This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

[name=not,title=Index of notation]

Hodge cohomology with a ramification filtration, I

Shane Kelly Graduate School of Mathematical Sciences University of Tokyo 3-8-1 Komaba Meguro-ku Tokyo 153-8914, Japan [email protected]  and  Hiroyasu Miyazaki NTT Corporation, NTT Institute for Fundamental Mathematics, 3-1 Morinosato-Wakamiya,Atsugi,Kanagawa 243-0198, Japan [email protected]
Abstract.

We consider a filtration on the cohomology of the structure sheaf indexed by (not necessarily reduced) divisors “at infinity”. We show that the filtered pieces have transfers morphisms, fpqc descent, and are so called cube invariant.

In the presence of resolution of singularities and weak factorisation they are invariant under blowup “at infinity”. As such, they lead to a realisation functor from Kahn, Miyazaki, Saito and Yamazaki’s category of motives with modulus over a characteristic zero base field.

The first author was supported by JSPS KAKENHI Grant (19K14498). The second author is supported by JSPS KAKENHI Grant (21K13783).

1. Introduction

In his celebrated work [Voe00], Voevodsky constructed the triangulated category of mixed motives 𝐃𝐌keff\operatorname{\mathbf{DM}}^{{\operatorname{eff}}}_{k} over a field kk. In the series of papers [KMSY21a], [KMSY21b], [KMSY20], Kahn, Miyazaki, Saito and Yamazaki define and study a triangulated category 𝐌¯𝐃𝐌keff\operatorname{\mathbf{\underline{M}DM}}^{{\operatorname{eff}}}_{k} which contains Voevodsky’s category 𝐃𝐌keff\operatorname{\mathbf{DM}}^{{\operatorname{eff}}}_{k} as a full subcategory. One of their motivations is to obtain a motivic framework where one can study various non-𝔸1\mathbb{A}^{1}-invariant cohomology. An example of such a cohomology is the coherent cohomology HZari(,𝒪)H^{i}_{{\operatorname{Zar}}}(-,\mathcal{O}) of the structure sheaf 𝒪\mathcal{O}. Indeed, 𝒪\mathcal{O} is represented by 𝔸1\mathbb{A}^{1} which is contractible in 𝐃𝐌keff\operatorname{\mathbf{DM}}^{{\operatorname{eff}}}_{k} by definition.

Somewhat surprisingly, it has be unknown for a long time whether the most obvious non-𝔸1\mathbb{A}^{1}-invariant cohomology theory HZari(,𝒪)H^{i}_{{\operatorname{Zar}}}(-,\mathcal{O}) is representable in 𝐌¯𝐃𝐌keff\operatorname{\mathbf{\underline{M}DM}}_{k}^{\operatorname{eff}} or not. In this paper we show that it is, at least over any field of characteristic 0 (see Cor. 2 below). As a consequence, we observe another fact, also surprisingly unknown for a long time, that 𝐌¯𝐃𝐌keff\operatorname{\mathbf{\underline{M}DM}}_{k}^{\operatorname{eff}} is strictly larger than 𝐃𝐌keff\operatorname{\mathbf{DM}}_{k}^{\operatorname{eff}}.

In fact, we will represent a suitable filtration of HZari(,𝒪)H^{i}_{{\operatorname{Zar}}}(-,\mathcal{O}) graded by divisors “at infinity”: for any choice of open immersion XX¯X\subseteq\overline{X} and invertible sheaf of ideals 𝒪X¯\mathcal{I}\subseteq\mathcal{O}_{\overline{X}} whose vanishing locus X=Spec¯(𝒪X¯/)X^{\infty}=\operatorname{\underline{Spec}}(\mathcal{O}_{\overline{X}}/\mathcal{I}) satisfies X=X¯XX=\overline{X}\setminus X^{\infty}, we can consider the image of the morphism111The strange use of \sqrt{\mathcal{I}} is motivated by the indexing of certain filtrations appearing in class field theory.

Hq((X¯,X),M¯𝒪):=HZarq(X¯,1)HZarq(X,𝒪X).H^{q}((\overline{X},X^{\infty}),{\underline{M}}\mathcal{O}):=H^{q}_{{\operatorname{Zar}}}(\overline{X},\sqrt{\mathcal{I}}\otimes\mathcal{I}^{\otimes-1})\to H^{q}_{{\operatorname{Zar}}}(X,\mathcal{O}_{X}).

In this way, we obtain a filtration on the cohomology of XX indexed by the multiplicity of effective Cartier divisors. Moreover, one can prove that this filtration is exhaustive222All Nisnevich sheaves with transfers are canonically equipped with such so called “motivic” filtrations, and in the case this filtration is exhaustive the sheaf is called a reciprocity sheaf, [KSYR16], [KSY22], [RS21], [Ser88].:

limn1Hq((X¯,nX),M¯𝒪)HZarq(X,𝒪X).\operatornamewithlimits{\varinjlim}_{n\geq 1}H^{q}((\overline{X},n\cdot X^{\infty}),{\underline{M}}\mathcal{O})\xrightarrow{\sim}H^{q}_{{\operatorname{Zar}}}(X,\mathcal{O}_{X}).

As such, instead of the smooth varieties which generate 𝐃𝐌keff\operatorname{\mathbf{DM}}^{{\operatorname{eff}}}_{k}, the category 𝐌¯𝐃𝐌keff\operatorname{\mathbf{\underline{M}DM}}^{{\operatorname{eff}}}_{k} is generated by modulus pairs. A modulus pair can be defined as a pair 𝒳=(X¯,X)\mathcal{X}=(\overline{X},X^{\infty}) such that X¯\overline{X} is a variety, XX¯X^{\infty}\subseteq\overline{X} is a closed subscheme, and X:=X¯XX^{\circ}:=\overline{X}\setminus X^{\infty} is smooth,333It is traditional to ask that the total space X¯\overline{X} be normal, and XX^{\infty} be an effective Cartier divisor, however this can always be achieved by blowup and normalisation, two operations which we formally invert anyway. In the same way that M(X)𝐃𝐌keffM(X)\in\operatorname{\mathbf{DM}}^{{\operatorname{eff}}}_{k} represents the cohomology of XX, the object M(𝒳)𝐌¯𝐃𝐌keffM(\mathcal{X})\in\operatorname{\mathbf{\underline{M}DM}}^{{\operatorname{eff}}}_{k} represents a filtered piece of the cohomology of XX^{\circ}, namely the cohomology with ramification bounded by XX^{\infty}.

Our main theorem is the following.

Theorem 1 (Theorem 7.3).

Let kk be a field of characteristic zero. there exists an object 𝐌¯𝒪𝐌¯𝐃𝐌keff\mathbf{{\underline{M}}\mathcal{O}}\in\operatorname{\mathbf{\underline{M}DM}}^{\operatorname{eff}}_{k} such that for any smooth variety X¯\overline{X}, any effective Cartier divisor XX^{\infty} with normal crossings support, and any nn\in\mathbb{Z} we have

hom𝐌¯𝐃𝐌keff(M(𝒳),𝐌¯𝒪[n])HZarn(X¯,𝒪(X|X|)).\hom_{\operatorname{\mathbf{\underline{M}DM}}^{{\operatorname{eff}}}_{k}}(M(\mathcal{X}),\mathbf{{\underline{M}}\mathcal{O}}[n])\cong H_{{\operatorname{Zar}}}^{n}\left(\overline{X},\mathcal{O}(X^{\infty}{-}|X^{\infty}|)\right).

where 𝒪(X|X|)\mathcal{O}(X^{\infty}{-}|X^{\infty}|) is the line bundle associated to the divisor X|X|X^{\infty}{-}|X^{\infty}|.

As an immediate corollary of Theorem 1, we obtain

Corollary 2.

For any X𝐒𝐦kX\in\operatorname{\mathbf{Sm}}_{k}, by taking 𝒳=(X,)\mathcal{X}=(X,\varnothing) in Theorem 1, we have a representation of the Hodge cohomology groups

hom𝐌¯𝐃𝐌keff(M(X,),𝐌¯𝒪[n])HZarn(X,𝒪).\hom_{\operatorname{\mathbf{\underline{M}DM}}^{{\operatorname{eff}}}_{k}}(M(X,\varnothing),\mathbf{{\underline{M}}\mathcal{O}}[n])\cong H_{{\operatorname{Zar}}}^{n}(X,\mathcal{O}).

And of course:

Corollary 3.

The canonical fully faithful inclusion

𝐃𝐌keff𝐌¯𝐃𝐌keff\operatorname{\mathbf{DM}}^{{\operatorname{eff}}}_{k}\subseteq\operatorname{\mathbf{\underline{M}DM}}^{{\operatorname{eff}}}_{k}

is not essentially surjective.

The strategy can be summarised as follows. We define M¯𝒪{\underline{M}}\mathcal{O} on 𝐏¯𝐒𝐦k\operatorname{\mathbf{\underline{P}Sm}}_{k} (recalled in §2) and show that it is a quasi-coherent étale sheaf, §3, then show that its Nisnevich fibrant replacement is blowup invariant, §4, cube invariant, §5, and has transfers, §6.

We begin in §2 with a recollection of the general theory, and in particular the construction of 𝐌¯𝐃𝐌keff\operatorname{\mathbf{\underline{M}DM}}_{k}^{{\operatorname{eff}}}. In Appendix A, we collect some definitions and facts about resolution of singularities and weak factorisations. In Appendix B, we give a self-contained proof that M¯Zar\operatorname{\mathrm{\underline{M}Zar}} (resp. M¯e´t\operatorname{\mathrm{\underline{M}\acute{e}t}}) cohomology can be calculated as the colimit of Zariski cohomology (resp. étale cohomology) over abstract admissible blowups. In Appendix C, we make some basic computation of cohomologies on projective spaces generalising classical computations in SGA6 [BGI67].

In future work, this paper’s results and techniques will be used to develop the analogue of Corollary 2 for HZarp(X,ΩXq)H^{p}_{{\operatorname{Zar}}}(X,\Omega^{q}_{X}), as well as Hochschild homology with modulus satisfying an HKR isomorphism.

Related work. In [BPO22] a Hodge-type realization with log poles is constructed which should compare to the realisation constructed in this paper in case of reduced divisor or in case there is no divisor at infinity (that is, the case of tame ramification or the case of arbitrary ramification with no pole restriction).

There is also work in progress by Marco D’Addezio, [D’A23], who studies the M¯Zar\operatorname{\mathrm{\underline{M}Zar}}-sheafification of (X¯,X)Γ(X¯,𝒪X¯)(\overline{X},X^{\infty})\mapsto\Gamma(\overline{X},\mathcal{O}_{\overline{X}}) (although he writes “simply marked schemes” for modulus pairs and “vv-Zariski” for M¯Zar\operatorname{\mathrm{\underline{M}Zar}}).

Acknowledgements

We thank Dan Abramovich for clarifications about Definition A.1.

We thank Ofer Gabber for bringing our attention to Example 8.3. Also, we thank Shuji Saito pointing out that the transfers version of our main theorem was possible; we were originally proving the result only for 𝐌¯𝐃𝐀keff\operatorname{\mathbf{\underline{M}DA}}_{k}^{{\operatorname{eff}}}.

2. Review of the general theory

In this section, we recall basic definitions concerning the category of modulus pairs, Rec.2.1, modulus topologies, Rec.2.3, finite correspondences in the modulus setting, Rec.2.5, and the construction of 𝐌¯𝐃𝐌keff\operatorname{\mathbf{\underline{M}DM}}^{{\operatorname{eff}}}_{k}, Rec.2.6. One can find more details in many places: [KMSY21a, KMSY21b, KMSY20], [Miy20, §1], [KelMiy21, Chap.5, Chap.6].

We fix a perfect base field kk with the case of interest being char(k)=0\operatorname{char}(k)=0. We restrict our attention to modulus pairs over kk with smooth interior so as not to frighten the reader, but a large part of what we write holds over general bases, cf. [KelMiy21].

Recollection 2.1 (Modulus pairs).
  1. (1)

    A modulus pair444We follow the terminology from [KMSY21a, Def.1.1.1]. There is a more general version studied in [KelMiy21] where X¯\overline{X} is qc separated, and X=X¯XX^{\circ}=\overline{X}\setminus X^{\infty} is Noetherian. over kk is a pair

    𝒳=(X¯,X)\mathcal{X}=(\overline{X},X^{\infty})

    such that

    1. (a)

      X¯\overline{X} (called the total space) is a separated kk-scheme of finite type,

    2. (b)

      XX¯X^{\infty}\subseteq\overline{X} (called the modulus) is an effective Cartier divisor, and

    3. (c)

      X:=X¯XX^{\circ}:=\overline{X}\setminus X^{\infty} (called the interior) is smooth.

  2. (2)

    An ambient kk-morphism (X¯,X)(Y¯,Y)(\overline{X},X^{\infty})\to(\overline{Y},Y^{\infty}) of modulus pairs is a kk-morphism f:X¯Y¯f:\overline{X}\to\overline{Y} of the underlying schemes, such that XfYX^{\infty}\geq f^{*}Y^{\infty}.555So for example, there is a tower of morphisms (𝔸1,(tn+1))(𝔸1,(tn)).\dots\to(\mathbb{A}^{1},(t^{n+1}))\to(\mathbb{A}^{1},(t^{n}))\to\dots. reflecting the fact that k[t,t1]=limnt1nk[t]k[t,t^{-1}]=\operatornamewithlimits{\varinjlim}_{n}t^{1-n}k[t], cf.Example 3.2.

  3. (3)

    𝐏¯𝐒𝐦k\operatorname{\mathbf{\underline{P}Sm}}_{k} is the category formed by modulus pairs over kk, together with ambient kk-morphisms.

  4. (4)

    𝐌¯𝐒𝐦k\operatorname{\mathbf{{\underline{M}}Sm}}_{k} is the category of modulus pairs over kk. It is constructed by formally inverting the class Σ\Sigma of abstract admissible blowups:666So it is something like a “global” version of Raynaud’s approach to rigid analytic spaces. i.e., those ambient morphisms f:(X¯,X)(Y¯,Y)f:(\overline{X},X^{\infty})\to(\overline{Y},Y^{\infty}) such that

    1. (a)

      X¯Y¯\overline{X}\to\overline{Y} is proper,

    2. (b)

      X=fYX^{\infty}=f^{*}Y^{\infty}, and

    3. (c)

      XYX^{\circ}\to Y^{\circ} is an isomorphism.

    In symbols,

    𝐌¯𝐒𝐦k:=𝐏¯𝐒𝐦k[Σ1].\operatorname{\mathbf{{\underline{M}}Sm}}_{k}:=\operatorname{\mathbf{\underline{P}Sm}}_{k}[\Sigma^{-1}].

    It is shown in [KMSY21a, Prop.1.7.2] (cf. also [KelMiy21, Prop.1.21]) that Σ\Sigma admits a right calculus of fractions, so

    hom𝐌¯𝐒𝐦k(𝒴,𝒳)=lim𝒴𝒴Σhom𝐏¯𝐒𝐦k(𝒴,𝒳)\hom_{\operatorname{\mathbf{{\underline{M}}Sm}}_{k}}(\mathcal{Y},\mathcal{X})=\varinjlim_{\mathcal{Y}^{\prime}\to\mathcal{Y}\in\Sigma}\hom_{\operatorname{\mathbf{\underline{P}Sm}}_{k}}(\mathcal{Y}^{\prime},\mathcal{X})

    and the colimit is filtered; in fact its indexing category is a filtered poset. In particular every morphism in 𝐌¯𝐒𝐦k\operatorname{\mathbf{{\underline{M}}Sm}}_{k} can be written in the form fs1f\circ s^{-1} where sΣs\in\Sigma and ff is ambient.

  5. (5)

    The category 𝐏¯𝐒𝐦k\operatorname{\mathbf{\underline{P}Sm}}_{k}777Of course if we insist on working in 𝐏¯𝐒𝐦k\operatorname{\mathbf{\underline{P}Sm}}_{k} we also need T×SXT^{\circ}\times_{S^{\circ}}X^{\circ} to be smooth over kk, but in general the pullback along a minimal morphism basically always exists in the larger category of modulus pairs. has categorical fibre products 𝒴=𝒯×𝒮𝒳\mathcal{Y}=\mathcal{T}\times_{\mathcal{S}}\mathcal{X} in the case f:𝒯𝒮f:\mathcal{T}\to\mathcal{S} is minimal, i.e., in the case T=jST^{\infty}=j^{*}S^{\infty}, [KelMiy21, Lem.1.32, Prop.1.33].

    1. (a)

      If ff is flat, Y¯=T¯×S¯X¯\overline{Y}=\overline{T}\times_{\overline{S}}\overline{X} and Y=X|Y¯Y^{\infty}=X^{\infty}|_{\overline{Y}}.

    2. (b)

      If ff is an abstract admissible blowup, Y¯\overline{Y} is the strict transform of X¯\overline{X}.

    3. (c)

      For a general minimal ff, the total space Y¯\overline{Y} is the scheme theoretic closure of T×SXT^{\circ}\times_{S^{\circ}}X^{\circ} in T¯×S¯X¯\overline{T}\times_{\overline{S}}\overline{X}.

  6. (6)

    The category 𝐌¯𝐒𝐦k\operatorname{\mathbf{{\underline{M}}Sm}}_{k} admits all888Again, if we insist on working in 𝐌¯𝐒𝐦k\operatorname{\mathbf{{\underline{M}}Sm}}_{k} then we also need T×SXT^{\circ}\times_{S^{\circ}}X^{\circ} to be smooth over kk, but in general the large category of modulus pairs admits all fibre products. categorical fibre products 𝒴=𝒯×𝒮𝒳\mathcal{Y}=\mathcal{T}\times_{\mathcal{S}}\mathcal{X}, [KelMiy21, Thm.1.40]. The canonical functor 𝐏¯𝐒𝐦k𝐌¯𝐒𝐦k\operatorname{\mathbf{\underline{P}Sm}}_{k}\to\operatorname{\mathbf{{\underline{M}}Sm}}_{k} preserves the fibre products in item (5).

Remark 2.2.

By the universal property of localisation, the category 𝐏𝐒𝐡(𝐌¯𝐒𝐦k){\operatorname{\mathbf{PSh}}}(\operatorname{\mathbf{{\underline{M}}Sm}}_{k}) is canonically identified with the full subcategory of 𝐏𝐒𝐡(𝐏¯𝐒𝐦k){\operatorname{\mathbf{PSh}}}(\operatorname{\mathbf{\underline{P}Sm}}_{k}) consisting of those presheaves which send abstract admissible blowups to isomorphisms. Since abstract admissible blowups are categorical monomorphisms in 𝐏¯𝐒𝐦k\operatorname{\mathbf{\underline{P}Sm}}_{k}, this is precisely the category of sheaves for the topology on 𝐏¯𝐒𝐦k\operatorname{\mathbf{\underline{P}Sm}}_{k} generated by abstract admissible blowups. In symbols, 𝐏𝐒𝐡(𝐌¯𝐒𝐦k)=𝐒𝐡𝐯Σ(𝐏¯𝐒𝐦k){\operatorname{\mathbf{PSh}}}(\operatorname{\mathbf{{\underline{M}}Sm}}_{k})={\operatorname{\mathbf{Shv}}}_{\Sigma}(\operatorname{\mathbf{\underline{P}Sm}}_{k}), cf.[KelMiy21, §A.1].

