This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Holographic realization of constant roll inflation and dark energy: An unified scenario

Shin’ichi Nojiri1,2 , Sergei D. Odintsov3,4 , Tanmoy Paul5 [email protected]@[email protected] 1) Department of Physics, Nagoya University, Nagoya 464-8602, Japan
2) Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602, Japan
3) ICREA, Passeig Luis Companys, 23, 08010 Barcelona, Spain
4) Institute of Space Sciences (ICE, CSIC) C. Can Magrans s/n, 08193 Barcelona, Spain
5) National Institute of Technology Jamshedpur, Department of Physics, Jamshedpur - 831 014, India.
Abstract

In the formalism of generalized holographic dark energy, the infrared cut-off LIRL_{\mathrm{IR}} is generalized to the form, LIR=LIR(Lp,L˙p,L¨p,,Lf,L˙f,L¨f,,a,H,H˙,H¨,)L_{\mathrm{IR}}=L_{\mathrm{IR}}\!\left(L_{\mathrm{p}},\dot{L}_{\mathrm{p}},\ddot{L}_{\mathrm{p}},\cdots,L_{\mathrm{f}},\dot{L}_{\mathrm{f}},\ddot{L}_{\mathrm{f}},\cdots,a,H,\dot{H},\ddot{H},\cdots\!\right), where LpL_{\mathrm{p}} and LfL_{\mathrm{f}} are the particle horizon and the future horizon, respectively (moreover, aa is the scale factor and HH is the Hubble parameter of the universe). Based on such formalism, we establish a holographic realization of constant roll inflation during the early universe, where the corresponding cut-off depends on the Hubble parameter and its derivatives (up to the second order). The viability of this holographic constant roll inflation with respect to the Planck data in turn puts a certain bound on the infrared cut-off at the time of horizon crossing. Such holographic correspondence of constant roll inflation is extended to the scenario where the infrared cut-off is corrected by the ultraviolet one, which may originate due to quantum effects. Besides the mere inflation, we further propose the holographic realization of an unifiedunified cosmic scenario from constant roll inflation (at the early time) to the dark energy era (at the late time) with an intermediate radiation dominated era followed by a Kamionkowski like reheating stage. In such a unified holographic scenario, the inflationary quantities (like the scalar spectral index and the tensor-to-scalar ratio) and the dark energy quantities (like the dark energy EoS parameter and the present Hubble rate) prove to be simultaneously compatible with observable constraints for suitable ranges of the infrared cut-off and the other model parameters. Moreover the curvature perturbations at super-Hubble scale prove to be a constant (with time) during the entire cosmic era, which in turn ensures the stability of the model under consideration.

I Introduction

One of the most important puzzles in today’s cosmology is why the universe undergoes an accelerating phase at the two extreme curvature regimes, i.e., during the early time and during the late time. Several higher curvature gravity theories (like f(R)f(R) theory, the Gauss-Bonnet gravity theory, etc.) have been used to resolve this issue, and well, they earned quite a success in this direction (see Capozziello:2011et ; Nojiri:2010wj ; Nojiri:2017ncd for extensive reviews). In the higher curvature theories, the Einstein-Hilbert action is suitably generalized, which may originate from the diffeomorphism property of the gravitational action or from the string theory. One other arena of string theory is the holographic principle that particularly originates from black hole thermodynamics and string theory and establishes a connection of the infrared cutoff of a quantum field theory, which is related to the vacuum energy, with the largest distance of this theory tHooft:1993dmi ; Susskind:1994vu ; Witten:1998qj ; Bousso:2002ju . Such holographic consideration is currently running through its full pace in the field of cosmology. In particular, holographic dark energy (HDE), which is based on the holographic principle rather than adding some extra term in the Lagrangian of matter, proves to successfully describe the late time acceleration era of the universe Li:2004rb ; Li:2011sd ; Wang:2016och ; Pavon:2005yx ; Nojiri:2005pu ; Zhang:2005yz ; Elizalde:2005ju ; Gong:2004cb ; Malekjani:2012bw ; Khurshudyan:2016gmb ; Gao:2007ep ; Li:2008zq ; Anagnostopoulos:2020ctz ; Li:2009bn ; Feng:2007wn ; Sheykhi:2023woy ; Sheykhi:2022jqq ; Lu:2009iv ; Huang:2004wt ; Mukherjee:2017oom ; Nojiri:2017opc ; Saridakis:2020zol ; Barrow:2020kug ; Adhikary:2021xym ; Srivastava:2020cyk ; Nojiri:2022nmu ; Bhardwaj:2021chg ; Chakraborty:2020jsq . Note that generalized holographic dark energy introduced in Nojiri:2005pu gives all known HDEs as particular cases – this was explicitly proven in Nojiri:2021iko ; Nojiri:2021jxf . Besides dark energy, the holographic principle has also been used to realize inflation during the early phase of the universe, particularly the slow-roll inflation Nojiri:2019kkp (see also the subsequent papers Paul:2019hys ; Bargach:2019pst ; Elizalde:2019jmh ; Oliveros:2019rnq ; Chakraborty:2020tge ). Moreover, the holographic inflation with a suitable cut-off seems to be compatible with the recent Planck data. Actually, during the early universe the holographic energy density, which is inversely proportional to the squared infrared cut-off of the theory, becomes large and hence can drive inflation. Recently we proposed a unified cosmological scenario of slow-roll inflation and the dark energy era from a holographic point of view in a covariant way Nojiri:2020wmh . The holographic realization to describe the early universe is even extended to the bouncing cosmology, in which case, the holographic energy density violates the null energy condition and triggers a non-singular bouncing universe Nojiri:2019yzg ; Brevik:2019mah .

Regarding holographic inflation, as we have mentioned earlier that the holographic principle has been used particularly for slow-roll inflation Nojiri:2019kkp ; Paul:2019hys ; Bargach:2019pst ; Elizalde:2019jmh ; Oliveros:2019rnq ; Chakraborty:2020tge ; Nojiri:2020wmh . In the slow-roll regime, an almost flat scalar potential is generally considered that leads to a negligible acceleration of the scalar field under consideration. In particular, the term ϕ¨\ddot{\phi} (where ϕ\phi is the scalar field and an overdot denotes the derivative with respect to cosmic time) is negligible with respect to the Hubble friction and the restoring force. As a qualitatively different condition, people considered the constant roll inflation where the scalar field rolls at a constant rate, in particular, ϕ¨/(Hϕ˙)=β\ddot{\phi}/\left(H\dot{\phi}\right)=\beta (with β\beta is an arbitrary constant and not necessarily that β1\beta\ll 1) Motohashi:2014ppa . Clearly, in the regime of β1\beta\ll 1, the constant roll inflation reduces to the standard slow-roll one. A lot of successful attempts have been made to propose constant roll inflation during the early universe in the realm of various modified gravity models, which are also consistent with the observable data (for instance, see Kinney:2005vj ; Kumar:2015mfa ; Cook:2015hma ; Nojiri:2017qvx ; Gao:2017uja ; Odintsov:2017qpp ; Odintsov:2017hbk ; Cicciarella:2017nls ; Ito:2017bnn ; Mohammadi:2018oku ; Elizalde:2018now , but not limited to). Due to the considerable successes of constant roll inflation and the holographic principle, it becomes important to examine whether any connection exists between them, and we would like to mention that this still demands a proper investigation.

Coming back to the holographic dark energy (HDE), the corresponding holographic cut-off LIRL_{\mathrm{IR}} is generally taken as particle horizon LpL_{\mathrm{p}} or the future horizon LfL_{\mathrm{f}}. However the fundamental form of the cut-off is still a debatable topic, and along this direction, it deserves mentioning that the most general holographic cut-off was proposed in Nojiri:2005pu where the LIRL_{\mathrm{IR}} is generalized to the form LIR=LIR(Lp,L˙p,L¨p,,Lf,L˙f,L¨f,,a,H,H˙,H¨,)L_{\mathrm{IR}}=L_{\mathrm{IR}}\!\left(L_{\mathrm{p}},\dot{L}_{\mathrm{p}},\ddot{L}_{\mathrm{p}},\cdots,L_{\mathrm{f}},\dot{L}_{\mathrm{f}},\ddot{L}_{\mathrm{f}},\cdots,a,H,\dot{H},\ddot{H},\cdots\!\right) (where aa is the scale factor and HH is the Hubble parameter of the universe), known as generalized HDE. Based on this formalism, the known entropic dark energy models proposed so far are shown to be equivalent to holographic dark energy, where the corresponding cut-off depends on either the particle horizon and its derivatives or the future horizon and its derivatives Nojiri:2021iko ; Nojiri:2021jxf . Along this line, very recently the idea of generalized entropy (that can generalize a wide class of known entropies like the Bekenstein-Hawking entropy, the Tsallis entropy, the Renyi entropy, the Sharma-Mittal entropy, the Kaniadakis entropy, etc.) has been proposed Nojiri:2022aof ; Nojiri:2022dkr ; Odintsov:2022qnn (one may also go through Odintsov:2023qfj for a short review on generalized entropy), which also seems to have a generalized holographic correspondence and can successfully unify viable slow-roll inflation with a viable dark energy era Nojiri:2022dkr . These reveal the rich cosmological implications of the generalized holographic formalism.

Based on the above discussions, such generalized form of LIRL_{\mathrm{IR}} immediately leads to the following questions:

  • Does there exist suitable holographic cut-off(s) which can successfully drive constant roll inflation during the early universe? If so, then what about the observable viability of such “holographic constant roll inflation”?

  • Besides the mere inflation, does there exist any generalized LIRL_{\mathrm{IR}} that produces a unified cosmological scenario from constant roll inflation to the dark energy era of the universe from a holographic point of view?

We will intend to address these questions in the present paper. We should mention that the holographic constant roll inflation has been studied earlier in Mohammadi:2022vru , however, in a different context, the author of Mohammadi:2022vru considered the parameter cc (appears in the holographic energy density ρhol\rho_{\mathrm{hol}} as ρholc2/LIR2\rho_{\mathrm{hol}}\propto c^{2}/L_{\mathrm{IR}}^{2}) to be time-dependent. On contrary, in our present analysis, we will consider the parameter cc to be a constant (more physical) and the infrared cut-off to be of the generalized form to establish the holographic realization of constant roll inflation. Besides inflation, we will also examine the holographic correspondence of the unification from constant roll inflation to the dark energy era. These make the present work essentially different than the earlier one.

The paper is organized as follows: After going through some basics of constant roll inflation in scalar-tensor theory in Sec. II, we will examine the holographic connection of constant roll inflation and the unification of constant roll inflation with the dark energy era in Sec. III and Sec. V, respectively. In Sec. IV between these two sections, we will consider a modified holographic constant roll inflation, where the infrared cut-off is corrected by the ultraviolet one. The paper ends with some conclusions in Sec. VI.

II A brief on constant roll inflation

In this section, we will revisit the main essence of constant roll inflation driven by a scalar field Motohashi:2014ppa , where the action is given by,

S=d4xg[R2κ212gμνμϕνϕV(ϕ)].\displaystyle S=\int d^{4}x\sqrt{-g}\left[\frac{R}{2\kappa^{2}}-\frac{1}{2}g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi-V(\phi)\right]\,. (1)

Here κ2=8πG\kappa^{2}=8\pi G (with GG being Newton’s gravitational constant) and ϕ\phi is the scalar field under consideration with a potential V(ϕ)V(\phi). The flat Friedmann-Lemaître-Robertson-Walker metric fulfills our present purpose, in which case, the Friedmann equations and the scalar field equation are given by,

3κ2H2=\displaystyle\frac{3}{\kappa^{2}}H^{2}= 12ϕ˙2+V(ϕ),\displaystyle\,\frac{1}{2}{\dot{\phi}}^{2}+V(\phi)\,, (2)
2κ2H˙=\displaystyle-\frac{2}{\kappa^{2}}\dot{H}= ϕ˙2,\displaystyle\,\dot{\phi}^{2}\,, (3)
0=\displaystyle 0= ϕ¨+3Hϕ˙+Vϕ,\displaystyle\,\ddot{\phi}+3H\dot{\phi}+\frac{\partial V}{\partial\phi}\,, (4)

respectively, where H=dlnadtH=\frac{d\ln{a}}{dt} is the Hubble parameter and a(t)a(t) denotes the scale factor of the universe. In the case of slow-roll inflation, the acceleration of the scalar field is ignored in the flat regime of V(ϕ)V(\phi), owing to which, the first term in the right-hand side of Eq. (4) is neglected with respect to the other terms. However, the constant roll inflation deals in a different regime where ϕ¨\ddot{\phi} is not negligible, rather ϕ¨/(Hϕ˙)\ddot{\phi}/\left(H\dot{\phi}\right) is a constant. In particular, the constant roll condition is given by,

ϕ¨=βHϕ˙,\displaystyle\ddot{\phi}=\beta H\dot{\phi}\,, (5)

where β\beta is a constant (known as the constant roll parameter). Clearly, for β0\beta\approx 0, the above condition can be thought of as equivalent to the standard slow-roll case.

Differentiating Eq. (3) (with respect to tt) and applying the constant roll condition, one obtains,

H¨=2βHH˙,\displaystyle\ddot{H}=2\beta H\dot{H}\,, (6)

on integrating which, gives a first-order differential equation of the Hubble parameter as,

H˙=β(H2M2).\displaystyle\dot{H}=\beta\left(H^{2}-M^{2}\right)\,. (7)

Here MM is an integration constant considered to take positive values. Moreover Eq. (3) can be rewritten as,

ϕ˙=(2κ2)dHdϕ,\displaystyle\dot{\phi}=-\left(\frac{2}{\kappa^{2}}\right)\frac{dH}{d\phi}\,, (8)

by plugging which into Eq. (2), yields the scalar field potential in terms of HH and dHdϕ\frac{dH}{d\phi}:

V(ϕ)=1κ2[3H22κ2(dHdϕ)2].\displaystyle V(\phi)=\frac{1}{\kappa^{2}}\left[3H^{2}-\frac{2}{\kappa^{2}}\left(\frac{dH}{d\phi}\right)^{2}\right]\,. (9)

The above expression of V(ϕ)V(\phi) will be useful at some stage. Having obtained the equations under constant roll conditions, we now move for the solutions of these field equations, and for this purpose, we will consider two different cases depending on whether β>0\beta>0 or β<0\beta<0, respectively.

