This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Hodge Representations of Calabi-Yau 3-fold Type

Xiayimei Han
Abstract

In this thesis, I apply the Green-Griffiths-Kerr classification of Hodge representations to enumerate the Lie algebra Hodge representations of CY 3-fold type.

Dedicated to family, friends and mentors for generous support, and Andre for good company.

1 Introduction

In this thesis, we will complete the classification of real Hodge representations of Calabi-Yau 3-fold type that was begun in [FL13]. In the following subsections, we will introduce Hodge representation of Lie groups and Lie algebras, and the Hodge representation of Calabi-Yau 3-fold type. The introductory materials are mostly taken from [GGK12], [Rob14] and [HR20].

1.1 Hodge Representation on Lie group and Lie algebra Level

Definition 1.1.

An algebraic group is a group that is an algebraic variety, such that the multiplication and inversion operations are given by maps on the variety that are locally given by polynomials.

Definition 1.2.

A Hodge structure of weight nn\in\mathbb{Z} on a rational vector space VV is a non-constant homomorphism ϕ:S1Aut(V)\phi\mathrel{\mathop{\mathchar 58\relax}}S^{1}\to\mathrm{Aut}(V_{\mathbb{R}}) of \mathbb{R}-algebraic groups such that ϕ(1)=(1)n𝟙\phi(-1)=(-1)^{n}\mathds{1}. The associated Hodge decomposition V=p+q=nVp,qV_{\mathbb{C}}=\oplus_{p+q=n}V^{p,q} with Vp,q¯=Vq,p\overline{V^{p,q}}=V^{q,p} is given by

Vp,q={vV|ϕ(z)v=zpqvzS1}.V^{p,q}=\{v\in V_{\mathbb{C}}|\phi(z)v=z^{p-q}v\quad\forall z\in S^{1}\}.

The Hodge numbers h=(hp,q)h=(h^{p,q}) are hp,q=dimVp,qh^{p,q}={\rm dim\,}_{\mathbb{C}}V^{p,q}.

Definition 1.3.

Let Q:V×VQ\mathrel{\mathop{\mathchar 58\relax}}V_{\mathbb{C}}\times V_{\mathbb{C}}\to\mathbb{Q} be a non-degenerate bilinear form satisfying Q(u,v)=(1)nQ(v,u)Q(u,v)=(-1)^{n}Q(v,u) for all u,vVu,v\in V_{\mathbb{C}}. A Hodge structure (V,ϕ)(V,\phi) of weight nn is polarized by QQ if the Hodge-Riemann bilinear relations hold:

Q(Vp,q,Vr,s)=0unless q=r,p=s,Q(V^{p,q},V^{r,s})=0\quad\text{unless }q=r,p=s,
Q(v,ϕ(i)v¯)>00vV.Q(v,\phi(i)\bar{v})>0\quad\forall 0\neq v\in V_{\mathbb{C}}.

Throughout we assume the Hodge structure ϕ\phi is polarized.

Finally, to introduce the motivation of this thesis, we need to define Mumford-Tate groups and Mumford-Tate domains. To do this, we follow the construction in [GGK10].

Definition 1.4.

Let VV be a rational vector space and V=V=p+q=nVp,qV\otimes\mathbb{C}=V_{\mathbb{C}}=\oplus_{p+q=n}V^{p,q} with Vp,q¯=Vq,p\overline{V^{p,q}}=V^{q,p} be a Hodge decomposition. Use 𝕊()\mathbb{S}(\mathbb{R}) to denote the matrix group {(abba)GL2|a,b},\{\begin{pmatrix}a&b\\ -b&a\end{pmatrix}\in\text{GL}_{2}\mathbb{R}|a,b\in\mathbb{R}\}, and use M(a,b)M(a,b) to denote (abba)𝕊()\begin{pmatrix}a&b\\ -b&a\end{pmatrix}\in\mathbb{S}(\mathbb{R}). Then we can define an algebraic group representation ψ:𝕊()Aut(V)\psi\mathrel{\mathop{\mathchar 58\relax}}\mathbb{S}(\mathbb{R})\to\mathrm{Aut}(V_{\mathbb{C}}) by letting M(a,b)M(a,b) act on Hp,qH^{p,q} as multiplication by (a+ib)p(aib)q(a+ib)^{p}(a-ib)^{q}. Then the Mumford-Tate group MψM_{\psi} of the Hodge decomposition is the smallest algebraic subgroup of GL(V)GL(V) defined over \mathbb{Q}, whose set of real points contains ψ(S1)\psi(S^{1}), where we identify S1S^{1} with {(abba):a2+b2=1}𝕊()\{\begin{pmatrix}a&b\\ -b&a\end{pmatrix}\mathrel{\mathop{\mathchar 58\relax}}a^{2}+b^{2}=1\}\subset\mathbb{S}(\mathbb{R}). The Mumford-Tate domain is the Mψ()M_{\psi}(\mathbb{R}) orbit of ψ\psi.

In order to classify Mumford-Tate groups and Mumford-Tate domains, Griffiths, Green, and Kerr introduced the following notion:

Definition 1.5.

A Lie group Hodge representation (G,ρ,ϕ)(G,\rho,\phi) consists of a reductive \mathbb{Q}-algebraic group GG, a faithful representation ρ:GAut(V,Q)\rho\mathrel{\mathop{\mathchar 58\relax}}G\to\mathrm{Aut}(V,Q), defined over \mathbb{Q} and a non-constant homomorphism ϕ:S1G\phi\mathrel{\mathop{\mathchar 58\relax}}S^{1}\to G_{\mathbb{R}} of \mathbb{R}-algebraic groups such that (V,Q,ρϕ)(V,Q,\rho\circ\phi) is a polarized Hodge structure. Note that GG_{\mathbb{R}} denotes the set of real points of GG.

Some results on the classification of Lie group Hodge representations can be seen in [GGK12] and [Zar83]. To avoid the complexities of working with \mathbb{Q}-algebraic groups, we "forget" the rational structure and work with the following notion:

Definition 1.6.

A real Lie group Hodge representation (G,ρ,ϕ)(G,\rho,\phi) is as in Definition 1.4, but GG a reductive \mathbb{R}-algebraic group and VV a real vector space. Such GG is called a real Hodge group.

Now we proceed to define real Lie algebra Hodge representations. To do this, we first cite the following fundamental result from Section IV of [GGK12]:

Theorem 1.7.

Assume GG is a semisimple \mathbb{Q}-algebraic group. If GG has a Hodge representation, then GG_{\mathbb{R}} contains a compact maximal torus TT with ϕ(S1)T\phi(S^{1})\subset T and dim(T)=rank(G){\rm dim\,}(T)=\mathrm{rank}(G). Moreover, the maximal subgroup HϕGH_{\phi}\subset G_{\mathbb{R}} such that ρ(Hϕ)\rho(H_{\phi}) fixes the polarized Hodge structure (V,Q,ρϕ)(V,Q,\rho\circ\phi) is compact and is the centralizer of the circle ϕ(S1)\phi(S^{1}) in GG_{\mathbb{R}}.

Let GG be a Hodge group. Then GG is a Lie group and we denote its Lie algebra by 𝔤\mathfrak{g}. Fixing a Cartan subalgebra 𝔱\mathfrak{t}, we know that 𝔤\mathfrak{g} has corresponding weight lattice Λw\Lambda_{w} and root lattice ΛR\Lambda_{R}. A grading element is an element EE of 𝔱\mathfrak{t} such that λ(E)\lambda(E)\in\mathbb{Z} for all λΛR\lambda\in\Lambda_{R}. Let G~\tilde{G} be the simply connected simple Lie group with Lie algebra 𝔤\mathfrak{g}. Then its center Z(G~)=ΛwΛRZ(\tilde{G})=\frac{\Lambda_{w}}{\Lambda_{R}}. We also know that all connected simple Lie groups with Lie algebra 𝔤\mathfrak{g} are of the form G~/C\tilde{G}/C with CC a subgroup of Z(G~)Z(\tilde{G}), so the simple Lie groups with Lie algebra 𝔤\mathfrak{g} are in one to one correspondence with subgroups of Z(G~)Z(\tilde{G}), each of which is isomorphic to some ΛΛR\frac{\Lambda}{\Lambda_{R}} where Λ\Lambda is a sublattice of Λw\Lambda_{w} containing ΛR\Lambda_{R}. Suppose that under this correspondence, GG is labeled by Λ\Lambda. Let Λ:=Hom(Λ,2πi).\Lambda^{*}\mathrel{\mathop{\mathchar 58\relax}}=\mathrm{Hom}(\Lambda,2\pi i\mathbb{Z}). Then the maximal torus of GG is compact by Theorem 1.7, and is given by

T𝔱/Λ.T\simeq\mathfrak{t}/\Lambda^{*}.

Suppose that ϕ:S1G\phi\mathrel{\mathop{\mathchar 58\relax}}S^{1}\to G is a homomorphism of real algebraic groups with image ϕ(S1)T.\phi(S^{1})\subset T. Let LϕL_{\phi} be the lattice point such that ϕ(e2πit)=tLϕmodΛ\phi(e^{2\pi it})=tL_{\phi}\mod\Lambda^{*} for tt\in\mathbb{R}. Fix a representation ρ:GAut(V,Q)\rho\mathrel{\mathop{\mathchar 58\relax}}G\to\mathrm{Aut}(V,Q) defined over \mathbb{Q}. Suppose that ρϕ\rho\circ\phi defines a polarized Hodge structure on VV. Then the group element ρϕ(e2πit)Aut(V)\rho\circ\phi(e^{2\pi it})\in\mathrm{Aut}(V_{\mathbb{C}}) acts on Vp,qV^{p,q} by e2πi(pq)t𝟙e^{2\pi i(p-q)t}\mathds{1}. Taking the derivative with respect to tt, we find that LϕL_{\phi} acts on Vp,qV^{p,q} by 2πi(pq)𝟙2\pi i(p-q)\mathds{1}. Define TϕHom(Λ,12)i𝔱𝔱T_{\phi}\in\mathrm{Hom}(\Lambda,\frac{1}{2}\mathbb{Z})\subset i\mathfrak{t}\subset\mathfrak{t}_{\mathbb{C}} by

Tϕ:=Lϕ4πi.T_{\phi}\mathrel{\mathop{\mathchar 58\relax}}=\frac{L_{\phi}}{4\pi i}. (1.8)

Then TϕT_{\phi} acts on Vp,qV^{p,q} by the scalar (pq)/2=pn/2(p-q)/2=p-n/2. Therefore, the TϕT_{\phi}-graded decomposition of VV_{\mathbb{C}} is

V=Vm/2Vm/21V1m/2Vm/2,V_{\mathbb{C}}=V_{m/2}\oplus V_{m/2-1}\oplus\cdots\oplus V_{1-m/2}\oplus V_{-m/2},

where 0mn0\leq m\leq n is the largest integer such that Vm/20V_{m/2}\neq 0 and Vl={vV|Tϕ(v)=lv}V_{l}=\{v\in V_{\mathbb{C}}|T_{\phi}(v)=lv\}. In this notation, Vp,q=V(pq)/2=Vpn/2V^{p,q}=V_{(p-q)/2}=V_{p-n/2} and Fϕp=Vpn/2Vp+1n/2Vm/2F^{p}_{\phi}=V_{p-n/2}\oplus V_{p+1-n/2}\oplus\cdots\oplus V_{m/2}. By this construction, we get the Lie algebra Hodge representation:

Definition 1.9.

A real Lie algebra Hodge representation (𝔤,E,V)(\mathfrak{g}_{\mathbb{R}},E,V_{\mathbb{R}}) corresponding to a real Lie group representation (G,ρ,ϕ)(G,\rho,\phi) consists of the Lie algebra 𝔤\mathfrak{g}_{\mathbb{R}} of GG, grading element EE equal to TϕT_{\phi} in (1.8)\eqref{grading element}, and VV_{\mathbb{R}} is the underlying real vector space of VV_{\mathbb{C}}.

In practice, real Lie algebra Hodge representations are easier to compute than real Lie group Hodge representations and yield important insights into the latter. In this paper, we will classify all the real Hodge Representations of CYCY 3-fold type.

1.2 Hodge representations associated to CY 3-fold type

The goal of this thesis is to identify the real Lie algebra Hodge representations that can arise when VV_{\mathbb{R}} is the period domain parameterizing polarized Hodge structure of CY 3-fold type. These consist of the data Ei𝔤End(V,Q)E\in i\mathfrak{g_{\mathbb{R}}}\subset\mathrm{End}(V_{\mathbb{C}},Q), where

  1. 1.

    VV_{\mathbb{R}} is a real space.

  2. 2.

    Q:V×VQ\mathrel{\mathop{\mathchar 58\relax}}V_{\mathbb{R}}\times V_{\mathbb{R}}\to\mathbb{R} is a non-degenerate skew form. Thus Aut(V,Q)Sp2d\mathrm{Aut}(V_{\mathbb{R}},Q)\simeq Sp_{2d}\mathbb{R}, where 2d=dimV2d={\rm dim\,}V_{\mathbb{R}}.

  3. 3.

    𝔤\mathfrak{g}_{\mathbb{R}} is a real reductive Lie subalgebra of End(V,Q)𝔰𝔭2d\mathrm{End}(V_{\mathbb{R}},Q)\simeq\mathfrak{sp}_{2d}\mathbb{R}.

  4. 4.

    EE is a semisimple element of i𝔤𝔤i\mathfrak{g}_{\mathbb{R}}\subset\mathfrak{g}_{\mathbb{C}} acting on V=VV_{\mathbb{C}}=V_{\mathbb{R}}\otimes\mathbb{C} with eigenspace decomposition V=V32V12V12V32V_{\mathbb{C}}=V_{\frac{3}{2}}\oplus V_{\frac{1}{2}}\oplus V_{-\frac{1}{2}}\oplus V_{-\frac{3}{2}}, and dimV32{\rm dim\,}V_{\frac{3}{2}}.

  5. 5.

    The complex dimensions of V32,V12,V12,V32V_{\frac{3}{2}},V_{\frac{1}{2}},V_{-\frac{1}{2}},V_{-\frac{3}{2}} respectively are 1, aa, aa, 1 for some positive integer aa and Vl¯=Vl\overline{V_{l}}=V_{-l}.

In particular, the constraint conditions that the representations are level 3 (see Subsection 1.3 for specific definition of level) and have first Hodge number h3,0=1h^{3,0}=1 ensure that we get Hodge representations associated to CY 3-fold type. For more background information, the reader might consult Section 1 and 2 of [HR20] as well as Appendix B of [Rob14]. In order to phrase our results, we assume a fixed torus and a fixed Weyl Chamber. To enumerate all such tuples of (𝔤,E,V)(\mathfrak{g}_{\mathbb{R}},E,V_{\mathbb{R}}), we take the following steps:

1.3 Step 1: Reduce to the case that VV_{\mathbb{R}}s irreducible

Suppose V=V1V2V_{\mathbb{R}}=V^{1}_{\mathbb{R}}\oplus V^{2}_{\mathbb{R}} as 𝔤\mathfrak{g}_{\mathbb{R}} representations. Then V=V1V2V_{\mathbb{C}}=V^{1}_{\mathbb{C}}\oplus V^{2}_{\mathbb{C}}. Hence,

V=V32V12V12V32V_{\mathbb{C}}=V_{\frac{3}{2}}\oplus V_{\frac{1}{2}}\oplus V_{-\frac{1}{2}}\oplus V_{-\frac{3}{2}}

if and only if

V1=V321V121V121V321and V2=V322V122V122V322.V^{1}_{\mathbb{C}}=V^{1}_{\frac{3}{2}}\oplus V^{1}_{\frac{1}{2}}\oplus V^{1}_{-\frac{1}{2}}\oplus V^{1}_{-\frac{3}{2}}\qquad\text{and }\qquad V^{2}_{\mathbb{C}}=V^{2}_{\frac{3}{2}}\oplus V^{2}_{\frac{1}{2}}\oplus V^{2}_{-\frac{1}{2}}\oplus V^{2}_{-\frac{3}{2}}.