Recollection 2.3 (Modulus topologies).
  1. (1)

    The Zariski topology on 𝐏¯𝐒𝐦k\operatorname{\mathbf{\underline{P}Sm}}_{k} is generated by families

    (2.1) {fi:(U¯i,Ui)(X¯,X)}iI\{f_{i}:(\overline{U}_{i},U^{\infty}_{i})\to(\overline{X},X^{\infty})\}_{i\in I}

    of minimal morphisms such that {U¯iX¯i}iI\{\overline{U}_{i}\to\overline{X}_{i}\}_{i\in I} is a Zariski covering in the classical sense. Zariski coverings on 𝐏¯𝐒𝐦k\operatorname{\mathbf{\underline{P}Sm}}_{k} form a pretopology in the sense of [SGA72, Exposé II].

  2. (2)

    The MZariski topology or M¯Zar\operatorname{\mathrm{\underline{M}Zar}}-topology on 𝐌¯𝐒𝐦k\operatorname{\mathbf{{\underline{M}}Sm}}_{k} is generated by images of Zariski coverings under the localisation functor 𝐏¯𝐒𝐦k𝐌¯𝐒𝐦k\operatorname{\mathbf{\underline{P}Sm}}_{k}\to\operatorname{\mathbf{{\underline{M}}Sm}}_{k}. Zariski coverings do not form a pretopology on 𝐌¯𝐒𝐦k\operatorname{\mathbf{{\underline{M}}Sm}}_{k}. In general the coverings of the pretopology they generate consists of various iterated compositions of abstract admissible blowups, inverses of abstract admissible blowups, and Zariski coverings. However, such families can always be refined by one of the form

    (2.2) {𝒰i𝒴𝒳}iI\{\mathcal{U}_{i}\to\mathcal{Y}\to\mathcal{X}\}_{i\in I}

    where {𝒰i𝒴}\{\mathcal{U}_{i}\to\mathcal{Y}\} is a Zariski covering and 𝒴𝒳\mathcal{Y}\to\mathcal{X} is an abstract admissible blowup, [KelMiy21, Cor.4.21].

  3. (3)

    The M¯Nis\operatorname{\mathrm{\underline{M}Nis}}, M¯e´t\operatorname{\mathrm{\underline{M}\acute{e}t}}, and M¯fppf\operatorname{\mathrm{\underline{M}fppf}} topologies are defined in the analogous way to M¯Zar\operatorname{\mathrm{\underline{M}Zar}}. There are also more exotic topologies considered in [KelMiy21] but we do not use them here.

Remark 2.4.

By Eq.(2.2) and Remark 2.2 the category 𝐒𝐡𝐯M¯Zar(𝐌¯𝐒𝐦k){\operatorname{\mathbf{Shv}}}_{\operatorname{\mathrm{\underline{M}Zar}}}(\operatorname{\mathbf{{\underline{M}}Sm}}_{k}) is canonically identified with the full subcategory of 𝐒𝐡𝐯Zar(𝐏¯𝐒𝐦k){\operatorname{\mathbf{Shv}}}_{{\operatorname{Zar}}}(\operatorname{\mathbf{\underline{P}Sm}}_{k}) consisting of those sheaves which send abstract admissible blowups to isomorphisms. In symbols, one could write 𝐒𝐡𝐯M¯Zar(𝐌¯𝐒𝐦k)=𝐒𝐡𝐯Σ,Zar(𝐏¯𝐒𝐦k){\operatorname{\mathbf{Shv}}}_{\operatorname{\mathrm{\underline{M}Zar}}}(\operatorname{\mathbf{{\underline{M}}Sm}}_{k})={\operatorname{\mathbf{Shv}}}_{\Sigma,{\operatorname{Zar}}}(\operatorname{\mathbf{\underline{P}Sm}}_{k}).

Recollection 2.5 (Finite correspondences).
  1. (1)

    Write 𝐂𝐨𝐫k\operatorname{\mathbf{Cor}}_{k} for Voevodsky’s category of finite correspondences, [Voe00]. Objects are smooth kk-schemes and hom𝐂𝐨𝐫k(X,Y)\hom_{\operatorname{\mathbf{Cor}}_{k}}(X,Y) is the free abelian group

    {Z|ZX×Y is an integral closed subscheme, and ZX is finite and dominates an irreducible component of X}.\mathbb{Z}\left\{Z\ \middle|\ \begin{array}[]{c}Z\subseteq X\times Y\textrm{ is an integral closed subscheme, and }\\ Z\to X\textrm{ is finite and dominates an irreducible component of }X\end{array}\right\}.

    There is a canonical functor 𝐒𝐦k𝐂𝐨𝐫k\operatorname{\mathbf{Sm}}_{k}\to\operatorname{\mathbf{Cor}}_{k} which sends a morphism f:XYf:X\to Y to the graph [f]:=δ(Xi)[f]:=\sum\delta(X_{i}) where XiXX_{i}\subseteq X are the irreducible components of XX and δ:XX×Y\delta:X\to X\times Y is the graph morphism x(x,f(x))x\mapsto(x,f(x)). If f:XXf:X^{\prime}\to X is étale and niZihom𝐂𝐨𝐫k(X,Y)\sum n_{i}Z_{i}\in\hom_{\operatorname{\mathbf{Cor}}_{k}}(X,Y) any correspondence, then α[f]=niZij\alpha\circ[f]=\sum n_{i}\sum Z^{\prime}_{ij} where ZijZ^{\prime}_{ij} are the irreducible components of X×XZiX^{\prime}\times_{X}Z_{i}.

  2. (2)

    The structure presheaf 𝒪\mathcal{O} on 𝐒𝐦k\operatorname{\mathbf{Sm}}_{k} which send XX to Γ(X,𝒪X)\Gamma(X,\mathcal{O}_{X}) has a structure of transfers in the sense that there exists 𝒪tr:𝐂𝐨𝐫kop𝐀𝐛\mathcal{O}_{{\operatorname{tr}}}:\operatorname{\mathbf{Cor}}_{k}^{op}\to\operatorname{\mathbf{Ab}} such that 𝒪tr|𝐒𝐦k=𝒪\mathcal{O}_{{\operatorname{tr}}}|_{\operatorname{\mathbf{Sm}}_{k}}=\mathcal{O}, [SV96].

  3. (3)

    We write 𝐌¯𝐂𝐨𝐫k\operatorname{\mathbf{\underline{M}Cor}}_{k} for the category of modulus correspondences.999Cf.[KMSY21a, KMSY21b, KMSY20] when the base is a field, or [KelMiy21] for general bases, where more general means modulus pairs 𝒮\mathcal{S} such that S¯\overline{S} is quasi-compact separated and such that SS^{\circ} is Noetherian. Objects are the same as 𝐌¯𝐒𝐦k\operatorname{\mathbf{{\underline{M}}Sm}}_{k} and morphism groups can be defined as the intersections101010If the reader is scared of correspondences for non-smooth schemes, we point out that the formula still if we replace lim𝒲𝒳hom𝐂𝐨𝐫k(W,Y)\operatornamewithlimits{\varinjlim}_{\mathcal{W}\to\mathcal{X}}\hom_{\operatorname{\mathbf{Cor}}_{k}}(W^{\circ},Y^{\circ}) with lim𝒲𝒳limUWhom𝐂𝐨𝐫k(U,Y)\operatornamewithlimits{\varinjlim}_{\mathcal{W}\to\mathcal{X}}\operatornamewithlimits{\varinjlim}_{U\subseteq W^{\circ}}\hom_{\operatorname{\mathbf{Cor}}_{k}}(U,Y^{\circ}) where the UWU\subseteq W^{\circ} are regular dense open subschemes.

    hom𝐌¯𝐂𝐨𝐫k(𝒳,𝒴)\textstyle{\hom_{\operatorname{\mathbf{\underline{M}Cor}}_{k}}(\mathcal{X},\mathcal{Y})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\subseteq}|\scriptstyle{\cap|}hom𝐂𝐨𝐫k(X,Y)\textstyle{\hom_{\operatorname{\mathbf{Cor}}_{k}}(X^{\circ},Y^{\circ})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}|\scriptstyle{\cap|}lim𝒲𝒳hom𝐂𝐨𝐫k(W,Y)\textstyle{\operatornamewithlimits{\varinjlim}_{\mathcal{W}\to\mathcal{X}}\hom_{\operatorname{\mathbf{Cor}}_{k}}(W^{\circ},Y^{\circ})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}lim𝒲𝒳hom𝐌¯𝐒𝐦k(𝒲,𝒴)\textstyle{\operatornamewithlimits{\varinjlim}_{\mathcal{W}\to\mathcal{X}}\mathbb{Z}\hom_{{\operatorname{\mathbf{{\underline{M}}Sm}}_{k}}}(\mathcal{W},\mathcal{Y})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\subseteq}lim𝒲𝒳hom𝐒𝐦k(W,Y)\textstyle{\operatornamewithlimits{\varinjlim}_{\mathcal{W}\to\mathcal{X}}\mathbb{Z}\hom_{{\operatorname{\mathbf{Sm}}_{k}}}(W^{\circ},Y^{\circ})}

    where the colimit is over ambient minimal morphisms 𝒲𝒳\mathcal{W}\to\mathcal{X} such that W¯X¯\overline{W}\to\overline{X} is proper surjective, WXW^{\circ}\to X^{\circ} is finite, and W¯\overline{W} is integral, cf.[KelMiy21, Cor.4.21, Prop.4.37, Cor.5.31].111111In [KelMiy21, Cor.5.31], qfh-sheafifications are used instead of the colimits, but one sees that this is the same using arguments such as [Voe96, Prop.3.3.1]. More explicitly, for XX^{\circ} integral, a correspondence α:XY\alpha:X^{\circ}\to Y^{\circ} belongs to 𝐌¯𝐂𝐨𝐫k(𝒳,𝒴)\operatorname{\mathbf{\underline{M}Cor}}_{k}(\mathcal{X},\mathcal{Y}) if and only if there exists a proper surjective morphism W¯X¯\overline{W}\to\overline{X} with WXW^{\circ}\to X^{\circ} finite and W¯\overline{W} integral, and a finite sum nifi\sum n_{i}f_{i} of morphisms121212The category 𝐌¯𝐒𝐜𝐡k\operatorname{\mathbf{\underline{M}Sch}}_{k} of not necessarily smooth modulus pairs is defined in the analogous way: objects are pairs (X¯,X)(\overline{X},X^{\infty}) with X¯\overline{X} separated and finite type over kk, and the modulus XX^{\infty} is an effective Cartier divisor. Ambient morphisms (X¯,X)(Y¯,Y)(\overline{X},X^{\infty})\to(\overline{Y},Y^{\infty}) are those kk-morphisms X¯Y¯\overline{X}\to\overline{Y} such that XY|X¯X^{\infty}\geq Y^{\infty}|_{\overline{X}}. Admissible blowups are morphisms (X¯,X)(Y¯,Y)(\overline{X},X^{\infty})\to(\overline{Y},Y^{\infty}) such that X¯Y¯\overline{X}\to\overline{Y} is proper, X=Y|X¯X^{\infty}=Y^{\infty}|_{\overline{X}} and X=YX^{\circ}=Y^{\circ}. The category 𝐌¯𝐒𝐜𝐡k\operatorname{\mathbf{\underline{M}Sch}}_{k} is obtained from 𝐏¯𝐒𝐜𝐡k\operatorname{\mathbf{\underline{P}Sch}}_{k} by inverting all admissible blowups. fi:𝒲𝒴f_{i}:\mathcal{W}\to\mathcal{Y} such that α=nifi:WY\alpha=\sum n_{i}f_{i}^{\circ}:W^{\circ}\to Y^{\circ}, where 𝒲=(W¯,W¯×X¯X)\mathcal{W}=(\overline{W},\overline{W}\times_{\overline{X}}X^{\infty}).

    W\textstyle{W^{\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}nifi\scriptstyle{\sum n_{i}f_{i}^{\circ}}X\textstyle{X^{\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha}Y\textstyle{Y^{\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒲\textstyle{\mathcal{W}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}nifi\scriptstyle{\sum n_{i}f_{i}}𝒳\textstyle{\mathcal{X}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒴\textstyle{\mathcal{Y}}

    Taking graphs induces a covariant functor 𝐌¯𝐒𝐦k𝐌¯𝐂𝐨𝐫k\operatorname{\mathbf{{\underline{M}}Sm}}_{k}\to\operatorname{\mathbf{\underline{M}Cor}}_{k}.

Recollection 2.6.
  1. (1)

    An additive presheaf on 𝐌¯𝐂𝐨𝐫k\operatorname{\mathbf{\underline{M}Cor}}_{k} is called a modulus presheaf with transfers. Let τ{Zar,Nis,e´t}\tau\in\{{\operatorname{Zar}},{\operatorname{Nis}},{\operatorname{\acute{e}t}}\}. A modulus presheaf with transfers is called a τ\tau-sheaf with transfers if for any modulus pair 𝒳\mathcal{X}, the presheaf (F|𝐌¯𝐒𝐦k)𝒳(F|_{\operatorname{\mathbf{{\underline{M}}Sm}}_{k}})_{\mathcal{X}} on the small site X¯τ\overline{X}_{\tau} is a τ\tau-sheaf, where F|𝐌¯𝐒𝐦kF|_{\operatorname{\mathbf{{\underline{M}}Sm}}_{k}} denotes the restriction via the graph functor 𝐌¯𝐒𝐦k𝐌¯𝐂𝐨𝐫k\operatorname{\mathbf{{\underline{M}}Sm}}_{k}\to\operatorname{\mathbf{\underline{M}Cor}}_{k}.

    One can prove that 𝐒𝐡𝐯M¯Nis(𝐌¯𝐂𝐨𝐫k){\operatorname{\mathbf{Shv}}}_{\operatorname{\mathrm{\underline{M}Nis}}}(\operatorname{\mathbf{\underline{M}Cor}}_{k}) is a Grothendieck abelian category using the usual methods, [KelMiy21, Cor.6.8], i.e., by showing that the forgetful functor admits a left adjoint

    atr:𝐏𝐒𝐡(𝐌¯𝐂𝐨𝐫k)𝐒𝐡𝐯M¯Nis(𝐌¯𝐂𝐨𝐫k)a_{{\operatorname{tr}}}:{\operatorname{\mathbf{PSh}}}(\operatorname{\mathbf{\underline{M}Cor}}_{k})\to{\operatorname{\mathbf{Shv}}}_{\operatorname{\mathrm{\underline{M}Nis}}}(\operatorname{\mathbf{\underline{M}Cor}}_{k})

    which becomes sheafification when restricted to 𝐌¯𝐒𝐦k\operatorname{\mathbf{{\underline{M}}Sm}}_{k}. Moreover, by classical arguments with input from [KelMiy21],131313Use the proof of [Voe00, Prop.3.1.7] with [KelMiy21, Prop.6.2, Cor.6.8] inserted at the appropriate places. for any F𝐒𝐡𝐯M¯Nis(𝐌¯𝐂𝐨𝐫k)F\in{\operatorname{\mathbf{Shv}}}_{\operatorname{\mathrm{\underline{M}Nis}}}(\operatorname{\mathbf{\underline{M}Cor}}_{k}) we have

    (2.3) Ext(tr(𝒳),F)HM¯Nis(𝒳,F)Ext^{\bullet}(\mathbb{Z}_{{\operatorname{tr}}}(\mathcal{X}),F)\cong H_{\operatorname{\mathrm{\underline{M}Nis}}}^{\bullet}(\mathcal{X},F)

    where tr(𝒳)=hom𝐌¯𝐂𝐨𝐫k(,𝒳)\mathbb{Z}_{{\operatorname{tr}}}(\mathcal{X})=\hom_{\operatorname{\mathbf{\underline{M}Cor}}_{k}}(-,\mathcal{X}).

  2. (2)

    In analogy with 𝐃𝐌keff\operatorname{\mathbf{DM}}_{k}^{{\operatorname{eff}}} from [Voe00] the category 𝐌¯𝐃𝐌keff\operatorname{\mathbf{\underline{M}DM}}_{k}^{{\operatorname{eff}}} is defined to be the Verdier quotient

    𝐌¯𝐃𝐌keff=D(𝐒𝐡𝐯M¯Nis(𝐌¯𝐂𝐨𝐫k))tr(𝒳¯)tr(𝒳)|𝒳𝐌¯𝐂𝐨𝐫k\operatorname{\mathbf{\underline{M}DM}}_{k}^{{\operatorname{eff}}}=\frac{D({\operatorname{\mathbf{Shv}}}_{\operatorname{\mathrm{\underline{M}Nis}}}(\operatorname{\mathbf{\underline{M}Cor}}_{k}))}{\biggl{\langle}\mathbb{Z}_{{\operatorname{tr}}}(\mathcal{X}\otimes{\overline{\square}})\to\mathbb{Z}_{{\operatorname{tr}}}(\mathcal{X})\biggm{|}\mathcal{X}\in\operatorname{\mathbf{\underline{M}Cor}}_{k}\biggr{\rangle}}

    by the two term complexes [tr(𝒳¯)tr(𝒳)][\mathbb{Z}_{{\operatorname{tr}}}(\mathcal{X}\otimes{\overline{\square}})\to\mathbb{Z}_{{\operatorname{tr}}}(\mathcal{X})] where 𝒳¯=(X¯×1,X×1+X¯×{})\mathcal{X}\otimes{\overline{\square}}=(\overline{X}\times\mathbb{P}^{1},X^{\infty}\times\mathbb{P}^{1}+\overline{X}\times\{\infty\}). Since the generators tr(𝒳)\mathbb{Z}_{{\operatorname{tr}}}(\mathcal{X}) are compact, [KelMiy21, Thm.4.47], the localisation functor admits a right adjoint, and 𝐌¯𝐃𝐌keff\operatorname{\mathbf{\underline{M}DM}}_{k}^{{\operatorname{eff}}} can be identified with the full subcategory

    (2.4) 𝐌¯𝐃𝐌keff\displaystyle\operatorname{\mathbf{\underline{M}DM}}_{k}^{{\operatorname{eff}}}\cong
    {K\displaystyle\biggl{\{}K\in D(𝐒𝐡𝐯M¯Nis(𝐌¯𝐂𝐨𝐫k))|M¯Nis(𝒳,K)M¯Nis(𝒳¯,K)}\displaystyle D({\operatorname{\mathbf{Shv}}}_{\operatorname{\mathrm{\underline{M}Nis}}}(\operatorname{\mathbf{\underline{M}Cor}}_{k}))\ |\ \mathbb{H}_{\operatorname{\mathrm{\underline{M}Nis}}}^{\bullet}(\mathcal{X},K)\cong\mathbb{H}_{\operatorname{\mathrm{\underline{M}Nis}}}^{\bullet}(\mathcal{X}\otimes{\overline{\square}},K)\biggr{\}}

    of objects with cube invariant hypercohomology, cf Eq.(2.3).

3. The presheaf M¯𝒪{\underline{M}}\mathcal{O}

Definition 3.1.

If AA is any ring and fAf\in A a nonzero divisor we write

M¯𝒪(A,f):={a/fA[f1]:a(f)A}.{\underline{M}}\mathcal{O}(A,f):=\{a/f\in A[f^{-1}]:a\in\sqrt{(f)}\subseteq A\}.