For β>0\beta>0, Eq. (7) indicates that the Hubble parameter remains less than MM (as H˙\dot{H} should be negative), and hence the solution of Eq. (7) turns out to be,

H(t)=Mtanh(βMt).\displaystyle H(t)=-M\mathrm{tanh}\left(\beta Mt\right)\,. (10)

By using the solution of H=H(t)H=H(t) into ϕ¨=βϕ˙\ddot{\phi}=\beta\dot{\phi} and integrating twice (with respect to the cosmic time), one obtains the evolution of the scalar field as,

ϕ(t)=2κ2βtan1(eβMt).\displaystyle\phi(t)=\frac{2}{\kappa}\sqrt{\frac{2}{\beta}}~{}\mathrm{tan}^{-1}\left(\mathrm{e}^{\beta Mt}\right)\,. (11)

The above ϕ=ϕ(t)\phi=\phi(t) helps to eliminate tt from Eq. (10) and results to the Hubble parameter in terms of ϕ\phi as,

H(ϕ)=Mcos(β2κϕ),\displaystyle H(\phi)=M\mathrm{cos}\left(\sqrt{\frac{\beta}{2}}~{}\kappa\phi\right)\,, (12)

which along with Eq. (9) immediately leads to the following form of V(ϕ)V(\phi) corresponding to the aforementioned solutions:

V(ϕ)=3M2κ2[(3β6)+(3+β6)cos(2βκϕ)].\displaystyle V(\phi)=\frac{3M^{2}}{\kappa^{2}}\left[\left(\frac{3-\beta}{6}\right)+\left(\frac{3+\beta}{6}\right)\mathrm{cos}\left(\sqrt{2\beta}~{}\kappa\phi\right)\right]\,. (13)

Eq. (10) depicts that the variable ‘MtMt’ ranges within <Mt<0-\infty<Mt<0 to have a positive valued Hubble parameter (the positive Hubble parameter indicates an expanding universe where tt increases from -\infty to zero). Thus during the early universe, i.e., during Mt1Mt\ll-1, the Hubble parameter from Eq. (10) behaves as H(t)MH(t)\approx M, which results in a de-Sitter inflationary stage. Furthermore, the first slow-roll parameter is calculated as,

ϵ1=H˙H2=βsinh2(βMt).\displaystyle\epsilon_{\mathrm{1}}=-\frac{\dot{H}}{H^{2}}=\frac{\beta}{\mathrm{sinh}^{2}\left(\beta Mt\right)}\,. (14)

This demonstrates that ϵ1\epsilon_{\mathrm{1}} is an increasing function with respect to the cosmic time, and therefore, ϵ1\epsilon_{\mathrm{1}} must reach unity at some point in time depending on the value of β\beta. For example, if one takes β=0.02\beta=0.02, then ϵ1\epsilon_{\mathrm{1}} reaches to unity at Mt=7Mt=-7. The instance of ϵ1=1\epsilon_{\mathrm{1}}=1 indicates the end of inflation. Consequently, the beginning of inflation (when the CMB scale 0.05Mpc1\sim 0.05\,\mathrm{Mpc}^{-1} crosses the horizon) may be considered as 55 or 60 e-folds back from the instance of ϵ1=1\epsilon_{\mathrm{1}}=1 Motohashi:2014ppa . Thus as a whole, the model of action (1) with β>0\beta>0 can drive a constant roll inflationary scenario, which has an exit after 55 or 60 e-fold numbers. Here it deserves mentioning that the other case, i.e., β<0\beta<0, leads to a power law inflation during the early universe, however, inflation is eternal and has no exit mechanism. Keeping this in mind, we will consider the β>0\beta>0 case to establish the holographic equivalence of constant roll inflation.

III Holographic constant roll inflation

In the holographic principle, the holographic energy density is proportional to the inverse squared infrared cutoff LIRL_{\mathrm{IR}}, which could be related to the causality given by the cosmological horizon,

ρhol=3c2κ2LIR2.\rho_{\mathrm{hol}}=\frac{3c^{2}}{\kappa^{2}{L_{\mathrm{IR}}}^{2}}\,. (15)

Here cc is a free parameter. Identifying ρhol\rho_{\mathrm{hol}} as the sole energy density, the Friedmann equation gives,

H=cLIR.\displaystyle H=\frac{c}{L_{\mathrm{IR}}}\,. (16)

Note that H1{H}^{-1} corresponds to the radius of the cosmological horizon, which may correspond to the infrared cutoff scale, as expected. As a candidate of the infrared cutoff LIRL_{\mathrm{IR}}, we may consider the particle horizon LpL_{\mathrm{p}} or the future event horizon LfL_{\mathrm{f}}, which are given as follows,

Lpa0tdta,Lfatdta.L_{\mathrm{p}}\equiv a\int_{0}^{t}\frac{dt}{a}\ ,\quad L_{\mathrm{f}}\equiv a\int_{t}^{\infty}\frac{dt}{a}\,. (17)

Differentiating both sides of the above expressions lead to the Hubble parameter in terms of LpL_{\mathrm{p}}, L˙p\dot{L}_{\mathrm{p}} or in terms of LfL_{\mathrm{f}}, L˙f\dot{L}_{\mathrm{f}} as,

H(Lp,L˙p)=L˙pLp1Lp,H(Lf,L˙f)=L˙fLf+1Lf.H\left(L_{\mathrm{p}},\dot{L}_{\mathrm{p}}\right)=\frac{\dot{L}_{\mathrm{p}}}{L_{\mathrm{p}}}-\frac{1}{L_{\mathrm{p}}}\,,\quad H(L_{\mathrm{f}},\dot{L}_{\mathrm{f}})=\frac{\dot{L}_{\mathrm{f}}}{L_{\mathrm{f}}}+\frac{1}{L_{\mathrm{f}}}\,. (18)

In Nojiri:2005pu , a general form of the cutoff was proposed, which could be a function of both LpL_{\mathrm{p}} and LfL_{\mathrm{f}} and their derivatives, or additionally of the Hubble horizon and its derivatives as well as of the scale factor, namely,

LIR=LIR(Lp,L˙p,L¨p,,Lf,L˙f,L¨f,,a,H,H˙,H¨,).\displaystyle L_{\mathrm{IR}}=L_{\mathrm{IR}}\left(L_{\mathrm{p}},\dot{L}_{\mathrm{p}},\ddot{L}_{\mathrm{p}},\cdots,L_{\mathrm{f}},\dot{L}_{\mathrm{f}},\ddot{L}_{\mathrm{f}},\cdots,a,H,\dot{H},\ddot{H},\cdots\right)\,. (19)

Based on this generalized formalism, we now establish that the constant roll inflation (discussed in the previous section) has an equivalent holographic correspondence with a suitable cut-off. In particular, by comparing Eq. (6) with Eq. (16), we may identify,

LIR=LIR(1)2cβH˙H¨,\displaystyle L_{\mathrm{IR}}=L^{(1)}_{\mathrm{IR}}\equiv\frac{2c\beta\dot{H}}{\ddot{H}}\,, (20)

or the comparison of Eq. (7) with Eq. (16) yields,

LIR=LIR(2)cβHH˙+βM2.\displaystyle L_{\mathrm{IR}}=L^{(2)}_{\mathrm{IR}}\equiv\frac{c\beta H}{\dot{H}+\beta M^{2}}\,. (21)

Moreover it may be noted that Eq. (7) can be written as,

ddt(Haβ)=βM2aβ,\displaystyle\frac{d}{dt}\left(Ha^{-\beta}\right)=-\beta M^{2}a^{-\beta}\,, (22)

on integrating which (with respect to the cosmic time), we obtain

H=βM2aβt𝑑taβ.\displaystyle H=-\beta M^{2}a^{\beta}\int^{t}dta^{-\beta}\,. (23)

The above equation provides the general infrared cut-off, which resembles with the particle horizon LpL_{\mathrm{p}} or the future event horizon LfL_{\mathrm{f}} as,

LIR(3)cβM2aβ0t𝑑taβorLIR(4)cβM2aβt𝑑taβ,\displaystyle L^{(3)}_{\mathrm{IR}}\equiv-\frac{c}{\beta M^{2}a^{\beta}\int_{0}^{t}dta^{-\beta}}\quad\mbox{or}\quad L^{(4)}_{\mathrm{IR}}\equiv\frac{c}{\beta M^{2}a^{\beta}\int_{t}^{\infty}dta^{-\beta}}\,, (24)

respectively. Therefore in the present case, the generalized holographic cut-off can be expressed by either of the following ways:

LIR{LIR(1)=2cβH˙/H¨orLIR(2)=cβH/(H˙+βM2)orLIR(3)=c/(βM2aβ0t𝑑taβ)orLIR(4)=c/(βM2aβt𝑑taβ).\displaystyle L_{\mathrm{IR}}\equiv\begin{cases}L^{(1)}_{\mathrm{IR}}=2c\beta\dot{H}/\ddot{H}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\mathrm{or}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}L^{(2)}_{\mathrm{IR}}=c\beta H/\left(\dot{H}+\beta M^{2}\right)~{}~{}\mathrm{or}&\\ L^{(3)}_{\mathrm{IR}}=-c/\left(\beta M^{2}a^{\beta}\int_{0}^{t}dta^{-\beta}\right)~{}~{}~{}~{}~{}~{}~{}~{}\mathrm{or}~{}~{}~{}~{}~{}~{}~{}~{}L^{(4)}_{\mathrm{IR}}=c/\left(\beta M^{2}a^{\beta}\int_{t}^{\infty}dta^{-\beta}\right)~{}~{}.\end{cases} (25)

Furthermore, due to Eq. (18), the above forms of LIR(1)L^{(1)}_{\mathrm{IR}} and LIR(2)L^{(2)}_{\mathrm{IR}} can also be expressed either in terms of particle horizon and its derivatives or in terms of the future horizon and its derivatives (see the Appendix, Sec. Appendix: Holographic cut-offs in terms of either particle horizon or future horizon).

The holographic Friedmann equation H=cLIRH=\frac{c}{L_{\mathrm{IR}}} with the cut-off given by LIR(1)L^{(1)}_{\mathrm{IR}} reproduces the cosmological field Eq. (6), or similarly, the cut-off LIR(2)L^{(2)}_{\mathrm{IR}}, LIR(3)L^{(3)}_{\mathrm{IR}}, or LIR(4)L^{(4)}_{\mathrm{IR}} results to Eq. (7). Here we need to recall that Eq. (6) or Eq. (7) can lead to constant roll inflation as discussed in Sec. II. Thus we may argue that the infrared cut-offs of the form LIR(1)L^{(1)}_{\mathrm{IR}} as well as of the form LIR(2)L^{(2)}_{\mathrm{IR}}, LIR(3)L^{(3)}_{\mathrm{IR}}, or LIR(4)L^{(4)}_{\mathrm{IR}} are equally able to drive constant roll inflation, which we may call “holographic constant roll inflation”. This indeed establishes the holographic equivalence of the constant roll inflation in the present context. We may also write the general holographic cut-off corresponds to the constant roll inflation as follows:

1LIR=c(1)LIR(1)+c(2)LIR(2)+c(3)LIR(3)+c(4)LIR(4),\displaystyle\frac{1}{L_{\mathrm{IR}}}=\frac{c^{(1)}}{L^{(1)}_{\mathrm{IR}}}+\frac{c^{(2)}}{L^{(2)}_{\mathrm{IR}}}+\frac{c^{(3)}}{L^{(3)}_{\mathrm{IR}}}+\frac{c^{(4)}}{L^{(4)}_{\mathrm{IR}}}\,, (26)

where the coefficients satisfy c(1)+c(2)+c(3)+c(4)=1c^{(1)}+c^{(2)}+c^{(3)}+c^{(4)}=1. The effective equation of state (EoS) parameter corresponding to the above LIRL_{\mathrm{IR}} is given by,

ωhol=1+(23c)dLIRdt.\displaystyle\omega_{\mathrm{hol}}=-1+\left(\frac{2}{3c}\right)\frac{dL_{\mathrm{IR}}}{dt}\,. (27)

Having the holographic model of Eq. (26) in hand, we now determine the evolution of the LIRL_{\mathrm{IR}}. With the explicit forms of LIR(i)L^{(i)}_{\mathrm{IR}} (i=1,2,3,4i=1,2,3,4), Eq. (26) turns out to be,

1LIR=c(1)(H¨2cβH˙)+c(2)(H˙+βM2cβH)c(3)(βM2aβ0taβ𝑑tc)+c(4)(βM2aβtaβ𝑑tc).\displaystyle\frac{1}{L_{\mathrm{IR}}}=c^{(1)}\left(\frac{\ddot{H}}{2c\beta\dot{H}}\right)+c^{(2)}\left(\frac{\dot{H}+\beta M^{2}}{c\beta H}\right)-c^{(3)}\left(\frac{\beta M^{2}a^{\beta}\int_{0}^{t}a^{-\beta}dt}{c}\right)+c^{(4)}\left(\frac{\beta M^{2}a^{\beta}\int_{t}^{\infty}a^{-\beta}dt}{c}\right)\,. (28)

Using the holographic Friedmann equation H=cLIRH=\frac{c}{L_{\mathrm{IR}}} along with the aforementioned constraint relation c(1)+c(2)+c(3)+c(4)=1c^{(1)}+c^{(2)}+c^{(3)}+c^{(4)}=1, the above equation yields the following solution of the LIRL_{\mathrm{IR}}:

cLIR=Mtanh(βMt).\displaystyle\frac{c}{L_{\mathrm{IR}}}=-M\tanh\left(\beta Mt\right)\,. (29)

