This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Higher order time discretization method for a class of semilinear stochastic partial differential equations with multiplicative noise

Yukun Li Department of Mathematics, University of Central Florida, Orlando, FL, 32816, U.S.A. ([email protected]). This author was partially supported by the NSF grant DMS-2110728.    Liet Vo Department of Mathematics, Statistics and Computer Science, The University of Illinois at Chicago, Chicago, IL 60607, U.S.A. ([email protected]).    Guanqian Wang Department of Mathematics, University of Central Florida, Orlando, FL, 32816, U.S.A. ([email protected]). This author was partially supported by the NSF grant DMS-2110728.
Abstract

In this paper, we consider a new approach for semi-discretization in time and spatial discretization of a class of semi-linear stochastic partial differential equations (SPDEs) with multiplicative noise. The drift term of the SPDEs is only assumed to satisfy a one-sided Lipschitz condition and the diffusion term is assumed to be globally Lipschitz continuous. Our new strategy for time discretization is based on the Milstein method from stochastic differential equations. We use the energy method for its error analysis and show a strong convergence order of nearly 11 for the approximate solution. The proof is based on new Hölder continuity estimates of the SPDE solution and the nonlinear term. For the general polynomial-type drift term, there are difficulties in deriving even the stability of the numerical solutions. We propose an interpolation-based finite element method for spatial discretization to overcome the difficulties. Then we obtain H1H^{1} stability, higher moment H1H^{1} stability, L2L^{2} stability, and higher moment L2L^{2} stability results using numerical and stochastic techniques. The nearly optimal convergence orders in time and space are hence obtained by coupling all previous results. Numerical experiments are presented to implement the proposed numerical scheme and to validate the theoretical results.

keywords:
Stochastic partial differential equations, multiplicative noise, Wiener process, Itô stochastic integral, Milstein scheme, finite element method, error estimates.
AMS:
65N12, 65N15, 65N30

1 Introduction

We consider the following initial-boundary value problem for general semi-linear stochastic partial differential equations (SPDEs) with function-type multiplicative noise:

(1.1) du\displaystyle du =[Δu+F(u)]dt+G(u)dW(t)\displaystyle=\bigl{[}\Delta u+F(u)\bigr{]}\,dt+G(u)\,dW(t) a.s. in(0,T)×D,\displaystyle\qquad\mbox{a.s. in}\,(0,T)\times D,
(1.2) u\displaystyle u =0\displaystyle=0 a.s. on (0,T)×D,\displaystyle\qquad\mbox{a.s. on }(0,T)\times\partial D,
(1.3) u(0)\displaystyle u(0) =u0\displaystyle=u_{0} a.s. inD,\displaystyle\qquad\mbox{a.s. in}\,D,

where D=(0,L)dd(d=1,2)D=(0,L)^{d}\subset\mathbb{R}^{d}\,(d=1,2). F,GF,G are two given functions that will be specified later. {W(t);t0}\{W(t);t\geq 0\} denotes an {{\mathbb{R}}}-valued Wiener process.

The corresponding stochastic ordinary differential equations of (1.1) (without the Laplacian term) are studied in [17, 23] for the case when both FF and GG are Lipschitz continuous, and in [14] for the case when GG satisfies the one-sided Lipschitz condition as stated in (2.7). The strong and weak divergence is considered in [15] for some FF which are not Lipschitz continuous. Besides, the corresponding stochastic partial differential equations of (1.1) when FF is Lipschitz and non-Lipschitz continuous and when GG is additive and multiplicative are studied in [8, 9, 10, 21, 22] based on the variational approach and in [4, 12, 13, 16, 18, 19, 20] based on the semigroup approach. Here the half-order convergence is established in [22] when the drift term is F(u)=uu3F(u)=u-u^{3} using the Euler-type scheme. The half-order convergence is established in [10] for the drift term in (2.6) and diffusion term in assumptions (A1)(A3) for a fully discrete scheme.

The primary goal of this paper is to design and analyze a first-order numerical scheme for the time discretization of the problem (1.1)–(1.3). Specifically, we design a new time discretization method first and then propose an interpolation finite element method, which is based on the new time scheme to discretize the space. Our idea for the time discretization method is inspired by the Milstein method [24] from stochastic differential equations and the semi-discrete in time strategy of the stochastic Stokes equations in [28]. In addition, the diffusion function GG is assumed to satisfy the global Lipschitz condition while the drift-nonlinear function FF is only one-sided Lipschitz. Furthermore, to establish the rates of convergence of the proposed scheme, we use the energy method followed by two steps: the first step is to prove the first-order error order in time by utilizing several established Hölder continuity estimates. The second step is to prove the optimal error order in space. To achieve this, the H1H^{1} stability of the numerical solution is needed. The H1H^{1}-seminorm stability of the numerical solution is proved first and based on which the L2L^{2} stability of the numerical solution is established.

The remainder of this paper is organized as follows. In Section 2, several Hölder continuity results about the strong solution are proved. These results will be used in establishing the semi-discrete in-time error estimates. In Section 3, we present the new approach for the time discretization and its a priori stability as well as the error estimates of the semi-discrete solution are proved. The convergence order is proved to be nearly 11 for the proposed scheme in L2L^{2}-norm and the energy norm. In Section 4, we consider an interpolation finite element method for spatial discretization. The finite element method is designed where the interpolation operator is utilized to overcome the difficulty resulting from nonlinearity. Through this approach, the second moment and higher moment H1H^{1} stability results are proved first, based on which the second moment and higher moment L2L^{2} stability results are proved. Finally, the error estimates with optimal convergence order in space are established based on those stability results. In Section 5, several numerical tests including different initial conditions, drift terms, and diffusion terms are used to validate the theoretical results.

2 Preliminaries

Let 𝒯h\mathcal{T}_{h} be the triangulation of 𝒟\mathcal{D} satisfying the following assumption [30]:

(2.1) 1d(d1)KE|κEK|cotθEK0,\frac{1}{d(d-1)}\sum_{K\supset E}|\kappa_{E}^{K}|\cot\theta_{E}^{K}\geq 0,

where EE denotes the edge of simplex KK. Note this assumption is just the Delaunay triangulation when d=2d=2. In 3D, the notations in the assumption (2.1) are as follows: ai(1id+1)a_{i}\ (1\leq i\leq d+1) denote the vertices of KK, E=EijE=E_{ij} the edge connecting two vertices aia_{i} and aja_{j}, FiF_{i} the (d1)(d-1)-dimensional simplex opposite to the vertex aia_{i}, θijK\theta_{ij}^{K} or θEK\theta_{E}^{K} the angle between the faces FiF_{i} and FjF_{j}, and κEK=FiFj\kappa_{E}^{K}=F_{i}\cap F_{j}.

Let {\mathcal{H}}, 𝒦{\mathcal{K}} be two Hilbert spaces. Then, (,𝒦)\mathcal{L}({\mathcal{H}},{\mathcal{K}}) is the space of linear maps from {\mathcal{H}} to 𝒦{\mathcal{K}}. For mm\in\mathbb{N}, inductively define

(2.2) m(,𝒦):=(,m1(,𝒦)),\displaystyle\mathcal{L}_{m}({\mathcal{H}},{\mathcal{K}}):=\mathcal{L}({\mathcal{H}},\mathcal{L}_{m-1}({\mathcal{H}},{\mathcal{K}})),

as the space of all multi-linear maps from ××{\mathcal{H}}\times\cdots\times{\mathcal{H}} (mm times) to 𝒦{\mathcal{K}} for m2m\geq 2.

For some function G:𝒦G:{\mathcal{H}}\rightarrow{\mathcal{K}}, we define the Gateaux derivative of GG with respect to uu\in{\mathcal{H}}, DG(u)(,𝒦)DG(u)\in\mathcal{L}({\mathcal{H}},{\mathcal{K}}), whose action is seen as

vDG(u)(v)v.\displaystyle v\mapsto DG(u)(v)\qquad\forall v\in{\mathcal{H}}.

In general, we denote DkG(u)m(,𝒦)D^{k}G(u)\in\mathcal{L}_{m}({\mathcal{H}},{\mathcal{K}}), as the kk-Gateaux derivative of GG with respect to uu\in{\mathcal{H}}.

Below, we state the assumptions on the functionals G,F:𝒦G,F:{\mathcal{H}}\rightarrow{\mathcal{K}}.

  1. (A1)

    GG is globally Lipschitz continuous and has linear growth. Namely, there exists a constant C>0C>0 such that for all v,w{v},{w}\in{\mathcal{H}}

    (2.3a) G(v)G(w)𝒦\displaystyle\|G({v})-G({w})\|_{{\mathcal{K}}} Cvw,\displaystyle\leq C\|{v}-{w}\|_{{\mathcal{H}}}\,,
    (2.3b) G(v)𝒦\displaystyle\|G({v})\|_{{\mathcal{K}}} C(v+1).\displaystyle\leq C\bigl{(}\|{v}\|_{{\mathcal{H}}}+1\bigr{)}\,.
  2. (A2)

    There exists a constant C>0C>0 such that

    (2.4) DGL(;(,𝒦))+D2GL(;2(,𝒦))C.\displaystyle\|DG\|_{L^{\infty}({\mathcal{H}};\mathcal{L}({\mathcal{H}},{\mathcal{K}}))}+\|D^{2}G\|_{L^{\infty}({\mathcal{H}};\mathcal{L}_{2}({\mathcal{H}},{\mathcal{K}}))}\leq C.
  3. (A3)

    There exists a constant C>0C>0 such that for all u,vu,v\in\mathcal{H}

    (2.5) (DG(u)DG(v))G(v)𝒦Cuv.\displaystyle\|(DG(u)-DG(v)){G}(v)\|_{\mathcal{K}}\leq C\|u-v\|_{\mathcal{H}}.

In this paper, suppose that G:H01(D)H01(D)G:H^{1}_{0}(D)\rightarrow H^{1}_{0}(D), and

(2.6) F(u)=c0uc1u3c2u5c3u7,\displaystyle F(u)=c_{0}u-c_{1}u^{3}-c_{2}u^{5}-c_{3}u^{7}-\cdots,

where ci0,i=0,1,2,c_{i}\geq 0,i=0,1,2,\cdots. For simplicity, we choose F(u)=uuqF(u)=u-u^{q} for all odd numbers q3q\geq 3. Then FF satisfies the following one-sided Lipschitz condition [25]

(2.7) ab,F(a)F(b)μ|ab|2a,bd,\displaystyle\langle a-b,F(a)-F(b)\rangle\leq\mu|a-b|^{2}\qquad\forall a,b\in\mathbb{R}^{d},

where μ\mu is a positive constant.

Under the above assumptions for the drift term and the diffusion term, it can be proved in [11] that there exists a unique strong variational solution u such that

(2.8) (u(t),ϕ)\displaystyle\bigl{(}u(t),\phi\bigr{)} =(u(0),ϕ)0t(u(s),ϕ)𝑑s\displaystyle=\bigl{(}u(0),\phi\bigr{)}-\int_{0}^{t}\bigl{(}\nabla u(s),\nabla\phi\bigr{)}\,ds
+0t(F(u(s)),ϕ)𝑑s+0t(G(u(s)),ϕ)𝑑W(s)ϕH01(D)\displaystyle+\int_{0}^{t}\bigl{(}F(u(s)),\phi\bigr{)}\,ds+\int_{0}^{t}\bigl{(}G(u(s)),\phi\bigr{)}\,dW(s)\quad\forall\phi\in H_{0}^{1}(D)

holds \mathbb{P}-almost surely. Moreover, when the initial condition u0u_{0} is sufficiently smooth, the following stability estimate for the strong solution uu holds

(2.9) supt[0,T]𝔼[u(t)H22]+supt[0,T]𝔼[u(t)L4q24q2]C,\displaystyle\sup_{t\in[0,T]}\mathbb{E}\bigl{[}\|u(t)\|^{2}_{H^{2}}\bigr{]}+\sup_{t\in[0,T]}\mathbb{E}\bigl{[}\|u(t)\|^{4q-2}_{L^{4q-2}}\bigr{]}\leq C,

where qq is the exponent in the drift term of F(u)=uuqF(u)=u-u^{q}.


Next, we introduce the Hölder continuity estimates for the variational solution uu.

Lemma 1.

Suppose that the solution uu of (2.8) satisfies (2.9). For ϵ>0\epsilon>0, let θ1=12ϵ>0\theta_{1}=\frac{1}{2}-\epsilon>0, θ2=1ϵ>0\theta_{2}=1-\epsilon>0. There exists a constant CC(D,T,q,u0)>0C\equiv C(D,T,q,u_{0})>0, such that for all s,t[0,T]s,t\in[0,T],

  1. (i)

    𝔼[u(t)u(s)H12]C|ts|2θ1.\displaystyle{\mathbb{E}}\bigl{[}\|{u}(t)-{u}(s)\|^{2}_{H^{1}}\bigr{]}\leq C|t-s|^{2\theta_{1}}.

  2. (ii)

    𝔼[u(t)u(s)stG(u(ξ))𝑑W(ξ)H1q]C|ts|qθ2,\displaystyle{\mathbb{E}}\Bigl{[}\Bigl{\|}{u}(t)-{u}(s)-\int_{s}^{t}G(u(\xi))\,dW(\xi)\Bigr{\|}^{q}_{H^{1}}\Bigr{]}\leq C|t-s|^{q\theta_{2}}, where q=2,4.q=2,4.

  3. (iii)

    𝔼[u(t)u(s)Lqq]C|ts|qθ1,\displaystyle{\mathbb{E}}\bigl{[}\|{u}(t)-{u}(s)\|^{q}_{L^{q}}\bigr{]}\leq C|t-s|^{q\theta_{1}}, where q2q\geq 2 are integers.

  4. (iv)

    𝔼[F(u(t))F(u(s))stDF(u(s))G(u(ξ))𝑑W(ξ)L22]C|ts|2θ2.\displaystyle{\mathbb{E}}\Bigl{[}\Bigl{\|}F({u}(t))-F({u}(s))-\int_{s}^{t}DF(u(s))G(u(\xi))\,dW(\xi)\Bigr{\|}^{2}_{L^{2}}\Bigr{]}\leq C|t-s|^{2\theta_{2}}.

Proof.

The proof of (i)(i) can be found in [10, Lemma 2.1], while the establishment of (iii)(iii) is based on the semigroup theory, which can be found in many references such as [27, 26, 29]. In addition, the proof of (ii)(ii) is followed [26, Lemma 10.27] and [28, Lemma 2.3] with minor modifications for q=4q=4. We just need to prove (iv)(iv). To prove (iv)(iv), we use the Taylor expansion for FF with respect to u(s)L2(D)u(s)\in L^{2}(D) as follows.

(2.10) F(u(t))=F(u(s))+DF(u(s))(u(t)u(s))+R2,\displaystyle F(u(t))=F(u(s))+DF(u(s))\bigl{(}u(t)-u(s)\bigr{)}+R_{2},

where R2=01(1η)(D2F(u(s)+η(u(t)u(s))))(u(t)u(s))2𝑑η\displaystyle R_{2}=\int_{0}^{1}(1-\eta)\bigl{(}D^{2}F(u(s)+\eta(u(t)-u(s)))\bigr{)}(u(t)-u(s))^{2}\,d\eta.

Therefore, we have

F(u(t))F(u(s))stDF(u(s))G(u(ξ))𝑑W(ξ)\displaystyle F(u(t))-F(u(s))-\int_{s}^{t}DF(u(s))G(u(\xi))\,dW(\xi)
=DF(u(s))[u(t)u(s)stG(u(ξ))𝑑W(ξ)]+R2.\displaystyle=DF(u(s))\bigg{[}u(t)-u(s)-\int_{s}^{t}G(u(\xi))\,dW(\xi)\bigg{]}+R_{2}.

Since we have DF(u)=1quq1DF(u)=1-qu^{q-1}, then we obtain

(2.11) DF(u(s))[u(t)u(s)stG(u(ξ))𝑑W(ξ)]L22\displaystyle\Bigl{\|}DF(u(s))\Bigl{[}u(t)-u(s)-\int_{s}^{t}G(u(\xi))\,dW(\xi)\Bigr{]}\Bigr{\|}^{2}_{L^{2}}
=D|(1qu(s)q1)[u(t)u(s)stG(u(ξ))𝑑W(ξ)]|2𝑑x\displaystyle=\int_{D}\Bigl{|}(1-qu(s)^{q-1})\Bigl{[}u(t)-u(s)-\int_{s}^{t}G(u(\xi))\,dW(\xi)\Bigr{]}\Bigr{|}^{2}\,dx
D2(1+q2|u(s)|2(q1))|[u(t)u(s)stG(u(ξ))𝑑W(ξ)]|2𝑑x\displaystyle\leq\int_{D}2(1+q^{2}|u(s)|^{2(q-1)})\Bigl{|}\Bigl{[}u(t)-u(s)-\int_{s}^{t}G(u(\xi))\,dW(\xi)\Bigr{]}\Bigr{|}^{2}\,dx
2(D(1+q2|u(s)|2(q1))2𝑑x)12u(t)u(s)stG(u(ξ))𝑑W(ξ)L42\displaystyle\leq 2\Bigl{(}\int_{D}(1+q^{2}|u(s)|^{2(q-1)})^{2}\,dx\Bigr{)}^{\frac{1}{2}}\Bigl{\|}u(t)-u(s)-\int_{s}^{t}G(u(\xi))\,dW(\xi)\Bigr{\|}^{2}_{L^{4}}
2(D2(1+q4|u(s)|4(q1))𝑑x)12u(t)u(s)stG(u(ξ))𝑑W(ξ)L42.\displaystyle\leq 2\Bigl{(}\int_{D}2(1+q^{4}|u(s)|^{4(q-1)})\,dx\Bigr{)}^{\frac{1}{2}}\Bigl{\|}u(t)-u(s)-\int_{s}^{t}G(u(\xi))\,dW(\xi)\Bigr{\|}^{2}_{L^{4}}.

Taking the expectation 𝔼[]\mathbb{E}[\cdot] to (2.11) and then using the Cauchy-Schwarz inequality, we obtain

(2.12) 𝔼[DF(u(s))[u(t)u(s)stG(u(ξ))𝑑W(ξ)]L22]\displaystyle\mathbb{E}\Bigl{[}\Bigl{\|}DF(u(s))\Bigl{[}u(t)-u(s)-\int_{s}^{t}G(u(\xi))\,dW(\xi)\Bigr{]}\Bigr{\|}^{2}_{L^{2}}\Bigr{]}
𝔼[2(D2(1+q4|u(s)|4(q1))𝑑x)12u(t)u(s)stG(u(ξ))𝑑W(ξ)L42]\displaystyle\leq\mathbb{E}\Bigl{[}2\Bigl{(}\int_{D}2(1+q^{4}|u(s)|^{4(q-1)})\,dx\Bigr{)}^{\frac{1}{2}}\Bigl{\|}u(t)-u(s)-\int_{s}^{t}G(u(\xi))\,dW(\xi)\Bigr{\|}^{2}_{L^{4}}\Bigr{]}
Cq(𝔼[u(s)L4(q1)4(q1)])12(𝔼[u(t)u(s)stG(u(ξ))𝑑W(ξ)L44])12.\displaystyle\leq C_{q}\Bigl{(}\mathbb{E}\Bigl{[}\|u(s)\|^{4(q-1)}_{L^{4(q-1)}}\Bigr{]}\Bigr{)}^{\frac{1}{2}}\Bigl{(}\mathbb{E}\Bigl{[}\Bigl{\|}u(t)-u(s)-\int_{s}^{t}G(u(\xi))\,dW(\xi)\Bigr{\|}^{4}_{L^{4}}\Bigr{]}\Bigr{)}^{\frac{1}{2}}.

Using the interpolation inequality that 𝔼[uL44]C𝔼[uL22uL22]C𝔼[uH14]\mathbb{E}[\|u\|^{4}_{L^{4}}]\leq C\mathbb{E}[\|u\|^{2}_{L^{2}}\|\nabla u\|^{2}_{L^{2}}]\leq C\mathbb{E}[\|u\|^{4}_{H^{1}}] and Lemma 1 (iii)(iii) yield to

(2.13) 𝔼[u(t)u(s)stG(u(ξ))𝑑W(ξ)L44]\displaystyle\mathbb{E}\Bigl{[}\Bigl{\|}u(t)-u(s)-\int_{s}^{t}G(u(\xi))\,dW(\xi)\Bigr{\|}^{4}_{L^{4}}\Bigr{]}
C𝔼[u(t)u(s)stG(u(ξ))𝑑W(ξ)H14]C|ts|4θ2.\displaystyle\leq C\mathbb{E}\Bigl{[}\Bigl{\|}u(t)-u(s)-\int_{s}^{t}G(u(\xi))\,dW(\xi)\Bigr{\|}^{4}_{H^{1}}\Bigr{]}\leq C|t-s|^{4\theta_{2}}.

By using (2.9), we arrive at

(2.14) 𝔼[DF(u(s))[u(t)u(s)stG(u(ξ))𝑑W(ξ)]L22]C|ts|2θ2,\displaystyle\mathbb{E}\Bigl{[}\Bigl{\|}DF(u(s))\Bigl{[}u(t)-u(s)-\int_{s}^{t}G(u(\xi))\,dW(\xi)\Bigr{]}\Bigr{\|}^{2}_{L^{2}}\Bigr{]}\leq C|t-s|^{2\theta_{2}},

where C=Cq(sups[0,T]𝔼[u(s)L4(q1)4(q1)])12C=C_{q}\Bigl{(}\sup_{s\in[0,T]}\mathbb{E}\Bigl{[}\|u(s)\|^{4(q-1)}_{L^{4(q-1)}}\Bigr{]}\Bigr{)}^{\frac{1}{2}}.