Of course, AM¯𝒪(A,f)A\subseteq{\underline{M}}\mathcal{O}(A,f) with equality if ff is invertible, and on the other side, n0M¯𝒪(A,fn)=A[f1]\bigcup_{n\geq 0}{\underline{M}}\mathcal{O}(A,f^{n})=A[f^{-1}].

Example 3.2 (Cf.the proof of Lemma 8.1).

If A=[x1,,xn]A=\mathbb{Q}[x_{1},\dots,x_{n}] and f=x1r1xirif=x_{1}^{r_{1}}\dots x_{i}^{r_{i}} with r1,,ri>0r_{1},\dots,r_{i}>0 then

M¯𝒪(A,f)=1x1r11xiri1[x1,,xn].{\underline{M}}\mathcal{O}(A,f)=\tfrac{1}{x_{1}^{r_{1}{-}1}\dots x_{i}^{r_{i}{-}1}}\mathbb{Q}[x_{1},\dots,x_{n}].

More generally, if AA is a UFD, f1,,fiAf_{1},\dots,f_{i}\in A are pair-wise distinct irreducible elements, and f=f1r1firif=f_{1}^{r_{1}}\dots f_{i}^{r_{i}} with r1,,ri>0r_{1},\dots,r_{i}>0 then

M¯𝒪(A,f)=1f1r11firi1A.{\underline{M}}\mathcal{O}(A,f)=\tfrac{1}{f_{1}^{r_{1}{-}1}\dots f_{i}^{r_{i}{-}1}}A.

In particular, M¯𝒪(A,f){\underline{M}}\mathcal{O}(A,f) is free of rank one in this case.

Lemma 3.3.

Suppose ϕ:AB\phi:A\to B is a homomorphism of rings equipped with nonzero divisors f,gf,g respectively, such that ϕ(f)\phi(f) divides gg. Then A[f1]B[g1]A[f^{-1}]\to B[g^{-1}] induces a morphism of submodules

M¯𝒪(A,f)M¯𝒪(B,g).{\underline{M}}\mathcal{O}(A,f)\to{\underline{M}}\mathcal{O}(B,g).
Proof.

If g=ϕ(f)g=\phi(f), the question is whether 1ϕ(f)ϕ(fA)1ϕ(f)ϕ(f)B\frac{1}{\phi(f)}\phi(\sqrt{fA})\subseteq\frac{1}{\phi(f)}\sqrt{\phi(f)B} or equivalently, whether ϕ(fA)ϕ(f)B\phi(\sqrt{fA})\subseteq\sqrt{\phi(f)B}, which is clear since an=fha^{n}=fh for some hh implies ϕ(a)n=ϕ(f)h\phi(a)^{n}=\phi(f)h^{\prime} for some hh^{\prime}. If A=BA=B, so g=fhg=fh for some hh, the question is whether 1ffA1fhfhA\frac{1}{f}\sqrt{fA}\subseteq\frac{1}{fh}\sqrt{fhA} or equivalently, whether hfAfhAh\sqrt{fA}\subseteq\sqrt{fhA} which is also clear since if an=fja^{n}=fj for some jj and n1n\geq 1 then (ha)n=fhj(ha)^{n}=fhj^{\prime} for some jj^{\prime}. We get the general case by factoring the given morphism as (A,f)(B,ϕ(f))(B,g)(A,f)\to(B,\phi(f))\to(B,g). ∎

Proposition 3.4.

Suppose that AA is a ring, fAf\in A is a nonzero divisor and ABA\to B a faithfully flat morphism (in particular, the images of ff in BB and BABB\otimes_{A}B are again nonzero divisors). Then

0M¯𝒪(A,f)M¯𝒪(B,f)M¯𝒪(BAB,f)0\to{\underline{M}}\mathcal{O}(A,f)\to{\underline{M}}\mathcal{O}(B,f)\to{\underline{M}}\mathcal{O}(B\otimes_{A}B,f)

is exact, where we write ff also for the images in BB and BABB\otimes_{A}B to lighten the notation.

Proof.

We are studying the diagram:

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}A[1f]\textstyle{A[\frac{1}{f}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B[1f]\textstyle{B[\frac{1}{f}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(BAB)[1f]\textstyle{(B{\otimes}_{A}B)[\frac{1}{f}]}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}M¯𝒪(A,f)\textstyle{{\underline{M}}\mathcal{O}(A,f)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}|\scriptstyle{\cup|}M¯𝒪(B,f)\textstyle{{\underline{M}}\mathcal{O}(B,f)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}|\scriptstyle{\cup|}M¯𝒪(BAB,f)\textstyle{{\underline{M}}\mathcal{O}(B{\otimes}_{A}B,f)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}|\scriptstyle{\cup|}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}|\scriptstyle{\cup|}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}|\scriptstyle{\cup|}BAB\textstyle{B{\otimes}_{A}B\ignorespaces\ignorespaces\ignorespaces\ignorespaces}|\scriptstyle{\cup|}

The map M¯𝒪(A,f)M¯𝒪(B,f){\underline{M}}\mathcal{O}(A,f)\to{\underline{M}}\mathcal{O}(B,f) is injective because it is induced by the monomorphism A[1f]B[1f]A[\frac{1}{f}]\to B[\frac{1}{f}]. Suppose that aker(M¯𝒪(B,f)M¯𝒪(BAB,f))a\in\ker({\underline{M}}\mathcal{O}(B,f)\to{\underline{M}}\mathcal{O}(B{\otimes}_{A}B,f)). By exactness of the top row, the element aa is in the subgroup A[1f]B[1f]A[\frac{1}{f}]\subseteq B[\frac{1}{f}]. We want to show that aM¯𝒪(A,f)a\in{\underline{M}}\mathcal{O}(A,f). That is, we want to show that there is n0n\geq 0 such that fa,(fa)naAfa,(fa)^{n}a\in A. Since aM¯𝒪(B,f)a\in{\underline{M}}\mathcal{O}(B,f), there is n0n\geq 0 such that fa,(fa)naBfa,(fa)^{n}a\in B. But BAB(BAB)[1f]B{\otimes}_{A}B\to(B{\otimes}_{A}B)[\frac{1}{f}] is injective, so the cocycle condition for aa implies that fafa and (fa)na(fa)^{n}a are cocycles, so we see that fafa and (fa)na(fa)^{n}a are in the subgroup ABA\subseteq B as desired. ∎

Lemma 3.5.

Let ϕ:AB\phi:A\to B be an étale homomorphism and fAf\in A a nonzero divisor. Then the canonical isomorphism A[f1]ABB[ϕ(f)1]A[f^{-1}]\otimes_{A}B\stackrel{{\scriptstyle\sim}}{{\to}}B[\phi(f)^{-1}] induces an isomorphism of submodules

M¯𝒪(A,f)ABM¯𝒪(B,ϕ(f)).{\underline{M}}\mathcal{O}(A,f)\otimes_{A}B\stackrel{{\scriptstyle\sim}}{{\to}}{\underline{M}}\mathcal{O}(B,\phi(f)).
Example 3.6.

Even though M¯𝒪{\underline{M}}\mathcal{O} is an fpqc sheaf, Prop. 3.4, the statement of Lemma 3.5 does not generalise to flat morphisms. For ([[t2]],t4)([[t]],t4)(\mathbb{C}[[t^{2}]],t^{4})\to(\mathbb{C}[[t]],t^{4}) the morphism BAM¯𝒪(A,f)M¯𝒪(B,f)B\otimes_{A}{\underline{M}}\mathcal{O}(A,f)\to{\underline{M}}\mathcal{O}(B,f) is t2[[t]]t3[[t]]t^{-2}\mathbb{C}[[t]]\to t^{-3}\mathbb{C}[[t]]. Of course, this does not preclude the possibility that the comparisons HZarn(X¯,M¯𝒪)Hfppfn(X¯,M¯𝒪)H_{{\operatorname{Zar}}}^{n}(\overline{X},{\underline{M}}\mathcal{O})\to H_{{\operatorname{fppf}}}^{n}(\overline{X},{\underline{M}}\mathcal{O}) be isomorphisms.

Proof.

First note that we have ϕ(fA)B=ϕ(f)B\phi(\sqrt{fA})B=\sqrt{\phi(f)}B because ϕ\phi is étale: Indeed, to prove this claim it suffices to show that ψ:(A/fA)redAB(B/ϕ(f)B)red\psi:(A/fA)_{{\operatorname{red}}}\otimes_{A}B\to(B/\phi(f)B)_{{\operatorname{red}}} is an isomorphism. By [Sta18, 033B] the ring (A/fA)redAB(A/fA)_{{\operatorname{red}}}\otimes_{A}B is already reduced because it is étale over the reduced ring (A/fA)red(A/fA)_{{\operatorname{red}}}, so it suffices that Spec(ψ)\operatorname{Spec}(\psi) be a surjective closed immersion. This happens because (A/fA)ABB/ϕ(f)B(A/fA)\otimes_{A}B\to B/\phi(f)B is an isomorphism, and Spec((A/fA)red)Spec(A/fA)\operatorname{Spec}((A/fA)_{{\operatorname{red}}})\to\operatorname{Spec}(A/fA) and Spec(B/ϕ(f)B)redSpec(B/ϕ(f)B\operatorname{Spec}(B/\phi(f)B)_{{\operatorname{red}}}\to\operatorname{Spec}(B/\phi(f)B are surjective closed immersions.

Now since ABA\to B is flat, fAABϕ(fA)B\sqrt{fA}\otimes_{A}B\stackrel{{\scriptstyle\sim}}{{\to}}\phi(\sqrt{fA})B so we have fAABϕ(f)B\sqrt{fA}\otimes_{A}B\stackrel{{\scriptstyle\sim}}{{\to}}\sqrt{\phi(f)}B, and therefore 1ffAAB1ϕ(f)ϕ(f)B\frac{1}{f}\sqrt{fA}\otimes_{A}B\stackrel{{\scriptstyle\sim}}{{\to}}\frac{1}{\phi(f)}\sqrt{\phi(f)}B, considered as submodules of A[f1]ABB[ϕ(f)1]A[f^{-1}]\otimes_{A}B\stackrel{{\scriptstyle\sim}}{{\to}}B[\phi(f)^{-1}]. ∎

Theorem 3.7.

There is a unique fppf{\operatorname{fppf}}-sheaf M¯𝒪{\underline{M}}\mathcal{O} on 𝐏¯𝐒𝐦k\operatorname{\mathbf{\underline{P}Sm}}_{k} such that for affine modulus pairs with principal modulus (Spec(A),(f))(\operatorname{Spec}(A),(f)) we have M¯𝒪(Spec(A),(f))=M¯𝒪(A,f){\underline{M}}\mathcal{O}(\operatorname{Spec}(A),(f))={\underline{M}}\mathcal{O}(A,f). Furthermore, this is quasi-coherent as an étale sheaf. In particular, its Zariski, Nisnevich, and étale cohomologies agree, and vanish for affines.

Proof.

Define M¯𝒪{\underline{M}}\mathcal{O} to be the Zariski-sheafification of the right Kan extension from affines to all of 𝐏¯𝐒𝐦k\operatorname{\mathbf{\underline{P}Sm}}_{k}. On affines, the Zariski sheafification is the same as the right Kan extension because of Proposition 3.4. This Zariski sheaf is automatically an fpqc-sheaf by Proposition 3.4 and [Sta18, 03O1].

Lemma 3.3 says that this étale sheaf is quasi-coherent in the sense of [Mil80, Exa.II.1.2(d), Cor.II.1.6], so the cohomologies agree, [Mil80, Rem.III.3.8], and vanish for affines by [Sta18, 01XB]. ∎

4. Blow-up invariance of RΓ(,M¯𝒪)R\Gamma(-,{\underline{M}}\mathcal{O})

In the previous section, we have constructed a Zariski (in fact fpqc) sheaf M¯𝒪{\underline{M}}\mathcal{O} of abelian groups on 𝐏¯𝐒𝐦k\operatorname{\mathbf{\underline{P}Sm}}_{k} which is quasi-coherent as an étale sheaf. Our next goal is to prove that M¯𝒪{\underline{M}}\mathcal{O} and its cohomology presheaves are invariant under suitable blow-ups. For global sections M¯𝒪{\underline{M}}\mathcal{O} we need a normality assumption, Prop.4.3. For the cohomology we assume normal crossings, Prop.4.6.

To begin with we characterise of elements of M¯𝒪(A,f){\underline{M}}\mathcal{O}(A,f) in Lemma 4.1, and show that if AA is normal, M¯𝒪(A,f){\underline{M}}\mathcal{O}(A,f) is normal in the sense of Barth,141414Cf.[Bar77, pg.128]. Lem.4.2.

Lemma 4.1.

Let AA be a ring, fAf\in A a nonzero divisor, and aA[f1]a\in A[f^{-1}]. Then aM¯𝒪(A,f)a\in{\underline{M}}\mathcal{O}(A,f) if and only if for some n0n\geq 0 both fa,(fa)naAfa,(fa)^{n}a\in A.

Proof.

Certainly, if aM¯𝒪(A,f)a\in{\underline{M}}\mathcal{O}(A,f), then af(f)Aaf\in\sqrt{(f)}\subseteq A so (af)n+1=bf(af)^{n+1}=bf for some n0,bAn\geq 0,b\in A so (af)naA(af)^{n}a\in A for some n0n\geq 0. On the other hand, if af,(af)naAaf,(af)^{n}a\in A for some n0n\geq 0, then af(f)af\in\sqrt{(f)} so aM¯𝒪(A,f)a\in{\underline{M}}\mathcal{O}(A,f). ∎

Lemma 4.2.

Let AA be a Noetherian normal domain and fAf\in A a nonzero divisor. Then there is an equality

M¯𝒪(A,f)=height 𝔭=1M¯𝒪(A𝔭,f){\underline{M}}\mathcal{O}(A,f)=\bigcap_{\textrm{height }\mathfrak{p}=1}{\underline{M}}\mathcal{O}(A_{\mathfrak{p}},f)

of sub-AA-modules of Frac(A)\operatorname{Frac}(A).

Proof.

The inclusion M¯𝒪(A,f)height 𝔭=1M¯𝒪(A𝔭,f){\underline{M}}\mathcal{O}(A,f)\subseteq\bigcap_{\textrm{height }\mathfrak{p}=1}{\underline{M}}\mathcal{O}(A_{\mathfrak{p}},f) comes from Lemma 4.1. Suppose we have an element aa on the right. Then for all height one primes 𝔭\mathfrak{p}, we have aA𝔭[f1]=A[f1]𝔭a\in A_{\mathfrak{p}}[f^{-1}]=A[f^{-1}]_{\mathfrak{p}} and there exists n𝔭n_{\mathfrak{p}} such that fa,(fa)n𝔭aA𝔭fa,(fa)^{n_{\mathfrak{p}}}a\in A_{\mathfrak{p}} by Lemma 4.1. Since A\in A is an open condition, for each 𝔭\mathfrak{p}, there exists an open neighborhood U𝔭U_{\mathfrak{p}} of 𝔭\mathfrak{p} on which fafa and (fa)n𝔭a(fa)^{n_{\mathfrak{p}}}a are still regular functions. Since SpecA\operatorname{Spec}A is quasi-compact, there exists a finite family 𝔭1,,𝔭m\mathfrak{p}_{1},\dots,\mathfrak{p}_{m} such that SpecA=i=1mU𝔭i\operatorname{Spec}A=\cup_{i=1}^{m}U_{\mathfrak{p}_{i}}. Set n:=max(n𝔭1,,n𝔭m)n:=\max(n_{\mathfrak{p}_{1}},\dots,n_{\mathfrak{p}_{m}}). Then we have faAfa\in A and (fa)nA(fa)^{n}\in A, and hence belongs to the left hand side, as desired. ∎

Proposition 4.3.

Suppose that 𝒴𝒳\mathcal{Y}\to\mathcal{X} is a morphism in 𝐏¯𝐒𝐦k\operatorname{\mathbf{\underline{P}Sm}}_{k} such that Y=Y¯×X¯XY^{\infty}=\overline{Y}\times_{\overline{X}}X^{\infty} and Y¯X¯\overline{Y}\to\overline{X} is a proper, surjective morphism with normal target. Then the square

M¯𝒪(𝒴)\textstyle{{\underline{M}}\mathcal{O}(\mathcal{Y})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒪(Y)\textstyle{\mathcal{O}(Y^{\circ})}M¯𝒪(𝒳)\textstyle{{\underline{M}}\mathcal{O}(\mathcal{X})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒪(X)\textstyle{\mathcal{O}(X^{\circ})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}

is Cartesian. In particular, there is a unique presheaf on 𝐌¯𝐒𝐦k\operatorname{\mathbf{{\underline{M}}Sm}}_{k} whose restriction to 𝐏¯𝐒𝐦k\operatorname{\mathbf{\underline{P}Sm}}_{k} agrees with M¯𝒪{\underline{M}}\mathcal{O} on integrally closed modulus pairs.

Proof.

By definition M¯𝒪{\underline{M}}\mathcal{O} is a Zariski sheaf, so we can assume X¯\overline{X} is affine and XX^{\infty} has a global generator, say X=(f)X^{\infty}=(f). Suppose a𝒪(X)a\in\mathcal{O}(X^{\circ}) is a section whose image in 𝒪(Y)\mathcal{O}(Y^{\circ}) lies in M¯𝒪(𝒴){\underline{M}}\mathcal{O}(\mathcal{Y}). For all points yY¯y\in\overline{Y}, by Lemma 4.1 there is some ny0n_{y}\geq 0 for which fafa and (fa)nya(fa)^{n_{y}}a are in 𝒪Y¯,y\mathcal{O}_{\overline{Y},y}. Since Y¯\overline{Y} is quasi-compact, there is some nn which works for all yy. So in fact, fafa and (fa)na(fa)^{n}a are in 𝒪(Y¯)\mathcal{O}(\overline{Y}). Applying Lemma 4.1 again, it suffices to show that fafa and (fa)na(fa)^{n}a are in 𝒪(X¯)\mathcal{O}(\overline{X}). Since X¯\overline{X} is normal, it suffices to show that they are in the dvrs 𝒪X¯,x\mathcal{O}_{\overline{X},x} for points xX¯x\in\overline{X} of codimension one, Lem.4.2. Chose any extension of the valuation of 𝒪X¯,x\mathcal{O}_{\overline{X},x} to LL and let 𝒪L\mathcal{O}_{L} be the corresponding valuation ring. Since Y¯X¯\overline{Y}\to\overline{X} is proper, the morphism Spec(𝒪L)Spec(𝒪X¯,x)X¯\operatorname{Spec}(\mathcal{O}_{L})\to\operatorname{Spec}(\mathcal{O}_{\overline{X},x})\to\overline{X} factors as Spec(𝒪L)Y¯\operatorname{Spec}(\mathcal{O}_{L})\to\overline{Y}, so we find that the images of fafa and (fa)na(fa)^{n}a in LL are in fact in 𝒪L\mathcal{O}_{L}. That is, they have value 0\geq 0. Hence, they are in 𝒪X¯,x\mathcal{O}_{\overline{X},x}. ∎

Remark 4.4.

Since 𝒪=hom(,𝔸1)\mathcal{O}=\hom(-,\mathbb{A}^{1}) is an hh-sheaf on the category of normal schemes, [Voe96, Prop.3.2.10], it follows from Prop.3.4 and Prop.4.3 that M¯𝒪{\underline{M}}\mathcal{O} is an hh-sheaf on normal modulus pairs, but we will not need this.

Notation 4.5.