Here it deserves mentioning that the above solution of LIRL_{\mathrm{IR}} satisfies

L¨IR2(L˙IR)2/LIR2c(L˙IR/LIR)=β(constant),\displaystyle\frac{\ddot{L}_{\mathrm{IR}}-2\left(\dot{L}_{\mathrm{IR}}\right)^{2}/L_{\mathrm{IR}}}{2c\left(\dot{L}_{\mathrm{IR}}/L_{\mathrm{IR}}\right)}=\beta~{}(\mbox{constant})\,, (30)

which is the constant roll condition in a holographic scenario. Therefore the solution of the holographic cut-off obtained in Eq. (29) indeed points to constant roll inflation. This solution of LIRL_{\mathrm{IR}}, in turn, helps to calculate the observable quantities, by which, we can investigate the viability of the holographic inflationary scenario. The slow-roll quantities in holographic inflation are given by,

ϵ1=\displaystyle\epsilon_{\mathrm{1}}= H˙H2=1cdLIRdt,\displaystyle\,-\frac{\dot{H}}{H^{2}}=\frac{1}{c}\frac{dL_{\mathrm{IR}}}{dt}\,,
ϵn+1=\displaystyle\epsilon_{\mathrm{n+1}}= ϵ˙nHϵn=ϵ˙nϵn(c/LIR),\displaystyle\,\frac{\dot{\epsilon}_{\mathrm{n}}}{H\epsilon_{\mathrm{n}}}=\frac{\dot{\epsilon}_{\mathrm{n}}}{\epsilon_{\mathrm{n}}\left(c/L_{\mathrm{IR}}\right)}\,, (31)

with n1n\geq 1. Consequently the scalar spectral index (nsn_{s}) and the tensor-to-scalar ratio (rr) come as,

ns=[12ϵ12ϵ2]|h.c.andr=16ϵ1|h.c.,\displaystyle n_{s}=\left.\left[1-2\epsilon_{\mathrm{1}}-2\epsilon_{\mathrm{2}}\right]\right|_{\mathrm{h.c.}}\quad\mbox{and}\quad\left.r=16\epsilon_{\mathrm{1}}\right|_{\mathrm{h.c.}}\,, (32)

respectively, where the suffix ‘h.c.\mathrm{h.c.}’ symbolizes the horizon crossing instant of the CMB scale mode in which we are interested. Here we would like to mention that the above expressions of nsn_{s} and rr are valid for slow-roll inflation. However, we will show that the present constant roll inflationary model obtains compatibility with the Planck data for β1\beta\ll 1; thus we safely work with Eq. (32) even in the present context. The LIRL_{\mathrm{IR}} immediately leads to ϵ1\epsilon_{\mathrm{1}} and ϵ2\epsilon_{\mathrm{2}} as follows:

ϵ1=\displaystyle\epsilon_{\mathrm{1}}= βsinh2(βMt)=β(M2LIR2c21),\displaystyle\,\frac{\beta}{\mathrm{sinh}^{2}\left(\beta Mt\right)}=\beta\left(\frac{M^{2}{L_{\mathrm{IR}}}^{2}}{c^{2}}-1\right)\,,
ϵ2=\displaystyle\epsilon_{\mathrm{2}}= 2βtanh2(βMt)=2βM2LIR2c2.\displaystyle\,\frac{2\beta}{\mathrm{tanh}^{2}\left(\beta Mt\right)}=\frac{2\beta M^{2}{L_{\mathrm{IR}}}^{2}}{c^{2}}\,. (33)

Plugging the above expressions of the slow-roll parameters into Eq. (32) and after a little bit of simplification, we obtain the final forms of nsn_{s} and rr as:

ns=\displaystyle n_{s}= 12β(3M2LIR2c21)|h.c.,\displaystyle\,\left.1-2\beta\left(\frac{3M^{2}{L_{\mathrm{IR}}}^{2}}{c^{2}}-1\right)\right|_{\mathrm{h.c.}}\,,
r=\displaystyle r= 16β(M2LIR2c21)|h.c..\displaystyle\,\left.16\beta\left(\frac{M^{2}{L_{\mathrm{IR}}}^{2}}{c^{2}}-1\right)\right|_{\mathrm{h.c.}}\,. (34)

It should be noticed that nsn_{s} and rr depend on the dimensionless parameters MLIR(th)c\frac{ML_{\mathrm{IR}}\left(t_{\mathrm{h}}\right)}{c} and β\beta (where LIR(th)L_{\mathrm{IR}}\left(t_{\mathrm{h}}\right) is the infrared cut-off at the time of horizon crossing of the CMB scale mode with tht_{\mathrm{h}} being the horizon crossing instance). We can now directly confront the spectral index and the tensor-to-scalar ratio with the Planck 2018 results Planck:2018jri , which constrain the observational indices to be:

ns=0.9649±0.0042andr<0.064.\displaystyle n_{s}=0.9649\pm 0.0042\quad\mbox{and}\quad r<0.064\,. (35)
Refer to caption
Figure 1: Parametric plot of nsn_{s} vs. rr for the following parameter ranges: 32<MLIR(th)c<2\sqrt{\frac{3}{2}}<\frac{ML_{\mathrm{IR}}(t_{\mathrm{h}})}{c}<\sqrt{2} and 0.0038<β<0.0040.0038<\beta<0.004.

For the holographic model at hand, the nsn_{s} and rr prove to be simultaneously compatible with the Planck constraints for the following narrow ranges of the parameters:

32<MLIR(th)c<2and0.0038<β<0.004.\displaystyle\sqrt{\frac{3}{2}}<\frac{ML_{\mathrm{IR}}\left(t_{\mathrm{h}}\right)}{c}<\sqrt{2}\quad\mbox{and}\quad~{}0.0038<\beta<0.004\,. (36)

This is depicted in FIG. 1. Thus as a whole, the holographic model of Eq. (28) triggers constant roll inflation which is indeed compatible with the Planck data provided the holographic cut-off at horizon crossing (i.e., LIR(th)L_{\mathrm{IR}}\left(t_{\mathrm{h}}\right)) and the constant roll parameter β\beta lie within the above-mentioned range.

IV More on holographic constant roll inflation

In this section, following Nojiri:2019kkp , we will consider an ultraviolet correction over the infrared one, and thus the holographic cut-off takes the following form,

LLIR2+1ΛUV2.\displaystyle L\equiv\sqrt{{L_{\mathrm{IR}}}^{2}+\frac{1}{{\Lambda_{\mathrm{UV}}}^{2}}}\,. (37)

During the inflationary era, i.e., at high energy scales, the quantum gravity effects may become important, and hence the infrared cut-off acquires a correction by the ultraviolet one. In such modified holographic scenario, the comparison of H=cLH=\frac{c}{L} with Eq. (6) or with Eq. (7) yields the infrared cut-off(s) corresponding to the constant roll inflation as follows,

LIR=LIR(1)(2cβH˙H¨)21ΛUV2,L_{\mathrm{IR}}=L^{(1)}_{\mathrm{IR}}\equiv\sqrt{\left(\frac{2c\beta\dot{H}}{\ddot{H}}\right)^{2}-\frac{1}{{\Lambda_{\mathrm{UV}}}^{2}}}\,, (38)

or,

LIR=LIR(2)(cβHH˙+βM2)21ΛUV2,\displaystyle L_{\mathrm{IR}}=L^{(2)}_{\mathrm{IR}}\equiv\sqrt{\left(\frac{c\beta H}{\dot{H}+\beta M^{2}}\right)^{2}-\frac{1}{{\Lambda_{\mathrm{UV}}}^{2}}}\,, (39)

respectively. Due to the holographic Friedmann equation H=cLH=\frac{c}{L}, the cut-off LIR(1)L^{(1)}_{\mathrm{IR}} clearly reproduces Eq. (6), or similarly, the LIR(2)L^{(2)}_{\mathrm{IR}} reproduces Eq. (7). Owing to this, we may argue that LIR(1)L^{(1)}_{\mathrm{IR}} or LIR(2)L^{(2)}_{\mathrm{IR}}, in the presence of ultraviolet cut-off, can drive constant roll inflation. We can also determine the evolution of such infrared cut-off(s), and is given by,

LIR(1)=LIR(2)=c2M2tanh2(βMt)1ΛUV2.\displaystyle L^{(1)}_{\mathrm{IR}}=L^{(2)}_{\mathrm{IR}}=\sqrt{\frac{c^{2}}{M^{2}\mathrm{tanh}^{2}\left(\beta Mt\right)}-\frac{1}{{\Lambda_{\mathrm{UV}}}^{2}}}\,. (40)

Consequently, the scalar spectral index and the tensor-to-scalar ratio in the present context turn out to be,

ns=\displaystyle n_{s}= 12β{3M2c2(LIR2+1ΛUV2)1}|h.c.,\displaystyle\,\left.1-2\beta\left\{\frac{3M^{2}}{c^{2}}\left({L_{\mathrm{IR}}}^{2}+\frac{1}{{\Lambda_{\mathrm{UV}}}^{2}}\right)-1\right\}\right|_{\mathrm{h.c.}}\,,
r=\displaystyle r= 16β{M2c2(LIR2+1ΛUV2)1}|h.c..\displaystyle\,\left.16\beta\left\{\frac{M^{2}}{c^{2}}\left({L_{\mathrm{IR}}}^{2}+\frac{1}{{\Lambda_{\mathrm{UV}}}^{2}}\right)-1\right\}\right|_{\mathrm{h.c.}}\,. (41)

The above theoretical expectations of nsn_{s} and rr in such a modified holographic scenario turn out to be simultaneously consistent with the Planck 2018 constraints (see Eq. (35)) provided LIR(th)L_{\mathrm{IR}}\left(t_{\mathrm{h}}\right) (i.e., the infrared cut-off at the instant of horizon crossing) and β\beta lie within the following ranges:

3c22M21ΛUV2<LIR(th)<2c2M21ΛUV2and0.0038<β<0.004.\displaystyle\sqrt{\frac{3c^{2}}{2M^{2}}-\frac{1}{{\Lambda_{\mathrm{UV}}}^{2}}}<L_{\mathrm{IR}}\left(t_{\mathrm{h}}\right)<\sqrt{\frac{2c^{2}}{M^{2}}-\frac{1}{{\Lambda_{\mathrm{UV}}}^{2}}}\quad\mbox{and}\quad 0.0038<\beta<0.004\,. (42)

It is clear by comparing Eq. (42) with Eq. (36) that in presence of the ultraviolet correction, the constraint on LIR(th)L_{\mathrm{IR}}\left(t_{\mathrm{h}}\right) becomes different compared to the previous case where there is no ultraviolet correction, and moreover, for ΛUV\Lambda_{\mathrm{UV}}\rightarrow\infty, the above constraint on LIR(th)L_{\mathrm{IR}}\left(t_{\mathrm{h}}\right) resembles with that of in Eq. (36). Therefore in the present modified holographic scenario, the appearance of ΛUV\Lambda_{\mathrm{UV}} may give some extra freedom to some extent (one may go through Nojiri:2019kkp ).

V Unification from constant roll inflation to dark energy: Holographic view

The constant roll inflation in (10) well describes the inflation in the early epoch corresponding to t<0t<0, however, the Hubble rate HH during t>0t>0 becomes negative and therefore it does not describe the expansion of the universe. In the spirit of this, we may consider the following simple modification of the Hubble parameter:

H(t)=Mtanh(γMt)+M+h0,\displaystyle H(t)=-M\tanh\left(\gamma Mt\right)+M+h_{0}\,, (43)

for which, the associated scale factor of the universe is given by: acosh1γ(γMt)e(M+h0)ta\propto\cosh^{-\frac{1}{\gamma}}\left(\gamma Mt\right)\mathrm{e}^{\left(M+h_{0}\right)t} where h0h_{0}, MM, and γ\gamma are positive parameters (it may be mentioned that both h0h_{0} and MM have mass dimension [+1][+1] while γ\gamma is dimensionless). Here the constant roll parameter is replaced by γ\gamma (in place of β\beta) to differentiate the present case from the previous ones. Eq. (43) clearly depicts that for tt\rightarrow-\infty, HH becomes a constant, in particular, H2M+h0H\rightarrow 2M+h_{0}, which results in a de-Sitter inflationary stage. On the other hand, when Hh0H\rightarrow h_{0} becomes a constant again at t+t\rightarrow+\infty, which may correspond to the dark energy. Moreover the Hubble parameter in Eq. (43) satisfies,

H¨2HH˙=γMtanh(γMt)Mtanh(γMt)Mh0.\displaystyle\frac{\ddot{H}}{2H\dot{H}}=\frac{\gamma M\mathrm{tanh}\left(\gamma Mt\right)}{M\mathrm{tanh}\left(\gamma Mt\right)-M-h_{0}}\,. (44)

Thus the quantity H¨2HH˙\frac{\ddot{H}}{2H\dot{H}} tends to a positive constant value at the large negative time, which in turn ensures that the inflation is a constant roll in nature. Therefore by the modification in (43), we can describe both the constant roll inflation in the early universe and dark energy in the late universe in a unified manner. Because Eq. (43) is a shift by a constant M+h0M+h_{0} from (10), Eq. (6) and Eq. (7) are modified as follows,

H¨2γ(HMh0)H˙=\displaystyle\ddot{H}-2\gamma\left(H-M-h_{0}\right)\dot{H}=  0,\displaystyle\,0\,,
H˙γ(HMh0)2=\displaystyle\dot{H}-\gamma\left(H-M-h_{0}\right)^{2}= γM2.\displaystyle\,-\gamma M^{2}\,. (45)