It is remaining to estimate R2R_{2}. To do that, we notice that D2F(u)=q(q1)uq2D^{2}F(u)=-q(q-1)u^{q-2}. In the end, we have

(2.15) R2L22\displaystyle\|R_{2}\|^{2}_{L^{2}}
\displaystyle\leq D|01(1η)q(1q)(u(s)+η(u(t)u(s)))q2(u(t)u(s))2𝑑η|2𝑑x\displaystyle\int_{D}\Bigl{|}\int_{0}^{1}(1-\eta)q(1-q)(u(s)+\eta(u(t)-u(s)))^{q-2}(u(t)-u(s))^{2}\,d\eta\Bigr{|}^{2}\,dx
\displaystyle\leq D(q(q1)2q2(|u(s)|q2+|u(t)u(s)|q2))2|u(t)u(s)|4𝑑x\displaystyle\int_{D}\Bigl{(}q(q-1)2^{q-2}\bigl{(}|u(s)|^{q-2}+|u(t)-u(s)|^{q-2}\bigr{)}\Bigr{)}^{2}|u(t)-u(s)|^{4}\,dx
\displaystyle\leq Dq2(q1)222q3(|u(s)|2(q2)+|u(t)u(s)|2(q2))|u(t)u(s)|4𝑑x\displaystyle\int_{D}q^{2}(q-1)^{2}2^{2q-3}\bigl{(}|u(s)|^{2(q-2)}+|u(t)-u(s)|^{2(q-2)}\bigr{)}|u(t)-u(s)|^{4}\,dx
=\displaystyle= CqD|u(s)|2(q2)|u(t)u(s)|4𝑑x+CqD|u(t)u(s)|2q𝑑x\displaystyle C_{q}\int_{D}|u(s)|^{2(q-2)}|u(t)-u(s)|^{4}\,dx+C_{q}\int_{D}|u(t)-u(s)|^{2q}\,dx
\displaystyle\leq Cqu(s)L4(q2)2(q2)u(t)u(s)L84+Cqu(t)u(s)L2q2q.\displaystyle C_{q}\|u(s)\|^{2(q-2)}_{L^{4(q-2)}}\|u(t)-u(s)\|^{4}_{L^{8}}+C_{q}\|u(t)-u(s)\|^{2q}_{L^{2q}}.

Taking the expectation 𝔼[]\mathbb{E}[\cdot] to (2.15), using Lemma 1 (iii)(iii) and then (2.9) , we obtain

(2.16) 𝔼[R2L22]\displaystyle\mathbb{E}[\|R_{2}\|^{2}_{L^{2}}] Cq𝔼[u(s)L4(q2)2(q2)u(t)u(s)L84]+Cq𝔼[u(t)u(s)L2q2q]\displaystyle\leq C_{q}\mathbb{E}\bigl{[}\|u(s)\|^{2(q-2)}_{L^{4(q-2)}}\|u(t)-u(s)\|^{4}_{L^{8}}\bigr{]}+C_{q}\mathbb{E}\bigl{[}\|u(t)-u(s)\|^{2q}_{L^{2q}}\bigr{]}
Cq(𝔼[u(s)L4(q2)4(q2)])12(𝔼[u(t)u(s)L88])12\displaystyle\leq C_{q}\Bigl{(}\mathbb{E}\bigl{[}\|u(s)\|^{4(q-2)}_{L^{4(q-2)}}\bigr{]}\Bigr{)}^{\frac{1}{2}}\Bigl{(}\mathbb{E}\bigl{[}\|u(t)-u(s)\|^{8}_{L^{8}}\bigr{]}\Bigr{)}^{\frac{1}{2}}
+𝔼[u(t)u(s)L2q2q]\displaystyle\qquad\qquad+\mathbb{E}\bigl{[}\|u(t)-u(s)\|^{2q}_{L^{2q}}\bigr{]}
C(|ts|4θ1+|ts|2qθ1)C|ts|4θ1,\displaystyle\leq C(|t-s|^{4\theta_{1}}+|t-s|^{2q\theta_{1}})\leq C|t-s|^{4\theta_{1}},

where C=Cq(sups[0,T]𝔼[u(s)L4(q2)4(q2)])12C=C_{q}\Bigl{(}\sup_{s\in[0,T]}\mathbb{E}\bigl{[}\|u(s)\|^{4(q-2)}_{L^{4(q-2)}}\bigr{]}\Bigr{)}^{\frac{1}{2}}.

The proof is complete by combining (2.14) and (2.16). ∎

3 Semi-discretization in time

In this section, we follow the strategy of the Milstein scheme in SDEs to propose a new time discretization method of (1.1). This approach generates a convergence order of nearly 11 for the approximate solution.

3.1 Formulation of the proposed method

Let t0<t1<<tNt_{0}<t_{1}<\cdots<t_{N} be a uniform mesh of the interval [0,T][0,T] with the time step size τ=TN\tau=\frac{T}{N}. Note that t0=0t_{0}=0 and tN=Tt_{N}=T.

Algorithm 1

Let u0=u0u^{0}=u_{0} be a given H01H^{1}_{0}-valued random variable. Find un+1H01(D)u^{n+1}\in H^{1}_{0}(D) recursively such that \mathbb{P}-a.s.

(3.1) (un+1un,ϕ)+τ(un+1,ϕ)\displaystyle\bigl{(}u^{n+1}-u^{n},\phi\bigr{)}+\tau\bigl{(}\nabla u^{n+1},\nabla\phi\bigr{)} =τ(F(un+1),ϕ)+(G(un)ΔWn\displaystyle=\tau\bigl{(}F(u^{n+1}),\phi\bigr{)}+\bigl{(}G(u^{n})\Delta W_{n}
+12DG(un)G(un)[(ΔWn)2τ],ϕ),\displaystyle\qquad+\frac{1}{2}DG(u^{n})\,G(u^{n})\bigl{[}(\Delta W_{n})^{2}-\tau\bigr{]},\phi\bigr{)},

for all ϕH01(D)\phi\in H^{1}_{0}(D) and ΔWn=W(tn+1)W(tn)𝒩(0,τ)\Delta W_{n}=W(t_{n+1})-W(t_{n})\sim\mathcal{N}(0,\tau).

Remark 3.1.

The scheme (3.1) will produce a convergence of order nearly 11. The difference between (3.1) and the standard Euler-Maruyama method is the discretization of the noise term. While the Euler-type schemes, which establish a convergence order of 12\frac{1}{2}, contain only the term G(un)ΔWnG(u^{n})\Delta W_{n}, the scheme (3.1) adds the extra term 12DG(un)G(un)[(ΔWn)2τ]\frac{1}{2}DG(u^{n})\,G(u^{n})\bigl{[}(\Delta W_{n})^{2}-\tau], which is the key point to obtain a higher convergence order.


Next, we define 𝒢:+×H01(D)L2(D)\displaystyle\mathcal{G}:\mathbb{R}^{+}\times H_{0}^{1}(D)\rightarrow L^{2}(D) by

(3.2) 𝒢(s;u):=G(u)+DG(u)G(u)tns𝑑W(r),tnstn+1.\displaystyle\mathcal{G}(s;u):={G}(u)+DG(u)G(u)\,\int_{t_{n}}^{s}\,dW(r),\qquad t_{n}\leq s\leq t_{n+1}.

Then we have

tntn+1𝒢(s;un)𝑑W(s)\displaystyle\int_{t_{n}}^{t_{n+1}}\mathcal{G}(s;u^{n})\,dW(s) =G(un)ΔWn+DG(un)G(un)tntn+1tns𝑑W(r)𝑑W(s)\displaystyle=G(u^{n})\Delta W_{n}+DG(u^{n})G(u^{n})\int_{t_{n}}^{t_{n+1}}\int_{t_{n}}^{s}dW(r)\,dW(s)
=G(un)ΔWn+12DG(un)G(un)[(ΔWn)2τ].\displaystyle=G(u^{n})\Delta W_{n}+\frac{1}{2}DG(u^{n})G(u^{n})\bigl{[}(\Delta W_{n})^{2}-\tau\bigr{]}.

Therefore, we rewrite (3.1) as follow:

(3.3) (un+1un,ϕ)+τ(un+1,ϕ)=\displaystyle\bigl{(}u^{n+1}-u^{n},\phi\bigr{)}+\tau\bigl{(}\nabla u^{n+1},\nabla\phi\bigr{)}= τ(F(un+1),ϕ)\displaystyle\tau\bigl{(}F(u^{n+1}),\phi\bigr{)}
+tntn+1(𝒢(s;un),ϕ)𝑑W(s).\displaystyle+\int_{t_{n}}^{t_{n+1}}\bigl{(}\mathcal{G}(s;u^{n}),\phi\bigr{)}\,dW(s).

Next, we state the following technical lemma that is used to prove the error estimate results of this paper.

Lemma 2.

Suppose that GG satisfies the assumptions (𝐀𝟏),(𝐀𝟐),(𝐀𝟑){\bf(A1),(A2),(A3)}. Let u0L2(Ω;H01(D)H2(D))u_{0}\in L^{2}(\Omega;H^{1}_{0}(D)\cap H^{2}(D)), there exist constants C>0C>0 such that the function 𝒢\mathcal{G} defined in (3.2) satisfies

  1. (i)

    𝒢(s;u)𝒢(s;v)L2CuvL2,s>0,u,vL2(D)\displaystyle\|\mathcal{G}(s;u)-\mathcal{G}(s;v)\|_{L^{2}}\leq C\|u-v\|_{L^{2}},\qquad\forall s>0,u,v\in L^{2}(D),

  2. (ii)

    𝔼[G(u(s))𝒢(s;u(tn))L22]C|stn|2(1ϵ)\displaystyle\mathbb{E}\bigl{[}\bigl{\|}G(u(s))-\mathcal{G}(s;u(t_{n}))\bigr{\|}^{2}_{L^{2}}\bigr{]}\leq C|s-t_{n}|^{2(1-\epsilon)}, for tns<tn+1t_{n}\leq s<t_{n+1} and ϵ>0\epsilon>0.

Proof.

The Lipschitz continuity of 𝒢\mathcal{G} in (i)(i) is directly obtained from the assumptions of GG while the proof of (ii)(ii) can be found in [26, Lemma 10.36] with similar arguments.

Next, we will provide the stability estimates of Algorithm 1 in the following lemma. These stability estimates will be used for the proof of the error estimates of the finite element approximation later.

Lemma 3.

Let {un}\{u^{n}\} be the solution of Algorithm 1. Then , there exists a constant CC(D,T,u0,p)C\equiv C(D,T,u_{0},p) such that

  1. (i)

    sup1nN𝔼[unL22r]+𝔼[τn=1NunL22r2ΔunL22]C\displaystyle\sup_{1\leq n\leq N}\mathbb{E}\bigl{[}\|\nabla u^{n}\|^{2^{r}}_{L^{2}}\bigr{]}+\mathbb{E}\Bigl{[}\tau\sum_{n=1}^{N}\|\nabla u^{n}\|^{2^{r}-2}_{L^{2}}\|\Delta u^{n}\|^{2}_{L^{2}}\Bigr{]}\leq C, for any integers r1r\geq 1.

  2. (ii)

    sup1nN𝔼[unL2p]C\displaystyle\sup_{1\leq n\leq N}\mathbb{E}\bigl{[}\|\nabla u^{n}\|^{p}_{L^{2}}\bigr{]}\leq C, for any integers p2p\geq 2.

Proof.

We just provide the proof of (i) when r=1r=1. When r2r\geq 2, the proof is similar to [6, Lemma 3.1] with minor modifications. So, we skip it to save space.

To begin, we rewrite (3.1) in the strong form as follow:

(3.4) un+1unτΔun+1\displaystyle u^{n+1}-u^{n}-\tau\Delta u^{n+1} =τF(un+1)+G(un)ΔWn\displaystyle=\tau F(u^{n+1})+G(u^{n})\Delta W_{n}
+12DG(un)G(un)[(ΔWn)2τ].\displaystyle\qquad+\frac{1}{2}DG(u^{n})G(u^{n})[(\Delta W_{n})^{2}-\tau].

Testing the equation (3.4) by Δun+1-\Delta u^{n+1} and then using integration by parts we obtain

(3.5) ((un+1un),un+1)+τΔun+1L22\displaystyle\bigl{(}\nabla(u^{n+1}-u^{n}),\nabla u^{n+1}\bigr{)}+\tau\|\Delta u^{n+1}\|^{2}_{L^{2}}
=τ(F(un+1),Δun+1)(G(un),Δun+1)ΔWn\displaystyle\qquad=-\tau\bigl{(}F(u^{n+1}),\Delta u^{n+1}\bigr{)}-\bigl{(}G(u^{n}),\Delta u^{n+1}\bigr{)}\Delta W_{n}
12(DG(un)G(un),Δun+1)[(ΔWn)2τ]\displaystyle\qquad\quad-\frac{1}{2}\bigl{(}DG(u^{n})G(u^{n}),\Delta u^{n+1}\bigr{)}\bigl{[}(\Delta W_{n})^{2}-\tau\bigr{]}
:=𝙸+𝙸𝙸+𝙸𝙸𝙸.\displaystyle\qquad:={\tt I+II+III}.

By using the integration by parts, we obtain

(3.6) 𝙸\displaystyle{\tt I} =τ(un+1,Δun+1)+τ((un+1)q,Δun+1)\displaystyle=-\tau\bigl{(}u^{n+1},\Delta u^{n+1}\bigr{)}+\tau\bigl{(}(u^{n+1})^{q},\Delta u^{n+1}\bigr{)}
=τun+1L22τq((un+1)q1un+1,un+1)\displaystyle=\tau\|\nabla u^{n+1}\|^{2}_{L^{2}}-\tau q\bigl{(}(u^{n+1})^{q-1}\nabla u^{n+1},\nabla u^{n+1}\bigr{)}
=τun+1L22τqD(un+1)q1|un+1|2𝑑xτun+1L22,\displaystyle=\tau\|\nabla u^{n+1}\|^{2}_{L^{2}}-\tau q\int_{D}(u^{n+1})^{q-1}|\nabla u^{n+1}|^{2}\,dx\leq\tau\|\nabla u^{n+1}\|^{2}_{L^{2}},

where the last inequality of (3.6) is obtained by using the fact that, for all odd q3q\geq 3, D(un+1)q1|un+1|2𝑑x0\int_{D}(u^{n+1})^{q-1}|\nabla u^{n+1}|^{2}\,dx\geq 0.

To bound II, we take the expectation and then use the fact that 𝔼[ΔWn]=0\mathbb{E}[\Delta W_{n}]=0. Namely,

(3.7) 𝔼[𝙸𝙸]\displaystyle\mathbb{E}[{\tt II}] =𝔼[(G(un),Δ(un+1un))ΔWn]𝔼[(G(un),Δun)ΔWn]\displaystyle=-\mathbb{E}\bigl{[}\bigl{(}G(u^{n}),\Delta(u^{n+1}-u^{n})\bigr{)}\Delta W_{n}\bigr{]}-\mathbb{E}\bigl{[}\bigl{(}G(u^{n}),\Delta u^{n}\bigr{)}\Delta W_{n}\bigr{]}
=𝔼[(G(un),(un+1un))ΔWn]\displaystyle=\mathbb{E}\bigl{[}\bigl{(}\nabla G(u^{n}),\nabla(u^{n+1}-u^{n})\bigr{)}\Delta W_{n}\bigr{]}
C𝔼[unL22|ΔWn|2]+14𝔼[(un+1un)L22]\displaystyle\leq C\mathbb{E}[\|\nabla u^{n}\|^{2}_{L^{2}}|\Delta W_{n}|^{2}]+\frac{1}{4}\mathbb{E}\bigl{[}\|\nabla(u^{n+1}-u^{n})\|^{2}_{L^{2}}\bigr{]}
=Cτ𝔼[unL22|]+14𝔼[(un+1un)L22].\displaystyle=C\tau\mathbb{E}[\|\nabla u^{n}\|^{2}_{L^{2}}|]+\frac{1}{4}\mathbb{E}\bigl{[}\|\nabla(u^{n+1}-u^{n})\|^{2}_{L^{2}}\bigr{]}.

In addition, by using the Cauchy-Schwarz and the assumptions (𝐀𝟏),(𝐀𝟐){\bf(A1),(A2)}, we have

(3.8) 𝔼[𝙸𝙸𝙸]\displaystyle\mathbb{E}[{\tt III}] Cτ𝔼[DG(un)G(un)L22|(ΔWn)2τ|2]+τ4𝔼[Δun+1L22]\displaystyle\leq\frac{C}{\tau}\mathbb{E}\bigl{[}\|DG(u^{n})G(u^{n})\|^{2}_{L^{2}}|(\Delta W_{n})^{2}-\tau|^{2}\bigr{]}+\frac{\tau}{4}\mathbb{E}\bigl{[}\|\Delta u^{n+1}\|^{2}_{L^{2}}\bigr{]}
Cτ𝔼[G(un)L22|(ΔWn)2τ|2]+τ4𝔼[Δun+1L22]\displaystyle\leq\frac{C}{\tau}\mathbb{E}\bigl{[}\|G(u^{n})\|^{2}_{L^{2}}|(\Delta W_{n})^{2}-\tau|^{2}\bigr{]}+\frac{\tau}{4}\mathbb{E}\bigl{[}\|\Delta u^{n+1}\|^{2}_{L^{2}}\bigr{]}
Cτ𝔼[unL22]+τ4𝔼[Δun+1L22],\displaystyle\leq C\tau\mathbb{E}\bigl{[}\|\nabla u^{n}\|^{2}_{L^{2}}\bigr{]}+\frac{\tau}{4}\mathbb{E}\bigl{[}\|\Delta u^{n+1}\|^{2}_{L^{2}}\bigr{]},

where the last inequality of (3.8) is obtained by using the fact that 𝔼[|(ΔWn)2τ|2]Cτ2\mathbb{E}[|(\Delta W_{n})^{2}-\tau|^{2}]\leq C\tau^{2}.

Substituting all the estimates from 𝙸,𝙸𝙸,𝙸𝙸𝙸{\tt I,II,III} into (3.4) and absorbing the like-terms from the right side to the left side, we obtain

(3.9) 12𝔼[un+1L22\displaystyle\frac{1}{2}\mathbb{E}\bigl{[}\|\nabla u^{n+1}\|^{2}_{L^{2}} unL22]+14𝔼[(un+1un)L22]+τ2𝔼[Δun+1L22]\displaystyle-\|\nabla u^{n}\|^{2}_{L^{2}}\bigr{]}+\frac{1}{4}\mathbb{E}\bigl{[}\|\nabla(u^{n+1}-u^{n})\|^{2}_{L^{2}}\bigr{]}+\frac{\tau}{2}\mathbb{E}\bigl{[}\|\Delta u^{n+1}\|^{2}_{L^{2}}\bigr{]}
Cτ𝔼[un+1unL22]+Cτ𝔼[unL22].\displaystyle\leq C\tau\mathbb{E}\bigl{[}\|u^{n+1}-u^{n}\|^{2}_{L^{2}}\bigr{]}+C\tau\mathbb{E}\bigl{[}\|\nabla u^{n}\|^{2}_{L^{2}}\bigr{]}.

Next, applying the summation n=0\sum_{n=0}^{\ell}, for any 0<N0\leq\ell<N, we obtain

(3.10) 𝔼[u+1L22]+n=0𝔼[(un+1un)L22]+τn=0𝔼[Δun+1L22]\displaystyle\mathbb{E}\bigl{[}\|\nabla u^{\ell+1}\|^{2}_{L^{2}}\bigr{]}+\sum_{n=0}^{\ell}\mathbb{E}\bigl{[}\|\nabla(u^{n+1}-u^{n})\|^{2}_{L^{2}}\bigr{]}+\tau\sum_{n=0}^{\ell}\mathbb{E}\bigl{[}\|\Delta u^{n+1}\|^{2}_{L^{2}}\bigr{]}
Cτn=0𝔼[unL22]+𝔼[u0L22]+Cτn=0𝔼[un+1unL22].\displaystyle\leq C\tau\sum_{n=0}^{\ell}\mathbb{E}\bigl{[}\|\nabla u^{n}\|^{2}_{L^{2}}\bigr{]}+\mathbb{E}\bigl{[}\|\nabla u_{0}\|^{2}_{L^{2}}\bigr{]}+C\tau\sum_{n=0}^{\ell}\mathbb{E}\bigl{[}\|u^{n+1}-u^{n}\|^{2}_{L^{2}}\bigr{]}.

The proof is completed by using Gronwall’s inequality.

Finally, the proof of (ii) is followed by using the result from (i) and Hölder inequality.

3.2 Error estimates for Algorithm 1

In this part, we state the first main result of this paper which establishes an O(τ1ϵ)O(\tau^{1-\epsilon}) convergence order for the proposed method.

Theorem 4.

Let uu be the variational solution to (1.1) and {un}\{u^{n}\} be generated by Algorithm 1. Assume that GG satisifies (𝐀𝟏),(𝐀𝟐),(𝐀𝟑){\bf(A1),(A2),(A3)} and u0L2(Ω;H01(D)H2(D))u_{0}\in L^{2}(\Omega;H^{1}_{0}(D)\cap H^{2}(D)). Suppose that 0<ϵ<10<\epsilon<1, then there exists a constant C=C(D,T,u0)>0C=C(D,T,u_{0})>0 such that

(3.11) sup1nN𝔼[u(tn)unL22]+𝔼[τn=1N(u(tn)un)L22]Cτ2(1ϵ).\displaystyle\sup_{1\leq n\leq N}\mathbb{E}\Bigl{[}\|u(t_{n})-u^{n}\|^{2}_{L^{2}}\Bigr{]}+\mathbb{E}\bigg{[}\tau\sum_{n=1}^{N}\|\nabla(u(t_{n})-u^{n})\|^{2}_{L^{2}}\bigg{]}\leq C\,\tau^{2(1-\epsilon)}.
Proof.

Denote en:=u(tn)une^{n}:=u(t_{n})-u^{n}. Subtracting (3.3) from (2.8), we obtain the following error equation

(3.12) (en+1en,ϕ)+τ(en+1,ϕ)\displaystyle\bigl{(}e^{n+1}-e^{n},\phi\bigr{)}+\tau\bigl{(}\nabla e^{n+1},\nabla\phi\bigr{)} =tntn+1((u(tn+1)u(s)),ϕ)𝑑s\displaystyle=\int_{t_{n}}^{t_{n+1}}\bigl{(}\nabla(u(t_{n+1})-u(s)),\nabla\phi\bigr{)}\,ds
tntn+1(F(u(tn+1))F(u(s)),ϕ)𝑑s\displaystyle\qquad-\int_{t_{n}}^{t_{n+1}}\bigl{(}F(u(t_{n+1}))-F(u(s)),\phi\bigr{)}\,ds
+tntn+1(F(u(tn+1))F(un+1),ϕ)𝑑s\displaystyle\qquad+\int_{t_{n}}^{t_{n+1}}\bigl{(}F(u(t_{n+1}))-F(u^{n+1}),\phi\bigr{)}\,ds
+tntn+1(G(u(s))𝒢(s;un),ϕ)𝑑W(s).\displaystyle\qquad+\int_{t_{n}}^{t_{n+1}}\bigl{(}G(u(s))-\mathcal{G}(s;u^{n}),\phi\bigr{)}\,dW(s).