In the following proposition and proof we use M¯𝒪X¯=M¯𝒪|X¯Zar{\underline{M}}\mathcal{O}_{\overline{X}}={\underline{M}}\mathcal{O}|_{\overline{X}_{{\operatorname{Zar}}}} or M¯𝒪X¯e´t=M¯𝒪|X¯e´t{\underline{M}}\mathcal{O}_{\overline{X}_{{\operatorname{\acute{e}t}}}}={\underline{M}}\mathcal{O}|_{\overline{X}_{{\operatorname{\acute{e}t}}}} for the restrictions to the small Zariski, resp. étale sites.

Proposition 4.6 (Blow-up invariance of M¯𝒪{\underline{M}}\mathcal{O} and its cohomologies).

Take 𝒳𝐏¯𝐒𝐦k\mathcal{X}\in\operatorname{\mathbf{\underline{P}Sm}}_{k} normal crossings and suppose that ZX¯Z\subseteq\overline{X} is a closed subscheme that has normal crossings with XX^{\infty} (see Def.A.1 for the terminology). Let f:Y¯X¯f:\overline{Y}\to\overline{X} be the blowup with centre ZZ, and Y=fXY^{\infty}=f^{*}X^{\infty}. Then the canonical morphism in the derived category of quasi-coherent 𝒪X¯\mathcal{O}_{\overline{X}}-modules

M¯𝒪X¯RfM¯𝒪Y¯{\underline{M}}\mathcal{O}_{\overline{X}}\to Rf_{*}{\underline{M}}\mathcal{O}_{\overline{Y}}

is an isomorphism.

Proof.

Since the étale and Zariski cohomologies of M¯𝒪{\underline{M}}\mathcal{O} agree, Thm. 3.7, it suffices to show that the morphism α:M¯𝒪X¯e´tRfM¯𝒪Y¯e´t\alpha:{\underline{M}}\mathcal{O}_{\overline{X}_{{\operatorname{\acute{e}t}}}}\to Rf_{*}{\underline{M}}\mathcal{O}_{\overline{Y}_{{\operatorname{\acute{e}t}}}} is an isomorphism, where now RfRf_{*} is the direct image between the small étale sites. Since this question is étale local, it suffices to find for each point xX¯x\in\overline{X} an étale morphism U¯X¯\overline{U}\to\overline{X} whose image contains xx, and such that M¯𝒪X¯e´t|U¯RfM¯𝒪Y¯e´t|U¯{\underline{M}}\mathcal{O}_{\overline{X}_{{\operatorname{\acute{e}t}}}}|_{\overline{U}}\to Rf_{*}{\underline{M}}\mathcal{O}_{\overline{Y}_{{\operatorname{\acute{e}t}}}}|_{\overline{U}} is an isomorphism.

Fix a point xX¯x\in\overline{X}. By the definition of normal crossings with XX^{\infty} (Def. A.1), there exists a diagram

X¯𝑝U¯𝑞𝔸n=Speck[t1,,tn]\overline{X}\xleftarrow{p}\overline{U}\xrightarrow{q}\mathbb{A}^{n}=\operatorname{Spec}k[t_{1},\dots,t_{n}]

of étale morphisms such that xp(U¯)x\in p(\overline{U}), pX=qHp^{*}X^{\infty}=q^{*}H and Z×X¯U¯=Z0×𝔸nU¯Z\times_{\overline{X}}\overline{U}=Z_{0}\times_{\mathbb{A}^{n}}\overline{U}, where H={aAtara=0}H=\{\prod_{a\in A}t_{a}^{r_{a}}=0\} and Z0={tb=0,bB}Z_{0}=\{t_{b}=0,\forall b\in B\} for some ra>0r_{a}>0 and A,B{1,,n}A,B\subset\{1,\dots,n\}. Therefore, replacing ff by f|U¯f|_{\overline{U}}, we may assume that there exists an étale morphism q:X¯𝔸nq:\overline{X}\to\mathbb{A}^{n} such that X=qHX^{\infty}=q^{*}H and Z=Z0×𝔸nX¯Z=Z_{0}\times_{\mathbb{A}^{n}}\overline{X} with H={t1m1trmr=0}H=\{t_{1}^{m_{1}}\cdots t_{r}^{m_{r}}=0\} and Z0={tb=0,bB}Z_{0}=\{t_{b}=0,\forall b\in B\} as above.

Since X¯𝔸n\overline{X}\to\mathbb{A}^{n} is étale (hence flat), we obtain a cartesian diagram

Y¯\textstyle{\overline{Y}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}q\scriptstyle{q^{\prime}}f\scriptstyle{f}\scriptstyle{\square}Y¯0\textstyle{\overline{Y}_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f0\scriptstyle{f_{0}}X¯\textstyle{\overline{X}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}q\scriptstyle{q}𝔸n\textstyle{\mathbb{A}^{n}}

where f0f_{0} is the blow-up of 𝔸n\mathbb{A}^{n} at Z0Z_{0} and qq^{\prime} is the morphism induced by the universal property of blow-up. Suppose that we know that the assertion of Prop. 4.6 holds for f0f_{0}. That is, suppose that, setting 𝒜:=(𝔸n,H)\mathcal{A}:=(\mathbb{A}^{n},H) and 𝒴0:=(Y¯0,f0H)\mathcal{Y}_{0}:=(\overline{Y}_{0},f_{0}^{*}H), we have an isomorphism M¯𝒪A¯Rf0M¯𝒪Y¯0{\underline{M}}\mathcal{O}_{\overline{A}}\cong Rf_{0*}{\underline{M}}\mathcal{O}_{\overline{Y}_{0}}. By applying q=Rqq^{*}=Rq^{*} to this isomorphism and by using the flat base change qRf0Rfqq^{*}Rf_{0*}\cong Rf_{*}q^{\prime*} [Sta18, 02KH], we obtain

qM¯𝒪A¯qRf0M¯𝒪Y¯0RfqM¯𝒪Y¯0.q^{*}{\underline{M}}\mathcal{O}_{\overline{A}}\cong q^{*}Rf_{0*}{\underline{M}}\mathcal{O}_{\overline{Y}_{0}}\cong Rf_{*}q^{\prime*}{\underline{M}}\mathcal{O}_{\overline{Y}_{0}}.

On the other hand, we have qM¯𝒪A¯=M¯𝒪X¯q^{*}{\underline{M}}\mathcal{O}_{\overline{A}}={\underline{M}}\mathcal{O}_{\overline{X}} and qM¯𝒪Y¯0=M¯𝒪Y¯q^{\prime*}{\underline{M}}\mathcal{O}_{\overline{Y}_{0}}={\underline{M}}\mathcal{O}_{\overline{Y}} by quasi-coherence since qq and qq^{\prime} are étale by construction. Assembling all these isomorphisms leads to the isomorphism M¯𝒪X¯RfM¯𝒪Y¯{\underline{M}}\mathcal{O}_{\overline{X}}\cong Rf_{*}{\underline{M}}\mathcal{O}_{\overline{Y}}, and applying Thm. 3.7 again gets us to the desired isomorphism M¯𝒪X¯e´tRfM¯𝒪Y¯e´t{\underline{M}}\mathcal{O}_{\overline{X}_{{\operatorname{\acute{e}t}}}}\cong Rf_{*}{\underline{M}}\mathcal{O}_{\overline{Y}_{{\operatorname{\acute{e}t}}}}.

So it now suffices to prove Proposition 4.6 in the special case f0:𝐁𝐥𝔸nZ0𝔸nf_{0}:{\mathbf{Bl}}_{\mathbb{A}^{n}}Z_{0}\to\mathbb{A}^{n}. This is done by direct calculation in Proposition 4.8 below, using Lemma 4.7 to reduce to the case Z0={0}Z_{0}=\{0\}. ∎

Lemma 4.7.

For any ring AA and for any non-zero divisor fAf\in A, we have

M¯𝒪(A[t],f)M¯𝒪(A,f)[t].{\underline{M}}\mathcal{O}(A[t],f)\cong{\underline{M}}\mathcal{O}(A,f)[t].
Proof.

Let I=(f)I=(f). By unpacking the definition of M¯𝒪{\underline{M}}\mathcal{O}, we are immediately reduced to showing the equality I[t]=I[t]\sqrt{I[t]}=\sqrt{I}[t] of ideals of A[t]A[t]. We first prove I[t]I[t]\sqrt{I[t]}\subset\sqrt{I}[t]. Since I[t]\sqrt{I[t]} is the smallest radical ideal containing I[t]I[t], it suffices to show that I[t]\sqrt{I}[t] is a radical ideal. This means by definition that the quotient ring A[t]/I[t]A[t]/\sqrt{I}[t] is reduced. But this follows from A[t]/I[t]A/I[t]A[t]/\sqrt{I}[t]\cong A/\sqrt{I}[t]. To see the opposite inclusion I[t]I[t]\sqrt{I[t]}\supset\sqrt{I}[t], take any polynomial iaiti\sum_{i}a_{i}t^{i} of degree dd with aiIa_{i}\in\sqrt{I}. Then for each ii, there exists ni>0n_{i}>0 such that ainiIa_{i}^{n_{i}}\in I. Take an integer N>(d+1)max{ni}N>(d+1)\max\{n_{i}\}. Then one checks that (iaiti)NI[t](\sum_{i}a_{i}t^{i})^{N}\in I[t], and hence iaitiI[t]\sum_{i}a_{i}t^{i}\in\sqrt{I[t]}. ∎

Proposition 4.8.

Consider the blowup f:B¯=𝐁𝐥𝔸n𝔸dA¯f:\overline{B}={\mathbf{Bl}}_{\mathbb{A}^{n}}\mathbb{A}^{d}\to\overline{A} of affine space A¯=Spec(k[t1,,tn])\overline{A}=\operatorname{Spec}(k[t_{1},\dots,t_{n}]) along a sub-affine space 𝔸d𝔸n\mathbb{A}^{d}\subset\mathbb{A}^{n}, equip A¯\overline{A} with the divisor A=t1r1tiriA^{\infty}=t_{1}^{r_{1}}\dots t_{i}^{r_{i}} with rj,i1r_{j},i\geq 1 and equip B¯\overline{B} with the pullback BB^{\infty} to obtain an abstract admissible blowup =(B¯,B)(A¯,A)=𝒜\mathcal{B}=(\overline{B},B^{\infty})\to(\overline{A},A^{\infty})=\mathcal{A}. Then we have

M¯𝒪A¯RfM¯𝒪B¯{\underline{M}}\mathcal{O}_{\overline{A}}\cong Rf_{*}{\underline{M}}\mathcal{O}_{\overline{B}}

where M¯𝒪A¯=M¯𝒪|A¯Zar{\underline{M}}\mathcal{O}_{\overline{A}}={\underline{M}}\mathcal{O}|_{\overline{A}_{{\operatorname{Zar}}}} means restriction to the small Zariski site (and similar for M¯𝒪B¯{\underline{M}}\mathcal{O}_{\overline{B}}).

Proof.

First we reduce the assertion to the case that d=0d=0. Note that 𝔸n𝔸nd×𝔸d\mathbb{A}^{n}\cong\mathbb{A}^{n-d}\times\mathbb{A}^{d} and 𝔸d{0}×𝔸d\mathbb{A}^{d}\cong\{0\}\times\mathbb{A}^{d}. These identifications induce an isomorphism

𝐁𝐥𝔸n𝔸d(𝐁𝐥𝔸nd{0})×𝔸d{\mathbf{Bl}}_{\mathbb{A}^{n}}\mathbb{A}^{d}\cong({\mathbf{Bl}}_{\mathbb{A}^{n-d}}\{0\})\times\mathbb{A}^{d}

since strict transform along a flat morphism is a pullback [Sta18, 0805]. Combining this with Lemma 4.7, we are reduced to the case 𝔸d={0}\mathbb{A}^{d}=\{0\}.

Now assume 𝔸d={0}\mathbb{A}^{d}=\{0\}. Observe that the pullback f|A|f^{*}|A^{\infty}| of the support |A||A^{\infty}| is f|A|=|B|+(i1)Ef^{*}|A^{\infty}|=|B^{\infty}|+(i{-}1)E, where EE is the exceptional divisor of the blowup. So

f𝒪(A|A|)=𝒪(fAf|A|)\displaystyle f^{*}\mathcal{O}(A^{\infty}{-}|A^{\infty}|)=\mathcal{O}(f^{*}A^{\infty}{-}f^{*}|A^{\infty}|) =𝒪(B|B|)𝒪((1i)E)\displaystyle=\mathcal{O}(B^{\infty}{-}|B^{\infty}|)\otimes\mathcal{O}((1{-}i)E)
=𝒪(B|B|)(i1).\displaystyle=\mathcal{O}(B^{\infty}{-}|B^{\infty}|)(i{-}1).

Since we are dealing with vector bundles, we can apply the projection formula [Sta18, 01E8] to find

Rf(M¯𝒪B¯)=Rf(f(M¯𝒪A¯)(1i))=M¯𝒪A¯𝒪A¯Rf𝒪B¯(1i).Rf_{*}({\underline{M}}\mathcal{O}_{\overline{B}})=Rf_{*}(f^{*}({\underline{M}}\mathcal{O}_{\overline{A}})(1-i))={\underline{M}}\mathcal{O}_{\overline{A}}\otimes_{\mathcal{O}_{\overline{A}}}Rf_{*}\mathcal{O}_{\overline{B}}(1-i).

So the result follows from the calculation Proposition C.2 of Rf𝒪B¯(1i)Rf_{*}\mathcal{O}_{\overline{B}}(1-i) since we have 1in1\leq i\leq n and therefore 1n<1n1i0-1-n<1-n\leq 1-i\leq 0. ∎

5. Cube invariance of RΓ(,M¯𝒪)R\Gamma(-,{\underline{M}}\mathcal{O})

The goal of this subsection is to prove that the cohomology presheaves of modulus global sections satisfy cube invariance. First we prepare a general criterion for cohomological cube invariance. We will use it in Proposition 5.4 to show cube invariance on nice modulus pairs for M¯𝒪{\underline{M}}\mathcal{O}.

Lemma 5.1.

Let FF be an additive presheaf on 𝐏¯𝐒𝐜𝐡k\operatorname{\mathbf{\underline{P}Sch}}_{k}, and let τ{Zar,Nis,e´t}\tau\in\{{\operatorname{Zar}},{\operatorname{Nis}},{\operatorname{\acute{e}t}}\}. Let 𝒳=(X¯,X)\mathcal{X}=(\overline{X},X^{\infty}) be a modulus pair such that X¯\overline{X} is quasi-compact and F𝒳F_{\mathcal{X}} is a quasi-coherent sheaf of 𝒪\mathcal{O}-modules on the small site X¯τ\overline{X}_{\tau}. Suppose moreover that for any affine open subscheme U¯=SpecAX¯\overline{U}=\operatorname{Spec}A\subset\overline{X} with U:=XU¯=SpecA/(f)U^{\infty}:=X^{\infty}\cap\overline{U}=\operatorname{Spec}A/(f) a principal Cartier divisor, the sequence of AA-modules

(5.1) 0F(A,f)F(A[t],f)F(A[1t],f/t)F(A[t,1t],f)00\to F(A,f)\to F(A[t],f)\oplus F(A[\tfrac{1}{t}],f/t)\to F(A[t,\tfrac{1}{t}],f)\to 0

is exact. Then, for any ii\in\mathbb{Z}, the first projection 𝒳¯𝒳\mathcal{X}\boxtimes{\overline{\square}}\to\mathcal{X} induces an isomorphism of abelian groups

Hτi(X¯,F𝒳)Hτi(X¯×1,F𝒳¯).H_{\tau}^{i}(\overline{X},F_{\mathcal{X}})\xrightarrow{\sim}H_{\tau}^{i}(\overline{X}\times\mathbb{P}^{1},F_{\mathcal{X}\boxtimes{\overline{\square}}}).
Notation 5.2.

The operation \boxtimes is the restriction of :𝐌¯𝐂𝐨𝐫k×𝐌¯𝐂𝐨𝐫k𝐌¯𝐂𝐨𝐫k\otimes:\operatorname{\mathbf{\underline{M}Cor}}_{k}\times\operatorname{\mathbf{\underline{M}Cor}}_{k}\to\operatorname{\mathbf{\underline{M}Cor}}_{k} to 𝐌¯𝐒𝐦k\operatorname{\mathbf{{\underline{M}}Sm}}_{k}. That is, for modulus pairs 𝒳,𝒴\mathcal{X},\mathcal{Y}, the total space of 𝒳𝒴\mathcal{X}\boxtimes\mathcal{Y} is X¯×Y¯\overline{X}\times\overline{Y} and the divisor is X×Y¯+X¯×YX^{\infty}\times\overline{Y}+\overline{X}\times Y^{\infty}. Note that this almost never represents the Cartesian product in 𝐌¯𝐒𝐦k\operatorname{\mathbf{{\underline{M}}Sm}}_{k}.

Proof.

It suffices to treat the case τ=Zar\tau={\operatorname{Zar}} since the étale and Zariski cohomology agree if FF is a quasi-coherent étale sheaf, [Mil80, Rem.III.3.8]. By Mayer-Vietoris and induction on the minimal size of a finite affine covering of X¯\overline{X}, we are reduced to the case when X¯\overline{X} is affine. Let 1=U0U1\mathbb{P}^{1}=U_{0}\cup U_{1} be the standard open covering. Then, for any i=0,1i=0,1 and j>1j>1, we have HZarj(X¯×Ui,F𝒳)=0H_{{\operatorname{Zar}}}^{j}(\overline{X}\times U_{i},F_{\mathcal{X}})=0 since X¯×Ui\overline{X}\times U_{i} is affine and F𝒳F_{\mathcal{X}} is quasi-coherent by assumption. Therefore, the Mayer-Vietoris long exact sequence is simplified as

0\displaystyle 0 HZar0(X¯1,F)HZar0(U0,X¯,F)HZar0(U1,X¯,F)HZar0(U01,𝒳,F)\displaystyle\to H_{{\operatorname{Zar}}}^{0}(\mathbb{P}^{1}_{\overline{X}},F)\to H_{{\operatorname{Zar}}}^{0}(U_{0,\overline{X}},F)\oplus H_{{\operatorname{Zar}}}^{0}(U_{1,\overline{X}},F)\to H_{{\operatorname{Zar}}}^{0}(U_{01,\mathcal{X}},F)
HZar1(X¯1,F)0,\displaystyle\to H_{{\operatorname{Zar}}}^{1}(\mathbb{P}^{1}_{\overline{X}},F)\to 0,

where U01=U0U1U_{01}=U_{0}\cap U_{1}, and ()X¯=()×X¯(-)_{\overline{X}}=(-)\times\overline{X} (we omit the subscripts of FF for the simplicity of notation). Therefore, the right exactness of Eq.(5.1) shows

HZar1(X¯1,FX¯1)=0=HZar1(X¯,F𝒳)H_{{\operatorname{Zar}}}^{1}(\mathbb{P}^{1}_{\overline{X}},F_{\mathbb{P}^{1}_{\overline{X}}})=0=H_{{\operatorname{Zar}}}^{1}(\overline{X},F_{\mathcal{X}})

and the left exactness of Eq.(5.1) shows HZar0(X¯1,F𝒳¯)=HZar0(X¯,F𝒳)H_{{\operatorname{Zar}}}^{0}(\mathbb{P}^{1}_{\overline{X}},F_{\mathcal{X}\boxtimes{\overline{\square}}})=H_{{\operatorname{Zar}}}^{0}(\overline{X},F_{\mathcal{X}}). ∎

Now, we move on to the proof of the cube invariance of the cohomology of M¯𝒪{\underline{M}}\mathcal{O}. We start with the following lemma.