Moreover, dimVl=dimVl1+dimVl2{\rm dim\,}V_{l}={\rm dim\,}V^{1}_{l}+{\rm dim\,}V^{2}_{l} so condition 5 above translates to

1=dimV±32=dimV±321+dimV±322.1={\rm dim\,}V_{\pm\frac{3}{2}}={\rm dim\,}V^{1}_{\pm\frac{3}{2}}+{\rm dim\,}V^{2}_{\pm\frac{3}{2}}.

Thus, without loss of generality, V1=V121V121V^{1}_{\mathbb{C}}=V^{1}_{\frac{1}{2}}\oplus V^{1}_{-\frac{1}{2}} and V2=V322V122V122V322V^{2}_{\mathbb{C}}=V^{2}_{\frac{3}{2}}\oplus V^{2}_{\frac{1}{2}}\oplus V^{2}_{-\frac{1}{2}}\oplus V^{2}_{-\frac{3}{2}}, where dimV322=dimV322=1{\rm dim\,}V^{2}_{\frac{3}{2}}={\rm dim\,}V^{2}_{-\frac{3}{2}}=1. And we say that V1V^{1}_{\mathbb{R}} is a level 1 Hodge representation and V2V^{2}_{\mathbb{R}} is a level 3 Hodge representation. These two types of representations are classified respectively in Sections 2 and 3.

1.4 Step 2: Reduction to complexification

To simplify the computations, instead of directly computing 𝔤\mathfrak{g}_{\mathbb{R}} and VV_{\mathbb{R}}, we will first work with the complexifications 𝔤=𝔤\mathfrak{g}_{\mathbb{C}}=\mathfrak{g}_{\mathbb{R}}\otimes\mathbb{C} and V=VV_{\mathbb{C}}=V_{\mathbb{R}}\otimes\mathbb{C}, which will be carried out in the following subsections. Then we can give explicit formulae of 𝔤\mathfrak{g}_{\mathbb{R}} from 𝔤\mathfrak{g}_{\mathbb{C}} in most cases, namely when E=AiE=A^{i}, the unique Cartan element that is dual to simple root αi\alpha_{i} for some ii, although recovering VV_{\mathbb{R}} is more complicated. In order to recover 𝔤\mathfrak{g}_{\mathbb{R}}, one should first observe that the grading element EE corresponds to a noncompact root as explained in Chapter IV of [GGK12]. Then by consulting [Kna02], we enumerate all the underlying real forms 𝔤\mathfrak{g}_{\mathbb{R}} in Sections 2 and 3.

1.5 Step 3: Reduction to semisimple

Given an irreducible faithful representation UU of 𝔤\mathfrak{g}_{\mathbb{C}} with highest weight μ\mu, we have 𝔤Aut(U)\mathfrak{g}_{\mathbb{C}}\subset\mathrm{Aut}(U). Under the adjoint representation, 𝔤\mathfrak{g}_{\mathbb{C}} decomposes as 𝔤ss𝔷\mathfrak{g}^{ss}_{\mathbb{C}}\oplus\mathfrak{z}, where 𝔤ss\mathfrak{g}^{ss}_{\mathbb{C}} denotes the semisimple part and 𝔷\mathfrak{z} denotes the center. By Schur’s lemma (see Appendix C), if the semisimple part of 𝔤\mathfrak{g}_{\mathbb{C}} is simple, then 𝔷\mathfrak{z} is 0 or 1 dimensional. In general, the dimension of 𝔷\mathfrak{z} does not exceed the number of simple direct summands in 𝔤ss\mathfrak{g}^{ss}_{\mathbb{C}}. Given a semisimple element EE, E=Ess+EE=E_{ss}+E^{\prime} for unique choices of Ess𝔤ssE_{ss}\in\mathfrak{g}_{\mathbb{C}}^{ss} and E𝔷E^{\prime}\in\mathfrak{z}. By virtue of infinitesimal period relation(IPR) on the dual of the Mumford-Tate domain, we without loss of generality assume that αi(Ess){0,1}\alpha_{i}(E_{ss})\in\{0,1\} for each simple root αi\alpha_{i} throughout this paper [Rob14]. On UU, EssE_{ss} acts via weights and EE^{\prime} acts as c𝟙c\mathds{1} for some cc\in\mathbb{Q}. Thus, μ(E)=μ(Ess)+c\mu(E)=\mu(E_{ss})+c on UU and μ(E)=μ(Ess)c\mu^{*}(E)=\mu^{*}(E_{ss})-c on UU^{*}, where μ\mu^{*} is the highest weight of 𝔤\mathfrak{g}_{\mathbb{C}} on UU^{*}. In order to recover 𝔤\mathfrak{g}_{\mathbb{R}}, we need the tuples (𝔤,Ess,c)(\mathfrak{g}_{\mathbb{C}},E_{ss},c), which we enumerate in the following Sections 2 and 3. More specifically, the grading element EE determines the maximal compact subalgebra 𝔨\mathfrak{k} of 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss}, which is just the direct sum of the even EE-eigenspaces in the adjoint representation. This is enough to determine the real form 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} using Vogan diagram classification, and [Kna02] is a good source of information. Then if c0c\neq 0, we have 𝔤=𝔤ss\mathfrak{g}_{\mathbb{C}}=\mathfrak{g}_{\mathbb{C}}^{ss}\oplus\mathbb{C} and therefore 𝔤=𝔤ss.\mathfrak{g}_{\mathbb{R}}=\mathfrak{g}_{\mathbb{R}}^{ss}\oplus\mathbb{R}.

1.6 Step 4: Real, Complex, or Quaternionic representations

When VV_{\mathbb{R}} is an irreducible representation of 𝔤\mathfrak{g}_{\mathbb{R}}, there are three possible cases:

V={U and U=U as representations of 𝔤(U is a real representation of 𝔤)UU and UU as representations of 𝔤(U is a complex representation of 𝔤)UU and U=U as representations of 𝔤(U is a quaternionic representation of 𝔤)V_{\mathbb{R}}\otimes\mathbb{C}=\left\{\begin{array}[]{ll}U\text{ and }U=U^{*}\text{ as representations of $\mathfrak{g}_{\mathbb{C}}$}\\ \hfill\quad(U\text{ is a {real} representation of $\mathfrak{g}_{\mathbb{R}}$})\\ U\oplus U^{*}\text{ and }U\neq U^{*}\text{ as representations of $\mathfrak{g}_{\mathbb{C}}$}\\ \hfill\quad(U\text{ is a {complex} representation of $\mathfrak{g}_{\mathbb{R}}$})\\ U\oplus U^{*}\text{ and }U=U^{*}\text{ as representations of $\mathfrak{g}_{\mathbb{C}}$}\\ \hfill\quad(U\text{ is a {quaternionic} representation of $\mathfrak{g}_{\mathbb{R}}$})\end{array}\right.

where UU is an irreducible representation of 𝔤\mathfrak{g}_{\mathbb{C}} with highest weight μ\mu.

To distinguish the three possible cases of UU, one could immediately observe that once we have UUU\neq U^{*} (or equivalently μμ\mu\neq\mu^{*}), UU is complex. When U=UU=U^{*} (or equivalently μ=μ\mu=\mu^{*}), we determine whether UU is real or quaternionic using the following test: Define

Hϕ:=2αj(Ess)=0Aj.H_{\phi}\mathrel{\mathop{\mathchar 58\relax}}=2\sum_{\alpha_{j}(E_{ss})=0}A^{j}.

Then UU is quaternionic if and only if μ(Hϕ)\mu(H_{\phi}) is odd, and real if and only if μ(Hϕ)\mu(H_{\phi}) is even.
In general, when UU is real or quaternionic, we necessarily have c=0c=0. When UU is complex, c=n/2μ(Ess)c=n/2-\mu(E_{ss}) where nn is the level of a Hodge representation.

2 Example: Classification of Level 1 Hodge Representations

In this section, we will classify the Hodge representations with Hodge numbers h=(a,a)h=(a,a) for some positive integer aa. More specifically, we aim to classify the tuples (𝔤,E,V)(\mathfrak{g}_{\mathbb{R}},E,V_{\mathbb{R}}), which according to Subsections 1.4-1.6 amounts to classifying tuples (𝔤,Ess,μ,c)(\mathfrak{g}_{\mathbb{C}},E_{ss},\mu,c) that corresponds to a level 1 Hodge representation as defined in Subsection 1.3. Namely EE acts on VV_{\mathbb{C}} with eigenspace decomposition V=V12V12V_{\mathbb{C}}=V_{\frac{1}{2}}\oplus V_{-\frac{1}{2}}, and dimV12=dimV12=a{\rm dim\,}V_{\frac{1}{2}}={\rm dim\,}V_{-\frac{1}{2}}=a. Partial results have been obtained by others, such as [Rib83].

2.1 Reduction to Irreducible Representation

Choose a grading element E𝔤E\in\mathfrak{g}_{\mathbb{C}}. According to the discussion in Subsection 1.5, we can write 𝔤=𝔤ss𝔷\mathfrak{g}_{\mathbb{C}}=\mathfrak{g}_{\mathbb{C}}^{ss}\oplus\mathfrak{z}, where 𝔷\mathfrak{z} is a zero or one dimensional center, and 𝔤ss=[𝔤,𝔤]\mathfrak{g}_{\mathbb{C}}^{ss}=[\mathfrak{g}_{\mathbb{C}},\mathfrak{g}_{\mathbb{C}}] is the semisimple part. Then we can write grading element E=Ess+EE=E_{ss}+E^{\prime}, where Ess𝔤ssE_{ss}\in\mathfrak{g}_{\mathbb{C}}^{ss} and E𝔷E^{\prime}\in\mathfrak{z}. Assuming VV_{\mathbb{R}} is irreducible, by Subsection 1.6, there are three possible cases: UU is a real, complex or quaternionic representation of 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss}. In case of level 1 Hodge representations, we want

V=V1/2V1/2.V_{\mathbb{R}}\otimes\mathbb{C}=V_{1/2}\oplus V_{-1/2}.

By discussion in Subsections 1.4-1.6, it suffices to locate tuples
(𝔤ss,Ess,μ,c)(\mathfrak{g}^{ss}_{\mathbb{C}},E_{ss},\mu,c), where 𝔤\mathfrak{g}_{\mathbb{C}} is a complex semisimple Lie algebra, EssE_{ss} is a grading element of 𝔤ss\mathfrak{g}^{ss}_{\mathbb{C}}, and μ\mu is the highest weight on 𝔤ss\mathfrak{g}_{\mathbb{C}}^{ss}’s complex irreducible representation UU. We first claim that 𝔤ss\mathfrak{g}^{ss}_{\mathbb{C}} must be simple. To see this, let 𝔤ss=i=1n𝔤i\mathfrak{g}_{\mathbb{C}}^{ss}=\oplus_{i=1}^{n}\mathfrak{g}_{i} where each 𝔤i\mathfrak{g}_{i} is simple. Then each irreducible representation of 𝔤ss\mathfrak{g}_{\mathbb{C}}^{ss} decomposes as U=i=1nUiU=\otimes_{i=1}^{n}U_{i} where UiU_{i} is an irreducible representation of 𝔤i\mathfrak{g}_{i}. Moreover, suppose that EE is a grading element of 𝔤ss\mathfrak{g}_{\mathbb{C}}^{ss}, then there exists a unique grading element EiE_{i} from each 𝔤i\mathfrak{g}_{i} such that E=i=1nEiE=\sum_{i=1}^{n}E_{i}, and μ(E)+μ(E)=i=1nμi(Ei)+μ(Ei)\mu(E)+\mu^{*}(E)=\sum_{i=1}^{n}\mu_{i}(E_{i})+\mu^{*}(E_{i}). Note that for each ii, μi(Ei)+μi(Ei)1\mu_{i}(E_{i})+\mu^{*}_{i}(E_{i})\geq 1, and the tuples we search for must satisfy μ(E)+μ(E)=1\mu(E)+\mu^{*}(E)=1. Hence, 𝔤ss\mathfrak{g}_{\mathbb{C}}^{ss} must be simple as claimed.

Now UU decomposes into EssE_{ss}’s eigenspaces Uμ(Ess)U_{\mu(E_{ss})} and Uμ(Ess)1U_{\mu(E_{ss})-1}, and correspondingly UU^{*} to decompose into EssE_{ss}’s eigenspaces U1μ(Ess)U^{*}_{1-\mu(E_{ss})} and Uμ(Ess)U^{*}_{-\mu(E_{ss})}. Recall that EE^{\prime} acts on UU via c𝟙c\mathds{1} and on UU^{*} via c𝟙-c\mathds{1} for some cc\in\mathbb{Q}. Then as E=Ess+EE=E_{ss}+E^{\prime}’s eigenspaces, UU and UU^{*} respectively decompose as:

U=Uμ(Ess)+cUμ(Ess)+c1U=U_{\mu(E_{ss})+c}\oplus U_{\mu(E_{ss})+c-1}
U=U1μ(Ess)cUμ(Ess)cU^{*}=U_{1-\mu(E_{ss})-c}\oplus U^{*}_{-\mu(E_{ss})-c}

When UU is real, we must have U=U1/2U1/2U=U_{1/2}\oplus U_{-1/2} as eigenspaces of EssE_{ss}, and dimU1/2=dimU1/2{\rm dim\,}U_{1/2}={\rm dim\,}U_{-{1}/{2}}. In this case, c=0c=0. When UU is complex or quaternionic, with c=1/2μ(Ess)c={1}/{2}-\mu(E_{ss}), we get U=U1/2U1/2U=U_{{1}/{2}}\oplus U_{-{1}/{2}} and U=U1/2U1/2U^{*}=U^{*}_{{1}/{2}}\oplus U^{*}_{-{1}/{2}} as desired. Moreover, since dimU1/2=dimU1/2{\rm dim\,}U_{{1}/{2}}={\rm dim\,}U^{*}_{-{1}/{2}} and dimU1/2=dimU1/2{\rm dim\,}U_{-{1}/{2}}={\rm dim\,}U^{*}_{{1}/{2}}, we have dimV1/2=dimV1/2{\rm dim\,}V_{1/2}={\rm dim\,}V_{-1/2} as desired.

Theorem 2.1.

The real irreducible Lie algebra Hodge representations with Hodge numbers 𝐡ϕ=(a,a){{\bf{h}_{\phi}}}=(a,a) for some positive integer aa are given by the following tuples (gss,Ess,μ,c)(g_{\mathbb{C}}^{ss},E_{ss},\mu,c):

  1. 1.