Such a unified picture of constant roll inflation and dark energy may be described by some suitable higher curvature like f(R)f(R) gravity theory, for instance, see Odintsov:2017hbk where f(R)f(R) initially takes an R2R^{2} corrected logarithmic form which drives constant roll inflation during the early phase, while at a late time, the f(R)f(R) is considered to be more-or-less of exponential form that ensures a viable dark energy era of the universe. In addition the standard cosmological evolution in-between the inflation and the dark energy era, and also the transition from the standard cosmology to the late time acceleration, have been successfully demonstrated in Odintsov:2017hbk . Or even a scalar-tensor theory may be also suitable to trigger H(t)H(t) of Eq. (43) – where the scalar field initially rolls at a constant rate to give the constant roll inflation and at a late time, the scalar field energy density acts like a bare cosmological constant which in turn leads to a late dark energy era. However, in the present context, our main concern is to establish the holographic equivalence of such a unified cosmological description, rather than finding suitably modified gravity theory(ies) corresponding to this evolution. For this purpose, let us individually compare the first and second equations of Eq. (V) with Eq. (16), which immediately identify,

LIR=\displaystyle L_{\mathrm{IR}}= L~IR(1)2cγH¨H˙+2γ(M+h0),\displaystyle\,{\tilde{L}}^{(1)}_{\mathrm{IR}}\equiv\frac{2c\gamma}{\frac{\ddot{H}}{\dot{H}}+2\gamma\left(M+h_{0}\right)}\,,
LIR=\displaystyle L_{\mathrm{IR}}= L~IR(2)cγH˙+γM2HMh0+γ(M+h0),\displaystyle\,{\tilde{L}}^{(2)}_{\mathrm{IR}}\equiv\frac{c\gamma}{\frac{\dot{H}+\gamma M^{2}}{H-M-h_{0}}+\gamma\left(M+h_{0}\right)}\,, (46)

respectively. On the other hand, we may note that the second equation in Eq. (V) can be rewritten as

1H=γaβt𝑑t(2(M+h0)H2h0M+h02H2+1)aβ,\displaystyle\frac{1}{H}=\gamma~{}a^{-\beta}\int^{t}dt\left(\frac{2\left(M+h_{0}\right)}{H}-\frac{2h_{0}M+h_{0}^{2}}{H^{2}}+1\right)a^{\beta}\,, (47)

on comparing which with Eq. (16) identifies the following cut-offs in more-or-less similar fashion of the particle horizon LpL_{\mathrm{p}} or the future event horizon LfL_{\mathrm{f}}:

L~IR(3)\displaystyle{\tilde{L}}^{(3)}_{\mathrm{IR}}\equiv γcaβ0t𝑑t(2(M+h0)H2h0M+h02H2+1)aβ,\displaystyle\,\gamma ca^{-\beta}\int_{0}^{t}dt\left(\frac{2\left(M+h_{0}\right)}{H}-\frac{2h_{0}M+h_{0}^{2}}{H^{2}}+1\right)a^{\beta}\,,
L~IR(4)\displaystyle{\tilde{L}}^{(4)}_{\mathrm{IR}}\equiv γcaβt𝑑t(2(M+h0)H2h0M+h02H2+1)aβ,\displaystyle\,-\gamma ca^{-\beta}\int_{t}^{\infty}dt\left(\frac{2\left(M+h_{0}\right)}{H}-\frac{2h_{0}M+h_{0}^{2}}{H^{2}}+1\right)a^{\beta}\,, (48)

respectively. Therefore the generalized holographic cut-off, that results to an unification of constant roll inflation and dark energy era, can be expressed by either of the following ways:

L~IR{L~IR(1)=giveninthefirstexpressionofEq.(V),orL~IR(2)=giveninthesecondexpressionofEq.(V),orL~IR(3)=giveninthefirstexpressionofEq.(V),orL~IR(4)=giveninthesecondexpressionofEq.(V).\displaystyle\tilde{L}_{\mathrm{IR}}\equiv\begin{cases}\tilde{L}^{(1)}_{\mathrm{IR}}=\mathrm{given~{}in~{}the~{}first~{}expression~{}of~{}Eq.(\ref{hcr22})}~{},~{}~{}\mathrm{or}&\\ \tilde{L}^{(2)}_{\mathrm{IR}}=\mathrm{given~{}in~{}the~{}second~{}expression~{}of~{}Eq.(\ref{hcr22})}~{},~{}~{}\mathrm{or}&\\ \tilde{L}^{(3)}_{\mathrm{IR}}=\mathrm{given~{}in~{}the~{}first~{}expression~{}of~{}Eq.(\ref{hcr26})}~{},~{}~{}\mathrm{or}&\\ \tilde{L}^{(4)}_{\mathrm{IR}}=\mathrm{given~{}in~{}the~{}second~{}expression~{}of~{}Eq.(\ref{hcr26})}~{}~{}.\end{cases} (49)

The holographic Friedmann equation H=cLIRH=\frac{c}{L_{\mathrm{IR}}} with cut-off identified as L~IR(1){\tilde{L}}^{(1)}_{\mathrm{IR}} reproduces the first equation of Eq. (V), or similarly, the holographic cut-offs like L~IR(2){\tilde{L}}^{(2)}_{\mathrm{IR}}, L~IR(3){\tilde{L}}^{(3)}_{\mathrm{IR}}, or L~IR(4){\tilde{L}}^{(4)}_{\mathrm{IR}} reproduce the second equation of Eq. (V). This reveals that L~IR(1){\tilde{L}}^{(1)}_{\mathrm{IR}}, L~IR(2){\tilde{L}}^{(2)}_{\mathrm{IR}}, L~IR(3){\tilde{L}}^{(3)}_{\mathrm{IR}}, or L~IR(4){\tilde{L}}^{(4)}_{\mathrm{IR}} is equally capable to demonstrate the unified evolution of constant roll inflation and the dark energy era of the universe. We may also express the general holographic cut-off corresponding to the such unified description as follows:

1L~IR=c(1)L~IR(1)+c(2)L~IR(2)+c(3)L~IR(3)+c(4)L~IR(4),\displaystyle\frac{1}{{\tilde{L}}_{\mathrm{IR}}}=\frac{c^{(1)}}{{\tilde{L}}^{(1)}_{\mathrm{IR}}}+\frac{c^{(2)}}{{\tilde{L}}^{(2)}_{\mathrm{IR}}}+\frac{c^{(3)}}{{\tilde{L}}^{(3)}_{\mathrm{IR}}}+\frac{c^{(4)}}{{\tilde{L}}^{(4)}_{\mathrm{IR}}}\,, (50)

with c(1)+c(2)+c(3)+c(4)=1c^{(1)}+c^{(2)}+c^{(3)}+c^{(4)}=1. Due to H=cL~IRH=\frac{c}{{\tilde{L}}_{\mathrm{IR}}} along with the explicit forms of L~IR(i){\tilde{L}}^{(i)}_{\mathrm{IR}} (i=1,2,3,4i=1,2,3,4), we determine the evolution of the cut-off as follows:

cL~IR=Mtanh(γMt)+M+h0.\displaystyle\frac{c}{{\tilde{L}}_{\mathrm{IR}}}=-M\tanh\left(\gamma Mt\right)+M+h_{0}\,. (51)

L~IR{\tilde{L}}_{\mathrm{IR}} becomes constant at asymptotic values of the cosmic time which, due to H=cL~IRH=\frac{c}{{\tilde{L}}_{\mathrm{IR}}}, points to the unification of two accelerating stages of the universe from the holographic point of view. In particular, for large negative and for large positive time, the L~IR{\tilde{L}}_{\mathrm{IR}} becomes L~IR=c2M+h0{\tilde{L}}_{\mathrm{IR}}=\frac{c}{2M+h_{0}} and L~IR=ch0{\tilde{L}}_{\mathrm{IR}}=\frac{c}{h_{0}}, respectively, which depict holographic inflation during the early stage and holographic dark energy during the late time of the universe. Thus if we consider h0Mh_{0}\ll M, then MM specifies the inflationary energy scale while h0h_{0} is the Hubble scale during the dark energy stage. Moreover the L~IR{\tilde{L}}_{\mathrm{IR}} of Eq. (51) obeys,

L~¨IR2(L~˙IR)2/L~IR2c(L~˙IR/L~IR)constantat|Mt|1.\displaystyle\frac{\ddot{{\tilde{L}}}_{\mathrm{IR}}-2\left(\dot{{\tilde{L}}}_{\mathrm{IR}}\right)^{2}/{\tilde{L}}_{\mathrm{IR}}}{2c\left(\dot{{\tilde{L}}}_{\mathrm{IR}}/{\tilde{L}}_{\mathrm{IR}}\right)}\rightarrow\mbox{constant}\quad\mbox{at}\quad|Mt|\gg 1\,. (52)

This ensures that the holographic inflation occurring during the early universe is indeed a “constant roll” in nature. Thus we may argue that the holographic model of Eq. (50) can describe constant roll inflation and dark energy of the universe in a unified way. Having obtained such a cut-off, we now examine the observable viability of the model with respect to the recent Planck data. The first and second slow-roll parameters (defined in Eq. (31)) in this context turn out to be,

ϵ1=γ{M2(cL~IRMh0)2}(c2/(L~IR)2)andϵ2=2γ{M2+(M+h0)(cL~IRMh0)}(c2/(L~IR)2),\displaystyle\epsilon_{\mathrm{1}}=\frac{\gamma\left\{M^{2}-\left(\frac{c}{{\tilde{L}}_{\mathrm{IR}}}-M-h_{0}\right)^{2}\right\}}{\left(c^{2}/\left({\tilde{L}}_{\mathrm{IR}}\right)^{2}\right)}\quad\mbox{and}\quad\epsilon_{\mathrm{2}}=\frac{2\gamma\left\{M^{2}+\left(M+h_{0}\right)\left(\frac{c}{{\tilde{L}}_{\mathrm{IR}}}-M-h_{0}\right)\right\}}{\left(c^{2}/\left({\tilde{L}}_{\mathrm{IR}}\right)^{2}\right)}\,, (53)

respectively, where we use Eq. (51). Consequently, the scalar spectral index and the tensor-to-scalar ratio take the following forms,

ns=\displaystyle n_{s}= 12ϵ12ϵ2|h.c.=12γ{3M2(L~IR)2c2(1(M+h0)L~IRc)(13(M+h0)L~IRc)}|h.c.,\displaystyle\,\left.1-2\epsilon_{\mathrm{1}}-2\epsilon_{\mathrm{2}}\right|_{\mathrm{h.c.}}=\left.1-2\gamma\left\{\frac{3M^{2}\left({\tilde{L}}_{\mathrm{IR}}\right)^{2}}{c^{2}}-\left(1-\left(M+h_{0}\right)\frac{{\tilde{L}}_{\mathrm{IR}}}{c}\right)\left(1-3\left(M+h_{0}\right)\frac{{\tilde{L}}_{\mathrm{IR}}}{c}\right)\right\}\right|_{\mathrm{h.c.}}\,,
r=\displaystyle r= 16ϵ1|h.c.=16γ{M2(L~IR)2c2(1(M+h0)L~IRc)2}|h.c.,\displaystyle\,\left.16\epsilon_{\mathrm{1}}\right|_{\mathrm{h.c.}}=\left.16\gamma\left\{\frac{M^{2}\left({\tilde{L}}_{\mathrm{IR}}\right)^{2}}{c^{2}}-\left(1-\left(M+h_{0}\right)\frac{{\tilde{L}}_{\mathrm{IR}}}{c}\right)^{2}\right\}\right|_{\mathrm{h.c.}}\,, (54)

respectively, with tht_{\mathrm{h}} being the horizon crossing instant of the CMB scale mode on which we are interested to evaluate the observable indices. It is evident that both nsn_{s} and rr in the present holographic scenario depend on ML~IR(th)c\frac{M{\tilde{L}}_{\mathrm{IR}}\left(t_{\mathrm{h}}\right)}{c}, h0L~IR(th)c\frac{h_{0}{\tilde{L}}_{\mathrm{IR}}\left(t_{\mathrm{h}}\right)}{c} and γ\gamma. It turns out that nsn_{s} and rr are simultaneously compatible with the Planck 2018 data Planck:2018jri provided h0Mh_{0}\ll M and the other parameters lie within the following ranges:

0.80<ML~IR(th)c<0.89and0.010<γ<0.011.\displaystyle 0.80<\frac{M{\tilde{L}}_{\mathrm{IR}}\left(t_{\mathrm{h}}\right)}{c}<0.89\quad\mbox{and}\quad 0.010<\gamma<0.011\,. (55)
Refer to caption
Figure 2: Parametric plot of nsn_{s} vs. rr for the following parameter ranges: 0.80<ML~IR(th)c<0.890.80<\frac{M{\tilde{L}}_{\mathrm{IR}}(t_{\mathrm{h}})}{c}<0.89, 0.010<γ<0.0110.010<\gamma<0.011 and h0Mh_{0}\ll M.