Now, choosing ϕ=en+1\phi=e^{n+1} and using the identity 2a(ab)=a2b2+(ab)22a(a-b)=a^{2}-b^{2}+(a-b)^{2}, we have

(3.13) 12[en+1L22enL22]+12en+1enL22+τen+1L22\displaystyle\frac{1}{2}\bigl{[}\|e^{n+1}\|^{2}_{L^{2}}-\|e^{n}\|^{2}_{L^{2}}\bigr{]}+\frac{1}{2}\|e^{n+1}-e^{n}\|^{2}_{L^{2}}+\tau\|\nabla e^{n+1}\|^{2}_{L^{2}}
=tntn+1((u(tn+1)u(s)),en+1)𝑑s\displaystyle=\int_{t_{n}}^{t_{n+1}}\bigl{(}\nabla(u(t_{n+1})-u(s)),\nabla e^{n+1}\bigr{)}\,ds
tntn+1(F(u(tn+1))F(u(s)),en+1)𝑑s\displaystyle\qquad-\int_{t_{n}}^{t_{n+1}}\bigl{(}F(u(t_{n+1}))-F(u(s)),e^{n+1}\bigr{)}\,ds
+tntn+1(F(u(tn+1))F(un+1),en+1)𝑑s\displaystyle\qquad+\int_{t_{n}}^{t_{n+1}}\bigl{(}F(u(t_{n+1}))-F(u^{n+1}),e^{n+1}\bigr{)}\,ds
+tntn+1(G(u(s))𝒢(s;un),en+1)𝑑W(s)\displaystyle\qquad+\int_{t_{n}}^{t_{n+1}}\bigl{(}G(u(s))-\mathcal{G}(s;u^{n}),e^{n+1}\bigr{)}\,dW(s)
:=𝙸+𝙸𝙸+𝙸𝙸𝙸+𝙸𝚅.\displaystyle:={\tt I+II+III+IV}.

Next, we bound the right side of (3.13) as follows.

In order to estimate I, we add and subtract stn+1G(u(ξ))𝑑W(ξ)\displaystyle\int_{s}^{t_{n+1}}\nabla G(u(\xi))\,dW(\xi) for any tns<tn+1t_{n}\leq s<t_{n+1}, as follow.

(3.14) 𝙸\displaystyle{\tt I} =tntn+1((u(tn+1)u(s)stn+1G(u(ξ))𝑑W(ξ)),en+1)𝑑s\displaystyle=\int_{t_{n}}^{t_{n+1}}\Bigl{(}\nabla\Bigl{(}u(t_{n+1})-u(s)-\int_{s}^{t_{n+1}}G(u(\xi))\,dW(\xi)\Bigr{)},\nabla e^{n+1}\Bigr{)}\,ds
+tntn+1(stn+1G(u(ξ))𝑑W(ξ),en+1)𝑑s\displaystyle\qquad+\int_{t_{n}}^{t_{n+1}}\Bigl{(}\int_{s}^{t_{n+1}}\nabla G(u(\xi))\,dW(\xi),\nabla e^{n+1}\Bigr{)}\,ds
:=𝙸𝟷+𝙸𝟸.\displaystyle:={\tt I_{1}+I_{2}}.

By using Lemma 1 (ii)(ii), we obtain

(3.15) 𝔼[𝙸𝟷]\displaystyle\mathbb{E}[{\tt I_{1}}] tntn+1𝔼[u(tn+1)u(s)stn+1G(u(ξ))𝑑W(ξ)H12]𝑑s\displaystyle\leq\int_{t_{n}}^{t_{n+1}}\mathbb{E}\Bigl{[}\Bigl{\|}u(t_{n+1})-u(s)-\int_{s}^{t_{n+1}}G(u(\xi))\,dW(\xi)\Bigr{\|}^{2}_{H^{1}}\Bigr{]}\,ds
+τ4𝔼[en+1L22]\displaystyle\qquad+\frac{\tau}{4}\mathbb{E}\bigl{[}\|\nabla e^{n+1}\|^{2}_{L^{2}}\bigr{]}
Cτ1+2(1ϵ)+τ4𝔼[en+1L22].\displaystyle\leq C\tau^{1+2(1-\epsilon)}+\frac{\tau}{4}\mathbb{E}\bigl{[}\|\nabla e^{n+1}\|^{2}_{L^{2}}\bigr{]}.

Next, by the integration by parts we have

(3.16) 𝙸𝟸\displaystyle{\tt I_{2}} =tntn+1(stn+1G(u(ξ))𝑑W(ξ),(en+1en))𝑑s\displaystyle=\int_{t_{n}}^{t_{n+1}}\Bigl{(}\int_{s}^{t_{n+1}}\nabla G(u(\xi))\,dW(\xi),\nabla(e^{n+1}-e^{n})\Bigr{)}\,ds
+tntn+1(stn+1G(u(ξ))𝑑W(ξ),en)𝑑s\displaystyle\qquad+\int_{t_{n}}^{t_{n+1}}\Bigl{(}\int_{s}^{t_{n+1}}\nabla G(u(\xi))\,dW(\xi),\nabla e^{n}\Bigr{)}\,ds
=tntn+1(stn+1ΔG(u(ξ))𝑑W(ξ),en+1en)𝑑s\displaystyle=-\int_{t_{n}}^{t_{n+1}}\Bigl{(}\int_{s}^{t_{n+1}}\Delta G(u(\xi))\,dW(\xi),e^{n+1}-e^{n}\Bigr{)}\,ds
+tntn+1(stn+1G(u(ξ))𝑑W(ξ),en)𝑑s\displaystyle\qquad+\int_{t_{n}}^{t_{n+1}}\Bigl{(}\int_{s}^{t_{n+1}}\nabla G(u(\xi))\,dW(\xi),\nabla e^{n}\Bigr{)}\,ds
:=𝙸𝟸𝚊+𝙸𝟸𝚋.\displaystyle:={\tt I_{2a}+I_{2b}}.

We note that 𝔼[𝙸𝟸𝚋]=0\mathbb{E}[{\tt I_{2b}}]=0 due to the martingale property of the Itô integral. So, it is left to estimate 𝙸𝟸𝚊{\tt I_{2a}}. By using the Hölder inequality, we obtain

(3.17) 𝙸𝟸𝚊\displaystyle{\tt I_{2a}} =tntn+1(stn+1ΔG(u(ξ))𝑑W(ξ),en+1en)𝑑s\displaystyle=-\int_{t_{n}}^{t_{n+1}}\bigg{(}\int_{s}^{t_{n+1}}\Delta G(u(\xi))\,dW(\xi),e^{n+1}-e^{n}\bigg{)}\,ds
2tntn+1stn+1ΔG(u(ξ))𝑑W(ξ)𝑑sL22+18en+1enL22\displaystyle\leq 2\bigg{\|}\int_{t_{n}}^{t_{n+1}}\int_{s}^{t_{n+1}}\Delta G(u(\xi))\,dW(\xi)\,ds\bigg{\|}^{2}_{L^{2}}+\frac{1}{8}\|e^{n+1}-e^{n}\|^{2}_{L^{2}}
=2D|tntn+1stn+1ΔG(u(ξ))𝑑W(ξ)𝑑s|2𝑑𝐱+18en+1enL22\displaystyle=2\int_{D}\bigg{|}\int_{t_{n}}^{t_{n+1}}\int_{s}^{t_{n+1}}\Delta G(u(\xi))\,dW(\xi)\,ds\bigg{|}^{2}\,d{\bf x}+\frac{1}{8}\|e^{n+1}-e^{n}\|^{2}_{L^{2}}
2D(tntn+1|stn+1ΔG(u(ξ))𝑑W(ξ)|𝑑s)2𝑑x+18en+1enL22\displaystyle\leq 2\int_{D}\bigg{(}\int_{t_{n}}^{t_{n+1}}\bigg{|}\int_{s}^{t_{n+1}}\Delta G(u(\xi))\,dW(\xi)\bigg{|}\,ds\bigg{)}^{2}\,d{x}+\frac{1}{8}\|e^{n+1}-e^{n}\|^{2}_{L^{2}}
2τDtntn+1|stn+1ΔG(u(ξ))𝑑W(ξ)|2𝑑s𝑑x+18en+1enL22\displaystyle\leq 2\tau\int_{D}\int_{t_{n}}^{t_{n+1}}\bigg{|}\int_{s}^{t_{n+1}}\Delta G(u(\xi))\,dW(\xi)\bigg{|}^{2}\,ds\,d{x}+\frac{1}{8}\|e^{n+1}-e^{n}\|^{2}_{L^{2}}
=2τtntn+1stn+1ΔG(u(ξ))𝑑W(ξ)L22𝑑s+18en+1enL22.\displaystyle=2\tau\int_{t_{n}}^{t_{n+1}}\bigg{\|}\int_{s}^{t_{n+1}}\Delta G(u(\xi))\,dW(\xi)\bigg{\|}^{2}_{L^{2}}\,ds+\frac{1}{8}\|e^{n+1}-e^{n}\|^{2}_{L^{2}}.

By using the Itô isometry we have

(3.18) 𝔼[𝙸𝟸]=𝔼[𝙸𝟸𝚊]\displaystyle\mathbb{E}[{\tt I_{2}}]=\mathbb{E}[{\tt I_{2a}}] Cτ3supξ[0,T]𝔼[u(ξ)H22]+18𝔼[en+1enL22]\displaystyle\leq C\tau^{3}\sup_{\xi\in[0,T]}\mathbb{E}[\|u(\xi)\|^{2}_{H^{2}}]+\frac{1}{8}\mathbb{E}[\|e^{n+1}-e^{n}\|^{2}_{L^{2}}]
Cτ3+18𝔼[en+1enL22].\displaystyle\leq C\tau^{3}+\frac{1}{8}\mathbb{E}[\|e^{n+1}-e^{n}\|^{2}_{L^{2}}].

Similarly, we can estimate II as follows.

(3.19) 𝙸𝙸\displaystyle{\tt II} =tntn+1(F(u(tn+1))F(u(s))stn+1DF(u(s))G(u(ξ))dW(ξ),\displaystyle=-\int_{t_{n}}^{t_{n+1}}\Bigl{(}F(u(t_{n+1}))-F(u(s))-\int_{s}^{t_{n+1}}DF(u(s))G(u(\xi))\,dW(\xi),
en+1)dstntn+1(stn+1DF(u(s))G(u(ξ))dW(ξ),en+1)ds\displaystyle\qquad e^{n+1}\Bigr{)}\,ds-\int_{t_{n}}^{t_{n+1}}\Bigl{(}\int_{s}^{t_{n+1}}DF(u(s))G(u(\xi))\,dW(\xi),e^{n+1}\Bigr{)}\,ds
:=𝙸𝙸𝟷+𝙸𝙸𝟸.\displaystyle:={\tt II_{1}+II_{2}}.

By using Lemma 1 (iv)(iv) and Poincaré’s inequality, we obtain

(3.20) 𝔼[𝙸𝙸𝟷]\displaystyle\mathbb{E}[{\tt II_{1}}] Cτ1+2(1ϵ)+τ4𝔼[en+1L22].\displaystyle\leq C\tau^{1+2(1-\epsilon)}+\frac{\tau}{4}\mathbb{E}\bigl{[}\|\nabla e^{n+1}\|^{2}_{L^{2}}\bigr{]}.

To estimate 𝙸𝙸𝟸{\tt II_{2}}, we use the same techniques from estimating 𝙸𝟸{\tt I_{2}} and also use (2.9), we obtain

𝔼[𝙸𝙸𝟸]\displaystyle\mathbb{E}[{\tt II_{2}}] =𝔼[tntn+1(stn+1DF(u(s))G(u(ξ))𝑑W(ξ),en+1en)𝑑s]\displaystyle=-\mathbb{E}\Bigl{[}\int_{t_{n}}^{t_{n+1}}\Bigl{(}\int_{s}^{t_{n+1}}DF(u(s))G(u(\xi))\,dW(\xi),e^{n+1}-e^{n}\Bigr{)}\,ds\Bigr{]}
C𝔼[tntn+1stn+1DF(u(s))G(u(ξ))𝑑W(ξ)𝑑sL22]+18𝔼[en+1enL22]\displaystyle\leq C\mathbb{E}\Bigl{[}\Bigl{\|}\int_{t_{n}}^{t_{n+1}}\int_{s}^{t_{n+1}}DF(u(s))G(u(\xi))\,dW(\xi)\,ds\Bigr{\|}^{2}_{L^{2}}\Bigr{]}+\frac{1}{8}\mathbb{E}\bigl{[}\|e^{n+1}-e^{n}\|^{2}_{L^{2}}\bigr{]}
C𝔼[D(tntn+1|stn+1DF(u(s))G(u(ξ))dW(ξ)|ds)2dx]\displaystyle\leq C\mathbb{E}\Bigl{[}\int_{D}\Bigl{(}\int_{t_{n}}^{t_{n+1}}\Bigl{|}\int_{s}^{t_{n+1}}DF(u(s))G(u(\xi))\,dW(\xi)\Bigr{|}\,ds\Bigr{)}^{2}\,dx\Bigr{]}
+18𝔼[en+1enL22]\displaystyle\qquad+\frac{1}{8}\mathbb{E}\bigl{[}\|e^{n+1}-e^{n}\|^{2}_{L^{2}}\bigr{]}
Cτ𝔼[Dtntn+1|stn+1DF(u(s))G(u(ξ))dW(ξ)|2dsdx]\displaystyle\leq C\tau\mathbb{E}\Bigl{[}\int_{D}\int_{t_{n}}^{t_{n+1}}\Bigl{|}\int_{s}^{t_{n+1}}DF(u(s))G(u(\xi))\,dW(\xi)\Big{|}^{2}\,ds\,dx\Bigr{]}
+18𝔼[en+1enL22]\displaystyle\qquad+\frac{1}{8}\mathbb{E}\bigl{[}\|e^{n+1}-e^{n}\|^{2}_{L^{2}}\bigr{]}
=Cτ𝔼[tntn+1stn+1DF(u(s))G(u(ξ))𝑑W(ξ)L22𝑑s]+18𝔼[en+1enL22]\displaystyle=C\tau\mathbb{E}\Bigl{[}\int_{t_{n}}^{t_{n+1}}\Bigl{\|}\int_{s}^{t_{n+1}}DF(u(s))G(u(\xi))\,dW(\xi)\Bigr{\|}^{2}_{L^{2}}\,ds\Bigr{]}+\frac{1}{8}\mathbb{E}\bigl{[}\|e^{n+1}-e^{n}\|^{2}_{L^{2}}\bigr{]}
=Cτ𝔼[tntn+1stn+1DF(u(s))G(u(ξ))L22𝑑ξ𝑑s]+18𝔼[en+1enL22]\displaystyle=C\tau\mathbb{E}\Bigl{[}\int_{t_{n}}^{t_{n+1}}\int_{s}^{t_{n+1}}\|DF(u(s))G(u(\xi))\|^{2}_{L^{2}}\,d\xi\,ds\Bigr{]}+\frac{1}{8}\mathbb{E}\bigl{[}\|e^{n+1}-e^{n}\|^{2}_{L^{2}}\bigr{]}
Cτ3(sups[0,T]𝔼[u(s)L4(q1)4(q1)])1/2(supξ[0,T]𝔼[u(ξ)H14])1/2\displaystyle\leq C\tau^{3}\Bigl{(}\sup_{s\in[0,T]}\mathbb{E}\bigl{[}\|u(s)\|^{4(q-1)}_{L^{4(q-1)}}\bigr{]}\Bigr{)}^{1/2}\Bigl{(}\sup_{\xi\in[0,T]}\mathbb{E}\bigl{[}\|u(\xi)\|^{4}_{H^{1}}\bigr{]}\Bigr{)}^{1/2}
+18𝔼[en+1enL22]\displaystyle\qquad+\frac{1}{8}\mathbb{E}\bigl{[}\|e^{n+1}-e^{n}\|^{2}_{L^{2}}\bigr{]}
Cτ3+18𝔼[en+1enL22].\displaystyle\leq C\tau^{3}+\frac{1}{8}\mathbb{E}\bigl{[}\|e^{n+1}-e^{n}\|^{2}_{L^{2}}\bigr{]}.

To estimate 𝙸𝙸𝙸{\tt III}, we use the one-sided Lipschitz condition (2.7) as follows.

(3.21) 𝔼[𝙸𝙸𝙸]\displaystyle\mathbb{E}[{\tt III}] Cτ𝔼[en+1L22]\displaystyle\leq C\tau\mathbb{E}\bigl{[}\|e^{n+1}\|^{2}_{L^{2}}\bigr{]}
Cτ𝔼[en+1enL22]+Cτ𝔼[enL22].\displaystyle\leq C\tau\mathbb{E}\bigl{[}\|e^{n+1}-e^{n}\|^{2}_{L^{2}}\bigr{]}+C\tau\mathbb{E}\bigl{[}\|e^{n}\|^{2}_{L^{2}}\bigr{]}.

To estimate IV, using Lemma 2, the Itô isometry and the martingale property of Itô integrals we have

(3.22) 𝔼[𝙸𝚅]\displaystyle\mathbb{E}[{\tt IV}] =𝔼[tntn+1(G(u(s))𝒢(s;un),en+1en)𝑑W(s)]\displaystyle=\mathbb{E}\Bigl{[}\int_{t_{n}}^{t_{n+1}}\bigl{(}G(u(s))-\mathcal{G}(s;u^{n}),e^{n+1}-e^{n}\bigr{)}\,dW(s)\Bigr{]}
+𝔼[tntn+1(G(u(s))𝒢(s;un),en)𝑑W(s)]\displaystyle\qquad+\mathbb{E}\Bigl{[}\int_{t_{n}}^{t_{n+1}}\bigl{(}G(u(s))-\mathcal{G}(s;u^{n}),e^{n}\bigr{)}\,dW(s)\Bigr{]}
=𝔼[tntn+1(G(u(s))𝒢(s;un),en+1en)𝑑W(s)]+0\displaystyle=\mathbb{E}\Bigl{[}\int_{t_{n}}^{t_{n+1}}\bigl{(}G(u(s))-\mathcal{G}(s;u^{n}),e^{n+1}-e^{n}\bigr{)}\,dW(s)\Bigr{]}+0
=𝔼[tntn+1(G(u(s))𝒢(s;u(tn)),en+1en)𝑑W(s)]\displaystyle=\mathbb{E}\Bigl{[}\int_{t_{n}}^{t_{n+1}}\bigl{(}G(u(s))-\mathcal{G}(s;u(t_{n})),e^{n+1}-e^{n}\bigr{)}\,dW(s)\Bigr{]}
+𝔼[tntn+1(𝒢(s;u(tn))𝒢(s;un),en+1en)𝑑W(s)]\displaystyle\qquad+\mathbb{E}\Bigl{[}\int_{t_{n}}^{t_{n+1}}\bigl{(}\mathcal{G}(s;u(t_{n}))-\mathcal{G}(s;u^{n}),e^{n+1}-e^{n}\bigr{)}\,dW(s)\Bigr{]}
C𝔼[tntn+1(G(u(s))𝒢(s;u(tn)))𝑑W(s)L22]\displaystyle\leq C\mathbb{E}\Bigl{[}\Bigl{\|}\int_{t_{n}}^{t_{n+1}}\bigl{(}G(u(s))-\mathcal{G}(s;u(t_{n}))\bigr{)}\,dW(s)\Bigr{\|}^{2}_{L^{2}}\Bigr{]}
+C𝔼[tntn+1(𝒢(s;u(tn))𝒢(s;un))𝑑W(s)L22]\displaystyle\qquad+C\mathbb{E}\Bigl{[}\Bigl{\|}\int_{t_{n}}^{t_{n+1}}\bigl{(}\mathcal{G}(s;u(t_{n}))-\mathcal{G}(s;u^{n})\bigr{)}\,dW(s)\Bigr{\|}^{2}_{L^{2}}\Bigr{]}
+18𝔼[en+1enL22]\displaystyle\qquad+\frac{1}{8}\mathbb{E}\bigl{[}\|e^{n+1}-e^{n}\|^{2}_{L^{2}}\bigr{]}
=C𝔼[tntn+1G(u(s))𝒢(s;u(tn))L22𝑑s]\displaystyle=C\mathbb{E}\Bigl{[}\int_{t_{n}}^{t_{n+1}}\|G(u(s))-\mathcal{G}(s;u(t_{n}))\|^{2}_{L^{2}}\,ds\Bigr{]}
+C𝔼[tntn+1𝒢(s;u(tn))𝒢(s;un)L22𝑑s]\displaystyle\qquad+C\mathbb{E}\Bigl{[}\int_{t_{n}}^{t_{n+1}}\|\mathcal{G}(s;u(t_{n}))-\mathcal{G}(s;u^{n})\|^{2}_{L^{2}}\,ds\Bigr{]}
+18𝔼[en+1enL22]\displaystyle\qquad+\frac{1}{8}\mathbb{E}\bigl{[}\|e^{n+1}-e^{n}\|^{2}_{L^{2}}\bigr{]}
Cτ1+2(1ϵ)+Cτ𝔼[enL22]+18𝔼[en+1enL22].\displaystyle\leq C\tau^{1+2(1-\epsilon)}+C\tau\mathbb{E}\bigl{[}\|e^{n}\|^{2}_{L^{2}}\bigr{]}+\frac{1}{8}\mathbb{E}\bigl{[}\|e^{n+1}-e^{n}\|^{2}_{L^{2}}\bigr{]}.