    (𝔰𝔩(r+1,),A1,ωi,2ir12(r+1)\mathfrak{sl}(r+1,\mathbb{C}),A^{1},\omega_{i},\frac{2i-r-1}{2(r+1)}) for some r1r\geq 1, 1ir1\leq i\leq r, with
    𝐡ϕ=((ri1)+(ri),(ri1)+(ri))=((ri1),(ri))+((ri),(ri1)){{{\bf{h}_{\phi}}}}=({\binom{r}{i-1}}+{\binom{r}{i}},{\binom{r}{i-1}}+{\binom{r}{i}})=({\binom{r}{i-1}},{\binom{r}{i}})+({\binom{r}{i}},{\binom{r}{i-1}}) if 2ir+12i\neq r+1, since in this case the representation is complex with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}};
    𝐡ϕ=((ri1)+(ri),(ri1)+(ri))=((ri1),(ri))+((ri),(ri1)){{{\bf{h}_{\phi}}}}=({\binom{r}{i-1}}+{\binom{r}{i}},{\binom{r}{i-1}}+{\binom{r}{i}})=({\binom{r}{i-1}},{\binom{r}{i}})+({\binom{r}{i}},{\binom{r}{i-1}}) if 2i=r+12i=r+1 and ii is even, since in this case the representation is quaternionic with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}};
    𝐡ϕ=((ri1)+(ri)2,(ri1)+(ri)2){{{\bf{h}_{\phi}}}}=(\frac{{\binom{r}{i-1}}+{\binom{r}{i}}}{2},\frac{{\binom{r}{i-1}}+{\binom{r}{i}}}{2}) if 2i=r+12i=r+1 and ii is odd, since in this case the representation is real with respect to both 𝔤\mathfrak{g}_{\mathbb{R}} and 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss}.
    In all these cases, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔲(1,r)\mathfrak{u}(1,r).

  2. 2.

    (𝔰𝔩(r+1,),Ar,ωi,r2i+12(r+1)\mathfrak{sl}(r+1,\mathbb{C}),A^{r},\omega_{i},\frac{r-2i+1}{2(r+1)}) for some r1r\geq 1, 1ir1\leq i\leq r, with
    𝐡ϕ=((ri1)+(ri),(ri1)+(ri))=((ri1),(ri))+((ri),(ri1)){{{\bf{h}_{\phi}}}}=(\binom{r}{i-1}+{\binom{r}{i}},{\binom{r}{i-1}}+{\binom{r}{i}})=(\binom{r}{i-1},\binom{r}{i})+({\binom{r}{i}},\binom{r}{i-1}) if 2ir+12i\neq r+1, since in this case the representation is complex with respect to both 𝔤\mathfrak{g}_{\mathbb{R}} and 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss};
    𝐡ϕ=((ri1)+(ri),(ri1)+(ri))=((ri1),(ri))+((ri),(ri1)){{{\bf{h}_{\phi}}}}=(\binom{r}{i-1}+\binom{r}{i},\binom{r}{i-1}+\binom{r}{i})=(\binom{r}{i-1},\binom{r}{i})+(\binom{r}{i},\binom{r}{i-1}) if 2i=r+12i=r+1 and ii is odd, since in this case the representation is quaternionic with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}};
    𝐡ϕ=((ri1)+(ri)2,(ri1)+(ri)2){{{\bf{h}_{\phi}}}}=(\frac{\binom{r}{i-1}+\binom{r}{i}}{2},\frac{\binom{r}{i-1}+\binom{r}{i}}{2}) if 2i=r+12i=r+1 and ii is even, since in this case the representation is real with respect to both 𝔤\mathfrak{g}_{\mathbb{R}} and 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss}.
    In all these cases, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔲(r,1)\mathfrak{u}(r,1).

  3. 3.

    (𝔰𝔩(r+1,),Ai,ω1,2ir12(r+1)\mathfrak{sl}(r+1,\mathbb{C}),A^{i},\omega_{1},\frac{2i-r-1}{2(r+1)}) for some r1r\geq 1, 1ir1\leq i\leq r, with
    𝐡ϕ=(r+1,r+1)=(i,r+1i)+(r+1i,i){{{\bf{h}_{\phi}}}}=(r+1,r+1)=(i,r+1-i)+(r+1-i,i) if r1r\neq 1, since in this case the representation is complex with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}};
    𝐡ϕ=(1,1){{{\bf{h}_{\phi}}}}=(1,1) if r=1r=1, since in this case the representation is real with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}.
    In both cases, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔲(i,r+1i)\mathfrak{u}(i,r+1-i).

  4. 4.

    (𝔰𝔩(r+1,),Ai,ωr,r+12i2(r+1)\mathfrak{sl}(r+1,\mathbb{C}),A^{i},\omega_{r},\frac{r+1-2i}{2(r+1)}) for some r1r\geq 1, 1ir1\leq i\leq r, with
    𝐡ϕ=(r+1,r+1)=(r+1i,i)+(i,r+1i){{{\bf{h}_{\phi}}}}=(r+1,r+1)=(r+1-i,i)+(i,r+1-i) if r1r\neq 1, since in this case the representation is complex with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}};
    𝐡ϕ=(1,1){{\bf{h}_{\phi}}}=(1,1) if r=1r=1, since in this case the representation is real with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}.
    In both cases, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔲(i,r+1i)\mathfrak{u}(i,r+1-i).

  5. 5.

    (𝔰𝔬(2r+1,),A1,ωr,0\mathfrak{so}(2r+1,\mathbb{C}),A^{1},\omega_{r},0) for some r2r\geq 2, with
    𝐡ϕ=(2r,2r)=(2r1,2r1)+(2r1,2r1){{\bf{h}_{\phi}}}=(2^{r},2^{r})=(2^{r-1},2^{r-1})+(2^{r-1},2^{r-1}) if r3,0mod4r\equiv 3,0\mod 4, since in this case the representation is quaternionic with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}};
    𝐡ϕ=(2r1,2r1){{\bf{h}_{\phi}}}=(2^{r-1},2^{r-1}) if r1,2mod4r\equiv 1,2\mod 4, since in this case the representation is real with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}.
    In both cases, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔰𝔬(2,2r1)\mathfrak{so}(2,2r-1).

  6. 6.

    (𝔰𝔭(2r,),Ar,ω1,0\mathfrak{sp}(2r,\mathbb{C}),A^{r},\omega_{1},0) with 𝐡ϕ=(r,r){{\bf{h}_{\phi}}}=(r,r), since in this case the representation is real with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔰𝔭(r,)\mathfrak{sp}(r,\mathbb{R}).

  7. 7.

    (𝔰𝔬(2r,),Ar1,ω1,0\mathfrak{so}(2r,\mathbb{C}),A^{r-1},\omega_{1},0) for some r4r\geq 4, with 𝐡ϕ=(2r,2r)=(r,r)+(r,r){{\bf{h}_{\phi}}}=(2r,2r)=(r,r)+(r,r), since in this case the representation is quaternionic with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔰𝔬(2r)\mathfrak{so}^{*}(2r).

  8. 8.

    (𝔰𝔬(2r,),Ar,ω1,0\mathfrak{so}(2r,\mathbb{C}),A^{r},\omega_{1},0 ) for some r4r\geq 4, with 𝐡ϕ=(2r,2r)=(r,r)+(r,r){{\bf{h}_{\phi}}}=(2r,2r)=(r,r)+(r,r), since in this case the representation is quaternionic with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔰𝔬(2r)\mathfrak{so}^{*}(2r).

  9. 9.

    (𝔰𝔬(8,),A4,ω3,0\mathfrak{so}(8,\mathbb{C}),A^{4},\omega_{3},0) with 𝐡ϕ=(8,8)=(4,4)+(4,4){{\bf{h}_{\phi}}}=(8,8)=(4,4)+(4,4), since in this case the representation is quaternionic with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔰𝔬(8)\mathfrak{so}^{*}(8).

  10. 10.

    (𝔰𝔬(8,),A1,ω3,0\mathfrak{so}(8,\mathbb{C}),A^{1},\omega_{3},0) with 𝐡ϕ=(8,8)=(4,4)+(4,4){{\bf{h}_{\phi}}}=(8,8)=(4,4)+(4,4), since in this case the representation is quaternionic with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔰𝔬(2,6)\mathfrak{so}(2,6).

  11. 11.

    (𝔰𝔬(8,),A3,ω4,0\mathfrak{so}(8,\mathbb{C}),A^{3},\omega_{4},0) with 𝐡ϕ=(8,8)=(4,4)+(4,4){{\bf{h}_{\phi}}}=(8,8)=(4,4)+(4,4), since in this case the representation is quaternionic with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔰𝔬(8)\mathfrak{so}^{*}(8).

  12. 12.

    (𝔰𝔬(8,),A1,ω4,0\mathfrak{so}(8,\mathbb{C}),A^{1},\omega_{4},0) with 𝐡ϕ=(8,8)=(4,4)+(4,4){{\bf{h}_{\phi}}}=(8,8)=(4,4)+(4,4), since in this case the representation is quaternionic with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔰𝔬(2,6)\mathfrak{so}(2,6).

Proof.

Following from our discussion in Subsection 2.1, to classify the irreducible Hodge representations with 𝐡ϕ=(a,a){{\bf{h}_{\phi}}}=(a,a), it suffices to locate tuples (𝔤ss,Ess,μ)(\mathfrak{g}_{\mathbb{C}}^{ss},E_{ss},\mu), such that UU decomposes into EssE_{ss}’s eigenspaces Uμ(Ess)U_{\mu(E_{ss})} and Uμ(Ess)1U_{\mu(E_{ss})-1}, and correspondingly UU^{\prime} decomposes into EssE_{ss}’s eigenspaces U1μ(Ess)U^{*}_{1-\mu(E_{ss})} and Uμ(Ess)U^{*}_{-\mu(E_{ss})}, i.e. μ(Ess)+μ(Ess)=1\mu(E_{ss})+\mu^{*}(E_{ss})=1. The results listed above can be easily verified by consulting Appendix A: Let’s illustrate the calculations with 𝔤ss=𝔰𝔭(r)\mathfrak{g}_{\mathbb{C}}^{ss}=\mathfrak{sp}(r) for some r3r\geq 3. Since we are considering Level 1 cases here, we need (μ+μ)(Ess)=1(\mu+\mu^{*})(E_{ss})=1, so we need

i=1r12μi{α1(Ess)+2α2(Ess)++(i1)αi1(Ess)+i(αi(Ess)+αi+1(Ess)+\displaystyle\sum_{i=1}^{r-1}2\mu^{i}\{\alpha_{1}(E_{ss})+2\alpha_{2}(E_{ss})+\ldots+(i-1)\alpha_{i-1}(E_{ss})+i(\alpha_{i}(E_{ss})+\alpha_{i+1}(E_{ss})+
+αr(Ess)}+μr{α1(Ess)+2α2(Ess)++rαr(Ess)}=1\displaystyle\ldots+\alpha_{r}(E_{ss})\}+\mu^{r}\{\alpha_{1}(E_{ss})+2\alpha_{2}(E_{ss})+\ldots+r\alpha_{r}(E_{ss})\}=1

where each μi\mu^{i} is a nonnegative integer defined at the bottom of first page in Appendix A. Recall that we’ve also assumed each αi(Ess){0,1}\alpha_{i}(E_{ss})\in\{0,1\}. Thus, we must have μi=0\mu^{i}=0 for all 1ir11\leq i\leq r-1 and μr=1\mu^{r}=1, since otherwise the fact that Ess0E_{ss}\neq 0 implies that the right hand side is greater than or equal to 2. Moreover, we must have α1(Ess)=1\alpha_{1}(E_{ss})=1 and αi(Ess)=0\alpha_{i}(E_{ss})=0 for all 1<ir1<i\leq r, or again the right hand side is greater than or equal to 2. The judgments of whether the representations are real, quaternionic, or complex are also made by consulting Appendix A and employing the test given in Subsection 1.6. ∎

Remark 2.2.

With fixed rr, the representations given in 3&4 are dual to each other and give rise to the same VV_{\mathbb{C}}; the representations given in 1&2, 7&8, and 9, 10, 11&12 are equivalent up to an automorphism of the Dynkin diagram.

3 Example: Classification of Level 3 Hodge Representations

3.1 Representations of Simple Lie Algebras

In this section, we assume that 𝔤ss\mathfrak{g}_{\mathbb{C}}^{ss} is simple. We treat the situation when 𝔤ss\mathfrak{g}_{\mathbb{C}}^{ss} is semisimple in Section 3.2.

3.1.1 Reduction to Irreducible Representation

For the Hodge representations that correspond to subdomains of the CY 3-folds, we want

V=V3/2V1/2V1/2V3/2,V_{\mathbb{R}}\otimes\mathbb{C}=V_{3/2}\oplus V_{1/2}\oplus V_{-1/2}\oplus V_{-3/2},

and

dimV3/2=dimV3/2=1.{\rm dim\,}V_{3/2}={\rm dim\,}V_{-3/2}=1.

And by virtue of the IPR relation on the Mumford-Tate domain first mentioned in Subsection 1.5, we may assume αi(Ess){0,1}\alpha_{i}(E_{ss})\in\{0,1\} for each simple root αi\alpha_{i} [Rob14]. Thus, to classify such Hodge representations, it suffices to find tuples (𝔤,Ess,μ)(\mathfrak{g}_{\mathbb{C}},E_{ss},\mu), where μ\mu denote the highest weight on UU such that

  1. 1.

    μ(Ess)+μ(Ess){1,2,3}\mu(E_{ss})+\mu^{*}(E_{ss})\in\{1,2,3\};

  2. 2.

    If μ(Ess)+μ(Ess)=3\mu(E_{ss})+\mu^{*}(E_{ss})=3, we need dimUμ(E)=dimUμ(E)=1{\rm dim\,}U_{\mu(E)}={\rm dim\,}U_{-\mu^{*}(E)}=1; If μ(Ess)+μ(Ess)=1\mu(E_{ss})+\mu^{*}(E_{ss})=1 or 22, we need dimUμ(E)=1{\rm dim\,}U_{\mu(E)}=1;

  3. 3.

    αi(E){0,1}.\alpha_{i}(E)\in\{0,1\}.

To see this, first consider the case when μ(Ess)+μ(Ess)=1\mu(E_{ss})+\mu^{*}(E_{ss})=1. In this case, we only get a level 3 Hodge representation if UU is complex or quaternionic. If so, without loss of generality, we may assume that VV decomposes into EE eigenspaces U3/2U_{3/2} and U1/2U_{1/2}, whereas UU^{*} decomposes into EE eigenspaces U1/2U^{*}_{-1/2} and U3/2U^{*}_{-3/2}, with c=3/2μ(Ess)c=3/2-\mu(E_{ss}). Note that V3/2=U3/2V_{3/2}=U_{3/2}, V1/2=U1/2V_{1/2}=U_{1/2}, V1/2=U1/2V_{-1/2}=U^{*}_{-1/2} and V3/2=U3/2V_{-3/2}=U^{*}_{-3/2}. Since dimU3/2=dimU3/2{\rm dim\,}U_{3/2}={\rm dim\,}U^{*}_{-3/2} and dimU1/2=dimU1/2{\rm dim\,}U_{1/2}={\rm dim\,}U^{*}_{-1/2}, we must have dimV3/2=dimV3/2{\rm dim\,}V_{3/2}={\rm dim\,}V_{-3/2} and dimV1/2=dimV1/2{\rm dim\,}V_{1/2}={\rm dim\,}V_{-1/2}. Then the condition 5 listed in Section 1 forces

dimU3/2=dimU3/2=1{\rm dim\,}U_{3/2}={\rm dim\,}U^{*}_{-3/2}=1 (3.1)

Write Ess=i=1rαi(Ess)AiE_{ss}=\sum_{i=1}^{r}\alpha_{i}(E_{ss})A^{i} where each αi(Ess){0,1}\alpha_{i}(E_{ss})\in\{0,1\} and write μ|𝔤ss=μiωi\mu|_{\mathfrak{g}^{ss}_{\mathbb{C}}}=\sum\mu^{i}\omega_{i} where each μi0\mu^{i}\in\mathbb{Z}_{\geq 0}. Then by a argument about parabolic subalgebra (see Appendix B), we get that the condition (3.1)\eqref{dim_1} is equivalent to

μi0αi(E)=1.\mu^{i}\neq 0\Rightarrow\alpha_{i}(E)=1. (3.2)

Therefore, when μ(Ess)+μ(Ess)=1\mu(E_{ss})+\mu^{*}(E_{ss})=1, to classify the desired tuples, it suffices to classify complex or quaternionic irreducible gss{g_{\mathbb{C}}^{ss}} representation UU that satisfies (3.2)\eqref{dim_constraint} and admits EssE_{ss} eigenspace decomposition

U=Uμ(Ess)Uμ(Ess)1.U=U_{\mu(E_{ss})}\oplus U_{\mu(E_{ss})-1}.
Proposition 3.3.