This is revealed in Fig. 2. On the other hand, the effective EoS parameter corresponding to the cut-off in Eq. (50) (or in Eq. (51)) comes as,

ω~=1+(23c)dL~IRdt=1+2γM2sech2(γMt)3[Mtanh(γMt)+M+h0]2,\displaystyle\widetilde{\omega}=-1+\left(\frac{2}{3c}\right)\frac{d{\tilde{L}}_{\mathrm{IR}}}{dt}=-1+\frac{2\gamma M^{2}\mathrm{sech}^{2}\left(\gamma Mt\right)}{3\left[-M\mathrm{tanh}\left(\gamma Mt\right)+M+h_{0}\right]^{2}}\,, (56)

which tends to ω~1\widetilde{\omega}\rightarrow-1 at Mt1Mt\gg 1 i.e., during the dark energy era. This is, however, expected as the cut-off in Eq. (51) tends to a constant value, in particular, L~IRch0{\tilde{L}}_{\mathrm{IR}}\approx\frac{c}{h_{0}}, during the large positive time. Thus we take the parameter h0h_{0} to be equal to the present Hubble parameter of the universe, i.e., h0=H0=1033eVh_{0}=H_{0}=10^{-33}\mathrm{eV} (where H0H_{0} is the current Hubble parameter), which in turn makes the holographic cut-off at present time as L~IR(0)=c×1033eV{\tilde{L}}^{(0)}_{\mathrm{IR}}=c\times 10^{33}\mathrm{eV}. As a whole, the inflationary and the dark energy constraints in the present holographic scenario are given by,

0.80<ML~IR(th)c<0.89,0.010<γ<0.011andh01034eV.\displaystyle 0.80<\frac{M{\tilde{L}}_{\mathrm{IR}}\left(t_{\mathrm{h}}\right)}{c}<0.89\,,\quad 0.010<\gamma<0.011\quad\mbox{and}\quad h_{0}\approx 10^{-34}\mathrm{eV}\,. (57)

Having demonstrated the inflation and the dark energy era, we now like to describe the intermediate evolution of the universe (in-between the end of inflation and the dark energy era) in order to have an unified cosmology in the present holographic scenario. Regarding the end of inflation, we use the explicit evolution of L~IR\tilde{L}_{\mathrm{IR}} from Eq. (51) to Eq. (53), and after a little bit of simplification, we obtain

ϵ1=γM2sech2(γMt)(Mtanh(γMt)+M+h0)2,\displaystyle\epsilon_{\mathrm{1}}=\frac{\gamma M^{2}~{}\mathrm{sech}^{2}\left(\gamma Mt\right)}{\left(-M\mathrm{tanh}(\gamma Mt)+M+h_{0}\right)^{2}}~{}~{}, (58)

which has the behaviour as shown in Fig.[3]. The figure clearly depicts that ϵ1\epsilon_{\mathrm{1}} is a monotonic increasing function with time and reaches to unity nearly at Mtf=230Mt_{\mathrm{f}}=230 which, in turn, indicates the end of inflation (tft_{\mathrm{f}} represents the cosmic time when the inflation ends).

Refer to caption
Figure 3: ϵ1\epsilon_{\mathrm{1}} vs. MtMt for γ=0.01\gamma=0.01 and h0=1034eV=1043GeVh_{0}=10^{-34}\mathrm{eV}=10^{-43}\mathrm{GeV} and M=1014GeVM=10^{14}\mathrm{GeV}. Such parametric ranges are consistent as of Eq. (57).

Therefore the beginning of inflation (when the CMB scale 0.05Mpc1\sim 0.05\mathrm{Mpc}^{-1} crosses the horizon) may be considered 50 to 65 e-folds back from the instance of ϵ1=1\epsilon_{\mathrm{1}}=1 (or equivalently Mt=230Mt=230). The e-fold number is given by N=titH𝑑tN=\int_{t_{\mathrm{i}}}^{t}~{}Hdt which, due to the Hubble parameter of Eq. (43), becomes

N=M(tti)+h0(tti)1γln[cosh(γMt)cosh(γMti)].\displaystyle N=M\left(t-t_{\mathrm{i}}\right)+h_{0}\left(t-t_{\mathrm{i}}\right)-\frac{1}{\gamma}\ln{\left[\frac{\mathrm{cosh}(\gamma Mt)}{\mathrm{cosh}(\gamma Mt_{\mathrm{i}})}\right]}~{}~{}. (59)

Here tit_{\mathrm{i}} is the instance of the beginning of inflation when N=0N=0. With Mtf230Mt_{\mathrm{f}}\approx 230 and in order to have 50 to 65 e-folds of inflation, we find from the above expression that MtiMt_{\mathrm{i}} should lie within Mti=[10,26]Mt_{\mathrm{i}}=[-10,-26]. Thus as a whole the inflation starts, i.e when the CMB scale crosses the horizon, at Mti=[10,26]Mt_{\mathrm{i}}=[-10,-26] and gets an exit at Mtf=230Mt_{\mathrm{f}}=230, during which, the total e-fold number of the inflationary era becomes Nf=[50,65]N_{\mathrm{f}}=[50,65].

After the end of inflation, the universe needs to enter to a reheating phase or to the standard radiation dominated era in the case of instantaneous reheating. As we have demonstrated that the holographic energy density corresponding to the cut-off L~IR\tilde{L}_{\mathrm{IR}}, i.e ρ~=3κ2(cL~IR)2\tilde{\rho}=\frac{3}{\kappa^{2}}\left(\frac{c}{\tilde{L}_{\mathrm{IR}}}\right)^{2}, triggers an inflation during the early universe and a dark energy era during the late time of the universe. Hence in order to have radiation energy in the present scenario, we introduce a new holographic energy density (corresponding to a cut-off LnL_{\mathrm{n}}), beside the existing ρ~\tilde{\rho}, and is given by,

ρn=3κ2(cLn)2,\displaystyle\rho_{\mathrm{n}}=\frac{3}{\kappa^{2}}\left(\frac{c}{L_{\mathrm{n}}}\right)^{2}~{}~{}, (60)

which is considered to have a coupling with the radiation, i.e around the end of reheating, ρn\rho_{\mathrm{n}} will eventually decay to the normal radiation. Therefore the total holographic energy density turns out to be,

ρT=ρ~+ρn=3κ2(cL~IR)2+3κ2(cLn)2,\displaystyle\rho_{\mathrm{T}}=\tilde{\rho}+\rho_{\mathrm{n}}=\frac{3}{\kappa^{2}}\left(\frac{c}{\tilde{L}_{\mathrm{IR}}}\right)^{2}+\frac{3}{\kappa^{2}}\left(\frac{c}{L_{\mathrm{n}}}\right)^{2}~{}~{}, (61)

and the effective cut-off (LTL_{\mathrm{T}}) is given by,

(1LT)2=(1L~IR)2+(1Ln)2,\displaystyle\left(\frac{1}{L_{\mathrm{T}}}\right)^{2}=\left(\frac{1}{\tilde{L}_{\mathrm{IR}}}\right)^{2}+\left(\frac{1}{L_{\mathrm{n}}}\right)^{2}~{}~{}, (62)

where L~IR\tilde{L}_{\mathrm{IR}} is shown in Eq. (50). Similar to ρ~\tilde{\rho}, the ρn\rho_{\mathrm{n}} satisfies a conservation equation like

ρ˙n+3Hρn(1+ωn)=0,\displaystyle\dot{\rho}_{\mathrm{n}}+3H\rho_{\mathrm{n}}\left(1+\omega_{\mathrm{n}}\right)=0~{}~{}, (63)

where ωn\omega_{\mathrm{n}} is the associated EoS parameter of ρn\rho_{\mathrm{n}} (recall that ω~\widetilde{\omega} is the EoS parameter corresponding to the L~IR\tilde{L}_{\mathrm{IR}}, see Eq. (56)). Here we would like to mention that the decay rate from ρn\rho_{\mathrm{n}} to the radiation energy becomes effective only around the end of reheating, and thus ρn\rho_{\mathrm{n}} safely obeys the above conservation equation. As we will demonstrate below that during the inflation, ρn\rho_{\mathrm{n}} remains suppressed compared to ρ~\tilde{\rho} and thus the inflation is controlled entirely by ρ~\tilde{\rho}. However after the inflation ends, ρ~\tilde{\rho} decreases at a considerably faster rate and lands to the value of the present dark energy density, in particular ρ~1047GeV4\tilde{\rho}\sim 10^{-47}\mathrm{GeV}^{4}. As a result, ρn\rho_{\mathrm{n}} becomes larger over ρ~\tilde{\rho} almost one e-fold after the end of inflation and thus dominates the universe’s evolution during the reheating stage which ends when the decay rate of ρn\rho_{\mathrm{n}} becomes comparable to the Hubble rate. As a result, the holographic energy density ρn\rho_{\mathrm{n}} decays to radiation around the end of reheating, which in turn sets the standard cosmological evolution of the universe. Eventually, the radiation energy density (that falls by a4a^{-4}) becomes less than ρ~1047GeV4\tilde{\rho}\sim 10^{-47}\mathrm{GeV}^{4} and then the universe again dominates by ρ~\tilde{\rho} which triggers the late time acceleration of the universe. Thus as a whole, the early inflation and the late dark energy era are controlled by ρ~\tilde{\rho} with two different energy scales respectively, while the intermediate phase of the universe from the end of inflation to the dark energy era is controlled by ρn\rho_{\mathrm{n}} and the radiation energy produced from the decay of ρn\rho_{\mathrm{n}}. For the demonstration of such evolution of the universe, we consider a variable EoS parameter corresponding to ρn\rho_{\mathrm{n}}, in particular,

ωn(N)=(1+w2)tanh(NNf)(1w2),\displaystyle\omega_{\mathrm{n}}(N)=\left(\frac{1+w}{2}\right)\mathrm{tanh}\left(N-N_{\mathrm{f}}\right)-\left(\frac{1-w}{2}\right)~{}~{}, (64)

where ww is a constant and recall that NfN_{\mathrm{f}} represents the total e-fold number of the inflationary era. According to the above expression, ωn1\omega_{\mathrm{n}}\approx-1 for N<NfN<N_{\mathrm{f}} and ωnw\omega_{\mathrm{n}}\approx w during N>NfN>N_{\mathrm{f}} (more-or-less, such behaviour of EoS parameter occurs in alpha attractor scalar-tensor theory with suitable exponent of the scalar potential). Thus the holographic energy density ρn\rho_{\mathrm{n}} remains almost constant during the inflation, while after the inflation ends, ρn\rho_{\mathrm{n}} seems to decay by a3(1+w)\propto a^{-3\left(1+w\right)} with the expansion of the universe. In order to get the full evolution of ρn\rho_{\mathrm{n}}, we use the expression of ωn\omega_{\mathrm{n}} from Eq. (64) to the conservation Eq. (63), and by using dN=daadN=\frac{da}{a}, we obtain ρn\rho_{\mathrm{n}} in terms of the e-fold variable as follows:

ρn(N)=ρn(f)exp[32(1+w){(NNf)+ln[cosh(NNf)]}],\displaystyle\rho_{\mathrm{n}}(N)=\rho_{\mathrm{n}}^{(\mathrm{f})}\mathrm{exp}\left[-\frac{3}{2}\left(1+w\right)\left\{\left(N-N_{\mathrm{f}}\right)+\ln{\left[\mathrm{cosh}\left(N-N_{\mathrm{f}}\right)\right]}\right\}\right]~{}~{}, (65)

where ρn(f)=ρn(Nf)\rho_{\mathrm{n}}^{(\mathrm{f})}=\rho_{\mathrm{n}}(N_{\mathrm{f}}). Therefore the cut-off LnL_{\mathrm{n}} corresponding to ρn\rho_{\mathrm{n}} turns out to be,

Lnc=(3κ2ρn(f))exp[34(1+w){(NNf)+ln[cosh(NNf)]}].\displaystyle\frac{L_{\mathrm{n}}}{c}=\left(\sqrt{\frac{3}{\kappa^{2}\rho_{\mathrm{n}}^{(\mathrm{f})}}}\right)\mathrm{exp}\left[\frac{3}{4}\left(1+w\right)\left\{\left(N-N_{\mathrm{f}}\right)+\ln{\left[\mathrm{cosh}\left(N-N_{\mathrm{f}}\right)\right]}\right\}\right]~{}~{}. (66)

The behaviour of ρn\rho_{\mathrm{n}} is shown in the Fig. [4] where we take w=23w=\frac{2}{3} and Nf=60N_{\mathrm{f}}=60. The figure clearly demonstrates that ρn\rho_{\mathrm{n}} remains almost constant during the inflation (i.e during 0N600\leq N\leq 60), while after the inflation ends, ρn\rho_{\mathrm{n}} seems to decay by e5N\propto e^{-5N} with the e-fold variable. In the Fig. [4], we also take ρn(f)=1061GeV4\rho_{\mathrm{n}}^{(\mathrm{f})}=10^{61}\mathrm{GeV}^{4}. The reason for taking such a value of ρn(f)\rho_{\mathrm{n}}^{(\mathrm{f})} is following: since the inflation is considered to be controlled by ρ~\tilde{\rho} which acquires ρ~1066GeV4\tilde{\rho}\sim 10^{66}\mathrm{GeV}^{4} at the beginning of inflation (i.e at N=0N=0) and ρ~1063GeV4\tilde{\rho}\sim 10^{63}\mathrm{GeV}^{4} at the end of inflation (i.e at N=Nf=60N=N_{\mathrm{f}}=60). Thus we take ρn=1061GeV4\rho_{\mathrm{n}}=10^{61}\mathrm{GeV}^{4} which remains almost constant during the inflation, so that ρnρ~\rho_{\mathrm{n}}\ll\tilde{\rho} during 0NNf0\leq N\leq N_{\mathrm{f}} and the inflation gets controlled by ρ~\tilde{\rho}.

Refer to caption
Figure 4: ρn\rho_{\mathrm{n}} vs. NN from Eq. (65) where ρn\rho_{\mathrm{n}} is in the unit of GeV4\mathrm{GeV}^{4}. Here we take w=23w=\frac{2}{3}, Nf=60N_{\mathrm{f}}=60 and ρn(f)=1061GeV4\rho_{\mathrm{n}}^{(f)}=10^{61}\mathrm{GeV}^{4}.

