This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Higher-order quantum transformations of Hamiltonian dynamics

Tatsuki Odake Department of Physics, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan    Hlér Kristjánsson Current address: Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario, N2L 2Y5, Canada, and Institute for Quantum Computing, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada Department of Physics, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan    Akihito Soeda National Institute of Informatics, Hitotsubashi 2-1-2, Chiyoda-ku, Tokyo 101-8430, Japan Department of Physics, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan    Mio Murao Department of Physics, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan Trans-Scale Quantum Science Institute, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
Abstract

We present a quantum algorithm to achieve higher-order transformations of Hamiltonian dynamics. Namely, the algorithm takes as input a finite number of queries to a black-box seed Hamiltonian dynamics to simulate a desired Hamiltonian. Our algorithm efficiently simulates linear transformations of any seed Hamiltonian with a bounded energy range consisting of a polynomial number of terms in system size, making use of only controlled-Pauli gates and time-correlated randomness. This algorithm is an instance of quantum functional programming, where the desired function is specified as a concatenation of higher-order quantum transformations. By way of example, we demonstrate the simulation of negative time-evolution and time-reversal, and perform a Hamiltonian learning task.

Efficiently simulating the dynamics of complex quantum systems is often stated as one of the main motivations of quantum computing. While such simulation is considered hard on classical computers, a range of efficient quantum algorithms have been developed for simulating Hamiltonian dynamics [1, 2, 3, 4, 5, 6, 7]. The core principle behind the standard Hamiltonian simulation algorithms is that the desired Hamiltonian dynamics can be well-approximated by a series of (arguably) simpler quantum operations. These algorithms rely on having a classical description of the desired Hamiltonian, which can often be used for obtaining a decomposition into a sum of easily implementable terms. This limits the way we can develop large-scale, complex quantum programs for dynamics simulation. Quantum algorithms which do not require detailed descriptions of quantum resources have a higher flexibility in quantum software development. This is related to the fundamental problem of understanding how much quantum algorithms need to rely on the classical description of their inputs in order to achieve quantum advantages in information processing.

In this work, we study Hamiltonian dynamics that can be implemented given a seed Hamiltonian HH without using a classical description of HH. That is, we study transformations of black-box Hamiltonians. We present a quantum algorithm that simulates the dynamics of f(H)f(H), where ff is any physically realizable linear function of HH, given a description of ff and using a black-box Hamiltonian HH with a bounded energy range. This algorithm is an instance of a higher-order quantum transformation on the unitary operation realized by the seed Hamiltonian dynamics. The functions that the algorithm can implement include both the negative time-evolution and the time-reversal of an unknown Hamiltonian evolution by considering f(H)=Hf(H)=-H and f(H)=HTf(H)=H^{T} (transposition of HH in terms of the computational basis), respectively. Such general transformations have applications ranging from fundamental physics simulations to potential improvements in state-of-the-art algorithms, such as the Hamiltonian singular value transformation [8]. We also show an application of our algorithm for Hamiltonian learning [9], in particular, a task of efficiently estimating a parameter of a multi-parameter Hamiltonian using Hamiltonian dynamics by appropriately choosing f(H)f(H).

Our work constitutes the first systematic study of higher-order quantum transformations in the context of Hamiltonian dynamics. Higher-order quantum transformations have attracted significant attention in recent years in the context of quantum circuit transformations, and are also known as superchannels, supermaps, quantum combs and process matrices [10, 11, 12, 13, 14, 15]. Higher-order algorithms for quantum computation can be seen as an analogue of functional programming in classical computing, where the possible inputs to an algorithm are quantum channels (for example, unitaries) specified “operationally” by their input-output description only (i.e. as black boxes).

Previous works on this topic have focused on the possible transformations that can be achieved when the input channels are taken to be a finite sequence of quantum gates [10, 16, 17, 18, 19, 20, 21, 22, 23, 15, 24]. Yet, the resources available in a given computation are not always best described by a finite sequence of gates, but rather by a continuously parameterized Hamiltonian evolution. In fact, it is known that certain functions such as controllization, which cannot be implemented on black box unitaries [25, 26, 27, 28], can in fact be implemented if access to the underlying Hamiltonian evolution is given [29, 17]. This is because it is possible to apply an arbitrary fractional power of an unknown Hamiltonian evolution by changing the evolution time, whereas applying a fractional power is not possible for black box unitaries.

Summary of algorithm.—We now present our algorithm in detail (see Algorithm 1). We represent Hilbert spaces of an nn-qubit quantum system and a single-qubit auxiliary system by \mathcal{H} and c\mathcal{H}_{c}, respectively. We assume that we can invoke the Hamiltonian evolution eiHτe^{-iH\tau} of a seed Hamiltonian H()H\in\mathcal{L}(\mathcal{H}) with an upper bound ΔH\Delta_{H} of the difference between the maximum and the minimum energy eigenvalues is given, for any time τ>0\tau>0.

Algorithm 1 Simulating eif(H)te^{-if(H)t}
1:Input:
  • A finite number of queries to a black box Hamiltonian dynamics eiHτe^{-iH\tau} of a seed Hamiltonian HH with τ>0\tau>0 on an nn-qubit system \mathcal{H}

  • An upper bound ΔH\Delta_{H} of the difference between the maximum and the minimum energy eigenvalues

  • Hermitian-preserving linear map f:()()f:\mathcal{L}(\mathcal{H})\to\mathcal{L}(\mathcal{H}) satisfying f(I)If(I)\propto I, which can always be represented by the Pauli transfer matrix elements γw,u\gamma_{\vec{w},\vec{u}} as

    f=w{0,1,2,3}nu{0,1,2,3}n(0,,0)γw,ufw,u,f=\sum_{\begin{subarray}{c}\vec{w}\in\{0,1,2,3\}^{n}\\ \vec{u}\in\{0,1,2,3\}^{n}\setminus(0,\ldots,0)\end{subarray}}\gamma_{\vec{w},\vec{u}}\,f_{\vec{w},\vec{u}}\,,\vspace{-0.5em} (1)

    for some γw,u\gamma_{\vec{w},\vec{u}}\in\mathbb{R} and functions fw,uf_{\vec{w},\vec{u}} defined by

    fw,u(σv):=δv,uσwf_{\vec{w},\vec{u}}(\sigma_{\vec{v}}):=\delta_{\vec{v},\vec{u}}\sigma_{\vec{w}}\vspace{-0.5em} (2)

    for any tensor products of Pauli operators σv:=σv1σvn\sigma_{\vec{v}}:=\sigma_{v_{1}}\otimes\cdots\otimes\sigma_{v_{n}}, where σ0=I,σ1=X,σ2=Y,σ3=Z\sigma_{0}\!=\!I,\ \sigma_{1}\!=\!X,\ \sigma_{2}\!=\!Y,\ \sigma_{3}\!=\!Z and u,v,w{0,1,2,3}n\vec{u},\ \vec{v},\ \vec{w}\in\{0,1,2,3\}^{n} are Pauli index vectors

  • Input state |ψ\ket{\psi}\in\mathcal{H}, Allowed error ϵ>0\epsilon>0, Time t>0t>0

2:Output: A state approximating eif(H)t|ψe^{-if(H)t}\ket{\psi} with an error less than ϵ\epsilon (measured by the 1-norm)
3:
4:Runtime: O(β2t2ΔH2n/ϵ)O(\beta^{2}t^{2}\Delta_{H}^{2}n/\epsilon) for β:=2w,u|γw,u|\beta:=2\sum_{\vec{w},\vec{u}}|\gamma_{\vec{w},\vec{u}}|
5:Used Resources:
6:   System: \mathcal{H} and one auxiliary qubit c\mathcal{H}_{c}
7:   Gates: eiHτ(τ>0)e^{-iH\tau}\ (\tau>0) and controlled-Pauli gates on c\mathcal{H}_{c}\otimes\mathcal{H}
8:
9:Procedure:
10:Compute N:=ceil[max(5β2t2ΔH2ϵ,52βtΔH)]N:={\rm ceil}\left[\max\left(\frac{5\beta^{2}{t}^{2}\Delta_{H}^{2}}{\epsilon},\frac{5}{2}\beta t\Delta_{H}\right)\right]
11:Initialize:
12:   |current|0|ψ\ket{\text{current}}\leftarrow\ket{0}\otimes\ket{\psi}
13:for m=1,,Nm=1,\ldots,N do
14:     Randomly choose
  • (v,v)({0,1,2,3}n)2(\vec{v},\vec{v}^{\prime})\in(\{0,1,2,3\}^{n})^{2} with prob. pv,v(1):=116np_{\vec{v},\vec{v}^{\prime}}^{(1)}:=\frac{1}{16^{n}}

  • (u,w)({0,1,2,3}n)2(\vec{u},\vec{w})\in(\{0,1,2,3\}^{n})^{2} with prob. pu,w(2):=2|γu,w|βp_{\vec{u},\vec{w}}^{(2)}:=\frac{2|\gamma_{\vec{u},\vec{w}}|}{\beta}

15:     Prepare the gate sequence [with j=(v,v,u,w)j=(\vec{v},\vec{v}^{\prime},\vec{u},\vec{w})]
[Uncaptioned image]
where sf:=1sgn(γu,w)2s_{f}:=\frac{1-\mathrm{sgn}(\gamma_{\vec{u},\vec{w}})}{2} (all gates other than XsfX^{s_{f}} are independent of ff) and HAD\rm HAD refers to the Hadamard gate
16:     |currentVf,j(IeiHtβ/N)Vf,j|current\ket{\text{current}}\leftarrow V_{f,j}(I\otimes e^{-iHt\beta/N})V_{f,j}^{\dagger}\ket{\text{current}}
17:end for
18:Trace out c\mathcal{H}_{c} of |current\ket{\text{current}}
19:Return |current\ket{\text{current}}

We assume that f(I)If(I)\propto I, which ensures that the resulting evolution eif(H)te^{-if(H)t} preserves the invariance under the global phase of eiHτe^{-iH\tau}. This class of ff covers all physically realizable linear transformations of HH as shown in Appendix C. In our setting, we are given the Pauli transfer matrices γ\gamma [30] as in Eq. (1) of a hermitian-preserving linear map f:()()f:\mathcal{L}(\mathcal{H})\to\mathcal{L}(\mathcal{H}). Our algorithm simulates the Hamiltonian evolution eif(H)te^{-if(H)t} for any t>0t>0 representing the time for the transformed Hamiltonian dynamics up to an error ϵ>0\epsilon>0 and variance 4ϵ4\epsilon (see proof in Appendix A, which relies on more general results proven in Appendix B. A similar analysis of variance is obtained in probabilistic state synthesis [31]).

The runtime of our algorithm is upper-bounded as O(β2t2ΔH2n/ϵ)O(\beta^{2}t^{2}\Delta_{H}^{2}n/\epsilon) in terms of β:=2w,u|γw,u|\beta:=2\sum_{\vec{w},\vec{u}}|\gamma_{\vec{w},\vec{u}}|, which is a function of elements of the Pauli transfer matrix. The total evolution time of the input dynamics eiHτe^{-iH\tau} is βt\beta t which can be shown from step 3 and step 6 of the Algorithm 1.