Now, we substitute all the estimates from I, II, III, IV into (3.13) and use the left side to absorb the like-terms from the right side of the resulting inequality. In summary, we obtain

(3.23) 12𝔼[en+1L22enL22]+(18Cτ)𝔼[en+1enL22]+τ2𝔼[en+1L22]\displaystyle\frac{1}{2}\mathbb{E}\bigl{[}\|e^{n+1}\|^{2}_{L^{2}}-\|e^{n}\|^{2}_{L^{2}}\bigr{]}+\Bigl{(}\frac{1}{8}-C\tau\Bigr{)}\mathbb{E}\bigl{[}\|e^{n+1}-e^{n}\|^{2}_{L^{2}}\bigr{]}+\frac{\tau}{2}\mathbb{E}\bigl{[}\|\nabla e^{n+1}\|^{2}_{L^{2}}\bigr{]}
Cτ1+2(1ϵ)+Cτ𝔼[enL22]+Cτ3.\displaystyle\leq C\tau^{1+2(1-\epsilon)}+C\tau\mathbb{E}\bigl{[}\|e^{n}\|^{2}_{L^{2}}\bigr{]}+C\tau^{3}.

We choose ττ0\tau\leq\tau_{0} ( for τ0\tau_{0} small enough) such that 18Cτ0\frac{1}{8}-C\tau\geq 0, so the middle term on the left side of (3.23) is nonnegtive.

Next, applying the summation n=0m\sum_{n=0}^{m} for 0m<N0\leq m<N, we obtain

(3.24) 𝔼[em+1L22]+τn=0m𝔼[en+1L22]Cτ2(1ϵ)+Cτn=0m𝔼[enL22].\displaystyle\mathbb{E}\bigl{[}\|e^{m+1}\|^{2}_{L^{2}}\bigr{]}+\tau\sum_{n=0}^{m}\mathbb{E}\bigl{[}\|\nabla e^{n+1}\|^{2}_{L^{2}}\bigr{]}\leq C\tau^{2(1-\epsilon)}+C\tau\sum_{n=0}^{m}\mathbb{E}\bigl{[}\|e^{n}\|^{2}_{L^{2}}\bigr{]}.

By using the discrete Gronwall’s inequality and taking supremum over all 0m<M0\leq m<M, we arrive at

(3.25) sup1nN𝔼[enL22]+τn=1N𝔼[enL22]CeCTτ2(1ϵ).\displaystyle\sup_{1\leq n\leq N}\mathbb{E}\bigl{[}\|e^{n}\|^{2}_{L^{2}}\bigr{]}+\tau\sum_{n=1}^{N}\mathbb{E}\bigl{[}\|\nabla e^{n}\|^{2}_{L^{2}}\bigr{]}\leq Ce^{CT}\tau^{2(1-\epsilon)}.

The proof is complete.

4 Fully discrete finite element discretization

In this section, we consider the 𝒫1\mathcal{P}_{1}-Lagrangian finite element space

(4.1) Vh={vhH01(𝒟):vh|K𝒫1(K)K𝒯h},\displaystyle V_{h}=\bigl{\{}v_{h}\in H_{0}^{1}(\mathcal{D}):v_{h}|_{K}\in\mathcal{P}_{1}(K)\quad\forall K\in\mathcal{T}_{h}\bigr{\}},

where 𝒫1\mathcal{P}_{1} denotes the space of all linear polynomials. Then the finite element approximation of Algorithm 1 is presented in Algorithm 2 as below.

Algorithm 2

We seek an tn\mathcal{F}_{t_{n}} adapted VhV_{h}-valued process {uhn}n=1N\{u_{h}^{n}\}_{n=1}^{N} such that it holds \mathbb{P}-almost surely that

(4.2) (uhn+1uhn,vh)+τ(uhn+1,vh)=τ(IhFn+1,vh)\displaystyle(u^{n+1}_{h}-u^{n}_{h},v_{h})+\tau(\nabla u^{n+1}_{h},\nabla v_{h})=\tau(I_{h}F^{n+1},v_{h})
+(G(uhn),vh)ΔWn+12DG(uhn)G(uhn)[(ΔWn)2τ],vh)vhVh,\displaystyle\quad+(G(u^{n}_{h}),v_{h})\,\Delta W_{n}+\frac{1}{2}DG(u_{h}^{n})\,G(u_{h}^{n})\bigl{[}(\Delta W_{n})^{2}-\tau\bigr{]},v_{h}\bigr{)}\qquad\forall\,v_{h}\in V_{h},

where Fn+1:=uhn+1(uhn+1)qF^{n+1}:=u^{n+1}_{h}-(u^{n+1}_{h})^{q}, ΔWn=W(tn+1)W(tn)𝒩(0,τ){\Delta}W_{n}=W(t_{n+1})-W(t_{n})\sim\mathcal{N}(0,\tau), and IhI_{h} is the standard nodal value interpolation operator Ih:C(𝒟¯)VhI_{h}:C(\bar{\mathcal{D}})\longrightarrow V_{h}, i.e.,

(4.3) Ihv:=i=1Nhv(ai)φi,I_{h}v:=\sum_{i=1}^{N_{h}}v(a_{i})\varphi_{i},

where NhN_{h} denotes the number of vertices of the triangulation 𝒯h\mathcal{T}_{h}, and φi{\varphi_{i}} denotes the nodal basis function of VhV_{h} corresponding to the vertex aia_{i}. The initial condition is chosen by uh0=Phu0u_{h}^{0}=P_{h}u_{0} where Ph:L2(𝒟)VhP_{h}:L^{2}(\mathcal{D})\longrightarrow V_{h} is the L2L^{2}-projection operator defined by

(Phw,vh)=(w,vh)vhVh.\displaystyle\bigl{(}P_{h}w,v_{h}\bigr{)}=(w,v_{h})\qquad v_{h}\in V_{h}.

For each wHs(𝒟)w\in H^{s}(\mathcal{D}) for s>32s>\frac{3}{2}, the following error estimates about the L2L^{2}-projection can be found in [3, 7]:

(4.4) wPhwL2+h(wPhw)L2Chmin{2,s}wHs,\displaystyle\|w-P_{h}w\|_{L^{2}}+h\|\nabla(w-P_{h}w)\|_{L^{2}}\leq Ch^{\min\{2,s\}}\|w\|_{H^{s}},
(4.5) wPhwLCh2d2wH2.\displaystyle\|w-P_{h}w\|_{L^{\infty}}\leq Ch^{2-\frac{d}{2}}\|w\|_{H^{2}}.

Finally, given vhVhv_{h}\in{V}_{h}, the discrete Laplace operator Δh:VhVh\Delta_{h}:{V}_{h}\longrightarrow{V}_{h} is defined by

(4.6) (Δhvh,wh)=(vh,wh)whVh.(\Delta_{h}v_{h},w_{h})=-(\nabla v_{h},\nabla w_{h})\qquad\forall\,w_{h}\in V_{h}.

4.1 Stability estimates for the pp-th moment of the H1H^{1}-seminorm of uhnu_{h}^{n}

First, we shall prove the second moment discrete H1H^{1}-seminorm stability result, which is necessary to establish the corresponding higher moment stability result.

Theorem 5.

Under the mesh constraint (2.1), we have

(4.7) sup0nN𝔼[uhnL22]\displaystyle\sup_{0\leq n\leq N}\mathbb{E}\left[\|\nabla u^{n}_{h}\|_{L^{2}}^{2}\right] +14n=0N1𝔼[(uhn+1uhn)L22]\displaystyle+\frac{1}{4}\sum_{n=0}^{N-1}\mathbb{E}\left[\|\nabla(u^{n+1}_{h}-u^{n}_{h})\|_{L^{2}}^{2}\right]
+τn=0N1𝔼[ΔhuhnL22]C.\displaystyle\quad+\tau\sum_{n=0}^{N-1}\mathbb{E}\left[\|\Delta_{h}u_{h}^{n}\|_{L^{2}}^{2}\right]\leq C.
Proof.

Testing (4.2) with Δhuhn+1-\Delta_{h}u_{h}^{n+1}. Then

(4.8) (uhn+1uhn,Δhuhn+1)+τ(uhn+1,Δhuhn+1)\displaystyle(u^{n+1}_{h}-u^{n}_{h},-\Delta_{h}u_{h}^{n+1})+\tau(\nabla u^{n+1}_{h},-\nabla\Delta_{h}u_{h}^{n+1})
=τ(IhFn+1,Δhuhn+1)+(G(uhn),Δhuhn+1)ΔWn+1\displaystyle\quad=\tau(I_{h}F^{n+1},-\Delta_{h}u_{h}^{n+1})+(G(u^{n}_{h}),-\Delta_{h}u_{h}^{n+1})\,\Delta W_{n+1}
+(12DG(uhn)G(uhn)((ΔWn)2τ),Δhuhn+1).\displaystyle\qquad\qquad+\bigl{(}\frac{1}{2}DG(u_{h}^{n})\,G(u_{h}^{n})((\Delta W_{n})^{2}-\tau),-\Delta_{h}u_{h}^{n+1}\bigr{)}.

Using the definition of the discrete Laplace operator and the simple identity 2a(ab)=a2b2+(ab)22a(a-b)=a^{2}-b^{2}+(a-b)^{2}, we get

(4.9) (uhn+1uhn,Δhuhn+1)\displaystyle(u^{n+1}_{h}-u^{n}_{h},-\Delta_{h}u_{h}^{n+1}) =12uhn+1L2212uhnL22\displaystyle=\frac{1}{2}\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}-\frac{1}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2}
+12(uhn+1uhn)L22,\displaystyle\qquad+\frac{1}{2}\|\nabla(u^{n+1}_{h}-u^{n}_{h})\|_{L^{2}}^{2},
(4.10) τ(uhn+1,Δhuhn+1)\displaystyle\tau(\nabla u^{n+1}_{h},-\nabla\Delta_{h}u_{h}^{n+1}) =τΔhuhn+1L22.\displaystyle=\tau\|\Delta_{h}u_{h}^{n+1}\|_{L^{2}}^{2}.

The expectation of the second term on the right-hand side of (4.8) can be bounded by

(4.11) 𝔼[(G(uhn),Δhuhn+1)ΔWn]\displaystyle\mathbb{E}[(G(u^{n}_{h}),-\Delta_{h}u_{h}^{n+1})\,\Delta W_{n}] =𝔼[((PhG(uhn)),(uhn+1uhn))ΔWn]\displaystyle=\mathbb{E}[(\nabla(P_{h}G(u^{n}_{h})),\nabla(u_{h}^{n+1}-u^{n}_{h}))\,{\Delta}W_{n}]
Cτ𝔼[uhnL22]+14𝔼[(uhn+1uhn)L22].\displaystyle\leq C\tau\mathbb{E}[\|\nabla u^{n}_{h}\|_{L^{2}}^{2}]+\frac{1}{4}\mathbb{E}[\|\nabla(u_{h}^{n+1}-u^{n}_{h})\|_{L^{2}}^{2}].

The expectation of the third term on the right-hand side of (4.8) can be bounded by

(4.12) 12𝔼[(DG(uhn)G(uhn)((ΔWn)2τ),Δhuhn+1)]\displaystyle\frac{1}{2}\mathbb{E}[(DG(u_{h}^{n})\,G(u_{h}^{n})((\Delta W_{n})^{2}-\tau),-\Delta_{h}u_{h}^{n+1})]
=\displaystyle= 12𝔼[((Ph(DG(uhn)G(uhn))),(uhn+1uhn))((ΔWn)2τ)]\displaystyle\frac{1}{2}\mathbb{E}[(\nabla(P_{h}(DG(u_{h}^{n})\,G(u_{h}^{n}))),\nabla(u_{h}^{n+1}-u^{n}_{h}))\,((\Delta W_{n})^{2}-\tau)]
\displaystyle\leq Cτ2𝔼[uhnL22]+14𝔼[(uhn+1uhn)L22],\displaystyle C\tau^{2}\mathbb{E}[\|\nabla u^{n}_{h}\|_{L^{2}}^{2}]+\frac{1}{4}\mathbb{E}[\|\nabla(u_{h}^{n+1}-u^{n}_{h})\|_{L^{2}}^{2}],

where the last inequality is obtained by using the assumption (A2). Notice that the stability in the H1H^{1}-seminorm of the L2L^{2}-projection (see [2]) is used in the inequalities of (4.11) and (4.12).

For the first term on the right-hand side of (4.8) since it cannot be treated as a bad term, which aligns with the continuous case. Denote ui=uhn+1(ai)u_{i}=u_{h}^{n+1}(a_{i}), and then

(4.13) τ(IhFn+1,Δhuhn+1)\displaystyle\tau(I_{h}F^{n+1},-\Delta_{h}u_{h}^{n+1}) =τuhn+1L22τ(i=1Nhuiqφi,j=1Nhujφj)\displaystyle=\tau\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}-\tau(\nabla\sum_{i=1}^{N_{h}}u_{i}^{q}\varphi_{i},\nabla\sum_{j=1}^{N_{h}}u_{j}\varphi_{j})
=τuhn+1L22τi,j=1Nh(uiqφi,ujφj)\displaystyle=\tau\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}-\tau\sum_{i,j=1}^{N_{h}}(u_{i}^{q}\nabla\varphi_{i},u_{j}\nabla\varphi_{j})
=τuhn+1L22τi,j=1Nhbij(φi,φj),\displaystyle=\tau\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}-\tau\sum_{i,j=1}^{N_{h}}b_{ij}(\nabla\varphi_{i},\nabla\varphi_{j}),

where bij=uiqujb_{ij}=u_{i}^{q}u_{j}.

Using Young’s inequality when iji\neq j, we have

(4.14) |bij|qq+1uiq+1+1q+1ujq+1.\displaystyle|b_{ij}|\leq\frac{q}{q+1}u_{i}^{q+1}+\frac{1}{q+1}u_{j}^{q+1}.

Besides, since the stiffness matrix is diagonally dominant, we have

(4.15) τi,j=1Nhbij(φi,φj)\displaystyle-\tau\sum_{i,j=1}^{N_{h}}b_{ij}(\nabla\varphi_{i},\nabla\varphi_{j}) τk=1Nhbkk[(φk,φk)qq+1i=1,ikNh|(φi,φk)|\displaystyle\leq-\tau\sum_{k=1}^{N_{h}}b_{kk}[(\nabla\varphi_{k},\nabla\varphi_{k})-\frac{q}{q+1}\sum_{i=1,\atop i\neq k}^{N_{h}}|(\nabla\varphi_{i},\nabla\varphi_{k})|
1q+1j=1,jkNh|(φk,φj)|]\displaystyle\quad-\frac{1}{q+1}\sum_{j=1,\atop j\neq k}^{N_{h}}|(\nabla\varphi_{k},\nabla\varphi_{j})|]
τk=1Nhbkk[(φk,φk)i=1,ikNh(φi,φk)]\displaystyle\leq-\tau\sum_{k=1}^{N_{h}}b_{kk}[(\nabla\varphi_{k},\nabla\varphi_{k})-\sum_{i=1,\atop i\neq k}^{N_{h}}(\nabla\varphi_{i},\nabla\varphi_{k})]
0.\displaystyle\leq 0.

Then we have

(4.16) τ(IhFn+1,Δhuhn+1)τuhn+1L22.\displaystyle\tau(I_{h}F^{n+1},-\Delta_{h}u_{h}^{n+1})\leq\tau\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}.

Combining (4.8)–(4.11) and (4.16), and taking the summation, we have

(4.17) 12𝔼[uhL22]+14n=01𝔼[(uhn+1uhn)L22]+τn=01𝔼[Δhuhn+1L22]\displaystyle\frac{1}{2}\mathbb{E}\left[\|\nabla u^{\ell}_{h}\|_{L^{2}}^{2}\right]+\frac{1}{4}\sum_{n=0}^{\ell-1}\mathbb{E}\left[\|\nabla(u^{n+1}_{h}-u^{n}_{h})\|_{L^{2}}^{2}\right]+\tau\sum_{n=0}^{\ell-1}\mathbb{E}\left[\|\Delta_{h}u_{h}^{n+1}\|_{L^{2}}^{2}\right]
Cτn=01𝔼[uhnL22].\displaystyle\quad\leq C\tau\sum_{n=0}^{\ell-1}\mathbb{E}[\|\nabla u^{n}_{h}\|_{L^{2}}^{2}].

Using Gronwall’s inequality, we obtain (4.7). ∎

Before we establish the error estimates, we need to prove the stability of the higher moments for the H1H^{1}-seminorm of the numerical solution.

Theorem 6.

Suppose the mesh assumption (2.1) holds. Then for any p2p\geq 2,

sup0nM𝔼[uhnL2p]C.\displaystyle\sup_{0\leq n\leq M}\mathbb{E}\left[\|\nabla u^{n}_{h}\|_{L^{2}}^{p}\right]\leq C.
Proof.

The proof is divided into three steps. In Step 1, we establish the bound for 𝔼uhL24\mathbb{E}\|\nabla u^{\ell}_{h}\|_{L^{2}}^{4}. In Step 2, we give the bound for 𝔼uhL2p\mathbb{E}\|\nabla u^{\ell}_{h}\|_{L^{2}}^{p}, where p=2rp=2^{r} and rr is an arbitrary positive integer. In Step 3, we obtain the bound for 𝔼uhL2p\mathbb{E}\|\nabla u^{\ell}_{h}\|_{L^{2}}^{p}, where pp is an arbitrary real number and p2p\geq 2.

Step 1. Based on (4.8)–(4.16), we have

(4.18) 12uhn+1L2212uhnL22+12(uhn+1uhn)L22+τΔhuhn+1L22\displaystyle\frac{1}{2}\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}-\frac{1}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla(u^{n+1}_{h}-u^{n}_{h})\|_{L^{2}}^{2}+\tau\|\Delta_{h}u_{h}^{n+1}\|_{L^{2}}^{2}
(G(uhn),Δhuhn+1)ΔWn12(DG(uhn)G(uhn)((ΔWn)2τ),Δhuhn+1)\displaystyle-(G(u^{n}_{h}),-\Delta_{h}u_{h}^{n+1})\,\Delta W_{n}-\frac{1}{2}\bigl{(}DG(u_{h}^{n})\,G(u_{h}^{n})((\Delta W_{n})^{2}-\tau),-\Delta_{h}u_{h}^{n+1}\bigr{)}
τuhn+1L22.\displaystyle\leq\tau\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}.

Note the following identity

(4.19) uhn+1L22+12uhnL22\displaystyle\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2} =34(uhn+1L22+uhnL22)\displaystyle=\frac{3}{4}(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}+\|\nabla u^{n}_{h}\|_{L^{2}}^{2})
+14(uhn+1L22uhnL22).\displaystyle\quad+\frac{1}{4}(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}-\|\nabla u^{n}_{h}\|_{L^{2}}^{2}).

Multiplying (4.18) by uhn+1L22+12uhnL22\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2}, we obtain

(4.20) 38(uhn+1L24uhnL24)+18(uhn+1L22uhnL22)2\displaystyle\frac{3}{8}(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{4}-\|\nabla u^{n}_{h}\|_{L^{2}}^{4})+\frac{1}{8}(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}-\|\nabla u^{n}_{h}\|_{L^{2}}^{2})^{2}
+(12(uhn+1uhn)L22+τΔhuhn+1L22)(uhn+1L22+12uhnL22)\displaystyle\quad+(\frac{1}{2}\|\nabla(u^{n+1}_{h}-u^{n}_{h})\|_{L^{2}}^{2}+\tau\|\Delta_{h}u_{h}^{n+1}\|_{L^{2}}^{2})(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2})
τuhn+1L22(uhn+1L22+12uhnL22)\displaystyle\leq\tau\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2})
+(G(uhn),Δhuhn+1)ΔWn(uhn+1L22+12uhnL22)\displaystyle\quad+(G(u^{n}_{h}),-\Delta_{h}u_{h}^{n+1})\,{\Delta}W_{n}(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2})
+12(DG(uhn)G(uhn)((ΔWn)2τ),Δhuhn+1)(uhn+1L22+12uhnL22).\displaystyle\quad+\frac{1}{2}\bigl{(}DG(u_{h}^{n})\,G(u_{h}^{n})((\Delta W_{n})^{2}-\tau),-\Delta_{h}u_{h}^{n+1}\bigr{)}(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2}).

The first term on the right-hand side of (4.20) can be written as

(4.21) τuhn+1L22(uhn+1L22+12uhnL22)\displaystyle\tau\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2})
=τuhn+1L22(32uhn+1L2212(uhn+1L22uhnL22))\displaystyle\quad=\tau\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}(\frac{3}{2}\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}-\frac{1}{2}(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}-\|\nabla u^{n}_{h}\|_{L^{2}}^{2}))
Cτuhn+1L24+θ1(uhn+1L22uhnL22)2,\displaystyle\quad\leq C\tau\|\nabla u^{n+1}_{h}\|_{L^{2}}^{4}+\theta_{1}(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}-\|\nabla u^{n}_{h}\|_{L^{2}}^{2})^{2},

where θ1>0\theta_{1}>0 will be determined later.

The second term on the right-hand side of (4.20) can be written as

(4.22) (G(uhn),Δhuhn+1)ΔWn(uhn+1L22+12uhnL22)\displaystyle(G(u^{n}_{h}),-\Delta_{h}u_{h}^{n+1})\,{\Delta}W_{n}(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2})
=(PhG(uhn),uhn+1)ΔWn(uhn+1L22+12uhnL22)\displaystyle\quad=(\nabla P_{h}G(u^{n}_{h}),\nabla u_{h}^{n+1})\,{\Delta}W_{n}(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2})
=((PhG(uhn),uhn+1uhn)ΔWn\displaystyle\quad=((\nabla P_{h}G(u^{n}_{h}),\nabla u_{h}^{n+1}-\nabla u_{h}^{n}){\Delta}W_{n}
+(PhG(uhn),uhn)ΔWn)(uhn+1L22+12uhnL22)\displaystyle\qquad+(\nabla P_{h}G(u^{n}_{h}),\nabla u_{h}^{n}){\Delta}W_{n})(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2})
(14uhn+1uhnL22+CuhnL22(ΔWn)2\displaystyle\quad\leq(\frac{1}{4}\|\nabla u_{h}^{n+1}-\nabla u_{h}^{n}\|_{L^{2}}^{2}+C\|\nabla u_{h}^{n}\|_{L^{2}}^{2}({\Delta}W_{n})^{2}
+(PhG(uhn),uhn)ΔWn)(uhn+1L22+12uhnL22).\displaystyle\qquad+(\nabla P_{h}G(u^{n}_{h}),\nabla u_{h}^{n}){\Delta}W_{n})(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2}).

