suitable poisitive roots

    Then second statement follows from the computation and the Borel–Bott–Weil Theorem as before.

  3. 3.

    Serre duality tells us that

    Hi(X,F1F2)HdimXi(X,F1F2𝒪X(KX)).H^{i}(X,F_{1}^{\vee}\otimes F_{2}^{\vee})\simeq H^{\dim X-i}(X,F_{1}\otimes F_{2}\otimes\mathcal{O}_{X}(K_{X}))^{*}.

    Hence it suffices to show that hi(X,F1F2𝒪X(KX))=0h^{i}(X,F_{1}\otimes F_{2}\otimes\mathcal{O}_{X}(K_{X}))=0 for any i.i\in\mathbb{Z}.

    It is easy to see that

    F1F2𝒪X(m)=lEμl+mλk,F_{1}\otimes F_{2}\otimes\mathcal{O}_{X}(m)=\bigoplus_{l}E_{\mu_{l}+m\lambda_{k}},

    where 𝒪X(KX)=𝒪X(m)\mathcal{O}_{X}(K_{X})=\mathcal{O}_{X}(m) follows from Lemma 4.2.

    It suffices to show that μl+mλk+ρ\mu_{l}+m\lambda_{k}+\rho is singular by the Borel–Bott–Weil Theorem. This follows from Table 4.