In Algorithm 1, the gate sequence Vf,jV_{f,j} is constructed only from controlled-Pauli gates, which are Clifford gates. The only element which may be non-Clifford is the black box dynamics eiHτe^{-iH\tau}. Dependence on the transformation ff is specified only through the probability distribution pu,w(2)p_{\vec{u},\vec{w}}^{(2)} in choosing (u,w)(\vec{u},\vec{w}) in Step 4 and through the gate XsfX^{s_{f}} in Step 5. The total runtime O(β2t2ΔH2n/ϵ)O(\beta^{2}t^{2}\Delta_{H}^{2}n/\epsilon) is calculated by multiplying the number of iterations NN with the runtime O(n)O(n) for implementing the controlled-Pauli gates in Vf,jV_{f,j} using CNOT gates and single-qubit Clifford gates. Note that NN is independent of nn, even though the set of parameters j({0,1,2,3}n)4j\in(\{0,1,2,3\}^{n})^{4} has exponentially many terms. The procedure of Algorithm 1 is summarized in Figure 1.

Refer to caption
Figure 1: A circuit representation of Algorithm 1 implementing the transformation eiHτeif(H)te^{-iH\tau}\mapsto e^{-if(H)t} for an arbitrary hermitian-preserving linear map f:()()f:\mathcal{L}(\mathcal{H})\mapsto\mathcal{L}(\mathcal{H}) satisfying f(I)If(I)\propto I. The unitary eif(H)te^{-if(H)t} is simulated deterministically and approximately, for an arbitrary input state |ψ\ket{\psi}\in\mathcal{H} and the auxiliary qubit initialized in the state |0c\ket{0}\in\mathcal{H}_{c}. The number NN on the top-right of the bracket refers to the number of iterations while tβ/Nt\beta/N is the Hamiltonian evolution time of each iteration. For each iteration, an index j=(v,v,u,w)j=(\vec{v},\vec{v}^{\prime},\vec{u},\vec{w}) is randomly chosen from the probability distribution pj=pv,v(1)pu,w(2)p_{j}=p_{\vec{v},\vec{v}^{\prime}}^{(1)}p_{\vec{u},\vec{w}}^{(2)}, to perform the jj-dependent circuit inside the square brackets.
Refer to caption
Figure 2: A description of how a seed Hamiltonian H=vcvσvH=\sum_{\vec{v}}c_{\vec{v}}\sigma_{\vec{v}} is transformed after each pair of gates in Algorithm 1, for a fixed choice of u,w\vec{u},\vec{w}. The labels \scriptsize1⃝ to \scriptsize7⃝ correspond to the Processes defined in the text.

To understand how the gate sequence Vf,jV_{f,j} transforms the Hamiltonian at each iteration, Figure 2 shows the explicit evolution of an arbitrary seed Hamiltonian H=vcvσvH=\sum_{\vec{v}}c_{\vec{v}}\sigma_{\vec{v}} after pre- and post-processing with each successive gate in the (random) sequence Vf,jV_{f,j} averaged over v\vec{v} and v\vec{v}^{\prime}, namely, 116nv,vVf,j(IeiHtβ/N)Vf,j\frac{1}{16^{n}}\sum_{\vec{v},\vec{v}^{\prime}}V_{f,j}(I\otimes e^{-iHt\beta/N})V_{f,j}^{\dagger}. For simplicity, HH is assumed to be traceless (any trace-full part is proportional to the identity and is therefore invariant under the overall transformation ff, by construction). The gate sequence of 116nv,vVf,j(IeiHtβ/N)Vf,j\frac{1}{16^{n}}\sum_{\vec{v},\vec{v}^{\prime}}V_{f,j}(I\otimes e^{-iHt\beta/N})V_{f,j}^{\dagger} is constructed in a functional programming approach, namely, by concatenations of a series of higher-order transformations, here called Processes \scriptsize1⃝ to \scriptsize7⃝. Each of these processes is designed to implement a Hamiltonian dynamics whose Hamiltonian is given by

IH=(H00H)\scriptsize1⃝(H000)\scriptsize2⃝(HHHH)\displaystyle I\otimes H=\left(\begin{array}[]{cc}H&0\\ 0&H\\ \end{array}\right)\xrightarrow{\text{\scriptsize1⃝}}\left(\begin{array}[]{cc}H&0\\ 0&0\\ \end{array}\right)\xrightarrow{\text{\scriptsize2⃝}}\left(\begin{array}[]{cc}H&H\\ H&H\\ \end{array}\right) (9)
\scriptsize3⃝(HHσuσuHσuHσu)\scriptsize4⃝cu(0II0)\scriptsize5⃝cu(0σwσw0)\displaystyle\xrightarrow{\text{\scriptsize3⃝}}\left(\begin{array}[]{cc}H&H\sigma_{\vec{u}}\\ \sigma_{\vec{u}}H&\sigma_{\vec{u}}H\sigma_{\vec{u}}\\ \end{array}\right)\xrightarrow{\text{\scriptsize4⃝}}c_{\vec{u}}\left(\begin{array}[]{cc}0&I\\ I&0\\ \end{array}\right)\xrightarrow{\text{\scriptsize5⃝}}c_{\vec{u}}\left(\begin{array}[]{cc}0&\sigma_{\vec{w}}\\ \sigma_{\vec{w}}&0\\ \end{array}\right) (16)
\scriptsize6⃝cu(σw00σw)\scriptsize7⃝sgn(γw,u)cu(σw00σw).\displaystyle\xrightarrow{\text{\scriptsize6⃝}}c_{\vec{u}}\left(\begin{array}[]{cc}\sigma_{\vec{w}}&0\\ 0&-\sigma_{\vec{w}}\\ \end{array}\right)\xrightarrow{\text{\scriptsize7⃝}}\mathrm{sgn}(\gamma_{\vec{w},\vec{u}})c_{\vec{u}}\left(\begin{array}[]{cc}\sigma_{\vec{w}}&0\\ 0&-\sigma_{\vec{w}}\\ \end{array}\right). (21)

Applying the first controlled-σv\sigma_{\vec{v}} gate before and after the seed Hamiltonian evolution eiHtβ/Ne^{-iHt\beta/N} with v\vec{v} chosen independently from the uniform distribution in each iteration but perfectly correlated between the pre- and post-processing within each iteration (Process \scriptsize1⃝) implements Hamiltonian controllization [17]. That is, the effective evolution (𝚌𝚝𝚛𝚕σv)ei(IH)tβ/N(𝚌𝚝𝚛𝚕σv)({\tt ctrl}\sigma_{\vec{v}})e^{-i(I\otimes H)t\beta/N}({\tt ctrl}\sigma_{\vec{v}}) averaged over v\vec{v} simulates a Hamiltonian of the form H0H\oplus 0.

Process \scriptsize4⃝ is based on the identity

14nv{0,1,2,3}n(Iσv)(H00H01H01H11)(Iσv)\displaystyle\frac{1}{4^{n}}\sum_{\vec{v}^{\prime}\in\{0,1,2,3\}^{n}}(I\otimes\sigma_{\vec{v}^{\prime}})\left(\begin{array}[]{cc}H_{00}&H_{01}\\ H_{01}^{\dagger}&H_{11}\\ \end{array}\right)(I\otimes\sigma_{\vec{v}^{\prime}}) (24)
12n(trH00trH01trH01trH11)I,\displaystyle\equiv\frac{1}{2^{n}}\left(\begin{array}[]{cc}\mathrm{tr}H_{00}&\mathrm{tr}H_{01}\\ \mathrm{tr}H_{01}^{\dagger}&\mathrm{tr}H_{11}\\ \end{array}\right)\otimes I, (27)

where H00,H01,H11()H_{00},\ H_{01},\ H_{11}\in\mathcal{L}(\mathcal{H}) are arbitrary operators, noting that for all u\vec{u}, tr(H)=tr(σuHσu)=0\mathrm{tr}(H)=\mathrm{tr}(\sigma_{\vec{u}}H\sigma_{\vec{u}})=0 and tr(σuH)=tr(Hσu)=2ncu\mathrm{tr}(\sigma_{\vec{u}}H)=\mathrm{tr}(H\sigma_{\vec{u}})=2^{n}c_{\vec{u}}. The two gates σv\sigma_{\vec{v}^{\prime}} are chosen independently from the uniform distribution at each iteration.

Algorithm 1 is universal in the sense that it transforms the dynamics of any seed Hamiltonian HH to that of the Hamiltonian f(H)f(H) for any choice of a physically realizable linear transformation ff, even if HH is only given as a black box. Therefore the algorithm is an instance of higher-order quantum transformations of Hamiltonian dynamics. The algorithm makes use of a general approximation technique for simulating Hamiltonians of the form g(H)=jhjUjHUjg(H)=\sum_{j}h_{j}U_{j}HU_{j}^{\dagger}, where {Uj}j\{U_{j}\}_{j} is a set of unitaries, {hj}j\{h_{j}\}_{j} is a set of positive numbers and HH is a seed Hamiltonian. This approximation is represented by the following circuit

[Uncaptioned image] (28)

where λ\lambda and pjp_{j} are defined as λ:=hj\lambda:=\sum h_{j} and pj:=hj/λp_{j}:=h_{j}/\lambda. The approximation is based on the randomized Hamiltonian simulation of Ref. [3] and the identity UeiHtUeiUHUtUe^{-iHt}U^{\dagger}\equiv e^{-iUHU^{\dagger}t} for any unitary UU, time t>0t>0 and hermitian operator HH. This technique is also known as Hamiltonian reshaping [32]. Our algorithm can be seen as a special case of the approximation (28) with hj=2|γu,w|/16nh_{j}=2|\gamma_{\vec{u},\vec{w}}|/16^{n} and Uj=Vf,j\ U_{j}=V_{f,j}, where the seed Hamiltonian has the form IHI\otimes H.

Applications of the algorithm.—We describe three applications of our algorithm: the negative time-evolution of Hamiltonian dynamics eiHτeiHt(τ,t>0)e^{-iH\tau}\mapsto e^{iHt}\ (\tau,t>0), the time-reversal of Hamiltonian dynamics eiHτeiHTt(τ,t>0)e^{-iH\tau}\mapsto e^{-iH^{T}t}\ (\tau,t>0), and a Hamiltonian single-parameter learning task of estimating one of the parameters represented by a Pauli coefficient cvc_{\vec{v}} (|cv|1,v{0,1,2,3}n)(|c_{\vec{v}}|\leq 1\ ,\vec{v}\in\{0,1,2,3\}^{n}) of a Hamiltonian H=ucuσuH=\sum_{\vec{u}}c_{\vec{u}}\sigma_{\vec{u}} with Heisenberg-limited precision scaling using its dynamics eiHτe^{-iH\tau} (τ>0)(\tau>0).

In general, all three applications can be performed even if the dynamics eiHτe^{-iH\tau} is given as a black box, apart from knowledge of ΔH\Delta_{H}. However, given the knowledge that HH belongs to a subspace of ()\mathcal{L}(\mathcal{H}) spanned by the set {σv}vJ\{\sigma_{\vec{v}}\}_{\vec{v}\in J} for some J{0,1,2,3}nJ\subset{\{0,1,2,3\}^{n}}, negative time-evolution and time-reversal can be performed in a runtime of O[poly(|J|)]O[\mathrm{poly}(|J|)]. This property is useful when the Hamiltonian is known to be kk-local for some constant kk, in which case J={w:w0k}J=\left\{\vec{w}\ :||\vec{w}||_{0}\leq k\right\} satisfies |J|O(nk)|J|\sim O(n^{k}), so that the overall runtime is polynomial in the system size nn, based on the fact that ΔH\Delta_{H} is also poly(n){\rm poly}(n).

