This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Hitchin map for the moduli space of Λ\Lambda-modules in positive characteristic

David Alfaya  and  Christian Pauly Department of Applied Mathematics and Institute for Research in Technology, ICAI School of Engineering, Comillas Pontifical University, C/Alberto Aguilera 25, 28015 Madrid, Spain dalfaya@comillas.edu Laboratoire J.-A. Dieudonné, Université Côte d’Azur, Parc Valrose, 06108 Nice Cedex 02, France pauly@unice.fr
Abstract.

Building on Simpson’s original definition over the complex numbers, we introduce the notion of restricted sheaf Λ\Lambda of rings of differential operators on a variety defined over a field of positive characteristic. We define the notion of pp-curvature for Λ\Lambda-modules and the analogue of the Hitchin map on the moduli space of Λ\Lambda-modules. We show that under certain conditions this Hitchin map descends under the Frobenius map of the underlying variety and we give examples.

Key words and phrases:
Hitchin map, Lambda-modules, connections, Higgs bundles, positive characteristic, moduli space
2010 Mathematics Subject Classification:
14D20, 14G17

1. Introduction

The notion of sheaf of rings of differential operators Λ\Lambda over a smooth variety XX defined over an algebraically closed field 𝕂\mathbb{K} and the associated notion of Λ\Lambda-module for 𝒪X{\mathcal{O}}_{X}-modules over XX was introduced in [Sim94] over the complex numbers 𝕂=\mathbb{K}=\mathbb{C} as a way to give a unifying structure for 𝒟X\mathcal{D}_{X}-modules, i.e. vector bundles with an integrable connection, and Higgs sheaves over XX. Other examples of Λ\Lambda-modules include connections along a foliation or logarithmic connections.

In this paper we consider Simpson’s original definition of sheaf of rings of differential operators Λ\Lambda over a field 𝕂\mathbb{K} of characteristic p>0p>0. Note that the sheaf of rings of crystalline differential operators 𝒟X\mathcal{D}_{X} (see [BO78] or [BMR08]) defined as the enveloping algebra of the Lie algebroid TXT_{X} is such a sheaf of rings of differential operators, but the usual sheaf of differential operators (e.g. [Gro67, Section 16]) is not. One of the main features of the sheaf of rings 𝒟X\mathcal{D}_{X} in positive characteristic is its large center, which can be described by using the pp-th power map, or pp-structure, on the Lie algebroid TXT_{X}. Our first contribution to the general study of Λ\Lambda-modules in positive characteristic is the definition of restricted sheaf of rings of differential operators (see Definition 2.6) obtained by equipping Λ\Lambda with a pp-structure. Examples of restricted sheaves of rings of differential operators already appeared in [Lan14] as universal enveloping algebras of restricted Lie algebroids. New non-split examples are given, for instance, by the sheaf of rings of twisted differential operators 𝒟X(L)\mathcal{D}_{X}(L) for some line bundle LL over XX (see Subsection 4.5).

The main purpose of this paper is to prove a property of the analogue of the Hitchin map for restricted Λ\Lambda-modules in positive characteristic over a projective variety XX. First, we check (Section 5) that the notion of pp-curvature ψ\psi_{\nabla} of a Λ\Lambda-module EE over XX adapts to our general set-up and thus defines for each Λ\Lambda-module structure on the sheaf EE a FHF^{*}H^{\vee}-valued Higgs field on EE, where HH is the first quotient Λ1/Λ0\Lambda_{1}/\Lambda_{0} associated to the filtration Λ0Λ1Λ\Lambda_{0}\subset\Lambda_{1}\subset\cdots\subset\Lambda and FF is the Frobenius map of XX. Thus by applying the classical Hitchin map to the Higgs field ψ\psi_{\nabla} we obtain a morphism

hΛ:XΛ(r,P)𝒜r(X,FH),h_{\Lambda}:\mathcal{M}_{X}^{\Lambda}(r,P)\rightarrow\mathcal{A}_{r}(X,F^{*}H^{\vee}),

where XΛ(r,P)\mathcal{M}_{X}^{\Lambda}(r,P) is the moduli space parameterizing Giesecker semi-stable Λ\Lambda-modules over XX of rank rr and with Hilbert polynomial PP, and 𝒜r(X,FH)\mathcal{A}_{r}(X,F^{*}H^{\vee}) is the Hitchin base for the vector bundle FHF^{*}H^{\vee}. Under the assumption that the anchor map δ:Λ1/Λ0TX\delta:\Lambda_{1}/\Lambda_{0}\rightarrow T_{X} induced by the commutator between elements of Λ1\Lambda_{1} and local regular functions in 𝒪X{\mathcal{O}}_{X} is generically surjective, our main result (Theorem 6.6) says that the coefficients of the characteristic polynomial of ψ\psi_{\nabla} descend under the Frobenius map FF of the variety XX. Equivalently, this means that the Hitchin morphism hΛh_{\Lambda} factorizes through

(1.1) hΛ:XΛ(r,P)𝒜r(X,H),\displaystyle h^{\prime}_{\Lambda}:\mathcal{M}_{X}^{\Lambda}(r,P)\rightarrow\mathcal{A}_{r}(X,H^{\vee}),

followed by the pull-back under the Frobenius map FF of global sections. The latter theorem was first proved in [LP01] for a smooth projective curve XX and for Λ=𝒟X\Lambda=\mathcal{D}_{X}. It was observed in [EG20, Section 2.5] that in the case Λ=𝒟X\Lambda=\mathcal{D}_{X} the proof follows rather directly from the fact that the pp-curvature ψ\psi_{\nabla} is flat for the natural connection on the sheaf End(E)FΩX1\mathrm{End}(E)\otimes F^{*}\Omega^{1}_{X}, already proved in [Kat70, Proposition 5.2.3], and moreover their argument is independent of the dimension of the variety XX. In this paper we show that the elegant argument given in [EG20] can be adapted to general restricted Λ\Lambda-modules under the assumption that the anchor map δ:Λ1/Λ0TX\delta:\Lambda_{1}/\Lambda_{0}\rightarrow T_{X} is generically surjective. We also give an example showing that the result is false when δ\delta is not generically surjective.

In the last section we present an analogue of the main Theorem in a relative situation by taking the Rees construction ΛR\Lambda^{R} on X×𝔸1X\times\mathbb{A}^{1} over 𝔸1\mathbb{A}^{1} obtained from a sheaf of rings of differential operators Λ\Lambda on XX. Here we need to restrict attention to sheaves Λ\Lambda obtained as a universal enveloping algebra of a restricted Lie algebroid HH over XX. Our theorem (Theorem 7.1) then gives an explicit deformation over the affine line 𝔸1\mathbb{A}^{1} of the classical Hitchin map of HH^{\vee}-valued Higgs sheaves to the Hitchin map (1.1) hΛh^{\prime}_{\Lambda} of Λ\Lambda-modules. This result was already obtained in [LP01] for a smooth projective curve XX in the case where Λ=𝒟X\Lambda=\mathcal{D}_{X} and H=TXH=T_{X}, see also [Lan14, Section 4.5] for some partial generalizations.

Finally we mention that the fibers of the Hitchin map (1.1) hΛh^{\prime}_{\Lambda} are described in [Gro16] for a smooth projective curve XX and for Λ=𝒟X\Lambda=\mathcal{D}_{X}. For general XX and Λ\Lambda, a description of the fibers of hΛh^{\prime}_{\Lambda} seems to be missing in the literature and studying it would be an interesting future line of work.

We would like to thank Carlos Simpson for many useful discussions during the preparation of this article.

Acknowledgments. This work was started during a research stay in 2017 of the first-named author at the Laboratoire J.-A. Dieudonné at the Université Côte d’Azur and he would like to thank the laboratory for its hospitality. This research was partially funded by MINECO (grants MTM2016-79400-P, PID2019-108936GB-C21 and ICMAT Severo Ochoa project SEV-2015-0554) and the 7th European Union Framework Programme (Marie Curie IRSES grant 612534 project MODULI). During the development of this work, the first-named author was also supported by a predoctoral grant from Fundación La Caixa – Severo Ochoa International Ph.D. Program and a postdoctoral position associated to the ICMAT Severo Ochoa project.

2. Preliminaries on sheaves of rings of differential operators

2.1. Definitions and properties

Let 𝕂\mathbb{K} be an algebraically closed field. Let XX and SS be schemes of finite type over 𝕂\mathbb{K} and let

π:XS\pi:X\longrightarrow S

be a morphism. We recall from [Sim94, Section 2] the definition of sheaf of rings of differential operators on XX over SS. We note that the original definition in [Sim94] was given over 𝕂=\mathbb{K}=\mathbb{C}, but it can be considered over an arbitrary base field 𝕂\mathbb{K}.

Definition 2.1.

A sheaf of rings of differential operators on XX over SS is a sheaf of associative and unital 𝒪S{\mathcal{O}}_{S}-algebras Λ\Lambda over XX with a filtration Λ0Λ1\Lambda_{0}\subset\Lambda_{1}\subset\cdots which satisfies the properties

  1. (1)

    Λ=i=0Λi\Lambda=\bigcup_{i=0}^{\infty}\Lambda_{i} and ΛiΛjΛi+j\Lambda_{i}\cdot\Lambda_{j}\subset\Lambda_{i+j}.

  2. (2)

    The image of 𝒪XΛ{\mathcal{O}}_{X}\to\Lambda equals Λ0\Lambda_{0}.

  3. (3)

    The image of π1(𝒪S)\pi^{-1}({\mathcal{O}}_{S}) in 𝒪X{\mathcal{O}}_{X} is contained in the center of Λ\Lambda.

  4. (4)

    The left and right 𝒪X{\mathcal{O}}_{X}-module structures on Gri(Λ):=Λi/Λi1\operatorname{Gr}_{i}(\Lambda):=\Lambda_{i}/\Lambda_{i-1} are equal.

  5. (5)

    The 𝒪X{\mathcal{O}}_{X}-modules Gri(Λ)\operatorname{Gr}_{i}(\Lambda) are coherent.

  6. (6)

    The graded 𝒪X{\mathcal{O}}_{X}-algebra Gr(Λ):=i=0Gri(Λ)\operatorname{Gr}^{\bullet}(\Lambda):=\bigoplus_{i=0}^{\infty}\operatorname{Gr}_{i}(\Lambda) is generated by Gr1(Λ)\operatorname{Gr}_{1}(\Lambda).

Because of property (4) we have that for each DΛ1D\in\Lambda_{1} the commutator [D,f][D,f] with f𝒪Xf\in{\mathcal{O}}_{X} is an element of Λ0\Lambda_{0}. Moreover, for each DΛ1D\in\Lambda_{1} and each f,g𝒪Xf,g\in{\mathcal{O}}_{X} we have

[D,fg]=DfgfgD=DfgfDg+fDgfgD=[D,f]g+f[D,g].[D,fg]=Dfg-fgD=Dfg-fDg+fDg-fgD=[D,f]g+f[D,g].

Thus, assuming that Λ0=𝒪X\Lambda_{0}={\mathcal{O}}_{X}, we see that the map [D,]:𝒪X𝒪X[D,-]:{\mathcal{O}}_{X}\to{\mathcal{O}}_{X} is a 𝒪S{\mathcal{O}}_{S}-derivation that we will denote by δD\delta_{D} (i.e., δD(f)=[D,f]\delta_{D}(f)=[D,f]). Moreover, let us denote H=Λ1/Λ0H=\Lambda_{1}/\Lambda_{0}. Then we have a short exact sequence

(2.1) 0Λ0=𝒪XΛ1sbH0.0\longrightarrow\Lambda_{0}={\mathcal{O}}_{X}\longrightarrow\Lambda_{1}\stackrel{{\scriptstyle\operatorname{sb}}}{{\longrightarrow}}H\longrightarrow 0.

We call the map Λ1H\Lambda_{1}\longrightarrow H the symbol map and we will denote it by sb\operatorname{sb}. We also note that the 𝒪X{\mathcal{O}}_{X}-linear map δ:DδD\delta:D\mapsto\delta_{D} factorizes through HH, so that we obtain an 𝒪X{\mathcal{O}}_{X}-linear map, also denoted

δ:HDer𝒪S(𝒪X,𝒪X)=TX/S,\delta:H\longrightarrow\operatorname{Der}_{{\mathcal{O}}_{S}}({\mathcal{O}}_{X},{\mathcal{O}}_{X})=T_{X/S},

called the anchor map. Here TX/ST_{X/S} is the relative tangent sheaf.


Remark 2.2.

The condition that the anchor map δ=0\delta=0 is easily seen to be equivalent to the fact that the right and left 𝒪X{\mathcal{O}}_{X}-module structures on Λ\Lambda are the same.


In this paper we will be sometimes interested in sheaves of rings of differential operators having more properties.

Definition 2.3.

Let Λ\Lambda be a sheaf of rings of differential operators on XX over SS with H=Λ1/Λ0H=\Lambda_{1}/\Lambda_{0}. We say that Λ\Lambda is

  • almost abelian, if the graded algebra Gr(Λ)\operatorname{Gr}^{\bullet}(\Lambda) is abelian.

  • almost polynomial, if 𝒪X=Λ0{\mathcal{O}}_{X}=\Lambda_{0}, HH is locally free and the graded algebra Gr(Λ)\operatorname{Gr}^{\bullet}(\Lambda) equals the symmetric algebra Sym(H)\mathrm{Sym}^{\bullet}(H).

  • split almost polynomial, if Λ\Lambda is almost polynomial and the exact sequence (2.1) is split.

For completeness we recall the following

Definition 2.4.

A 𝒪S{\mathcal{O}}_{S}-Lie algebroid on XX over SS is a triple (H,[,],δ)(H,[-,-],\delta) consisting of an 𝒪X{\mathcal{O}}_{X}-module HH, which is also a sheaf of 𝒪S{\mathcal{O}}_{S}-Lie algebras, and an 𝒪X{\mathcal{O}}_{X}-linear anchor map δ:HTX/S\delta:H\to T_{X/S} satisfying the following condition for all local sections f𝒪Xf\in{\mathcal{O}}_{X} and D1,D2HD_{1},D_{2}\in H

[D1,fD2]=f[D1,D2]+δD1(f)D2.[D_{1},fD_{2}]=f[D_{1},D_{2}]+\delta_{D_{1}}(f)D_{2}.
Remark 2.5.

If Λ\Lambda is almost abelian, then (H=Λ1/Λ0,[,],δ)(H=\Lambda_{1}/\Lambda_{0},[-,-],\delta) is a 𝒪S{\mathcal{O}}_{S}-Lie algebroid on XX (see Proposition 3.4 for the “restricted” version).