XX μl+mλk\mu_{l}+m\lambda_{k} α\alpha satisfying (μl+mλk+ρ,α)=0(\mu_{l}+m\lambda_{k}+\rho,\alpha)=0
En/P(α3)E_{n}/P(\alpha_{3}) 2λ1(2n1)λ3+λ42\lambda_{1}-(2n-1)\lambda_{3}+\lambda_{4} i=1nαi+j=4n2αj\sum_{i=1}^{n}\alpha_{i}+\sum_{j=4}^{n-2}\alpha_{j}
En/P(α4)E_{n}/P(\alpha_{4}) λ1+λ2+λ3+λ5(n+3)λ4\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{5}-(n+3)\lambda_{4} i=1n1αi\sum_{i=1}^{n-1}\alpha_{i}
En/P(α5)E_{n}/P(\alpha_{5}) λ1+λ4(n+5)λ5+λ6\lambda_{1}+\lambda_{4}-(n+5)\lambda_{5}+\lambda_{6} i=1nαi+α4\sum_{i=1}^{n}\alpha_{i}+\alpha_{4}
En/P(α6)(n6)E_{n}/P(\alpha_{6})~{}(n\neq 6) λ1+λ5(n+8)λ6+λ7\lambda_{1}+\lambda_{5}-(n+8)\lambda_{6}+\lambda_{7} i=1nαi+α3+2α4+α5\sum_{i=1}^{n}\alpha_{i}+\alpha_{3}+2\alpha_{4}+\alpha_{5}
E8/P(α7)E_{8}/P(\alpha_{7}) λ1+λ621λ7+λ8\lambda_{1}+\lambda_{6}-21\lambda_{7}+\lambda_{8} α1+α2+α3+2α4+α5+α6+α7+α8\alpha_{1}+\alpha_{2}+\alpha_{3}+2\alpha_{4}+\alpha_{5}+\alpha_{6}+\alpha_{7}+\alpha_{8}
F4/P(α2)F_{4}/P(\alpha_{2}) 2λ17λ2+2λ32\lambda_{1}-7\lambda_{2}+2\lambda_{3} α1+α2+2α3\alpha_{1}+\alpha_{2}+2\alpha_{3}
F4/P(α3)F_{4}/P(\alpha_{3}) λ1+λ29λ3+λ4\lambda_{1}+\lambda_{2}-9\lambda_{3}+\lambda_{4} α1+α2+α3\alpha_{1}+\alpha_{2}+\alpha_{3}
E7/P(α1)E_{7}/P(\alpha_{1}) 19λ1+2λ2+2λ7-19\lambda_{1}+2\lambda_{2}+2\lambda_{7} α1+2α2+2α3+3α4+2α5+2α6+α7\alpha_{1}+2\alpha_{2}+2\alpha_{3}+3\alpha_{4}+2\alpha_{5}+2\alpha_{6}+\alpha_{7}
19λ1+2λ3-19\lambda_{1}+2\lambda_{3} α1+2α2+2α3+4α4+3α5+2α6+α7\alpha_{1}+2\alpha_{2}+2\alpha_{3}+4\alpha_{4}+3\alpha_{5}+2\alpha_{6}+\alpha_{7}
19λ1+λ2+λ3+λ7-19\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{7} α1+2α2+2α3+3α4+3α5+2α6+α7\alpha_{1}+2\alpha_{2}+2\alpha_{3}+3\alpha_{4}+3\alpha_{5}+2\alpha_{6}+\alpha_{7}
E6/P(α2)E_{6}/P(\alpha_{2}) 3λ113λ2+λ33\lambda_{1}-13\lambda_{2}+\lambda_{3} α1+α2+2α3+2α4+α5+α6\alpha_{1}+\alpha_{2}+2\alpha_{3}+2\alpha_{4}+\alpha_{5}+\alpha_{6}
2λ113λ2+λ42\lambda_{1}-13\lambda_{2}+\lambda_{4} α1+α2+2α3+2α4+2α5+α6\alpha_{1}+\alpha_{2}+2\alpha_{3}+2\alpha_{4}+2\alpha_{5}+\alpha_{6}
E7/P(α2)E_{7}/P(\alpha_{2}) 3λ116λ2+λ33\lambda_{1}-16\lambda_{2}+\lambda_{3} α1+α2+2α3+2α4+2α5+2α6+α7\alpha_{1}+\alpha_{2}+2\alpha_{3}+2\alpha_{4}+2\alpha_{5}+2\alpha_{6}+\alpha_{7}
2λ116λ2+λ42\lambda_{1}-16\lambda_{2}+\lambda_{4} α1+α2+2α3+2α4+2α5+2α6+α7\alpha_{1}+\alpha_{2}+2\alpha_{3}+2\alpha_{4}+2\alpha_{5}+2\alpha_{6}+\alpha_{7}
E8/P(α2)E_{8}/P(\alpha_{2}) 3λ119λ2+λ33\lambda_{1}-19\lambda_{2}+\lambda_{3} α1+α2+2α3+3α4+2α5+2α6+2α7+α8\alpha_{1}+\alpha_{2}+2\alpha_{3}+3\alpha_{4}+2\alpha_{5}+2\alpha_{6}+2\alpha_{7}+\alpha_{8}
2λ119λ2+λ42\lambda_{1}-19\lambda_{2}+\lambda_{4} α1+α2+2α3+3α4+2α5+2α6+2α7+α8\alpha_{1}+\alpha_{2}+2\alpha_{3}+3\alpha_{4}+2\alpha_{5}+2\alpha_{6}+2\alpha_{7}+\alpha_{8}
F4/P(α1)F_{4}/P(\alpha_{1}) 10λ1+λ3+3λ4-10\lambda_{1}+\lambda_{3}+3\lambda_{4} α1+2α2+3α3+2α4\alpha_{1}+2\alpha_{2}+3\alpha_{3}+2\alpha_{4}
10λ1+λ2+2λ4-10\lambda_{1}+\lambda_{2}+2\lambda_{4} α1+2α2+4α3+2α4\alpha_{1}+2\alpha_{2}+4\alpha_{3}+2\alpha_{4}
9λ1+3λ4-9\lambda_{1}+3\lambda_{4} α1+2α2+4α3+2α4\alpha_{1}+2\alpha_{2}+4\alpha_{3}+2\alpha_{4}
9λ1+λ3+λ4-9\lambda_{1}+\lambda_{3}+\lambda_{4} α1+2α2+4α3+2α4\alpha_{1}+2\alpha_{2}+4\alpha_{3}+2\alpha_{4}
Table 3: Killing form with α\alpha such that μl+mλk+ρ\mu_{l}+m\lambda_{k}+\rho singular

In order to prove the representation type of XX, we need introduce the definition of weakly equivalence.