For the right-hand side of (4.22), using the Cauchy-Schwarz inequality, we get

(4.23) CuhnL22(ΔWn)2(uhn+1L22+12uhnL22)\displaystyle C\|\nabla u_{h}^{n}\|_{L^{2}}^{2}({\Delta}W_{n})^{2}(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2})
=CuhnL22(ΔWn)2(uhn+1L22uhnL22+32uhnL22)\displaystyle\quad=C\|\nabla u_{h}^{n}\|_{L^{2}}^{2}({\Delta}W_{n})^{2}(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}-\|\nabla u^{n}_{h}\|_{L^{2}}^{2}+\frac{3}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2})
θ2(uhn+1L22uhnL22)2+CuhnL24(ΔWn)4\displaystyle\quad\leq\theta_{2}(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}-\|\nabla u^{n}_{h}\|_{L^{2}}^{2})^{2}+C\|\nabla u_{h}^{n}\|_{L^{2}}^{4}({\Delta}W_{n})^{4}
+CuhnL24(ΔWn)2,\displaystyle\qquad+C\|\nabla u_{h}^{n}\|_{L^{2}}^{4}({\Delta}W_{n})^{2},

where θ2>0\theta_{2}>0 will be determined later.

Similarly, using the Cauchy-Schwarz inequality, we have

(4.24) (PhG(uhn),uhn)ΔWn(uhn+1L22+12uhnL22)\displaystyle(\nabla P_{h}G(u^{n}_{h}),\nabla u_{h}^{n}){\Delta}W_{n}(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2})
=(PhG(uhn),uhn)ΔWn(uhn+1L22uhnL22+32uhnL22)\displaystyle\quad=(\nabla P_{h}G(u^{n}_{h}),\nabla u_{h}^{n}){\Delta}W_{n}(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}-\|\nabla u^{n}_{h}\|_{L^{2}}^{2}+\frac{3}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2})
θ3(uhn+1L22uhnL22)2+CuhnL24(ΔWn)2\displaystyle\quad\leq\theta_{3}(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}-\|\nabla u^{n}_{h}\|_{L^{2}}^{2})^{2}+C\|\nabla u_{h}^{n}\|_{L^{2}}^{4}({\Delta}W_{n})^{2}
+32(PhG(uhn),uhn)ΔWnuhnL22,\displaystyle\qquad+\frac{3}{2}(\nabla P_{h}G(u^{n}_{h}),\nabla u_{h}^{n}){\Delta}W_{n}\|\nabla u^{n}_{h}\|_{L^{2}}^{2},

where θ3>0\theta_{3}>0 will be determined later.

The third term on the right-hand side of (4.20) can be written as

(4.25) 12(DG(uhn)G(uhn)((ΔWn)2τ),Δhuhn+1)(uhn+1L22+12uhnL22)\displaystyle\quad\frac{1}{2}\bigl{(}DG(u_{h}^{n})\,G(u_{h}^{n})((\Delta W_{n})^{2}-\tau),-\Delta_{h}u_{h}^{n+1}\bigr{)}(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2})
=12(Ph(DG(uhn)G(uhn))((ΔWn)2τ),(uhn+1uhn))\displaystyle=\frac{1}{2}\bigl{(}\nabla P_{h}(DG(u_{h}^{n})\,G(u_{h}^{n}))((\Delta W_{n})^{2}-\tau),\nabla(u_{h}^{n+1}-u_{h}^{n})\bigr{)}
(uhn+1L22+12uhnL22)+12(Ph(DG(uhn)G(uhn))((ΔWn)2τ),uhn)\displaystyle\quad(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2})+\frac{1}{2}\bigl{(}\nabla P_{h}(DG(u_{h}^{n})\,G(u_{h}^{n}))((\Delta W_{n})^{2}-\tau),\nabla u_{h}^{n}\bigr{)}
(uhn+1L22+12uhnL22)\displaystyle\quad(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2})
(14uhn+1uhnL22+CuhnL22((ΔWn)2τ)2\displaystyle\leq(\frac{1}{4}\|\nabla u_{h}^{n+1}-\nabla u_{h}^{n}\|_{L^{2}}^{2}+C\|\nabla u_{h}^{n}\|_{L^{2}}^{2}((\Delta W_{n})^{2}-\tau)^{2}
+12(Ph(DG(uhn)G(uhn))((ΔWn)2τ),uhn)(uhn+1L22+12uhnL22).\displaystyle\quad+\frac{1}{2}\bigl{(}\nabla P_{h}(DG(u_{h}^{n})\,G(u_{h}^{n}))((\Delta W_{n})^{2}-\tau),\nabla u_{h}^{n}\bigr{)}(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2}).

For the right-hand side of (4.25), using the Cauchy-Schwarz inequality, we get

(4.26) CuhnL22((ΔWn)2τ)2(uhn+1L22+12uhnL22)\displaystyle C\|\nabla u_{h}^{n}\|_{L^{2}}^{2}((\Delta W_{n})^{2}-\tau)^{2}(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2})
=CuhnL22((ΔWn)2τ)2(uhn+1L22uhnL22+32uhnL22)\displaystyle\quad=C\|\nabla u_{h}^{n}\|_{L^{2}}^{2}((\Delta W_{n})^{2}-\tau)^{2}(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}-\|\nabla u^{n}_{h}\|_{L^{2}}^{2}+\frac{3}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2})
θ4(uhn+1L22uhnL22)2+CuhnL24((ΔWn)2τ)4\displaystyle\quad\leq\theta_{4}(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}-\|\nabla u^{n}_{h}\|_{L^{2}}^{2})^{2}+C\|\nabla u_{h}^{n}\|_{L^{2}}^{4}((\Delta W_{n})^{2}-\tau)^{4}
+CuhnL24((ΔWn)2τ)2,\displaystyle\qquad+C\|\nabla u_{h}^{n}\|_{L^{2}}^{4}((\Delta W_{n})^{2}-\tau)^{2},

where θ4>0\theta_{4}>0 will be determined later. Similarly, using the Cauchy-Schwarz inequality, we have

(4.27) (Ph(DG(uhn)G(uhn)),uhn)((ΔWn)2τ)(uhn+1L22+12uhnL22)\displaystyle(\nabla P_{h}(DG(u_{h}^{n})\,G(u_{h}^{n})),\nabla u_{h}^{n})((\Delta W_{n})^{2}-\tau)(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2})
=(Ph(DG(uhn)G(uhn)),uhn)((ΔWn)2τ)(uhn+1L22\displaystyle\quad=(\nabla P_{h}(DG(u_{h}^{n})\,G(u_{h}^{n})),\nabla u_{h}^{n})((\Delta W_{n})^{2}-\tau)(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}
uhnL22+32uhnL22)\displaystyle\qquad-\|\nabla u^{n}_{h}\|_{L^{2}}^{2}+\frac{3}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2})
θ5(uhn+1L22uhnL22)2+CuhnL24((ΔWn)2τ)2\displaystyle\quad\leq\theta_{5}(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}-\|\nabla u^{n}_{h}\|_{L^{2}}^{2})^{2}+C\|\nabla u_{h}^{n}\|_{L^{2}}^{4}((\Delta W_{n})^{2}-\tau)^{2}
+32(Ph(DG(un)G(un)),uhn)((ΔWn)2τ)uhnL22,\displaystyle\qquad+\frac{3}{2}(\nabla P_{h}(DG(u^{n})\,G(u^{n})),\nabla u_{h}^{n})((\Delta W_{n})^{2}-\tau)\|\nabla u^{n}_{h}\|_{L^{2}}^{2},

where θ5>0\theta_{5}>0 will be determined later.

Choosing θ1θ5\theta_{1}\sim\theta_{5} such that θ1++θ3116\theta_{1}+\cdots+\theta_{3}\leq\frac{1}{16}, and then taking the summation over nn from 0 to 1\ell-1 and taking the expectation on both sides of (4.20), we obtain

(4.28) 38𝔼[uhL24]+116n=01𝔼[(uhn+1L22uhnL22)2]\displaystyle\frac{3}{8}\mathbb{E}\left[\|\nabla u^{\ell}_{h}\|_{L^{2}}^{4}\right]+\frac{1}{16}\sum_{n=0}^{\ell-1}\mathbb{E}\left[(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}-\|\nabla u^{n}_{h}\|_{L^{2}}^{2})^{2}\right]
+n=01𝔼[(14(uhn+1uhn)L22+τΔhuhn+1L22)(uhn+1L22+12uhnL22)]\displaystyle+\sum_{n=0}^{\ell-1}\mathbb{E}\left[(\frac{1}{4}\|\nabla(u^{n+1}_{h}-u^{n}_{h})\|_{L^{2}}^{2}+\tau\|\Delta_{h}u_{h}^{n+1}\|_{L^{2}}^{2})(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2})\right]
Cτn=01𝔼[uhn+1L24]+38𝔼[uh0L24]+Cτ2n=01𝔼[uhnL24]\displaystyle\leq C\tau\sum_{n=0}^{\ell-1}\mathbb{E}\left[\|\nabla u^{n+1}_{h}\|_{L^{2}}^{4}\right]+\frac{3}{8}\mathbb{E}\left[\|\nabla u^{0}_{h}\|_{L^{2}}^{4}\right]+C\tau^{2}\sum_{n=0}^{\ell-1}\mathbb{E}\left[\|\nabla u_{h}^{n}\|_{L^{2}}^{4}\right]
+Cτn=01𝔼[uhnL24].\displaystyle+C\tau\sum_{n=0}^{\ell-1}\mathbb{E}\left[\|\nabla u_{h}^{n}\|_{L^{2}}^{4}\right].

When restricting τC\tau\leq C, we have

(4.29) 14𝔼[uhL24]+116n=01𝔼[(uhn+1L22uhnL22)2]\displaystyle\frac{1}{4}\mathbb{E}\left[\|\nabla u^{\ell}_{h}\|_{L^{2}}^{4}\right]+\frac{1}{16}\sum_{n=0}^{\ell-1}\mathbb{E}\left[(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}-\|\nabla u^{n}_{h}\|_{L^{2}}^{2})^{2}\right]
+n=01𝔼[(14(uhn+1uhn)L22+τΔhuhn+1L22)(uhn+1L22+12uhnL22)]\displaystyle+\sum_{n=0}^{\ell-1}\mathbb{E}\left[(\frac{1}{4}\|\nabla(u^{n+1}_{h}-u^{n}_{h})\|_{L^{2}}^{2}+\tau\|\Delta_{h}u_{h}^{n+1}\|_{L^{2}}^{2})(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2})\right]
Cτn=01𝔼[uhnL24]+38𝔼[uh0L24].\displaystyle\leq C\tau\sum_{n=0}^{\ell-1}\mathbb{E}\left[\|\nabla u^{n}_{h}\|_{L^{2}}^{4}\right]+\frac{3}{8}\mathbb{E}\left[\|\nabla u^{0}_{h}\|_{L^{2}}^{4}\right].

Using Gronwall’s inequality, we obtain

(4.30) 14𝔼[uhL24]+116n=01𝔼[(uhn+1L22uhnL22)2]\displaystyle\frac{1}{4}\mathbb{E}\left[\|\nabla u^{\ell}_{h}\|_{L^{2}}^{4}\right]+\frac{1}{16}\sum_{n=0}^{\ell-1}\mathbb{E}\left[(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}-\|\nabla u^{n}_{h}\|_{L^{2}}^{2})^{2}\right]
+n=01𝔼[(14(uhn+1uhn)L22+τΔhuhn+1L22)(uhn+1L22\displaystyle\qquad+\sum_{n=0}^{\ell-1}\mathbb{E}\bigl{[}(\frac{1}{4}\|\nabla(u^{n+1}_{h}-u^{n}_{h})\|_{L^{2}}^{2}+\tau\|\Delta_{h}u_{h}^{n+1}\|_{L^{2}}^{2})(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}
+12uhnL22)]C.\displaystyle\qquad+\frac{1}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2})\bigr{]}\leq C.

Step 2. Similar to Step 1, using (4.20)–(4.24), we have

(4.31) 38(uhn+1L24uhnL24)+116(uhn+1L22uhnL22)2\displaystyle\frac{3}{8}(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{4}-\|\nabla u^{n}_{h}\|_{L^{2}}^{4})+\frac{1}{16}(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}-\|\nabla u^{n}_{h}\|_{L^{2}}^{2})^{2}
+(14(uhn+1uhn)L22+τΔhuhn+1L22)(uhn+1L22+12uhnL22)\displaystyle\quad+(\frac{1}{4}\|\nabla(u^{n+1}_{h}-u^{n}_{h})\|_{L^{2}}^{2}+\tau\|\Delta_{h}u_{h}^{n+1}\|_{L^{2}}^{2})(\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{2})
Cτuhn+1L24+CuhnL24(ΔWn)4+CuhnL24(ΔWn)2\displaystyle\leq C\tau\|\nabla u^{n+1}_{h}\|_{L^{2}}^{4}+C\|\nabla u_{h}^{n}\|_{L^{2}}^{4}({\Delta}W_{n})^{4}+C\|\nabla u_{h}^{n}\|_{L^{2}}^{4}({\Delta}W_{n})^{2}
+CuhnL24ΔWn.\displaystyle\quad+C\|\nabla u_{h}^{n}\|_{L^{2}}^{4}{\Delta}W_{n}.

Proceed similarly as in Step 1. Multiplying (4.31) with uhn+1L24+12uhnL24\|\nabla u^{n+1}_{h}\|_{L^{2}}^{4}+\frac{1}{2}\|\nabla u^{n}_{h}\|_{L^{2}}^{4}, we can obtain the 8-th moment of the H1H^{1}-seminorm stability result of the numerical solution. Then repeat this process, the 2r2^{r}-th moment of the H1H^{1}-seminorm stability result of the numerical solution can be obtained.

Step 3. Suppose 2r1p2r2^{r-1}\leq p\leq 2^{r}. By Young’s inequality, we have

(4.32) 𝔼[uhL2p]\displaystyle\mathbb{E}\left[\|\nabla u^{\ell}_{h}\|_{L^{2}}^{p}\right] 𝔼[uhL22r]+C<,\displaystyle\leq\mathbb{E}\left[\|\nabla u^{\ell}_{h}\|_{L^{2}}^{2^{r}}\right]+C<\infty,

where the second inequality follows from the results of Step 2. The proof is completed. ∎

4.2 Stability estimates for the pp-th moment of the L2L^{2}-norm of uhnu_{h}^{n}

Since the mass matrix may not be the diagonally dominated matrix, we cannot use the above idea to prove the L2L^{2} stability. Instead, we prove the stability results by utilizing the above established results. The following results hold when q3q\geq 3 is the odd integer in 2D case, and when q=3q=3 or q=5q=5 in 3D case.

Theorem 7.

Under the mesh assumption (2.1), there holds

sup0nN𝔼[uhnL22]+n=0N1𝔼[(uhn+1uhn)L22]\displaystyle\sup_{0\leq n\leq N}\mathbb{E}\left[\|u^{n}_{h}\|_{L^{2}}^{2}\right]+\sum_{n=0}^{N-1}\mathbb{E}\left[\|(u^{n+1}_{h}-u^{n}_{h})\|_{L^{2}}^{2}\right] +τn=0N1𝔼[uhn+1L22]\displaystyle+\tau\sum_{n=0}^{N-1}\mathbb{E}\left[\|\nabla u_{h}^{n+1}\|_{L^{2}}^{2}\right]
+τ2n=0N1𝔼[uhn+1Lq+1q+1]C.\displaystyle+\frac{\tau}{2}\sum_{n=0}^{N-1}\mathbb{E}\left[\|u_{h}^{n+1}\|_{L^{q+1}}^{q+1}\right]\leq C.
Proof.

Testing (4.2) with uhn+1u_{h}^{n+1} yields

(4.33) (uhn+1uhn,uhn+1)+τ(uhn+1,uhn+1)=τ(IhFn+1,uhn+1)\displaystyle(u^{n+1}_{h}-u^{n}_{h},u_{h}^{n+1})+\tau(\nabla u^{n+1}_{h},\nabla u_{h}^{n+1})=\tau(I_{h}F^{n+1},u_{h}^{n+1})
+(G(uhn),uhn+1)ΔWn+12DG(uhn)G(uhn)[(ΔWn)2τ],uhn+1).\displaystyle\quad+(G(u^{n}_{h}),u_{h}^{n+1})\,\Delta W_{n}+\frac{1}{2}DG(u_{h}^{n})\,G(u_{h}^{n})\bigl{[}(\Delta W_{n})^{2}-\tau\bigr{]},u_{h}^{n+1}\bigr{)}.

We can easily prove the following inequalities:

(uhn+1uhn,uhn+1)\displaystyle(u^{n+1}_{h}-u^{n}_{h},u_{h}^{n+1}) =12uhn+1L2212uhnL22+12uhn+1uhnL22,\displaystyle=\frac{1}{2}\|u^{n+1}_{h}\|_{L^{2}}^{2}-\frac{1}{2}\|u^{n}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|u^{n+1}_{h}-u^{n}_{h}\|_{L^{2}}^{2},
𝔼[(G(uhn),uhn+1)ΔWn]\displaystyle\mathbb{E}[(G(u^{n}_{h}),u_{h}^{n+1})\,\Delta W_{n}] =𝔼[(G(uhn),(uhn+1uhn))ΔWn]\displaystyle=\mathbb{E}[(G(u^{n}_{h}),(u_{h}^{n+1}-u^{n}_{h}))\,\Delta W_{n}]
Cτ+Cτ𝔼[uhnL22]+14𝔼[uhn+1uhnL22],\displaystyle\leq C\tau+C\tau\mathbb{E}[\|u^{n}_{h}\|_{L^{2}}^{2}]+\frac{1}{4}\mathbb{E}[\|u_{h}^{n+1}-u^{n}_{h}\|_{L^{2}}^{2}],
𝔼[DG(uhn)G(uhn)((ΔWn)2τ),uhn+1)]\displaystyle\mathbb{E}[DG(u_{h}^{n})\,G(u_{h}^{n})((\Delta W_{n})^{2}-\tau),u_{h}^{n+1}\bigr{)}] =𝔼[DG(uhn)G(uhn)((ΔWn)2τ),uhn+1uhn)]\displaystyle=\mathbb{E}[DG(u_{h}^{n})\,G(u_{h}^{n})((\Delta W_{n})^{2}-\tau),u_{h}^{n+1}-u_{h}^{n}\bigr{)}]
Cτ2+Cτ2𝔼[uhnL22]+14𝔼[uhn+1uhnL22],\displaystyle\leq C\tau^{2}+C\tau^{2}\mathbb{E}[\|u^{n}_{h}\|_{L^{2}}^{2}]+\frac{1}{4}\mathbb{E}[\|u_{h}^{n+1}-u^{n}_{h}\|_{L^{2}}^{2}],

where (A2) is used in the inequality above.

We have the following standard interpolation result and the inverse inequality (see [7]):

(4.34) vIhvLq+1q(K)\displaystyle\|v-I_{h}v\|_{L^{\frac{q+1}{q}}(K)} ChKvLq+1q(K),\displaystyle\leq Ch_{K}\|\nabla v\|_{L^{\frac{q+1}{q}}(K)},
(4.35) vLq+1(K)q+1\displaystyle\|v\|_{L^{q+1}(K)}^{q+1} ChKdq12vL2(K)q+1.\displaystyle\leq\frac{C}{h_{K}^{d\cdot\frac{q-1}{2}}}\|v\|_{L^{2}(K)}^{q+1}.

Using (4.34)–(4.35), and Young’s inequality, we have

(4.36) τ(IhFn+1,uhn+1)=τ(Fn+1,uhn+1)τ(Fn+1IhFn+1,uhn+1)\displaystyle\tau(I_{h}F^{n+1},u_{h}^{n+1})=\tau(F^{n+1},u_{h}^{n+1})-\tau(F^{n+1}-I_{h}F^{n+1},u_{h}^{n+1})
τuhn+1L22τuhn+1Lq+1q+1\displaystyle\quad\leq\tau\|u_{h}^{n+1}\|_{L^{2}}^{2}-\tau\|u_{h}^{n+1}\|_{L^{q+1}}^{q+1}
+CτFn+1IhFn+1Lq+1qq+1q+τ4uhn+1Lq+1q+1\displaystyle\qquad+C\tau\|F^{n+1}-I_{h}F^{n+1}\|_{L^{\frac{q+1}{q}}}^{\frac{q+1}{q}}+\frac{\tau}{4}\|u_{h}^{n+1}\|_{L^{q+1}}^{q+1}
τuhn+1L22τuhn+1Lq+1q+1\displaystyle\quad\leq\tau\|u_{h}^{n+1}\|_{L^{2}}^{2}-\tau\|u_{h}^{n+1}\|_{L^{q+1}}^{q+1}
+CτK𝒯hhKq+1q((uhn+1)q21q,(uhn+1)q+1q)K+τ4uhn+1Lq+1q+1\displaystyle\qquad+C\tau\sum_{K\in\mathcal{T}_{h}}h_{K}^{\frac{q+1}{q}}\bigl{(}(u_{h}^{n+1})^{\frac{q^{2}-1}{q}},(\nabla u_{h}^{n+1})^{\frac{q+1}{q}}\bigr{)}_{K}+\frac{\tau}{4}\|u_{h}^{n+1}\|_{L^{q+1}}^{q+1}
τuhn+1L22τ2uhn+1Lq+1q+1+CτK𝒯hhKq+1uhn+1Lq+1(K)q+1\displaystyle\quad\leq\tau\|u_{h}^{n+1}\|_{L^{2}}^{2}-\frac{\tau}{2}\|u_{h}^{n+1}\|_{L^{q+1}}^{q+1}+C\tau\sum_{K\in\mathcal{T}_{h}}h_{K}^{q+1}\|\nabla u_{h}^{n+1}\|_{L^{q+1}(K)}^{q+1}
τuhn+1L22τ2uhn+1Lq+1q+1+CτK𝒯hhKq+1dq12uhn+1L2(K)q+1.\displaystyle\quad\leq\tau\|u_{h}^{n+1}\|_{L^{2}}^{2}-\frac{\tau}{2}\|u_{h}^{n+1}\|_{L^{q+1}}^{q+1}+C\tau\sum_{K\in\mathcal{T}_{h}}h_{K}^{q+1-d\frac{q-1}{2}}\|\nabla u_{h}^{n+1}\|_{L^{2}(K)}^{q+1}.