In quantum algorithms that make direct use of Hamiltonian dynamics, both the positive and negative time-evolution are often assumed to be readily accessible. For example, this is required in the recent Hamiltonian singular value transformation [8]. However, in practice, a Hamiltonian evolution being native to a given hardware does not automatically guarantee that the same is true for the corresponding negative time-evolution. Therefore, the ability to efficiently simulate the negative time-evolution of any Hamiltonian given as a black box can decrease the resources required for such algorithms. On the more foundational side, given access to a black box Hamiltonian evolution, one might be interested in simulating the corresponding time-reversed evolution. For example, the evolution of an antiparticle can be described by the time-reversal of the corresponding particle evolution [33, 34].

The simulations of both negative time-evolution and time-reversal are performed by choosing the function ff as fneg(H):=Hf^{\rm neg}(H):=-H and frev(H):=HTf^{\rm rev}(H):=H^{T}, respectively, which are specified by

γw,uneg\displaystyle\gamma^{\rm neg}_{\vec{w},\vec{u}} :=δw,u\displaystyle:=-\delta_{\vec{w},\vec{u}}
γw,urev\displaystyle\gamma^{\rm rev}_{\vec{w},\vec{u}} :=(1)swδw,u,\displaystyle:=(-1)^{s_{\vec{w}}}\delta_{\vec{w},\vec{u}}, (29)

where s(w1,,wn):=|{j{1,,n}wj=2}|s_{(w_{1},\ldots,w_{n})}:=|\{j\in\{1,\ldots,n\}\mid w_{j}=2\}|. In the definition of γw,urev\gamma^{\rm rev}_{\vec{w},\vec{u}}, the fact that IT=II^{T}=I, XT=XX^{T}=X, YT=YY^{T}=-Y, and ZT=ZZ^{T}=Z are used.

In both of these cases, β=2w,u|γw,u|=2(4n1)\beta=2\sum_{\vec{w},\vec{u}}|\gamma_{\vec{w},\vec{u}}|=2(4^{n}-1), thus the runtime O(β2t2ΔH2n/ϵ)O(\beta^{2}t^{2}\Delta_{H}^{2}n/\epsilon) is exponential in nn in general. However, when HH is in a subspace of ()\mathcal{L}(\mathcal{H}) spanned by the set {σv}vJ\{\sigma_{\vec{v}}\}_{\vec{v}\in J} , we can define

γw,uneg\displaystyle\gamma^{\rm neg}_{\vec{w},\vec{u}} :={δw,u(uJ)0(otherwise)\displaystyle:=\begin{cases}-\delta_{\vec{w},\vec{u}}&(\vec{u}\in J)\\ 0&(\text{otherwise})\\ \end{cases} (30)
γw,urev\displaystyle\gamma^{\rm rev}_{\vec{w},\vec{u}} :={(1)swδw,u(uJ)0(otherwise),\displaystyle:=\begin{cases}(-1)^{s_{\vec{w}}}\delta_{\vec{w},\vec{u}}&(\vec{u}\in J)\\ 0&(\text{otherwise})\,,\\ \end{cases} (31)

since f(H)f(H) does not depend on values of γw,u\gamma_{\vec{w},\vec{u}} for uJ\vec{u}\notin J. In this case, β=2|J|\beta=2|J| so the runtime scales as O(|J|2t2ΔH2n/ϵ)O(|J|^{2}t^{2}\Delta_{H}^{2}n/\epsilon), which is O[poly(n)]O[\mathrm{poly}(n)] for a realistic Hamiltonian whose number of terms |J||J| is polynomial in the system size nn. For a general Hamiltonian linear transformation ff, if both the seed Hamiltonian and the transformed Hamiltonian have a polynomial number of terms in nn, then the non-zero elements of ff can be truncated so that the runtime O(β2t2ΔH2n/ϵ)O(\beta^{2}t^{2}\Delta_{H}^{2}n/\epsilon) has a polynomial dependence on nn.

We note that the runtime scales as t2t^{2}, meaning that in order to perform the time-reversal or negative time-evolution by this algorithm, the dynamics is slowed down quadratically. An application of simulating the negative time-evolution to Hamiltonian block encoding [8] is described in Appendix D.

Finally, we consider an application of our algorithm to Hamiltonian single-parameter learning. Estimation techniques of parameters of unknown Hamiltonians for Hamiltonian learning have many applications in quantum sensing [35], analyzing properties of quantum many-body physics [36], and quantum device calibration [37]. Recently, an estimation technique achieving the Heisenberg limit for the precision scaling in the estimation of parameters of a low-interaction Hamiltonian utilizing transformations of Hamiltonian dynamics has been proposed [32]. Our algorithm can be used to extend similar techniques to a more general class of nn-qubit Hamiltonians.

Our estimation algorithm consists of two steps. The first step simulates eifv(H0)te^{-if_{\vec{v}}(H_{0})t} (t>0)(t>0) using the Hamiltonian dynamics eiHτe^{-iH\tau} (τ>0)(\tau>0) where v\vec{v} specifies cvc_{\vec{v}} that we want to estimate and fvf_{\vec{v}} is a hermitian-preserving linear map chosen as fv(H)=cvYIIf_{\vec{v}}(H)=c_{\vec{v}}Y\otimes I\otimes\cdots\otimes I. This function fvf_{\vec{v}} “filters” to keep only the coefficient cvc_{\vec{v}} and changes all other coefficients to be zero, and then sends the coefficient cvc_{\vec{v}} to the coefficient of YIIY\otimes I\otimes\cdots\otimes I, which is chosen for the convenience of the second step. The corresponding γ\gamma is given by γwu:=δw,(2,0,,0)δu,v\gamma_{\vec{w}\vec{u}}:=\delta_{\vec{w},(2,0,\ldots,0)}\delta_{\vec{u},\vec{v}}. The second step performs robust phase estimation [38] using eifv(H)te^{-if_{\vec{v}}(H)t} similarly to the technique in [32] to obtain an estimate for cvc_{\vec{v}}, by measuring only the first qubit in our algorithm. The total evolution time is O((logδ)/ϵ)O((\log\delta)/\epsilon) where ϵ\epsilon is precision and δ\delta is the failure probability, which achieves the Heisenberg-limited precision scaling. The detailed procedure and analysis of the total evolution time are given in Appendix E.

For parameter estimation of low-interaction Hamiltonians, the method of [32] can perform the full-parameter estimation in a single run with total evolution time O((logδ)/ϵ)O((\log\delta)/\epsilon), while our method requires polynomially longer total evolution time as we need to repeat the single parameter estimation for every parameter to perform the same task. However, the method of [32] requires exponential total evolution time for estimating a high-interaction coefficient (a coefficient of a kk-local Hamiltonian term with k=O(n)k=O(n)), while our algorithm requires the same total evolution time for any coefficient. Therefore, our algorithm is suitable for estimating a single parameter of non-local Hamiltonians.

Summary and outlook.— We presented a universal algorithm that can simulate any linear physically realizable hermitian-preserving transformation of any Hamiltonian dynamics given as a black box. Our algorithm requires only a finite number of calls to the black box Hamiltonian dynamics and random pairs of correlated controlled-Pauli gates. We showed how our algorithm can simulate both the time-reversal and negative time-evolution of any unknown Hamiltonian dynamics, as well as an application to Hamiltonian single-parameter learning, efficiently estimating a single parameter of a multi-parameter Hamiltonian.

In our algorithm, the probability distribution for choosing multiple gates at different time steps are correlated in the sense that the gate Vf,jV_{f,j} is always used together with its adjoint Vf,jV_{f,j}^{\dagger}, and the probabilities for picking its component controlled-Pauli gates are correlated via a joint probability distribution. This algorithm demonstrates how multiply correlated randomness can be leveraged to construct unitary operators without introducing decoherence. Our algorithm is a starting point for the emerging field of black box Hamiltonian simulation. One possible future direction is to extend higher-order quantum transformations of Hamiltonian dynamics to Hamiltonian transformations beyond hermitian-preserving linear transformations.

We would like to thank Seiseki Akibue, Mile Gu, Toshinori Itoko, Antonio Mezzacapo, Kunal Sharma, Philip Taranto, and Satoshi Yoshida for fruitful discussions. This work was supported by the MEXT Quantum Leap Flagship Program (MEXT QLEAP) Grant No. JPMXS0118069605, the Japan Society for the Promotion of Science (JSPS) KAKENHI Grants No. 21H03394 and No. 18K13467, and partly by IBM-UTokyo lab. Research at Perimeter Institute is supported in part by the Government of Canada through the Department of Innovation, Science and Economic Development and by the Province of Ontario through the Ministry of Colleges and Universities.