2.2. Restricted sheaf of rings of differential operators

From now on we assume that the characteristic of 𝕂\mathbb{K} is p>0p>0. In that situation we introduce the following

Definition 2.6.

A restricted sheaf of rings of differential operators on XX over SS is a sheaf of rings of differential operators Λ\Lambda on XX over SS together with a map

called a pp-structure, such that for every local sections D,D1,D2Λ1D,D_{1},D_{2}\in\Lambda_{1} and every local section f𝒪Xf\in{\mathcal{O}}_{X} the following properties hold

  1. (1)

    ad(D[p])=ad(D)p\operatorname{ad}(D^{[p]})=\operatorname{ad}(D)^{p}

  2. (2)

    (D1+D2)[p]=D1[p]+D2[p]+i=1p1si(D1,D2)(D_{1}+D_{2})^{[p]}=D_{1}^{[p]}+D_{2}^{[p]}+\sum_{i=1}^{p-1}s_{i}(D_{1},D_{2})

  3. (3)

    (fD)[p]=fpD[p]+δfDp1(f)D(fD)^{[p]}=f^{p}D^{[p]}+\delta_{fD}^{p-1}(f)D

  4. (4)

    f[p]=fpf^{[p]}=f^{p}

where si(x,y)s_{i}(x,y) are the universal Lie polynomials for the commutator in the associative algebra Λ\Lambda, defined by the following expression in Λ[t]\Lambda[t]

ad(tx+y)p1(x)=i=1p1isi(x,y)ti1.\operatorname{ad}(tx+y)^{p-1}(x)=\sum_{i=1}^{p-1}is_{i}(x,y)t^{i-1}.
Remark 2.7.

Note that property (1) is equivalent to the equality ad(D[p])(E)=ad(D)p(E)\operatorname{ad}(D^{[p]})(E)=\operatorname{ad}(D)^{p}(E) for any local sections D,EΛ1D,E\in\Lambda_{1}. In fact, by Jacobson’s identity we have ad(D)p=ad(Dp)\operatorname{ad}(D)^{p}=\operatorname{ad}(D^{p}), hence if D[p]DpD^{[p]}-D^{p} commutes with any EΛ1E\in\Lambda_{1}, it commutes with any EΛE\in\Lambda, since Λ\Lambda is generated by Λ1\Lambda_{1}.

Remark 2.8.

Let F:XXF:X\to X denote the absolute Frobenius of XX and let Z(Λ)Z(\Lambda) denote the center of Λ\Lambda. We note that the center Z(Λ)Z(\Lambda) does not have the structure of an 𝒪X{\mathcal{O}}_{X}-module. However, the left and right 𝒪X{\mathcal{O}}_{X}-module structures on the direct image F(Z(Λ))F_{*}(Z(\Lambda)) coincide, since for any local sections DΛ1D\in\Lambda_{1} and f𝒪Xf\in{\mathcal{O}}_{X} we have

[D,fp]=δD(fp)=0.[D,f^{p}]=\delta_{D}(f^{p})=0.
Proposition 2.9.

For every local sections DΛ1D\in\Lambda_{1} and f𝒪Xf\in{\mathcal{O}}_{X} we have

δfDp1(f)=fδDp1(fp1).\delta_{fD}^{p-1}(f)=f\delta_{D}^{p-1}(f^{p-1}).
Proof.

The relative tangent sheaf TX/SDer𝒪S(𝒪X,𝒪X)T_{X/S}\cong\operatorname{Der}_{{\mathcal{O}}_{S}}({\mathcal{O}}_{X},{\mathcal{O}}_{X}) with the standard commutator is a 𝒪S{\mathcal{O}}_{S}-Lie algebroid. Moreover this Lie algebroid is equipped with a pp-structure ννpTX/S\nu\mapsto\nu^{p}\in T_{X/S} (see also Remark 3.2). Thus, by the Hochschild identity (see [Hoc55, Lemma 1], [Lan14, Lemma 4.3], [Sch16, Lemma 2.1]), we have for every local derivation νTX/S\nu\in T_{X/S} and every local section f𝒪Xf\in{\mathcal{O}}_{X} the equality

(fν)p=fpνp+(fν)p1(f)ν(f\nu)^{p}=f^{p}\nu^{p}+(f\nu)^{p-1}(f)\nu

in the associative 𝒪S{\mathcal{O}}_{S}-algebra End𝒪S(𝒪X)\mathrm{End}_{{\mathcal{O}}_{S}}({\mathcal{O}}_{X}). On the other hand, we have the following identity from Deligne (cf. [Kat70, Proposition 5.3])

(fν)p=fpνp+fνp1(fp1)ν.(f\nu)^{p}=f^{p}\nu^{p}+f\nu^{p-1}(f^{p-1})\nu.

Therefore we have that for every νTX\nu\in T_{X}

(fν)p1(f)ν=fνp1(fp1)ν.(f\nu)^{p-1}(f)\nu=f\nu^{p-1}(f^{p-1})\nu.

If ν=0\nu=0, then clearly (fν)p1(f)=fνp1(fp1)=0(f\nu)^{p-1}(f)=f\nu^{p-1}(f^{p-1})=0. Otherwise, the left-hand side and right-hand side of the equality are multiples of the same nonzero section of the torsion free sheaf TX/ST_{X/S}, so they are equal if and only if

(fν)p1(f)=fνp1(fp1).(f\nu)^{p-1}(f)=f\nu^{p-1}(f^{p-1}).

Therefore, the latter equality holds for every local derivation νTX/S\nu\in T_{X/S} and every local section f𝒪Xf\in{\mathcal{O}}_{X}. The proposition is then obtained by applying the previous equality to ν=δD\nu=\delta_{D} and taking into account that fδD=δfDf\delta_{D}=\delta_{fD}, i.e. that the anchor map δ\delta is 𝒪X{\mathcal{O}}_{X}-linear. ∎

Corollary 2.10.

If Λ\Lambda is a restricted sheaf of differential operators on XX over SS, then for every local sections DΛ1D\in\Lambda_{1} and f𝒪Xf\in{\mathcal{O}}_{X} we have

(fD)[p]=fpD[p]+fδDp1(fp1)D.(fD)^{[p]}=f^{p}D^{[p]}+f\delta_{D}^{p-1}(f^{p-1})D.

2.3. The map ι:Λ1Z(Λ)\iota:\Lambda_{1}\to Z(\Lambda)

Using the pp-structure on Λ\Lambda, we can define the following map, generalizing the difference of pp-th power maps on vector fields

Proposition 2.11.

The map ι:Λ1Λ\iota:\Lambda_{1}\to\Lambda is a pp-linear map, i.e., for every local sections D,D1,D2Λ1D,D_{1},D_{2}\in\Lambda_{1} and f𝒪Xf\in{\mathcal{O}}_{X} we have

  1. a)

    ι(D1+D2)=ι(D1)+ι(D2),\iota(D_{1}+D_{2})=\iota(D_{1})+\iota(D_{2}),

  2. b)

    ι(fD)=fpι(D).\iota(fD)=f^{p}\iota(D).

Proof.

a) Let us apply Jacobson’s identity in the associative ring Λ(U)\Lambda(U), where UU is any open subset where D1D_{1} and D2D_{2} are both defined

(D1+D2)p=D1p+D2p+i=1p1si(D1,D2).(D_{1}+D_{2})^{p}=D_{1}^{p}+D_{2}^{p}+\sum_{i=1}^{p-1}s_{i}(D_{1},D_{2}).

On the other hand, as [p][p] is a pp-structure on Λ\Lambda, we have

(D1+D2)[p]=D1[p]+D2[p]+i=1p1si(D1,D2).(D_{1}+D_{2})^{[p]}=D_{1}^{[p]}+D_{2}^{[p]}+\sum_{i=1}^{p-1}s_{i}(D_{1},D_{2}).

Therefore, subtracting one from the other yields

ι(D1+D2)=(D1+D2)p(D1+D2)[p]=D1p+D2pD1[p]D2[p]=ι(D1)+ι(D2).\iota(D_{1}+D_{2})=(D_{1}+D_{2})^{p}-(D_{1}+D_{2})^{[p]}=D_{1}^{p}+D_{2}^{p}-D_{1}^{[p]}-D_{2}^{[p]}=\iota(D_{1})+\iota(D_{2}).

b) Let us consider f𝒪X=Λ0f\in{\mathcal{O}}_{X}=\Lambda_{0} as a local section of Λ\Lambda. Then we can apply Deligne’s identity (cf. [Kat70, Proposition 5.3]) in the associative ring Λ(U)\Lambda(U) for an open subset UU such that f𝒪X(U)f\in{\mathcal{O}}_{X}(U) and DΛ(U)D\in\Lambda(U) and we obtain

(fD)p=fpDp+fad(D)p1(fp1)D.(fD)^{p}=f^{p}D^{p}+f\operatorname{ad}(D)^{p-1}(f^{p-1})D.

As the adjoint of DD applied to any local function is simply δD\delta_{D}, we obtain

(fD)p=fpDp+fδDp1(fp1)D.(fD)^{p}=f^{p}D^{p}+f\delta_{D}^{p-1}(f^{p-1})D.

On the other hand, by Corollary 2.10 we have

(fD)[p]=fpD[p]+fδDp1(fp1)D.(fD)^{[p]}=f^{p}D^{[p]}+f\delta_{D}^{p-1}(f^{p-1})D.

Therefore, subtracting one from the other yields

ι(fD)=(fD)p(fD)[p]=fpDpfpD[p]=fpι(D).\iota(fD)=(fD)^{p}-(fD)^{[p]}=f^{p}D^{p}-f^{p}D^{[p]}=f^{p}\iota(D).

Proposition 2.12.

The image of ι\iota lies in the center Z(Λ)Z(\Lambda) of Λ\Lambda.

Proof.

Using Jacobson’s identity ad(Dp)=ad(D)p\operatorname{ad}(D^{p})=\operatorname{ad}(D)^{p} we obtain that for any local sections D,EΛ1D,E\in\Lambda_{1}

ad(ι(D))(E)=ad(DpD[p])(E)\displaystyle\operatorname{ad}(\iota(D))(E)=\operatorname{ad}(D^{p}-D^{[p]})(E) =\displaystyle= ad(Dp)(E)ad(D[p])(E)\displaystyle\operatorname{ad}(D^{p})(E)-\operatorname{ad}(D^{[p]})(E)
=\displaystyle= ad(D)p(E)ad(D)p(E)=0.\displaystyle\operatorname{ad}(D)^{p}(E)-\operatorname{ad}(D)^{p}(E)=0.

So ι(D)\iota(D) commutes with every element in Λ1\Lambda_{1}. As Λ1\Lambda_{1} generates Λ\Lambda, ι(D)\iota(D) commutes with every element in Λ\Lambda. ∎

Observe that for each f𝒪Xf\in{\mathcal{O}}_{X} we have ι(f)=f[p]fp=0\iota(f)=f^{[p]}-f^{p}=0 and that for each f𝒪Xf\in{\mathcal{O}}_{X} and DΛ1D\in\Lambda_{1} we have

ι(f+D)=ι(f)+ι(D)=ι(D).\iota(f+D)=\iota(f)+\iota(D)=\iota(D).

So ι\iota factorizes through the quotient

ι:Λ1/Λ0=HZ(Λ).\iota:\Lambda_{1}/\Lambda_{0}=H\longrightarrow Z(\Lambda).

Then, as ι\iota is a pp-linear map, it induces an 𝒪X{\mathcal{O}}_{X}-linear map

ι:HF(Z(Λ)),\iota:H\longrightarrow F_{*}(Z(\Lambda)),

where FF denotes the absolute Frobenius of XX. Moreover, F(Z(Λ))F_{*}(Z(\Lambda)) is a commutative 𝒪X{\mathcal{O}}_{X}-algebra (see Remark 2.8), so, by the universal property of the symmetric algebra, the map ι\iota induces a map of sheaves of commutative 𝒪X{\mathcal{O}}_{X}-algebras

ι:Sym(H)F(Z(Λ)).\iota:\operatorname{Sym}^{\bullet}(H)\longrightarrow F_{*}(Z(\Lambda)).
Proposition 2.13.

Suppose that Λ\Lambda is almost polynomial. Then the induced map ι:Sym(H)F(Z(Λ))\iota:\operatorname{Sym}^{\bullet}(H)\to F_{*}(Z(\Lambda)) is injective.

Proof.

We note that the symbol map sb:ΛGr(Λ)Sym(H)\operatorname{sb}:\Lambda\longrightarrow\operatorname{Gr}^{\bullet}(\Lambda)\cong\operatorname{Sym}^{\bullet}(H) is a multiplicative (but not 𝒪X{\mathcal{O}}_{X}-linear) map, so, composing with ι\iota, we obtain a multiplicative map

To prove that ker(ι)=0\ker(\iota)=0 it is enough to prove that ker(sb(ι))=0\ker(\operatorname{sb}(\iota))=0. As Λ\Lambda is almost polynomial, we have for every non-zero local DHD\in H and any representative D¯Λ1\overline{D}\in\Lambda_{1} with sb(D¯)=D\operatorname{sb}(\overline{D})=D

sb(D¯p)=DpSymp(H).\operatorname{sb}(\overline{D}^{p})=D^{p}\in\operatorname{Sym}^{p}(H).

So

sb(ι(D))=sb(D¯p)=Dp0.\operatorname{sb}(\iota(D))=\operatorname{sb}(\overline{D}^{p})=D^{p}\neq 0.

Moreover, for every local section DSym(H)D\in\operatorname{Sym}^{\bullet}(H) there exist D1,,DkHD_{1},\ldots,D_{k}\in H such that D=D1Dk+D~D=D_{1}\cdots D_{k}+\tilde{D} with D~\tilde{D} of degree <k<k. Therefore

sb(ι)(D)=j=1ksb(ι)(Dj)=j=1kDjp0.\operatorname{sb}(\iota)(D)=\prod_{j=1}^{k}\operatorname{sb}(\iota)(D_{j})=\prod_{j=1}^{k}D_{j}^{p}\neq 0.

3. Properties of almost abelian restricted sheaves of rings of differential operators

Assume that the characteristic of 𝕂\mathbb{K} is p>0p>0. Let π:XS\pi:X\to S be a morphism between schemes of finite type over 𝕂\mathbb{K}.

3.1. Restricted 𝒪S{\mathcal{O}}_{S}-Lie algebroid

We need to recall some definitions ([Hoc55], [Rum00, Section 3.1], [Lan14, Definition 4.2], [Sch16, Definition 2.2]).