Definition 4.4.

Given two extensions ,Ext1(𝒢,)\mathcal{E},\mathcal{E}^{\prime}\in Ext^{1}(\mathcal{G},\mathcal{F}) we say they are weakly equivalent denoted by w\sim_{w} if there exist isomorphisms ψ,ϕ,φ\psi,\phi,\varphi such that the following diagram commutes

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\mathcal{F}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψ\scriptstyle{\psi}\textstyle{\mathcal{E}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕ\scriptstyle{\phi}𝒢\textstyle{\mathcal{G}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}φ\scriptstyle{\varphi}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\mathcal{F}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\mathcal{E}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒢\textstyle{\mathcal{G}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0.\textstyle{0.}

The main tool of the proof is Proposition 5.1.3 in 21. Let us review this proposition.

Proposition 4.5.

Let XX be a projective variety over k and 1,,r+1\mathcal{F}_{1},\dots,\mathcal{F}_{r+1}, with r1r\geq 1, be simple coherent sheaves on XX (i.e., Hom(i,i)=k\textup{Hom}(\mathcal{F}_{i},\mathcal{F}_{i})=k) on X such that Hom(i,j)=0(ij).\textup{Hom}(\mathcal{F}_{i},\mathcal{F}_{j})=0~{}(i\neq j). Denote

U=Ext1(r+1,1){0}××Ext1(r+1,r){0}.U=\textup{Ext}^{1}(\mathcal{F}_{r+1},\mathcal{F}_{1})-\{0\}\times\dots\times\textup{Ext}^{1}(\mathcal{F}_{r+1},\mathcal{F}_{r})-\{0\}.

Then a sheaf EE that comes up from an extension of r+1\mathcal{F}_{r+1} by i\bigoplus\mathcal{F}_{i} is simple of and only if []U[\mathcal{E}]\in U and given two extensions [],[]U[\mathcal{E}],[\mathcal{E}^{\prime}]\in U we have that

Hom(,)0[]w[].\textup{Hom}(\mathcal{E},\mathcal{E}^{\prime})\neq 0\Longleftrightarrow[\mathcal{E}]\sim_{w}[\mathcal{E}^{\prime}].

To be more precise, the simple coherent sheaves \mathcal{E} coming up from an extension of r+1\mathcal{F}_{r+1} by i\bigoplus\mathcal{F}_{i}

0i=1rir+100\to\bigoplus^{r}_{i=1}\mathcal{F}_{i}\to\mathcal{E}\to\mathcal{F}_{r+1}\to 0

are parametrized, up to isomorphism, by

(U/w)(Ext1(r+1,1))××(Ext1(r+1,r)).(U/\sim_{w})\simeq\mathbb{P}(\textup{Ext}^{1}(\mathcal{F}_{r+1},\mathcal{F}_{1}))\times\dots\times\mathbb{P}(\textup{Ext}^{1}(\mathcal{F}_{r+1},\mathcal{F}_{r})).

Now we can show the representation type of X.X.

Corollary 4.6.

The exceptional Grassmannian which is one of the following types:

En/P(αk),F4/(P(αl)),E_{n}/P(\alpha_{k})~{},F_{4}/(P(\alpha_{l})),

where (n,k)(6,1),(7,7),(8,1),(8,8)(n,k)\neq(6,1),(7,7),(8,1),(8,8) and l4l\neq 4 is of wild type.

Proof.