References

  • Suzuki [1990] M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations, Physics Letters A 146, 319 (1990).
  • Suzuki [1991] M. Suzuki, General theory of fractal path integrals with applications to many-body theories and statistical physics, Journal of Mathematical Physics 32, 400 (1991).
  • Campbell [2019] E. Campbell, Random compiler for fast Hamiltonian simulation, Physical Review Letters 123, 070503 (2019).
  • Berry et al. [2015] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, Simulating Hamiltonian dynamics with a truncated Taylor series, Physical Review Letters 114, 090502 (2015).
  • Low and Chuang [2017] G. H. Low and I. L. Chuang, Optimal Hamiltonian simulation by quantum signal processing, Physical Review Letters 118, 010501 (2017).
  • Low and Chuang [2019] G. H. Low and I. L. Chuang, Hamiltonian simulation by qubitization, Quantum 3, 163 (2019).
  • Childs et al. [2018] A. M. Childs, D. Maslov, Y. Nam, N. J. Ross, and Y. Su, Toward the first quantum simulation with quantum speedup, Proceedings of the National Academy of Sciences 115, 9456 (2018).
  • Lloyd et al. [2021] S. Lloyd, B. T. Kiani, D. R. Arvidsson-Shukur, S. Bosch, G. De Palma, W. M. Kaminsky, Z.-W. Liu, and M. Marvian, Hamiltonian singular value transformation and inverse block encoding, arXiv preprint arXiv:2104.01410  (2021).
  • Granade et al. [2012] C. E. Granade, C. Ferrie, N. Wiebe, and D. G. Cory, Robust online hamiltonian learning, New Journal of Physics 14, 103013 (2012).
  • Chiribella et al. [2008a] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Quantum circuit architecture, Physical Review Letters 101, 060401 (2008a).
  • Chiribella et al. [2008b] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Transforming quantum operations: Quantum supermaps, Europhysics Letters 83, 30004 (2008b).
  • Chiribella et al. [2009] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Theoretical framework for quantum networks, Physical Review A 80, 022339 (2009).
  • Bisio and Perinotti [2019] A. Bisio and P. Perinotti, Theoretical framework for higher-order quantum theory, Proceedings of the Royal Society A 475, 20180706 (2019).
  • Chitambar and Gour [2019] E. Chitambar and G. Gour, Quantum resource theories, Reviews of Modern Physics 91, 025001 (2019).
  • Oreshkov et al. [2012] O. Oreshkov, F. Costa, and Č. Brukner, Quantum correlations with no causal order, Nature Communications 3, 1092 (2012).
  • Miyazaki et al. [2019] J. Miyazaki, A. Soeda, and M. Murao, Complex conjugation supermap of unitary quantum maps and its universal implementation protocol, Physical Review Research 1, 013007 (2019).
  • Dong et al. [2019] Q. Dong, S. Nakayama, A. Soeda, and M. Murao, Controlled quantum operations and combs, and their applications to universal controllization of divisible unitary operations, arXiv preprint arXiv:1911.01645  (2019).
  • Quintino et al. [2019a] M. T. Quintino, Q. Dong, A. Shimbo, A. Soeda, and M. Murao, Probabilistic exact universal quantum circuits for transforming unitary operations, Physical Review A 100, 062339 (2019a).
  • Quintino et al. [2019b] M. T. Quintino, Q. Dong, A. Shimbo, A. Soeda, and M. Murao, Reversing unknown quantum transformations: Universal quantum circuit for inverting general unitary operations, Physical Review Letters 123, 210502 (2019b).
  • Yoshida et al. [2022] S. Yoshida, A. Soeda, and M. Murao, Reversing unknown qubit-unitary operation, deterministically and exactly, arXiv preprint arXiv:2209.02907  (2022).
  • Chiribella and Kristjánsson [2019] G. Chiribella and H. Kristjánsson, Quantum Shannon theory with superpositions of trajectories, Proceedings of the Royal Society A 475, 20180903 (2019).
  • Chiribella et al. [2013] G. Chiribella, G. M. D’Ariano, P. Perinotti, and B. Valiron, Quantum computations without definite causal structure, Physical Review A 88, 022318 (2013).
  • Pollock et al. [2018] F. A. Pollock, C. Rodríguez-Rosario, T. Frauenheim, M. Paternostro, and K. Modi, Non-markovian quantum processes: Complete framework and efficient characterization, Physical Review A 97, 012127 (2018).
  • Bai et al. [2020] G. Bai, Y.-D. Wu, Y. Zhu, M. Hayashi, and G. Chiribella, Efficient algorithms for causal order discovery in quantum networks, arXiv preprint arXiv:2012.01731  (2020).
  • Gavorová et al. [2020] Z. Gavorová, M. Seidel, and Y. Touati, Topological obstructions to implementing controlled unknown unitaries, arXiv preprint arXiv:2011.10031  (2020).
  • Araújo et al. [2014] M. Araújo, A. Feix, F. Costa, and Č. Brukner, Quantum circuits cannot control unknown operations, New Journal of Physics 16, 093026 (2014).
  • Soeda [2013] A. Soeda, Limitations on quantum subroutine designing due to the linear structure of quantum operators (Talk at the International Conference on Quantum Information and Technology (IC- QIT), 2013).
  • Friis et al. [2014] N. Friis, V. Dunjko, W. Dür, and H. J. Briegel, Implementing quantum control for unknown subroutines, Physical Review A 89, 030303 (2014).
  • Nakayama et al. [2015] S. Nakayama, A. Soeda, and M. Murao, Quantum algorithm for universal implementation of the projective measurement of energy, Physical Review Letters 114, 190501 (2015).
  • Chow et al. [2012] J. M. Chow, J. M. Gambetta, A. D. Corcoles, S. T. Merkel, J. A. Smolin, C. Rigetti, S. Poletto, G. A. Keefe, M. B. Rothwell, J. R. Rozen, et al., Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits, Physical review letters 109, 060501 (2012).
  • Akibue et al. [2023] S. Akibue, G. Kato, and S. Tani, Probabilistic state synthesis based on optimal convex approximation, arXiv preprint arXiv:2303.10860  (2023).
  • Huang et al. [2023] H.-Y. Huang, Y. Tong, D. Fang, and Y. Su, Learning many-body hamiltonians with heisenberg-limited scaling, Physical Review Letters 130, 200403 (2023).
  • Weinberg [2005] S. Weinberg, The Quantum Theory of Fields, Volume 1: Foundations (Cambridge University Press, 2005).
  • Sakurai [1994] J. J. Sakurai, Modern quantum mechanics; rev. ed. (Addison-Wesley, Reading, MA, 1994).
  • de Burgh and Bartlett [2005] M. de Burgh and S. D. Bartlett, Quantum methods for clock synchronization: Beating the standard quantum limit without entanglement, Physical Review A 72, 042301 (2005).
  • Wiebe et al. [2014] N. Wiebe, C. Granade, C. Ferrie, and D. Cory, Quantum hamiltonian learning using imperfect quantum resources, Physical Review A 89, 042314 (2014).
  • Boulant et al. [2003] N. Boulant, T. F. Havel, M. A. Pravia, and D. G. Cory, Robust method for estimating the lindblad operators of a dissipative quantum process from measurements of the density operator at multiple time points, Physical Review A 67, 042322 (2003).
  • Kimmel et al. [2015] S. Kimmel, G. H. Low, and T. J. Yoder, Robust calibration of a universal single-qubit gate set via robust phase estimation, Physical Review A 92, 062315 (2015).
  • Watrous [2018] J. Watrous, The theory of quantum information (Cambridge University Press, 2018).
  • Fuchs and Van De Graaf [1999] C. A. Fuchs and J. Van De Graaf, Cryptographic distinguishability measures for quantum-mechanical states, IEEE Transactions on Information Theory 45, 1216 (1999).
  • Gilyén et al. [2019] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics, in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (2019) pp. 193–204.
  • Martyn et al. [2021] J. M. Martyn, Z. M. Rossi, A. K. Tan, and I. L. Chuang, Grand unification of quantum algorithms, PRX Quantum 2, 040203 (2021).
  • Haah et al. [2023] J. Haah, R. Kothari, R. O’Donnell, and E. Tang, Query-optimal estimation of unitary channels in diamond distance, arXiv preprint arXiv:2302.14066  (2023).

Appendix A Appendix A: Error and variance analysis on Algorithm 1

In this section, we prove a theorem (Theorem 1) evaluating the error and variance of Algorithm 1 in simulating eif(H)te^{-if(H)t}. We use the same notation and symbols appearing in Algorithm 1 in this appendix and the following appendices.

For evaluating the error of the simulated quantum operation from the target quantum operation, we use the diamond norm \|\mathcal{E}\|_{\diamond} of a quantum operation :()()\mathcal{E}:\mathcal{L}(\mathcal{H})\to\mathcal{L}(\mathcal{H}) defined as [39]

\displaystyle\|\mathcal{E}\|_{\diamond} :=supA;A1=1()(A)1\displaystyle:=\underset{A;\|A\|_{1}=1}{\mathrm{sup}}\|(\mathcal{E}\otimes\mathcal{I})(A)\|_{1} (32)

where the identity operation \mathcal{I} acts on a Hilbert space isomorphic to \mathcal{H}, AA is an arbitrary linear operator on \mathcal{H}\otimes\mathcal{H}, and A1\|A\|_{1} is the trace norm defined by A1:=tr(AA)\|A\|_{1}:=\mathrm{tr}(\sqrt{A^{\dagger}A}).

Theorem 1.

.

  1. 1.

    The approximation error of Algorithm 1 is given by

    12approxϵ,\displaystyle\frac{1}{2}\|\mathcal{F}-{\mathcal{F}}_{\mathrm{approx}}\|_{\diamond}\leq\epsilon\,, (33)

    where \mathcal{F} is a map defined by (ρ):=eif(H)tρeif(H)t\mathcal{F}(\rho):=e^{-if(H)t}\rho e^{if(H)t} and approx{\mathcal{F}}_{\mathrm{approx}} is the quantum operation averaged over all random instances of operations performed in Algorithm 1.

  2. 2.

    The variance of Algorithm 1 is given by

    supdim()|ψ|ψ=1jpj()(|ψψ|)\displaystyle\underset{\begin{subarray}{c}\mathrm{dim}(\mathcal{H}^{\prime})\\ \ket{\psi}\in\mathcal{H}\otimes\mathcal{H}^{\prime}\\ \|\ket{\psi}\|=1\end{subarray}}{\mathrm{sup}}\sum_{\vec{j}}p_{\vec{j}}\|({\mathcal{F}\otimes\mathcal{I}}_{\mathcal{H}^{\prime}})(\ket{\psi}\bra{\psi}) \displaystyle-
    (j)(|ψψ|)12\displaystyle({\mathcal{F}}_{\vec{j}}\otimes{\mathcal{I}}_{\mathcal{H}^{\prime}})(\ket{\psi}\bra{\psi})\|_{1}^{2} 4ϵ,\displaystyle\leq 4\epsilon\,, (34)

    where j=(j1,,jN)\vec{j}=(j_{1},\ldots,j_{N}) refers to the set of all indices jj chosen in NN iterations, pjp_{\vec{j}} is the probability that j\vec{j} is chosen, and j{\mathcal{F}}_{\vec{j}} is the unitary performed when j\vec{j} is chosen.

Without loss of generality, we can limit the proof of Theorem 1 to the case where H0op<1\|H_{0}\|_{{\rm op}}<1, where H0:=H(trH/2n)IH_{0}:=H-({\rm tr}H/2^{n})I is the traceless part of HH. When Hop>1\|H\|_{{\rm op}}>1, then ΔHmaxj,k|EjEk|>H0op\Delta_{H}\geq\max_{j,k}|E_{j}-E_{k}|>\|H_{0}\|_{{\rm op}} will also be greater than 1, where where {Ek}k\{E_{k}\}_{k} is the set of eigenvalues of HH. By noticing that the procedure of Algorithm 1 for a Hamiltonian HH and time tt is the same as that for a Hamiltonian H:=H/ΔHH^{\prime}:=H/\Delta_{H} (whose traceless part has operator norm of at most 1) and time t:=tΔHt^{\prime}:=t\Delta_{H}, we can always assume that the traceless part of the seed Hamiltonian has operator norm at most 1. Before presenting the sketch of the proof, we describe the error and variance of a simulation technique shown in the circuit of Fig. 4, which is a key element in our algorithm. Similar randomization techniques are also used in [3] (QDrift) and [32] (Hamiltonian learning). The simulation error is evaluated based on [3]. In addition, the variance is also evaluated for our algorithm.

Lemma 1.

The quantum operation represented by the following circuit

[Uncaptioned image]

where HH is a Hamiltonian normalized as H0op1\|H_{0}\|_{{\rm op}}\leq 1, where H0:=H(trH/2n)IH_{0}:=H-({\rm tr}H/2^{n})I is the traceless part of HH, λ>0\lambda>0, t>0t>0 are constants, UjU_{j} is a unitary applied with probability pjp_{j}, and NN is the iteration number given by N=ceil[max(5λ2t2ϵ,52λt)]N={\rm ceil}[\mathrm{max}(\frac{5\lambda^{2}t^{2}}{\epsilon},\frac{5}{2}\lambda t)] for ϵ>0\epsilon>0, simulates the dynamics eig(H)te^{-ig(H)t} of a transformed Hamiltonian g(H)g(H) defined as

g(H):=jhjUjHUj\displaystyle g(H):=\sum_{j}h_{j}U_{j}HU_{j}^{\dagger} (35)

with hj=λpj>0h_{j}=\lambda p_{j}>0 in an error smaller than or equal to ϵ>0\epsilon>0 and the variance smaller than or equal to 4ϵ4\epsilon.