Lemma 5.3.

Suppose that AA is reduced and ff is a nonzero divisor. Then we have

M¯𝒪(A[t],f)=M¯𝒪(A[t],ft).{\underline{M}}\mathcal{O}(A[t],f)={\underline{M}}\mathcal{O}(A[t],ft).
Proof.

By functoriality, there exists a canonical inclusion

M¯𝒪(A[t],f)M¯𝒪(A[t],ft){\underline{M}}\mathcal{O}(A[t],f)\subseteq{\underline{M}}\mathcal{O}(A[t],ft)

compatible with the inclusion A[t,f1]A[t,t1,f1]A[t,f^{-1}]\subseteq A[t,t^{-1},f^{-1}]. We wish to show that this inclusion is sujective.

Choose aM¯𝒪(A[t],ft)A[t,t1,f1]a\in{\underline{M}}\mathcal{O}(A[t],ft)\subseteq A[t,t^{-1},f^{-1}]. To show that aM¯𝒪(A[t],f)a\in{\underline{M}}\mathcal{O}(A[t],f), by Lemma 4.1 it suffices to show that

(5.2) af,(af)naA[t]af,(af)^{n}a\in A[t]

for some n0n\geq 0 (note this will imply that aA[t,f1]a\in A[t,f^{-1}]). We will show that for some nn these two elements are in both A[t,1f]A[t,\frac{1}{f}] and tnA[t]t^{-n}A[t]. Then since tnA[t]A[t,1f]=A[t]t^{-n}A[t]\cap A[t,\frac{1}{f}]=A[t] we obtain Eq.(5.2).

Write a=tmba=t^{m}b where bA[t,1f]b\in A[t,\frac{1}{f}] has non-zero constant term and mm\in\mathbb{Z}. Then we have

(5.3) a(ft)=tmb(ft) and (aft)na=(tmbft)ntmb=tmn+m+nbn+1fnA[t]a(ft)=t^{m}b(ft)\textrm{ and }(aft)^{n}a=(t^{m}bft)^{n}t^{m}b=t^{{mn+m+n}}b^{n+1}f^{n}\in A[t]

for some n0n\geq 0 by Lemma 4.1. Since bA[t,1f]b\in A[t,\frac{1}{f}] has non-zero constant term and AA is a reduced ring, bn+1b^{n+1} also has non-zero constant term. So we have (m+1)(n+1)1=mn+m+n0(m+1)(n+1)-1=mn+m+n\geq 0, which implies m+11m+1\geq 1 and hence m0m\geq 0, which means a=tmbA[t,1f]a=t^{m}b\in A[t,\frac{1}{f}]. So our first goal, af,(af)naA[t,1f]af,(af)^{n}a\in A[t,\frac{1}{f}] is achieved. The second goal, af,(af)natnA[t,1f]af,(af)^{n}a\in t^{-n}A[t,\frac{1}{f}] follows from Eq.(5.3). ∎

Proposition 5.4.

Suppose that (A,f)(A,f) is a modulus pair with AA reduced. Then

(5.4) 0M¯𝒪(A,f)M¯𝒪(A[t],f)M¯𝒪(A[1t],f/t)M¯𝒪(A[t,1t],f)00\to{\underline{M}}\mathcal{O}(A,f)\to{\underline{M}}\mathcal{O}(A[t],f)\oplus{\underline{M}}\mathcal{O}(A[\tfrac{1}{t}],f/t)\to{\underline{M}}\mathcal{O}(A[t,\tfrac{1}{t}],f)\to 0

is a short exact sequence. Consequently, for any 𝒳𝐏¯𝐒𝐦k\mathcal{X}\in\operatorname{\mathbf{\underline{P}Sm}}_{k} with X¯\overline{X} reduced and for τ{Zar,Nis,e´t}\tau\in\{{\operatorname{Zar}},{\operatorname{Nis}},{\operatorname{\acute{e}t}}\}, we have

Hτn(𝒳,M¯𝒪)=Hτn(𝒳¯,M¯𝒪).H^{n}_{\tau}(\mathcal{X},{\underline{M}}\mathcal{O})=H^{n}_{\tau}(\mathcal{X}{\boxtimes}{\overline{\square}},{\underline{M}}\mathcal{O}).
Proof.

Since AA is reduced, by Lem. 5.3, we may replace M¯𝒪(A[1t],f/t){\underline{M}}\mathcal{O}(A[\tfrac{1}{t}],f/t) with M¯𝒪(A[1t],f){\underline{M}}\mathcal{O}(A[\tfrac{1}{t}],f). Then the sequence Eq.(5.4) is a subsequence of the exact sequence

(5.5) 0A[1f]A[1f][t]A[1f][1t]A[1f][t,1t]0.0\to A[\tfrac{1}{f}]\to A[\tfrac{1}{f}][t]\oplus A[\tfrac{1}{f}][\tfrac{1}{t}]\to A[\tfrac{1}{f}][t,\tfrac{1}{t}]\to 0.

Exactness of Eq.(5.4) at M¯𝒪(A,f){\underline{M}}\mathcal{O}(A,f) follows from left exactness of Eq.(5.5).

Let’s show exactness of Eq.(5.4) in the middle. Suppose that we have a cycle (a,b)(a,b) in the middle of Eq.(5.4). By exactness of Eq.(5.5), a=ba=b is in A[1f]A[\tfrac{1}{f}]. Moreover, by Lem.4.1 it satisfies af,(af)naA[t]A[1t]=Aaf,(af)^{n}a\in A[t]\cap A[\tfrac{1}{t}]=A for some n0n\geq 0. Hence, it comes from an element of M¯𝒪(A,f){\underline{M}}\mathcal{O}(A,f).

Now let’s show right exactness of Eq.(5.4). Suppose that it is not surjective. Choose an element a=i=maitiM¯𝒪(A[t,1t],f)a=\sum_{i=m}^{\ell}a_{i}t^{i}\in{\underline{M}}\mathcal{O}(A[t,\tfrac{1}{t}],f) not in the image. If 0\ell\leq 0 or m0m\geq 0, then this element is in the image (because it satisfies af,(af)naA[t,1t]af,(af)^{n}a\in A[t,\tfrac{1}{t}] for some nn) so we must have m<0m<0 and >0\ell>0. We prove that the condition >0\ell>0 leads to a contradiction as follows. Suppose that we have chosen an element such that \ell is minimal. The highest degree term of (af)na(af)^{n}a is (atf)nat(a_{\ell}t^{\ell}f)^{n}a_{\ell}t^{\ell}. But then from af,(af)naA[t,1t]af,(af)^{n}a\in A[t,\tfrac{1}{t}] we deduce that atfa_{\ell}t^{\ell}f and (atf)nat(a_{\ell}t^{\ell}f)^{n}a_{\ell}t^{\ell} are in A[t]A[t], so ata_{\ell}t^{\ell} is in the image of M¯𝒪(A[t],f){\underline{M}}\mathcal{O}(A[t],f). Since aa is not in the image, aata-a_{\ell}t^{\ell} is also not in the image, so aa did not have minimal \ell; a contradiction.

Finally, the second assertion in the statement follows from Lem. 5.1 since M¯𝒪|X¯e´t{\underline{M}}\mathcal{O}|_{\overline{X}_{{\operatorname{\acute{e}t}}}} is quasi-coherent étale sheaf by Prop. 3.4. ∎

Remark 5.5.

The above exactness is false if AA is not reduced, as one sees immediately from the example (A,f)=(k[ε]/ε2,1)(A,f)=(k[\varepsilon]/\varepsilon^{2},1). Indeed, in this case we have

M¯𝒪(A[t],f)\displaystyle{\underline{M}}\mathcal{O}(A[t],f) =A[t]\displaystyle=A[t]
M¯𝒪(A[1t],f/t)\displaystyle{\underline{M}}\mathcal{O}(A[\tfrac{1}{t}],f/t) =A[1t]+εt\displaystyle=A[\tfrac{1}{t}]+\langle\varepsilon\rangle t
M¯𝒪(A[t,1t],f)\displaystyle{\underline{M}}\mathcal{O}(A[t,\tfrac{1}{t}],f) =A[t,1t]\displaystyle=A[t,\tfrac{1}{t}]

giving global sections of A+εtA+\langle\varepsilon\rangle t, instead of AA.

6. Transfers on M¯𝒪{\underline{M}}\mathcal{O}

We observe that the structure of presheaf with transfers on 𝒪\mathcal{O} recalled in Recollections 2.5(2) induces a structure of presheaf with transfers on M¯𝒪{\underline{M}}\mathcal{O}.

Lemma 6.1.

Let 𝒳,𝒴𝐌¯𝐒𝐦k\mathcal{X},\mathcal{Y}\in\operatorname{\mathbf{{\underline{M}}Sm}}_{k} with X¯\overline{X} normal, and αhom𝐌¯𝐂𝐨𝐫k(𝒳,𝒴)hom𝐂𝐨𝐫k(X,Y)\alpha\in\hom_{\operatorname{\mathbf{\underline{M}Cor}}_{k}}(\mathcal{X},\mathcal{Y})\subseteq\hom_{\operatorname{\mathbf{Cor}}_{k}}(X^{\circ},Y^{\circ}). Then there exists a unique map M¯𝒪(𝒴)M¯𝒪(𝒳){\underline{M}}\mathcal{O}(\mathcal{Y})\to{\underline{M}}\mathcal{O}(\mathcal{X}) making the following diagram commute:

M¯𝒪(𝒴)\textstyle{{\underline{M}}\mathcal{O}(\mathcal{Y})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}M¯𝒪(𝒳)\textstyle{{\underline{M}}\mathcal{O}(\mathcal{X})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒪(Y)\textstyle{\mathcal{O}(Y^{\circ})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha^{*}}𝒪(X).\textstyle{\mathcal{O}(X^{\circ}).}
Remark 6.2.

A modulus pair with non-smooth interior will appear in the proof. One checks directly that Lemma 3.3, Proposition 3.4, Lemma 3.5, Theorem 3.7, Lemma 4.1, Lemma 4.2, and Proposition 4.3 all work verbatim for pairs (X¯,X)(\overline{X},X^{\infty}) wth X¯\overline{X} Noetherian normal, and XX^{\infty} an effective Cartier divisor. In fact these work even more generally than that, cf.Remark 8.2.

Proof.

By definition, Rec.2.5(3), there is a morphism of modulus pairs 𝒲𝒳\mathcal{W}\to\mathcal{X} such that W¯\overline{W} is integral, W¯X¯\overline{W}\to\overline{X} is proper surjective, WXW^{\circ}\to X^{\circ} is finite, and the composition 𝒲𝒳𝒴\mathcal{W}\to\mathcal{X}\to\mathcal{Y} is a finite sum of morphisms of modulus pairs. Normalising, we can assume W¯\overline{W} is integrally closed in WW^{\circ}. As such, the morphism ()(\ast) in the diagram

𝒪(Y)\textstyle{\mathcal{O}(Y^{\circ})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒪(X)\textstyle{\mathcal{O}(X^{\circ})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\subseteq}𝒪(W)\textstyle{\mathcal{O}(W^{\circ})}M¯𝒪(𝒴)\textstyle{{\underline{M}}\mathcal{O}(\mathcal{Y})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}()\scriptstyle{(\ast\ast)}()\scriptstyle{(\ast)}|\scriptstyle{\cup|}M¯𝒪(𝒳)\textstyle{{\underline{M}}\mathcal{O}(\mathcal{X})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}|\scriptstyle{\cup|}M¯𝒪(𝒲)\textstyle{{\underline{M}}\mathcal{O}(\mathcal{W})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}|\scriptstyle{\cup|}

certainly exists, and is unique by injectivity of M¯𝒪(𝒲)𝒪(W){\underline{M}}\mathcal{O}(\mathcal{W})\subseteq\mathcal{O}(W^{\circ}). By Proposition 4.3 the square on the right is Cartesian, so the morphism ()(\ast\ast) also exists and is unique. ∎

7. Hodge realisation for M¯𝒪{\underline{M}}\mathcal{O}

We now combine the above to prove our main theorem for M¯𝒪{\underline{M}}\mathcal{O}, Theorem 7.3. The idea is that RΓNis(,M¯𝒪)R\Gamma_{{\operatorname{Nis}}}(-,{\underline{M}}\mathcal{O}) can be equipped with transfers, and should be blow up invariant and cube invariant. Sadly, Example 8.3 below shows that RΓNis(,M¯𝒪)R\Gamma_{{\operatorname{Nis}}}(-,{\underline{M}}\mathcal{O}) is not blowup invariant without some stricter hypotheses. We use normal crossings.

Notation 7.1.

Write 𝐌¯𝐒𝐦knc𝐌¯𝐒𝐦k\operatorname{\mathbf{{\underline{M}}Sm}}_{k}^{{\operatorname{nc}}}\subseteq\operatorname{\mathbf{{\underline{M}}Sm}}_{k} (resp. 𝐌¯𝐂𝐨𝐫knc𝐌¯𝐂𝐨𝐫k\operatorname{\mathbf{\underline{M}Cor}}_{k}^{{\operatorname{nc}}}\subseteq\operatorname{\mathbf{\underline{M}Cor}}_{k}) for the full subcategory of quasi-projective normal crossings modulus pairs.

Remark 7.2.

In general, we have the following.

  1. (1)

    If 𝒴𝒳\mathcal{Y}\to\mathcal{X} is an abstract admissible blowup, then 𝒴¯𝒳¯\mathcal{Y}\otimes{\overline{\square}}\to\mathcal{X}\otimes{\overline{\square}} is again an abstract admissible blowup.151515Recall that 𝒳¯\mathcal{X}\otimes{\overline{\square}} has total space X¯×1\overline{X}\times\mathbb{P}^{1} and modulus X×1+X¯×{}X^{\infty}\times\mathbb{P}^{1}+\overline{X}\times\{\infty\}. So any functor on 𝐌¯𝐂𝐨𝐫k\operatorname{\mathbf{\underline{M}Cor}}_{k} which sends 𝒳¯𝒳\mathcal{X}\otimes{\overline{\square}}\to\mathcal{X} to an isomorphism, also sends 𝒴¯𝒴\mathcal{Y}\otimes{\overline{\square}}\to\mathcal{Y} to an isomorphism.

  2. (2)

    If 𝒳𝐌¯𝐂𝐨𝐫knc\mathcal{X}\in\operatorname{\mathbf{\underline{M}Cor}}_{k}^{{\operatorname{nc}}} then 𝒳¯𝐌¯𝐂𝐨𝐫knc\mathcal{X}\otimes{\overline{\square}}\in\operatorname{\mathbf{\underline{M}Cor}}_{k}^{{\operatorname{nc}}}.

If kk satisfies (RoS), then we also have:

  1. (1)

    The inclusions 𝐌¯𝐒𝐦knc𝐌¯𝐒𝐦k\operatorname{\mathbf{{\underline{M}}Sm}}_{k}^{{\operatorname{nc}}}\subseteq\operatorname{\mathbf{{\underline{M}}Sm}}_{k} and 𝐌¯𝐂𝐨𝐫knc𝐌¯𝐂𝐨𝐫k\operatorname{\mathbf{\underline{M}Cor}}_{k}^{{\operatorname{nc}}}\subseteq\operatorname{\mathbf{\underline{M}Cor}}_{k} are equivalences of categories.

  2. (2)

    Consequently, the canonical comparison functor

    D(𝐒𝐡𝐯M¯Nis(𝐌¯𝐂𝐨𝐫knc))tr(𝒳¯)tr(𝒳):𝒳𝐌¯𝐂𝐨𝐫kncD(𝐒𝐡𝐯M¯Nis(𝐌¯𝐂𝐨𝐫k))tr(𝒳¯)tr(𝒳):𝒳𝐌¯𝐂𝐨𝐫k\frac{D({\operatorname{\mathbf{Shv}}}_{\operatorname{\mathrm{\underline{M}Nis}}}(\operatorname{\mathbf{\underline{M}Cor}}_{k}^{{\operatorname{nc}}}))}{\biggl{\langle}\mathbb{Z}_{{\operatorname{tr}}}(\mathcal{X}\otimes{\overline{\square}})\to\mathbb{Z}_{{\operatorname{tr}}}(\mathcal{X}):\mathcal{X}\in\operatorname{\mathbf{\underline{M}Cor}}_{k}^{{\operatorname{nc}}}\biggr{\rangle}}\to\frac{D({\operatorname{\mathbf{Shv}}}_{\operatorname{\mathrm{\underline{M}Nis}}}(\operatorname{\mathbf{\underline{M}Cor}}_{k}))}{\biggl{\langle}\mathbb{Z}_{{\operatorname{tr}}}(\mathcal{X}\otimes{\overline{\square}})\to\mathbb{Z}_{{\operatorname{tr}}}(\mathcal{X}):\mathcal{X}\in\operatorname{\mathbf{\underline{M}Cor}}_{k}\biggr{\rangle}}

    is an equivalence of categories.

Theorem 7.3.

Suppose that kk satisfies (RoS) and (WF), Def.A.4, e.g., char(k)=0char(k){=}0. Then there is a unique object 𝐌¯𝒪𝐌¯𝐃𝐌keff\mathbf{{\underline{M}}\mathcal{O}}\in\operatorname{\mathbf{\underline{M}DM}}_{k}^{{\operatorname{eff}}} such that for 𝒳\mathcal{X} with normal crossings we have

hom𝐌¯𝐃𝐌keff(M(𝒳),𝐌¯𝒪[n])HZarn(X¯,1).\hom_{\operatorname{\mathbf{\underline{M}DM}}_{k}^{{\operatorname{eff}}}}(M(\mathcal{X}),\mathbf{{\underline{M}}\mathcal{O}}[n])\cong H^{n}_{{\operatorname{Zar}}}(\overline{X},\sqrt{\mathcal{I}}\otimes\mathcal{I}^{-1}).
Proof.