Definition 3.1.

A restricted 𝒪S{\mathcal{O}}_{S}-Lie algebroid on XX is a quadruple (H,[,],δ,[p])(H,[-,-],\delta,[p]) consisting of an 𝒪X{\mathcal{O}}_{X}-module HH, which is also a sheaf of restricted 𝒪S{\mathcal{O}}_{S}-Lie algebras, a map [p]:HH[p]:H\to H and an 𝒪X{\mathcal{O}}_{X}-linear anchor map δ:HTX/S\delta:H\to T_{X/S} satisfying the following conditions for all local sections f𝒪Xf\in{\mathcal{O}}_{X} and D,D1,D2HD,D_{1},D_{2}\in H

  1. (1)

    [D1,fD2]=f[D1,D2]+δD1(f)D2[D_{1},fD_{2}]=f[D_{1},D_{2}]+\delta_{D_{1}}(f)D_{2},

  2. (2)

    (fD)[p]=fpD[p]+δfDp1(f)D(fD)^{[p]}=f^{p}D^{[p]}+\delta_{fD}^{p-1}(f)D.

Remark 3.2.

The standard example of restricted 𝒪S{\mathcal{O}}_{S}-Lie algebroid on XX over SS is the relative tangent sheaf TX/SDer𝒪S(𝒪X,𝒪X)T_{X/S}\cong\operatorname{Der}_{{\mathcal{O}}_{S}}({\mathcal{O}}_{X},{\mathcal{O}}_{X}) with the standard Lie bracket, [p][p] the p-th power map and δ\delta the identity map. Note that condition (2) is then equivalent to the Hochschild identity ([Hoc55, Lemma 1]).

3.2. Examples of almost abelian restricted sheaves of rings of differential operators

We consider a restricted sheaf Λ\Lambda of rings of differential operators as in Definition 2.6. In this subsection we assume that Λ\Lambda is almost abelian, i.e., the graded algebra Gr(Λ)\operatorname{Gr}^{\bullet}(\Lambda) is abelian. Then for any two local sections D1,D2Λ1D_{1},D_{2}\in\Lambda_{1} we have

[sb(D1),sb(D2)]Gr(Λ)=0Λ2/Λ1,[\operatorname{sb}(D_{1}),\operatorname{sb}(D_{2})]_{\operatorname{Gr}^{\bullet}(\Lambda)}=0\in\Lambda_{2}/\Lambda_{1},

so [D1,D2]Λ1[D_{1},D_{2}]\in\Lambda_{1} and therefore Λ1\Lambda_{1} with the induced commutator and anchor δD(f)=[D,f]\delta_{D}(f)=[D,f] for DΛ1D\in\Lambda_{1} and f𝒪Xf\in{\mathcal{O}}_{X} becomes an 𝒪S{\mathcal{O}}_{S}-Lie algebroid. In this case, conditions (1)-(3) of Definition 2.6 are equivalent to asking that (Λ1,[,],δ,[p])(\Lambda_{1},[-,-],\delta,[p]) is a restricted 𝒪S{\mathcal{O}}_{S}-Lie algebroid. Condition (4) is then equivalent to asking that the inclusion of 𝒪S{\mathcal{O}}_{S}-Lie algebroids

(𝒪X,[,]=0,δ=0,()p)(Λ1,[,],δ,[p])({\mathcal{O}}_{X},[-,-]=0,\delta=0,(-)^{p})\hookrightarrow(\Lambda_{1},[-,-],\delta,[p])

is a homomorphism of restricted 𝒪S{\mathcal{O}}_{S}-Lie algebroids.

We first need some information on the universal Lie polynomials used in Definition 2.6.

Lemma 3.3.

Let Λ\Lambda be any sheaf of rings of differential operators on XX over SS. Let DΛ1D\in\Lambda_{1} and f𝒪Xf\in{\mathcal{O}}_{X}. Then for every i<p1i<p-1

si(D,f)=0s_{i}(D,f)=0

and

sp1(D,f)=δDp1(f).s_{p-1}(D,f)=\delta_{D}^{p-1}(f).
Proof.

In any associative algebra of characteristic pp it is a classical result that we can write the Lie polynomial si(x1,x2)s_{i}(x_{1},x_{2}) for 1ip11\leq i\leq p-1 as follows

si(x1,x2)=1iσ:{1,,p1}{1,2}|σ1(1)|=iad(xσ(1))ad(xσ(p1))(x2).s_{i}(x_{1},x_{2})=-\frac{1}{i}\sum_{\begin{array}[]{c}\sigma:\{1,\ldots,p-1\}\to\{1,2\}\\ |\sigma^{-1}(1)|=i\end{array}}\operatorname{ad}(x_{\sigma(1)})\cdots\operatorname{ad}(x_{\sigma(p-1)})(x_{2}).

Observe that for x1=DΛ1x_{1}=D\in\Lambda_{1} and x2=f𝒪Xx_{2}=f\in{\mathcal{O}}_{X} we have the following equalities

ad(x1)(x2)=δD(f)𝒪X,ad(x1)(x1)=0,ad(x2)(g)=0g𝒪X.\operatorname{ad}(x_{1})(x_{2})=\delta_{D}(f)\in{\mathcal{O}}_{X},\ \ \operatorname{ad}(x_{1})(x_{1})=0,\ \ \operatorname{ad}(x_{2})(g)=0\ \ \forall g\in{\mathcal{O}}_{X}.

In particular, observe that for any indices ii and jj

ad(xi)(xj)𝒪X,ad(xi)(g)𝒪Xg𝒪X.\operatorname{ad}(x_{i})(x_{j})\in{\mathcal{O}}_{X},\ \ \operatorname{ad}(x_{i})(g)\in{\mathcal{O}}_{X}\ \ \forall g\in{\mathcal{O}}_{X}.

Thus, for i=1,2i=1,2 and g𝒪Xg\in{\mathcal{O}}_{X}

ad(x2)ad(xi)(g)=0.\operatorname{ad}(x_{2})\operatorname{ad}(x_{i})(g)=0.

In particular, if σ(j)=2\sigma(j)=2 for some j<p1j<p-1 we have that

ad(xσ(j+1))ad(xσ(p1))(x2)𝒪X.\operatorname{ad}(x_{\sigma(j+1)})\cdots\operatorname{ad}(x_{\sigma(p-1)})(x_{2})\in{\mathcal{O}}_{X}.

So

ad(x2)ad(xσ(j+1))ad(xσ(p1))(x2)=0,\operatorname{ad}(x_{2})\operatorname{ad}(x_{\sigma(j+1)})\cdots\operatorname{ad}(x_{\sigma(p-1)})(x_{2})=0,

and the corresponding summand in the expression of si(D,f)s_{i}(D,f) would be zero. Similarly, if σ(p1)=2\sigma(p-1)=2 we have ad(x2)(x2)=0\operatorname{ad}(x_{2})(x_{2})=0 and the whole expression is zero. Thus for the sum to be non-zero we must have σ(j)=1\sigma(j)=1 for all j=1,,p1j=1,\ldots,p-1. Finally, we have that for i=p1i=p-1

sp1(D,f)=1p1ad(D)ad(D)(f)=1p1δDp1(f)=δDp1(f).s_{p-1}(D,f)=-\frac{1}{p-1}\operatorname{ad}(D)\cdot\operatorname{ad}(D)(f)=-\frac{1}{p-1}\delta_{D}^{p-1}(f)=\delta_{D}^{p-1}(f).

Proposition 3.4.

If Λ\Lambda is an almost abelian restricted ring of differential operators on XX over SS, then H=Λ1/Λ0H=\Lambda_{1}/\Lambda_{0} inherits a restricted 𝒪S{\mathcal{O}}_{S}-Lie algebroid structure (H,[,]H,δ,[p])(H,[-,-]_{H},\delta,[p]) such that the short exact sequence (2.1) becomes an exact sequence of restricted 𝒪S{\mathcal{O}}_{S}-Lie algebroids.

Proof.

First of all, for each D1,D2HD_{1},D_{2}\in H define [D1,D2]H=sb([D1¯,D2¯]Λ)[D_{1},D_{2}]_{H}=\operatorname{sb}([\overline{D_{1}},\overline{D_{2}}]_{\Lambda}) for any Di¯\overline{D_{i}} such that sb(Di¯)=Di\operatorname{sb}(\overline{D_{i}})=D_{i} for i=1,2i=1,2. In order to prove that it is well-defined observe that for each f1,f2𝒪Xf_{1},f_{2}\in{\mathcal{O}}_{X} we have

sb([f1+D1¯,f2+D2¯]Λ)=sb([D1¯,D2¯]Λ1+δD1¯(f2)δD2¯(f1))=sb([D1¯,D2¯]Λ1).\operatorname{sb}([f_{1}+\overline{D_{1}},f_{2}+\overline{D_{2}}]_{\Lambda})=\operatorname{sb}([\overline{D_{1}},\overline{D_{2}}]_{\Lambda_{1}}+\delta_{\overline{D_{1}}}(f_{2})-\delta_{\overline{D_{2}}}(f_{1}))=\operatorname{sb}([\overline{D_{1}},\overline{D_{2}}]_{\Lambda_{1}}).

Similarly, as δf(g)=[f,g]Λ=0\delta_{f}(g)=[f,g]_{\Lambda}=0 for each f,g𝒪Xf,g\in{\mathcal{O}}_{X}, clearly δ\delta factorizes through HH.

Finally, define D[p]=sb(D¯[p])D^{[p]}=\operatorname{sb}(\overline{D}^{[p]}). Then for each f𝒪Xf\in{\mathcal{O}}_{X} we have that, using property (2) of the definition of pp-structure and Lemma 3.3 we have

sb((D¯+f)[p])=sb(D¯[p]+fp+i=1p1si(D,f))=sb(D¯[p]+fp+δD¯p1(f))=sb(D¯[p]).\operatorname{sb}((\overline{D}+f)^{[p]})=\operatorname{sb}(\overline{D}^{[p]}+f^{p}+\sum_{i=1}^{p-1}s_{i}(D,f))=\operatorname{sb}(\overline{D}^{[p]}+f^{p}+\delta_{\overline{D}}^{p-1}(f))=\operatorname{sb}(\overline{D}^{[p]}).

By construction, taking the symbol of the corresponding expressions in (1), (2) and (3), those properties are also satisfied for the induced pp-structure on HH, and the symbol map sb:Λ1H\operatorname{sb}:\Lambda_{1}\longrightarrow H is a morphism of restricted 𝒪S{\mathcal{O}}_{S}-Lie algebroids. ∎


On the other hand, let us consider a restricted 𝒪S{\mathcal{O}}_{S}-Lie algebroid (H,[,],δ,[p])(H,[-,-],\delta,[p]). Then the universal enveloping algebra111This sheaf of algebras is called the universal enveloping algebra of differential operators associated to HH in [Lan14] ΛH\Lambda_{H} of the 𝒪S{\mathcal{O}}_{S}-Lie algebroid HH, as defined e.g. in [Tor12, Section 4.3] or [Lan14, page 515], becomes a split almost polynomial restricted sheaf of rings of differential operators on XX over SS by taking the pp-structure as follows: we have a splitting as 𝒪X{\mathcal{O}}_{X}-modules

(ΛH)1=𝒪XH,(\Lambda_{H})_{1}={\mathcal{O}}_{X}\oplus H,

and we define for every DHD\in H and every f𝒪Xf\in{\mathcal{O}}_{X}

(f+D)[p]=fp+D[p]+δDp1(f).(f+D)^{[p]}=f^{p}+D^{[p]}+\delta_{D}^{p-1}(f).

We will show in the next proposition that this map endows ΛH\Lambda_{H} with the structure of a restricted sheaf of rings of differential operators. First we will need two lemmas.

Lemma 3.5.

For any local sections f1,f2𝒪Xf_{1},f_{2}\in{\mathcal{O}}_{X} and D1,D2HD_{1},D_{2}\in H we have the following equality in ΛH\Lambda_{H}

δD1p1(f1)+δD2p1(f2)+i=1p1si(f1+D1,f2+D2)=i=1p1si(D1,D2)+δD1+D2p1(f1+f2).\delta_{D_{1}}^{p-1}(f_{1})+\delta_{D_{2}}^{p-1}(f_{2})+\sum_{i=1}^{p-1}s_{i}(f_{1}+D_{1},f_{2}+D_{2})=\sum_{i=1}^{p-1}s_{i}(D_{1},D_{2})+\delta_{D_{1}+D_{2}}^{p-1}(f_{1}+f_{2}).
Proof.

We will use Jacobson’s formula to compute (f1+D1+f2+D2)pΛH(f_{1}+D_{1}+f_{2}+D_{2})^{p}\in\Lambda_{H} in two different ways. On one hand, taking into account Lemma 3.3 we have

((f1+D1)+(f2+D2))p=(f1+D1)p+(f2+D2)p+i=1p1si(f1+D1,f2+D2)=f1p+D1p+δD1p1(f1)+f2p+D2p+δD2p1(f2)+i=1p1si(f1+D1,f2+D2).((f_{1}+D_{1})+(f_{2}+D_{2}))^{p}=(f_{1}+D_{1})^{p}+(f_{2}+D_{2})^{p}+\sum_{i=1}^{p-1}s_{i}(f_{1}+D_{1},f_{2}+D_{2})\\ =f_{1}^{p}+D_{1}^{p}+\delta_{D_{1}}^{p-1}(f_{1})+f_{2}^{p}+D_{2}^{p}+\delta_{D_{2}}^{p-1}(f_{2})+\sum_{i=1}^{p-1}s_{i}(f_{1}+D_{1},f_{2}+D_{2}).

On the other hand, we have

((f1+f2)+(D1+D2))p=f1p+f2p+(D1+D2)p+δD1+D2p1(f1+f2)=f1p+f2p+D1p+D2p+i=1p1si(D1,D2)+δD1+D2p1(f1+f2).((f_{1}+f_{2})+(D_{1}+D_{2}))^{p}=f_{1}^{p}+f_{2}^{p}+(D_{1}+D_{2})^{p}+\delta_{D_{1}+D_{2}}^{p-1}(f_{1}+f_{2})\\ =f_{1}^{p}+f_{2}^{p}+D_{1}^{p}+D_{2}^{p}+\sum_{i=1}^{p-1}s_{i}(D_{1},D_{2})+\delta_{D_{1}+D_{2}}^{p-1}(f_{1}+f_{2}).

Subtracting both expressions yields the desired equality. ∎

Lemma 3.6.