Note when d=2d=2, q+1dq120q+1-d\frac{q-1}{2}\geq 0 if q0q\geq 0, and when d=3d=3, q+1dq120q+1-d\frac{q-1}{2}\geq 0 if q5q\leq 5. Using the above inequalities, Theorem 6, taking summation over nn from 0 to 1\ell-1, and taking expectation on both sides of (4.33), we obtain

(4.37) 14𝔼[uhL22]+14n=01𝔼[(uhn+1uhn)L22]+τn=01𝔼[uhn+1L22]\displaystyle\frac{1}{4}\mathbb{E}\left[\|u^{\ell}_{h}\|_{L^{2}}^{2}\right]+\frac{1}{4}\sum_{n=0}^{\ell-1}\mathbb{E}\left[\|(u^{n+1}_{h}-u^{n}_{h})\|_{L^{2}}^{2}\right]+\tau\sum_{n=0}^{\ell-1}\mathbb{E}\left[\|\nabla u_{h}^{n+1}\|_{L^{2}}^{2}\right]
+τ2n=01𝔼[uhn+1Lq+1q+1]\displaystyle\qquad+\frac{\tau}{2}\sum_{n=0}^{\ell-1}\mathbb{E}\left[\|u_{h}^{n+1}\|_{L^{q+1}}^{q+1}\right]
τn=01𝔼[uhnL22]+Cτn=01𝔼[uhn+1L2q+1]+C\displaystyle\leq\tau\sum_{n=0}^{\ell-1}\mathbb{E}\left[\|u^{n}_{h}\|_{L^{2}}^{2}\right]+C\tau\sum_{n=0}^{\ell-1}\mathbb{E}\left[\|\nabla u_{h}^{n+1}\|_{L^{2}}^{q+1}\right]+C
τn=01𝔼[uhnL22]+C,\displaystyle\leq\tau\sum_{n=0}^{\ell-1}\mathbb{E}\left[\|u^{n}_{h}\|_{L^{2}}^{2}\right]+C,

where Theorem 6 is used in the last inequality.

The conclusion is a direct result by using Gronwall’s inequality. ∎

To obtain the error estimates results, we need to establish a higher moment discrete L2L^{2} stability result for the numerical solution uhu_{h}.

Theorem 8.

Suppose the mesh assumption (2.1) holds. Then there holds for any p2p\geq 2,

sup0N𝔼[uhL2p]C.\displaystyle\sup_{0\leq\ell\leq N}\mathbb{E}\left[\|u^{\ell}_{h}\|_{L^{2}}^{p}\right]\leq C.
Proof.

The proof is divided into three steps. In Step 1, we give the bound for 𝔼uhL24\mathbb{E}\|u^{\ell}_{h}\|_{L^{2}}^{4}. In Step 2, we give the bound for 𝔼uhL2p\mathbb{E}\|u^{\ell}_{h}\|_{L^{2}}^{p}, where p=2rp=2^{r} and rr is an arbitrary positive integer. In Step 3, we give the bound for 𝔼uhL2p\mathbb{E}\|u^{\ell}_{h}\|_{L^{2}}^{p}, where pp is an arbitrary real number and p2p\geq 2.

Step 1. Based on (4.33)–(4.36), we have

(4.38) 12uhn+1L22\displaystyle\frac{1}{2}\|u^{n+1}_{h}\|_{L^{2}}^{2} 12uhnL22+12uhn+1uhnL22+τuhn+1L22+τ2uhn+1Lq+1q+1\displaystyle-\frac{1}{2}\|u^{n}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|u^{n+1}_{h}-u^{n}_{h}\|_{L^{2}}^{2}+\tau\|\nabla u_{h}^{n+1}\|_{L^{2}}^{2}+\frac{\tau}{2}\|u_{h}^{n+1}\|_{L^{q+1}}^{q+1}
τuhn+1L22+Cτuhn+1L2q+1+(G(uhn),uhn+1)ΔWn\displaystyle\leq\tau\|u_{h}^{n+1}\|_{L^{2}}^{2}+C\tau\|\nabla u_{h}^{n+1}\|_{L^{2}}^{q+1}+(G(u^{n}_{h}),u_{h}^{n+1})\,\Delta W_{n}
+12(DG(uhn)G(uhn)((ΔWn)2τ),uhn+1).\displaystyle\qquad+\frac{1}{2}\bigl{(}DG(u_{h}^{n})\,G(u_{h}^{n})((\Delta W_{n})^{2}-\tau),u_{h}^{n+1}\bigr{)}.

Note the following identity

(4.39) uhn+1L22+12uhnL22=\displaystyle\|u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|u^{n}_{h}\|_{L^{2}}^{2}= 34(uhn+1L22+uhnL22)+14(uhn+1L22uhnL22).\displaystyle\frac{3}{4}(\|u^{n+1}_{h}\|_{L^{2}}^{2}+\|u^{n}_{h}\|_{L^{2}}^{2})+\frac{1}{4}(\|u^{n+1}_{h}\|_{L^{2}}^{2}-\|u^{n}_{h}\|_{L^{2}}^{2}).

Multiplying (4.38) by uhn+1L22+12uhnL22\|u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|u^{n}_{h}\|_{L^{2}}^{2}, we obtain

(4.40) 38(uhn+1L24uhnL24)+18(uhn+1L22uhnL22)2+(12(uhn+1uhn)L22\displaystyle\frac{3}{8}(\|u^{n+1}_{h}\|_{L^{2}}^{4}-\|u^{n}_{h}\|_{L^{2}}^{4})+\frac{1}{8}(\|u^{n+1}_{h}\|_{L^{2}}^{2}-\|u^{n}_{h}\|_{L^{2}}^{2})^{2}+(\frac{1}{2}\|(u^{n+1}_{h}-u^{n}_{h})\|_{L^{2}}^{2}
+τuhn+1L22+τ2uhn+1Lq+1q+1)(uhn+1L22+12uhnL22)\displaystyle\quad+\tau\|\nabla u_{h}^{n+1}\|_{L^{2}}^{2}+\frac{\tau}{2}\|u_{h}^{n+1}\|_{L^{q+1}}^{q+1})(\|u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|u^{n}_{h}\|_{L^{2}}^{2})
(τuhn+1L22+Cτuhn+1L2q+1)(uhn+1L22+12uhnL22)\displaystyle\leq(\tau\|u_{h}^{n+1}\|_{L^{2}}^{2}+C\tau\|\nabla u_{h}^{n+1}\|_{L^{2}}^{q+1})(\|u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|u^{n}_{h}\|_{L^{2}}^{2})
+(G(uhn),uhn+1)ΔWn(uhn+1L22+12uhnL22)\displaystyle\quad+(G(u^{n}_{h}),u_{h}^{n+1})\,\Delta W_{n}(\|u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|u^{n}_{h}\|_{L^{2}}^{2})
+12(DG(uhn)G(uhn)((ΔWn)2k),uhn+1)(uhn+1L22+12uhnL22).\displaystyle\quad+\frac{1}{2}\bigl{(}DG(u_{h}^{n})\,G(u_{h}^{n})((\Delta W_{n})^{2}-k),u_{h}^{n+1}\bigr{)}(\|u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|u^{n}_{h}\|_{L^{2}}^{2}).

The first term on the right-hand side of (4.40) can be written as

(4.41) (τuhn+1L22+Cτuhn+1L2q+1)(uhn+1L22+12uhnL22)\displaystyle(\tau\|u_{h}^{n+1}\|_{L^{2}}^{2}+C\tau\|\nabla u_{h}^{n+1}\|_{L^{2}}^{q+1})(\|u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|u^{n}_{h}\|_{L^{2}}^{2})
τuhn+1L22(32uhn+1L2212(uhn+1L22uhnL22))\displaystyle\leq\tau\|u^{n+1}_{h}\|_{L^{2}}^{2}(\frac{3}{2}\|u^{n+1}_{h}\|_{L^{2}}^{2}-\frac{1}{2}(\|u^{n+1}_{h}\|_{L^{2}}^{2}-\|u^{n}_{h}\|_{L^{2}}^{2}))
+Cτuhn+1L22(q+1)+τuhn+1L24+τ(uhn+1L22uhnL22)2\displaystyle\quad+C\tau\|\nabla u_{h}^{n+1}\|_{L^{2}}^{2(q+1)}+\tau\|u^{n+1}_{h}\|_{L^{2}}^{4}+\tau(\|u^{n+1}_{h}\|_{L^{2}}^{2}-\|u^{n}_{h}\|_{L^{2}}^{2})^{2}
Cτuhn+1L24+Cτuhn+1L22(q+1)+θ1(uhn+1L22uhnL22)2,\displaystyle\leq C\tau\|u^{n+1}_{h}\|_{L^{2}}^{4}+C\tau\|\nabla u_{h}^{n+1}\|_{L^{2}}^{2(q+1)}+\theta_{1}(\|u^{n+1}_{h}\|_{L^{2}}^{2}-\|u^{n}_{h}\|_{L^{2}}^{2})^{2},

where θ1>0\theta_{1}>0 will be determined later.

The second term on the right-hand side of (4.40) can be written as

(4.42) (G(uhn),uhn+1)ΔWn(uhn+1L22+12uhnL22)\displaystyle(G(u^{n}_{h}),u_{h}^{n+1})\,{\Delta}W_{n}(\|u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|u^{n}_{h}\|_{L^{2}}^{2})
=(G(uhn),uhn+1uhn+uhn)ΔWn(uhn+1L22+12uhnL22)\displaystyle=(G(u^{n}_{h}),u_{h}^{n+1}-u_{h}^{n}+u_{h}^{n})\,{\Delta}W_{n}(\|u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|u^{n}_{h}\|_{L^{2}}^{2})
(14uhn+1uhnL22+C(1+uhnL22)(ΔWn)2\displaystyle\leq(\frac{1}{4}\|u_{h}^{n+1}-u_{h}^{n}\|_{L^{2}}^{2}+C(1+\|u_{h}^{n}\|_{L^{2}}^{2})({\Delta}W_{n})^{2}
+(G(uhn),uhn)ΔWn)(uhn+1L22+12uhnL22).\displaystyle\quad+(G(u_{h}^{n}),u_{h}^{n}){\Delta}W_{n})(\|u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|u^{n}_{h}\|_{L^{2}}^{2}).

For the second term on the right-hand side of (4.42), using the Cauchy-Schwarz inequality, we get

(4.43) C(1+uhnL22)(ΔWn)2(uhn+1L22+12uhnL22)\displaystyle C(1+\|u_{h}^{n}\|_{L^{2}}^{2})({\Delta}W_{n})^{2}(\|u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|u^{n}_{h}\|_{L^{2}}^{2})
=C(1+uhnL22)(ΔWn)2(uhn+1L22uhnL22+32uhnL22)\displaystyle=C(1+\|u_{h}^{n}\|_{L^{2}}^{2})({\Delta}W_{n})^{2}(\|u^{n+1}_{h}\|_{L^{2}}^{2}-\|u^{n}_{h}\|_{L^{2}}^{2}+\frac{3}{2}\|u^{n}_{h}\|_{L^{2}}^{2})
θ2(uhn+1L22uhnL22)2+(C+CuhnL24)(ΔWn)4\displaystyle\leq\theta_{2}\big{(}\|u^{n+1}_{h}\|_{L^{2}}^{2}-\|u^{n}_{h}\|_{L^{2}}^{2})^{2}+(C+C\|u_{h}^{n}\|_{L^{2}}^{4})({\Delta}W_{n})^{4}
+CuhnL24(ΔWn)2+CuhnL22(ΔWn)2,\displaystyle\quad+C\|u_{h}^{n}\|_{L^{2}}^{4}({\Delta}W_{n}\big{)}^{2}+C\|u_{h}^{n}\|_{L^{2}}^{2}({\Delta}W_{n})^{2},

where θ2>0\theta_{2}>0 will be determined later. Using (2.3b), the third term on the right-hand side of (4.42) can be bounded by

(4.44) (G(uhn),uhn)ΔWn(uhn+1L22+12uhnL22)\displaystyle(G(u_{h}^{n}),u_{h}^{n}){\Delta}W_{n}(\|u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|u^{n}_{h}\|_{L^{2}}^{2})
=(G(uhn),uhn)ΔWn(uhn+1L22uhnL22+32uhnL22)\displaystyle\quad=(G(u_{h}^{n}),u_{h}^{n}){\Delta}W_{n}(\|u^{n+1}_{h}\|_{L^{2}}^{2}-\|u^{n}_{h}\|_{L^{2}}^{2}+\frac{3}{2}\|u^{n}_{h}\|_{L^{2}}^{2})
θ3(uhn+1L22uhnL22)2+(C+CuhnL24)(ΔWn)2\displaystyle\quad\leq\theta_{3}(\|u^{n+1}_{h}\|_{L^{2}}^{2}-\|u^{n}_{h}\|_{L^{2}}^{2})^{2}+(C+C\|u_{h}^{n}\|_{L^{2}}^{4})({\Delta}W_{n})^{2}
+32(G(uhn),uhn)uhnL22ΔWn,\displaystyle\qquad+\frac{3}{2}(G(u_{h}^{n}),u_{h}^{n})\|u_{h}^{n}\|_{L^{2}}^{2}{\Delta}W_{n},

where θ3>0\theta_{3}>0 will be determined later.

The third term on the right-hand side of (4.40) can be written as

(4.45) 12(DG(uhn)G(uhn)((ΔWn)2τ),uhn+1)(uhn+1L22+12uhnL22)\displaystyle\frac{1}{2}\bigl{(}DG(u_{h}^{n})\,G(u_{h}^{n})((\Delta W_{n})^{2}-\tau),u_{h}^{n+1}\bigr{)}(\|u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|u^{n}_{h}\|_{L^{2}}^{2})
=12(DG(uhn)G(uhn)((ΔWn)2τ),uhn+1uhn+uhn)(uhn+1L22+12uhnL22)\displaystyle=\frac{1}{2}\bigl{(}DG(u_{h}^{n})\,G(u_{h}^{n})((\Delta W_{n})^{2}-\tau),u_{h}^{n+1}-u_{h}^{n}+u_{h}^{n}\bigr{)}(\|u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|u^{n}_{h}\|_{L^{2}}^{2})
(14uhn+1uhnL22+C(1+uhnL22)((ΔWn)2τ)2\displaystyle\leq(\frac{1}{4}\|u_{h}^{n+1}-u_{h}^{n}\|_{L^{2}}^{2}+C(1+\|u_{h}^{n}\|_{L^{2}}^{2})((\Delta W_{n})^{2}-\tau)^{2}
+12(DG(uhn)G(uhn)((ΔWn)2τ),uhn)(uhn+1L22+12uhnL22).\displaystyle\quad+\frac{1}{2}\bigl{(}DG(u_{h}^{n})\,G(u_{h}^{n})((\Delta W_{n})^{2}-\tau),u_{h}^{n}\bigr{)}(\|u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|u^{n}_{h}\|_{L^{2}}^{2}).

For the second term on the right-hand side of (4.45), using the Cauchy-Schwarz inequality, we get

(4.46) C(1+uhnL22)((ΔWn)2τ)2(uhn+1L22+12uhnL22)\displaystyle C(1+\|u_{h}^{n}\|_{L^{2}}^{2})((\Delta W_{n})^{2}-\tau)^{2}(\|u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|u^{n}_{h}\|_{L^{2}}^{2})
=C(1+uhnL22)((ΔWn)2τ)2(uhn+1L22uhnL22+32uhnL22)\displaystyle=C(1+\|u_{h}^{n}\|_{L^{2}}^{2})((\Delta W_{n})^{2}-\tau)^{2}(\|u^{n+1}_{h}\|_{L^{2}}^{2}-\|u^{n}_{h}\|_{L^{2}}^{2}+\frac{3}{2}\|u^{n}_{h}\|_{L^{2}}^{2})
θ2(uhn+1L22uhnL22)2+(C+CuhnL24)((ΔWn)2τ)2\displaystyle\leq\theta_{2}\big{(}\|u^{n+1}_{h}\|_{L^{2}}^{2}-\|u^{n}_{h}\|_{L^{2}}^{2})^{2}+(C+C\|u_{h}^{n}\|_{L^{2}}^{4})((\Delta W_{n})^{2}-\tau)^{2}
+CuhnL24((ΔWn)2τ)2+CuhnL22((ΔWn)2τ)2,\displaystyle\quad+C\|u_{h}^{n}\|_{L^{2}}^{4}((\Delta W_{n})^{2}-\tau)^{2}+C\|u_{h}^{n}\|_{L^{2}}^{2}((\Delta W_{n})^{2}-\tau)^{2},

where θ4>0\theta_{4}>0 will be determined later. Using (2.3b), the third term on the right-hand side of (4.45) can be bounded by

(4.47) 12(DG(uhn)G(uhn)((ΔWn)2τ),uhn)(uhn+1L22+12uhnL22)\displaystyle\frac{1}{2}\bigl{(}DG(u_{h}^{n})\,G(u_{h}^{n})((\Delta W_{n})^{2}-\tau),u_{h}^{n})(\|u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|u^{n}_{h}\|_{L^{2}}^{2})
=12(DG(uhn)G(uhn)((ΔWn)2τ),uhn)(uhn+1L22uhnL22+32uhnL22)\displaystyle\quad=\frac{1}{2}\bigl{(}DG(u_{h}^{n})\,G(u_{h}^{n})((\Delta W_{n})^{2}-\tau),u_{h}^{n})(\|u^{n+1}_{h}\|_{L^{2}}^{2}-\|u^{n}_{h}\|_{L^{2}}^{2}+\frac{3}{2}\|u^{n}_{h}\|_{L^{2}}^{2})
θ5(uhn+1L22uhnL22)2+(C+CuhnL24)(ΔWn)2τ)2\displaystyle\quad\leq\theta_{5}(\|u^{n+1}_{h}\|_{L^{2}}^{2}-\|u^{n}_{h}\|_{L^{2}}^{2})^{2}+(C+C\|u_{h}^{n}\|_{L^{2}}^{4})(\Delta W_{n})^{2}-\tau)^{2}
+12(DG(uhn)G(uhn)((ΔWn)2τ),uhn)32uhnL22,\displaystyle\qquad+\frac{1}{2}\bigl{(}DG(u_{h}^{n})\,G(u_{h}^{n})((\Delta W_{n})^{2}-\tau),u_{h}^{n})\frac{3}{2}\|u^{n}_{h}\|_{L^{2}}^{2},

where θ5>0\theta_{5}>0 will be determined later.

Choosing θ1θ5\theta_{1}\sim\theta_{5} such that θ1++θ3116\theta_{1}+\cdots+\theta_{3}\leq\frac{1}{16}, and then taking the summation over nn from 0 to 1\ell-1 and taking the expectation on both sides of (4.40), we obtain

(4.48) 38𝔼[uhL24]+116n=01𝔼[(uhn+1L22uhnL22)2]+n=01𝔼[(14(uhn+1uhn)L22\displaystyle\frac{3}{8}\mathbb{E}\left[\|u^{\ell}_{h}\|_{L^{2}}^{4}\right]+\frac{1}{16}\sum_{n=0}^{\ell-1}\mathbb{E}\left[(\|u^{n+1}_{h}\|_{L^{2}}^{2}-\|u^{n}_{h}\|_{L^{2}}^{2})^{2}\right]+\sum_{n=0}^{\ell-1}\mathbb{E}\bigl{[}(\frac{1}{4}\|(u^{n+1}_{h}-u^{n}_{h})\|_{L^{2}}^{2}
+τuhn+1L22+τ2uhn+1Lq+1q+1)(uhn+1L22+12uhnL22)]\displaystyle\quad+\tau\|\nabla u_{h}^{n+1}\|_{L^{2}}^{2}+\frac{\tau}{2}\|u_{h}^{n+1}\|_{L^{q+1}}^{q+1})(\|u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|u^{n}_{h}\|_{L^{2}}^{2})\bigr{]}
Cτn=01𝔼[uhn+1L24]+Cτn=01𝔼[uhn+1L22(q+1)]+38𝔼[uh0L24]\displaystyle\leq C\tau\sum_{n=0}^{\ell-1}\mathbb{E}\left[\|u^{n+1}_{h}\|_{L^{2}}^{4}\right]+C\tau\sum_{n=0}^{\ell-1}\mathbb{E}\left[\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2(q+1)}\right]+\frac{3}{8}\mathbb{E}\left[\|u^{0}_{h}\|_{L^{2}}^{4}\right]
+Cτn=01𝔼[uhnL24]+C.\displaystyle\quad+C\tau\sum_{n=0}^{\ell-1}\mathbb{E}\left[\|u_{h}^{n}\|_{L^{2}}^{4}\right]+C.

When τC\tau\leq C, we have

(4.49) 14𝔼[uhL24]+116n=01𝔼[(uhn+1L22uhnL22)2]+n=01𝔼[(14(uhn+1uhn)L22\displaystyle\frac{1}{4}\mathbb{E}\left[\|u^{\ell}_{h}\|_{L^{2}}^{4}\right]+\frac{1}{16}\sum_{n=0}^{\ell-1}\mathbb{E}\left[(\|u^{n+1}_{h}\|_{L^{2}}^{2}-\|u^{n}_{h}\|_{L^{2}}^{2})^{2}\right]+\sum_{n=0}^{\ell-1}\mathbb{E}\bigl{[}(\frac{1}{4}\|(u^{n+1}_{h}-u^{n}_{h})\|_{L^{2}}^{2}
+τuhn+1L22+τ2uhn+1L44)(uhn+1L22+12uhnL22)]\displaystyle\quad+\tau\|\nabla u_{h}^{n+1}\|_{L^{2}}^{2}+\frac{\tau}{2}\|u_{h}^{n+1}\|_{L^{4}}^{4})(\|u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|u^{n}_{h}\|_{L^{2}}^{2})\bigr{]}
Cτn=01𝔼[uhnL24]+Cτn=01𝔼[uhn+1L22(q+1)]+38𝔼[uh0L24]+C.\displaystyle\leq C\tau\sum_{n=0}^{\ell-1}\mathbb{E}\left[\|u^{n}_{h}\|_{L^{2}}^{4}\right]+C\tau\sum_{n=0}^{\ell-1}\mathbb{E}\left[\|\nabla u^{n+1}_{h}\|_{L^{2}}^{2(q+1)}\right]+\frac{3}{8}\mathbb{E}\left[\|u^{0}_{h}\|_{L^{2}}^{4}\right]+C.