Consider M¯𝒪𝐏𝐒𝐡(𝐌¯𝐒𝐦k){\underline{M}}\mathcal{O}\in{\operatorname{\mathbf{PSh}}}(\operatorname{\mathbf{{\underline{M}}Sm}}_{k}) from Proposition 4.3. By Lemma 6.1 this factors through 𝐌¯𝐂𝐨𝐫k\operatorname{\mathbf{\underline{M}Cor}}_{k}. Consider its image 𝐌¯𝒪\mathbf{{\underline{M}}\mathcal{O}} in D(𝐒𝐡𝐯M¯Nis(𝐌¯𝐂𝐨𝐫k))D({\operatorname{\mathbf{Shv}}}_{\operatorname{\mathrm{\underline{M}Nis}}}(\operatorname{\mathbf{\underline{M}Cor}}_{k})). For any 𝒳𝐌¯𝐂𝐨𝐫k\mathcal{X}\in\operatorname{\mathbf{\underline{M}Cor}}_{k} we have

homD(𝐒𝐡𝐯M¯Nis(𝐌¯𝐂𝐨𝐫k))(tr(𝒳),𝐌¯𝒪[n])\displaystyle\hom_{D({\operatorname{\mathbf{Shv}}}_{\operatorname{\mathrm{\underline{M}Nis}}}(\operatorname{\mathbf{\underline{M}Cor}}_{k}))}(\mathbb{Z}_{{\operatorname{tr}}}(\mathcal{X}),\mathbf{{\underline{M}}\mathcal{O}}[n]) =Extn(tr(𝒳),M¯𝒪)\displaystyle=Ext^{n}(\mathbb{Z}_{{\operatorname{tr}}}(\mathcal{X}),{\underline{M}}\mathcal{O})
(7.1) =Eq.(2.3)HM¯Nisn(𝒳,M¯𝒪)\displaystyle\stackrel{{\scriptstyle Eq.\eqref{equa:ExtCoh}}}{{=}}H_{\operatorname{\mathrm{\underline{M}Nis}}}^{n}(\mathcal{X},{\underline{M}}\mathcal{O})
=Prop.B.7lim𝒴𝒳HNisn(𝒴,M¯𝒪)\displaystyle\stackrel{{\scriptstyle Prop.\ref{prop:MZarIscolimZar}}}{{=}}\operatornamewithlimits{\varinjlim}_{\mathcal{Y}\to\mathcal{X}}H_{{\operatorname{Nis}}}^{n}(\mathcal{Y},{\underline{M}}\mathcal{O})

where the colimit is over abstract admissible blowups. Consider the case that 𝒳𝐌¯𝐒𝐦knc\mathcal{X}\in\operatorname{\mathbf{{\underline{M}}Sm}}_{k}^{{\operatorname{nc}}}. By Proposition A.7 we can assume all Y¯\overline{Y} are actual blowups of X¯\overline{X}, and by (RoS) we can assume that all 𝒴\mathcal{Y} are normal crossings. By (WF), such 𝒴𝒳\mathcal{Y}\to\mathcal{X} are zig zags of abstract admissible blowups 𝒱𝒲\mathcal{V}\to\mathcal{W} such that V¯W¯\overline{V}\to\overline{W} is a blowup in a regular centre that has normal crossings with WW^{\infty}. Since 𝒳𝐌¯𝐒𝐦knc\mathcal{X}\in\operatorname{\mathbf{{\underline{M}}Sm}}_{k}^{{\operatorname{nc}}} by Proposition 4.6 (and Theorem 3.7) the functor HNisn(,M¯𝒪)H_{{\operatorname{Nis}}}^{n}(-,{\underline{M}}\mathcal{O}) sends such 𝒱𝒲\mathcal{V}\to\mathcal{W} to isomorphisms. So

Eq.(7.1)HNisn(𝒳,M¯𝒪); for normal crossings 𝒳.\textrm{Eq.\eqref{eq:homDMNSTcolim}}\cong H_{{\operatorname{Nis}}}^{n}(\mathcal{X},{\underline{M}}\mathcal{O});\qquad\textrm{ for normal crossings }\mathcal{X}.

Finally, by Proposition 5.4 we deduce that Eq.(7.1) is cube invariant, at least for normal crossings 𝒳\mathcal{X}. But this is sufficient to deduce that it is cube invariant for all 𝒳𝐌¯𝐒𝐦k\mathcal{X}\in\operatorname{\mathbf{{\underline{M}}Sm}}_{k}, Rem.7.2. So 𝐌¯𝒪\mathbf{{\underline{M}}\mathcal{O}} lies in the full subcategory 𝐌¯𝐃𝐌keffD(𝐒𝐡𝐯M¯Nis(𝐌¯𝐂𝐨𝐫k))\operatorname{\mathbf{\underline{M}DM}}_{k}^{{\operatorname{eff}}}\subseteq D({\operatorname{\mathbf{Shv}}}_{\operatorname{\mathrm{\underline{M}Nis}}}(\operatorname{\mathbf{\underline{M}Cor}}_{k})). ∎

8. Post-script

Here we collect some odds and ends.

Here is a proof of the claim in Example 3.2.

Lemma 8.1.

Let AA be a UFD and ff a non-zero divisor. Then the AA-submodule M¯𝒪(A)A[f1]{\underline{M}}\mathcal{O}(A)\subset A[f^{-1}] is free of rank one. In particular, M¯𝒪(A){\underline{M}}\mathcal{O}(A) is a flat AA-module.

Proof.

It suffices to show that M¯𝒪(A,f)={a/fA[f1]:a(f)}{\underline{M}}\mathcal{O}(A,f)=\{a/f\in A[f^{-1}]:a\in\sqrt{(f)}\} is a free AA-module of rank one. Since AA is a UFD, there exists a decomposition f=p1m1pnmnf=p_{1}^{m_{1}}\cdots p_{n}^{m_{n}}, where pip_{i} are irreducible elements in AA and mi>0m_{i}>0 for all i=1,,ni=1,\dots,n. Then we have (f)=(p1pn)A\sqrt{(f)}=(p_{1}\cdots p_{n})\subset A, and hence

M¯𝒪(A,f)=1p1m11pnmn1AA[f1].{\underline{M}}\mathcal{O}(A,f)=\frac{1}{p_{1}^{m_{1}-1}\cdots p_{n}^{m_{n}-1}}\cdot A\subset A{[f^{-1}]}.

Since p1pmp_{1}\cdots p_{m} is a non-zerodivisor as a factor of ff, we conclude that M¯𝒪(A,f)=(p1m11pnmn1)1{\underline{M}}\mathcal{O}(A,f)=(p_{1}^{m_{1}-1}\cdots p_{n}^{m_{n}-1})^{-1} is an invertible sheaf on X¯\overline{X}. ∎

Here is a remark about the more general setting.

Remark 8.2.

We have already remarked that Lemma 3.3, Proposition 3.4, Lemma 3.5, Theorem 3.7, and Lemma 4.1 work for general modulus pairs (i.e., X¯\overline{X} a qcqs scheme and XX^{\infty} an effective Cartier divisor).

Lemma 4.2 is a kind of valuative criterion for global sections. There is a much more general version of this lemma. The more general version is valid for any ring AA equipped with a nonzero divisor ff, and the local rings A𝔭A_{\mathfrak{p}} are replaced with local rings of the relative Riemann-Zariski space, denoted ValSpecA[f1](Spec(A))Val_{\operatorname{Spec}A[f^{-1}]}(\operatorname{Spec}(A)) in Temkin’s article, [Tem11]. As such Proposition 4.3 also holds for general modulus pairs, but with the restriction that 𝒪X¯\mathcal{O}_{\overline{X}} be integrally closed in j𝒪Xj_{*}\mathcal{O}_{X^{\circ}}, where j:XX¯j:X^{\circ}\subseteq\overline{X} is the inclusion.

For Lemma 5.3, Proposition 5.4 one must further assume that the total space is reduced in the general statements.

Here is a counter-example showing that in Proposition 4.6 we need to at least assume that X¯\overline{X} has rational singularities inside the divisor.

Example 8.3 (Gabber).

Suppose f:Y¯X¯f:\overline{Y}\to\overline{X} is a resolution of singularities of some X¯\overline{X} with non-rational singularities. That is, such that Rif𝒪Y¯0R^{i}f_{*}\mathcal{O}_{\overline{Y}}\neq 0 for some i>0i>0. Suppose that X¯\overline{X} admits a reduced effective Cartier divisor XX^{\infty} containing the singularities such that Y=fXY^{\infty}=f^{*}X^{\infty} is also reduced. Then M¯𝒪(Y¯,Y)=𝒪Y¯{\underline{M}}\mathcal{O}_{(\overline{Y},Y^{\infty})}=\mathcal{O}_{\overline{Y}} and M¯𝒪(X¯,X)=𝒪X¯{\underline{M}}\mathcal{O}_{(\overline{X},X^{\infty})}=\mathcal{O}_{\overline{X}} so by assumption M¯𝒪𝒳RfM¯𝒪𝒴{\underline{M}}\mathcal{O}_{\mathcal{X}}\to Rf_{*}{\underline{M}}\mathcal{O}_{\mathcal{Y}} is not an isomorphism.

An explicit example can be produced by considering the affine cone over an elliptic curve (for example): Suppose that Ek2E\subseteq\mathbb{P}^{2}_{k} is a smooth curve with H1(E,𝒪E)0H^{1}(E,\mathcal{O}_{E})\neq 0, e.g., an elliptic curve, and choose a k1k2\mathbb{P}^{1}_{k}\subseteq\mathbb{P}^{2}_{k} such that k1E\mathbb{P}^{1}_{k}\cap E is reduced. Let CE𝔸k3CE\subseteq\mathbb{A}^{3}_{k} be the affine cone over EE (we recall a construction below). Let BE=BlCE{0}CEBE=Bl_{CE}\{0\}\to CE be the blowup of the singular point of CECE. Equip CECE and BEBE with the pullbacks CC^{\infty}, BB^{\infty} of the effective Cartier divisor 𝔸k2𝔸k3\mathbb{A}^{2}_{k}\subseteq\mathbb{A}^{3}_{k} corresponding to the k1k2\mathbb{P}^{1}_{k}\subseteq\mathbb{P}^{2}_{k} chosen above, and set =(BE,B)\mathcal{B}=(BE,B^{\infty}), 𝒞=(CE,C)\mathcal{C}=(CE,C^{\infty}). We claim that

(8.1) HZar1(BE,M¯𝒪)HZar1(E,𝒪E)0H^{1}_{{\operatorname{Zar}}}(BE,{\underline{M}}\mathcal{O}_{\mathcal{B}})\supseteq H_{{\operatorname{Zar}}}^{1}(E,\mathcal{O}_{E})\neq 0

and therefore

M¯𝒪𝒞RfM¯𝒪{\underline{M}}\mathcal{O}_{\mathcal{C}}\to Rf_{*}{\underline{M}}\mathcal{O}_{\mathcal{B}}

is not an isomorphism where f:BECEf:BE\to CE is the canonical morphism. Note CECE is affine, so HZar1(BE,M¯𝒪)H^{1}_{{\operatorname{Zar}}}(BE,{\underline{M}}\mathcal{O}_{\mathcal{B}}) is precisely the space of global sections of the quasi-coherent sheaf R1fM¯𝒪R^{1}f_{*}{\underline{M}}\mathcal{O}_{\mathcal{B}}.

We recall a construction of BE,CEBE,CE. To begin with, recall that the blowup Bl𝔸3{0}Bl_{\mathbb{A}^{3}}\{0\} of 𝔸3\mathbb{A}^{3} in the origin is canonically identified with the total space of the line bundle 𝒪2(1)\mathcal{O}_{\mathbb{P}^{2}}(1) on 2\mathbb{P}^{2} via a retraction π:Bl𝔸3{0}2\pi:Bl_{\mathbb{A}^{3}}\{0\}\to\mathbb{P}^{2} to the exceptional divisor 2Bl𝔸3{0}\mathbb{P}^{2}\subseteq Bl_{\mathbb{A}^{3}}\{0\}.161616Indeed, classically Bl𝔸3{0}Bl_{\mathbb{A}^{3}}\{0\} is the variety of pairs (L,x)(L,x) such that L𝔸3L\subseteq\mathbb{A}^{3} is a line through the origin and xLx\in L. The projection Bl𝔸3{0}𝔸3Bl_{\mathbb{A}^{3}}\{0\}\to\mathbb{A}^{3} sends (L,x)(L,x) to xx, and the retraction Bl𝔸3{0}2Bl_{\mathbb{A}^{3}}\{0\}\to\mathbb{P}^{2} sends (L,x)(L,x) to LL. The exceptional divisor 2Bl𝔸3{0}\mathbb{P}^{2}\subseteq Bl_{\mathbb{A}^{3}}\{0\} is the set {(L,x)|x=0}\{(L,x)\ |\ x=0\}. Then one can define BEBl𝔸3{0}BE\subseteq Bl_{\mathbb{A}^{3}}\{0\} and CE𝔸3CE\subseteq\mathbb{A}^{3} by forming the Cartesian square on the left and the surjection ff. We also have the further Cartesian square on the right coming from the inclusion of the exceptional divisor 2Bl𝔸3{0}\mathbb{P}^{2}\subseteq Bl_{\mathbb{A}^{3}}\{0\}.

E\textstyle{E\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι\scriptstyle{\iota}BE\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces BE\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}θ\scriptstyle{\theta}ϕ\scriptstyle{\phi}f\scriptstyle{f}CE\textstyle{CE\ignorespaces\ignorespaces\ignorespaces\ignorespaces}BE\textstyle{BE\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕ\scriptstyle{\phi}E\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces E}ι\scriptstyle{\iota}2\textstyle{\mathbb{P}^{2}}Bl𝔸3{0}\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces Bl_{\mathbb{A}^{3}}\{0\}}π\scriptstyle{\pi}g\scriptstyle{g}𝔸3\textstyle{\mathbb{A}^{3}}Bl𝔸3{0}\textstyle{Bl_{\mathbb{A}^{3}}\{0\}}2\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\mathbb{P}^{2}}

Note 2π11=g1𝔸2Bl𝔸3{0}\mathbb{P}^{2}\cup\pi^{-1}\mathbb{P}^{1}=g^{-1}\mathbb{A}^{2}\subseteq Bl_{\mathbb{A}^{3}}\{0\}, so Eθ1(1E)=B=f1CE\cup\theta^{-1}(\mathbb{P}^{1}\cap E)=B^{\infty}=f^{-1}C^{\infty}.

For the inclusion of Eq.8.1, first note that since k1E\mathbb{P}^{1}_{k}\cap E is reduced, the effective Cartier divisor BB^{\infty} is reduced. Indeed, π\pi and therefore θ\theta is an 𝔸1\mathbb{A}^{1}-bundle. So

(8.2) M¯𝒪𝒪BE.{\underline{M}}\mathcal{O}_{\mathcal{B}}\cong\mathcal{O}_{BE}.

Since affine schemes have no higher coherent cohomology, we have Rjθ𝒪BE=0R^{j}\theta_{*}\mathcal{O}_{BE}=0 for j>0j>0 and so the spectral sequence HZari(E,Rjθ𝒪BE)HZari+j(BE,𝒪BE)H^{i}_{{\operatorname{Zar}}}(E,R^{j}\theta_{*}\mathcal{O}_{BE})\implies H^{i+j}_{{\operatorname{Zar}}}(BE,\mathcal{O}_{BE}) gives an isomorphism

(8.3) HZar1(BE,𝒪BE)HZar1(E,θ𝒪BE).H^{1}_{{\operatorname{Zar}}}(BE,\mathcal{O}_{BE})\cong H^{1}_{{\operatorname{Zar}}}(E,\theta_{*}\mathcal{O}_{BE}).

Then by definition171717Indeed, we have identified Bl𝔸3{0}Bl_{\mathbb{A}^{3}}\{0\} with the total space of 𝒪2(1)\mathcal{O}_{\mathbb{P}^{2}}(1), i.e., with Spec¯i0𝒪2(i)\operatorname{\underline{Spec}}\oplus_{i\geq 0}\mathcal{O}_{\mathbb{P}^{2}}(i), and BEBE is the fibre product. BE=Spec¯i0𝒪E(i)BE=\operatorname{\underline{Spec}}\oplus_{i\geq 0}\mathcal{O}_{E}(i) which contains the direct summand 𝒪E\mathcal{O}_{E}:

(8.4) θ𝒪BE𝒪E\theta_{*}\mathcal{O}_{BE}\cong\mathcal{O}_{E}\oplus\mathcal{F}

Combining Eq.(8.2), Eq.(8.3), and Eq.(8.4) gives Eq.(8.1).

Remark 8.4.

Note that CECE in Example 8.3 is normal, since it is regular in codimension one, and complete intersection. The singularity is contained inside the divisor CC^{\infty}. Of course, BEBE is also normal, since it’s an affine bundle over a smooth curve, and therefore also smooth.

Appendix A Resolution of singularities and weak factorisations

Definition A.1.

Let 𝒳\mathcal{X} be a modulus pair and ZX¯Z\subseteq\overline{X} a closed subscheme. We will say that ZZ has strict normal crossings with XX^{\infty} if for every point xX¯x\in\overline{X} the local ring 𝒪X¯,x\mathcal{O}_{\overline{X},x} is regular, and there exists a regular system of parameters181818Cf.[Sta18, 00KU]. t1,,tn𝒪X¯,xt_{1},...,t_{n}\in\mathcal{O}_{\overline{X},x} such that

X|Spec(𝒪X¯,x)=aAtara, and Z|Spec(𝒪X¯,x)=Spec(𝒪X¯,x/tb:bB)X^{\infty}|_{\operatorname{Spec}(\mathcal{O}_{\overline{X},x})}=\prod_{a\in A}t_{a}^{r_{a}},\qquad\textrm{ and }\qquad Z|_{\operatorname{Spec}(\mathcal{O}_{\overline{X},x})}=\operatorname{Spec}(\mathcal{O}_{\overline{X},x}/\langle t_{b}:b\in B\rangle)

for some ra>0r_{a}>0 and A,B{1,,n}A,B\subseteq\{1,...,n\}.

We will say that ZZ has normal crossings with XX^{\infty} if there exists an étale covering V¯X¯\overline{V}\to\overline{X} such that Z×X¯V¯Z\times_{\overline{X}}\overline{V} has strict normal crossings with VV^{\infty}.

We say that 𝒳\mathcal{X} is a normal crossings modulus pair if \varnothing has normal crossings with XX^{\infty}.

Remark A.2.

Note, ABA\cap B\neq\varnothing is allowed; in particular, ZXZ\subseteq X^{\infty} is allowed.

Definition A.3 (cf.[AT19, §1.2]).

Suppose that f:𝒴𝒳f:\mathcal{Y}\to\mathcal{X} is a abstract admissible blowup between normal crossings modulus pairs, such that Y¯X¯\overline{Y}\to\overline{X} is an actual blowup of noetherian qe regular schemes. A weak factorisation of 𝒴𝒳\mathcal{Y}\to\mathcal{X} is a factorisation of ff in 𝐌¯𝐒𝐂𝐇\operatorname{\mathbf{\underline{M}SCH}}191919Cf.[KelMiy21, Def.1.23].

𝒴=𝒱0s1𝒱1s2𝒱2sl𝒱l=𝒳\mathcal{Y}=\mathcal{V}_{0}\stackrel{{\scriptstyle s_{1}}}{{\cong}}\mathcal{V}_{1}\stackrel{{\scriptstyle s_{2}}}{{\cong}}\mathcal{V}_{2}\cong\dots\stackrel{{\scriptstyle s_{l}}}{{\cong}}\mathcal{V}_{l}=\mathcal{X}

such that for each i=1,,li=1,\dots,l, either sis_{i} or si1s_{i}^{-1} is an abstract admissible blowup in 𝐏¯𝐒𝐂𝐇\operatorname{\mathbf{\underline{P}SCH}} whose total space 𝒱i1𝒱i\mathcal{V}_{i-1}\to\mathcal{V}_{i} (resp. 𝒱i1𝒱i\mathcal{V}_{i-1}\leftarrow\mathcal{V}_{i}) is the blowup of a regular closed subscheme which has normal crossings with ViV^{\infty}_{i} (resp. Vi1V^{\infty}_{i-1}).

Definition A.4.

Consider the following properties that a field kk might satisfy.

  1. (RoS)

    For every 𝒳𝐏¯𝐒𝐦k\mathcal{X}\in\operatorname{\mathbf{\underline{P}Sm}}_{k}, there exists an abstract admissible blowup 𝒴𝒳\mathcal{Y}\to\mathcal{X} such that 𝒴\mathcal{Y} is normal crossings and Y¯X¯\overline{Y}\to\overline{X} is an actual blowup.