For any local sections f,g𝒪Xf,g\in{\mathcal{O}}_{X} and any local section DHD\in H we have

δgDp1(gf)=gpδDp1(f)+δgDp1(g)f.\delta_{gD}^{p-1}(gf)=g^{p}\delta_{D}^{p-1}(f)+\delta_{gD}^{p-1}(g)f.
Proof.

As it is an equality of local sections in 𝒪X{\mathcal{O}}_{X}, it is enough to prove that the difference of the sections is zero on an open set. In particular, as the equality clearly holds if f=0f=0, we can assume that f0f\not=0 and restrict to the open subset where ff is invertible. Then D=D/fD^{\prime}=D/f is an element of HH and we have the following two identities as a consequence of the pp-structure on HH

((gf)D)[p]=gpfp(D)[p]+δgfDp1(gf)D,((gf)D^{\prime})^{[p]}=g^{p}f^{p}(D^{\prime})^{[p]}+\delta_{gfD^{\prime}}^{p-1}(gf)D^{\prime},
(g(fD))[p]=gp(fD)[p]+δgfDp1(g)(fD)=gpfp(D)[p]+gpδfDp1(f)D+δgfDp1(g)fD.(g(fD^{\prime}))^{[p]}=g^{p}(fD^{\prime})^{[p]}+\delta_{gfD^{\prime}}^{p-1}(g)(fD^{\prime})=g^{p}f^{p}(D^{\prime})^{[p]}+g^{p}\delta_{fD^{\prime}}^{p-1}(f)D^{\prime}+\delta_{gfD^{\prime}}^{p-1}(g)fD^{\prime}.

Subtracting and considering coefficients of DD^{\prime} yields the equality

δgfDp1(gf)=gpδfDp1(f)+δgfDp1(g)f.\delta_{gfD^{\prime}}^{p-1}(gf)=g^{p}\delta_{fD^{\prime}}^{p-1}(f)+\delta_{gfD^{\prime}}^{p-1}(g)f.

Taking into account that D=fDD=fD^{\prime} we obtain the result. ∎

Proposition 3.7.

Let HH be a restricted 𝒪S{\mathcal{O}}_{S}-Lie algebroid on XX over SS. Then the map [p]:𝒪XH𝒪XH[p]:{\mathcal{O}}_{X}\oplus H\longrightarrow{\mathcal{O}}_{X}\oplus H defined by

(f+D)[p]=fp+D[p]+δDp1(f)(f+D)^{[p]}=f^{p}+D^{[p]}+\delta_{D}^{p-1}(f)

is a pp-structure for the universal enveloping algebra ΛH\Lambda_{H} making the symbol map sb:(ΛH)1H\operatorname{sb}:(\Lambda_{H})_{1}\longrightarrow H a morphism of restricted 𝒪S{\mathcal{O}}_{S}-Lie algebroids.

Proof.

It will be enough to check the four properties of Definition 2.6.

  1. (1)

    By Jacobson’s formula in ΛH\Lambda_{H} and by Lemma 3.3 we have the equality

    (f+D)p=fp+Dp+δDp1(f).(f+D)^{p}=f^{p}+D^{p}+\delta_{D}^{p-1}(f).

    So

    ad(f+D)p=ad(fp)+ad(D[p])+ad(δDp1(f))=ad((f+D)[p]).\operatorname{ad}(f+D)^{p}=\operatorname{ad}(f^{p})+\operatorname{ad}(D^{[p]})+\operatorname{ad}(\delta_{D}^{p-1}(f))=\operatorname{ad}((f+D)^{[p]}).
  2. (2)

    To prove additivity we use Lemma 3.5 to obtain

    (f1+D1+f2+D2)[p]\displaystyle(f_{1}+D_{1}+f_{2}+D_{2})^{[p]}
    =\displaystyle= ((f1+f2)+(D1+D2))[p]=f1p+f2p+(D1+D2)[p]+δD1+D2p1(f1+f2)\displaystyle((f_{1}+f_{2})+(D_{1}+D_{2}))^{[p]}=f_{1}^{p}+f_{2}^{p}+(D_{1}+D_{2})^{[p]}+\delta_{D_{1}+D_{2}}^{p-1}(f_{1}+f_{2})
    =\displaystyle= f1p+f2p+D1[p]+D2[p]+i=1p1si(D1,D2)+δD1+D2p1(f1+f2)\displaystyle f_{1}^{p}+f_{2}^{p}+D_{1}^{[p]}+D_{2}^{[p]}+\sum_{i=1}^{p-1}s_{i}(D_{1},D_{2})+\delta_{D_{1}+D_{2}}^{p-1}(f_{1}+f_{2})
    =\displaystyle= f1p+f2p+D1[p]+D2[p]+δD1p1(f1)+δD2p1(f2)+i=1p1si(f1+D1,f2+D2)\displaystyle f_{1}^{p}+f_{2}^{p}+D_{1}^{[p]}+D_{2}^{[p]}+\delta_{D_{1}}^{p-1}(f_{1})+\delta_{D_{2}}^{p-1}(f_{2})+\sum_{i=1}^{p-1}s_{i}(f_{1}+D_{1},f_{2}+D_{2})
    =\displaystyle= (f1+D1)[p]+(f2+D2)[p]+i=1p1si(f1+D1,f2+D2).\displaystyle(f_{1}+D_{1})^{[p]}+(f_{2}+D_{2})^{[p]}+\sum_{i=1}^{p-1}s_{i}(f_{1}+D_{1},f_{2}+D_{2}).
  3. (3)

    Let f,g𝒪Xf,g\in{\mathcal{O}}_{X} and DHD\in H. Then by Lemma 3.6 we have

    (g(f+D))[p]\displaystyle(g(f+D))^{[p]}
    =\displaystyle= (gf+gD)[p]=gpfp+(gD)[p]+δgDp1(gf)\displaystyle(gf+gD)^{[p]}=g^{p}f^{p}+(gD)^{[p]}+\delta_{gD}^{p-1}(gf)
    =\displaystyle= gpfp+gpD[p]+δgDp1(g)D+δgDp1(gf)\displaystyle g^{p}f^{p}+g^{p}D^{[p]}+\delta_{gD}^{p-1}(g)D+\delta_{gD}^{p-1}(gf)
    =\displaystyle= gpfp+gpD[p]+δgDp1(g)D+gpδDp1(f)+δgDp1(g)f\displaystyle g^{p}f^{p}+g^{p}D^{[p]}+\delta_{gD}^{p-1}(g)D+g^{p}\delta_{D}^{p-1}(f)+\delta_{gD}^{p-1}(g)f
    =\displaystyle= gp(f+D)[p]+δgDp1(g)(f+D)=gp(f+D)[p]+δg(f+D)p1(g)(f+D).\displaystyle g^{p}(f+D)^{[p]}+\delta_{gD}^{p-1}(g)(f+D)=g^{p}(f+D)^{[p]}+\delta_{g(f+D)}^{p-1}(g)(f+D).
  4. (4)

    This property is obvious by taking D=0D=0.

To summarize, we have shown that the definition of a pp-structure on the universal enveloping algebra ΛH\Lambda_{H} of a restricted 𝒪S{\mathcal{O}}_{S}-Lie algebroid HH, as well as the usual notion of pp-th power for crystalline differential operators are particular cases of our general definition of a pp-structure for a restricted sheaf of rings of differential operators (Definition 2.6).

4. Some examples of restricted sheaves of rings of differential operators

In this section we assume that π:XS\pi:X\to S is a smooth morphism.

4.1. Sheaf of crystalline differential operators 𝒟X/S{\mathcal{D}}_{X/S}

The sheaf of crystalline differential operators (see e.g. [BMR08])

ΛdR=𝒟X/S\Lambda^{dR}={\mathcal{D}}_{X/S}

is a split almost polynomial restricted sheaf of rings of differential operators. Its associated restricted 𝒪S{\mathcal{O}}_{S}-Lie algebroid Λ1dR/Λ0dR\Lambda^{dR}_{1}/\Lambda^{dR}_{0} is the relative tangent sheaf TX/ST_{X/S}, taking the commutator as the Lie bracket of vector fields and taking the identity as the anchor map. The 𝒟X/S{\mathcal{D}}_{X/S}-modules correspond to coherent 𝒪X{\mathcal{O}}_{X}-modules with a relative integrable connection.

For every derivation νTX/S\nu\in T_{X/S} the pp-th power νp\nu^{p} is again a derivation, since by applying Leibniz rule, we have for every local section f,g𝒪Xf,g\in{\mathcal{O}}_{X}

νp(fg)=k=0p(pk)νk(f)νpk(g)=νp(f)g+fνp(g)\nu^{p}(fg)=\sum_{k=0}^{p}\binom{p}{k}\nu^{k}(f)\nu^{p-k}(g)=\nu^{p}(f)g+f\nu^{p}(g)

so taking ν[p]=νp\nu^{[p]}=\nu^{p} gives us a pp-structure [p]:TX/STX/S[p]:T_{X/S}\to T_{X/S} endowing TX/ST_{X/S} with the structure of a restricted 𝒪S{\mathcal{O}}_{S}-Lie algebroid (TX/S,[,],idTX/S,[p])(T_{X/S},[-,-],\mathrm{id}_{T_{X/S}},[p]) and, therefore, inducing a pp-structure on 𝒟X{\mathcal{D}}_{X}.

4.2. Trivial pp-structure on the symmetric algebra

Given a locally free 𝒪X{\mathcal{O}}_{X}-module HH over XX, the symmetric algebra

ΛHiggs=Sym(H)\Lambda^{\operatorname{Higgs}}=\operatorname{Sym}^{\bullet}(H)

is a split almost polynomial restricted sheaf of rings of differential operators, when taking the trivial pp-stucture on Λ1=𝒪XH\Lambda_{1}={\mathcal{O}}_{X}\oplus H, i.e. we take [p]:HH[p]:H\to H to be the zero map on H

D[p]=0.D^{[p]}=0.

Then a ΛHiggs\Lambda^{\operatorname{Higgs}}-module corresponds to a HH^{\vee}-valued Higgs bundle (E,ϕ)(E,\phi), where EE is a vector bundle over XX and ϕ:EEH\phi:E\to E\otimes H^{\vee} is a morphism of 𝒪X{\mathcal{O}}_{X}-modules satisfying ϕϕ=0\phi\wedge\phi=0.

As ΛHiggs\Lambda^{\operatorname{Higgs}} is abelian, we have

adΛ1(D)p=0=adΛ1(D[p]).\operatorname{ad}_{\Lambda_{1}}(D)^{p}=0=\operatorname{ad}_{\Lambda_{1}}(D^{[p]}).

Moreover si(D1,D2)=0s_{i}(D_{1},D_{2})=0 for all D1,D2HD_{1},D_{2}\in H, so

(D1+D2)[p]=0=D1[p]+D2[p]=D1[p]+D2[p]+i=1p1si(D1,D2).(D_{1}+D_{2})^{[p]}=0=D_{1}^{[p]}+D_{2}^{[p]}=D_{1}^{[p]}+D_{2}^{[p]}+\sum_{i=1}^{p-1}s_{i}(D_{1},D_{2}).

Finally, ΛHiggs\Lambda^{\operatorname{Higgs}} being abelian implies δ=0\delta=0, so we trivially have

0=(fD)[p]=fpD[p]+δfDp(f)D=0.0=(fD)^{[p]}=f^{p}D^{[p]}+\delta_{fD}^{p}(f)D=0.

4.3. pp-structure on the reduction to the associated graded of 𝒟X/S{\mathcal{D}}_{X/S}

By the classical Rees construction applied to the filtered sheaf ΛdR=𝒟X/S\Lambda^{dR}={\mathcal{D}}_{X/S} (see Subsection 4.1) we obtain a sheaf of rings over X×Spec(𝕂[t])=X×𝔸1X\times\mathrm{Spec}(\mathbb{K}[t])=X\times\mathbb{A}^{1} defined as

ΛdR,R=i0tiΛi,\Lambda^{dR,R}=\bigoplus_{i\geq 0}t^{i}\Lambda_{i},

where tt acts by multiplication with tt on ΛdR,R\Lambda^{dR,R} using the inclusions ΛiΛi+1\Lambda_{i}\subset\Lambda_{i+1}. Then by construction the fibers over the closed points 0 and 11 of 𝔸1\mathbb{A}^{1} equal

(ΛdR,R)0=Sym(TX/S)and(ΛdR,R)1=𝒟X/S=ΛdR.(\Lambda^{dR,R})_{0}=\operatorname{Sym}^{\bullet}(T_{X/S})\quad\text{and}\quad(\Lambda^{dR,R})_{1}=\mathcal{D}_{X/S}=\Lambda^{dR}.

We observe that ΛdR,R\Lambda^{\operatorname{dR},R} is a split almost polynomial sheaf of rings of differential operators on X×𝔸1X\times\mathbb{A}^{1} relative to S×𝔸1S\times\mathbb{A}^{1} such that the fiber over each λ𝔸1\lambda\in\mathbb{A}^{1} corresponds to the universal enveloping algebra of the 𝒪S{\mathcal{O}}_{S}-Lie algebroid (TX/S,λ[,],λidTX/S)(T_{X/S},\lambda[-,-],\lambda\mathrm{id}_{T_{X/S}}).


We can endow ΛdR,R\Lambda^{dR,R} with a pp-structure as follows. We note that

Λ1dR,R=𝒪X×𝔸1TX×𝔸1/S×𝔸1andTX×𝔸1/S×𝔸1=TX/S.\Lambda^{dR,R}_{1}={\mathcal{O}}_{X\times\mathbb{A}^{1}}\oplus T_{X\times\mathbb{A}^{1}/S\times\mathbb{A}^{1}}\quad\text{and}\quad T_{X\times\mathbb{A}^{1}/S\times\mathbb{A}^{1}}=T_{X/S}.

Then the pp-structure on Λ1dR,R\Lambda^{dR,R}_{1} over X×𝔸1X\times\mathbb{A}^{1} is defined by

[p]R:TX/STX/SD[p]R=tp1D[p],[p]^{R}:T_{X/S}\to T_{X/S}\quad\quad D^{[p]^{R}}=t^{p-1}D^{[p]},

where tt is the coordinate on 𝔸1\mathbb{A}^{1} and D[p]D^{[p]} is the pp-th power of the relative vector field DTX/SD\in T_{X/S}. By construction of ΛdR,R\Lambda^{\operatorname{dR},R} the commutator of elements in Λ1dR,R\Lambda^{\operatorname{dR},R}_{1} is the commutator of differential operators multiplied by the coordinate tt, i.e., for every DΛ1dR,RD\in\Lambda^{\operatorname{dR},R}_{1}

adΛ1dR,R(D)=tadΛ1dR(D)\operatorname{ad}_{\Lambda^{\operatorname{dR},R}_{1}}(D)=t\operatorname{ad}_{\Lambda^{dR}_{1}}(D)

Moreover, as the Lie polynomials si(x,y)s_{i}(x,y) are homogeneous of degree p1p-1, we have

siΛdR,R(x,y)=tp1siΛdR(x,y).s_{i}^{\Lambda^{\operatorname{dR},R}}(x,y)=t^{p-1}s_{i}^{\Lambda^{dR}}(x,y).