We now compare the evolutions of ρ~\tilde{\rho} and ρn\rho_{\mathrm{n}} with the expansion of the universe, see Fig. [5] where the blue and red curves describe the logarithmic scale of ρ~(N)\tilde{\rho}(N) and ρn(N)\rho_{\mathrm{n}}(N) respectively (in particular, the blue curve represents lnρ~\ln{\tilde{\rho}} and the red curve is for lnρn\ln{\rho_{\mathrm{n}}}). The left plot of Fig.[5] shows the two energy densities during the entire cosmological era, i.e from the beginning of inflation to the dark energy era, while the right plot is the zoomed-in version of the left one during the inflation. The figure clearly demonstrates that ρ~ρn\tilde{\rho}\gg\rho_{\mathrm{n}} during the inflation and thus the inflation gets controlled by ρ~\tilde{\rho} (corresponding to the cut-off L~IR\tilde{L}_{\mathrm{IR}}) which results to a Hubble parameter like Eq. (43). However after the inflation ends, ρ~\tilde{\rho} decreases at a faster rate compared to ρn\rho_{\mathrm{n}}, and eventually, ρn\rho_{\mathrm{n}} dominates over ρ~\tilde{\rho} within one e-fold after the end of inflation. Due to the fact that ρn\rho_{\mathrm{n}} is described by a constant EoS parameter (ww) during the post inflationary era (see Fig. [4]), the universe enters to a Kamionkowski like reheating phase during the same.

Refer to caption
Refer to caption
Figure 5: Left Plot: lnρ~\ln{\tilde{\rho}} (the blue curve) and lnρn\ln{\rho_{\mathrm{n}}} (the red curve) with respect to the e-fold variable during the entire cosmological era from the beginning of inflation to the dark energy era. Here the two shaded regions represent the reheating era and the dark energy era respectively, and moreover, the inflation and the radiation era of the universe are represented by the two unshaded regions. The comparisons between ρ~\tilde{\rho} and ρn\rho_{\mathrm{n}} stated in Eq. (70) are clearly evident in this figure. Right Plot: The zoomed-in version of the left plot during inflation, i.e for 0N600\leq N\leq 60. We take w=23w=\frac{2}{3}, ρn(f)=1061GeV4\rho_{\mathrm{n}}^{(\mathrm{f})}=10^{61}\mathrm{GeV}^{4}, γ=0.01\gamma=0.01 and h0=1034eVh_{0}=10^{-34}\mathrm{eV}.

In this case, we may write the reheating e-fold number (NreN_{\mathrm{re}}) and the reheating temperature (TreT_{\mathrm{re}}) as follows Cook:2015vqa :

Nre\displaystyle N_{\mathrm{re}} =\displaystyle= (413w)[61.6ln{(3Hf2MPl2)1/4Hi}Nf],\displaystyle\left(\frac{4}{1-3w}\right)\left[61.6-\ln{\left\{\frac{\left(3H_{\mathrm{f}}^{2}M_{\mathrm{Pl}}^{2}\right)^{1/4}}{H_{\mathrm{i}}}\right\}}-N_{\mathrm{f}}\right]~{}~{},
Tre\displaystyle T_{\mathrm{re}} =\displaystyle= Hi(4311gre)1/3(T0k/a0)e(Nf+Nre),\displaystyle H_{\mathrm{i}}\left(\frac{43}{11g_{\mathrm{re}}}\right)^{1/3}\left(\frac{T_{0}}{k/a_{0}}\right)e^{-\left(N_{\mathrm{f}}+N_{\mathrm{re}}\right)}~{}~{}, (67)

where HiH_{\mathrm{i}} and HfH_{\mathrm{f}} are the Hubble parameter at N=0N=0 and at N=NfN=N_{\mathrm{f}} respectively, T0T_{0} is the present temperature of the universe, k0.05Mpc1k\sim 0.05\mathrm{Mpc}^{-1} is the CMB scale and gre100g_{\mathrm{re}}\approx 100 is the relativistic degrees of freedom. From Eq. (43), one can determine HiH_{\mathrm{i}} and HfH_{\mathrm{f}}, and by using these into Eq. [67], we finally obtain the reheating e-fold number in terms of ww — this is shown in Fig.[6]. The figure depicts that in order to be Nre>0N_{\mathrm{re}}>0, the EoS parameter of ρn\rho_{\mathrm{n}} during the reheating stage should be larger than 13\frac{1}{3}, in particular 13<w<1\frac{1}{3}<w<1. For instance, here we consider w=23w=\frac{2}{3} for which the reheating e-fold number comes as Nre10N_{\mathrm{re}}\approx 10. Consequently, the reheating temperature becomes Tre1.74×1010GeVT_{\mathrm{re}}\approx 1.74\times 10^{10}\mathrm{GeV} which is indeed safe from the BBN temperature 102GeV\sim 10^{-2}\mathrm{GeV}.

Refer to caption
Figure 6: NreN_{\mathrm{re}} vs. ww from Eq. (67). Here we consider γ=0.01\gamma=0.01 and h0=1034evh_{0}=10^{-34}\mathrm{ev} which are consistent as of Eq. (57).

Furthermore the holographic energy density ρn\rho_{\mathrm{n}} at the end of reheating is given by

ρn(re)=(π2gre30)Tre4,\displaystyle\rho_{\mathrm{n}}^{(\mathrm{re})}=\left(\frac{\pi^{2}g_{\mathrm{re}}}{30}\right)T_{\mathrm{re}}^{4}~{}~{}, (68)

which, due to Tre1010GeVT_{\mathrm{re}}\sim 10^{10}\mathrm{GeV}, acquires the value as ρn(re)1040GeV4\rho_{\mathrm{n}}^{(\mathrm{re})}\sim 10^{40}\mathrm{GeV}^{4} that is also evident in the Fig.[5] (or in the Fig.[4]). At the end of reheating, this amount of ρn(re)\rho_{\mathrm{n}}^{(\mathrm{re})} decays to radiation which in turn serves the initial energy density in the radiation dominated era. It is clear from Fig.[5] that the radiation coming from ρn\rho_{\mathrm{n}} still dominates over ρ~\tilde{\rho} after the end of reheating and thus sets the radiation dominated era (the standard cosmological evolution) of the universe. We may write the evolution of the radiation energy density (which is the dominating agent during the radiation dominated era) as,

ρrad(N)=ρn(re)e4[N(Nf+Nre)].\displaystyle\rho_{\mathrm{rad}}(N)=\rho_{\mathrm{n}}^{(\mathrm{re})}~{}e^{-4\left[N-\left(N_{\mathrm{f}}+N_{\mathrm{re}}\right)\right]}~{}~{}. (69)

Owing to this decaying nature, ρrad\rho_{\mathrm{rad}} eventually becomes comparable to the asymptotic ρ~=1047GeV4\tilde{\rho}=10^{-47}\mathrm{GeV}^{4} which actually sets the present dark energy density of the universe. Eq. (69) immediately indicates that the condition ρrad(N)=1047GeV4\rho_{\mathrm{rad}}(N)=10^{-47}\mathrm{GeV}^{4} happens nearly at N=120N=120 (i.e almost 50 e-folds after the end of reheating) — this is consistent with the Fig.[5]. Thus in the present scenario where w=23w=\frac{2}{3} and the other parametric regimes are shown in Eq. (57) — the inflation occurs during 0N600\leq N\lesssim 60, while the reheating and the radiation dominated era happen during 60N7060\lesssim N\lesssim 70 and 70N12070\lesssim N\lesssim 120 respectively. Going back to Fig.[5], it is clear that after N>120N>120 (i.e after the radiation dominated era), ρ~\tilde{\rho} becomes the dominating agent of the total energy contents. In effect, the universe undergoes through a late time acceleration controlled by a constant energy density ρ~1047GeV4\tilde{\rho}\sim 10^{-47}\mathrm{GeV}^{4}. As a whole,

ρ~\displaystyle\tilde{\rho} \displaystyle\gg ρn;duringinflation,\displaystyle\rho_{\mathrm{n}}~{}~{}~{}~{}~{};~{}~{}~{}~{}~{}\mathrm{during~{}inflation}~{}~{},
ρn\displaystyle\rho_{\mathrm{n}} \displaystyle\gg ρ~;duringreheating,\displaystyle\tilde{\rho}~{}~{}~{}~{}~{}~{};~{}~{}~{}~{}~{}\mathrm{during~{}reheating}~{}~{},
ρrad\displaystyle\rho_{\mathrm{rad}} \displaystyle\gg ρ~;duringradiationdominatedera,\displaystyle\tilde{\rho}~{}~{}~{}~{}~{}~{};~{}~{}~{}~{}~{}~{}\mathrm{during~{}radiation~{}dominated~{}era}~{}~{},
ρ~\displaystyle\tilde{\rho} \displaystyle\gg ρrad;duringdarkenergyera.\displaystyle\rho_{\mathrm{rad}}~{}~{}~{};~{}~{}~{}~{}~{}\mathrm{during~{}dark~{}energy~{}era}~{}~{}. (70)

As a result, the Hubble parameter during the inflation follows Eq. (43), while during the reheating and during the radiation stages, the Hubble parameter goes as

H(N)\displaystyle H(N) =\displaystyle= Hfexp[32(1+w)(NNf)];duringreheating,\displaystyle H_{\mathrm{f}}~{}\mathrm{exp}\left[-\frac{3}{2}(1+w)\left(N-N_{\mathrm{f}}\right)\right]~{}~{};~{}~{}~{}~{}~{}~{}\mathrm{during~{}reheating}~{},
H(N)\displaystyle H(N) =\displaystyle= Hreexp[2(NNfNre)];duringradiationera,\displaystyle H_{\mathrm{re}}~{}\mathrm{exp}\left[-2\left(N-N_{\mathrm{f}}-N_{\mathrm{re}}\right)\right]~{}~{};~{}~{}~{}~{}~{}~{}\mathrm{during~{}radiation~{}era}~{}, (71)

respectively. Here HreH_{\mathrm{re}} is the Hubble parameter at the end of reheating, and is given by Hre=Hfe32(1+w)NreH_{\mathrm{re}}=H_{\mathrm{f}}~{}\mathrm{e}^{-\frac{3}{2}(1+w)N_{\mathrm{re}}}. Finally during the dark energy era, due to the form of L~IR\tilde{L}_{\mathrm{IR}} in Eq. (51), the Hubble parameter becomes a constant =h0=h_{0}. Due to the above expressions of H(N)H(N), the dependence of e-fold variable on cosmic time during different epochs are obtained as,

N\displaystyle N =\displaystyle= M(tti)+h0(tti)1γln[cosh(γMt)cosh(γMti)];duringinflation,\displaystyle M\left(t-t_{\mathrm{i}}\right)+h_{0}\left(t-t_{\mathrm{i}}\right)-\frac{1}{\gamma}\ln{\left[\frac{\mathrm{cosh}(\gamma Mt)}{\mathrm{cosh}(\gamma Mt_{\mathrm{i}})}\right]}~{}~{};~{}~{}~{}~{}~{}~{}\mathrm{during~{}inflation}~{},
N\displaystyle N =\displaystyle= Nf+23(1+w)ln[ttf];duringreheating,\displaystyle N_{\mathrm{f}}+\frac{2}{3\left(1+w\right)}\ln{\left[\frac{t}{t_{\mathrm{f}}}\right]}~{}~{};~{}~{}~{}~{}~{}~{}\mathrm{during~{}reheating}~{},
N\displaystyle N =\displaystyle= Nf+Nre+12ln[ttre];duringradiationera,\displaystyle N_{\mathrm{f}}+N_{\mathrm{re}}+\frac{1}{2}\ln{\left[\frac{t}{t_{\mathrm{re}}}\right]}~{}~{};~{}~{}~{}~{}~{}~{}\mathrm{during~{}radiation~{}era}~{}, (72)

where tit_{\mathrm{i}}, tft_{\mathrm{f}} and tret_{\mathrm{re}} represent the instance of the beginning of inflation, the end of inflation and the end of reheating respectively. Such dependence of N(t)N(t) at various cosmological stages have been used in obtaining the Fig. [5]. As we mentioned earlier that the dark energy starts to dominate the universe nearly at N120N\approx 120, and by using the third expression of Eq. (72), we determine the corresponding cosmic time as Mt01056Mt_{0}\approx 10^{56}. With M=1014GeVM=10^{14}\mathrm{GeV} (that sets the inflationary energy scale), we get t01042GeV110Byt_{0}\approx 10^{42}\mathrm{GeV}^{-1}\approx 10\mathrm{By} (the conversion 1GeV1=1025sec1\mathrm{GeV}^{-1}=10^{-25}\mathrm{sec} may be useful), which suggests that the late acceleration of the universe indeed occurs near the present epoch.

Besides the background evolutions, the curvature perturbations in the super-Hubble scale are also worthwhile to address to examine the model’s stability. The Fourier mode of primordial curvature perturbation (ζk\zeta_{\mathrm{k}}, with kk being the momentum of the Fourier mode) starts from the Bunch-Davies vacuum in the deep sub-Hubble regime (where the perturbation modes of interest lie within the Hubble horizon), while in the super-Hubble scale, ζk(t)\zeta_{\mathrm{k}}(t) consists of a constant part and an evolving part as given by,

ζk(t)=Ak+Bktdta3ϵ1,\displaystyle\zeta_{\mathrm{k}}(t)=A_{\mathrm{k}}+B_{\mathrm{k}}\int^{t}\frac{dt}{a^{3}\epsilon_{\mathrm{1}}}\,, (73)

where AkA_{\mathrm{k}}, BkB_{\mathrm{k}} are constant (with respect to the cosmic time) and ϵ1=H˙/H2\epsilon_{\mathrm{1}}=-\dot{H}/H^{2}. The scale factor during inflation behaves as a(t)e(M+h0)tcosh1γ(γMt)a(t)\propto\mathrm{e}^{\left(M+h_{0}\right)t}\mathrm{cosh}^{-\frac{1}{\gamma}}\left(\gamma Mt\right), and moreover, at23(1+w)a\propto t^{\frac{2}{3(1+w)}} and ata\propto\sqrt{t} during the reheating and the radiation era respectively. As a result, the evolving part of ζk(t)\zeta_{\mathrm{k}}(t) at different cosmological epochs goes as,

tdta3ϵ1\displaystyle\int^{t}\frac{dt}{a^{3}\epsilon_{\mathrm{1}}} \displaystyle\sim e3γMt(1+e2γMt)21+3γMγ(3+γ)cosh3γ(γMt);duringinflation,\displaystyle\frac{\mathrm{e}^{-3\gamma Mt}\left(1+\mathrm{e}^{-2\gamma Mt}\right)}{2^{1+\frac{3}{\gamma}}M\gamma\left(3+\gamma\right)}\mathrm{cosh}^{\frac{3}{\gamma}}\left(\gamma Mt\right)~{}~{};~{}~{}~{}~{}~{}~{}\mathrm{during~{}inflation}~{},
tdta3ϵ1\displaystyle\int^{t}\frac{dt}{a^{3}\epsilon_{\mathrm{1}}} \displaystyle\sim t(1w)/(1+w);duringreheating,\displaystyle t^{-(1-w)/(1+w)}~{}~{};~{}~{}~{}~{}~{}~{}\mathrm{during~{}reheating}~{},
tdta3ϵ1\displaystyle\int^{t}\frac{dt}{a^{3}\epsilon_{\mathrm{1}}} \displaystyle\sim t1/2;duringradaiation.\displaystyle t^{-1/2}~{}~{};~{}~{}~{}~{}~{}~{}\mathrm{during~{}radaiation}~{}. (74)

In Fig. [7], we give the plot of tdta3ϵ1\int^{t}\frac{dt}{a^{3}\epsilon_{\mathrm{1}}} during inflation.