When (μ+μ)(Ess)=1(\mu+\mu^{*})(E_{ss})=1, the irreducible Lie algebra Hodge representations with Hodge numbers 𝐡ϕ=(1,a,a,1){\bf{h}_{\phi}}=(1,a,a,1) arise with the following tuples of (𝔤ss,Ess,μ,c)(\mathfrak{g}_{\mathbb{C}}^{ss},E_{ss},\mu,c):

  1. 1.

    (𝔰𝔩(r+1,),A1,ω1,r+32(r+1)\mathfrak{sl}(r+1,\mathbb{C}),A^{1},\omega_{1},\frac{r+3}{2(r+1)}) with 𝐡ϕ=(1,r,r,1)=(1,r,0,0)+(0,0,r,1){{\bf{h}_{\phi}}}=(1,r,r,1)=(1,r,0,0)+(0,0,r,1) with r1r\geq 1, which is complex with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}. When r=1r=1, the representation is real with respect to 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} but complex with respect to 𝔤\mathfrak{g}_{\mathbb{R}}; otherwise, it is complex with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔲(1,r)\mathfrak{u}(1,r).

  2. 2.

    (𝔰𝔩(r+1,),Ar,ωr,r+32(r+1)\mathfrak{sl}(r+1,\mathbb{C}),A^{r},\omega_{r},\frac{r+3}{2(r+1)}) with 𝐡ϕ=(1,r,r,1){{\bf{h}_{\phi}}}=(1,r,r,1) with r1r\geq 1, which is complex with respect to 𝔤\mathfrak{g}_{\mathbb{R}}. When r=1r=1, the representation is real with respect to 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss}; otherwise, it is complex with respect to 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔲(r,1)\mathfrak{u}(r,1).

Proof.

Again, by consulting Appendix A, one may enumerate all tuples that satisfy (μ+μ)(Ess)=1(\mu+\mu^{*})(E_{ss})=1. We are not going to illustrate the computations again as they directly mirror the calculations done in the proof to Theorem 2.1. The reader only needs to bear in mind an extra point that now since we demand the Hodge numbers to be in form of (1,a,a,1)(1,a,a,1), whenever μi0\mu^{i}\neq 0, we must have αi(E)=1\alpha_{i}(E)=1. As elaborated in previous discussion, we must have that UU is complex or quaternionic, and that if μ\mu contains ωi\omega_{i}, then Ess=αj(Ess)AjE_{ss}=\sum\alpha_{j}(E_{ss})A^{j} must satisfy that αi(Ess)0\alpha_{i}(E_{ss})\neq 0, to get VV_{\mathbb{C}} with desired Hodge numbers. One subtle point worth noticing is that when r=1r=1, by the test in Subsection 1.6, the representation UU is real with respect to 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss}. But with a nontrivial center that acts on all of UU with eigenvalue 11 and acts on all of UU^{*} with eigenvalue 1-1, UU is complex with respect to 𝔤\mathfrak{g}_{\mathbb{R}}, and therefore meet our eigenspace dimension requirements. The judgments of whether the representations are real, quaternionic, or complex are made by consulting appendix A and employing the test given in Subsection 1.6. ∎

Remark 3.4.

One might notice that for any fixed rr, the tuples in 1 and 2 are equivalent up to an automorphism of the Dynkin diagram.

Now suppose μ(Ess)+μ(Ess)=2\mu(E_{ss})+\mu^{*}(E_{ss})=2. In this case, we only get a level 3 Hodge representation if UU is complex or quaternionic. If so, UU decomposes into EE’s eigenspaces U3/2U_{3/2}, U1/2U_{1/2} and U1/2U_{-1/2}, whereas UU^{*} decomposes into EE’s eigenspaces U1/2U^{*}_{1/2}, U1/2U^{*}_{-1/2} and U3/2U^{*}_{-3/2} with c=3/2μ(Ess)c=3/2-\mu(E_{ss}). Moreover, dimU3/2=dimU3/2{\rm dim\,}U_{3/2}={\rm dim\,}U^{*}_{-3/2}, dimU1/2=dimU1/2{\rm dim\,}U_{1/2}={\rm dim\,}U^{*}_{-1/2}, and dimU1/2=dimU1/2{\rm dim\,}U_{-1/2}={\rm dim\,}U^{*}_{1/2}. Hence, we must have dimV3/2=dimV3/2{\rm dim\,}V_{3/2}={\rm dim\,}V_{-3/2} and dimV1/2=dimV1/2{\rm dim\,}V_{1/2}={\rm dim\,}V_{-1/2}. Recall that for the Hodge representations that correspond to subdomains of the CY 3-folds, we must have dimV3/2=dimV3/2=1{\rm dim\,}V_{3/2}={\rm dim\,}V_{-3/2}=1, which is equivalent to condition (3.2)\eqref{dim_constraint}. Therefore, when μ(Ess)+μ(Ess)=2\mu(E_{ss})+\mu^{*}(E_{ss})=2, to classify the desired tuples, it suffices to classify complex or quaternionic irreducible gss{g_{\mathbb{C}}^{ss}} representation UU that satisfies (3.2)\eqref{dim_constraint} and admits EssE_{ss} eigenspace decomposition

U=Uμ(Ess)Uμ(Ess)1Uμ(Ess)2.U=U_{\mu(E_{ss})}\oplus U_{\mu(E_{ss})-1}\oplus U_{\mu(E_{ss})-2}.
Proposition 3.5.

When (μ+μ)(Ess)=2(\mu+\mu^{*})(E_{ss})=2, the irreducible Lie algebra Hodge representations with Hodge numbers 𝐡ϕ=(1,a,a,1){\bf{h}_{\phi}}=(1,a,a,1) arise with the following tuples of (𝔤ss,Ess,μ,c)(\mathfrak{g}_{\mathbb{C}}^{ss},E_{ss},\mu,c):

  1. 1.

    (𝔰𝔩(r+1,),A1,2ω1,r+32(r+1)\mathfrak{sl}(r+1,\mathbb{C}),A^{1},2\omega_{1},\frac{-r+3}{2(r+1)}) where r1r\geq 1 with 𝐡ϕ=(1,(r+1)(r+2)/21,(r+1)(r+2)/21,1=(1,r,r(r+1)2,0)+(0,r(r+1)2,r,1){{\bf{h}_{\phi}}}=(1,(r+1)(r+2)/2-1,(r+1)(r+2)/2-1,1=(1,r,\frac{r(r+1)}{2},0)+(0,\frac{r(r+1)}{2},r,1). When r=1r=1, the representation is real with respect to 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} but complex with respect to 𝔤\mathfrak{g}_{\mathbb{R}}; When r1r\neq 1, the representation is complex with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔲(1,r)\mathfrak{u}(1,r).

  2. 2.

    (𝔰𝔩(r+1,),Ar,2ωr,r+32(r+1)\mathfrak{sl}(r+1,\mathbb{C}),A^{r},2\omega_{r},\frac{-r+3}{2(r+1)}) where r1r\geq 1 with 𝐡ϕ=(1,(r+1)(r+2)/21,(r+1)(r+2)/21,1)=(1,r,r(r+1)2,0)+(0,r(r+1)2,r,1){{\bf{h}_{\phi}}}=(1,(r+1)(r+2)/2-1,(r+1)(r+2)/2-1,1)=(1,r,\frac{r(r+1)}{2},0)+(0,\frac{r(r+1)}{2},r,1). When r=1r=1, the representation is real with respect to 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} but complex with respect to 𝔤\mathfrak{g}_{\mathbb{R}}; When r1r\neq 1, the representation is complex with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔲(r,1)\mathfrak{u}(r,1).

  3. 3.

    (𝔰𝔩(r+1,),A2,ω2,r+72(r+1)\mathfrak{sl}(r+1,\mathbb{C}),A^{2},\omega_{2},\frac{-r+7}{2(r+1)}), with 𝐡ϕ=(1,r(r+1)21,r(r+1)21,1)=(1,2(r1),(r1)(r2)2,0)+(0,(r1)(r2)2,2(r1),1){{\bf{h}_{\phi}}}=(1,\frac{r(r+1)}{2}-1,\frac{r(r+1)}{2}-1,1)=(1,2(r-1),\frac{(r-1)(r-2)}{2},0)+(0,\frac{(r-1)(r-2)}{2},2(r-1),1). When r=3r=3, the representation is real with respect to 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} but complex with respect to 𝔤\mathfrak{g}_{\mathbb{R}}; When r1r\neq 1, the representation is complex with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔲(2,r1)\mathfrak{u}(2,r-1).

  4. 4.

    (𝔰𝔩(r+1,),Ar1,ωr1,r+72(r+1)\mathfrak{sl}(r+1,\mathbb{C}),A^{r-1},\omega_{r-1},\frac{-r+7}{2(r+1)}), with 𝐡ϕ=(1,r(r+1)21,r(r+1)21,1)=(1,2(r1),(r1)(r2)2,0)+(0,(r1)(r2)2,2(r1),1){{\bf{h}_{\phi}}}=(1,\frac{r(r+1)}{2}-1,\frac{r(r+1)}{2}-1,1)=(1,2(r-1),\frac{(r-1)(r-2)}{2},0)+(0,\frac{(r-1)(r-2)}{2},2(r-1),1). When r=3r=3, the representation is real with respect to 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} but complex with respect to 𝔤\mathfrak{g}_{\mathbb{R}}; When r1r\neq 1, the representation is complex with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔲(r1,2)\mathfrak{u}(r-1,2).

  5. 5.

    (𝔰𝔩(r+1,),A1+Ai,ω1,322ri+1r+1\mathfrak{sl}(r+1,\mathbb{C}),A^{1}+A^{i},\omega_{1},\frac{3}{2}-\frac{2r-i+1}{r+1}) for some 1ir1\leq i\leq r with 𝐡ϕ=(1,r,r,1)=(1,i1,r+1i,0)+(0,r+1i,i1,1){{\bf{h}_{\phi}}}=(1,r,r,1)=(1,i-1,r+1-i,0)+(0,r+1-i,i-1,1). The representation is complex with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}.

  6. 6.

    (𝔰𝔩(r+1,),Ai+Ar,ωr,32i+rr+1\mathfrak{sl}(r+1,\mathbb{C}),A^{i}+A^{r},\omega_{r},\frac{3}{2}-\frac{i+r}{r+1}) with 𝐡ϕ=(1,r,r,1)=(1,ri,i,0)+(0,i,ri,1){{\bf{h}_{\phi}}}=(1,r,r,1)=(1,r-i,i,0)+(0,i,r-i,1). The representation is complex with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}.

  7. 7.

    (𝔰𝔬(2r+1,),A1,ω1,12\mathfrak{so}(2r+1,\mathbb{C}),A^{1},\omega_{1},\frac{1}{2}) with 𝐡ϕ=(1,2r1,2r1,1)=(1,2r2,1,0)+(0,1,2r2,1){{\bf{h}_{\phi}}}=(1,2r-1,2r-1,1)=(1,2r-2,1,0)+(0,1,2r-2,1). The representation is real with respect to 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} but complex with respect to 𝔤\mathfrak{g}_{\mathbb{R}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔰𝔬(2,2r1)\mathfrak{so}(2,2r-1).

  8. 8.

    (𝔰𝔭(2r,),A1,ω1,12\mathfrak{sp}(2r,\mathbb{C}),A^{1},\omega_{1},\frac{1}{2}) with 𝐡ϕ=(1,2r1,2r1,1)=(1,2r2,1,0)+(0,1,2r2,1){{\bf{h}_{\phi}}}=(1,2r-1,2r-1,1)=(1,2r-2,1,0)+(0,1,2r-2,1). This representation is quaternionic with respect to 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} but complex with respect to 𝔤\mathfrak{g}_{\mathbb{R}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔰𝔭(1,r1)\mathfrak{sp}(1,r-1).

  9. 9.

    (𝔰𝔬(2r,),A1,ω1,12\mathfrak{so}(2r,\mathbb{C}),A^{1},\omega_{1},\frac{1}{2}) with 𝐡ϕ=(1,2r1,2r1,1)=(1,2r2,1,0)+(0,1,2r2,1){{\bf{h}_{\phi}}}=(1,2r-1,2r-1,1)=(1,2r-2,1,0)+(0,1,2r-2,1). This representation is real with respect to 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} but complex with respect to 𝔤\mathfrak{g}_{\mathbb{R}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔰𝔬(2,2r2)\mathfrak{so}(2,2r-2).

  10. 10.

    (𝔰𝔬(8,),A3,ω3,12\mathfrak{so}(8,\mathbb{C}),A^{3},\omega_{3},\frac{1}{2}) with 𝐡ϕ=(1,7,7,1)=(1,6,1,0)+(0,1,6,1){{\bf{h}_{\phi}}}=(1,7,7,1)=(1,6,1,0)+(0,1,6,1). This representation is real with respect to 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} but complex with respect to 𝔤\mathfrak{g}_{\mathbb{R}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔰𝔬(8)\mathfrak{so}^{*}(8).

  11. 11.

    (𝔰𝔬(8,),A4,ω4,12\mathfrak{so}(8,\mathbb{C}),A^{4},\omega_{4},\frac{1}{2}) with 𝐡ϕ=(1,7,7,1)=(1,6,1,0)+(0,1,6,1){{\bf{h}_{\phi}}}=(1,7,7,1)=(1,6,1,0)+(0,1,6,1). This representation is real with respect to 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} but complex with respect to 𝔤\mathfrak{g}_{\mathbb{R}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔰𝔬(8)\mathfrak{so}^{*}(8).

  12. 12.

    (𝔰𝔬(10,),A4,ω4,14\mathfrak{so}(10,\mathbb{C}),A^{4},\omega_{4},\frac{1}{4}) with 𝐡ϕ=(1,15,15,1)=(1,10,5,0)+(0,5,10,1){{\bf{h}_{\phi}}}=(1,15,15,1)=(1,10,5,0)+(0,5,10,1). The representation is complex with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔰𝔬(10)\mathfrak{so}^{*}(10).

  13. 13.

    (𝔰𝔬(10,),A5,ω5,14\mathfrak{so}(10,\mathbb{C}),A^{5},\omega_{5},\frac{1}{4}) with 𝐡ϕ=(1,15,15,1)=(1,10,5,0)+(0,5,10,1){{\bf{h}_{\phi}}}=(1,15,15,1)=(1,10,5,0)+(0,5,10,1). The representation is complex with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔰𝔬(2r)\mathfrak{so}^{*}(2r).

  14. 14.

    (𝔢6,A1,ω1,16\mathfrak{e}_{6},A^{1},\omega_{1},\frac{1}{6}) with 𝐡ϕ=(1,26,26,1)=(1,16,10,0)+(0,10,16,1){{\bf{h}_{\phi}}}=(1,26,26,1)=(1,16,10,0)+(0,10,16,1). The representation is complex with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}.

  15. 15.

    (𝔢6,A6,ω6,16\mathfrak{e}_{6},A^{6},\omega_{6},\frac{1}{6}) with 𝐡ϕ=(1,26,26,1)=(1,16,10,0)+(0,10,16,1){{\bf{h}_{\phi}}}=(1,26,26,1)=(1,16,10,0)+(0,10,16,1). The representation is complex with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}.

Proof.