Here, the error and the variance of the simulation are defined as

Error:12𝒢𝒢approx\displaystyle\mathrm{Error:}\,\frac{1}{2}\|{\mathcal{G}}-{\mathcal{G}}_{\mathrm{approx}}\|_{\diamond} (36)
Variance:\displaystyle\mathrm{Variance:}
supdim()|ψ|ψ;|ψ=1jqj(𝒢)(|ψψ|)(𝒢j)(|ψψ|)12,\displaystyle\underset{\begin{subarray}{c}\mathrm{dim}(\mathcal{H}^{\prime})\\ \ket{\psi}\in\mathcal{H}\otimes\mathcal{H}^{\prime}\\ \ket{\psi};\|\ket{\psi}\|=1\end{subarray}}{\mathrm{sup}}\sum_{\vec{j}}q_{\vec{j}}\|(\mathcal{G}\otimes\mathcal{I})(\ket{\psi}\bra{\psi})-({\mathcal{G}}_{\vec{j}}\otimes\mathcal{I})(\ket{\psi}\bra{\psi})\|_{1}^{2}\,, (37)

respectively, where 𝒢\mathcal{G} is defined by

𝒢(ρ):=eig(H)tρeig(H)t\mathcal{G}(\rho):=e^{-ig(H)t}\rho e^{ig(H)t}

for a density operator ρ\rho, 𝒢approx{\mathcal{G}}_{\mathrm{approx}} is the averaged quantum operation simulated in the above circuit, j=(j1,,jN)\vec{j}=(j_{1},\ldots,j_{N}) refers to the set of all the indices jj chosen in NN iterations, qjq_{\vec{j}} is the probability j\vec{j} is chosen, 𝒢j{\mathcal{G}}_{\vec{j}} is the unitary operation performed when j\vec{j} is chosen, and the identity operation \mathcal{I} belongs to a Hilbert space \mathcal{H}^{\prime} with an arbitrary finite dimension.

Proof.  
Both 𝒢\mathcal{G} and 𝒢approx\mathcal{G}_{{\rm approx}} stay unchanged when the seed Hamiltonian HH is changed to H0H_{0} since the two dynamics eiHte^{-iHt} and eiH0te^{-iH_{0}t} for the same time tt differ only by a global phase. Therefore, giving a proof for H=H0H=H_{0} is sufficient.
Error: The set {Hj}\{H_{j}\} of hermitian operators for Hj:=UjH0UjH_{j}:=U_{j}H_{0}U_{j}^{\dagger} satisfies Hjop=1\|H_{j}\|_{\mathrm{op}}=1, thus the protocol given by

[Uncaptioned image]

with hj>0h_{j}>0, N:=ceil[max(5λ2t2ϵ,52λt)]N:={\rm ceil}[\mathrm{max}(\frac{5\lambda^{2}t^{2}}{\epsilon},\frac{5}{2}\lambda t)], and λ:=jhj\lambda:=\sum_{j}h_{j} simulates ρeitjhjHjρeitjhjHj\rho\mapsto e^{-it\sum_{j}h_{j}H_{j}}\rho e^{it\sum_{j}h_{j}H_{j}} in an error smaller than ϵ\epsilon. Here, the error is measured in terms of Eq. (36) with g(H):=jhjHjg(H):=\sum_{j}h_{j}H_{j}. This is proved using the fact that the error is smaller than or equal to 2λ2t2Ne2λt/N\frac{2\lambda^{2}t^{2}}{N}e^{2\lambda t/N} as shown in [3] and 2λ2t2Ne2λt/N2ϵ5e4/5ϵ\frac{2\lambda^{2}t^{2}}{N}e^{2\lambda t/N}\leq\frac{2\epsilon}{5}e^{4/5}\leq\epsilon.

Variance: The variance is proven by using the upper bound shown by Theorem 3 of Appendix B given by

12GGapproxϵ.\displaystyle\frac{1}{2}\|G-G_{\mathrm{approx}}\|_{\diamond}\leq\epsilon. (38)

We refer to linear maps gg expressed by Eq. (35) as linear maps in Class T.

Definition 1.

Class T of linear maps ()()\mathcal{L}(\mathcal{H})\mapsto\mathcal{L}(\mathcal{H}) is defined as a set of linear maps g:()()g:\mathcal{L}(\mathcal{H})\mapsto\mathcal{L}(\mathcal{H}) which can be specified by a set {(hj,Uj)}j\{(h_{j},U_{j})\}_{j} of positive numbers hjh_{j} and unitaries UjU_{j} on \mathcal{H} through the equation

g(H)=jhjUjHUj,\displaystyle g(H)=\sum_{j}h_{j}U_{j}HU_{j}^{\dagger},

where HH is an hermitian operator H()H\in\mathcal{L}(\mathcal{H}).

Class T is closed to concatenation, namely, the following lemma holds.

Lemma 2.

A finite concatenations g(K)g(1)g^{(K)}\circ\cdots\circ g^{(1)} (K>0)(K\in\mathbb{Z}_{>0}) of Class T transformations g(1),,g(K)g^{(1)},\ldots,g^{(K)} also belong to class T. In particular, if g(k)g^{(k)} for k{1,,K}k\in\{1,\ldots,K\} is specified by {(hj(k)(k),Uj(k)(k))}j(k)\{(h^{(k)}_{j^{(k)}},U^{(k)}_{j^{(k)}})\}_{j^{(k)}}, then g(k)g(1)g^{(k)}\circ\cdots\circ g^{(1)} is specified by {(hj(K)(K)hj(1)(1),Uj(K)(K)Uj(1)(1))}(j(1),,j(K))\{(h^{(K)}_{j^{(K)}}\cdots h^{(1)}_{j^{(1)}},U^{(K)}_{j^{(K)}}\cdots U^{(1)}_{j^{(1)}})\}_{(j^{(1)},\ldots,j^{(K)})}. Here, the index sets j(k)j^{(k)} can be individually chosen for k{1,,K}k\in\{1,\ldots,K\}.

Proof.  It can be proved from the equation given by

(g(K)g(1))(H)=\displaystyle(g^{(K)}\circ\cdots\circ g^{(1)})(H)=
(j(1),,j(K))hj(K)(K)hj(1)(1)Uj(K)(K)Uj(1)(1)HUj(1)(1)Uj(K)(K).\displaystyle\sum_{(j^{(1)},\ldots,j^{(K)})}h^{(K)}_{j^{(K)}}\cdots h^{(1)}_{j^{(1)}}U^{(K)}_{j^{(K)}}\cdots U^{(1)}_{j^{(1)}}HU^{(1)}_{j^{(1)}}\cdots U^{(K)}_{j^{(K)}}.

In the following lemma, f,n,γw,u,β,j,sf,Vf,jf,n,\gamma_{\vec{w},\vec{u}},\beta,j,s_{f},V_{f,j} follow the definitions in the description of Algorithm 1; pj:=pv,v(1)pu,w(2)p_{j}:=p_{\vec{v},\vec{v}^{\prime}}^{(1)}p_{\vec{u},\vec{w}}^{(2)}.

Lemma 3.
  1. 1.

    The Class T transformation gtotal:(c)(c)g_{\mathrm{total}}:\mathcal{L}(\mathcal{H}_{c}\otimes\mathcal{H})\mapsto\mathcal{L}(\mathcal{H}_{c}\otimes\mathcal{H}) specified by {(hj,Vf,j)}j\{(h_{j},V_{f,j})\}_{j} for hj:=βpjh_{j}:=\beta p_{j} is expressed as a sum of concatenations of Class T transformations as

    gtotal:=w,u|γw,u|gf,w,u(7)g(6)gw(5)g(4)gu(3)g(2)g(1),\displaystyle g_{\mathrm{total}}:=\sum_{\vec{w},\vec{u}}|\gamma_{\vec{w},\vec{u}}|g^{(7)}_{f,\vec{w},\vec{u}}\circ g^{(6)}\circ g^{(5)}_{\vec{w}}\circ g^{(4)}\circ g^{(3)}_{\vec{u}}\circ g^{(2)}\circ g^{(1)}, (39)

    where g(1),g(2),gu(3),g(4),gw(5),g(6),gf,w,u(7)g^{(1)},\ g^{(2)},\ g^{(3)}_{\vec{u}},\ g^{(4)},\ g^{(5)}_{\vec{w}},\ g^{(6)},\ g^{(7)}_{f,\vec{w},\vec{u}} are defined as

    g(1)(H~)\displaystyle g^{(1)}(\tilde{H}) :=14nv(I00σv)H~(I00σv)\displaystyle:=\frac{1}{4^{n}}\sum_{\vec{v}}\left(\begin{array}[]{cc}I&0\\ 0&\sigma_{\vec{v}}\\ \end{array}\right)\tilde{H}\left(\begin{array}[]{cc}I&0\\ 0&\sigma_{\vec{v}}\\ \end{array}\right) (44)
    g(2)(H~)\displaystyle g^{(2)}(\tilde{H}) :=2(HADI)H~(HADI)\displaystyle:=2(\text{HAD}\otimes I)\tilde{H}(\text{HAD}\otimes I)
    gu(3)(H~)\displaystyle g^{(3)}_{\vec{u}}(\tilde{H}) :=(I00σu)H~(I00σu)\displaystyle:=\left(\begin{array}[]{cc}I&0\\ 0&\sigma_{\vec{u}}\\ \end{array}\right)\tilde{H}\left(\begin{array}[]{cc}I&0\\ 0&\sigma_{\vec{u}}\\ \end{array}\right) (49)
    g(4)(H~)\displaystyle g^{(4)}(\tilde{H}) :=14nv(Iσv)H~(Iσv)\displaystyle:=\frac{1}{4^{n}}\sum_{\vec{v}^{\prime}}(I\otimes\sigma_{\vec{v}^{\prime}})\tilde{H}(I\otimes\sigma_{\vec{v}^{\prime}})
    gw(5)(H~)\displaystyle g^{(5)}_{\vec{w}}(\tilde{H}) :=(I00σw)H~(I00σw)\displaystyle:=\left(\begin{array}[]{cc}I&0\\ 0&\sigma_{\vec{w}}\\ \end{array}\right)\tilde{H}\left(\begin{array}[]{cc}I&0\\ 0&\sigma_{\vec{w}}\\ \end{array}\right) (54)
    g(6)(H~)\displaystyle g^{(6)}(\tilde{H}) :=(HADI)H~(HADI)\displaystyle:=(\text{HAD}\otimes I)\tilde{H}(\text{HAD}\otimes I)
    gf,w,u(7)(H~)\displaystyle g^{(7)}_{f,\vec{w},\vec{u}}(\tilde{H}) :=(XsfI)H~(XsfI)\displaystyle:=(X^{s_{f}}\otimes I)\tilde{H}(X^{s_{f}}\otimes I)

    for an input operator H~(c)\tilde{H}\in\mathcal{L}(\mathcal{H}_{c}\otimes\mathcal{H}).

  2. 2.