We want to use Proposition 4.5 to construct rr-dimensional families of non-isomorphic indecomposable ACM sheaves for any rr. The proof is similar to Theorem 4.6 in 9. By Proposition 4.5 and the fact that the extension of ACM bundles are ACM, it is sufficient to find r+1r+1 simple ACM bundles E1,,Er+1E_{1},\dots,E_{r+1} satisfying Hom(Ei,Ej)=0(ij)\textup{Hom}(E_{i},E_{j})=0~{}(i\neq j) and dimExt1(Er+1,Ei)2(i=1,,r).\dim\textup{Ext}^{1}(E_{r+1},E_{i})\geq 2~{}(i=1,\dots,r).

Let F1F_{1} and F2F_{2} be two vector bundles as in Proposition 4.3. Since dimExt1(F2,F1)=h1(X,F1F2)4\dim\textup{Ext}^{1}(F_{2}^{\vee},F_{1})=h^{1}(X,F_{1}\otimes F_{2})\geq 4 by Proposition 4.3, we have dim(Ext1(F2,F1))3\dim\mathbb{P}(\textup{Ext}^{1}(F_{2}^{\vee},F_{1}))\geq 3. Then we can choose a sequence of nontrivial non-weakly equivalent vector bundles {Ei}\{E_{i}\} in (Ext1(F2,F1)\mathbb{P}(\textup{Ext}^{1}(F_{2}^{\vee},F_{1}) by Proposition 4.5. Note that the non-weakly equivalence implies that Hom(Ei,Ej)=0(ij)\textup{Hom}(E_{i},E_{j})=0~{}(i\neq j). Nontriviality of EiE_{i} implies that EiE_{i} are simple. It remains to show that dimExt1(Ei,Ej)2(ij).\dim\textup{Ext}^{1}(E_{i},E_{j})\geq 2~{}(i\neq j).

To this end, consider the two exact sequences defining EiE_{i} and Ej(ij)E_{j}~{}(i\neq j) respectively,

0F1EiF20,0\to F_{1}\to E_{i}\to F_{2}^{\vee}\to 0, (4.1)
0F1EjF20.0\to F_{1}\to E_{j}\to F_{2}^{\vee}\to 0. (4.2)

Applying Hom(Ei,)\textup{Hom}(E_{i},-) to (4.2), we obtain the long exact sequence (Hom(Ei,Ej)=0(ij)\textup{Hom}(E_{i},E_{j})=0~{}(i\neq j))

0Hom(Ei,F2)Ext1(Ei,F1)𝜏Ext1(Ei,Ej).0\to\textup{Hom}(E_{i},F_{2}^{\vee})\to\textup{Ext}^{1}(E_{i},F_{1})\xrightarrow{\tau}\textup{Ext}^{1}(E_{i},E_{j})\to\cdots.

Then

dimExt1(Ei,Ej)dimIm(τ)=dimExt1(Ei,F1)dimHom(Ei,F2).\dim\textup{Ext}^{1}(E_{i},E_{j})\geq\dim\textup{Im}(\tau)=\dim\textup{Ext}^{1}(E_{i},F_{1})-\dim\textup{Hom}(E_{i},F_{2}^{\vee}). (4.3)

Applying Hom(,F2)\textup{Hom}(-,F_{2}^{\vee}) to (4.1), we get:

0Hom(F2,F2)Hom(Ei,F2)Hom(F1,F2).0\to\textup{Hom}(F_{2}^{\vee},F_{2}^{\vee})\to\textup{Hom}(E_{i},F_{2}^{\vee})\to\textup{Hom}(F_{1},F_{2}^{\vee})\to\cdots.