By consulting Appendix A, one can enumerate all tuples that satisfy (μ+μ)(Ess)=2(\mu+\mu^{*})(E_{ss})=2. As elaborated in the discussion preceding this proposition, to get VV_{\mathbb{C}} with the desired Hodge numbers, we must have that UU is complex or quaternionic, and that if μ\mu contains ωi\omega_{i} as a summand, then E=αj(E)AjE=\sum\alpha_{j}(E)A^{j} must satisfy αi(Ess)0\alpha_{i}(E_{ss})\neq 0. For 1 and 2, when r=1r=1 the representation is real with respect to 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss}, but complex with respect to 𝔤\mathfrak{g}_{\mathbb{R}}. For 3 and 4, when r=4r=4 the representation is also real with respect to 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss}, but complex with respect to 𝔤\mathfrak{g}_{\mathbb{R}}. Similarly, (𝔰𝔬(2r,),A1,ω1,12\mathfrak{so}(2r,\mathbb{C}),A^{1},\omega_{1},\frac{1}{2}) and (𝔰𝔬(2r+1,),A1,ω1,12\mathfrak{so}(2r+1,\mathbb{C}),A^{1},\omega_{1},\frac{1}{2}) are real with respect to 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} but complex with respect to 𝔤\mathfrak{g}_{\mathbb{R}}, and so are (𝔰𝔬(8,),A3,ω3,12\mathfrak{so}(8,\mathbb{C}),A^{3},\omega_{3},\frac{1}{2}) and (𝔰𝔬(8,),A4,ω4,12\mathfrak{so}(8,\mathbb{C}),A^{4},\omega_{4},\frac{1}{2}). The reader might expect to see (𝔰𝔬(5,),A2,ω2,12\mathfrak{so}(5,\mathbb{C}),A^{2},\omega_{2},\frac{1}{2}) with 𝐡ϕ=(1,3,3,1){{\bf{h}_{\phi}}}=(1,3,3,1). This representation is quaternionic with respect to 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and complex with respect to 𝔤\mathfrak{g}_{\mathbb{R}}, but it is equivalent to Item 7 with r=2r=2, so we exclude it from the list. ∎

Remark 3.6.

With fixed rr, the representations given in 1&2, 3&4, 5&6, 10&11, 12&13 and 14&15 are equivalent up to an automorphism of the Dynkin diagram.

Finally, assume μ(Ess)+μ(Ess)=3\mu(E_{ss})+\mu^{*}(E_{ss})=3. In this case, UU decomposes into EssE_{ss} eigenspaces Uμ(Ess)U_{\mu(E_{ss})}, Uμ(Ess)1U_{\mu(E_{ss})-1}, Uμ(Ess)2U_{\mu(E_{ss})-2}, and Uμ(Ess)3U_{\mu(E_{ss})-3}. Since VV_{\mathbb{C}} decomposes into 4 eigenspaces of EssE_{ss} with eigenvalues 32,12,12\frac{3}{2},\frac{1}{2},-\frac{1}{2} and 32-\frac{3}{2}, we must have μ(Ess)=32\mu(E_{ss})=\frac{3}{2}. Then the requirement that dimV3/2=dimV3/2=1{\rm dim\,}V_{3/2}={\rm dim\,}V_{-3/2}=1 implies that UU needs to be real and dimU3/2=dimU3/2=1{\rm dim\,}U_{3/2}={\rm dim\,}U_{-3/2}=1. Moreover, we need c=0c=0 and equivalently 𝔤ss=𝔤\mathfrak{g}_{\mathbb{C}}^{ss}=\mathfrak{g}_{\mathbb{C}}. Since the dimension of the lowest weight space is necessarily equal to the dimension of the highest weight space, it suffices to require dimU3/2=1{\rm dim\,}U_{3/2}=1 and again this is equivalent to condition 3.2. Therefore, when μ(E)+μ(E)=3\mu(E)+\mu^{*}(E)=3, to classify the desired tuples, it suffices to classify real irreducible gss{g_{\mathbb{C}}^{ss}} representation UU that satisfies 3.2 and admits EssE_{ss} eigenspace decomposition

U=U3/2U1/2U1/2U3/2.U=U_{3/2}\oplus U_{1/2}\oplus U_{-1/2}\oplus U_{-3/2}.
Proposition 3.7.

When μ+μ(E)=3\mu+\mu^{*}(E)=3, the irreducible Lie algebra Hodge representations with Hodge numbers 𝐡ϕ=(1,a,a,1){\bf{h}_{\phi}}=(1,a,a,1) arise with the following tuples of (𝔤ss,Ess,μ,c)(\mathfrak{g}_{\mathbb{C}}^{ss},E_{ss},\mu,c):

  1. 1.

    (𝔰𝔩(2,),A1,3ω1,0\mathfrak{sl}(2,\mathbb{C}),A^{1},3\omega_{1},0) with 𝐡ϕ=(1,1,1,1){{\bf{h}_{\phi}}}=(1,1,1,1). The representation is real with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔰𝔲(1,r)\mathfrak{su}(1,r).

  2. 2.

    (𝔰𝔩(6,),A3,ω3,0\mathfrak{sl}(6,\mathbb{C}),A^{3},\omega_{3},0) with 𝐡ϕ=(1,9,9,1){{\bf{h}_{\phi}}}=(1,9,9,1). The representation is real with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔰𝔲(3,3)\mathfrak{su}(3,3).

  3. 3.

    (𝔰𝔬(5,),A1+A2,ω2,0\mathfrak{so}(5,\mathbb{C}),A^{1}+A^{2},\omega_{2},0) with 𝐡ϕ=(1,1,1,1){{\bf{h}_{\phi}}}=(1,1,1,1). The representation is real with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}.

  4. 4.

    (𝔰𝔭(6,),A3,ω3,0\mathfrak{sp}(6,\mathbb{C}),A^{3},\omega_{3},0) with 𝐡ϕ=(1,6,6,1){{\bf{h}_{\phi}}}=(1,6,6,1). The representation is real with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔰𝔭(6,)\mathfrak{sp}(6,\mathbb{R}).

  5. 5.

    (𝔰𝔭(2r,),A1+Ar,ω1,0\mathfrak{sp}(2r,\mathbb{C}),A^{1}+A^{r},\omega_{1},0) with 𝐡ϕ=(1,r1,r1,1){{\bf{h}_{\phi}}}=(1,r-1,r-1,1). The representation is real with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}.

  6. 6.

    (𝔰𝔬(12,),A5,ω5,0\mathfrak{so}(12,\mathbb{C}),A^{5},\omega_{5},0) with 𝐡ϕ=(1,15,15,1){{\bf{h}_{\phi}}}=(1,15,15,1). The representation is real with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔰𝔬(12)\mathfrak{so}^{*}(12).

  7. 7.

    (𝔰𝔬(12,),A6,ω6,0\mathfrak{so}(12,\mathbb{C}),A^{6},\omega_{6},0) with 𝐡ϕ=(1,15,15,1){{\bf{h}_{\phi}}}=(1,15,15,1). The representation is real with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔰𝔬(12)\mathfrak{so}^{*}(12).

  8. 8.

    (𝔢7,A7,ω7,0\mathfrak{e}_{7},A^{7},\omega_{7},0) with 𝐡ϕ=(1,27,27,1){{\bf{h}_{\phi}}}=(1,27,27,1). The representation is real with respect to both 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{R}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔢(6)\mathfrak{e}(6)\oplus\mathbb{R}.

Proof.

By consulting Appendix A, one can enumerate all tuples that satisfy (μ+μ)(E)=3(\mu+\mu^{*})(E)=3. As elaborated in discussion preceding this proposition, to get VV_{\mathbb{C}} with desired Hodge numbers, we must have that UU is real, and that if μ\mu contains ωi\omega_{i} as a summand, then EE must contain AiA^{i} as a summand. Thus (𝔰𝔩(r+1,),A1+Ai+Aj,ω1)(\mathfrak{sl}(r+1,\mathbb{C}),A^{1}+A^{i}+A^{j},\omega_{1}), (𝔰𝔩(r+1,),Ai+Aj+Ar,ωr)(\mathfrak{sl}(r+1,\mathbb{C}),A^{i}+A^{j}+A^{r},\omega_{r}),(𝔰𝔩(r+1,),A1+2Ai,ω1)(\mathfrak{sl}(r+1,\mathbb{C}),A^{1}+2A^{i},\omega_{1}), (𝔰𝔩(r+1,),Ar+2Ai,ωr)(\mathfrak{sl}(r+1,\mathbb{C}),A^{r}+2A^{i},\omega_{r}),(𝔰𝔩(r+1,),A1+A2,ω2)(\mathfrak{sl}(r+1,\mathbb{C}),A^{1}+A^{2},\omega_{2}),(𝔰𝔩(r+1,),Ar+A2,ω2)(\mathfrak{sl}(r+1,\mathbb{C}),A^{r}+A^{2},\omega_{2}),(𝔰𝔩(r+1,),A1+Ar1,ωr1)(\mathfrak{sl}(r+1,\mathbb{C}),A^{1}+A^{r-1},\omega_{r-1}), (𝔰𝔩(r+1,),Ar1+Ar,ωr1)(\mathfrak{sl}(r+1,\mathbb{C}),A^{r-1}+A^{r},\omega_{r-1}), (𝔰𝔬(7,),A3,ω3\mathfrak{so}(7,\mathbb{C}),A^{3},\omega_{3}),(𝔰𝔬(10,),A1+A5,ω5\mathfrak{so}(10,\mathbb{C}),A^{1}+A^{5},\omega_{5}),(𝔰𝔬(10,),A1+A4,ω4\mathfrak{so}(10,\mathbb{C}),A^{1}+A^{4},\omega_{4}),(𝔰𝔬(10,),A4+A5,ω5\mathfrak{so}(10,\mathbb{C}),A^{4}+A^{5},\omega_{5}),(𝔰𝔬(14,),A6,ω6\mathfrak{so}(14,\mathbb{C}),A^{6},\omega_{6}),(𝔰𝔬(14,),A7,ω7\mathfrak{so}(14,\mathbb{C}),A^{7},\omega_{7}), (𝔰𝔬(8,),A1+A3,ω3\mathfrak{so}(8,\mathbb{C}),A^{1}+A^{3},\omega_{3}),
(𝔰𝔬(8,),A3+A4,ω3\mathfrak{so}(8,\mathbb{C}),A^{3}+A^{4},\omega_{3}), (𝔰𝔬(8,),A1+A4,ω4\mathfrak{so}(8,\mathbb{C}),A^{1}+A^{4},\omega_{4}), (𝔰𝔬(8,),A3+A4,ω4\mathfrak{so}(8,\mathbb{C}),A^{3}+A^{4},\omega_{4}),
(𝔰𝔬(2r,),A1+Ar1,ω1)(\mathfrak{so}(2r,\mathbb{C}),A^{1}+A^{r-1},\omega_{1}) and (𝔰𝔬(2r,),A1+Ar,ω1)(\mathfrak{so}(2r,\mathbb{C}),A^{1}+A^{r},\omega_{1}) are not on the list because they are either quaternionic or complex with respect to 𝔤ss=𝔤\mathfrak{g}_{\mathbb{R}}^{ss}=\mathfrak{g}_{\mathbb{R}}. ∎

Remark 3.8.

With fixed rr, the representations given in 6&7 are equivalent up to an automorphism of the Dynkin diagram.

3.2 Representations of Semisimple Lie Algebras

Now assume 𝔤𝔰𝔰\mathfrak{g_{\mathbb{C}}^{ss}} is semisimple. In this section, we will use the same notations as before. We claim that there are three possible cases in which we could get desired irreducible representation VV_{\mathbb{C}} and grading element EE such that as eigenspaces of EE, VV_{\mathbb{C}} decomposes into

V=V3/2V1/2V1/2V3/2V_{\mathbb{C}}=V_{3/2}\oplus V_{1/2}\oplus V_{-1/2}\oplus V_{-3/2}

and the dimensions of V3/2,V1/2,V1/2,V3/2V_{3/2},V_{1/2},V_{-1/2},V_{-3/2} are respectively 1,a,a,11,a,a,1 for some positive integer aa. To see this, let 𝔤𝔰𝔰=i=1n𝔤i\mathfrak{g_{\mathbb{C}}^{ss}}=\oplus_{i=1}^{n}\mathfrak{g}_{i} where each 𝔤i\mathfrak{g}_{i} is simple. Then each irreducible representation of 𝔤𝔰𝔰\mathfrak{g_{\mathbb{C}}^{ss}} decomposes as U=i=1nUiU=\otimes_{i=1}^{n}U_{i} where UiU_{i} is an irreducible representation of 𝔤i\mathfrak{g}_{i}. Moreover, suppose that EE is a grading element of 𝔤𝔰𝔰\mathfrak{g_{\mathbb{C}}^{ss}}, then there exists unique grading element EiE_{i} from each 𝔤i\mathfrak{g}_{i} such that E=i=1nEiE=\sum_{i=1}^{n}E_{i}, and μ(E)+μ(E)=i=1nμi(Ei)+μ(Ei)\mu(E)+\mu^{*}(E)=\sum_{i=1}^{n}\mu_{i}(E_{i})+\mu^{*}(E_{i}). Recall that for each ii, μi(Ei)+μi(Ei)1\mu_{i}(E_{i})+\mu^{*}_{i}(E_{i})\geq 1, and the tuples we search for must satisfy 1μ(E)+μ(E)31\leq\mu(E)+\mu^{*}(E)\leq 3. Thus, we conclude there are only three possible cases when 𝔤𝔰𝔰\mathfrak{g_{\mathbb{C}}^{ss}} is a direct sum of simple Lie algebras:

  1. 1.

    𝔤𝔰𝔰=𝔤1𝔤2\mathfrak{g_{\mathbb{C}}^{ss}}=\mathfrak{g}_{1}\oplus\mathfrak{g}_{2} with irreducible representation U=U1U2U=U_{1}\otimes U_{2} and μ1(E1)+μ1(E1)=1\mu_{1}(E_{1})+\mu_{1}^{*}(E_{1})=1 and μ2(E2)+μ2(E2)=1\mu_{2}(E_{2})+\mu_{2}^{*}(E_{2})=1;

  2. 2.

    𝔤𝔰𝔰=𝔤1𝔤2\mathfrak{g_{\mathbb{C}}^{ss}}=\mathfrak{g}_{1}\oplus\mathfrak{g}_{2} with irreducible representation U=U1U2U=U_{1}\otimes U_{2} and μ1(E1)+μ1(E1)=1\mu_{1}(E_{1})+\mu_{1}^{*}(E_{1})=1 and μ2(E2)+μ2(E2)=2\mu_{2}(E_{2})+\mu_{2}^{*}(E_{2})=2;

  3. 3.

    𝔤𝔰𝔰=𝔤1𝔤2𝔤3\mathfrak{g_{\mathbb{C}}^{ss}}=\mathfrak{g}_{1}\oplus\mathfrak{g}_{2}\oplus\mathfrak{g}_{3} with irreducible representation U=U1U2U3U=U_{1}\otimes U_{2}\otimes U_{3} and μ1(E1)+μ1(E1)=μ2(E2)+μ2(E2)=μ3(E3)+μ3(E3)=1\mu_{1}(E_{1})+\mu_{1}^{*}(E_{1})=\mu_{2}(E_{2})+\mu_{2}^{*}(E_{2})=\mu_{3}(E_{3})+\mu_{3}^{*}(E_{3})=1.