    The transformation gtotalg_{\mathrm{total}} transforms an input operator IHI\otimes H for a hermitian operator H()H\in\mathcal{L}(\mathcal{H}) as

    gtotal(IH)=(f(H)00f(H))+const.×(I00I).\displaystyle g_{\mathrm{total}}(I\otimes H)=\left(\begin{array}[]{cc}f(H)&0\\ 0&-f(H)\\ \end{array}\right)+\mathrm{const.}\times\left(\begin{array}[]{cc}I&0\\ 0&I\\ \end{array}\right). (59)

Note that the quantum operation performed in step 3 to step 7 of Algorithm 1 approximates the unitary eigtotal(IH)te^{-ig_{\mathrm{total}}(I\otimes H)t}. Indeed, the circuit shown in Lemma 2 for hjh_{j} defined above and Vf,jV_{f,j} defined inside Algorithm 1 coincides with the procedures in step 3 to step 7 due to jhj=β\sum_{j}h_{j}=\beta and hj/β=pjh_{j}/\beta=p_{j}. The functions g(1),g(2),gu(3),g(4),gw(5),g(6),gf,w,u(7)g^{(1)},\ g^{(2)},\ g^{(3)}_{\vec{u}},\ g^{(4)},\ g^{(5)}_{\vec{w}},\ g^{(6)},\ g^{(7)}_{f,\vec{w},\vec{u}} correspond to the transformation of the effective Hamiltonian by Processes \scriptsize1⃝ to \scriptsize7⃝ of Fig. 2.

Proof.

1. Class T transformations g(1)g^{(1)}, g(2)g^{(2)}, gu(3)g^{(3)}_{\vec{u}}, g(4)g^{(4)}, gw(5)g^{(5)}_{\vec{w}}, g(6)g^{(6)}, gf,w,u(7)g^{(7)}_{f,\vec{w},\vec{u}} are specified by {(1/4n,Controlledσv)}v\{(1/4^{n},\mathrm{Controlled-}\sigma_{\vec{v}})\}_{\vec{v}}, {(2,HADI)}\{(2,\mathrm{HAD}\otimes I)\}, {(1,Controlledσu)}\{(1,\mathrm{Controlled-}\sigma_{\vec{u}})\}, {(1/4n,Iσv)}v\{(1/4^{n},I\otimes\sigma_{\vec{v}^{\prime}})\}_{\vec{v}^{\prime}}, {(1,Controlledσw)}\{(1,\mathrm{Controlled-}\sigma_{\vec{w}})\}, {(1,HADI)}\{(1,\mathrm{HAD}\otimes I)\}, {(1,XsfI)}\{(1,X^{s_{f}}\otimes I)\}, thus the right hand side of Eq. (39) consists of Class T transformations specified by

{|γw,u|14n214n,(XsfI)(HADI)\displaystyle\{|\gamma_{\vec{w},\vec{u}}|\cdot\frac{1}{4^{n}}\cdot 2\cdot\frac{1}{4^{n}},(X^{s_{f}}\otimes I)\circ(\mathrm{HAD}\otimes I)
(Controlledσw)(Iσv)(Controlledσu)\displaystyle\circ(\mathrm{Controlled-}\sigma_{\vec{w}})\circ(I\otimes\sigma_{\vec{v}^{\prime}})\circ(\mathrm{Controlled-}\sigma_{\vec{u}})
(HADI)(Controlledσv)}v,v,w,u\displaystyle\circ(\mathrm{HAD}\otimes I)\circ(\mathrm{Controlled-}\sigma_{\vec{v}})\}_{\vec{v},\vec{v}^{\prime},\vec{w},\vec{u}}
={(hj,Vf,j)}j\displaystyle=\{(h_{j},V_{f,j})\}_{j}

2. We describe how the effective Hamiltonians are transformed in each Class T transformation according to Processes \scriptsize1⃝ to \scriptsize7⃝. By defining

gtotalw,u:=(gf,w,u(7)g(6)gw(5)g(4)gu(3)g(2)g(1)),\displaystyle g_{\textrm{total}_{\vec{w},\vec{u}}}:=(g^{(7)}_{f,\vec{w},\vec{u}}\circ g^{(6)}\circ g^{(5)}_{\vec{w}}\circ g^{(4)}\circ g^{(3)}_{\vec{u}}\circ g^{(2)}\circ g^{(1)}), (60)

and using f(H)=w,uγw,ucuσwf(H)=\sum_{\vec{w},\vec{u}}\gamma_{\vec{w},\vec{u}}c_{\vec{u}}\sigma_{\vec{w}}, Eq. (59) is rewritten as

gtotal(IH)\displaystyle g_{\textrm{total}}(I\otimes H) =w,u|γw,u|gtotalw,u(IH)\displaystyle=\sum_{\vec{w},\vec{u}}|\gamma_{\vec{w},\vec{u}}|g_{\textrm{total}_{\vec{w},\vec{u}}}(I\otimes H)
=w,uγw,ucu(σw00σw)\displaystyle=\sum_{\vec{w},\vec{u}}\gamma_{\vec{w},\vec{u}}c_{\vec{u}}\left(\begin{array}[]{cc}\sigma_{\vec{w}}&0\\ 0&-\sigma_{\vec{w}}\\ \end{array}\right) (63)
+const.×(I00I).\displaystyle+\mathrm{const.}\times\left(\begin{array}[]{cc}I&0\\ 0&I\\ \end{array}\right). (66)

Therefore it is sufficient to prove

gtotalw,u(IH)\displaystyle g_{\textrm{total}_{\vec{w},\vec{u}}}(I\otimes H)
=sgn(γw,u)cu(σw00σw)+const.×(II)\displaystyle=\mathrm{sgn}(\gamma_{\vec{w},\vec{u}})c_{\vec{u}}\left(\begin{array}[]{cc}\sigma_{\vec{w}}&0\\ 0&-\sigma_{\vec{w}}\\ \end{array}\right)+\mathrm{const.}\times(I\otimes I) (69)

for a seed Hamiltonian H=ucuσuH=\sum_{\vec{u}}c_{\vec{u}}\sigma_{\vec{u}}. Using α\alpha defined by H=H0+αIH=H_{0}+\alpha I where H0H_{0} is the traceless part of HH (tr(H0)=0\mathrm{tr}(H_{0})=0), Eq. (69) is proved by calculating the effective Hamiltonian after each process as

g(1)((H00H))=(H0000)+α(I00I),\displaystyle g^{(1)}\left(\left(\begin{array}[]{cc}H&0\\ 0&H\\ \end{array}\right)\right)=\left(\begin{array}[]{cc}H_{0}&0\\ 0&0\\ \end{array}\right)+\alpha\left(\begin{array}[]{cc}I&0\\ 0&I\\ \end{array}\right), (76)
g(2)((H0000)+α(I00I))\displaystyle g^{(2)}\left(\left(\begin{array}[]{cc}H_{0}&0\\ 0&0\\ \end{array}\right)+\alpha\left(\begin{array}[]{cc}I&0\\ 0&I\\ \end{array}\right)\right) (81)
=(H0H0H0H0)+2α(I00I),\displaystyle=\left(\begin{array}[]{cc}H_{0}&H_{0}\\ H_{0}&H_{0}\\ \end{array}\right)+2\alpha\left(\begin{array}[]{cc}I&0\\ 0&I\\ \end{array}\right), (86)
gu(3)((H0H0H0H0)+2α(I00I))\displaystyle g^{(3)}_{\vec{u}}\left(\left(\begin{array}[]{cc}H_{0}&H_{0}\\ H_{0}&H_{0}\\ \end{array}\right)+2\alpha\left(\begin{array}[]{cc}I&0\\ 0&I\\ \end{array}\right)\right) (91)
=(H0H0σuσuH0σuH0σu)+2α(I00I),\displaystyle=\left(\begin{array}[]{cc}H_{0}&H_{0}\sigma_{\vec{u}}\\ \sigma_{\vec{u}}H_{0}&\sigma_{\vec{u}}H_{0}\sigma_{\vec{u}}\\ \end{array}\right)+2\alpha\left(\begin{array}[]{cc}I&0\\ 0&I\\ \end{array}\right), (96)
g(4)((H0H0σuσuH0σuH0σu)+2α(I00I))\displaystyle g^{(4)}\left(\left(\begin{array}[]{cc}H_{0}&H_{0}\sigma_{\vec{u}}\\ \sigma_{\vec{u}}H_{0}&\sigma_{\vec{u}}H_{0}\sigma_{\vec{u}}\\ \end{array}\right)+2\alpha\left(\begin{array}[]{cc}I&0\\ 0&I\\ \end{array}\right)\right) (101)
=(0cuIcuI0)+2α(I00I),\displaystyle=\left(\begin{array}[]{cc}0&c_{\vec{u}}I\\ c_{\vec{u}}I&0\\ \end{array}\right)+2\alpha\left(\begin{array}[]{cc}I&0\\ 0&I\\ \end{array}\right), (106)
gw(5)((0cuIcuI0)+2α(I00I))\displaystyle g^{(5)}_{\vec{w}}\left(\left(\begin{array}[]{cc}0&c_{\vec{u}}I\\ c_{\vec{u}}I&0\\ \end{array}\right)+2\alpha\left(\begin{array}[]{cc}I&0\\ 0&I\\ \end{array}\right)\right) (111)
=cu(0σwσw0)+2α(I00I),\displaystyle=c_{\vec{u}}\left(\begin{array}[]{cc}0&\sigma_{\vec{w}}\\ \sigma_{\vec{w}}&0\\ \end{array}\right)+2\alpha\left(\begin{array}[]{cc}I&0\\ 0&I\\ \end{array}\right), (116)
g(6)(cu(0σwσw0)+2α(I00I))\displaystyle g^{(6)}\left(c_{\vec{u}}\left(\begin{array}[]{cc}0&\sigma_{\vec{w}}\\ \sigma_{\vec{w}}&0\\ \end{array}\right)+2\alpha\left(\begin{array}[]{cc}I&0\\ 0&I\\ \end{array}\right)\right) (121)
=cu(σw00σw)+2α(I00I),\displaystyle=c_{\vec{u}}\left(\begin{array}[]{cc}\sigma_{\vec{w}}&0\\ 0&-\sigma_{\vec{w}}\\ \end{array}\right)+2\alpha\left(\begin{array}[]{cc}I&0\\ 0&I\\ \end{array}\right), (126)
gf,w,u(7)(cu(σw00σw)+2α(I00I))\displaystyle g^{(7)}_{f,\vec{w},\vec{u}}\left(c_{\vec{u}}\left(\begin{array}[]{cc}\sigma_{\vec{w}}&0\\ 0&-\sigma_{\vec{w}}\\ \end{array}\right)+2\alpha\left(\begin{array}[]{cc}I&0\\ 0&I\\ \end{array}\right)\right) (131)
=sgn(γw,u)cu(σw00σw)+2α(I00I),\displaystyle=\mathrm{sgn}(\gamma_{\vec{w},\vec{u}})c_{\vec{u}}\left(\begin{array}[]{cc}\sigma_{\vec{w}}&0\\ 0&-\sigma_{\vec{w}}\\ \end{array}\right)+2\alpha\left(\begin{array}[]{cc}I&0\\ 0&I\\ \end{array}\right), (136)

as the final effective Hamiltonian coincides with the right-hand side of Eq. (69). The transformations in g(1)g^{(1)} and g(4)g^{(4)} are obtained due to the equality

14nuσuMσu=tr(M)2nI,\displaystyle\frac{1}{4^{n}}\sum_{\vec{u}}\sigma_{\vec{u}}M\sigma_{\vec{u}}=\frac{\mathrm{tr}(M)}{2^{n}}I,

where M()M\in\mathcal{L}(\mathcal{H}) is an arbitrary linear operator, which is proved using the fact that {σu}u\{\sigma_{\vec{u}}\}_{\vec{u}} gives a basis of ()\mathcal{L}(\mathcal{H}), tr(σu)/2n=δu,(0,,0)\mathrm{tr}(\sigma_{\vec{u}})/2^{n}=\delta_{\vec{u},(0,\ldots,0)}, and

14Nvσvσvσv={σ0=I(v=0)0(otherwise).\displaystyle\frac{1}{4^{N}}\sum_{\vec{v}^{\prime}}\sigma_{\vec{v}^{\prime}}\sigma_{\vec{v}}\sigma_{\vec{v}^{\prime}}=\begin{cases}\sigma_{\vec{0}}=I&(\vec{v}=\vec{0})\\ 0&(\text{otherwise})\\ \end{cases}.