  2. (WF)

    Every abstract admissible blowup f:𝒴𝒳f:\mathcal{Y}\to\mathcal{X} in 𝐏¯𝐒𝐦k\operatorname{\mathbf{\underline{P}Sm}}_{k} such that Y¯,X¯\overline{Y},\overline{X} are smooth and Y¯X¯\overline{Y}\to\overline{X} is an actual blowup, admits a weak factorisation.

Theorem A.5 (Resolution of Singularities, [Tem08, Thm.1.1], [Hir64]).

Let XX be a Noetherian quasi-excellent integral scheme of characteristic zero. Then XX admits a semi-strict embedded resolution of singularities. In particular, for every closed subscheme ZXZ\subseteq X there is a blowup f:XXf:X^{\prime}\to X with centre disjoint from the regular locus of XX, such that XX^{\prime} is regular, Z×XXZ\times_{X}X^{\prime} is a normal crossings divisor.

Theorem A.6 (Weak Factorisation, cf.[AT19, Thm.1.2.1]).

If kk is characteristic zero then kk satisfies (RoS).

Notice that (RoS) and (WF) deal with actual blowups. To can turn abstract admissible blowups into actual blowups we using the following.

Proposition A.7 (Temkin).

Suppose that 𝒴𝒳\mathcal{Y}\to\mathcal{X} is an abstract admissible blowup in 𝐏¯𝐒𝐦k\operatorname{\mathbf{\underline{P}Sm}}_{k} with X¯\overline{X} quasi-projective (e.g., affine) and integral. Then there exists a second abstract admissible blowup 𝒴𝒴\mathcal{Y}^{\prime}\to\mathcal{Y} such that Y¯X¯\overline{Y}^{\prime}\to\overline{X} is an actual blowup.

Proof.

This is essential [Tem11, Cor.3.4.8] which says that any XX^{\circ}-modification Y¯X¯\overline{Y}\to\overline{X} is dominated by an XX^{\circ}-blow up Y¯X¯\overline{Y}^{\prime}\to\overline{X}. Here XX^{\circ}-modification is a factorisation XY¯X¯X^{\circ}\to\overline{Y}\to\overline{X} into a schematically dominant morphism XY¯X^{\circ}\to\overline{Y} and a proper morphism Y¯fX¯\overline{Y}\stackrel{{\scriptstyle f}}{{\to}}\overline{X}, and an XX^{\circ}-blow up is an XX^{\circ}-modification Y¯X¯\overline{Y}^{\prime}\to\overline{X} such that there exists an ff-ample 𝒪Y¯\mathcal{O}_{\overline{Y}^{\prime}}-module \mathcal{L} equipped with a global section which is invertible on XX^{\circ}. The existence of the ample sheaf \mathcal{L} implies that ff is projective, [Sta18, 0B45], and therefore it is an actual blow up, [Liu02, 8.1.24]. ∎

Appendix B Comparison of τ\tau and M¯τ\operatorname{\mathrm{\underline{M}}}\tau-cohomologies.

Our goal in this subsection is Prop.B.7 which says that the M¯τ\operatorname{\mathrm{\underline{M}}}\tau-cohomology is the colimit over abstract admissible blowups of that τ\tau-cohomology for τ=Zar,e´t\tau={\operatorname{Zar}},{\operatorname{\acute{e}t}}.

The same proof works for fppf{\operatorname{fppf}}, but we have been diligently avoiding 𝐌¯𝐒𝐜𝐡k\operatorname{\mathbf{\underline{M}Sch}}_{k} in this article.

Recollection B.1 (Small sites).
  1. (1)

    The small Zariski site 𝒳Zar\mathcal{X}_{{\operatorname{Zar}}} on a modulus pair is the full subcategory of (𝐏¯𝐒𝐦k)/𝒳(\operatorname{\mathbf{\underline{P}Sm}}_{k})_{/\mathcal{X}} whose objects are minimal morphisms (U¯,U)(X¯,X)(\overline{U},U^{\infty})\to(\overline{X},X^{\infty}) such that U¯X¯\overline{U}\to\overline{X} is an open immersion i.e., minimal open immersions. It is canonically equivalent to the small Zariski site X¯Zar\overline{X}_{{\operatorname{Zar}}} of the total space X¯\overline{X}.

  2. (2)

    The small M¯Zar\operatorname{\mathrm{\underline{M}Zar}} site 𝒳M¯Zar\mathcal{X}_{\operatorname{\mathrm{\underline{M}Zar}}} on a modulus pair is the essential image of 𝒳Zar\mathcal{X}_{{\operatorname{Zar}}}. It follows from [KelMiy21, Lem.1.32, Thm.2.13] that all objects of 𝒳M¯Zar\mathcal{X}_{\operatorname{\mathrm{\underline{M}Zar}}} are of the form

    𝒱t1𝒱f𝒳s𝒳\mathcal{V}\stackrel{{\scriptstyle t^{-1}}}{{\to}}\mathcal{V}^{\prime}\stackrel{{\scriptstyle f}}{{\to}}\mathcal{X}^{\prime}\stackrel{{\scriptstyle s}}{{\to}}\mathcal{X}

    where s,ts,t are (the images of) abstract admissible blowups in 𝐏¯𝐒𝐦\operatorname{\mathbf{\underline{P}Sm}} and ff is the image of a minimal open immersion. Similarly, every morphism in 𝒳M¯Zar\mathcal{X}_{\operatorname{\mathrm{\underline{M}Zar}}} is also of this form.

  3. (3)

    The small sites 𝒳Nis\mathcal{X}_{{\operatorname{Nis}}}, 𝒳e´t\mathcal{X}_{{\operatorname{\acute{e}t}}}, 𝒳M¯Nis\mathcal{X}_{\operatorname{\mathrm{\underline{M}Nis}}}, 𝒳M¯e´t\mathcal{X}_{\operatorname{\mathrm{\underline{M}\acute{e}t}}} are defined analogously.

Lemma B.2.

Let τ{Zar,Nis,e´t}\tau\in\{{\operatorname{Zar}},{\operatorname{Nis}},{\operatorname{\acute{e}t}}\}. Then, for any modulus pair 𝒳\mathcal{X} over kk, the functor

α:X¯τ𝒳M¯τ;U¯(U¯,X×X¯U¯)\alpha:\overline{X}_{\tau}\to\mathcal{X}_{\operatorname{\mathrm{\underline{M}}}\tau};\quad\overline{U}\mapsto(\overline{U},X^{\infty}\times_{\overline{X}}\overline{U})

preserves finite limits.

Proof.

Since α\alpha send the terminal object to the terminal object, it suffices to show that it preserves fiber products. This follows from the fact that for any diagram of ambient minimal morphisms 𝒜𝒞\mathcal{B}\to\mathcal{A}\leftarrow\mathcal{C}, the modulus pair

(B¯×A¯C¯,the pullback of A)(\overline{B}\times_{\overline{A}}\overline{C},\text{the pullback of $A^{\infty}$})

represents the fiber product ×𝒜𝒞\mathcal{B}\times_{\mathcal{A}}\mathcal{C} in 𝐌¯𝐒𝐦k\operatorname{\mathbf{{\underline{M}}Sm}}_{k}, [KelMiy21, Prop.1.33]. (Note that this does not hold for non-minimal morphisms). ∎

Corollary B.3.

The functor α\alpha in Lemma B.2 commutes with the skeleton functors and the coskeleton functors.202020The skeleton functor is the forgetful functor sk:𝐏𝐒𝐡(Δ,C)𝐏𝐒𝐡(Δn,C){\operatorname{sk}}:{\operatorname{\mathbf{PSh}}}(\Delta,C)\to{\operatorname{\mathbf{PSh}}}(\Delta_{\leq n},C) and the coskeleton functor is its right adjoint. More precisely, for any simplicial object KK in X¯τ\overline{X}_{\tau} and for any n0n\geq 0, we have an isomorphism skn(α(K))α(sknK){\operatorname{sk}}_{n}(\alpha(K))\cong\alpha({\operatorname{sk}}_{n}K) and coskn(α(K))α(cosknK){\operatorname{cosk}}_{n}(\alpha(K))\cong\alpha({\operatorname{cosk}}_{n}K).

Proof.

Since the skeleton functor is induced by the restriction by the inclusion ΔnΔ\Delta_{\leq n}\subset\Delta, we obviously have skn(α(K))=α(sknK){\operatorname{sk}}_{n}(\alpha(K))=\alpha({\operatorname{sk}}_{n}K). To show the other assertion, by Lemma B.2 it suffices to note that coskn{\operatorname{cosk}}_{n} is constructed by finite limits (see [Sta18, 0183]). ∎

Lemma B.4.

Let τ{Zar,e´t}\tau\in\{{\operatorname{Zar}},{\operatorname{\acute{e}t}}\}. Let 𝒳\mathcal{X} be a modulus pair over kk, and let U¯\overline{U}_{\bullet} be an nn-truncated simplicial object in X¯τ\overline{X}_{\tau} for some n0n\geq 0. Define an nn-truncated simplicial object 𝒰\mathcal{U}_{\bullet} in 𝒳M¯τ\mathcal{X}_{\operatorname{\mathrm{\underline{M}}}\tau} by 𝒰i:=(U¯i,X×X¯U¯i)\mathcal{U}_{i}:=(\overline{U}_{i},X^{\infty}\times_{\overline{X}}\overline{U}_{i}). Then U¯\overline{U}_{\bullet} is an nn-truncated τ\tau-hypercovering if and only if 𝒰\mathcal{U}_{\bullet} is an nn-truncated M¯τ\operatorname{\mathrm{\underline{M}}}\tau-hypercovering.

Proof.

First we treat the case n=0n=0. If U¯0X¯\overline{U}_{0}\to\overline{X} is a τ\tau-covering, then 𝒰0𝒳\mathcal{U}_{0}\to\mathcal{X} is an M¯τ\operatorname{\mathrm{\underline{M}}}\tau-covering by definition of M¯τ\operatorname{\mathrm{\underline{M}}}\tau. Conversely, suppose that 𝒰0𝒳\mathcal{U}_{0}\to\mathcal{X} is an M¯τ\operatorname{\mathrm{\underline{M}}}\tau-covering. Since U¯0X¯\overline{U}_{0}\to\overline{X} is étale (resp. locally an open immersion) as an object of X¯e´t\overline{X}_{\operatorname{\acute{e}t}} (resp. X¯Zar\overline{X}_{\operatorname{Zar}}), it suffices to show that it is surjective. By [KelMiy21, Cor. 4.21], the associated morphism 𝒰0𝒳\mathcal{U}_{0}\to\mathcal{X} in 𝐌¯𝐒𝐦k\operatorname{\mathbf{{\underline{M}}Sm}}_{k} is refined by a composition of minimal ambient morphisms

𝒱𝑓𝒳𝑠𝒳,\mathcal{V}\xrightarrow{f}\mathcal{X}^{\prime}\xrightarrow{s}\mathcal{X},

where ss is an abstract admissible blow-up, and ff is a τ\tau-covering. So we have the solid commutative square

g\scriptstyle{g}t\scriptstyle{t}𝒱\textstyle{\mathcal{V}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}ϕ\scriptstyle{\phi}𝒰0\textstyle{\mathcal{U}_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒳\textstyle{\mathcal{X}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}s\scriptstyle{s}𝒳\textstyle{\mathcal{X}}

in 𝐌¯𝐒𝐦k\operatorname{\mathbf{{\underline{M}}Sm}}_{k}. As we observed in Recollection 2.1 the morphism ϕ\phi can be written as a composition ϕ=gt1\phi=g\circ t^{-1} for some abstract admissible blowup tt and some minimal morphism tt, giving the dashed morphisms making a commutative triangle. Since tt, ff and ss are surjective on the total spaces, so is 𝒰0𝒳\mathcal{U}_{0}\to\mathcal{X}.

Next we treat the case n>0n>0. For any m<nm<n, consider the canonical morphisms

(B.1) c:U¯m+1(coskmskmU¯)m+1c:\overline{U}_{m+1}\to({\operatorname{cosk}}_{m}{\operatorname{sk}}_{m}\overline{U}_{\bullet})_{m+1}

and

d:𝒰m+1(coskmskm𝒰)m+1,d:\mathcal{U}_{m+1}\to({\operatorname{cosk}}_{m}{\operatorname{sk}}_{m}\mathcal{U}_{\bullet})_{m+1},

where cc is a morphism of schemes and dd is a morphism in 𝐌¯𝐒𝐦k\operatorname{\mathbf{{\underline{M}}Sm}}_{k}. Since we know that U¯0X¯\overline{U}_{0}\to\overline{X} is a τ\tau-covering if and only if 𝒰0𝒳\mathcal{U}_{0}\to\mathcal{X} is an M¯τ\operatorname{\mathrm{\underline{M}}}\tau-covering by the base case n=0n=0, it remains to show that cc is a τ\tau-covering if and only if dd is an M¯τ\operatorname{\mathrm{\underline{M}}}\tau-covering. But by Cor.B.3, we may assume that the underlying scheme of coskmskm𝒰{\operatorname{cosk}}_{m}{\operatorname{sk}}_{m}\mathcal{U}_{\bullet} is given by coskmskmU¯{\operatorname{cosk}}_{m}{\operatorname{sk}}_{m}\overline{U}_{\bullet}, and hence that dd is represented by cc. Then the desired assertion follows from the base case n=0n=0. ∎

Lemma B.5.

Let τ{Zar,e´t}\tau\in\{{\operatorname{Zar}},{\operatorname{\acute{e}t}}\}, and 𝒳\mathcal{X} a modulus pair over kk. Then, for any finite diagram 𝒰:I𝒳M¯τ\mathcal{U}_{\bullet}:I\to\mathcal{X}_{\operatorname{\mathrm{\underline{M}}}\tau}, there exist an abstract admissible blow-up 𝒳𝒳\mathcal{X}^{\prime}\to\mathcal{X} and a finite diagram V¯:IX¯τ\overline{V}_{\bullet}:I\to\overline{X}^{\prime}_{\tau} such that 𝒱𝒳𝒳\mathcal{V}_{\bullet}\to\mathcal{X}^{\prime}\to\mathcal{X} is isomorphic to 𝒰𝒳\mathcal{U}_{\bullet}\to\mathcal{X}, where 𝒱i:=(V¯i,X×X¯V¯i)\mathcal{V}_{i}:=(\overline{V}_{i},X^{\infty}\times_{\overline{X}}\overline{V}_{i}) for each iIi\in I.

Proof.

We discuss the étale case, but the same argument works for the Zariski case. As we observed in Recollection B.1, every object of 𝒳M¯e´t\mathcal{X}_{\operatorname{\mathrm{\underline{M}\acute{e}t}}} is of the form 𝒱t1𝒱f𝒳s𝒳\mathcal{V}\stackrel{{\scriptstyle t^{-1}}}{{\to}}\mathcal{V}^{\prime}\stackrel{{\scriptstyle f}}{{\to}}\mathcal{X}^{\prime}\stackrel{{\scriptstyle s}}{{\to}}\mathcal{X} where s,ts,t are the images in 𝐌¯𝐒𝐦k\operatorname{\mathbf{{\underline{M}}Sm}}_{k} of abstract admissible blowups, and 𝒱𝒳e´t\mathcal{V}^{\prime}\in\mathcal{X}^{\prime}_{{\operatorname{\acute{e}t}}}. So up to replacing 𝒰\mathcal{U}_{\bullet} with an isomorphic diagram, and replacing 𝒳\mathcal{X} with a sufficiently large abstact admissible blowup, we can assume that all 𝒰i\mathcal{U}_{i} are in the strict image of 𝒳e´t𝒳M¯e´t\mathcal{X}_{{\operatorname{\acute{e}t}}}\to\mathcal{X}_{\operatorname{\mathrm{\underline{M}\acute{e}t}}} (not just in the essential image).

Again applying Recollection B.1, for every ϕ:ij\phi:i\to j in II, we can write 𝒰ϕ:𝒰i𝒰j\mathcal{U}_{\phi}:\mathcal{U}_{i}\to\mathcal{U}_{j} as

𝒰itϕ1𝒲ϕsϕfϕ𝒰j\mathcal{U}_{i}\stackrel{{\scriptstyle t_{\phi}^{-1}}}{{\to}}\mathcal{W}_{\phi}\stackrel{{\scriptstyle s_{\phi}f_{\phi}}}{{\to}}\mathcal{U}_{j}

with fϕf_{\phi}, sϕs_{\phi}, tϕt_{\phi} as above. This gives a new diagram indexed by the barycentric subdivision sd(I)sd(I) of the directed graph II. Here, sd(I)sd(I) is the directed graph which has a span iσϕϕψϕji\stackrel{{\scriptstyle\sigma_{\phi}}}{{\leftarrow}}\phi\stackrel{{\scriptstyle\psi_{\phi}}}{{\to}}j for every edge iϕji\stackrel{{\scriptstyle\phi}}{{\to}}j of II.212121 More explicitly, sd(I)sd(I) has set of vertices the disjoint union Vsd(I)=VIEIV_{sd(I)}=V_{I}\sqcup E_{I} of the vertices and edges of II, and set of edges Esd(I)=EIEIE_{sd(I)}=E_{I}\sqcup E_{I} two copies of EIE_{I}. The source morphism Esd(I)Vsd(I)E_{sd(I)}\to V_{sd(I)} is the identity on both copies of EIE_{I}. The target is the sum of the source and target morphisms EIVIE_{I}\rightrightarrows V_{I} of II. By construction, this new diagram factors as sd(I)𝒱𝐏¯𝐒𝐦𝐌¯𝐒𝐦sd(I)\stackrel{{\scriptstyle\mathcal{V}}}{{\to}}\operatorname{\mathbf{\underline{P}Sm}}\to\operatorname{\mathbf{{\underline{M}}Sm}}. Now consider the disjoint unions 𝒲=Ar(I)𝒲ϕ\mathcal{W}=\sqcup_{Ar(I)}\mathcal{W}_{\phi} and 𝒰=Ar(I)𝒰target(ϕ)\mathcal{U}=\sqcup_{Ar(I)}\mathcal{U}_{target(\phi)} with the canonical morphisms 𝒲t𝒰𝒳\mathcal{W}\stackrel{{\scriptstyle t}}{{\to}}\mathcal{U}\to\mathcal{X} in 𝐏¯𝐒𝐦\operatorname{\mathbf{\underline{P}Sm}}. By (the proof of) [KelMiy21, Thm.2.13] there exists an abstract admissible blowup 𝒳𝒳\mathcal{X}^{\prime}\to\mathcal{X} in 𝐏¯𝐒𝐦\operatorname{\mathbf{\underline{P}Sm}} such that when we form the pullbacks

𝒳×𝒳𝒲\textstyle{\mathcal{X}^{\prime}\times_{\mathcal{X}}\mathcal{W}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}()\scriptstyle{(\ast)}𝒲\textstyle{\mathcal{W}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}t\scriptstyle{t}𝒳×𝒳𝒰\textstyle{\mathcal{X}^{\prime}\times_{\mathcal{X}}\mathcal{U}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}()\scriptstyle{(\ast\ast)}𝒰\textstyle{\mathcal{U}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒳\textstyle{\mathcal{X}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒳\textstyle{\mathcal{X}}

in 𝐏¯𝐒𝐦\operatorname{\mathbf{\underline{P}Sm}}, the morphism ()(\ast) becomes an isomorphism in 𝐏¯𝐒𝐦\operatorname{\mathbf{\underline{P}Sm}}. It follows that 𝒳×𝒳𝒱:sd(I)𝐏¯𝐒𝐦\mathcal{X}^{\prime}\times_{\mathcal{X}}\mathcal{V}_{\bullet}:sd(I)\to\operatorname{\mathbf{\underline{P}Sm}} is actually indexed by II, since all “backwards” edges σϕ\sigma_{\phi} of sd(I)sd(I) are sent to isomorphisms. The horizontal morphisms ()(\ast\ast) are abstract admissible blowups, so they assemble to give a natural isomorphism from 𝒳×𝒳𝒱\mathcal{X}^{\prime}\times_{\mathcal{X}}\mathcal{V}_{\bullet} to 𝒰\mathcal{U}_{\bullet} in 𝐌¯𝐒𝐦\operatorname{\mathbf{{\underline{M}}Sm}}. So now we have a diagram in 𝐏¯𝐒𝐦/𝒳\operatorname{\mathbf{\underline{P}Sm}}_{/\mathcal{X}} whose objects are all in 𝒳e´t\mathcal{X}_{{\operatorname{\acute{e}t}}}. Since the inclusion 𝒳e´t𝐏¯𝐒𝐦/𝒳\mathcal{X}_{{\operatorname{\acute{e}t}}}\to\operatorname{\mathbf{\underline{P}Sm}}_{/\mathcal{X}} is fully faithful, our new diagram factors through 𝒳e´t\mathcal{X}_{{\operatorname{\acute{e}t}}}. ∎

Corollary B.6.