3.2.1 Case 1: 𝔤𝔰𝔰\mathfrak{g_{\mathbb{C}}^{ss}}s the direct sum of two simple Lie algebras, and UUecomposes into three eigenspaces

Suppose 𝔤𝔰𝔰=𝔤1𝔤2\mathfrak{g_{\mathbb{C}}^{ss}}=\mathfrak{g}_{1}\oplus\mathfrak{g}_{2} where 𝔤1\mathfrak{g}_{1} and 𝔤2\mathfrak{g}_{2} are both simple. Then every grading element E𝔤E\in\mathfrak{g_{\mathbb{C}}} decomposes into

E=Ess1+Ess2+E,E=E_{ss}^{1}+E_{ss}^{2}+E^{\prime},

where Ess1𝔤1E_{ss}^{1}\in\mathfrak{g}_{1}, Ess2𝔤2E_{ss}^{2}\in\mathfrak{g}_{2} and E𝔷E^{\prime}\in\mathfrak{z}. Even every irreducible representation UU of 𝔤ss\mathfrak{g}_{\mathbb{C}}^{ss} is isomorphic to the tensor product of some U1U_{1} and U2U_{2}, where U1U_{1} is an irreducible representation of 𝔤1\mathfrak{g}_{1} and U2U_{2} is an irreducible representation of 𝔤2\mathfrak{g}_{2}. In case 1, we assume that U1=Ua1Ua11U_{1}=U_{a}^{1}\oplus U_{a-1}^{1} as eigenspaces of E1E_{1} and U2=Ub2Ub12U_{2}=U_{b}^{2}\oplus U_{b-1}^{2} as eigenspaces of E2E_{2}. Then U1U2U_{1}\otimes U_{2} admits Ess1+Ess2E_{ss}^{1}+E_{ss}^{2} eigenspace decomposition

U=Ua+bUa+b1Ua+b2.U=U_{a+b}\oplus U_{a+b-1}\oplus U_{a+b-2}.

With c=3/2(a+b)c=3/2-(a+b) and EE^{\prime} acting on UU as c𝟙c\mathds{1}, we get that U1U2U_{1}\otimes U_{2} admits EE eigenspace decomposition

U=U3/2U1/2U1/2.U=U_{3/2}\oplus U_{1/2}\oplus U_{-1/2}.

Moreover, we have dimU3/2=1{\rm dim\,}U_{3/2}=1 since dimUa=dimUb=1{\rm dim\,}U_{a}={\rm dim\,}U_{b}=1. Thus, we get V=UUV_{\mathbb{C}}=U\oplus U^{*} a desired representation of 𝔤\mathfrak{g}_{\mathbb{C}} if UU is complex or quaternionic with respect to 𝔤\mathfrak{g}_{\mathbb{R}}. Since the tensor product of two quaternionic representations is a real representation with respect to 𝔤\mathfrak{g}_{\mathbb{R}} by the test given in Subsection 1.6. There are only two possible cases:

  1. 1.

    If one of U1U_{1} and U2U_{2} is complex with respect to 𝔤\mathfrak{g}_{\mathbb{R}}, then U1U2U_{1}\otimes U_{2} is complex with respect to 𝔤\mathfrak{g}_{\mathbb{R}};

  2. 2.

    If one of U1U_{1} and U2U_{2} is real and the other is quaternionic with respect to 𝔤\mathfrak{g}_{\mathbb{R}}, then U1U2U_{1}\otimes U_{2} is quaternionic with respect to 𝔤\mathfrak{g}_{\mathbb{R}}.

Examining the tuples listed in Proposition 3.3, one should see that the second case is impossible, because there is no tuple (gss,Ess,μ)(g_{ss},E_{ss},\mu) where gssg_{ss} is simple such that the representation UU is quaternionic. We summarize all desired (𝔤𝔰𝔰,Ess,μ,c)(\mathfrak{g_{\mathbb{C}}^{ss}},E_{ss},\mu,c) tuples in the following proposition:

Proposition 3.9.

In case 1, the irreducible Lie algebra Hodge representations with Hodge numbers 𝐡ϕ=(1,a,a,1){\bf{h_{\phi}}}=(1,a,a,1) arise with the following tuples of (𝔤1,ss,𝔤2,ss,Ess1,Ess2,μ1,μ2,c)(\mathfrak{g}_{1,\mathbb{C}}^{ss},\mathfrak{g}_{2,\mathbb{C}}^{ss},E^{1}_{ss},E^{2}_{ss},\mu^{1},\mu^{2},c), where all r11,r2>1r_{1}\geq 1,r_{2}>1:

  1. 1.

    (𝔰𝔩(r1+1,),𝔰𝔩(r2+1,),A1,A1,ω1,ω1,32r1r1+1r2r2+1)(\mathfrak{sl}(r_{1}+1,\mathbb{C}),\mathfrak{sl}(r_{2}+1,\mathbb{C}),A^{1},A^{1},\omega_{1},\omega_{1},\frac{3}{2}-\frac{r_{1}}{r_{1}+1}-\frac{r_{2}}{r_{2}+1}) with
    hϕ=(1,r1+r2+r1r2,r1+r2+r1r2,1)=(1,r1+r2,r1r2,0)+(0,r1r2,r1+r2,1)h_{\phi}=(1,r_{1}+r_{2}+r_{1}r_{2},r_{1}+r_{2}+r_{1}r_{2},1)=(1,r_{1}+r_{2},r_{1}r_{2},0)+(0,r_{1}r_{2},r_{1}+r_{2},1). The representation is complex with respect to both 𝔤ss\mathfrak{g}_{\mathbb{C}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{C}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔲(1,r1)𝔲(1,r2)\mathfrak{u}(1,r_{1})\oplus\mathfrak{u}(1,r_{2}).

  2. 2.

    (𝔰𝔩(r1+1,),𝔰𝔩(r2+1,),A1,Ar,ω1,ωr,32r1r1+1r2r2+1)(\mathfrak{sl}(r_{1}+1,\mathbb{C}),\mathfrak{sl}(r_{2}+1,\mathbb{C}),A^{1},A^{r},\omega_{1},\omega_{r},\frac{3}{2}-\frac{r_{1}}{r_{1}+1}-\frac{r_{2}}{r_{2}+1}) with
    hϕ=(1,r1+r2+r1r2,r1+r2+r1r2,1)=(1,r1+r2,r1r2,0)+(0,r1r2,r1+r2,1)h_{\phi}=(1,r_{1}+r_{2}+r_{1}r_{2},r_{1}+r_{2}+r_{1}r_{2},1)=(1,r_{1}+r_{2},r_{1}r_{2},0)+(0,r_{1}r_{2},r_{1}+r_{2},1). The representation is complex with respect to both 𝔤ss\mathfrak{g}_{\mathbb{C}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{C}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔲(1,r1)𝔲(r2,1)\mathfrak{u}(1,r_{1})\oplus\mathfrak{u}(r_{2},1).

  3. 3.

    (𝔰𝔩(r1+1,),𝔰𝔩(r2+1,),Ar,Ar,ωr,ωr,32r1r1+1r2r2+1)(\mathfrak{sl}(r_{1}+1,\mathbb{C}),\mathfrak{sl}(r_{2}+1,\mathbb{C}),A^{r},A^{r},\omega_{r},\omega_{r},\frac{3}{2}-\frac{r_{1}}{r_{1}+1}-\frac{r_{2}}{r_{2}+1}) with
    hϕ=(1,r1+r2+r1r2,r1+r2+r1r2,1)=(1,r1+r2,r1r2,0)+(0,r1r2,r1+r2,1)h_{\phi}=(1,r_{1}+r_{2}+r_{1}r_{2},r_{1}+r_{2}+r_{1}r_{2},1)=(1,r_{1}+r_{2},r_{1}r_{2},0)+(0,r_{1}r_{2},r_{1}+r_{2},1). The representation is complex with respect to both 𝔤ss\mathfrak{g}_{\mathbb{C}}^{ss} and 𝔤\mathfrak{g}_{\mathbb{C}}. In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔲(r1,1)𝔲(r2,1)\mathfrak{u}(r_{1},1)\oplus\mathfrak{u}(r_{2},1).

Proof.

The proof is similar to previous ones. ∎

Remark 3.10.

One might note that with fixed r1r_{1} and r2r_{2}, 1, 2 and 3 are all equivalent to each other up to an automorphism of the Dynkin diagram.

3.2.2 Case 2: 𝔤\mathfrak{g}s the direct sum of 2 simple Lie algebras, and UUecomposes into four eigenspaces

Suppose 𝔤=𝔤1𝔤2\mathfrak{g}=\mathfrak{g}_{1}\oplus\mathfrak{g}_{2}, where 𝔤1\mathfrak{g}_{1} and 𝔤2\mathfrak{g}_{2} are both simple Lie algebras. Similar to the previous case, grading element E𝔤E\in\mathfrak{g}_{\mathbb{C}} decomposes as E=Ess1+Ess2+EE=E_{ss}^{1}+E_{ss}^{2}+E^{\prime}, and irreducible representation UU of 𝔤\mathfrak{g}_{\mathbb{C}} must be isomorphic to some U1U2U_{1}\otimes U_{2}, where U1U_{1} and U2U_{2} are respectively irreducible representations of 𝔤1\mathfrak{g}_{1} and 𝔤2\mathfrak{g}_{2}. In this case, we assume that U1=Ua1Ua11Ua21U_{1}=U_{a}^{1}\oplus U_{a-1}^{1}\oplus U_{a-2}^{1} and U2=Ub2Ub12U_{2}=U_{b}^{2}\oplus U_{b-1}^{2} respectively as eigenspaces of Ess1E_{ss}^{1} and Ess2E_{ss}^{2}. Then as eigenspaces of Ess=Ess1+Ess2E_{ss}=E_{ss}^{1}+E_{ss}^{2},

U=Ua+bUa+b1Ua+b2Ua+b3.U=U_{a+b}\oplus U_{a+b-1}\oplus U_{a+b-2}\oplus U_{a+b-3}.

With c=3/2(a+b)c=3/2-(a+b), we get the decomposition of UU as eigenspaces of EE:

U=U3/2U1/2U1/2U3/2.U=U_{3/2}\oplus U_{1/2}\oplus U_{-1/2}\oplus U_{-3/2}.

Hence, a desired tuple arises if and only if UU is real, if and only if either U1U_{1} and U2U_{2} are both real or both quaternionic. By examining the tuples examined in Proposition 3.3 and 3.5, one should see that the only the case in which both U1U_{1} and U2U_{2} are real is feasible. We summarize all desired (𝔤,Ess,μ,c)(\mathfrak{g}_{\mathbb{C}},E_{ss},\mu,c) tuples in the following proposition:

Proposition 3.11.

In case 2, the irreducible Lie algebra Hodge representations with Hodge numbers 𝐡ϕ=(1,a,a,1){\bf{h_{\phi}}}=(1,a,a,1) arise with the following tuples of (𝔤1,ss,𝔤2,ss,Ess1,Ess2,μ1,μ2,c)({\mathfrak{g}}^{ss}_{1,\mathbb{C}},{\mathfrak{g}}^{ss}_{2,\mathbb{C}},E^{1}_{ss},E^{2}_{ss},\mu^{1},\mu^{2},c):

  1. 1.

    (𝔰𝔩(2,),𝔰𝔩(2,),A1,A1,ω1,2ω1,0)(\mathfrak{sl}(2,\mathbb{C}),\mathfrak{sl}(2,\mathbb{C}),A^{1},A^{1},\omega_{1},2\omega_{1},0) with
    𝐡ϕ=(1,2,2,1){\bf{h_{\phi}}}=(1,2,2,1). The representation is real.
    In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔰𝔲(1,1)𝔰𝔲(1,1)\mathfrak{su}(1,1)\oplus\mathfrak{su}(1,1).

  2. 2.

    (𝔰𝔩(2,),𝔰𝔩(4,),A1,A2,ω1,ω2,0)(\mathfrak{sl}(2,\mathbb{C}),\mathfrak{sl}(4,\mathbb{C}),A^{1},A^{2},\omega_{1},\omega_{2},0) with
    𝐡ϕ=(1,5,5,1){\bf{h_{\phi}}}=(1,5,5,1). The representation is real.
    In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔰𝔲(1,1)𝔰𝔲(2,2)\mathfrak{su}(1,1)\oplus\mathfrak{su}(2,2).

  3. 3.

    (𝔰𝔩(2,),𝔰𝔬(2r,),A1,A1,ω1,ω1,0)(\mathfrak{sl}(2,\mathbb{C}),\mathfrak{so}(2r,\mathbb{C}),A^{1},A^{1},\omega_{1},\omega_{1},0) with
    𝐡ϕ=(1,2r1,2r1,1){\bf{h_{\phi}}}=(1,2r-1,2r-1,1). The representation is real.
    In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔰𝔲(1,1)𝔰𝔬(2,2r2)\mathfrak{su}(1,1)\oplus\mathfrak{so}(2,2r-2).

  4. 4.

    (𝔰𝔩(2,),𝔰𝔬(8,),A1,A3,ω1,2ω3,0)(\mathfrak{sl}(2,\mathbb{C}),\mathfrak{so}(8,\mathbb{C}),A^{1},A^{3},\omega_{1},2\omega_{3},0) with
    𝐡ϕ=(1,34,34,1){\bf{h_{\phi}}}=(1,34,34,1). The representation is real.
    In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔰𝔲(1,1)𝔰𝔬(8)\mathfrak{su}(1,1)\oplus\mathfrak{so}^{*}(8).

  5. 5.

    (𝔰𝔩(2,),𝔰𝔬(8,),A1,A4,ω1,ω4,0)(\mathfrak{sl}(2,\mathbb{C}),\mathfrak{so}(8,\mathbb{C}),A^{1},A^{4},\omega_{1},\omega_{4},0) with
    𝐡ϕ=(1,34,34,1){\bf{h_{\phi}}}=(1,34,34,1). The representation is real.
    In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔰𝔲(1,1)𝔰𝔬(8)\mathfrak{su}(1,1)\oplus\mathfrak{so}^{*}(8).

  6. 6.

    (𝔰𝔩(2,),𝔰𝔬(2r+1,),A1,A1,ω1,ω1,0)(\mathfrak{sl}(2,\mathbb{C}),\mathfrak{so}(2r+1,\mathbb{C}),A^{1},A^{1},\omega_{1},\omega_{1},0) with
    𝐡ϕ=(1,2r,2r,1){\bf{h_{\phi}}}=(1,2r,2r,1). The representation is real.
    In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔰𝔲(1,1)𝔰𝔬(2,2r1)\mathfrak{su}(1,1)\oplus\mathfrak{so}(2,2r-1).

Proof.

Again, the proof is similar to the ones before. ∎

Remark 3.12.

The representations given in 4&5 are equivalent up to an automorphism of the Dynkin diagram.

3.2.3 Case 3: 𝔤\mathfrak{g}s the direct sum of 3 simple Lie algebras, and UUecomposes into four eigenspaces

Suppose 𝔤=𝔤1𝔤2𝔤3\mathfrak{g}=\mathfrak{g}_{1}\oplus\mathfrak{g}_{2}\oplus\mathfrak{g}_{3}, where 𝔤1\mathfrak{g_{1}}, 𝔤2\mathfrak{g_{2}} and 𝔤3\mathfrak{g}_{3} are all simple Lie algebras. Similar to the previous cases, grading element E𝔤E\in\mathfrak{g}_{\mathbb{C}} decomposes as E=Ess1+Ess2+Ess3+EE=E_{ss}^{1}+E_{ss}^{2}+E_{ss}^{3}+E^{\prime}, and irreducible representation UU of 𝔤\mathfrak{g}_{\mathbb{C}} must be isomorphic to some U1U2U3U_{1}\otimes U_{2}\otimes U_{3}, where U1,U2U_{1},U_{2} and U3U_{3} are respectively irreducible representations of 𝔤1,𝔤2\mathfrak{g}_{1},\mathfrak{g}_{2} and 𝔤3\mathfrak{g}_{3}. In this case, we assume that U1=Ua1Ua11U_{1}=U_{a}^{1}\oplus U_{a-1}^{1},U2=Ub2Ub12U_{2}=U_{b}^{2}\oplus U_{b-1}^{2}, and U3=Uc2Uc12U_{3}=U_{c}^{2}\oplus U_{c-1}^{2} respectively as eigenspaces of Ess1,Ess2E_{ss}^{1},E_{ss}^{2} and Ess3E_{ss}^{3}. Then as eigenspaces of Ess=Ess1+Ess2+Ess3E_{ss}=E_{ss}^{1}+E_{ss}^{2}+E_{ss}^{3},

U=Ua+b+cUa+b+c1Ua+b+c2Ua+b+c3.U=U_{a+b+c}\oplus U_{a+b+c-1}\oplus U_{a+b+c-2}\oplus U_{a+b+c-3}.