Using Gronwall’s inequality, we obtain

(4.50) 14𝔼[uhL24]+116n=01𝔼[(uhn+1L22uhnL22)2]\displaystyle\frac{1}{4}\mathbb{E}\left[\|u^{\ell}_{h}\|_{L^{2}}^{4}\right]+\frac{1}{16}\sum_{n=0}^{\ell-1}\mathbb{E}\left[(\|u^{n+1}_{h}\|_{L^{2}}^{2}-\|u^{n}_{h}\|_{L^{2}}^{2})^{2}\right]
+n=01𝔼[(14(uhn+1uhn)L22+τuhn+1L22\displaystyle\qquad+\sum_{n=0}^{\ell-1}\mathbb{E}\bigg{[}(\frac{1}{4}\|(u^{n+1}_{h}-u^{n}_{h})\|_{L^{2}}^{2}+\tau\|\nabla u_{h}^{n+1}\|_{L^{2}}^{2}
+τ2uhn+1L44)(uhn+1L22+12uhnL22)]C.\displaystyle\qquad+\frac{\tau}{2}\|u_{h}^{n+1}\|_{L^{4}}^{4})(\|u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|u^{n}_{h}\|_{L^{2}}^{2})\bigg{]}\leq C.

Step 2. Similar to Step 1, using (4.40)–(4.44), we have

(4.51) 38(uhn+1L24uhnL24)+116(uhn+1L22uhnL22)2\displaystyle\frac{3}{8}(\|u^{n+1}_{h}\|_{L^{2}}^{4}-\|u^{n}_{h}\|_{L^{2}}^{4})+\frac{1}{16}(\|u^{n+1}_{h}\|_{L^{2}}^{2}-\|u^{n}_{h}\|_{L^{2}}^{2})^{2}
+(14(uhn+1uhn)L22+τuhn+1L22+τ2uhn+1L44)(uhn+1L22+12uhnL22)\displaystyle+(\frac{1}{4}\|(u^{n+1}_{h}-u^{n}_{h})\|_{L^{2}}^{2}+\tau\|\nabla u_{h}^{n+1}\|_{L^{2}}^{2}+\frac{\tau}{2}\|u_{h}^{n+1}\|_{L^{4}}^{4})(\|u^{n+1}_{h}\|_{L^{2}}^{2}+\frac{1}{2}\|u^{n}_{h}\|_{L^{2}}^{2})
Cτuhn+1L24+Cτuhn+1L22(q+1)+(C+CuhnL24)(ΔWn)4\displaystyle\leq C\tau\|u^{n+1}_{h}\|_{L^{2}}^{4}+C\tau\|\nabla u_{h}^{n+1}\|_{L^{2}}^{2(q+1)}+(C+C\|u_{h}^{n}\|_{L^{2}}^{4})({\Delta}W_{n})^{4}
+(C+CuhnL24)(ΔWn)2+(G(uhn),uhn)uhnL22ΔWn.\displaystyle+(C+C\|u_{h}^{n}\|_{L^{2}}^{4})({\Delta}W_{n})^{2}+(G(u_{h}^{n}),u_{h}^{n})\|u_{h}^{n}\|_{L^{2}}^{2}{\Delta}W_{n}.

Similar to Step 1, multiplying (4.51) by uhn+1L24+12uhnL24\|u^{n+1}_{h}\|_{L^{2}}^{4}+\frac{1}{2}\|u^{n}_{h}\|_{L^{2}}^{4}, we can obtain the 8-th moment of the L2L^{2} stability result of the discrete solution. Then repeating this process, the second moment of the L2L^{2} stability result of the discrete solution can be obtained.

Step 3. Suppose 2r1p2r2^{r-1}\leq p\leq 2^{r}, and then by Young’s inequality, we have

(4.52) 𝔼[uhL2p]\displaystyle\mathbb{E}\left[\|u^{\ell}_{h}\|_{L^{2}}^{p}\right] 𝔼[uhL22r]+CC,\displaystyle\leq\mathbb{E}\left[\|u^{\ell}_{h}\|_{L^{2}}^{2^{r}}\right]+C\leq C,

where Step 2 is used in the second inequality. The proof is complete. ∎

4.3 Error estimates of the finite element approximation

In this subsection, we consider error estimates between the semi-discrete solution unu^{n} of Algorithm 1 and its finite element approximation uhnu^{n}_{h} from Algorithm 2. Let ehn=unuhne_{h}^{n}=u^{n}-u_{h}^{n} (n=0,1,2,,N)(n=0,1,2,\ldots,N). In the following theorem, the L2L^{2}-projection is used in the proof of the error estimates and the strong convergence rate is given.

Theorem 9.

Let {un}\{u^{n}\} and {uhn}n=1N\{u_{h}^{n}\}_{n=1}^{N} denote respectively the solutions of Algorithm 1 and Algorithm 2. Then, under the condition (2.1), there holds

sup0nN𝔼[ehnL22]+𝔼[τn=1NehnL22]Ch2|lnh|2(q1).\displaystyle\sup_{0\leq n\leq N}\mathbb{E}\left[\|e_{h}^{n}\|^{2}_{L^{2}}\right]+\mathbb{E}\left[\tau\sum_{n=1}^{N}\|\nabla e_{h}^{n}\|^{2}_{L^{2}}\right]\leq Ch^{2}|\ln h|^{2(q-1)}.
Proof.

We write ehn=ηn+ξne_{h}^{n}=\eta^{n}+\xi^{n} where

ηn:=unPhunandξn:=Phunuhn,n=0,1,2,,N.\displaystyle\eta^{n}:=u^{n}-P_{h}u^{n}\quad\text{and}\quad\xi^{n}:=P_{h}u^{n}-u_{h}^{n},\quad n=0,1,2,...,N.

Subtracting (4.2) from (3.1) and setting vh=ξn+1v_{h}=\xi^{n+1}, the following error equation holds \mathbb{P}-almost surely,

(4.53) (ξn+1ξn,ξn+1)=(ηn+1ηn,ξn+1)τ(un+1uhn+1,ξn+1)\displaystyle(\xi^{n+1}-\xi^{n},\xi^{n+1})=-(\eta^{n+1}-\eta^{n},\xi^{n+1})-\tau(\nabla u^{n+1}-\nabla u^{n+1}_{h},\nabla\xi^{n+1})
+τ(F(un+1)IhFn+1,ξn+1)+(G(un)G(uhn),ξn+1)ΔWn,\displaystyle\qquad+\tau\bigl{(}F(u^{n+1})-I_{h}F^{n+1},\xi^{n+1}\bigr{)}+(G(u^{n})-G(u^{n}_{h}),\xi^{n+1})\,\Delta W_{n},
+12((DG(un)G(un)DG(uhn)G(uhn))((ΔWn)2τ),ξn+1)\displaystyle\qquad+\frac{1}{2}\bigl{(}(DG(u^{n})\,G(u^{n})-DG(u_{h}^{n})\,G(u_{h}^{n}))((\Delta W_{n})^{2}-\tau),\xi^{n+1}\bigr{)}
:=T1+T2+T3+T4+T5.\displaystyle:=T_{1}+T_{2}+T_{3}+T_{4}+T_{5}.

The expectation of the left-hand side of (4.53) can be bounded by

(4.54) 𝔼[(ξn+1ξn,ξn+1)]\displaystyle\mathbb{E}\bigl{[}(\xi^{n+1}-\xi^{n},\xi^{n+1})\bigr{]} =12𝔼[ξn+1L22ξnL22]+12𝔼[ξn+1ξnL22].\displaystyle=\frac{1}{2}\mathbb{E}\bigl{[}\|\xi^{n+1}\|_{L^{2}}^{2}-\|\xi^{n}\|_{L^{2}}^{2}\bigr{]}+\frac{1}{2}\mathbb{E}\bigl{[}\|\xi^{n+1}-\xi^{n}\|^{2}_{L^{2}}\bigr{]}.

The first term on the right-hand side of (4.53) is 0 by the property of the L2L^{2}-projection.

For the second term on the right-hand side of (4.53), we have

(4.55) 𝔼[T2]\displaystyle\mathbb{E}\left[T_{2}\right] =τ𝔼[(ηn+1+ξn+1,ξn+1]\displaystyle=-\tau\mathbb{E}\left[(\nabla\eta^{n+1}+\nabla\xi^{n+1},\nabla\xi^{n+1}\right]
Cτ𝔼[ηn+1L22]34τ𝔼[ξn+1L22]\displaystyle\leq C\tau\mathbb{E}\left[\|\nabla\eta^{n+1}\|^{2}_{L^{2}}\right]-\frac{3}{4}\tau\mathbb{E}\left[\|\nabla\xi^{n+1}\|^{2}_{L^{2}}\right]
Cτh2𝔼[un+1H22]34𝔼[ξn+1L22]τ.\displaystyle\leq C\tau h^{2}\mathbb{E}[\|u^{n+1}\|^{2}_{H^{2}}]-\frac{3}{4}\mathbb{E}\left[\|\nabla\xi^{n+1}\|^{2}_{L^{2}}\right]\tau.

In order to estimate the third term on the right-hand side of (4.53), we write

(4.56) τ(F(un+1)IhFn+1,ξn+1)\displaystyle\tau\bigl{(}F(u^{n+1})-I_{h}F^{n+1},\xi^{n+1}\bigr{)} =τ(F(un+1)F(Phun+1),ξn+1)\displaystyle=\tau\bigl{(}F(u^{n+1})-F(P_{h}u^{n+1}),\xi^{n+1}\bigr{)}
+τ(F(Phun+1)Fn+1,ξn+1)\displaystyle\quad+\tau\bigl{(}F(P_{h}u^{n+1})-F^{n+1},\xi^{n+1}\bigr{)}
+τ(Fn+1IhFn+1,ξn+1).\displaystyle\quad+\tau\bigl{(}F^{n+1}-I_{h}F^{n+1},\xi^{n+1}\bigr{)}.

The first term on the right-hand side of (4.56) can be bounded as follows. Using Cauchy-Schwarz’s inequality, the Ladyzhenskaya inequality uL4CuL21/2uL21/2\|u\|_{L^{4}}\leq C\|u\|^{1/2}_{L^{2}}\|\nabla u\|^{1/2}_{L^{2}}, and (4.4) we obtain

(4.57) τ(F(un+1)F(Phun+1),ξn+1)\displaystyle\tau\bigl{(}F(u^{n+1})-F(P_{h}u^{n+1}),\xi^{n+1}\bigr{)}
=τ(ηn+1[i=0q1(un+1)i(Phun+1)q1i1],ξn+1)\displaystyle=-\tau\Bigl{(}\eta^{n+1}\Bigl{[}\sum_{i=0}^{q-1}(u^{n+1})^{i}(P_{h}u^{n+1})^{q-1-i}-1\Bigr{]},\xi^{n+1}\Bigr{)}
τηn+1L4i=0q1(un+1)i(Phun+1)q1i1L4ξn+1L2\displaystyle\leq\tau\|\eta^{n+1}\|_{L^{4}}\Bigl{\|}\sum_{i=0}^{q-1}(u^{n+1})^{i}(P_{h}u^{n+1})^{q-1-i}-1\Bigr{\|}_{L^{4}}\|\xi^{n+1}\|_{L^{2}}
Cτηn+1L21/2ηn+1L21/2i=0q1(un+1)i(Phun+1)q1i1L4ξn+1L2\displaystyle\leq C\tau\|\eta^{n+1}\|^{1/2}_{L^{2}}\|\nabla\eta^{n+1}\|^{1/2}_{L^{2}}\Bigl{\|}\sum_{i=0}^{q-1}(u^{n+1})^{i}(P_{h}u^{n+1})^{q-1-i}-1\Bigr{\|}_{L^{4}}\|\xi^{n+1}\|_{L^{2}}
Cτhun+1L21/2Δun+1L21/2i=0q1(un+1)i(Phun+1)q1i1L4ξn+1L2\displaystyle\leq C\tau h\|\nabla u^{n+1}\|^{1/2}_{L^{2}}\|\Delta u^{n+1}\|^{1/2}_{L^{2}}\Bigl{\|}\sum_{i=0}^{q-1}(u^{n+1})^{i}(P_{h}u^{n+1})^{q-1-i}-1\Bigr{\|}_{L^{4}}\|\xi^{n+1}\|_{L^{2}}
Cτh2un+1L2Δun+1L2i=0q1(un+1)i(Phun+1)q1i1L42\displaystyle\leq C\tau h^{2}\|\nabla u^{n+1}\|_{L^{2}}\|\Delta u^{n+1}\|_{L^{2}}\Bigl{\|}\sum_{i=0}^{q-1}(u^{n+1})^{i}(P_{h}u^{n+1})^{q-1-i}-1\Bigr{\|}^{2}_{L^{4}}
+τξn+1L22.\displaystyle\qquad\qquad\qquad+\tau\|\xi^{n+1}\|^{2}_{L^{2}}.

Taking the summation n=0\sum_{n=0}^{\ell} to (4.57) for any 0N10\leq\ell\leq N-1 we obtain

(4.58) τn=0(F(un+1)F(Phun+1),ξn+1)\displaystyle\tau\sum_{n=0}^{\ell}\bigl{(}F(u^{n+1})-F(P_{h}u^{n+1}),\xi^{n+1}\bigr{)}
Ch2τn=0un+1L2Δun+1L2i=0q1(un+1)i(Phun+1)q1i1L42\displaystyle\leq Ch^{2}\tau\sum_{n=0}^{\ell}\|\nabla u^{n+1}\|_{L^{2}}\|\Delta u^{n+1}\|_{L^{2}}\Bigl{\|}\sum_{i=0}^{q-1}(u^{n+1})^{i}(P_{h}u^{n+1})^{q-1-i}-1\Bigr{\|}^{2}_{L^{4}}
+τn=0ξn+1L22\displaystyle\qquad\qquad\qquad+\tau\sum_{n=0}^{\ell}\|\xi^{n+1}\|^{2}_{L^{2}}
Ch2(τn=0un+1L22Δun+1L22)1/2\displaystyle\leq Ch^{2}\Bigl{(}\tau\sum_{n=0}^{\ell}\|\nabla u^{n+1}\|^{2}_{L^{2}}\|\Delta u^{n+1}\|^{2}_{L^{2}}\Bigr{)}^{1/2}
×(τn=0i=0q1(un+1)i(Phun+1)q1i1L44)1/2+τn=0ξn+1L22.\displaystyle\qquad\times\Bigl{(}\tau\sum_{n=0}^{\ell}\Bigl{\|}\sum_{i=0}^{q-1}(u^{n+1})^{i}(P_{h}u^{n+1})^{q-1-i}-1\Bigr{\|}_{L^{4}}^{4}\Bigr{)}^{1/2}+\tau\sum_{n=0}^{\ell}\|\xi^{n+1}\|^{2}_{L^{2}}.

Next, applying the expectation to (4.58) and using Cauchy-Schwarz’s inequality, and then using Lemma 3 we have

(4.59) 𝔼[τn=0(F(un+1)F(Phun+1),ξn+1)]\displaystyle\mathbb{E}\Bigl{[}\tau\sum_{n=0}^{\ell}\bigl{(}F(u^{n+1})-F(P_{h}u^{n+1}),\xi^{n+1}\bigr{)}\Bigr{]}
Ch2𝔼[(τn=0un+1L22Δun+1L22)1/2\displaystyle\leq Ch^{2}\mathbb{E}\Bigl{[}\Bigl{(}\tau\sum_{n=0}^{\ell}\|\nabla u^{n+1}\|^{2}_{L^{2}}\|\Delta u^{n+1}\|^{2}_{L^{2}}\Bigr{)}^{1/2}
×(τn=0i=0q1(un+1)i(Phun+1)q1i1L44)1/2]+𝔼[τn=0ξn+1L22]\displaystyle\qquad\times\Bigl{(}\tau\sum_{n=0}^{\ell}\Bigl{\|}\sum_{i=0}^{q-1}(u^{n+1})^{i}(P_{h}u^{n+1})^{q-1-i}-1\Bigr{\|}_{L^{4}}^{4}\Bigr{)}^{1/2}\Bigr{]}+\mathbb{E}\Bigl{[}\tau\sum_{n=0}^{\ell}\|\xi^{n+1}\|^{2}_{L^{2}}\Bigr{]}
Ch2(𝔼[τn=0un+1L22Δun+1L22])1/2\displaystyle\leq Ch^{2}\Bigl{(}\mathbb{E}\Bigl{[}\tau\sum_{n=0}^{\ell}\|\nabla u^{n+1}\|^{2}_{L^{2}}\|\Delta u^{n+1}\|^{2}_{L^{2}}\Bigr{]}\Bigr{)}^{1/2}
×(𝔼[τn=0i=0q1(un+1)i(Phun+1)q1i1L44])1/2\displaystyle\qquad\times\Bigl{(}\mathbb{E}\Bigl{[}\tau\sum_{n=0}^{\ell}\Bigl{\|}\sum_{i=0}^{q-1}(u^{n+1})^{i}(P_{h}u^{n+1})^{q-1-i}-1\Bigr{\|}_{L^{4}}^{4}\Bigr{]}\Bigr{)}^{1/2}
+𝔼[τn=0ξn+1L22]\displaystyle\qquad\qquad\qquad+\mathbb{E}\Bigl{[}\tau\sum_{n=0}^{\ell}\|\xi^{n+1}\|^{2}_{L^{2}}\Bigr{]}
Ch2(𝔼[τn=0i=0q1(un+1)i(Phun+1)q1i1L44])1/2\displaystyle\leq Ch^{2}\Bigl{(}\mathbb{E}\Bigl{[}\tau\sum_{n=0}^{\ell}\Bigl{\|}\sum_{i=0}^{q-1}(u^{n+1})^{i}(P_{h}u^{n+1})^{q-1-i}-1\Bigr{\|}_{L^{4}}^{4}\Bigr{]}\Bigr{)}^{1/2}
+𝔼[τn=0ξn+1L22].\displaystyle\qquad\qquad\qquad+\mathbb{E}\Bigl{[}\tau\sum_{n=0}^{\ell}\|\xi^{n+1}\|^{2}_{L^{2}}\Bigr{]}.

Moreover, using the embedding inequality uLrCuH1\|u\|_{L^{r}}\leq C\|u\|_{H^{1}} for any integers r2r\geq 2 (see [5, Corollary 9.14]) we also have

𝔼[τn=0i=0q1(un+1)i(Phun+1)q1i1L44]\displaystyle\mathbb{E}\Bigl{[}\tau\sum_{n=0}^{\ell}\Bigl{\|}\sum_{i=0}^{q-1}(u^{n+1})^{i}(P_{h}u^{n+1})^{q-1-i}-1\Bigr{\|}_{L^{4}}^{4}\Bigr{]}
C𝔼[τn=0(un+1L4(q1)4(q1)+Phun+1L4(q1)4(q1)+C)]\displaystyle\leq C\mathbb{E}\Bigl{[}\tau\sum_{n=0}^{\ell}\Bigl{(}\|u^{n+1}\|^{4(q-1)}_{L^{4(q-1)}}+\|P_{h}u^{n+1}\|^{4(q-1)}_{L^{4(q-1)}}+C\Bigr{)}\Bigr{]}
C𝔼[τn=0(un+1H14(q1)+Phun+1H14(q1)+C)]C,\displaystyle\leq C\mathbb{E}\Bigl{[}\tau\sum_{n=0}^{\ell}\Bigl{(}\|u^{n+1}\|^{4(q-1)}_{H^{1}}+\|P_{h}u^{n+1}\|^{4(q-1)}_{H^{1}}+C\Bigr{)}\Bigr{]}\leq C,

where the last inequality is obtained by using Lemma 3. In summary, we obtain the following estimate for the first term of T3T_{3}

(4.60) 𝔼[τn=0(F(un+1)F(Phun+1),ξn+1)]Ch2+𝔼[τn=0ξn+1L22].\displaystyle\mathbb{E}\Bigl{[}\tau\sum_{n=0}^{\ell}\bigl{(}F(u^{n+1})-F(P_{h}u^{n+1}),\xi^{n+1}\bigr{)}\Bigr{]}\leq Ch^{2}+\mathbb{E}\Bigl{[}\tau\sum_{n=0}^{\ell}\|\xi^{n+1}\|^{2}_{L^{2}}\Bigr{]}.

By using the one-sided Lipchitz condition (2.7), the second term on the right-hand side of (4.56) can be bounded by

(4.61) 𝔼[(F(Phun+1)Fn+1,ξn+1)]𝔼[ξn+1L22].\displaystyle\mathbb{E}\left[\bigl{(}F(P_{h}u^{n+1})-F^{n+1},\xi^{n+1}\bigr{)}\right]\leq\mathbb{E}\left[\|\xi^{n+1}\|^{2}_{L^{2}}\right].