Therefore, the following equalities hold for any local sections DTX/SD\in T_{X/S} and f𝒪X×𝔸1f\in{\mathcal{O}}_{X\times\mathbb{A}^{1}}

adΛ1dR,R(D[p]R)=tadΛ1dR(tD[p])=tpadΛ1dR(D)p=(tadΛ1dR(D))p=adΛ1dR,R(D)p,\operatorname{ad}_{\Lambda_{1}^{\operatorname{dR,R}}}(D^{[p]^{R}})=t\operatorname{ad}_{\Lambda^{dR}_{1}}(tD^{[p]})=t^{p}\operatorname{ad}_{\Lambda^{dR}_{1}}(D)^{p}=(t\operatorname{ad}_{\Lambda^{dR}_{1}}(D))^{p}=\operatorname{ad}_{\Lambda_{1}^{\operatorname{dR},R}}(D)^{p},
(D1+D2)[p]R=tp1(D1+D2)[p]=tp1D1[p]+tp1D1[p]+i=1p1tp1siΛdR(D1,D2)=D1[p]R+D2[p]R+i=1p1siΛdR,R(D1,D2),(D_{1}+D_{2})^{[p]^{R}}=t^{p-1}(D_{1}+D_{2})^{[p]}=t^{p-1}D_{1}^{[p]}+t^{p-1}D_{1}^{[p]}+\sum_{i=1}^{p-1}t^{p-1}s_{i}^{\Lambda^{dR}}(D_{1},D_{2})\\ =D_{1}^{[p]^{R}}+D_{2}^{[p]^{R}}+\sum_{i=1}^{p-1}s_{i}^{\Lambda^{\operatorname{dR},R}}(D_{1},D_{2}),
(fD)[p]R=tp1(fD)[p]=tp1fpD[p]+tp1(δfDΛdR)p1(f)D=fpD[p]R+(δfDΛdR,R)p1(f)D.(fD)^{[p]^{R}}=t^{p-1}(fD)^{[p]}=t^{p-1}f^{p}D^{[p]}+t^{p-1}\left(\delta_{fD}^{\Lambda^{dR}}\right)^{p-1}(f)D\\ =f^{p}D^{[p]^{R}}+\left(\delta_{fD}^{\Lambda^{\operatorname{dR},R}}\right)^{p-1}(f)D.

This proves that [p]R[p]^{R} is a pp-structure for ΛdR,R\Lambda^{\operatorname{dR},R}.


4.4. pp-structure on the reduction to the associated graded: general case

More generally, let Λ=ΛH\Lambda=\Lambda_{H} be the restricted sheaf of rings of differential operators over XX given as the universal enveloping algebra of a restricted 𝒪S{\mathcal{O}}_{S}-Lie algebroid (H,[,],δ,[p])(H,[-,-],\delta,[p]) — see Proposition 3.7. Consider the Rees construction ΛR\Lambda^{R} over X×𝔸1X\times\mathbb{A}^{1} relative to S×𝔸1S\times\mathbb{A}^{1} of the filtered sheaf of rings Λ\Lambda. Then the fiber of ΛR\Lambda^{R} over λ𝔸1\lambda\in\mathbb{A}^{1} is the universal enveloping algebra of the 𝒪S{\mathcal{O}}_{S}-Lie algebroid (H,λ[,],λδ)(H,\lambda[-,-],\lambda\delta). We also note that Λ1R/Λ0R=pX(H)\Lambda_{1}^{R}/\Lambda_{0}^{R}=p_{X}^{*}(H), where pX:X×𝔸1Xp_{X}:X\times\mathbb{A}^{1}\rightarrow X is the projection onto XX. The anchor map δR\delta^{R} of ΛR\Lambda^{R} equals

δR=tδ:Λ1R/Λ0R=pX(H)pX(TX/S).\delta^{R}=t\delta:\Lambda_{1}^{R}/\Lambda_{0}^{R}=p_{X}^{*}(H)\rightarrow p_{X}^{*}(T_{X/S}).

Then the previous argument proves that the map [p]R:pX(H)pX(H)[p]^{R}:p_{X}^{*}(H)\to p_{X}^{*}(H) over X×𝔸1X\times\mathbb{A}^{1} given by

D[p]R=tp1D[p]D^{[p]^{R}}=t^{p-1}D^{[p]}

is a pp-structure for ΛR\Lambda^{R}. This also yields an explicit deformation of the pp-structure on Λ\Lambda to the trivial pp-structure on Gr(Λ)Sym(H)\operatorname{Gr}^{\bullet}(\Lambda)\cong\operatorname{Sym}^{\bullet}(H).


4.5. pp-structure on the Atiyah algebroid of a line bundle

Let us study an example which is almost polynomial, but not split. Let LL be a line bundle on XX and take Λ\Lambda to be the sheaf of crystalline differential operators on LL, i.e., the subalgebra

Λ=𝒟X/S(L)End𝒪S(L)\Lambda=\mathcal{D}_{X/S}(L)\subset\operatorname{End}_{{\mathcal{O}}_{S}}(L)

generated by the relative Atiyah algebroid AtX/S(L)=Diff𝒪S1(L,L)\operatorname{At}_{X/S}(L)=\operatorname{Diff}_{{\mathcal{O}}_{S}}^{1}(L,L). Note that

Λ1=AtX/S(L).\Lambda_{1}=\operatorname{At}_{X/S}(L).

Local sections of AtX/S(L)\operatorname{At}_{X/S}(L) can be identified with local sections DEndπ1(𝒪S)(L)D\in\operatorname{End}_{\pi^{-1}({\mathcal{O}}_{S})}(L) such that for each f𝒪Xf\in{\mathcal{O}}_{X}, [D,f]End𝒪X(L)=𝒪X=𝒟0(L)[D,f]\in\operatorname{End}_{{\mathcal{O}}_{X}}(L)={\mathcal{O}}_{X}={\mathcal{D}}^{0}(L). Then, for every DAtX/S(L)D\in\operatorname{At}_{X/S}(L) let us denote by δD:𝒪X𝒪X\delta_{D}:{\mathcal{O}}_{X}\to{\mathcal{O}}_{X} the map

δD(f)=[D,f]𝒪X.\delta_{D}(f)=[D,f]\in{\mathcal{O}}_{X}.

Observe that, as Λ\Lambda is associative, we have that for each f,g𝒪Xf,g\in{\mathcal{O}}_{X}

δD(fg)=[D,fg]\displaystyle\delta_{D}(fg)=[D,fg] =\displaystyle= DfgfgD=DfgfDg+fDgfgD\displaystyle Dfg-fgD=Dfg-fDg+fDg-fgD
=\displaystyle= [D,f]g+f[D,g]=δD(f)g+fδD(g)\displaystyle[D,f]g+f[D,g]=\delta_{D}(f)g+f\delta_{D}(g)

thus, δD\delta_{D} is a 𝒪S{\mathcal{O}}_{S}-derivation and we can consider the map δ:AtX/S(L)TX/S\delta:\operatorname{At}_{X/S}(L)\longrightarrow T_{X/S}. So we obtain the short exact sequence

(4.1) 0𝒪XAtX/S(L)δTX/S0.0\longrightarrow{\mathcal{O}}_{X}\longrightarrow\operatorname{At}_{X/S}(L)\stackrel{{\scriptstyle\delta}}{{\longrightarrow}}T_{X/S}\longrightarrow 0.

Thus the triple (AtX/S(L),[,],δ)(\operatorname{At}_{X/S}(L),[-,-],\delta) becomes a 𝒪S{\mathcal{O}}_{S}-Lie algebroid. We will now endow this Lie algebroid with a pp-structure.

Lemma 4.1.

Let DAtX/S(L)D\in\operatorname{At}_{X/S}(L). Then for every f𝒪Xf\in{\mathcal{O}}_{X}, [Dp,f]𝒪X[D^{p},f]\in{\mathcal{O}}_{X}, so DpD^{p} can be identified with an element in AtX/S(L)\operatorname{At}_{X/S}(L) that we will denote as D[p]D^{[p]}.

Proof.

As Λ\Lambda is an associative 𝒪X{\mathcal{O}}_{X}-algebra of characteristic pp we can apply Jacobson’s formula and we have that for every DAtX/S(L)D\in\operatorname{At}_{X/S}(L) and every f𝒪Xf\in{\mathcal{O}}_{X}

[Dp,f]=ad(Dp)(f)=ad(D)p(f)=δDp(f)𝒪X.[D^{p},f]=\operatorname{ad}(D^{p})(f)=\operatorname{ad}(D)^{p}(f)=\delta_{D}^{p}(f)\in{\mathcal{O}}_{X}.

Proposition 4.2.

The map [p]:AtX/S(L)AtX/S(L)[p]:\operatorname{At}_{X/S}(L)\to\operatorname{At}_{X/S}(L) described in the previous lemma is a pp-structure for Λ\Lambda.

Proof.

Property (1) was proved in the previous lemma. For the additivity property (2), observe that in Λ\Lambda Jacobson’s formula yields

(D1+D2)p=D1p+D2p+i=1p1si(D1,D2).(D_{1}+D_{2})^{p}=D_{1}^{p}+D_{2}^{p}+\sum_{i=1}^{p-1}s_{i}(D_{1},D_{2}).

As this is indeed an equality in the 𝒪X{\mathcal{O}}_{X}-algebra Λ\Lambda, the commutator of the left and right side of the equation with an element of 𝒪X{\mathcal{O}}_{X} must yield the same element of 𝒪X{\mathcal{O}}_{X}, so both left and right sides remain equal under the identification of DipD_{i}^{p} with the corresponding element Di[p]AtX/S(L)D_{i}^{[p]}\in\operatorname{At}_{X/S}(L). For (3), since Λ\Lambda is associative, we can apply Deligne’s identity [Kat70, Proposition 5.3] and we obtain that

(fD)p=fpDp+fad(D)p1(fp1)D=fpDp+fδDp1(fp1)D.(fD)^{p}=f^{p}D^{p}+f\operatorname{ad}(D)^{p-1}(f^{p-1})D=f^{p}D^{p}+f\delta_{D}^{p-1}(f^{p-1})D.

Now, applying Proposition 2.9 we have that

fpDp+fδDp1(fp1)D=fpDp+δfDp1(f)Df^{p}D^{p}+f\delta_{D}^{p-1}(f^{p-1})D=f^{p}D^{p}+\delta_{fD}^{p-1}(f)D

and, applying a similar argument to the previous property, we obtain the desired equality. Finally, it is trivial by construction that for every f𝒪Xf\in{\mathcal{O}}_{X}, f[p]=fpf^{[p]}=f^{p}. ∎

Finally, we mention that Λ=𝒟X/S(L)\Lambda=\mathcal{D}_{X/S}(L) coincides with the Sridharan enveloping algebra ΛAtX/S(L)\Lambda_{\operatorname{At}_{X/S}(L)} associated to the non-split extension (4.1) of the Lie algebroid TX/ST_{X/S} by 𝒪X{\mathcal{O}}_{X} as constructed in [Tor12, Section 4.3] (see also [Tor11, Example 3.2.3] for this particular case) or [Lan14, page 516].


4.6. pp-structures on the symmetric algebra

Returning to the abelian setting, let us fix Λ=Sym(H)\Lambda=\operatorname{Sym}^{\bullet}(H) for some locally free 𝒪X{\mathcal{O}}_{X}-module HH and let us study the possible pp-structures on Λ\Lambda. As before, Λ\Lambda being abelian implies that for any DHD\in H

adΛ1(D)p=0=adΛ1(D[p])\operatorname{ad}_{\Lambda_{1}}(D)^{p}=0=\operatorname{ad}_{\Lambda_{1}}(D^{[p]})

and for any D1,D2HD_{1},D_{2}\in H, si(D1,D2)=0s_{i}(D_{1},D_{2})=0. Moreover, for any DHD\in H, δD=0\delta_{D}=0. Therefore, the conditions for a map [p]:HH[p]:H\longrightarrow H to endow Λ\Lambda with a pp-structure are the following

  1. (1)

    (D1+D2)[p]=D1[p]+D2[p](D_{1}+D_{2})^{[p]}=D_{1}^{[p]}+D_{2}^{[p]},

  2. (2)

    (fD)[p]=fpD[p](fD)^{[p]}=f^{p}D^{[p]}.

So a pp-structure on Sym(H)\operatorname{Sym}^{\bullet}(H) is given by a pp-linear map from HH to HH, or equivalently by an 𝒪X{\mathcal{O}}_{X}-linear map

α:FHH,\alpha:F^{*}H\to H,

where FF denotes the absolute Frobenius of XX.

4.7. Classification of pp-structures on a general Λ\Lambda

In this subsection we will describe all pp-structures on a given sheaf of rings of differential operators Λ\Lambda.

Proposition 4.3.

Let [p]:Λ1Λ1[p]:\Lambda_{1}\to\Lambda_{1} be a pp-structure for Λ\Lambda. Then any other pp-structure [p]:Λ1Λ1[p]^{\prime}:\Lambda_{1}\to\Lambda_{1} is given by

[p]=[p]+φsb[p]^{\prime}=[p]+\varphi\circ\operatorname{sb}

where φ:HZ(Λ1)\varphi:H\longrightarrow Z(\Lambda_{1}) is a pp-linear map from H=Λ1/Λ0H=\Lambda_{1}/\Lambda_{0} to the centralizer Z(Λ1)Z(\Lambda_{1}) of Λ1\Lambda_{1} in Λ1\Lambda_{1}.

Proof.

We put φ(D)=D[p]D[p]\varphi(D)=D^{[p]}-D^{[p]^{\prime}}. Then for every local sections D,EΛ1D,E\in\Lambda_{1} we have

ad(φ(D))(E)=ad(D[p])(E)ad(D[p])(E)=ad(D)p(E)ad(D)p(E)=0.\operatorname{ad}(\varphi(D))(E)=\operatorname{ad}(D^{[p]})(E)-\operatorname{ad}(D^{[p]^{\prime}})(E)=\operatorname{ad}(D)^{p}(E)-\operatorname{ad}(D)^{p}(E)=0.