Proof of Theorem 1. As we mentioned above, we limit without loss of generality the proof of Theorem 1 to the case where H0op<1\|H_{0}\|_{{\rm op}}<1, where H0:=H(trH/2n)IH_{0}:=H-({\rm tr}H/2^{n})I is the traceless part of HH.

Error

We denote three types of quantum operations, (1):()(c)\mathcal{E}^{(1)}:\mathcal{L}(\mathcal{H})\to\mathcal{L}(\mathcal{H}_{c}\otimes\mathcal{H}), (2):(c)(c)\mathcal{E}^{(2)}:\mathcal{L}(\mathcal{H}_{c}\otimes\mathcal{H})\to\mathcal{L}(\mathcal{H}_{c}\otimes\mathcal{H}), (3):(c)()\mathcal{E}^{(3)}:\mathcal{L}(\mathcal{H}_{c}\otimes\mathcal{H})\to\mathcal{L}(\mathcal{H}) depending on the domain and range of the operations. In Algorithm A, (1)(ρ)=|00|ρ\mathcal{E}^{(1)}(\rho)=\ket{0}\bra{0}\otimes\rho is performed in step 2, (2)\mathcal{E}^{(2)} is performed in step 3-7, and (3)(ρ)=trc(ρ)\mathcal{E}^{(3)}(\rho^{\prime})=\mathrm{tr}_{\mathcal{H}_{c}}(\rho^{\prime}) is performed in step 8 where ρ()\rho\in\mathcal{L}(\mathcal{H}) and ρ(c)\rho^{\prime}\in\mathcal{L}(\mathcal{H}_{c}\otimes\mathcal{H}) are density operators.

For \mathcal{F} representing the dynamics of transformed Hamiltonian defined by

(ρ)=eigtotal(IH)tρeigtotal(IH)t\mathcal{F}(\rho^{\prime})=e^{-ig_{\mathrm{total}}(I\otimes H)t}\rho^{\prime}e^{ig_{\mathrm{total}}(I\otimes H)t}

where gtotalg_{\mathrm{total}} is the linear transformation defined in the first statement of Lemma 3, it can be shown using Lemma 2 and Lemma 3 that

12(2)ϵ.\displaystyle\frac{1}{2}\|\mathcal{F}-\mathcal{E}^{(2)}\|_{\diamond}\leq\epsilon.

Therefore, Algorithm 1 approximates (3)(1)\mathcal{E}^{(3)}\circ\mathcal{F}\circ\mathcal{E}^{(1)} in an error bounded above as

12(3)(1)(3)(2)(1)\displaystyle\frac{1}{2}\|\mathcal{E}^{(3)}\circ\mathcal{F}\circ\mathcal{E}^{(1)}-\mathcal{E}^{(3)}\circ\mathcal{E}^{(2)}\circ\mathcal{E}^{(1)}\|_{\diamond}
12((3)(3)+(2)+(1)(1))ϵ,\displaystyle\leq\frac{1}{2}(\|\mathcal{E}^{(3)}-\mathcal{E}^{(3)}\|_{\diamond}+\|\mathcal{F}-\mathcal{E}^{(2)}\|_{\diamond}+\|\mathcal{E}^{(1)}-\mathcal{E}^{(1)}\|_{\diamond})\leq\epsilon,

which can be shown using the relationship Ψ2Ψ1Φ2Φ1Ψ2Φ2+Ψ1Φ1\|\Psi_{2}\circ\Psi_{1}-\Phi_{2}\circ\Phi_{1}\|_{\diamond}\leq\|\Psi_{2}-\Phi_{2}\|_{\diamond}+\|\Psi_{1}-\Phi_{1}\|_{\diamond} for arbitrary CPTP maps Ψ1,Φ1[(0)(1)]\Psi_{1},\Phi_{1}\in[\mathcal{L}(\mathcal{H}_{0})\to\mathcal{L}(\mathcal{H}_{1})] and Ψ2,Φ2[(1)(2)]\Psi_{2},\Phi_{2}\in[\mathcal{L}(\mathcal{H}_{1})\to\mathcal{L}(\mathcal{H}_{2})] where 0\mathcal{H}_{0}, 1\mathcal{H}_{1}, 2\mathcal{H}_{2} are Hilbert spaces [39]. Also, (3)(1)\mathcal{E}^{(3)}\circ\mathcal{F}\circ\mathcal{E}^{(1)} satisfies

((3)(1))(ρ)\displaystyle(\mathcal{E}^{(3)}\circ\mathcal{F}\circ\mathcal{E}^{(1)})(\rho) =((3))(|00|ρ)\displaystyle=(\mathcal{E}^{(3)}\circ\mathcal{F})(\ket{0}\bra{0}\otimes\rho)
=(3)(|00|eif(H)tρeif(H)t)\displaystyle=\mathcal{E}^{(3)}(\ket{0}\bra{0}\otimes e^{-if(H)t}\rho e^{if(H)t})
=eif(H)tρeif(H)t,\displaystyle=e^{-if(H)t}\rho e^{if(H)t},

which completes the proof.

Variance

Denoting the quantum operation performed in steps 3-7 of Algorithm 1 when j\vec{j} is chosen as j(2)\mathcal{E}^{(2)}_{\vec{j}}, we obtain

supdim()|ψ;|ψ=1jpj\displaystyle\underset{\begin{subarray}{c}\mathrm{dim}(\mathcal{H}^{\prime})\\ \ket{\psi}\in\mathcal{H}\otimes\mathcal{H}^{\prime};\\ \|\ket{\psi}\|=1\end{subarray}}{\mathrm{sup}}\sum_{\vec{j}}p_{\vec{j}}\| (((3)(1)(3)j(2)(1))\displaystyle((\mathcal{E}^{(3)}\circ\mathcal{F}\circ\mathcal{E}^{(1)}-\mathcal{E}^{(3)}\circ\mathcal{E}^{(2)}_{\vec{j}}\circ\mathcal{E}^{(1)})
I)(|ψψ|)12\displaystyle\otimes I_{\mathcal{H}^{\prime}})(\ket{\psi}\bra{\psi})\|_{1}^{2}
=supdim()|ψ;|ψ=1jpj\displaystyle=\underset{\begin{subarray}{c}\mathrm{dim}(\mathcal{H}^{\prime})\\ \ket{\psi}\in\mathcal{H}\otimes\mathcal{H}^{\prime};\\ \|\ket{\psi}\|=1\end{subarray}}{\mathrm{sup}}\sum_{\vec{j}}p_{\vec{j}}\| (((3)(3)j(2))I)\displaystyle((\mathcal{E}^{(3)}\circ\mathcal{F}-\mathcal{E}^{(3)}\circ\mathcal{E}^{(2)}_{\vec{j}})\otimes I_{\mathcal{H}^{\prime}})
(|00|c|ψψ|)12\displaystyle(\ket{0}\bra{0}_{\mathcal{H}_{c}}\otimes\ket{\psi}\bra{\psi})\|_{1}^{2}
supdim()|ϕc;|ϕ=1jpj\displaystyle\leq\underset{\begin{subarray}{c}\mathrm{dim}(\mathcal{H}^{\prime})\\ \ket{\phi}\in\mathcal{H}_{c}\otimes\mathcal{H}\otimes\mathcal{H}^{\prime};\\ \|\ket{\phi}\|=1\end{subarray}}{\mathrm{sup}}\sum_{\vec{j}}p_{\vec{j}}\| (((3)(3)j(2))I)\displaystyle((\mathcal{E}^{(3)}\circ\mathcal{F}-\mathcal{E}^{(3)}\circ\mathcal{E}^{(2)}_{\vec{j}})\otimes I_{\mathcal{H}^{\prime}})
(|ϕϕ|)12\displaystyle(\ket{\phi}\bra{\phi})\|_{1}^{2}
=supdim()|ϕc;|ϕ=1jpj\displaystyle=\underset{\begin{subarray}{c}\mathrm{dim}(\mathcal{H}^{\prime})\\ \ket{\phi}\in\mathcal{H}_{c}\otimes\mathcal{H}\otimes\mathcal{H}^{\prime};\\ \|\ket{\phi}\|=1\end{subarray}}{\mathrm{sup}}\sum_{\vec{j}}p_{\vec{j}}\| trc[((j(2))I)(|ϕϕ|)]12\displaystyle\mathrm{tr}_{\mathcal{H}_{c}}[((\mathcal{F}-\mathcal{E}^{(2)}_{\vec{j}})\otimes I_{\mathcal{H}^{\prime}})(\ket{\phi}\bra{\phi})]\|_{1}^{2}
supdim()|ϕc;|ϕ=1jpj\displaystyle\leq\underset{\begin{subarray}{c}\mathrm{dim}(\mathcal{H}^{\prime})\\ \ket{\phi}\in\mathcal{H}_{c}\otimes\mathcal{H}\otimes\mathcal{H}^{\prime};\\ \|\ket{\phi}\|=1\end{subarray}}{\mathrm{sup}}\sum_{\vec{j}}p_{\vec{j}}\| ((j(2))I)(|ϕϕ|)124ϵ.\displaystyle((\mathcal{F}-\mathcal{E}^{(2)}_{\vec{j}})\otimes I_{\mathcal{H}^{\prime}})(\ket{\phi}\bra{\phi})\|_{1}^{2}\leq 4\epsilon. (137)

The second inequality in Eq. (137) is shown by the fact that the partial trace is a 1-norm non-increasing map, which can be proved by

trB(M)1\displaystyle\|\mathrm{tr}_{\mathcal{H}_{B}}(M)\|_{1} =supUA(A)|trA(trB(M)UA)|\displaystyle=\underset{U_{A}\in\mathcal{L}(\mathcal{H}_{A})}{\mathrm{sup}}|\mathrm{tr}_{\mathcal{H}_{A}}(\mathrm{tr}_{\mathcal{H}_{B}}(M)U_{A})|
=\displaystyle= supUA(A)|trAB(M(UAIB))|\displaystyle\underset{U_{A}\in\mathcal{L}(\mathcal{H}_{A})}{\mathrm{sup}}|\mathrm{tr}_{\mathcal{H}_{A}\otimes\mathcal{H}_{B}}(M(U_{A}\otimes I_{B}))|
\displaystyle\leq supUAB(AB)|trAB(MUAB)|=M1,\displaystyle\underset{U_{AB}\in\mathcal{L}(\mathcal{H}_{A}\otimes\mathcal{H}_{B})}{\mathrm{sup}}|\mathrm{tr}_{\mathcal{H}_{A}\otimes\mathcal{H}_{B}}(MU_{AB})|=\|M\|_{1},

where A,B\mathcal{H}_{A},\mathcal{H}_{B} are Hilbert spaces, MM is an operator in (AB)\mathcal{L}(\mathcal{H}_{A}\otimes\mathcal{H}_{B}), and UA,UABU_{A},U_{AB} are unitaries. The third inequality in Eq. (137) follows from Eq. (37) because \mathcal{F} is a Class T transformation.