Since F2F_{2} is simple and dimHom(F1,F2)=h0(X,F1F2))=0\dim\textup{Hom}(F_{1},F_{2}^{\vee})=h^{0}(X,F_{1}^{\vee}\otimes F_{2}^{\vee}))=0 (see Proposition 4.3), we have

dimHom(Ei,F2)=dimHom(F2,F2)=1.\dim\textup{Hom}(E_{i},F_{2}^{\vee})=\dim\textup{Hom}(F_{2}^{\vee},F_{2}^{\vee})=1. (4.4)

On the other hand, applying Hom(,F1)\textup{Hom}(-,F_{1}) to (4.1), we obtain:

0Hom(F2,F1)Hom(Ei,F1)Hom(F1,F1)η1Ext1(F2,F1)Ext1(Ei,F1).0\to\textup{Hom}(F_{2}^{\vee},F_{1})\to\textup{Hom}(E_{i},F_{1})\to\textup{Hom}(F_{1},F_{1})\xrightarrow{\eta_{1}}\textup{Ext}^{1}(F_{2}^{\vee},F_{1})\to\textup{Ext}^{1}(E_{i},F_{1})\to\cdots.

Then

dimExt1(Ei,F1)dimExt1(F2,F1)dimIm(η1)Ext1(F2,F1)dimHom(F1,F1).\dim\textup{Ext}^{1}(E_{i},F_{1})\geq\dim\textup{Ext}^{1}(F_{2}^{\vee},F_{1})-\dim\textup{Im}(\eta_{1})\geq\textup{Ext}^{1}(F_{2}^{\vee},F_{1})-\dim\textup{Hom}(F_{1},F_{1}).

Since F1F_{1} is simple and dimExt1(F2,F1)=h1(X,F1F2)4\dim\textup{Ext}^{1}(F_{2}^{\vee},F_{1})=h^{1}(X,F_{1}\otimes F_{2})\geq 4 (see Proposition 4.3), we have dimExt1(Ei,F1)3\dim\textup{Ext}^{1}(E_{i},F_{1})\geq 3. This together with (4.3)(\ref{eq1}) and (4.4)(\ref{eq2}) give us dimExt1(Ei,Ej)2.\dim\textup{Ext}^{1}(E_{i},E_{j})\geq 2.

Appendix

In fact, with the help of a computer, we can list all irreducible homogenenous ACM bundles on exceptional Grassmannians. The algorithm is similar to the proof of Example 3.12. However, there are so many ACM bundles on En/P(αk)E_{n}/P(\alpha_{k}) (k<nk<n) which are hard to list. For example, E6/P(α4)E_{6}/P(\alpha_{4}) has 830 initialized irreducible homogeneous ACM bundles. Hence we only list the rest cases below.

Let EλE_{\lambda} be an initialized irreducible homogenenous vector bundle with highest weight λ=b1λ1++bnλn\lambda=b_{1}\lambda_{1}+\dots+b_{n}\lambda_{n}. Then EλE_{\lambda} is an ACM bundle if and only if the coefficient bib_{i} is of the the following form.

  1. 1.

    For G2/P(α1)G_{2}/P(\alpha_{1}),

    1
    b1b_{1} 0
    b2b_{2} 0
  2. 2.

    For G2/P(α2)G_{2}/P(\alpha_{2}),

    1 2 3
    b1b_{1} 0 1 2
    b2b_{2} 0 0 0
  3. 3.

    For F4/P(α1)F_{4}/P(\alpha_{1}),

    1 2 3 4 5 6 7 8 9 10
    b1b_{1} 0 0 0 0 0 0 0 0 0 0
    b2b_{2} 0 0 0 0 0 0 0 0 0 0
    b3b_{3} 1 0 1 0 1 0 1 0 1 0
    b4b_{4} 0 1 1 2 2 3 3 4 5 0
  4. 4.

    For F4/P(α2)F_{4}/P(\alpha_{2}),

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
    b1b_{1} 1 2 3 4 5 0 1 2 3 4 5 0 0 0 1 2
    b2b_{2} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    b3b_{3} 0 0 0 0 0 1 1 1 1 1 1 2 3 0 0 0
    b4b_{4} 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
    17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
    b1b_{1} 3 4 5 6 0 1 2 3 4 5 6 7 8 0 0 0
    b2b_{2} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    b3b_{3} 0 0 0 0 1 1 1 1 1 1 1 1 1 2 3 0
    b4b_{4} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
    33 34 35 36 37 38 39 40
    b1b_{1} 0 0 0 0 0 0 0 0
    b2b_{2} 0 0 0 0 0 0 0 0
    b3b_{3} 1 2 3 0 1 2 3 0
    b4b_{4} 2 2 2 3 3 3 3 0
  5. 5.