So φ(D)Z(Λ1)\varphi(D)\in Z(\Lambda_{1}) for every DΛ1D\in\Lambda_{1}. Let D1,D2Λ1D_{1},D_{2}\in\Lambda_{1}. Then

φ(D1+D2)=D1[p]+D2[p]+i=0p1si(D1,D2)D1[p]D2[p]i=0p1si(D1,D2)=φ(D1)+φ(D2).\varphi(D_{1}+D_{2})=D_{1}^{[p]}+D_{2}^{[p]}+\sum_{i=0}^{p-1}s_{i}(D_{1},D_{2})-D_{1}^{[p]^{\prime}}-D_{2}^{[p]^{\prime}}-\sum_{i=0}^{p-1}s_{i}(D_{1},D_{2})=\varphi(D_{1})+\varphi(D_{2}).

Similarly

φ(fD)=fpD[p]+δfDp1(f)DfpD[p]δfDp1(f)D=fpφ(D).\varphi(fD)=f^{p}D^{[p]}+\delta_{fD}^{p-1}(f)D-f^{p}D^{[p]^{\prime}}-\delta_{fD}^{p-1}(f)D=f^{p}\varphi(D).

So φ:Λ1Λ1\varphi:\Lambda_{1}\to\Lambda_{1} is pp-linear. Moreover, clearly

φ(f)=f[p]f[p]=fpfp=0.\varphi(f)=f^{[p]}-f^{[p]^{\prime}}=f^{p}-f^{p}=0.

So φ\varphi factors through the quotient φ:HZ(Λ1)\varphi:H\longrightarrow Z(\Lambda_{1}).

Conversely, let [p]:Λ1Λ1[p]:\Lambda_{1}\to\Lambda_{1} be a pp-structure on Λ\Lambda and let φ:HZ(Λ1)\varphi:H\to Z(\Lambda_{1}) be a pp-linear map. We then define D[p]=D[p]+φ(sb(D))D^{[p]^{\prime}}=D^{[p]}+\varphi(\operatorname{sb}(D)). Then for every local section D1,D2,D,EΛ1D_{1},D_{2},D,E\in\Lambda_{1} and every local section f𝒪Xf\in{\mathcal{O}}_{X}

ad(D[p])(E)=ad(D[p])+ad(φ(sb(D)))(E)=ad(D)p(E),\operatorname{ad}(D^{[p]^{\prime}})(E)=\operatorname{ad}(D^{[p]})+\operatorname{ad}(\varphi(\operatorname{sb}(D)))(E)=\operatorname{ad}(D)^{p}(E),
(D1+D2)[p]=(D1+D2)[p]+φ(sb(D1)+sb(D2))=D1[p]+D2[p]+i=0p1si(D1,D2)+φ(sb(D1))+φ(sb(D2))=D1[p]+D2[p]+i=0p1si(D1,D2)(D_{1}+D_{2})^{[p]^{\prime}}=(D_{1}+D_{2})^{[p]}+\varphi(\operatorname{sb}(D_{1})+\operatorname{sb}(D_{2}))\\ =D_{1}^{[p]}+D_{2}^{[p]}+\sum_{i=0}^{p-1}s_{i}(D_{1},D_{2})+\varphi(\operatorname{sb}(D_{1}))+\varphi(\operatorname{sb}(D_{2}))=D_{1}^{[p]^{\prime}}+D_{2}^{[p]^{\prime}}+\sum_{i=0}^{p-1}s_{i}(D_{1},D_{2})
(fD)[p]=(fD)[p]+φ(sb(fD))=fpD[p]+δfDp1(f)D+fpφ(sb(D))=fpD[p]+δfDp1(f)D,(fD)^{[p]^{\prime}}=(fD)^{[p]}+\varphi(\operatorname{sb}(fD))=f^{p}D^{[p]}+\delta_{fD}^{p-1}(f)D+f^{p}\varphi(\operatorname{sb}(D))\\ =f^{p}D^{[p]^{\prime}}+\delta_{fD}^{p-1}(f)D,
f[p]=f[p]+φ(sb(f))=fp+φ(0)=fp.f^{[p]^{\prime}}=f^{[p]}+\varphi(\operatorname{sb}(f))=f^{p}+\varphi(0)=f^{p}.

So [p]:Λ1Λ1[p]^{\prime}:\Lambda_{1}\to\Lambda_{1} induces a pp-structure on Λ\Lambda. ∎

Corollary 4.4.

The pp-structures on ΛdR=𝒟X/S\Lambda^{dR}={\mathcal{D}}_{X/S} are classified by global 11-forms ωH0(FΩX/S1)\omega\in H^{0}(F^{*}\Omega^{1}_{X/S}) and are given by

(f+v)[p]=fp+v[p]+vp1(f)+ω(Fv)(f+v)^{[p]^{\prime}}=f^{p}+v^{[p]}+v^{p-1}(f)+\omega(F^{*}v)

for f𝒪Xf\in{\mathcal{O}}_{X} and vTX/Sv\in T_{X/S}, where [p]:TX/STX/S[p]:T_{X/S}\to T_{X/S} denotes the canonical pp-structure on the relative tangent bundle given by the pp-th power of vector fields.

Proof.

We know that the pp-th power on TX/ST_{X/S} induces a pp-structure [p][p] on 𝒟X/S{\mathcal{D}}_{X/S} given by

(f+v)[p]=fp+v[p]+vp1(f)(f+v)^{[p]}=f^{p}+v^{[p]}+v^{p-1}(f)

for f𝒪Xf\in{\mathcal{O}}_{X} and vTX/Sv\in T_{X/S}. So by Proposition 4.3 any other pp-structure is given by adding a 𝒪X{\mathcal{O}}_{X}-linear map φ:FTXZ(𝒟X/S1)\varphi:F^{*}T_{X}\longrightarrow Z({\mathcal{D}}_{X/S}^{1}) composed with the symbol. Let us compute the center Z(𝒟X/S1)Z({\mathcal{D}}_{X/S}^{1}). Any element of Z(𝒟X/S1)Z({\mathcal{D}}_{X/S}^{1}) has to commute in particular with all elements in 𝒟X/S0=𝒪X{\mathcal{D}}_{X/S}^{0}={\mathcal{O}}_{X}. But the elements of TX/ST_{X/S} that commute with 𝒪X{\mathcal{O}}_{X} are those in the kernel of the anchor map δ:TX/STX/S\delta:T_{X/S}\to T_{X/S}, which is the identity map. Thus we obtain that Z(𝒟X/S1)𝒪XZ({\mathcal{D}}_{X/S}^{1})\subset{\mathcal{O}}_{X} and we have

F(Z(𝒟X/S1))=𝒪X=ker(d:F𝒪XFΩX/S1).F_{*}(Z({\mathcal{D}}_{X/S}^{1}))={\mathcal{O}}_{X}=\ker(d:F_{*}{\mathcal{O}}_{X}\to F_{*}\Omega_{X/S}^{1}).

Therefore, any other pp-structure [p][p]^{\prime} must equal [p]+φsb[p]+\varphi\circ\operatorname{sb}, where φ:FTX/SF𝒪X\varphi:F^{*}T_{X/S}\longrightarrow F^{*}{\mathcal{O}}_{X} is 𝒪X{\mathcal{O}}_{X}-linear, which corresponds a global 11-form in H0(FΩX/S1)H^{0}(F^{*}\Omega^{1}_{X/S}), yielding the result. ∎


5. pp-curvature of a restricted Λ\Lambda-module

Let Λ\Lambda be a sheaf of rings of differential operators on XX over SS and let EE be a coherent 𝒪X{\mathcal{O}}_{X}-module.

Definition 5.1.

A Λ\Lambda-module structure on EE is an 𝒪X{\mathcal{O}}_{X}-linear map

:Λ𝒪XEE\nabla:\Lambda\otimes_{{\mathcal{O}}_{X}}E\longrightarrow E

satisfying the usual module axioms and such that the 𝒪X{\mathcal{O}}_{X}-module structure on EE induced by 𝒪XΛ{\mathcal{O}}_{X}\to\Lambda coincides with the original one.

We will denote a Λ\Lambda-module EE by (E,)(E,\nabla) and for any local section DΛD\in\Lambda the 𝒪S{\mathcal{O}}_{S}-linear endomorphism of EE induced by the action of DD will be denoted by DEnd𝒪S(E)\nabla_{D}\in\operatorname{End}_{{\mathcal{O}}_{S}}(E). Given a Λ\Lambda-module (E,)(E,\nabla) and a local section DΛ1D\in\Lambda_{1} we define the pp-curvature ψ(D):EE\psi_{\nabla}(D):E\longrightarrow E as the map

ψ(D)=(D)pD[p]End𝒪S(E).\psi_{\nabla}(D)=(\nabla_{D})^{p}-\nabla_{D^{[p]}}\in\operatorname{End}_{{\mathcal{O}}_{S}}(E).

We observe that we can define the pp-curvature in terms of the map ι:Λ1Λ\iota:\Lambda_{1}\to\Lambda defined in Subsection 2.3 as follows

ψ(D)=(D)pD[p]=DpD[p]=DpD[p]=ι(D).\psi_{\nabla}(D)=(\nabla_{D})^{p}-\nabla_{D^{[p]}}=\nabla_{D^{p}}-\nabla_{D^{[p]}}=\nabla_{D^{p}-D^{[p]}}=\nabla_{\iota(D)}.
Proposition 5.2.

For any DΛ1D\in\Lambda_{1}, ψ(D):EE\psi_{\nabla}(D):E\to E is an 𝒪X{\mathcal{O}}_{X}-linear map.

Proof.

By definition the 𝒪X{\mathcal{O}}_{X}-module structure induced by the action of Λ\Lambda on EE coincides with the 𝒪X{\mathcal{O}}_{X}-module structure of EE, so for any local sections sEs\in E and f𝒪Xf\in{\mathcal{O}}_{X} we have

fs=f(s).fs=\nabla_{f}(s).

Moreover, as ι(D)Z(Λ)\iota(D)\in Z(\Lambda) we have for any local section DΛ1D\in\Lambda_{1}

ψ(D)(fs)\displaystyle\psi_{\nabla}(D)(fs) =\displaystyle= ι(D)f(s)=ι(D)f(s)\displaystyle\nabla_{\iota(D)}\circ\nabla_{f}(s)=\nabla_{\iota(D)f}(s)
=\displaystyle= fι(D)(s)=fι(D)(s)=fψ(D)(s).\displaystyle\nabla_{f\iota(D)}(s)=\nabla_{f}\circ\nabla_{\iota(D)}(s)=f\psi_{\nabla}(D)(s).

This, together with Proposition 2.11 and the fact that ι\iota factors through the symbol, proves that the pp-curvature induces a pp-linear map

ψ:HEnd𝒪X(E),\psi_{\nabla}:H\longrightarrow\operatorname{End}_{{\mathcal{O}}_{X}}(E),

where H=Λ1/Λ0H=\Lambda_{1}/\Lambda_{0}. So we obtain an 𝒪X{\mathcal{O}}_{X}-linear map

ψ:FHEnd𝒪X(E).\psi_{\nabla}:F^{*}H\longrightarrow\operatorname{End}_{{\mathcal{O}}_{X}}(E).
Proposition 5.3.

For each Λ\Lambda-module (E,)(E,\nabla) the pp-curvature ψ\psi_{\nabla} induces a FHF^{*}H^{\vee}-valued Higgs field on EE, i.e., a morphism of 𝒪X{\mathcal{O}}_{X}-algebras

ψ~:SymFHEnd𝒪X(E).\tilde{\psi}_{\nabla}:\operatorname{Sym}^{\bullet}F^{*}H\longrightarrow\operatorname{End}_{{\mathcal{O}}_{X}}(E).

Moreover, for any local sections DHD\in H and DΛD^{\prime}\in\Lambda, D\nabla_{D^{\prime}} commutes with ψ(D)\psi_{\nabla}(D).

Proof.

We have already proven that the pp-curvature induces an 𝒪X{\mathcal{O}}_{X}-linear map ψ:FHEnd𝒪X(E)\psi_{\nabla}:F^{*}H\longrightarrow\operatorname{End}_{{\mathcal{O}}_{X}}(E). In order for this map to lift to a morphism of algebras SymFHEnd𝒪X(E)\operatorname{Sym}^{\bullet}F^{*}H\longrightarrow\operatorname{End}_{{\mathcal{O}}_{X}}(E), it is necessary that for each D1,D2HD_{1},D_{2}\in H

[ψ(D1),ψ(D2)]=0.\left[\psi_{\nabla}(D_{1}),\psi_{\nabla}(D_{2})\right]=0.

But, taking into account that from Proposition 2.12 we know that the image of ι:FHΛ\iota:F^{*}H\to\Lambda lies in the center Z(Λ)Z(\Lambda), we have

[ψ(D1),ψ(D2)]=[ι(D1),ι(D2)]=[ι(D1),ι(D2)]=0=0.\left[\psi_{\nabla}(D_{1}),\psi_{\nabla}(D_{2})\right]=\left[\nabla_{\iota(D_{1})},\nabla_{\iota(D_{2})}\right]=\nabla_{[\iota(D_{1}),\iota(D_{2})]}=\nabla_{0}=0.

The second part follows from a similar computation

[ψ(D),D]=[ι(D1),D]=[ι(D),D]=0=0.\left[\psi_{\nabla}(D),\nabla_{D^{\prime}}\right]=\left[\nabla_{\iota(D_{1})},\nabla_{D^{\prime}}\right]=\nabla_{[\iota(D),D^{\prime}]}=\nabla_{0}=0.

Remark 5.4.

The previous proposition was already obtained in [Lan14, Lemma 4.9] for modules over restricted 𝒪S{\mathcal{O}}_{S}-Lie algebroids HH, which correspond to Λ\Lambda-modules, where Λ=ΛH\Lambda=\Lambda_{H} is the universal enveloping algebra of the 𝒪S{\mathcal{O}}_{S}-Lie algebroid HH. We note that the proofs of the two previous propositions are similar to those given in [Lan14], but rely on the more general statement obtained in Proposition 2.12 for general restricted sheaves of rings of differential operators.


6. Hitchin map for restricted Λ\Lambda-modules

In this section we assume that XX is an integral projective scheme over S=Spec(𝕂)S=\mathrm{Spec}(\mathbb{K}). This assumption is needed in our main Theorem 6.6. We refer the reader to [Lan14] sections 3.5 and 4.5 for a construction of the Hitchin map in the relative case.