With c=3/2(a+b)c=3/2-(a+b) and EE^{\prime} acting on UU as c𝟙c\mathds{1}, we get that U1U2U_{1}\otimes U_{2} admits EE eigenspace decomposition

U=U3/2U1/2U1/2U3/2.U=U_{3/2}\oplus U_{1/2}\oplus U_{-1/2}\oplus U_{-3/2}.

Thus, we get desired VV_{\mathbb{C}} in this case if and only if UU is real. Then there are two possible cases:

  1. 1.

    All of U1U_{1}, U2U_{2} and U3U_{3} are real;

  2. 2.

    Exactly two of them are quaternionic and one is real.

However, one may observe that all tuples examined in Proposition 3.3 are either complex or real, so the second case is impossible. We summarize all desired (𝔤ss,Ess,μ,c)(\mathfrak{g_{\mathbb{C}}}^{ss},E_{ss},\mu,c) tuples in the following proposition:

Proposition 3.13.

In case 3, the irreducible Lie algebra Hodge representations with Hodge numbers 𝐡ϕ=(1,a,a,1){\bf{h_{\phi}}}=(1,a,a,1) arise with the following tuples of
(𝔤1,ss,𝔤2,ss,𝔤3,ss,Ess1,Ess2,Ess3,μ1,μ2,μ3,c)(\mathfrak{g}_{1,\mathbb{C}}^{ss},\mathfrak{g}^{ss}_{2,\mathbb{C}},\mathfrak{g}^{ss}_{3,\mathbb{C}},E^{1}_{ss},E^{2}_{ss},E^{3}_{ss},\mu^{1},\mu^{2},\mu^{3},c):

  1. 1.

    (𝔰𝔩(2,),𝔰𝔩(2,),𝔰𝔩(2,),A1,A1,A1,ω1,ω1,ω1,0)(\mathfrak{sl}(2,\mathbb{C}),\mathfrak{sl}(2,\mathbb{C}),\mathfrak{sl}(2,\mathbb{C}),A^{1},A^{1},A^{1},\omega_{1},\omega_{1},\omega_{1},0) with
    𝐡ϕ=(1,3,3,1){\bf h_{\phi}}=(1,3,3,1). The representation is real.
    In this case, 𝔤ss\mathfrak{g}_{\mathbb{R}}^{ss} is 𝔰𝔲(1,1)𝔰𝔲(1,1)𝔰𝔲(1,1)\mathfrak{su}(1,1)\oplus\mathfrak{su}(1,1)\oplus\mathfrak{su}(1,1).

Proof.

Again, the proof is similar to the ones before. ∎

Appendix A Weight Difference in Terms of Simple Roots

Fix a complex simple Lie Algebra 𝔤\mathfrak{g} and an irreducible representation VV of 𝔤\mathfrak{g}. Denote μ\mu as the highest weight on VV. Fix Cartan subalgebra 𝔥\mathfrak{h} of gg and choose E𝔥E\in\mathfrak{h}. Suppose VV decomposes into weight spaces {vi}\{v_{i}\} of 𝔥\mathfrak{h} with corresponding weights {λi}\{\lambda_{i}\}. Recall that we define the action of 𝔥\mathfrak{h} on the dual space VV^{*} via:

gvi(vj):=vi(gvj)=vi(λj(g)vj))=λj(g)vi(vj)\begin{split}g\cdot v_{i}^{*}(v_{j})&\mathrel{\mathop{\mathchar 58\relax}}=v_{i}^{*}(-g\cdot v_{j})\\ &=v_{i}^{*}(-\lambda_{j}(g)v_{j}))\\ &=-\lambda_{j}(g)v_{i}^{*}(v_{j})\end{split}

Thus, if we denote the highest weight on VV^{*} as μ\mu^{*}, then the lowest weight on VV is just μ-\mu^{*}. Moreover, let w0w_{0} be the longest element in the Weyl group of the root system of 𝔤\mathfrak{g}. Then we know that μ=w0(μ)\mu^{*}=-w_{0}(\mu). On the other hand, denote the simple roots of 𝔤\mathfrak{g} as Σ\Sigma. Then w0(Σ)=Σw_{0}(\Sigma)=-\Sigma, so w0-w_{0} defines an isometry on Σ\Sigma and thus gives an automorphism of the Dynkin diagram. Hence, by looking at all possible automorphisms of the Dynkin diagrams and find the automorphism that corresponds to the longest word in the Weyl group, we can get the formula of w0w_{0}. The results are exhibited below:

Complex Simple Lie Algebra Root System Type w0-w_{0}
𝔰𝔩(r+1,)\mathfrak{sl}({r+1},\mathbb{C}) ArA_{r} ωiωr+1i\omega_{i}\leftrightarrow\omega_{r+1-i}
𝔰𝔬(2r+1,)\mathfrak{so}(2r+1,\mathbb{C}) BrB_{r} id
𝔰𝔭(2r,)\mathfrak{sp}(2r,\mathbb{C}) CrC_{r} id
𝔰𝔬(2r,)\mathfrak{so}(2r,\mathbb{C}) with rr even DrD_{r} id
𝔰𝔬(2r,)\mathfrak{so}(2r,\mathbb{C}) with rr odd DrD_{r} ωr1ωr\omega_{r-1}\leftrightarrow\omega_{r}
𝔢6\mathfrak{e_{6}} E6E_{6} ω1ω6,ω3ω5\omega_{1}\leftrightarrow\omega_{6},\omega_{3}\leftrightarrow\omega_{5}
𝔢7\mathfrak{e_{7}} E7E_{7} id
𝔢8\mathfrak{e_{8}} E8E_{8} id
𝔣4\mathfrak{f_{4}} F4F_{4} id
𝔤2\mathfrak{g_{2}} G2G_{2} id

Finally, by making use of the formulae that translate fundamental weights into simple roots, we may express the difference of the highest weight and the lowest weight on VV, μ+μ\mu+\mu^{*} with simple roots. Write μ=i=1rμiωi\mu=\sum_{i=1}^{r}\mu^{i}\omega_{i}, where ωi\omega_{i} denotes the ii-th fundamental weight. The results are exhibited below:

  1. 1.

    When 𝔤=𝔰𝔩(r+1,)\mathfrak{g}=\mathfrak{sl}(r+1,\mathbb{C}),

    μ+μ=i=1rμi{l=1ilαl+mk=i+1riαk+l=1ilαr+1l}\displaystyle\mu+\mu^{*}=\sum_{i=1}^{r}\mu^{i}\{\sum_{l=1}^{i}l\alpha_{l}+m\sum_{k=i+1}^{r-i}\alpha_{k}+\sum_{l=1}^{i}l\alpha_{r+1-l}\}

    where m=min{i,r+1i}.m=\min\{i,r+1-i\}.

  2. 2.

    When 𝔤=𝔰𝔬(2r+1,)\mathfrak{g}=\mathfrak{so}(2r+1,\mathbb{C}),

    μ+μ\displaystyle\mu+\mu^{*} =i=1r12μi{α1+2α2++(i1)αi1+i(αi+αi+1++αr)}\displaystyle=\sum_{i=1}^{r-1}2\mu^{i}\{\alpha_{1}+2\alpha_{2}+\ldots+(i-1)\alpha_{i-1}+i(\alpha_{i}+\alpha_{i+1}+\ldots+\alpha_{r})\}
    +μr{α1+2α2++rαr}.\displaystyle+\mu^{r}\{\alpha_{1}+2\alpha_{2}+\ldots+r\alpha_{r}\}.
  3. 3.

    When 𝔤=𝔰𝔭(2r,)\mathfrak{g}=\mathfrak{sp}(2r,\mathbb{C}),

    μ+μ\displaystyle\mu+\mu^{*} =i=1r2μi{α1+2α2++(i1)αi1\displaystyle=\sum_{i=1}^{r}2\mu^{i}\{\alpha_{1}+2\alpha_{2}+\ldots+(i-1)\alpha_{i-1}
    +i(αi+αi+1++αr1+12αr)}.\displaystyle+i(\alpha_{i}+\alpha_{i+1}+\ldots+\alpha_{r-1}+\frac{1}{2}\alpha_{r})\}.
  4. 4.

    When 𝔤=𝔰𝔬(2r,)\mathfrak{g}=\mathfrak{so}({2r},\mathbb{C}) with rr odd,

    μ+μ\displaystyle\mu+\mu^{*} =i=1r22μi{α1+2α2++(i1)αi1\displaystyle=\sum_{i=1}^{r-2}2\mu^{i}\{\alpha_{1}+2\alpha_{2}+\ldots+(i-1)\alpha_{i-1}
    +i(αi+αi+1++αr2)+12i(αr1+αr)}\displaystyle+i(\alpha_{i}+\alpha_{i+1}+\ldots+\alpha_{r-2})+\frac{1}{2}i(\alpha_{r-1}+\alpha_{r})\}
    +μr1+μr2{α1+2α2++(r2)αr2+r2αr1+r22αr}\displaystyle+\frac{\mu^{r-1}+\mu^{r}}{2}\{\alpha_{1}+2\alpha_{2}+\ldots+(r-2)\alpha_{r-2}+\frac{r}{2}\alpha_{r-1}+\frac{r-2}{2}\alpha_{r}\}
    +μr+μr12{α1+2α2++(r2)αr2+r22αr1+r2αr}.\displaystyle+\frac{\mu^{r}+\mu^{r-1}}{2}\{\alpha_{1}+2\alpha_{2}+\ldots+(r-2)\alpha_{r-2}+\frac{r-2}{2}\alpha_{r-1}+\frac{r}{2}\alpha_{r}\}.
  5. 5.

    When 𝔤=𝔰𝔬(2r,)\mathfrak{g}=\mathfrak{so}({2r},\mathbb{C}) with rr even,

    μ+μ\displaystyle\mu+\mu^{*} =i=1r22μi{α1+2α2++(i1)αi1\displaystyle=\sum_{i=1}^{r-2}2\mu^{i}\{\alpha_{1}+2\alpha_{2}+\ldots+(i-1)\alpha_{i-1}
    +i(αi+αi+1++αr2)+12i(αr1+αr)}\displaystyle+i(\alpha_{i}+\alpha_{i+1}+\ldots+\alpha_{r-2})+\frac{1}{2}i(\alpha_{r-1}+\alpha_{r})\}
    +μr1{α1+2α2++(r2)αr2+r2αr1+r22αr}\displaystyle+\mu^{r-1}\{\alpha_{1}+2\alpha_{2}+\ldots+(r-2)\alpha_{r-2}+\frac{r}{2}\alpha_{r-1}+\frac{r-2}{2}\alpha_{r}\}
    +μr{α1+2α2++(r2)αr2+r22αr1+r2αr}.\displaystyle+\mu^{r}\{\alpha_{1}+2\alpha_{2}+\ldots+(r-2)\alpha_{r-2}+\frac{r-2}{2}\alpha_{r-1}+\frac{r}{2}\alpha_{r}\}.
  6. 6.

    When 𝔤=𝔢6\mathfrak{g}=\mathfrak{e_{6}},

    μ+μ\displaystyle\mu+\mu^{*} =(μ1+μ6)(2α1+2α2+3α3+4α4+3α5+2α6)\displaystyle=(\mu^{1}+\mu^{6})(2\alpha_{1}+2\alpha_{2}+3\alpha_{3}+4\alpha_{4}+3\alpha_{5}+2\alpha_{6})
    +(μ3+μ5)(3α1+4α2+6α3+8α4+6α5+3α6)\displaystyle+(\mu^{3}+\mu^{5})(3\alpha_{1}+4\alpha_{2}+6\alpha_{3}+8\alpha_{4}+6\alpha_{5}+3\alpha_{6})
    +2μ2(α1+2α2+2α3+3α4+2α5+α6)\displaystyle+2\mu^{2}(\alpha_{1}+2\alpha_{2}+2\alpha_{3}+3\alpha_{4}+2\alpha_{5}+\alpha_{6})
    +2μ4(2α1+3α2+4α3+6α4+4α5+2α6).\displaystyle+2\mu^{4}(2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+6\alpha_{4}+4\alpha_{5}+2\alpha_{6}).
  7. 7.

    When 𝔤=𝔢7\mathfrak{g}=\mathfrak{e_{7}},

    μ+μ\displaystyle\mu+\mu^{*} =2μ1(2α1+2α2+3α3+4α4+3α5+2α6+α7)\displaystyle=2\mu^{1}(2\alpha_{1}+2\alpha_{2}+3\alpha_{3}+4\alpha_{4}+3\alpha_{5}+2\alpha_{6}+\alpha_{7})
    +μ2(4α1+7α2+8α3+12α4+9α5+6α6+3α7)\displaystyle+\mu^{2}(4\alpha_{1}+7\alpha_{2}+8\alpha_{3}+12\alpha_{4}+9\alpha_{5}+6\alpha_{6}+3\alpha_{7})
    +2μ3(3α1+4α2+6α3+8α4+6α5+4α6+2α7)\displaystyle+2\mu^{3}(3\alpha_{1}+4\alpha_{2}+6\alpha_{3}+8\alpha_{4}+6\alpha_{5}+4\alpha_{6}+2\alpha_{7})
    +2μ4(4α1+6α2+8α3+12α4+9α5+6α6+3α7)\displaystyle+2\mu^{4}(4\alpha_{1}+6\alpha_{2}+8\alpha_{3}+12\alpha_{4}+9\alpha_{5}+6\alpha_{6}+3\alpha_{7})
    +μ5(6α1+9α2+12α3+18α4+15α5+10α6+5α7)\displaystyle+\mu^{5}(6\alpha_{1}+9\alpha_{2}+12\alpha_{3}+18\alpha_{4}+15\alpha_{5}+10\alpha_{6}+5\alpha_{7})
    +2μ6(2α1+3α2+4α3+6α4+5α5+4α6+2α7)\displaystyle+2\mu^{6}(2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+6\alpha_{4}+5\alpha_{5}+4\alpha_{6}+2\alpha_{7})
    +μ7(2α1+3α2+4α3+6α4+5α5+4α6+3α7).\displaystyle+\mu^{7}(2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+6\alpha_{4}+5\alpha_{5}+4\alpha_{6}+3\alpha_{7}).
  8. 8.