Refer to caption
Figure 7: Evolving part of ζk(t)\zeta_{\mathrm{k}}(t) vs. tt during inflation from the first expression of Eq. (74). Here we consider γ=0.01\gamma=0.01 and M=1014GeVM=10^{14}\mathrm{GeV}. The figure clearly reveals that the evolving part of ζk(t)\zeta_{\mathrm{k}}(t) monotonically decays with time and thus the curvature perturbation remains constant in the super-Hubble inflationary regime.

Therefore Fig. [7] along with Eq. (74) indicate that the evolving mode of ζk(t)\zeta_{\mathrm{k}}(t) monotonically decays with time (as γ>0\gamma>0) in the super-Hubble regime from inflation to the radiation dominated era. Hence the curvature perturbation in the present unified scenario becomes constant at super-Hubble scale, i.e.,

ζkAk,\displaystyle\zeta_{\mathrm{k}}\approx A_{\mathrm{k}}\,, (75)

which in turn ensures the stability of the model.

Here we would like to mention that in the present unified scenario, the matter dominated era is absent in-between the radiation and the dark energy epochs. This is because we consider only one decay channel, particularly from ρn\rho_{\mathrm{n}} to radiation energy, during the reheating stage. In order to introduce the matter dominated stage in the current context, the holographic energy density ρn\rho_{\mathrm{n}} needs to decay via two channels during the reheating stage: one of these will produce the radiation energy, while the other channel will give the pressureless dust having EoS parameter to be zero. The matter dominated era has its own importance from the fact that the large scale modes re-enter the horizon around the transition of radiation to matter dominated era. Thus unlike to the situation in the radiation era, the large scale perturbation modes remain in the sub-Hubble regime and are not constant with time during the matter dominated epoch. We hope to address these issues (i.e the introduction of matter dominated era in an unified holographic cosmological model and its consequences) at some of our future work.

Therefore the holographic model with the cut-off given in Eq. (62) (where L~IR\tilde{L}_{\mathrm{IR}} and LnL_{\mathrm{n}} are shown in Eq. (51) and Eq. (66) respectively) proves to unify the universe’s evolution from a constant roll inflation to the dark energy era with an intermediate radiation era followed by a Kamionkowski like reheating stage. The inflationary quantities (like the scalar spectral index and tensor-to-scalar ratio) and the present Hubble parameter during the dark energy era lies within the observable regime Planck:2018jri ; Planck:2018vyg provided L~IR(th){\tilde{L}}_{\mathrm{IR}}\left(t_{\mathrm{h}}\right), γ\gamma and h0h_{0} satisfy the above-mentioned constraints.

VI Conclusions

The holographic principle has earned a lot of attention due to its rich cosmological implications for explaining the inflation and the dark energy of the universe. In the realm of holographic cosmology, the holographic energy density is inversely proportional to the squared infrared cut-off, in particular, ρhol1LIR2\rho_{\mathrm{hol}}\propto\frac{1}{L_{\mathrm{IR}}^{2}}. However, the fundamental form of the LIRL_{\mathrm{IR}} is still a debatable topic, and here it deserves mentioning that the most general holographic cut-off is proposed in Nojiri:2005pu where the LIRL_{\mathrm{IR}} is generalized to depend upon LIR=LIR(Lp,L˙p,L¨p,,Lf,L˙f,L¨f,,a,H,H˙,H¨,)L_{\mathrm{IR}}=L_{\mathrm{IR}}\!\left(L_{\mathrm{p}},\dot{L}_{\mathrm{p}},\ddot{L}_{\mathrm{p}},\cdots,L_{\mathrm{f}},\dot{L}_{\mathrm{f}},\ddot{L}_{\mathrm{f}},\cdots,a,H,\dot{H},\ddot{H},\cdots\!\right). Evidently, with such a generalized form of the LIRL_{\mathrm{IR}}, the holographic cosmology becomes phenomenologically richer.

Based on such generalized formalism, we propose a holographic realization of universe’s evolution from a constant roll inflation to the dark energy era with an intermediate radiation era followed by a Kamionkowski like reheating stage. The holographic cut-off corresponding to the constant roll inflation depends on the Hubble parameter and its derivatives (up to second order), and consequently, the cut-off satisfies the equivalent constant roll condition in the holographic scenario. To examine the viability of the model, we determine the observable quantities like the scalar spectral index (nsn_{s}) and the tensor-to-scalar ratio (rr) in the present holographic inflation, and it turns out that the theoretical expectations of nsn_{s} and rr become simultaneously compatible with the Planck data for a suitable value of the model parameter(s). In this regard, the simultaneous compatibility of nsn_{s} and rr puts a bound on the holographic cut-off at the instant of horizon crossing. Such holographic correspondence of constant roll inflation is also extended to the case where the infrared cut-off is corrected by the ultraviolet one which, during the early universe, may originate from quantum gravity effects. Due to the appearance of the ultraviolet cut-off, the viable bounds on the infrared cut-off at the instant of horizon crossing modify compared to the previous case where the ultraviolet correction is absent. The presence of the ultraviolet correction provides some extra freedom to adjust the model parameters to have a viable holographic constant roll inflationary scenario. However, these holographic models (without or with ultraviolet correction) are unable to describe the cosmology after the inflation, in particular, the standard cosmological evolution and the dark energy era of the present universe. In the spirit of this, we propose a modified holographic cut-off which, due to the holographic Friedmann equation, results in a smoothly unified cosmological scenario from constant roll inflation at an early era to the dark energy era at the late time of the universe. In such unified holographic scenario, the holographic cut-off becomes constant and satisfies the constant roll condition at the early time leading to successful constant roll inflation, and the cut-off tends to be a different constant at the late time resulting in the dark energy era of the universe with a lower energy scale compared to that of the inflationary one. The inflation has a graceful exit at a finite time, after which, the universe enters to a Kamionkowski like reheating stage described by a constant EoS parameter of holographic energy density. It turns out that the EoS parameter corresponding to the holographic energy during the reheating stage must be larger than the value 13\frac{1}{3} in order to have a viable reheating scenario, and moreover, the reheating temperature proves to be safe from the BBN temperature. Around the end of reheating, a portion of the effective holographic energy decays to radiation which in turn sets the standard radiation era of the universe. Regarding the other portion of the effective holographic energy — it decays at a considerably faster rate after the inflation ends and immediately lands to the present value of the dark energy density almost within 5 e-fold from the end of inflation (see the Fig.[5]), owing to which, it has no role during the radiation dominated era. However due to the fact that the radiation energy density redshifts by a4a^{-4} and the dark energy density remains almost constant, the universe eventually enters to the dark energy dominated era after a certain time. We have calculated the instance when the radiation energy density becomes comparable to the dark energy density in the present scenario, and it happens at around t010Byt_{0}\approx 10\mathrm{By} (i.e around the present epoch of the universe). The dark energy EoS parameter tends to the value =1=-1 at a late time, which is however expected because of the constancy of the late-time Hubble parameter. Consequently, the inflationary quantities (like the scalar spectral index and tensor-to-scalar ratio) and the present Hubble parameter during the dark energy, era prove to be consistent with the observable constraints for suitable ranges of the infrared cut-off (at the time of horizon crossing during the inflation), the constant roll parameter and the other model parameters. Regarding the evolution of perturbations, it turns out that the curvature perturbation in the present context remains constant (with time) at super-Hubble regime from inflation to the radiation dominated era. This in turn ensures the stability of the unified cosmic model under consideration.

In summary, the generalized holographic formalism proves to be very useful in describing constant roll inflation during the early universe as well as the unification of constant roll inflation with the late dark energy era of the universe. However, our understanding of the fundamental cut-off still demands a proper explanation. We hope that the present work of holographic description of the universe in a unified manner may help in a better understanding of the holographic principle.

Appendix: Holographic cut-offs in terms of either particle horizon or future horizon

Using Eq. (18) into Eq. (20), one may obtain the LIR(1)L^{(1)}_{\mathrm{IR}} either in terms of particle horizon (LpL_{\mathrm{p}}) and its derivatives or in terms of the future horizon (LfL_{\mathrm{f}}) and its derivatives. They are given by:

LIR(1)=2cβ(L¨pLp(L˙p)2Lp2+L˙pLp2)(L˙˙˙pLp3L˙pL¨pLp2+2(L˙p)3Lp3+L¨pLp22(L˙p)2Lp3)1,\displaystyle L^{(1)}_{\mathrm{IR}}=2c\beta\left(\frac{\ddot{L}_{\mathrm{p}}}{L_{\mathrm{p}}}-\frac{\left(\dot{L}_{\mathrm{p}}\right)^{2}}{{L_{\mathrm{p}}}^{2}}+\frac{\dot{L}_{\mathrm{p}}}{{L_{\mathrm{p}}}^{2}}\right)\left(\frac{\dddot{L}_{\mathrm{p}}}{L_{\mathrm{p}}}-\frac{3\dot{L}_{\mathrm{p}}\ddot{L}_{\mathrm{p}}}{{L_{\mathrm{p}}}^{2}}+\frac{2\left(\dot{L}_{\mathrm{p}}\right)^{3}}{{L_{\mathrm{p}}}^{3}}+\frac{\ddot{L}_{\mathrm{p}}}{{L_{\mathrm{p}}}^{2}}-\frac{2\left(\dot{L}_{\mathrm{p}}\right)^{2}}{{L_{\mathrm{p}}}^{3}}\right)^{-1}\,, (76)

in terms of LpL_{\mathrm{p}} and its derivatives, or similarly,

LIR(1)=2cβ(L¨fLf(L˙f)2Lf2L˙fLf2)(L˙˙˙fLf3L˙fL¨fLf2+2(L˙f)3Lf3L¨fLf2+2(L˙f)2Lf3)1,\displaystyle L^{(1)}_{\mathrm{IR}}=2c\beta\left(\frac{\ddot{L}_{\mathrm{f}}}{L_{\mathrm{f}}}-\frac{\left(\dot{L}_{\mathrm{f}}\right)^{2}}{{L_{\mathrm{f}}}^{2}}-\frac{\dot{L}_{\mathrm{f}}}{{L_{\mathrm{f}}}^{2}}\right)\left(\frac{\dddot{L}_{\mathrm{f}}}{L_{\mathrm{f}}}-\frac{3\dot{L}_{\mathrm{f}}\ddot{L}_{\mathrm{f}}}{{L_{\mathrm{f}}}^{2}}+\frac{2\left(\dot{L}_{\mathrm{f}}\right)^{3}}{{L_{\mathrm{f}}}^{3}}-\frac{\ddot{L}_{\mathrm{f}}}{{L_{\mathrm{f}}}^{2}}+\frac{2\left(\dot{L}_{\mathrm{f}}\right)^{2}}{{L_{\mathrm{f}}}^{3}}\right)^{-1}\,, (77)

in terms of LfL_{\mathrm{f}} and its derivatives. Furthermore from Eq. (18) and Eq. (21), we obtain LIR(2)L^{(2)}_{\mathrm{IR}} in terms of particle horizon and its derivatives as follows:

LIR(2)=cβ(L˙pLp1Lp)(L¨pLp(L˙p)2Lp2+L˙pLp2+βM2)1,\displaystyle L^{(2)}_{\mathrm{IR}}=c\beta\left(\frac{\dot{L}_{\mathrm{p}}}{L_{\mathrm{p}}}-\frac{1}{L_{\mathrm{p}}}\right)\left(\frac{\ddot{L}_{\mathrm{p}}}{L_{\mathrm{p}}}-\frac{\left(\dot{L}_{\mathrm{p}}\right)^{2}}{{L_{\mathrm{p}}}^{2}}+\frac{\dot{L}_{\mathrm{p}}}{{L_{\mathrm{p}}}^{2}}+\beta M^{2}\right)^{-1}\,, (78)

and moreover,

LIR(2)=cβ(L˙fLf+1Lf)(L¨fLf(L˙f)2Lf2L˙fLf2+βM2)1,\displaystyle L^{(2)}_{\mathrm{IR}}=c\beta\left(\frac{\dot{L}_{\mathrm{f}}}{L_{\mathrm{f}}}+\frac{1}{L_{\mathrm{f}}}\right)\left(\frac{\ddot{L}_{\mathrm{f}}}{L_{\mathrm{f}}}-\frac{\left(\dot{L}_{\mathrm{f}}\right)^{2}}{{L_{\mathrm{f}}}^{2}}-\frac{\dot{L}_{\mathrm{f}}}{{L_{\mathrm{f}}}^{2}}+\beta M^{2}\right)^{-1}\,, (79)

in terms of LfL_{\mathrm{f}} and its derivatives. Thus the above four equations provide our desired results for this section.