    For F4/P(α3)F_{4}/P(\alpha_{3}),

    1 2 3 4 5 6 7 8 9 10 11 12
    b1b_{1} 1 0 1 0 0 0 0 0 0 0 0 0
    b2b_{2} 0 1 1 0 0 0 0 0 0 0 0 0
    b3b_{3} 0 0 0 0 0 0 0 0 0 0 0 0
    b4b_{4} 0 0 0 1 2 3 4 5 6 7 8 0
  6. 6.

    For F4/P(α4)F_{4}/P(\alpha_{4}),

    1 2 3
    b1b_{1} 1 2 0
    b2b_{2} 0 0 0
    b3b_{3} 0 0 0
    b4b_{4} 0 0 0
  7. 7.

    For E6/P(α6)E_{6}/P(\alpha_{6}),

    b1b_{1} b2b_{2} b3b_{3} b4b_{4} b5b_{5} b6b_{6}
    1 0 0 0 0 0 0
    2 1 0 0 0 0 0
    3 2 0 0 0 0 0
    4 3 0 0 0 0 0
    5 0 0 0 1 0 0
    6 1 0 1 0 0 0
    7 2 0 1 0 0 0
    8 3 0 1 0 0 0
  8. 8.

    For E7/P(α7)E_{7}/P(\alpha_{7}),

    b1b_{1} b2b_{2} b3b_{3} b4b_{4} b5b_{5} b6b_{6} b7b_{7}
    1 0 1 0 0 0 0 0
    2 0 2 0 0 0 0 0
    3 0 0 0 0 0 0 0
  9. 9.

    For E8/P(α8)E_{8}/P(\alpha_{8}),

    b1b_{1} b2b_{2} b3b_{3} b4b_{4} b5b_{5} b6b_{6} b7b_{7} b8b_{8}
    1 1 0 0 0 0 0 0 0
    2 2 0 0 0 0 0 0 0
    3 3 0 0 0 0 0 0 0
    4 4 0 0 0 0 0 0 0
    5 5 0 0 0 0 0 0 0
    6 0 1 0 0 0 0 0 0
    7 1 1 0 0 0 0 0 0
    8 2 1 0 0 0 0 0 0
    9 3 1 0 0 0 0 0 0
    10 4 1 0 0 0 0 0 0
    11 0 2 0 0 0 0 0 0
    12 0 0 1 0 0 0 0 0
    13 1 0 1 0 0 0 0 0
    14 2 0 1 0 0 0 0 0
    15 3 0 1 0 0 0 0 0
    16 4 0 1 0 0 0 0 0
    17 5 0 1 0 0 0 0 0
    18 0 0 0 0 0 0 0 0