Let τ{Zar,e´t}\tau\in\{{\operatorname{Zar}},{\operatorname{\acute{e}t}}\}. Let 𝒳\mathcal{X} be a modulus pair over kk, and let 𝒰\mathcal{U}_{\bullet} be an nn-truncated M¯τ\operatorname{\mathrm{\underline{M}}}\tau-hypercovering of 𝒳\mathcal{X} in 𝐌¯𝐒𝐦k\operatorname{\mathbf{{\underline{M}}Sm}}_{k} for some n0n\geq 0. Then there exists an abstract admissible blow-up 𝒳𝒳\mathcal{X}^{\prime}\to\mathcal{X} and an nn-truncated τ\tau-hypercovering U¯X¯\overline{U}^{\prime}_{\bullet}\to\overline{X}^{\prime} such that the induced morphism of simplicial objects 𝒰𝒳𝒳\mathcal{U}^{\prime}_{\bullet}\to\mathcal{X}^{\prime}\to\mathcal{X} is isomorphic to 𝒰𝒳\mathcal{U}_{\bullet}\to\mathcal{X}, where 𝒰m:=(U¯m,X×X¯U¯m)\mathcal{U}^{\prime}_{m}:=(\overline{U}^{\prime}_{m},X^{\infty}\times_{\overline{X}}\overline{U}^{\prime}_{m}) for each mnm\leq n.

Proof.

By Lem.B.5, there exist an abstract admissible blow-up 𝒳𝒳\mathcal{X}^{\prime}\to\mathcal{X} and a simplicial object V¯\overline{V}_{\bullet} in X¯τ\overline{X}^{\prime}_{\tau} such that 𝒱𝒳𝒳\mathcal{V}_{\bullet}\to\mathcal{X}^{\prime}\to\mathcal{X} is isomorphic to 𝒰𝒳\mathcal{U}_{\bullet}\to\mathcal{X}, where 𝒱\mathcal{V}_{\bullet} is given by 𝒱m:=(V¯m,X×X¯V¯m)\mathcal{V}_{m}:=(\overline{V}_{m},X^{\infty}\times_{\overline{X}}\overline{V}_{m}). Since 𝒰𝒳\mathcal{U}_{\bullet}\to\mathcal{X} is an nn-truncated M¯τ\operatorname{\mathrm{\underline{M}}}\tau-hypercovering and since (𝒰𝒳)(𝒱𝒳)(\mathcal{U}_{\bullet}\to\mathcal{X})\cong(\mathcal{V}_{\bullet}\to\mathcal{X}^{\prime}), Lem.B.4 shows that V¯X¯\overline{V}_{\bullet}\to\overline{X}^{\prime} is an nn-truncated τ\tau-hypercovering. ∎

Proposition B.7.

For any modulus pair 𝒳\mathcal{X} over kk and any presheaf of abelian groups F𝐏𝐒𝐡(𝒳M¯τ)F\in{\operatorname{\mathbf{PSh}}}(\mathcal{X}_{\operatorname{\mathrm{\underline{M}}}\tau}), we have

RnΓM¯τ(𝒳,F)=lim𝒳𝒳RnΓτ(X¯,F|X¯τ)R^{n}\Gamma_{\operatorname{\mathrm{\underline{M}}}\tau}(\mathcal{X},F)=\operatornamewithlimits{\varinjlim}_{\mathcal{X}^{\prime}\to\mathcal{X}}R^{n}\Gamma_{\tau}(\overline{X}^{\prime},F|_{\overline{X}^{\prime}_{\tau}})

for all nn\in\mathbb{Z} and τ{Zar,e´t}\tau\in\{{\operatorname{Zar}},{\operatorname{\acute{e}t}}\}, where the colimit is over abstract admissible blowups.

Proof.

By Verdier’s hypercovering theorem, [SGA4, Expose V, Sec.7, Thm.7.4.1], for any category with finite limits CC equipped with a finitary222222Finitary means every covering family {UiX}\{U_{i}\to X\} admits a finite subfamily which is still a covering family. topology τ\tau, and additive presheaf of abelian groups FF we have

Hτn(C,F)limUXHn(F(U))H^{n}_{\tau}(C,F)\cong\varinjlim_{U_{\bullet}\to X}H^{n}(F(U_{\bullet}))

where the colimit is the filtered colimit over the category of mm-truncated hypercoverings of the terminal object XX and m>nm>n. In particular, we have

RnΓM¯τ(𝒳,F)=lim𝒰𝒳Hn(F(𝒰)),R^{n}\Gamma_{\operatorname{\mathrm{\underline{M}}}\tau}(\mathcal{X},F)=\operatornamewithlimits{\varinjlim}_{\mathcal{U}_{\bullet}\to\mathcal{X}}H^{n}(F(\mathcal{U}_{\bullet})),

and

lim𝒳𝒳RnΓτ(X¯,F|X¯τ)=lim𝒳𝒳limU¯X¯Hn(F(𝒰)),\operatornamewithlimits{\varinjlim}_{\mathcal{X}^{\prime}\to\mathcal{X}}R^{n}\Gamma_{\tau}(\overline{X}^{\prime},F|_{\overline{X}^{\prime}_{\tau}})=\operatornamewithlimits{\varinjlim}_{\mathcal{X}^{\prime}\to\mathcal{X}}\operatornamewithlimits{\varinjlim}_{\overline{U}^{\prime}_{\bullet}\to\overline{X}^{\prime}}H^{n}(F(\mathcal{U}^{\prime}_{\bullet})),

where 𝒰𝒳\mathcal{U}_{\bullet}\to\mathcal{X} runs over (n+1)(n+1)-truncated M¯τ\operatorname{\mathrm{\underline{M}}}\tau-hypercoverings of 𝒳\mathcal{X}, U¯X¯\overline{U}^{\prime}_{\bullet}\to\overline{X}^{\prime} runs over (n+1)(n+1)-truncated τ\tau-hypercoverings of X¯\overline{X}^{\prime}, and 𝒰:=(U¯i,X×X¯U¯i)i\mathcal{U}^{\prime}_{\bullet}:=(\overline{U}^{\prime}_{i},X^{\prime\infty}\times_{\overline{X}^{\prime}}\overline{U}^{\prime}_{i})_{i}. Note that there exists a natural morphism

lim𝒳𝒳limU¯X¯Hn(F(𝒰))lim𝒰𝒳Hn(F(𝒰))\operatornamewithlimits{\varinjlim}_{\mathcal{X}^{\prime}\to\mathcal{X}}\operatornamewithlimits{\varinjlim}_{\overline{U}^{\prime}_{\bullet}\to\overline{X}^{\prime}}H^{n}(F(\mathcal{U}^{\prime}_{\bullet}))\to\operatornamewithlimits{\varinjlim}_{\mathcal{U}_{\bullet}\to\mathcal{X}}H^{n}(F(\mathcal{U}_{\bullet}))

since the index category on the left is contained in the one on the right. It suffices to show the inclusion of the opposite direction, but this is a direct consequence of Corollary B.6. ∎

Appendix C A quasi-coherent cohomology calculation

Proposition C.1 ([Gro63, Prop.2.1.12], [Sta18, 01XT]).

For any ring AA, we have

  1. (1)

    Hi(An,𝒪())=0H^{i}(\mathbb{P}^{n}_{A},\mathcal{O}(\ast))=0 for i0,ni\neq 0,n.

  2. (2)

    The canonical homomorphism of graded rings

    A[t0,,tn]H0(An,𝒪())A[t_{0},\dots,t_{n}]\stackrel{{\scriptstyle\sim}}{{\to}}H^{0}(\mathbb{P}^{n}_{A},\mathcal{O}(\ast))

    is a bijection.

  3. (3)
    1t0tnA[1t0,,1tn]Hn(An,𝒪())\tfrac{1}{t_{0}\dots t_{n}}A[\tfrac{1}{t_{0}},\dots,\tfrac{1}{t_{n}}]\stackrel{{\scriptstyle\sim}}{{\to}}H^{n}(\mathbb{P}^{n}_{A},\mathcal{O}(\ast))

    where the morphism sends an element on the left to the corresponding section of the Čech cohomology with respect to the standard covering, and the left hand side has the standard grading. In particular, the highest degree nonzero elements are at0tn\tfrac{a}{t_{0}\dots t_{n}}, for aA{0}a\in A\setminus\{0\}, and these have degree n1-n-1.

Proposition C.2 (cf.[SGA6, VII, Lem.3.5]).

Let kk be a ring and write 𝔸n:=𝔸kn\mathbb{A}^{n}:=\mathbb{A}^{n}_{k} for all n0n\geq 0. Let f:Bn+1=Bl𝔸n+1{0}𝔸n+1f:B_{n+1}=Bl_{\mathbb{A}^{n+1}}\{0\}\to\mathbb{A}^{n+1} be the blowup of affine (n+1)(n+1)-space at the origin, and let 𝒪(1)\mathcal{O}(1) be the line bundle associated to the exceptional divisor. Set 𝒪(i):=𝒪(1)i\mathcal{O}(i):=\mathcal{O}(1)^{\otimes i} for all ii\in\mathbb{Z}. Then f𝒪(i)f_{*}\mathcal{O}(i) is the coherent sheaf associated to IiI^{i} where II is the ideal of the origin, and we set Ii:=Γ(𝔸n+1,𝒪𝔸n+1)I^{i}:=\Gamma(\mathbb{A}^{n+1},\mathcal{O}_{\mathbb{A}^{n+1}}) for i<0i<0. Moreover, we have

Rqf(𝒪(i))=0R^{q}f_{*}(\mathcal{O}(i))=0

for all q>0q>0 and i>n1i>{-n-1}.

Proof.

The statement about global sections follows from a direct calculation. Indeed, if 𝔸n=Spec(k[t0,,tn])\mathbb{A}^{n}=\operatorname{Spec}(k[t_{0},\dots,t_{n}]), then on the kkth standard open

Uk:=Spec(k[t0tk,,tk,,tntk])Bn+1,U_{k}:=\operatorname{Spec}(k[\tfrac{t_{0}}{t_{k}},\dots,t_{k},\dots,\tfrac{t_{n}}{t_{k}}])\subset B_{n+1},

the line bundle 𝒪(i)\mathcal{O}(i) is the free sub-kk-module of k[t0,,tn,t01,,tn1]k[t_{0},\dots,t_{n},t_{0}^{-1},\dots,t_{n}^{-1}] generated by monomials t0r0tnrnt_{0}^{r_{0}}\dots t_{n}^{r_{n}} such that rj0r_{j}\geq 0 for jkj\neq k, and rkijkrjr_{k}\geq i-\sum_{j\neq k}r_{j}. The intersection k=0n𝒪(i)(Uk)\bigcap_{k=0}^{n}\mathcal{O}(i)(U_{k}) of these groups is the free abelian group generated by monomials t0r0tnrnt_{0}^{r_{0}}\dots t_{n}^{r_{n}} subject to the condition r0,,rn0r_{0},\dots,r_{n}\geq 0 if i0i\leq 0, and subject to the further condition jrji\sum_{j}r_{j}\geq i if i0i\geq 0. Hence, the claim in the statement.

Next we prove the vanishing assertion. Since Rqf(𝒪(i))R^{q}f_{*}(\mathcal{O}(i)) is a coherent sheaf on 𝔸n+1\mathbb{A}^{n+1}, it suffices to show that its global section vanishes. Consider the short exact sequences

0𝒪Bn+1(i+1)𝒪Bn+1(i)ϕ(𝒪n(i))00\to\mathcal{O}_{B_{n+1}}(i+1)\to\mathcal{O}_{B_{n+1}}(i)\to\phi_{*}(\mathcal{O}_{\mathbb{P}^{n}}(i))\to 0

where ϕ:nBn+1\phi:\mathbb{P}^{n}\hookrightarrow B_{n+1} is the canonical inclusion of the exceptional divisor.

Rqf𝒪Bn+1(i+1)Rqf𝒪Bn+1(i)Rqfϕ(𝒪n(i)).\cdots\to R^{q}f_{*}\mathcal{O}_{B_{n+1}}(i+1)\to R^{q}f_{*}\mathcal{O}_{B_{n+1}}(i)\to R^{q}f_{*}\phi_{*}(\mathcal{O}_{\mathbb{P}^{n}}(i))\to\cdots.

Moreover, noting that ϕ\phi is an affine morphism, we have

Rqfϕ(𝒪n(i))=Hq(n,𝒪n(i)),R^{q}f_{*}\phi_{*}(\mathcal{O}_{\mathbb{P}^{n}}(i))=H^{q}(\mathbb{P}^{n},\mathcal{O}_{\mathbb{P}^{n}}(i)),

which vanishes when i>(n+1)i>-(n+1) by Prop.C.1(3). By Serre vanishing for proper morphisms (which is valid for any noetherian base, see [Gro63, Prop. 2.6.1], [Sta18, Lem. 0B5U]), since 𝒪(1)\mathcal{O}(1) is ample, there is some NN such that Rqf(𝒪Bn+1(i))=0R^{q}f_{*}(\mathcal{O}_{B_{n+1}}(i))=0 for all iNi\geq N and q>0q>0. Therefore, descending induction starting with i=Ni=N shows that Rqf𝒪Bn+1(i)=0R^{q}f_{*}\mathcal{O}_{B_{n+1}}(i)=0 for q>0q>0 and i>(n+1)i>{-(n+1)}. ∎

References

  • [AT19] D. Abramovich and M. Temkin. Functorial factorization of birational maps for qe schemes in characteristic 0. Algebra Number Theory, 13(2):379–424, 2019. doi:10.2140/ant.2019.13.379.
  • [Bar77] W. Barth. Some properties of stable rank-2 vector bundles on n\mathbb{P}^{n}. Mathematische Annalen, 226:125–150, 1977.
  • [BGI67] P. Berthelot, A. Grothendieck, and L. Illusie. Théorie des intersections et théorème de Riemann-Roch. Séminaire de Géométrie Algébrique du Bois Marie. 1966-67.
  • [BPO22] F. Binda, D. Park, and P. A. Østvær. Triangulated categories of logarithmic motives over a field. Astérisque, (433):ix+267, 2022. doi:10.24033/ast.
  • [D’A23] M. D’Addezio. Edged crystalline cohomology. In preparation, 2023.
  • [Gro63] A. Grothendieck. Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. II. Inst. Hautes Études Sci. Publ. Math., (17), 1963.
  • [Hir64] H. Hironaka. Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann. of Math. (2) 79 (1964), 109–203; ibid. (2), 79:205–326, 1964. doi:10.2307/1970547.
  • [KelMiy21] S. Kelly and H. Miyazaki. Modulus sheaves with transfers, 2021, arXiv:2106.12837.
  • [KMSY20] B. Kahn, H. Miyazaki, S. Saito, and T. Yamazaki. Motives with modulus, III: Triangulated categories of motives with modulus over a field. https://arxiv.org/abs/2011.11859, 2020.
  • [KMSY21a] B. Kahn, H. Miyazaki, S. Saito, and T. Yamazaki. Motives with modulus, I: Modulus sheaves with transfers for non-proper modulus pairs. Épijournal de Géométrie Algébrique, Volume 5, Jan 2021. doi:10.46298/epiga.2021.volume5.5979.
  • [KMSY21b] B. Kahn, H. Miyazaki, S. Saito, and T. Yamazaki. Motives with modulus, II: Modulus sheaves with transfers for proper modulus pairs. Épijournal de Géométrie Algébrique, Volume 5, Jan 2021. doi:10.46298/epiga.2021.volume5.5980.
  • [KSY22] B. Kahn, S. Saito, and T. Yamazaki. Reciprocity sheaves, II. Homology, Homotopy and Applications, 24(1):71–91, 2022.
  • [KSYR16] B. Kahn, S. Saito, T. Yamazaki, and K. Rülling. Reciprocity sheaves, with two appendices by Kay Rülling. Compositio Mathematica, 152(9):1851–1898, 2016. URL https://doi.org/10.1112/S0010437X16007466.
  • [Liu02] Q. Liu. Algebraic Geometry and Arithmetic Curves, volume 6. Oxford University Press Oxford, 2002.
  • [Mil80] J. S. Milne. Étale cohomology. Princeton Mathematical Series, No. 33. Princeton University Press, Princeton, N.J., 1980.
  • [Miy20] H. Miyazaki. Nisnevich topology with modulus. Ann. K-Theory, 5(3):581–604, 2020. doi:10.2140/akt.2020.5.581.
  • [RS21] K. Rülling and S. Saito. Reciprocity sheaves and abelian ramification theory. Journal of the Institute of Mathematics of Jussieu, pages 1–74, 2021, 1812.08716.
  • [Ser88] J.-P. Serre. Algebraic Groups and Class Fields. Graduate texts in mathematics. Springer-Verlag, 1988.
  • [SGA72] Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos. Lecture Notes in Mathematics, Vol. 269. Springer-Verlag, Berlin-New York, 1972. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat.
  • [Sta18] T. Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu, 2018.
  • [SV96] A. Suslin and V. Voevodsky. Singular homology of abstract algebraic varieties. Invent. Math., 123(1):61–94, 1996. doi:10.1007/BF01232367.
  • [Tem08] M. Temkin. Desingularization of quasi-excellent schemes in characteristic zero. Adv. Math., 219(2):488–522, 2008. doi:10.1016/j.aim.2008.05.006.
  • [Tem11] M. Temkin. Relative Riemann-Zariski spaces. Israel Journal of Mathematics, 185(1):1, 2011.
  • [Voe96] V. Voevodsky. Homology of schemes. Selecta Math. (N.S.), 2(1):111–153, 1996. doi:10.1007/BF01587941.
  • [Voe00] V. Voevodsky. Triangulated categories of motives over a field. In Cycles, transfers, and motivic homology theories, volume 143 of Ann. of Math. Stud., pages 188–238. Princeton Univ. Press, Princeton, NJ, 2000.

Index

Index

[not]