Using properties of the interpolation operator, the inverse inequality, and the fact that uhn+1u_{h}^{n+1} is a piecewise linear polynomial, the third term on the right-hand side of (4.56) can be handled by

(4.62) 𝔼[(Fn+1IhFn+1,ξn+1)]\displaystyle\mathbb{E}\left[\bigl{(}F^{n+1}-I_{h}F^{n+1},\xi^{n+1}\bigr{)}\right]
𝔼[Ch2K𝒯hq(uhn+1)q1uhn+1L2(K)2]+𝔼[ξn+1L22]\displaystyle\quad\leq\mathbb{E}\Bigl{[}Ch^{2}\sum_{K\in\mathcal{T}_{h}}\|q(u_{h}^{n+1})^{q-1}\nabla u_{h}^{n+1}\|^{2}_{L^{2}(K)}\Bigr{]}+\mathbb{E}\left[\|\xi^{n+1}\|^{2}_{L^{2}}\right]
𝔼[Ch2(uhn+1L2(q1)uhn+1L22)]+𝔼[ξn+1L22]\displaystyle\quad\leq\mathbb{E}\Bigl{[}Ch^{2}\left(\|u_{h}^{n+1}\|_{L^{\infty}}^{2(q-1)}\|\nabla u_{h}^{n+1}\|^{2}_{L^{2}}\right)\Bigr{]}+\mathbb{E}\left[\|\xi^{n+1}\|^{2}_{L^{2}}\right]
𝔼[Ch2|lnh|2(q1)(K𝒯h(uhn+1L2(K)2+uhn+1L2(K)2))q1\displaystyle\quad\leq\mathbb{E}\Bigl{[}Ch^{2}|\ln h|^{2(q-1)}\Bigl{(}\sum_{K\in\mathcal{T}_{h}}(\|\nabla u_{h}^{n+1}\|^{2}_{L^{2}(K)}+\|u_{h}^{n+1}\|^{2}_{L^{2}(K)})\Bigr{)}^{q-1}
uhn+1L22]+𝔼[ξn+1L22]\displaystyle\qquad\quad\|\nabla u_{h}^{n+1}\|^{2}_{L^{2}}\Bigr{]}+\mathbb{E}\left[\|\xi^{n+1}\|^{2}_{L^{2}}\right]
𝔼[Ch2|lnh|2(q1)(uhn+1L22(q1)+uhn+1L22(q1))uhn+1L22]\displaystyle\quad\leq\mathbb{E}\left[Ch^{2}|\ln h|^{2(q-1)}(\|u_{h}^{n+1}\|^{2(q-1)}_{L^{2}}+\|\nabla u_{h}^{n+1}\|^{2(q-1)}_{L^{2}})\|\nabla u_{h}^{n+1}\|^{2}_{L^{2}}\right]
+𝔼[ξn+1L22]\displaystyle\qquad\quad+\mathbb{E}\left[\|\xi^{n+1}\|^{2}_{L^{2}}\right]
𝔼[Ch2|lnh|2(q1)(uhn+1L22q+uhn+1L22q)]+𝔼[ξn+1L22]\displaystyle\quad\leq\mathbb{E}\left[Ch^{2}|\ln h|^{2(q-1)}(\|u_{h}^{n+1}\|^{2q}_{L^{2}}+\|\nabla u_{h}^{n+1}\|^{2q}_{L^{2}})\right]+\mathbb{E}\left[\|\xi^{n+1}\|^{2}_{L^{2}}\right]
Ch2|lnh|2(q1)+𝔼[ξn+1L22].\displaystyle\quad\leq Ch^{2}|\ln h|^{2(q-1)}+\mathbb{E}\left[\|\xi^{n+1}\|^{2}_{L^{2}}\right].

Combining (4.60)–(4.62) yields

(4.63) 𝔼[τn=0T3]Ch2|lnh|2(q1)+C𝔼[τn=0ξn+1L22].\displaystyle\mathbb{E}\left[\tau\sum_{n=0}^{\ell}T_{3}\right]\leq Ch^{2}|\ln h|^{2(q-1)}+C\mathbb{E}\left[\tau\sum_{n=0}^{\ell}\|\xi^{n+1}\|_{L^{2}}^{2}\right].

By the assumption (𝐀𝟏){\bf(A1)} for G()G(\cdot) and then Lemma 3, we have

(4.64) 𝔼[T4]\displaystyle\mathbb{E}[T_{4}] 12𝔼[ξn+1ξnL22]+12τ𝔼[G(un)G(uhn)L22ds]\displaystyle\leq\frac{1}{2}\mathbb{E}\left[\|\xi^{n+1}-\xi^{n}\|^{2}_{L^{2}}\right]+\frac{1}{2}\tau\mathbb{E}\Bigl{[}\|G(u^{n})-G(u^{n}_{h})\|^{2}_{L^{2}}\,ds\Bigr{]}
12𝔼[ξn+1ξnL22]+12τ𝔼[unuhnL22ds]\displaystyle\leq\frac{1}{2}\mathbb{E}\left[\|\xi^{n+1}-\xi^{n}\|^{2}_{L^{2}}\right]+\frac{1}{2}\tau\mathbb{E}\Bigl{[}\|u^{n}-u^{n}_{h}\|^{2}_{L^{2}}\,ds\Bigr{]}
12𝔼[ξn+1ξnL22]+C𝔼[ηn+ξnL22]τ\displaystyle\leq\frac{1}{2}\mathbb{E}\left[\|\xi^{n+1}-\xi^{n}\|^{2}_{L^{2}}\right]+C\mathbb{E}\left[\|\eta^{n}+\xi^{n}\|^{2}_{L^{2}}\right]\tau
12𝔼[ξn+1ξnL22]+C𝔼[ξnL22]τ+Cτh2𝔼[unL22]\displaystyle\leq\frac{1}{2}\mathbb{E}\left[\|\xi^{n+1}-\xi^{n}\|^{2}_{L^{2}}\right]+C\mathbb{E}\left[\|\xi^{n}\|^{2}_{L^{2}}\right]\tau+C\tau h^{2}\mathbb{E}\bigl{[}\|\nabla u^{n}\|^{2}_{L^{2}}\bigr{]}
12𝔼[ξn+1ξnL22]+C𝔼[ξnL22]τ+Cτh2.\displaystyle\leq\frac{1}{2}\mathbb{E}\left[\|\xi^{n+1}-\xi^{n}\|^{2}_{L^{2}}\right]+C\mathbb{E}\left[\|\xi^{n}\|^{2}_{L^{2}}\right]\tau+C\tau h^{2}.

By using the assumption (A3) for GG and then Lemma 3, we have

(4.65) 𝔼[T5]\displaystyle\mathbb{E}[T_{5}] 12𝔼[ξn+1ξnL22]+12𝔼[DG(un)G(un)DG(un)\displaystyle\leq\frac{1}{2}\mathbb{E}\left[\|\xi^{n+1}-\xi^{n}\|^{2}_{L^{2}}\right]+\frac{1}{2}\mathbb{E}\Bigl{[}\|DG(u^{n})\,G(u^{n})-DG(u^{n})
G(uhn)L22]τ2+12𝔼[DG(un)G(uhn)DG(uhn)G(uhn)L22]τ2\displaystyle\quad\cdot G(u_{h}^{n})\|^{2}_{L^{2}}\Bigr{]}\tau^{2}+\frac{1}{2}\mathbb{E}\Bigl{[}\|DG(u^{n})\,G(u_{h}^{n})-DG(u_{h}^{n})\,G(u_{h}^{n})\|^{2}_{L^{2}}\Bigr{]}\tau^{2}
12𝔼[ξn+1ξnL22]+C𝔼[unuhnL22ds]τ2\displaystyle\leq\frac{1}{2}\mathbb{E}\left[\|\xi^{n+1}-\xi^{n}\|^{2}_{L^{2}}\right]+C\mathbb{E}\Bigl{[}\|u^{n}-u^{n}_{h}\|^{2}_{L^{2}}\,ds\Bigr{]}\tau^{2}
12𝔼[ξn+1ξnL22]+C𝔼[ηn+ξnL22]τ2\displaystyle\leq\frac{1}{2}\mathbb{E}\left[\|\xi^{n+1}-\xi^{n}\|^{2}_{L^{2}}\right]+C\mathbb{E}\left[\|\eta^{n}+\xi^{n}\|^{2}_{L^{2}}\right]\tau^{2}
12𝔼[ξn+1ξnL22]+C𝔼[ξnL22]τ2+Cτ2h2𝔼[unL22]\displaystyle\leq\frac{1}{2}\mathbb{E}\left[\|\xi^{n+1}-\xi^{n}\|^{2}_{L^{2}}\right]+C\mathbb{E}\left[\|\xi^{n}\|^{2}_{L^{2}}\right]\tau^{2}+C\tau^{2}h^{2}\mathbb{E}\bigl{[}\|\nabla u^{n}\|^{2}_{L^{2}}\bigr{]}
12𝔼[ξn+1ξnL22]+C𝔼[ξnL22]τ2+Cτ2h2\displaystyle\leq\frac{1}{2}\mathbb{E}\left[\|\xi^{n+1}-\xi^{n}\|^{2}_{L^{2}}\right]+C\mathbb{E}\left[\|\xi^{n}\|^{2}_{L^{2}}\right]\tau^{2}+C\tau^{2}h^{2}

Taking the expectation on (4.53) and combining estimates (4.54)–(4.65), summing over n=0,1,2,,1n=0,1,2,...,\ell-1 with 1N1\leq\ell\leq N, and using Lemma 3 we obtain

14\displaystyle\frac{1}{4} 𝔼[ξL22]+14𝔼[τn=1ξnL22]\displaystyle\mathbb{E}\left[\|\xi^{\ell}\|^{2}_{L^{2}}\right]+\frac{1}{4}\mathbb{E}\Bigl{[}\tau\sum_{n=1}^{\ell}\|\nabla\xi^{n}\|^{2}_{L^{2}}\Bigr{]}
(4.66) 12𝔼[ξ0L22]+C𝔼[τn=01ξnL22]\displaystyle\leq\frac{1}{2}\mathbb{E}\left[\|\xi^{0}\|^{2}_{L^{2}}\right]+C\mathbb{E}\Bigl{[}\tau\sum_{n=0}^{\ell-1}\|\xi^{n}\|^{2}_{L^{2}}\Bigr{]}
+Ch2|lnh|2(q1)+Ch2𝔼[τn=01un+1H22]\displaystyle\qquad+Ch^{2}|\ln h|^{2(q-1)}+Ch^{2}\mathbb{E}\Bigl{[}\tau\sum_{n=0}^{\ell-1}\|u^{n+1}\|^{2}_{H^{2}}\Bigr{]}
12𝔼[ξ0L22]+C𝔼[τn=01ξnL22]+Ch2|lnh|2(q1).\displaystyle\leq\frac{1}{2}\mathbb{E}\left[\|\xi^{0}\|^{2}_{L^{2}}\right]+C\mathbb{E}\Bigl{[}\tau\sum_{n=0}^{\ell-1}\|\xi^{n}\|^{2}_{L^{2}}\Bigr{]}+Ch^{2}|\ln h|^{2(q-1)}.

Finally, the conclusion of the theorem follows from the discrete Gronwall’s inequality, the fact that ξ0=0\xi^{0}=0, and the triangle inequality. ∎

4.4 Global error estimates

Finally, we are ready to state the global error estimates of our proposed method in the following theorem.

Theorem 10.

Let uu and {uhn}n=1N\{u_{h}^{n}\}_{n=1}^{N} denote respectively the solutions of (2.8) and Algorithm 2. Then, under the conditions of Theorem 4 and Theorem 9, there holds

sup0nN\displaystyle\sup_{0\leq n\leq N} 𝔼[u(tn)uhnL22]\displaystyle\mathbb{E}\left[\|u(t_{n})-u^{n}_{h}\|^{2}_{L^{2}}\right]
+𝔼[τn=1N(u(tn)uhn)L22]C(τ2(1ϵ)+h2|lnh|2(q1)).\displaystyle\qquad+\mathbb{E}\left[\tau\sum_{n=1}^{N}\|\nabla(u(t_{n})-u^{n}_{h})\|^{2}_{L^{2}}\right]\leq C\bigl{(}\tau^{2(1-\epsilon)}+h^{2}|\ln h|^{2(q-1)}\bigr{)}.

5 Numerical Experiments

In this section, three numerical tests are presented. In Test 1, the evolution and stability of (1.1) in the case F(u)=uu3F(u)=u-u^{3} are illustrated with different noise intensities. Test 2 provides the visualization of the stability using a different drift term and diffusion term. Test 3 presents the error orders with respect to time step size τ\tau. The domain 𝒟\mathcal{D} for all the following tests is chosen to be 𝒟=[1,1]×[1,1]\mathcal{D}=[-1,1]\times[-1,1].

Test 1. Consider the initial condition:

(5.1) u0(x,y)=tanh(x2+y20.62ϵ).u_{0}(x,y)=\tanh(\frac{\sqrt{x^{2}+y^{2}}-0.6}{\sqrt{2}\epsilon}).

For this test, F(u)=uu3F(u)=u-u^{3} is used as the nonlinear term, and G(u)=δuG(u)=\delta u is used as the diffusion term. In Figure 1, the zero-level sets of the evolution using two different levels of noise intensity are shown. One can observe that the average zero-level set is a shrinking circle for both levels of noise intensity. Figure 2 demonstrates the 𝔼L2\mathbb{E}L^{2} and 𝔼H1\mathbb{E}H^{1} stability for each time step. One can make the observation that they are both bounded. A one-sample 𝔼L2\mathbb{E}L^{2} and 𝔼H1\mathbb{E}H^{1} stability are provided in Figure 3. Those stability results are still bounded but they are not always decreasing over time.

Refer to caption
(a) δ=0.1\delta=0.1
Refer to caption
(b) δ=1\delta=1
Fig. 1: Test 1: Zero-level sets of the evolution: τ=5×104\tau=5\times 10^{-4}, h=0.02h=0.02, ϵ=0.04\epsilon=0.04.
Refer to caption
(a) δ=0.1\delta=0.1
Refer to caption
(b) δ=1\delta=1
Fig. 2: Test 1: Stability demonstration (average): τ=5×104\tau=5\times 10^{-4}, h=0.02h=0.02, ϵ=0.04\epsilon=0.04.
Refer to caption
(a) δ=0.1\delta=0.1
Refer to caption
(b) δ=1\delta=1
Fig. 3: Test 1: Stability demonstration (one sample point): τ=5×104\tau=5\times 10^{-4}, h=0.02h=0.02, ϵ=0.04\epsilon=0.04.

Test 2. For this test, the initial condition is still in (5.1), and that ϵ=0.5\epsilon=0.5. The drift term is changed to F(u)=uu11F(u)=u-u^{11}, and the diffusion term is changed to G(u)=δu2+1G(u)=\delta\sqrt{u^{2}+1}. In Figure 4, the 𝔼L2\mathbb{E}L^{2} and 𝔼H1\mathbb{E}H^{1} stability are given by the blue and pink solid lines, along with the maximum and minimum of those two stabilities given by upper and lower edges of the shaded red and blue regions. One can see that both the 𝔼L2\mathbb{E}L^{2} and 𝔼H1\mathbb{E}H^{1} stability are bounded.

Refer to caption
(a) δ=0.1\delta=0.1
Refer to caption
(b) δ=1\delta=1
Fig. 4: Test 2: Stability demonstration (average and max/min): τ=5×104\tau=5\times 10^{-4}, h=0.02h=0.02, ϵ=0.5\epsilon=0.5.

Test 3. Consider the initial condition:

(5.2) u0(x,y)=tanh(x2+y20.82ϵ).u_{0}(x,y)=\tanh(\frac{\sqrt{x^{2}+y^{2}}-0.8}{\sqrt{2}\epsilon}).

In this test, we use ϵ=0.3\epsilon=0.3, F(u)=uu3F(u)=u-u^{3} as the drift term, and G(u)=δuG(u)=\delta u as the diffusion term. The final time is T=0.25T=0.25. Table 1 demonstrates the error {sup0nN𝔼[enL2(𝒟)2]}12\{\underset{0\leq n\leq N}{\sup}\mathbb{E}[||e^{n}||^{2}_{L^{2}(\mathcal{D})}]\}^{\frac{1}{2}} and the error {𝔼[n=1NτenL2(𝒟)2]}12\{\mathbb{E}[\sum_{n=1}^{N}\tau||\nabla e^{n}||^{2}_{L^{2}(\mathcal{D})}]\}^{\frac{1}{2}}. The error {sup0nN𝔼[enL2(𝒟)2]}12\{\underset{0\leq n\leq N}{\sup}\mathbb{E}[||e^{n}||^{2}_{L^{2}(\mathcal{D})}]\}^{\frac{1}{2}} is denoted by L𝔼L2L^{\infty}\mathbb{E}L^{2}, and the error {𝔼[n=1NτenL2(𝒟)2]}12\{\mathbb{E}[\sum_{n=1}^{N}\tau||\nabla e^{n}||^{2}_{L^{2}(\mathcal{D})}]\}^{\frac{1}{2}} is denoted by 𝔼L2H1\mathbb{E}L^{2}H^{1}. By observingTable 1, one can see that the error orders for both L𝔼L2L^{\infty}\mathbb{E}L^{2} and 𝔼L2H1\mathbb{E}L^{2}H^{1} are 1.

L𝔼L2L^{\infty}\mathbb{E}L^{2} error order 𝔼L2H1\mathbb{E}L^{2}H^{1} error order
τ=0.025\tau=0.025 0.080163 - 0.054115 -
τ=0.0125\tau=0.0125 0.038604 1.0542 0.027675 0.9675
τ=0.0625\tau=0.0625 0.018036 1.0978 0.013978 0.9855
τ=0.03125\tau=0.03125 0.008724 1.0479 0.007467 0.9045
Table 1: Test 3: Time step errors and rates of convergence of Test 3: h=0.01,ϵ=0.3,δ=0.01,T=0.25h=0.01,\epsilon=0.3,\delta=0.01,{T=0.25}.

References

  • [1] P. L. Chow, Stochastic Partial Differential Equations, Chapman and Hall/CRC, 2007.
  • [2] R. Bank and H. Yserentant, On the H1H^{1}-stability of the L2L^{2}-projection onto finite element spaces, Numer. Math., 126 (2014), 361–381.
  • [3] S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, Springer, 2008.
  • [4] C-E Bréhier and L. Goudenège, Analysis of some splitting schemes for the stochastic Allen-Cahn equation, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 4169-4190.
  • [5] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Springer, volume 2, 2011.
  • [6] Z. Brzeźniak, E. Carelli, and A. Prohl, Finite-element-based discretizations of the incompressible Navier–Stokes equations with multiplicative random forcing, IMA Journal of Numerical Analysis, 33.3 (2013): 771-824.
  • [7] P. Ciarlet, The finite element method for elliptic problems, Classics in Appl. Math., 40 (2002), 1–511.
  • [8] X. Feng, Y. Li and A. Prohl, Finite element approximations of the stochastic mean curvature flow of planar curves of graphs, Stoch. PDEs: Analysis and Computations, 2 (2014), 54–83.
  • [9] X. Feng, Y. Li and Y. Zhang, Finite element methods for the stochastic Allen-Cahn equation with gradient-type multiplicative noise, SIAM J. Numer. Anal., 55 (2017), 194–216.
  • [10] X. Feng, Y. Li and Y. Zhang. Strong convergence of a fully discrete finite element method for a class of semilinear stochastic partial differential equations with multiplicative noise, Journal of Computational Mathematics, 39(4):574-598, 2021.
  • [11] B. Gess. Strong solutions for stochastic partial differential equations of gradient type, Funct. Anal., 263, 2355–2383, 2012.
  • [12] I. Gyöngy and A. Millet, On discretization schemes for stochastic evolution equations, Potential analysis, 23 (2005), 99–134.
  • [13] I. Gyöngy, S. Sabanis and D. Šiška, Convergence of tamed Euler schemes for a class of stochastic evolution equations, Stochastics and Partial Differential Equations: Analysis and Computations, 4 (2016), 225–245.
  • [14] D. Higham, X. Mao and A. Stuart, Strong convergence of Euler-type methods for nonlinear stochastic differential equations, SIAM J. Numer. Anal., 40 (2002), 1041–1063.
  • [15] M. Hutzenthaler, A. Jentzen and P. Kloeden, Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 467 (2010), 1563–1576.
  • [16] A. Jentzen and P. Pušnik, Strong convergence rates for an explicit numerical approximation method for stochastic evolution equations with non-globally Lipschitz continuous nonlinearities, IMA J. Numer. Anal., 40 (2020), 1–38.
  • [17] P. Kloeden and E. Platen, Numerical Methods for Stochastic Differential Equations, Springer, 1991.
  • [18] M. Kovács, S. Larsson and F. Lindgren, On the backward Euler approximation of the stochastic Allen-Cahn equation, J. Appl. Probab., 52 (2015), 323–338.
  • [19] M. Kovács, S. Larsson and F. Lindgren, On the discretisation in time of the stochastic Allen–Cahn equation, Mathematische Nachrichten, 291 (2018), 966–995.
  • [20] Z. Liu and Z. Qiao, Strong approximation of monotone stochastic partial differential equations driven by white noise, IMA J. Numer. Anal., 40 (2020), 1074–1093.
  • [21] A. Majee and A. Prohl, Strong rates of convergence for a space-time discretization of the stochastic Allen-Cahn equation with multiplicative noise, Comput. Methods Appl. Math., 18 (2018), 297–311.
  • [22] A. Majee and A. Prohl, Optimal Strong rates of convergence for a space-time discretization of the stochastic Allen-Cahn equation with multiplicative noise, Comput. Methods Appl. Math., 18 (2018), 297–311.
  • [23] X. Mao, Stochastic differential equations and applications, 2nd Edition, Elsevier, 2007.
  • [24] Mil’shtejn, Approximate integration of stochastic differential equations, Theory of Probability & Its Applications, 1975.
  • [25] D. Higham, X. Mao and A. Stuart. Strong convergence of Euler-type methods for nonlinear stochastic differential equations, SIAM J. Numer. Anal., 40 (2002), 1041–1063.
  • [26] G. J. Lord, C. E. Powel and T. Shardlow. An Introduction to Computational Stochastic PDEs, volume 50, Cambridge University Press, 2014.
  • [27] J. Printems, On the discretization in time of parabolic stochastic partial differential equations, M2AN Math. Model. Numer. Anal., 35 (2001), 1055–1078.
  • [28] L. Vo, Higher order time discretization method for the stochastic Stokes equations with multiplicative noise, arXiv 2211.02757, 2022.
  • [29] L. Vo, High moment and pathwise error estimates for fully discrete mixed finite element approximation of the stochastic Stokes equations with multiplicative noises, arXiv:2106.04534, 2021.
  • [30] J. Xu and L. Zikatanov, A monotone finite element scheme for convection-diffusion equations, Math. Comp., 68 (1999), 1429–1446.