References

  • [1] Edoardo Ballico, Sukmoon Huh, and Joan Pons-Llopis. aCM vector bundles on projective surfaces of nonnegative Kodaira dimension. International Journal of Mathematics, 32(14):2150109, 2021.
  • [2] Nicolas Bourbaki. Elements of mathematics: Lie Groups and Lie algebras. Springer, 2005.
  • [3] Maria Chiara Brambilla and Daniele Faenzi. Moduli spaces of rank-2 ACM bundles on prime Fano threefolds. Michigan Mathematical Journal, 60(1):113–148, 2011.
  • [4] Ragnar-Olaf Buchweitz, Gert-Martin Greuel, and F-O Schreyer. Cohen-Macaulay modules on hypersurface singularities II. Inventiones Mathematicae, 88(1):165–182, 1987.
  • [5] Marta Casanellas and Robin Hartshorne. ACM bundles on cubic surfaces. Journal of the European Mathematical Society, 13(3):709–731, 2011.
  • [6] Gianfranco Casnati, Daniele Faenzi, and Francesco Malaspina. Rank two aCM bundles on the del Pezzo threefold with Picard number 3. Journal of Algebra, 429:413–446, 2015.
  • [7] Gianfranco Casnati and Roberto Notari. Examples of rank two aCM bundles on smooth quartic surfaces in 3\mathbb{P}^{3}. Rendiconti del Circolo Matematico di Palermo. Serie II, 66(1):19–41, 2017.
  • [8] Laura Costa and Rosa Maria Miró-Roig. GL(V){GL(V)}-invariant ulrich bundles on grassmannians. Mathematische Annalen, 361(1):443–457, 2015.
  • [9] Laura Costa and Rosa Maria Miró-Roig. Homogeneous ACM bundles on a Grassmannian. Advances in Mathematics, 289:95–113, 2016.
  • [10] Willem A De Graaf. Lie algebras: theory and algorithms. Elsevier, 2000.
  • [11] Rong Du, Xinyi Fang, and Peng Ren. Homogeneous acm bundles on isotropic grassmannians. arXiv preprint arXiv:2206.09172, 2022.
  • [12] David Eisenbud and Jürgen Herzog. The classification of homogeneous cohen-macaulay rings of finite representation type. 1988.
  • [13] Daniele Faenzi. Rank 2 arithmetically Cohen-Macaulay bundles on a nonsingular cubic surface. Journal of Algebra, 319(1):143–186, 2008.
  • [14] Matej Filip. Rank 2 ACM bundles on complete intersection Calabi-Yau threefolds. Geometriae Dedicata, 173:331–346, 2014.
  • [15] Anton Fonarev. Irreducible ulrich bundles on isotropic grassmannians. Moscow Mathematical Journal, 16(4):711–726, 2016.
  • [16] Geoffrey Horrocks. Vector bundles on the punctured spectrum of a local ring. Proceedings of the London Mathematical Society, 3(4):689–713, 1964.
  • [17] Kyoung-Seog Lee and Kyeong-Dong Park. Equivariant ulrich bundles on exceptional homogeneous varieties. Advances in Geometry, 21(2):187–205, 2021.
  • [18] Juan C Migliore. Introduction to liaison theory and deficiency modules, volume 165. Springer Science & Business Media, 1998.
  • [19] Giorgio Ottaviani. Rational homogeneous varieties. Lecture notes for the summer school in Algebraic Geometry in Cortona, 1995.
  • [20] Joan Pons-Llopis and Daniele Faenzi. The cohen-macaulay representation type of arithmetically cohen-macaulay varieties. Épijournal de Géométrie Algébrique, 5, 2021.
  • [21] Joan Pons-Llopis and Fabio Tonini. Acm bundles on del pezzo surfaces. Le Matematiche, 64(2):177–211, 2009.
  • [22] Annamalai Ramanathan. Schubert varieties are arithmetically cohen-macaulay. Inventiones mathematicae, 80(2):283–294, 1985.
  • [23] G. V. Ravindra and Amit Tripathi. Rank 3 ACM bundles on general hypersurfaces in 5\mathbb{P}^{5}. Advances in Mathematics, 355(3):106780, 2019.
  • [24] Dennis M Snow. Homogeneous vector bundles. In Group Actions and Invariant Theory (Montreal, PQ, 1988), CMS Conf. Proc, volume 10, pages 193–205, 1989.
  • [25] Kenta Watanabe. ACM line bundles on polarized K3 surfaces. Geometriae Dedicata, 203(1):321–335, 2019.
  • [26] Kōta Yoshioka. aCM bundles on a general abelian surface. Archiv der Mathematik, 116(5):529–539, 2021.