    When 𝔤=𝔢8\mathfrak{g}=\mathfrak{e_{8}},

    μ+μ\displaystyle\mu+\mu^{*} =2μ1(4α1+5α2+7α3+10α4+8α5+6α6+4α7+2α8)\displaystyle=2\mu^{1}(4\alpha_{1}+5\alpha_{2}+7\alpha_{3}+10\alpha_{4}+8\alpha_{5}+6\alpha_{6}+4\alpha_{7}+2\alpha_{8})
    +2μ2(5α1+8α2+10α3+15α4+12α5+9α6+6α7+3α8)\displaystyle+2\mu^{2}(5\alpha_{1}+8\alpha_{2}+10\alpha_{3}+15\alpha_{4}+12\alpha_{5}+9\alpha_{6}+6\alpha_{7}+3\alpha_{8})
    +2μ3(7α1+10α2+14α3+20α4+16α5+12α6+8α7+4α8)\displaystyle+2\mu^{3}(7\alpha_{1}+10\alpha_{2}+14\alpha_{3}+20\alpha_{4}+16\alpha_{5}+12\alpha_{6}+8\alpha_{7}+4\alpha_{8})
    +2μ4(10α1+15α2+20α3+30α4+24α5+18α6+12α7+6α8)\displaystyle+2\mu^{4}(10\alpha_{1}+15\alpha_{2}+20\alpha_{3}+30\alpha_{4}+24\alpha_{5}+18\alpha_{6}+12\alpha_{7}+6\alpha_{8})
    +2μ5(8α1+12α2+16α3+24α4+20α5+15α6+10α7+5α8)\displaystyle+2\mu^{5}(8\alpha_{1}+12\alpha_{2}+16\alpha_{3}+24\alpha_{4}+20\alpha_{5}+15\alpha_{6}+10\alpha_{7}+5\alpha_{8})
    +2μ6(6α1+9α2+12α3+18α4+15α5+12α6+8α7+4α8)\displaystyle+2\mu^{6}(6\alpha_{1}+9\alpha_{2}+12\alpha_{3}+18\alpha_{4}+15\alpha_{5}+12\alpha_{6}+8\alpha_{7}+4\alpha_{8})
    +2μ7(4α1+6α2+8α3+12α4+10α5+8α6+6α7+3α8)\displaystyle+2\mu^{7}(4\alpha_{1}+6\alpha_{2}+8\alpha_{3}+12\alpha_{4}+10\alpha_{5}+8\alpha_{6}+6\alpha_{7}+3\alpha_{8})
    +2μ8(2α1+3α2+4α3+6α4+5α5+4α6+3α7+2α8).\displaystyle+2\mu^{8}(2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+6\alpha_{4}+5\alpha_{5}+4\alpha_{6}+3\alpha_{7}+2\alpha_{8}).
  9. 9.

    When 𝔤=𝔣4\mathfrak{g}=\mathfrak{f_{4}},

    μ+μ\displaystyle\mu+\mu^{*} =2μ1(2α1+3α2+4α3+2α4)+2μ2(3α1+6α2+8α3+4α4)\displaystyle=2\mu^{1}(2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+2\alpha_{4})+2\mu^{2}(3\alpha_{1}+6\alpha_{2}+8\alpha_{3}+4\alpha_{4})
    +2μ3(2α1+4α2+6α3+3α4)+2μ4(α1+2α2+3α3+2α4).\displaystyle+2\mu^{3}(2\alpha_{1}+4\alpha_{2}+6\alpha_{3}+3\alpha_{4})+2\mu^{4}(\alpha_{1}+2\alpha_{2}+3\alpha_{3}+2\alpha_{4}).
  10. 10.

    When 𝔤=𝔤2\mathfrak{g}=\mathfrak{g_{2}},

    μ+μ\displaystyle\mu+\mu^{*} =2μ1(2α1+α2)+2μ2(3α1+2α2).\displaystyle=2\mu^{1}(2\alpha_{1}+\alpha_{2})+2\mu^{2}(3\alpha_{1}+2\alpha_{2}).

Appendix B Parabolic Subalgebra Proof

In this section, we will define Borel subalgebra and parabolic subalgebra. Then we will prove the statement that given a complex semisimple Lie algebra 𝔤\mathfrak{g}_{\mathbb{C}}, its irreducible representation UU with highest weight μ\mu and grading element E𝔤E\in\mathfrak{g}_{\mathbb{C}}, dimUμ(E)=1{\rm dim\,}U_{\mu}(E)=1 if and only if αi(E)>0\alpha_{i}(E)>0 for all μi0\mu^{i}\neq 0.

Definition B.1.

Given 𝔤𝔰𝔰\mathfrak{g^{ss}} a complex semisimple Lie algebra, 𝔥𝔤ss\mathfrak{h}\subset\mathfrak{g}^{ss} a Cartan subalgebra, and Δ+𝔥\Delta^{+}\subset\mathfrak{h}^{*} a set of positive roots. The Borel subalgebra determined by (𝔥,Δ+)(\mathfrak{h},\Delta^{+}) is

𝔟=𝔥αΔ+𝔤α.\mathfrak{b}=\mathfrak{h}\oplus\bigoplus_{\alpha\in\Delta^{+}}\mathfrak{g}_{\alpha}.
Definition B.2.

A parabolic subalgebra is a subalgebra that contains a Borel subalgebra.

Remark B.3.

Given 𝔤𝔰𝔰\mathfrak{g^{ss}} a complex semisimple Lie algebra of rank rr, 𝔥𝔤ss\mathfrak{h}\subset\mathfrak{g}^{ss} a Cartan subalgebra, Δ+𝔥\Delta^{+}\subset\mathfrak{h}^{*} a set of positive roots, and I{1,,r}I\subset\{1,\ldots,r\}, the parabolic subalgebra determined by (𝔥,Δ+,I)(\mathfrak{h},\Delta^{+},I) is a subalgebra that admits decomposition:

𝔭I=𝔥αΔI𝔤ααΔI+𝔤α,\mathfrak{p}_{I}=\mathfrak{h}\oplus\bigoplus_{\alpha\in\Delta_{I}}\mathfrak{g}_{\alpha}\oplus\bigoplus_{\alpha\in\Delta_{I}^{+}}\mathfrak{g}_{\alpha},

where ΔI={i=1rλiαi|λi=0iI}\Delta_{I}=\{\sum_{i=1}^{r}\lambda^{i}\alpha_{i}|\lambda^{i}=0\forall i\in I\} and ΔI+=Δ+ΔI.\Delta_{I}^{+}=\Delta^{+}\setminus\Delta_{I}. In fact, given Borel subalgebra 𝔟\mathfrak{b} determined by (𝔥,Δ+)(\mathfrak{h},\Delta^{+}), each parabolic subalgebra 𝔭𝔟\mathfrak{p}\supset\mathfrak{b} is determined by a unique maximal set II.

Now fix a complex semisimple Lie algebra 𝔤\mathfrak{g}_{\mathbb{C}}. Let UU be an irreducible representation of 𝔤\mathfrak{g}_{\mathbb{C}} with highest weight μ=i=1rμiωi\mu=\sum_{i=1}^{r}\mu^{i}\omega_{i} and 0vUμ0\neq v\in U_{\mu} a highest weight vector.

Proposition B.4.

𝔭μ:={ξ𝔤|ξvv}\mathfrak{p}_{\mu}\mathrel{\mathop{\mathchar 58\relax}}=\{\xi\in\mathfrak{g_{\mathbb{C}}}|\xi\cdot v\in\mathbb{C}v\} is a parabolic subalgebra.

Proof.

Since all elements of the Cartan subalgebra act on UU via weights, 𝔥𝔭I\mathfrak{h}\subset\mathfrak{p}_{I}. Since vv is a highest weight vector, it is annihilated by all positive root vectors, so all positive root spaces are contained in 𝔭μ\mathfrak{p}_{\mu}. Thus, 𝔭μ\mathfrak{p}_{\mu} contains a Borel subalgebra and is therefore a parabolic subalgebra. ∎

Proposition B.5.

𝔭μ\mathfrak{p}_{\mu} is the subalgebra determined by (𝔥,Δ+,I)(\mathfrak{h},\Delta^{+},I) where Δ+\Delta^{+} is the set of all positive roots and I={i|μi0}I=\{i|\mu^{i}\neq 0\}.

Proof.

Let II^{\prime} be the maximal set that determines 𝔭μ\mathfrak{p}_{\mu}. It is straightforward that III\subset I^{\prime}. We will show that III^{\prime}\subset I. Now suppose that there exists some ii such that in the sum μ=j=1rμjωj\mu=\sum_{j=1}^{r}\mu^{j}\omega_{j}, μi0\mu^{i}\neq 0 and 𝔭μ\mathfrak{p}_{\mu} contains some 0Y𝔤αi0\neq Y\in\mathfrak{g}_{-\alpha_{i}}. We first claim that Yv=0Y\cdot v=0. Since Y𝔭μY\in\mathfrak{p}_{\mu}, Yv=cvY\cdot v=cv for some cc\in\mathbb{C}. Thus, for all H𝔥H\in\mathfrak{h},

HYv=cHv=cμ(H)v.H\cdot Y\cdot v=cH\cdot v=c\mu(H)v.

On the other hand,

HYv=([H,Y]+YH)v=(αi(H)+1)Yv=(αi(H)+1)cv.H\cdot Y\cdot v=([H,Y]+Y\cdot H)\cdot v=(-\alpha_{i}(H)+1)Y\cdot v=(-\alpha_{i}(H)+1)cv.

Hence, we must have c=0c=0.
Choose X𝔤αi𝔭μX\in\mathfrak{g}_{\alpha_{i}}\subset\mathfrak{p}_{\mu}. Since vv is a highest weight vector, Xv=0X\cdot v=0. Define H:=[X,Y]H\mathrel{\mathop{\mathchar 58\relax}}=[X,Y]. Then ωi(H)>0\omega_{i}(H)>0 and thus μ(H)>0\mu(H)>0. However,

μ(H)v=Hv=[X,Y]v=XYvYXv=X0Y0=0;\mu(H)v=H\cdot v=[X,Y]\cdot v=X\cdot Y\cdot v-Y\cdot X\cdot v=X\cdot 0-Y\cdot 0=0;

contradiction! Thus, we must have I’=I. ∎

Corollary B.6.

Suppose 0ξ𝔤αi0\neq\xi\in\mathfrak{g}_{-\alpha_{i}}. Then ξv0\xi\cdot v\neq 0 if and only if iIi\in I.

Proof.

If iIi\in I, then 𝔤αi𝔤μ={0}\mathfrak{g}_{-\alpha_{i}}\cap\mathfrak{g}_{\mu}=\{0\}. Thus, ξvv\xi\cdot v\notin\mathbb{C}v and thus ξv0\xi\cdot v\neq 0. If ξv=0\xi\circ v=0, then ξ𝔤μ\xi\in\mathfrak{g_{\mu}}. More specifically, ξαΔI𝔤α\xi\in\bigoplus_{\alpha\in\Delta_{I}}\mathfrak{g}_{\alpha}. Thus, iIi\in I. ∎

Proposition B.7.

dimUμ(E)=1{\rm dim\,}U_{\mu(E)}=1 if and only if αi(E)>0\alpha_{i}(E)>0 for all iIi\in I.

Proof.

Fix iIi\in I and choose 0ξ𝔤αi0\neq\xi\in\mathfrak{g}_{-\alpha_{i}}. Again, since iIi\in I, we have that 𝔤αi𝔤μ={0}\mathfrak{g}_{-\alpha_{i}}\cap\mathfrak{g}_{\mu}=\{0\}, so ξ𝔤μ\xi\notin\mathfrak{g}_{\mu}. Therefore, ξvv\xi\cdot v\notin\mathbb{C}v. From Corollary B.6, we also know that ξv0\xi\cdot v\neq 0. Now note that

Eξv=([E,ξ]+ξE)v=(αi(E)+μ(E))ξv.E\cdot\xi\cdot v=([E,\xi]+\xi\cdot E)\cdot v=(-\alpha_{i}(E)+\mu(E))\xi\cdot v.

Thus, αi(E)=0\alpha_{i}(E)=0 if and only if 0ξvUμ(E)0\neq\xi\cdot v\in U_{\mu(E)}, if and only if dimUμ(E)>1{\rm dim\,}U_{\mu(E)}>1. Hence, dimUμ(E)=1{\rm dim\,}U_{\mu(E)}=1 if and only if αi(E)>0\alpha_{i}(E)>0 for all iIi\in I as claimed. ∎

Appendix C Center Dimension Proof

Given a complex Lie algebra 𝔤\mathfrak{g}, let GG be a complex connected Lie group with Lie algebra 𝔤\mathfrak{g}. We will prove that the center Z(𝔤)Z(\mathfrak{g}) of 𝔤\mathfrak{g} has at most dimension one if 𝔤/Z(𝔤)\mathfrak{g}/Z(\mathfrak{g}) is simple, so the adjoint representation of 𝔤\mathfrak{g} is irreducible. For sake of contradiction, suppose that dimZ(𝔤)2{\rm dim\,}Z(\mathfrak{g})\geq 2. Recall that by definition

Z(𝔤)={X𝔤|[X,Y]=0Y𝔤}.Z(\mathfrak{g})=\{X\in\mathfrak{g}|[X,Y]=0\quad\forall Y\in\mathfrak{g}\}.

Then we can find basis {X1,X2,,Xm}\{X_{1},X_{2},\ldots,X_{m}\} of Z(𝔤)Z(\mathfrak{g}), where m2m\geq 2 is the dimension of Z(𝔤)Z(\mathfrak{g}). Define a linear map ϕ:𝔤𝔤\phi\mathrel{\mathop{\mathchar 58\relax}}\mathfrak{g}\to\mathfrak{g} that switches X1X_{1} and X2X_{2} and fixes all other vectors in 𝔤\mathfrak{g}. Define the GG representation AdAd on 𝔤\mathfrak{g} via

Ad(exp(X))Y=[X,Y].Ad(exp(X))\cdot Y=[X,Y].

Note that by the connectedness of GG the above definition is well-defined. Now to show that AdAd commutes with ϕ\phi, it suffices to observe that:

ϕAd(exp(X))X1\displaystyle\phi\circ Ad(exp(X))\cdot X_{1} =ϕ[X,X1]=0=ϕ[X,X2]\displaystyle=\phi[X,X_{1}]=0=\phi[X,X_{2}]
=Ad(exp(X))X2=Ad(exp(X))ϕ(X1)\displaystyle=Ad(exp(X))\cdot X_{2}=Ad(exp(X))\cdot\phi(X_{1})

By Schurs’s lemma, on a GG-irreducible representation, the only GG-linear automorphism must be a multiple of identity, but ϕ\phi is not; contradiction. Hence, the dimension of any complex Lie algebra’s center is at most one.

References

  • [FL13] Robert Friedman and Radu Laza “Semialgebraic Horizontal Subvarieties of Calabi-Yau Type” In Duke Mathematical Journal 162.12 Duke University Press, 2013, pp. 2077–2148 DOI: 10.1215/00127094-2348107
  • [GGK10] Mark Green, Phillip Griffiths and Matt Kerr “Mumford-Tate domains” In Bollettino dell’ UMI(9), 2010, pp. 281–307
  • [GGK12] Mark Green, Phillip Griffiths and Matt Kerr “Mumford-Tate Groups and Domains: Their Geometry and Arithmetic (AM-183)” Princeton University Press, 2012 URL: http://www.jstor.org/stable/j.ctt7s3h1
  • [HR20] Xiayimei Han and Colleen Robles “Hodge Representations” In Experimental Results 1 Cambridge University Press, 2020, pp. e51 DOI: 10.1017/exp.2020.55
  • [Kna02] Anthony W. Knapp “Lie Groups: Beyond an Introduction” Birkhäuser, 2002
  • [Rib83] Kenneth A. Ribet “Hodge Classes on Certain Types of Abelian Varieties” In American Journal of Mathematics 105.2 Johns Hopkins University Press, 1983, pp. 523–538 URL: http://www.jstor.org/stable/2374267
  • [Rob14] Colleen Robles “Schubert varieties as variations of Hodge structure” In Selecta Mathematica 20.3, 2014, pp. 719–768 DOI: 10.1007/s00029-014-0148-8
  • [Zar83] Yu.G. Zarhin “Hodge groups of K3 surfaces.” In Journal für die reine und angewandte Mathematik 341, 1983, pp. 193–220 URL: http://eudml.org/doc/152536