Given a restricted sheaf Λ\Lambda of rings of differential operators on XX and a Λ\Lambda-module (E,)(E,\nabla) of rank rr over XX, we have proved in Proposition 5.3 that the pp-curvature of (E,)(E,\nabla) induces a FHF^{*}H^{\vee}-valued Higgs field on EE

ψH0(X,End(E)FH).\psi_{\nabla}\in H^{0}(X,\operatorname{End}(E)\otimes F^{*}H^{\vee}).

Then, by taking the (classical) Hitchin map hh for rank-rr Higgs sheaves we obtain a point in the Hitchin base 𝒜r(X,FH)\mathcal{A}_{r}(X,F^{*}H^{\vee})

h(E,ψ)=(tr(kψ))k=1r𝒜r(X,FH):=k=1rH0(X,Symk(FH)).h(E,\psi_{\nabla})=(\operatorname{tr}(\wedge^{k}\psi_{\nabla}))_{k=1}^{r}\in\mathcal{A}_{r}(X,F^{*}H^{\vee}):=\bigoplus_{k=1}^{r}H^{0}(X,\operatorname{Sym}^{k}(F^{*}H^{\vee})).

Therefore, the pp-curvature map (E,)ψ(E,\nabla)\mapsto\psi_{\nabla} composed with the Hitchin map hh defines a map hΛh_{\Lambda}

(6.1) hΛ:XΛ(r,P)𝒜r(X,FH),(E,)h(E,ψ),h_{\Lambda}:{\mathcal{M}}^{\Lambda}_{X}(r,P)\longrightarrow\mathcal{A}_{r}(X,F^{*}H^{\vee}),\quad\quad(E,\nabla)\mapsto h(E,\psi_{\nabla}),

where XΛ(r,P){\mathcal{M}}^{\Lambda}_{X}(r,P) denotes the coarse moduli space parameterizing Giesecker semi-stable Λ\Lambda-modules over XX of rank rr and with Hilbert polynomial PP ([Sim94], [Lan04b], [Lan04a]).

In order to understand the structure of the map hΛh_{\Lambda}, let us first consider the example given by the trivial pp-structure on the symmetric algebra Sym(H)\operatorname{Sym}^{\bullet}(H) — see Subsection 4.2. In that case a Sym(H)\operatorname{Sym}^{\bullet}(H)-module is an HH^{\vee}-valued Higgs sheaf and its pp-curvature is just the pp-th power of the Higgs field

ψ(D)=Dp=(D)p.\psi_{\nabla}(D)=\nabla_{D^{p}}=(\nabla_{D})^{p}.

Then it is easily seen that the coefficients of the characteristic polynomial of ψ\psi_{\nabla} are pull-backs by the Frobenius map of global sections in H0(X,Symk(H))H^{0}(X,\operatorname{Sym}^{k}(H^{\vee})).


Before proving our main result on the map hΛh_{\Lambda}, we will need to recall the definition of the canonical connection

can:F𝒢F𝒢ΩX1\nabla^{\operatorname{can}}:F^{*}\mathcal{G}\longrightarrow F^{*}\mathcal{G}\otimes\Omega^{1}_{X}

on a pull-back sheaf F𝒢F^{*}\mathcal{G} for a coherent 𝒪X{\mathcal{O}}_{X}-module 𝒢\mathcal{G} under the absolute Frobenius map FF of XX. Over an affine open subset Spec(A)=UX\mathrm{Spec}(A)=U\subset X, we denote the AA-module of local sections 𝒢(U)\mathcal{G}(U) by MM. Then local sections of the pull-back F𝒢(U)F^{*}\mathcal{G}(U) correspond to AAMA\otimes_{A}M with the AA-module structure given by left multiplication and the action of AA on AA given by the Frobenius map FF. In other words, we have the identifications λpaAm=aAλm\lambda^{p}a\otimes_{A}m=a\otimes_{A}\lambda m for any λ,aA\lambda,a\in A and mMm\in M. Then with this notation the canonical connection is defined by

can:aAmdaAm,\nabla^{\operatorname{can}}:a\otimes_{A}m\mapsto da\otimes_{A}m,

or equivalently, can(aAm)=am\nabla^{\operatorname{can}}_{\partial}(a\otimes_{A}m)=\partial a\otimes m for any vector field \partial.


Lemma 6.1.

Let 𝒢\mathcal{G} be a torsion-free 𝒪X{\mathcal{O}}_{X}-module over an integral scheme XX and let sH0(X,F𝒢)s\in H^{0}(X,F^{*}\mathcal{G}) be a global section. Suppose that there exists an open subset ΩX\Omega\subset X such that

can(s|Ω)=0\nabla^{\operatorname{can}}_{\partial}(s_{|\Omega})=0

for any vector field \partial over Ω\Omega. Then ss descends under the Frobenius map, i.e. there exists sH0(X,𝒢)s^{\prime}\in H^{0}(X,\mathcal{G}) such that s=F(s)s=F^{*}(s^{\prime}).

Proof.

It will be enough to show the statement locally on an affine open subset Spec(A)\operatorname{Spec}(A) of XX. We then apply Cartier’s theorem over Spec(K)\operatorname{Spec}(K), where KK is the fraction field of AA, and obtain the existence of the Frobenius descend ss^{\prime} over Spec(K)\operatorname{Spec}(K). Now the section ss also descends over Spec(A)\operatorname{Spec}(A) since 𝒢\mathcal{G} is torsion-free. The computations are straightforward and left to the reader. ∎

Lemma 6.2.

Let (E,)(E,\nabla) be a Λ\Lambda-module. Then for any local sections DH=Λ1/Λ0D\in H=\Lambda_{1}/\Lambda_{0} and DΛ1D^{\prime}\in\Lambda_{1} we have the following commutative diagram

where we define the endomorphism ~D\tilde{\nabla}_{D^{\prime}} by

~D=DIdFH+IdEδsb(D)can.\tilde{\nabla}_{D^{\prime}}=\nabla_{D^{\prime}}\otimes\operatorname{Id}_{F^{*}H^{\vee}}+\operatorname{Id}_{E}\otimes\nabla_{\delta\circ\operatorname{sb}(D^{\prime})}^{\operatorname{can}}.
Proof.

It is enough to work locally over an affine open subset U=Spec(A)U=\mathrm{Spec}(A). Consider an irreducible tensor vah(EFH)(U)v\otimes a\otimes h\in(E\otimes F^{*}H^{\vee})(U), where vE(U)v\in E(U), hH(U)h\in H^{\vee}(U), aA=𝒪X(U)a\in A={\mathcal{O}}_{X}(U) and the last tensor product is taken over the Frobenius map, i.e.

λpvah=vλpah=vaλh.\lambda^{p}v\otimes a\otimes h=v\otimes\lambda^{p}a\otimes h=v\otimes a\otimes\lambda h.

Then, using associativity of the ring Λ\Lambda and the fact that [D,f]=δsb(D)(f)[D^{\prime},f]=\delta_{\operatorname{sb}(D^{\prime})}(f) for any DΛ1D^{\prime}\in\Lambda_{1} and f𝒪Xf\in{\mathcal{O}}_{X}, have the following

~D(vah)=D(v)ah+vδsb(D)can(ah)=D(v)ah+vδsb(D)(a)h.\tilde{\nabla}_{D^{\prime}}(v\otimes a\otimes h)=\nabla_{D^{\prime}}(v)\otimes a\otimes h+v\otimes\nabla^{\operatorname{can}}_{\delta\circ\operatorname{sb}(D^{\prime})}(a\otimes h)\\ =\nabla_{D^{\prime}}(v)\otimes a\otimes h+v\otimes\delta_{\operatorname{sb}(D^{\prime})}(a)\otimes h.

Applying IdD\operatorname{Id}\otimes D for a local section DHD\in H we have

(IdD)~D(vah)=D(v)ah,D+vδsb(D)(a)h,D=h,DpaD(v)+h,Dpδsb(D)(a)v,(\operatorname{Id}\otimes D)\circ\tilde{\nabla}_{D^{\prime}}(v\otimes a\otimes h)=\nabla_{D^{\prime}}(v)\otimes a\otimes\langle h,D\rangle+v\otimes\delta_{\operatorname{sb}(D^{\prime})}(a)\otimes\langle h,D\rangle\\ =\langle h,D\rangle^{p}a\nabla_{D^{\prime}}(v)+\langle h,D\rangle^{p}\delta_{\operatorname{sb}(D^{\prime})}(a)v,

where ,\langle-,-\rangle denotes the standard pairing between HH^{\vee} and HH. On the other hand

D(IdD)(vah)=D(h,Dpav)=h,DpaD(v)+δsb(D)(h,Dpa)v=h,DpaD(v)+h,Dpδsb(D)(a)v\nabla_{D^{\prime}}\circ(\operatorname{Id}\circ D)(v\otimes a\otimes h)=\nabla_{D^{\prime}}(\langle h,D\rangle^{p}av)=\langle h,D\rangle^{p}a\nabla_{D^{\prime}}(v)+\delta_{\operatorname{sb}(D^{\prime})}(\langle h,D\rangle^{p}a)v\\ =\langle h,D\rangle^{p}a\nabla_{D^{\prime}}(v)+\langle h,D\rangle^{p}\delta_{\operatorname{sb}(D^{\prime})}(a)v

so we obtain the desired equality for an irreducible tensor. By additivity we conclude equality for any local section of EFHE\otimes F^{*}H^{\vee}. ∎

Corollary 6.3.

Let (E,)(E,\nabla) be a Λ\Lambda-module and let ψ:EEFH\psi_{\nabla}:E\longrightarrow E\otimes F^{*}H^{\vee} denote its pp-curvature. Then for any local section DΛ1D^{\prime}\in\Lambda_{1} the following diagram commutes

where ~D\tilde{\nabla}_{D^{\prime}} was defined in the previous lemma.

Proof.

By Proposition 5.3 we know that for any local sections DHD\in H and DΛ1D^{\prime}\in\Lambda_{1} the two endomorphisms ψ(D)\psi_{\nabla}(D) and D\nabla_{D^{\prime}} commute. Moreover, ψ(D):EE\psi_{\nabla}(D):E\to E is the composition of the following maps

EψEFHIdDEE\stackrel{{\scriptstyle\psi_{\nabla}}}{{\longrightarrow}}E\otimes F^{*}H^{\vee}\stackrel{{\scriptstyle\operatorname{Id}\otimes D}}{{\longrightarrow}}E

so we have the following diagram in which we know that the outer square and the inner right square (by Lemma 6.2) are commutative

Thus, for any DHD\in H and DΛ1D^{\prime}\in\Lambda_{1}

0=Dψ(D)ψ(D)D=D(IdD)ψ(IdD)ψD=(IdD)~Dψ(IdD)ψD=(IdD)(~DψψD).0=\nabla_{D^{\prime}}\circ\psi_{\nabla}(D)-\psi_{\nabla}(D)\circ\nabla_{D^{\prime}}=\nabla_{D^{\prime}}\circ(\operatorname{Id}\otimes D)\circ\psi_{\nabla}-(\operatorname{Id}\otimes D)\circ\psi_{\nabla}\circ\nabla_{D^{\prime}}\\ =(\operatorname{Id}\otimes D)\circ\tilde{\nabla}_{D^{\prime}}\circ\psi_{\nabla}-(\operatorname{Id}\otimes D)\circ\psi_{\nabla}\circ\nabla_{D^{\prime}}\\ =(\operatorname{Id}\otimes D)\circ\left(\tilde{\nabla}_{D^{\prime}}\circ\psi_{\nabla}-\psi_{\nabla}\circ\nabla_{D^{\prime}}\right).

As this composition is zero for any DHD\in H and the kernel of the evaluation map in FHF^{*}H^{\vee} is trivial, we obtain that

~DψψD=0.\tilde{\nabla}_{D^{\prime}}\circ\psi_{\nabla}-\psi_{\nabla}\circ\nabla_{D^{\prime}}=0.

The next proposition will be used in the proof of the main result (Theorem 6.6).

Proposition 6.4.

Assume that p=char(𝕂)>2p=\mathrm{char}(\mathbb{K})>2. Let Λ\Lambda be a restricted sheaf of differential operators on XX over SS and let \mathcal{E} be a coherent 𝒪X{\mathcal{O}}_{X}-module together with a morphism of 𝒪S{\mathcal{O}}_{S}-modules :Λ1End𝒪S()\nabla:\Lambda_{1}\longrightarrow\operatorname{End}_{{\mathcal{O}}_{S}}(\mathcal{E}) satisfying for any local sections f,g𝒪Xf,g\in{\mathcal{O}}_{X}, ss\in\mathcal{E} and DΛ1D\in\Lambda_{1}

D(fs)=fD(s)+δsb(D)andg(s)=gs.\nabla_{D}(fs)=f\nabla_{D}(s)+\delta_{\operatorname{sb}(D)}\quad\text{and}\quad\nabla_{g}(s)=gs.

Let 𝒢\mathcal{G} be a coherent 𝒪X{\mathcal{O}}_{X}-module and let ψ:F𝒢\psi:\mathcal{E}\to\mathcal{E}\otimes F^{*}\mathcal{G} be an 𝒪X{\mathcal{O}}_{X}-linear map. Suppose that for DΛ1D\in\Lambda_{1} we have a commutative diagram

where the endomorphism ~D\tilde{\nabla}_{D} on the right is defined by

~D=DIdF𝒢+Idδsb(D)can.\tilde{\nabla}_{D}=\nabla_{D}\otimes\operatorname{Id}_{F^{*}\mathcal{G}}+\operatorname{Id}_{\mathcal{E}}\otimes\nabla_{\delta\circ\operatorname{sb}(D)}^{\operatorname{can}}.

Then over an open dense subset of XX we have

δsb(D)can(tr(ψ))=0,\nabla^{\operatorname{can}}_{\delta\circ\operatorname{sb}(D)}(\mathrm{tr}(\psi))=0,

where tr(ψ)H0(X,F𝒢)\mathrm{tr}(\psi)\in H^{0}(X,F^{*}\mathcal{G}) denotes the trace of the 𝒪X{\mathcal{O}}_{X}-linear endomorphism ψ\psi.

Proof.