Acknowledgments

This work is supported in part by MICINN (Spain), project PID2019-104397GB-I00 and JSPS fellowship S23013 (SDO).

References

  • (1) S. Capozziello and M. De Laurentis, Phys. Rept.  509 (2011) 167 doi:10.1016/j.physrep.2011.09.003 [arXiv:1108.6266 [gr-qc]].
  • (2) S. Nojiri and S. D. Odintsov, Phys. Rept.  505 (2011) 59 doi:10.1016/j.physrep.2011.04.001 [arXiv:1011.0544 [gr-qc]].
  • (3) S. Nojiri, S. D. Odintsov and V. K. Oikonomou, Phys. Rept.  692 (2017) 1 doi:10.1016/j.physrep.2017.06.001 [arXiv:1705.11098 [gr-qc]].
  • (4) G. ’t Hooft, Conf. Proc. C 930308 (1993) 284 [gr-qc/9310026].
  • (5) L. Susskind, J. Math. Phys.  36 (1995) 6377 doi:10.1063/1.531249 [hep-th/9409089].
  • (6) E. Witten, Adv. Theor. Math. Phys.  2 (1998) 253 doi:10.4310/ATMP.1998.v2.n2.a2 [hep-th/9802150].
  • (7) R. Bousso, Rev. Mod. Phys.  74 (2002) 825 doi:10.1103/RevModPhys.74.825 [hep-th/0203101].
  • (8) M. Li, Phys. Lett. B 603 (2004) 1 doi:10.1016/j.physletb.2004.10.014 [hep-th/0403127].
  • (9) M. Li, X. D. Li, S. Wang and Y. Wang, Commun. Theor. Phys. 56 (2011), 525-604 doi:10.1088/0253-6102/56/3/24 [arXiv:1103.5870 [astro-ph.CO]].
  • (10) S. Wang, Y. Wang and M. Li, Phys. Rept.  696 (2017) 1 doi:10.1016/j.physrep.2017.06.003 [arXiv:1612.00345 [astro-ph.CO]].
  • (11) D. Pavon and W. Zimdahl, Phys. Lett. B 628 (2005) 206 doi:10.1016/j.physletb.2005.08.134 [gr-qc/0505020].
  • (12) S. Nojiri and S. D. Odintsov, Gen. Rel. Grav.  38 (2006) 1285 doi:10.1007/s10714-006-0301-6 [hep-th/0506212].
  • (13) X. Zhang, Int. J. Mod. Phys. D 14 (2005) 1597 doi:10.1142/S0218271805007243 [astro-ph/0504586].
  • (14) E. Elizalde, S. Nojiri, S. D. Odintsov and P. Wang, Phys. Rev. D 71 (2005) 103504 doi:10.1103/PhysRevD.71.103504 [hep-th/0502082].
  • (15) Y. g. Gong, B. Wang and Y. Z. Zhang, Phys. Rev. D 72 (2005) 043510 doi:10.1103/PhysRevD.72.043510 [hep-th/0412218].
  • (16) M. Malekjani, Astrophys. Space Sci.  347 (2013) 405 doi:10.1007/s10509-013-1522-2 [arXiv:1209.5512 [gr-qc]].
  • (17) M. Khurshudyan, Astrophys. Space Sci. 361 (2016) no.12, 392 doi:10.1007/s10509-016-2981-z
  • (18) C. Gao, F. Wu, X. Chen and Y. G. Shen, Phys. Rev. D 79 (2009) 043511 doi:10.1103/PhysRevD.79.043511 [arXiv:0712.1394 [astro-ph]].
  • (19) M. Li, C. Lin and Y. Wang, JCAP 0805 (2008) 023 doi:10.1088/1475-7516/2008/05/023 [arXiv:0801.1407 [astro-ph]].
  • (20) F. K. Anagnostopoulos, S. Basilakos and E. N. Saridakis, [arXiv:2005.10302 [gr-qc]].
  • (21) M. Li, X. D. Li, S. Wang and X. Zhang, JCAP 0906 (2009) 036 doi:10.1088/1475-7516/2009/06/036 [arXiv:0904.0928 [astro-ph.CO]].
  • (22) C. Feng, B. Wang, Y. Gong and R. K. Su, JCAP 0709 (2007) 005 doi:10.1088/1475-7516/2007/09/005 [arXiv:0706.4033 [astro-ph]].
  • (23) A. Sheykhi and S. Ghaffari, [arXiv:2304.03261 [gr-qc]].
  • (24) A. Sheykhi, Phys. Rev. D 107 (2023) no.2, 023505 doi:10.1103/PhysRevD.107.023505 [arXiv:2210.12525 [gr-qc]].
  • (25) J. Lu, E. N. Saridakis, M. R. Setare and L. Xu, JCAP 1003 (2010) 031 doi:10.1088/1475-7516/2010/03/031 [arXiv:0912.0923 [astro-ph.CO]].
  • (26) Q. G. Huang and Y. G. Gong, JCAP 0408 (2004) 006 doi:10.1088/1475-7516/2004/08/006 [astro-ph/0403590].
  • (27) P. Mukherjee, A. Mukherjee, H. Jassal, A. Dasgupta and N. Banerjee, Eur. Phys. J. Plus 134 (2019) no.4, 147 doi:10.1140/epjp/i2019-12504-7 [arXiv:1710.02417 [astro-ph.CO]].
  • (28) S. Nojiri and S. Odintsov, Eur. Phys. J. C 77 (2017) no.8, 528 doi:10.1140/epjc/s10052-017-5097-x [arXiv:1703.06372 [hep-th]].
  • (29) E. N. Saridakis, Phys. Rev. D 102 (2020) no.12, 123525 doi:10.1103/PhysRevD.102.123525 [arXiv:2005.04115 [gr-qc]].
  • (30) J. D. Barrow, S. Basilakos and E. N. Saridakis, Phys. Lett. B 815 (2021), 136134 doi:10.1016/j.physletb.2021.136134 [arXiv:2010.00986 [gr-qc]].
  • (31) P. Adhikary, S. Das, S. Basilakos and E. N. Saridakis, [arXiv:2104.13118 [gr-qc]].
  • (32) S. Srivastava and U. K. Sharma, Int. J. Geom. Meth. Mod. Phys. 18 (2021) no.01, 2150014 doi:10.1142/S0219887821500146 [arXiv:2010.09439 [physics.gen-ph]].
  • (33) S. Nojiri, S. D. Odintsov and T. Paul, Phys. Lett. B 835 (2022), 137553 doi:10.1016/j.physletb.2022.137553 [arXiv:2211.02822 [gr-qc]].
  • (34) V. K. Bhardwaj, A. Dixit and A. Pradhan, New Astron. 88 (2021), 101623 doi:10.1016/j.newast.2021.101623 [arXiv:2102.09946 [gr-qc]].
  • (35) G. Chakraborty and S. Chattopadhyay, Int. J. Mod. Phys. D 29 (2020) no.03, 2050024 doi:10.1142/S0218271820500248 [arXiv:2006.07142 [physics.gen-ph]].
  • (36) S. Nojiri, S. D. Odintsov and T. Paul, Symmetry 13 (2021) no.6, 928 doi:10.3390/sym13060928 [arXiv:2105.08438 [gr-qc]].
  • (37) S. Nojiri, S. D. Odintsov and T. Paul, Phys. Lett. B 825 (2022), 136844 doi:10.1016/j.physletb.2021.136844 [arXiv:2112.10159 [gr-qc]].
  • (38) S. Nojiri, S. D. Odintsov and E. N. Saridakis, Phys. Lett. B 797 (2019), 134829 doi:10.1016/j.physletb.2019.134829 [arXiv:1904.01345 [gr-qc]].
  • (39) T. Paul, EPL 127 (2019) no.2, 20004 doi:10.1209/0295-5075/127/20004 [arXiv:1905.13033 [gr-qc]].
  • (40) A. Bargach, F. Bargach, A. Errahmani and T. Ouali, Int. J. Mod. Phys. D 29 (2020) no.02, 2050010 doi:10.1142/S0218271820500108 [arXiv:1904.06282 [hep-th]].
  • (41) E. Elizalde and A. Timoshkin, Eur. Phys. J. C 79 (2019) no.9, 732 doi:10.1140/epjc/s10052-019-7244-z [arXiv:1908.08712 [gr-qc]].
  • (42) A. Oliveros and M. A. Acero, EPL 128 (2019) no.5, 59001 doi:10.1209/0295-5075/128/59001 [arXiv:1911.04482 [gr-qc]].
  • (43) G. Chakraborty and S. Chattopadhyay, Int. J. Geom. Meth. Mod. Phys. 17 (2020) no.5, 2050066 doi:10.1142/S0219887820500668 [arXiv:2006.07143 [physics.gen-ph]].
  • (44) S. Nojiri, S. D. Odintsov, V. K. Oikonomou and T. Paul, Phys. Rev. D 102 (2020) no.2, 023540 doi:10.1103/PhysRevD.102.023540 [arXiv:2007.06829 [gr-qc]].
  • (45) S. Nojiri, S. D. Odintsov and E. N. Saridakis, Nucl. Phys. B 949 (2019), 114790 doi:10.1016/j.nuclphysb.2019.114790 [arXiv:1908.00389 [gr-qc]].
  • (46) I. Brevik and A. Timoshkin, doi:10.1142/S0219887820500231 [arXiv:1911.09519 [gr-qc]].
  • (47) H. Motohashi, A. A. Starobinsky and J. Yokoyama, JCAP 09 (2015), 018 doi:10.1088/1475-7516/2015/09/018 [arXiv:1411.5021 [astro-ph.CO]].
  • (48) W. H. Kinney, Phys. Rev. D 72 (2005), 023515 doi:10.1103/PhysRevD.72.023515 [arXiv:gr-qc/0503017 [gr-qc]].
  • (49) K. S. Kumar, J. Marto, P. Vargas Moniz and S. Das, JCAP 04 (2016), 005 doi:10.1088/1475-7516/2016/04/005 [arXiv:1506.05366 [gr-qc]].
  • (50) J. L. Cook and L. M. Krauss, JCAP 03 (2016), 028 doi:10.1088/1475-7516/2016/03/028 [arXiv:1508.03647 [astro-ph.CO]].
  • (51) S. Nojiri, S. D. Odintsov and V. K. Oikonomou, Class. Quant. Grav. 34 (2017) no.24, 245012 doi:10.1088/1361-6382/aa92a4 [arXiv:1704.05945 [gr-qc]].
  • (52) Q. Gao and Y. Gong, Eur. Phys. J. Plus 133 (2018) no.11, 491 doi:10.1140/epjp/i2018-12324-3 [arXiv:1703.02220 [gr-qc]].
  • (53) S. D. Odintsov and V. K. Oikonomou, Phys. Rev. D 96 (2017) no.2, 024029 doi:10.1103/PhysRevD.96.024029 [arXiv:1704.02931 [gr-qc]].
  • (54) S. D. Odintsov, V. K. Oikonomou and L. Sebastiani, Nucl. Phys. B 923 (2017), 608-632 doi:10.1016/j.nuclphysb.2017.08.018 [arXiv:1708.08346 [gr-qc]].
  • (55) F. Cicciarella, J. Mabillard and M. Pieroni, JCAP 01 (2018), 024 doi:10.1088/1475-7516/2018/01/024 [arXiv:1709.03527 [astro-ph.CO]].
  • (56) A. Ito and J. Soda, Eur. Phys. J. C 78 (2018) no.1, 55 doi:10.1140/epjc/s10052-018-5534-5 [arXiv:1710.09701 [hep-th]].
  • (57) A. Mohammadi, K. Saaidi and T. Golanbari, Phys. Rev. D 97 (2018) no.8, 083006 doi:10.1103/PhysRevD.97.083006 [arXiv:1801.03487 [hep-ph]].
  • (58) E. Elizalde, S. D. Odintsov, V. K. Oikonomou and T. Paul, JCAP 02 (2019), 017 doi:10.1088/1475-7516/2019/02/017 [arXiv:1810.07711 [gr-qc]].
  • (59) S. Nojiri, S. D. Odintsov and V. Faraoni, Phys. Rev. D 105 (2022) no.4, 044042 doi:10.1103/PhysRevD.105.044042 [arXiv:2201.02424 [gr-qc]].
  • (60) S. Nojiri, S. D. Odintsov and T. Paul, Phys. Lett. B 831 (2022), 137189 doi:10.1016/j.physletb.2022.137189 [arXiv:2205.08876 [gr-qc]].
  • (61) S. D. Odintsov and T. Paul, Phys. Dark Univ. 39 (2023), 101159 doi:10.1016/j.dark.2022.101159 [arXiv:2212.05531 [gr-qc]].
  • (62) S. D. Odintsov and T. Paul, [arXiv:2301.01013 [gr-qc]].
  • (63) A. Mohammadi, Phys. Dark Univ. 36 (2022), 101055 doi:10.1016/j.dark.2022.101055 [arXiv:2203.06643 [gr-qc]].
  • (64) Y. Akrami et al. [Planck], Astron. Astrophys. 641 (2020), A10 doi:10.1051/0004-6361/201833887 [arXiv:1807.06211 [astro-ph.CO]].
  • (65) N. Aghanim et al. [Planck], Astron. Astrophys. 641 (2020), A6 [erratum: Astron. Astrophys. 652 (2021), C4] doi:10.1051/0004-6361/201833910 [arXiv:1807.06209 [astro-ph.CO]].
  • (66) J. L. Cook, E. Dimastrogiovanni, D. A. Easson and L. M. Krauss, JCAP 04 (2015), 047 doi:10.1088/1475-7516/2015/04/047 [arXiv:1502.04673 [astro-ph.CO]].