Since XX is integral, we can restrict attention to the open dense subset ΩX\Omega\subset X where both \mathcal{E} and 𝒢\mathcal{G} are locally free. Moreover, it will be enough to check the equality locally. For xΩx\in\Omega we denote by 𝒪\mathcal{O} the local ring of 𝒪X\mathcal{O}_{X} at the point xx. Then we can write

D=+A,\nabla_{D}=\partial+A,

where =δsb(D)\partial=\delta\circ\operatorname{sb}(D) is a derivation on 𝒪\mathcal{O} and AA is a r×rr\times r matrix with values in 𝒪\mathcal{O} and r=rk()r=\mathrm{rk}(\mathcal{E}). Similarly, let n=rk(𝒢)n=\mathrm{rk}(\mathcal{G}) and choosing an 𝒪\mathcal{O}-basis of 𝒢x\mathcal{G}_{x} then ψ\psi corresponds to nn r×rr\times r matrices B1,,BnB_{1},\dots,B_{n} with values in 𝒪\mathcal{O}. Then the commutation relations translate into the following nn equalities for i=1,,ni=1,\ldots,n in End(𝒪r)\operatorname{End}(\mathcal{O}^{\oplus r})

Bi(+A)\displaystyle B_{i}(\partial+A) =\displaystyle= ((+A)Id+Id)Bi\displaystyle((\partial+A)\otimes\operatorname{Id}+\operatorname{Id}\otimes\partial)B_{i}
Bi+BiA\displaystyle\Longleftrightarrow\ \ B_{i}\partial+B_{i}A =\displaystyle= Bi+ABi+.Bi\displaystyle\partial B_{i}+AB_{i}+\partial.B_{i}
[Bi,A]\displaystyle\Longleftrightarrow\ \ [B_{i},A] =\displaystyle= [,Bi]+.Bi=2.Bi,\displaystyle[\partial,B_{i}]+\partial.B_{i}=2\partial.B_{i},

where .Bi\partial.B_{i} denotes the matrix obtained from BiB_{i} by applying the derivation \partial to all of its coefficients. We also have used the well-known identity [,Bi]=.Bi[\partial,B_{i}]=\partial.B_{i}. Taking the trace, we obtain

0=tr([Bi,A])=2tr(.Bi)=2(tr(Bi)).0=\mathrm{tr}([B_{i},A])=2\mathrm{tr}(\partial.B_{i})=2\partial(\mathrm{tr}(B_{i})).

Hence, since p>2p>2, we obtain

(tr(Bi))=0fori=1,,n.\partial(\mathrm{tr}(B_{i}))=0\quad\text{for}\ i=1,\ldots,n.

This shows the result. ∎

Proposition 6.5.

Let (E,)(E,\nabla) be a restricted Λ\Lambda-module of rank rr and let ψ:EEFH\psi_{\nabla}:E\to E\otimes F^{*}H^{\vee} denote its pp-curvature. Then for i=1,,ri=1,\ldots,r the 𝒪X{\mathcal{O}}_{X}-linear composite map

ψi:ΛiEΛiψΛi(EFH)prΛiEFSymiH\psi_{i}:\Lambda^{i}E\stackrel{{\scriptstyle\Lambda^{i}\psi_{\nabla}}}{{\longrightarrow}}\Lambda^{i}(E\otimes F^{*}H^{\vee})\stackrel{{\scriptstyle pr}}{{\longrightarrow}}\Lambda^{i}E\otimes F^{*}\operatorname{Sym}^{i}H^{\vee}

of Λiψ\Lambda^{i}\psi_{\nabla} with the natural projection map pr\mathrm{pr} satisfies the commutation relations of Proposition 6.4 with =ΛiE\mathcal{E}=\Lambda^{i}E, 𝒢=SymiH\mathcal{G}=\operatorname{Sym}^{i}H^{\vee}, ψ=ψi\psi=\psi_{i} and the natural actions of Λ1\Lambda_{1} on \mathcal{E} and 𝒢\mathcal{G} induced by \nabla.

Proof.

We observe that if (E,)(E,\nabla) is a Λ\Lambda-module, the exterior power ΛiE\Lambda^{i}E need not necessarily be a Λ\Lambda-module, but ΛiE\Lambda^{i}E can be equipped by an action of Λ1\Lambda_{1} satisfying the properties given in Proposition 6.4. Since ψi\psi_{i} is a composite map, it will be enough to check that the two maps Λiψ\Lambda^{i}\psi_{\nabla} and pr\mathrm{pr} satisfy the commutation relations. Both checks follow immediately from the definitions of the maps. ∎


We can now state our main result.

Theorem 6.6.

Assume that p=char(𝕂)>2p=\mathrm{char}(\mathbb{K})>2. Let Λ\Lambda be a restricted sheaf of rings of differential operators over XX. We assume that H=Λ1/Λ0H=\Lambda_{1}/\Lambda_{0} is locally free and that the anchor map δ:HTX\delta:H\rightarrow T_{X} is generically surjective. Then the coefficients tr(ψi)\operatorname{tr}(\psi_{i}) of the characteristic polynomial of the pp-curvature ψ\psi_{\nabla} of a Λ\Lambda-module (E,)(E,\nabla) over XX are pp-th powers, i.e. descend under the Frobenius map FF of XX. This implies that the above defined Hitchin map hΛh_{\Lambda} (6.1) factorizes as follows

where the vertical map is the pull-back map of global sections under the Frobenius map FF of XX.

Proof.

Let (E,)(E,\nabla) be a restricted Λ\Lambda-module of rank rr with pp-curvature ψ\psi_{\nabla}. Proposition 6.5 shows that the global section ψi:ΛiEΛiEFSymiH\psi_{i}:\Lambda^{i}E\rightarrow\Lambda^{i}E\otimes F^{*}\operatorname{Sym}^{i}H^{\vee} obtained by projecting Λiψ\Lambda^{i}\psi_{\nabla} satisfies the commutation relations of Proposition 6.4. Therefore, applying Proposition 6.4, we can conclude that for any local section DΛ1D\in\Lambda_{1}

δsb(D)can(tr(ψi))=0\nabla^{\operatorname{can}}_{\delta\circ\operatorname{sb}(D)}(\mathrm{tr}(\psi_{i}))=0

over an open subset Ω1\Omega_{1} of XX. Let Ω2\Omega_{2} be an open subset where the anchor map δ\delta is surjective. Then over Ω1Ω2\Omega_{1}\cap\Omega_{2} we have can(tr(ψi))=0\nabla^{\operatorname{can}}_{\partial}(\mathrm{tr}(\psi_{i}))=0 for any local vector field \partial. Now we can apply Lemma 6.1, since XX is integral and HH locally free. ∎

Remark 6.7.

The following example shows that the assumption that δ:HTX\delta:H\rightarrow T_{X} is generically surjective cannot be dropped in Theorem 6.6. Let XX be a smooth projective curve of genus g2g\geq 2 over S=Spec(𝕂)S=\mathrm{Spec}(\mathbb{K}) and let TXT_{X} (resp. KXK_{X}) be its tangent (resp. canonical) line bundle. We choose a non-zero global section φH0(X,KXp1)\varphi\in H^{0}(X,K_{X}^{p-1}) with reduced zero divisor. We consider as explained in Subsection 4.6 the symmetric algebra Λ=Sym(TX)\Lambda=\mathrm{Sym}^{\bullet}(T_{X}) with the pp-structure given by the 𝒪X{\mathcal{O}}_{X}-linear map α:FTX=TXpTX\alpha:F^{*}T_{X}=T_{X}^{\otimes p}\rightarrow T_{X} corresponding to the multiplication with φ\varphi. Note that in this case δ=0\delta=0. Then a Λ\Lambda-module (E,)(E,\nabla) over XX corresponds to a vector bundle EE together with a Higgs field, i.e., an 𝒪X{\mathcal{O}}_{X}-linear map :EEKX\nabla:E\rightarrow E\otimes K_{X}. The pp-curvature ψ\psi_{\nabla} of (E,)(E,\nabla) then correponds to the 𝒪X{\mathcal{O}}_{X}-linear map EEFKXE\rightarrow E\otimes F^{*}K_{X}

ψ=pα.,\psi_{\nabla}=\nabla^{p}-\alpha.\nabla,

where α.\alpha.\nabla denotes the composite map (idEα)(\mathrm{id}_{E}\otimes\alpha^{\vee})\circ\nabla. Then clearly tr(ψ)\mathrm{tr}(\psi_{\nabla}) does not descend under the Frobenius map.

Remark 6.8.

The previous remark shows that asking for a generally surjective anchor δ:HTX\delta:H\longrightarrow T_{X} is indeed necessary for the Theorem, but it can be proven that, in some scenarios, this condition is generically satisfied. For instance, if XX is a smooth curve, then any nonzero map δ:HTX\delta:H\longrightarrow T_{X} is generically surjective. As a consequence, for smooth curves, any restricted sheaf of rings of differential operators Λ\Lambda on XX with nonzero anchor satisfies Theorem 6.6. In particular, this holds when Λ\Lambda is the universal enveloping algebra of any restricted Lie algebroid (H,[.],δ,[p])(H,[-.-],\delta,[p]) with δ0\delta\neq 0 or, more generally, for any Λ\Lambda in which the left and right 𝒪X{\mathcal{O}}_{X}-module structures are different (see Remark 2.2).

7. Hitchin map for restricted ΛR\Lambda^{R}-modules

The argument used to show Theorem 6.6 can be adapted to the following particular relative case: consider for an integral projective scheme XX over S=Spec(𝕂)S=\mathrm{Spec}(\mathbb{K}) the restricted sheaf of rings of differential operators ΛR\Lambda^{R} over X×𝔸1X\times\mathbb{A}^{1} relative to 𝔸1\mathbb{A}^{1} obtained via the Rees construction from the universal enveloping algebra Λ=ΛH\Lambda=\Lambda_{H} of a restricted Lie algebroid (H,[,],δ,[p])(H,[-,-],\delta,[p]) over XX — see Subsection 4.4.


We consider the moduli space X×𝔸1/𝔸1ΛR(r,P)\mathcal{M}^{\Lambda^{R}}_{X\times\mathbb{A}^{1}/\mathbb{A}^{1}}(r,P) parameterizing Giesecker semi-stable ΛR\Lambda^{R}-modules over X×𝔸1/𝔸1X\times\mathbb{A}^{1}/\mathbb{A}^{1} of rank rr and with Hilbert polynomial PP. Since Λ1R/Λ0R=pX(H)\Lambda_{1}^{R}/\Lambda_{0}^{R}=p_{X}^{*}(H) the Hitchin map hΛRh_{\Lambda^{R}} in the relative case (see [Lan14, Sections 3.5 and 4.5]) corresponds to a morphism

(7.5)

over 𝔸1\mathbb{A}^{1}. Then we obtain the

Theorem 7.1.

Assume that p=char(𝕂)>2p=\mathrm{char}(\mathbb{K})>2. Let Λ=ΛH\Lambda=\Lambda_{H} be the universal enveloping algebra of a restricted Lie algebroid (H,[,],δ,[p])(H,[-,-],\delta,[p]) over an integral projective scheme XX and let ΛR\Lambda^{R} be the restricted sheaf of rings of differential operators over X×𝔸1X\times\mathbb{A}^{1} relative to 𝔸1\mathbb{A}^{1} obtained via the Rees construction from ΛH\Lambda_{H}. We assume that H=Λ1/Λ0H=\Lambda_{1}/\Lambda_{0} is locally free and that the anchor map δ:HTX\delta:H\rightarrow T_{X} is generically surjective. Then the above defined Hitchin map hΛRh_{\Lambda^{R}} (7.5) factorizes as follows

where the vertical map is the pull-back map of global sections under the Frobenius map FF of XX.

Proof.

Since the anchor δ:HTX\delta:H\rightarrow T_{X} is generically surjective over XX, the anchor δR=tδ:pX(H)pX(TX)\delta^{R}=t\delta:p_{X}^{*}(H)\rightarrow p_{X}^{*}(T_{X}) is also generically surjective over X×𝔸1X\times\mathbb{A}^{1}. Hence we can apply the same arguments as in the proof of Theorem 6.6 for local relative vector fields TX×𝔸1/𝔸1=pX(TX)\partial\in T_{X\times\mathbb{A}^{1}/\mathbb{A}^{1}}=p_{X}^{*}(T_{X}). ∎

References

  • [BMR08] R. Bezrukavnikov, I. Mirkovic, and D. Rumynin. Localization of modules for a semisimple Lie algebra in prime characteristic. With an appendix by R. Bezrukavnikov and S. Riche. Ann. of Math., 167 (2):945–991, 2008.
  • [BO78] P. Berthelot and A. Ogus. Notes on Crystalline Cohomology (MN-21). Princeton University Press, 1978.
  • [EG20] H. Esnault and M. Groechenig. Rigid connections and F{F}-isocrystals. Acta Math., 225:103–158, 2020.
  • [Gro67] A. Grothedieck. Eléments de géométrie algébrique IV: Etude locale des schémas et des morphismes de schémas. Publ. IHES, 32:5–361, 1967.
  • [Gro16] M. Groechenig. Moduli of flat connections in positive characteristic. Math. Res. Lett., 23 (4):989–1047, 2016.
  • [Hoc55] G. Hochschild. Simple algebras with purely inseparable splitting fields of exponent 1. Trans. Amer. Math. Soc., 79:477–489, 1955.
  • [Kat70] N. M. Katz. Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin. Inst. Hautes Études Sci. Publ. Math., 39:175–232, 1970.
  • [Lan04a] A. Langer. Moduli spaces of sheaves in mixed characteristic. Duke Math. J., 124:571–586, 2004.
  • [Lan04b] A. Langer. Semistable sheaves in positive characteristic. Ann. Math., 159:241–270, 2004.
  • [Lan14] A. Langer. Semistable modules over Lie algebroids in positive characteristic. Documenta Math., 19:509–540, 2014.
  • [LP01] Y. Laszlo and C. Pauly. On the Hitchin morphism in positive characteristic. Internat. Math. Res. Notices, (3):129–143, 2001.
  • [Rum00] D. Rumynin. Duality for Hopf algebras. J. Algebra, 223:237–255, 2000.
  • [Sch16] P. Schauenburg. A note on the restricted universal enveloping algebra of a restricted Lie-Rinehart algebra. Bull. Belg. Math. Soc. Simon Stevin, 23(5):769–777, 2016.
  • [Sim94] C. T. Simpson. Moduli of representations of the fundamental group of a smooth projective variety I. Publi. Math. I.H.E.S., 79:47–129, 1994.
  • [Tor11] P. Tortella. Λ\Lambda-modules and holomorphic Lie algebroids. PhD thesis, Université des Sciences et Technologies Lille 1, 2011.
  • [Tor12] P. Tortella. Λ\Lambda-modules and holomorphic Lie algebroid connections. Cent. Eur. J. Math., 10(4):1422–1441, 2012.