Appendix B Appendix B: General relationship between error and variance

In this appendix, we provide a theorem on the relationship between the error and variance of a general random protocol for approximating a unitary operation.

Theorem 2.

For an arbitrary unitary operation defined by 𝒰(ρ):=UρU\mathcal{U}(\rho):=U\rho U^{\dagger} with a unitary UU and a density operator ρ\rho on a Hilbert space \mathcal{H}, if a set of deterministic quantum operations (completely-positive trace-preserving maps) j:()()\mathcal{F}_{j}:\mathcal{L}(\mathcal{H})\to\mathcal{L}(\mathcal{H}) and a probability distribution {pj}\{p_{j}\} satisfies

𝒰jpjjΔ\displaystyle\|\mathcal{U}-\sum_{j}p_{j}\mathcal{F}_{j}\|_{\diamond}\leq\Delta (138)

for some Δ>0\Delta>0, the inequality

jpj𝒰(|ψψ|)j(|ψψ|)122Δ\displaystyle\sum_{j}p_{j}\|\mathcal{U}(\ket{\psi}\bra{\psi})-\mathcal{F}_{j}(\ket{\psi}\bra{\psi})\|_{1}^{2}\leq 2\Delta (139)

holds for any pure state |ψ\ket{\psi}\in\mathcal{H}.

Note that the equation

𝒰jpjjΔ\displaystyle\|\mathcal{U}\otimes\mathcal{I}-\sum_{j}p_{j}\mathcal{F}_{j}\otimes\mathcal{I}\|_{\diamond}\leq\Delta

follows from the properties of the diamond norm [39] given by Eq. (138), thus Theorem 2 can be strengthened to

Theorem 3.

For an arbitrary unitary operation defined by 𝒰(ρ):=UρU\mathcal{U}(\rho):=U\rho U^{\dagger} with an unitary operator UU and a density operator ρ\rho on a Hilbert space \mathcal{H}, if a set of deterministic quantum operations (completely-positive trace-preserving maps) j:()()\mathcal{F}_{j}:\mathcal{L}(\mathcal{H})\to\mathcal{L}(\mathcal{H}) and a probability distribution {pj}\{p_{j}\} satisfies

𝒰jpjjΔ\displaystyle\|\mathcal{U}-\sum_{j}p_{j}\mathcal{F}_{j}\|_{\diamond}\leq\Delta

for some Δ>0\Delta>0, the variance of the averaged operation jpjj\sum_{j}p_{j}\mathcal{F}_{j} is upper bounded by

supdim()|ψ;|ψ=1jpj𝒰(|ψψ|)j(|ψψ|)122Δ\displaystyle\underset{\begin{subarray}{c}\mathrm{dim}(\mathcal{H}^{\prime})\\ \ket{\psi};\|\ket{\psi}\|=1\end{subarray}}{\mathrm{sup}}\sum_{j}p_{j}\|\mathcal{U}\otimes\mathcal{I}(\ket{\psi}\bra{\psi})-\mathcal{F}_{j}\otimes\mathcal{I}(\ket{\psi}\bra{\psi})\|_{1}^{2}\leq 2\Delta (140)

where \mathcal{I} is the identity operation on a Hilbert space \mathcal{H}^{\prime} and |ψ\ket{\psi} is a pure state on \mathcal{H}\otimes\mathcal{H}^{\prime}.

As will be shown in the proof, Equation (139) still holds when the condition for the bound of the error in Eq. (138) is weakened to only hold for pure states |ψ\ket{\psi}\in\mathcal{H} as

𝒰(|ψψ|)jpjj(|ψψ|)1Δ,\displaystyle\|\mathcal{U}(\ket{\psi}\bra{\psi})-\sum_{j}p_{j}\mathcal{F}_{j}(\ket{\psi}\bra{\psi})\|_{1}\leq\Delta, (141)

instead of the case of the diamond norm as in Eq. (138).

First, we rewrite the statement of Theorem 2 by introducing a set of deterministic quantum operations 𝒢j\mathcal{G}_{j} as

𝒢j:=𝒰1j.\displaystyle\mathcal{G}_{j}:=\mathcal{U}^{-1}\circ\mathcal{F}_{j}.

The following Lemma for the quantum operation jpj𝒢j\sum_{j}p_{j}\mathcal{G}_{j} implemented by a random protocol applying 𝒢j\mathcal{G}_{j} with probability pjp_{j} provides a sufficient condition for Theorem 2.

Lemma 4.

If the error of a random protocol jpj𝒢j\sum_{j}p_{j}\mathcal{G}_{j} simulating an identity operation on any pure state |ψ\ket{\psi}\in\mathcal{H} satisfies

|ψψ|jpj𝒢j(|ψψ|)1Δ,\displaystyle\|\ket{\psi}\bra{\psi}-\sum_{j}p_{j}\mathcal{G}_{j}(\ket{\psi}\bra{\psi})\|_{1}\leq\Delta, (142)

then the bound of the variance satisfies

jpj|ψψ|𝒢j(|ψψ|)122Δ.\displaystyle\sum_{j}p_{j}\|\ket{\psi}\bra{\psi}-\mathcal{G}_{j}(\ket{\psi}\bra{\psi})\|_{1}^{2}\leq 2\Delta. (143)

The sufficiency of this statement is shown at the end of this appendix. We also define a complex coefficient aj:=ψ|𝒢j(|ψψ|)|ψa_{j}:=\bra{\psi}\mathcal{G}_{j}(\ket{\psi}\bra{\psi})\ket{\psi} to decompose the action of 𝒢j\mathcal{G}_{j} on any pure state |ψ\ket{\psi} as

𝒢j(|ψψ|)=aj|ψψ|+(1aj)ρj\displaystyle\mathcal{G}_{j}(\ket{\psi}\bra{\psi})=a_{j}\ket{\psi}\bra{\psi}+(1-a_{j})\rho_{j} (144)

where ρj\rho_{j} is an operator satisfying tr(ρj)=1\mathrm{tr}(\rho_{j})=1 that is perpendicular to |ψ\ket{\psi}, namely, ψ|ρj|ψ=0\bra{\psi}\rho_{j}\ket{\psi}=0.

According to the Fuchs-van de Graaf inequalities[40], we have

ρ|ψψ|121a\displaystyle\|\rho-\ket{\psi}\bra{\psi}\|_{1}\leq 2\sqrt{1-a} (145)

for a density operator ρ()\rho\in\mathcal{L}(\mathcal{H}), a pure state |ψ\ket{\psi}\in\mathcal{H}, and a:=ψ|ρ|ψa:=\bra{\psi}\rho\ket{\psi}.

Now, we are ready to prove Lemma 4:

Proof of Lemma 4: First, we find a lower bound to the left hand side of Eq. (142). Using the decomposition of 𝒢j(|ψψ|)\mathcal{G}_{j}(\ket{\psi}\bra{\psi}) given by Eq. (144), Eq. (142) can be bounded as

Δ\displaystyle\Delta \displaystyle\geq |ψψ|jpj𝒢j(|ψψ|)1\displaystyle\|\ket{\psi}\bra{\psi}-\sum_{j}p_{j}\mathcal{G}_{j}(\ket{\psi}\bra{\psi})\|_{1}
=\displaystyle= jpj((1aj)|ψψ|(1aj)ρj)1\displaystyle\|\sum_{j}p_{j}((1-a_{j})\ket{\psi}\bra{\psi}-(1-a_{j})\rho_{j})\|_{1}
\displaystyle\geq ψ|[jpj((1aj)|ψψ|(1aj)ρj]|ψ\displaystyle\bra{\psi}\left[\sum_{j}p_{j}((1-a_{j})\ket{\psi}\bra{\psi}-(1-a_{j})\rho_{j}\right]\ket{\psi}
+\displaystyle+ |kψk|[jpj((1aj)|ψψ|(1aj)ρj]|ψk|\displaystyle\left|\sum_{k}\bra{\psi_{k}^{\perp}}\left[\sum_{j}p_{j}((1-a_{j})\ket{\psi}\bra{\psi}-(1-a_{j})\rho_{j}\right]\ket{\psi_{k}^{\perp}}\right|
=\displaystyle= (1jpjaj)+(1jpjaj)=2(1jpjaj)\displaystyle(1-\sum_{j}p_{j}a_{j})+(1-\sum_{j}p_{j}a_{j})=2(1-\sum_{j}p_{j}a_{j})

where {|ψj}\{\ket{\psi_{j}^{\perp}}\} is a set of states (density operators) perpendicular to |ψ\ket{\psi} and the set {|ψ,|ψ1,|ψ2}\{\ket{\psi},\ \ket{\psi_{1}^{\perp}},\ket{\psi_{2}^{\perp}}\cdots\} forms an orthonormal basis. In the above evaluation, the second inequality holds due to the definition

A1=supU:unitary|tr(AU)|,\|A\|_{1}=\underset{U:\text{unitary}}{\mathrm{sup}}|\mathrm{tr}(AU)|,

namely, this is based on the fact that for a unitary

U=|ψψ|ksgn(ψk|jpj(1aj)ρj|ψk)|ψkψk|,U=\ket{\psi}\bra{\psi}-\sum_{k}\mathrm{sgn}(\bra{\psi_{k}^{\perp}}\sum_{j}p_{j}(1-a_{j})\rho_{j}\ket{\psi_{k}^{\perp}})\ket{\psi_{k}^{\perp}}\bra{\psi_{k}^{\perp}}, (147)

the term

|tr([jpj((1aj)|ψψ|(1aj)ρj)]U)||\mathrm{tr}([\sum_{j}p_{j}((1-a_{j})\ket{\psi}\bra{\psi}-(1-a_{j})\rho_{j})]U)| (148)

is equal to the right hand side of the second inequality.

Next, we find a upper bound of the left hand side of Eq. (143). Using Eq. (145), the left hand side of Eq. (143) can be bound as

jpj|ψψ|𝒢j(|ψψ|)12\displaystyle\sum_{j}p_{j}\|\ket{\psi}\bra{\psi}-\mathcal{G}_{j}(\ket{\psi}\bra{\psi})\|_{1}^{2} jpj(21aj)2\displaystyle\leq\sum_{j}p_{j}(2\sqrt{1-a_{j}})^{2}
=4(1jpjaj).\displaystyle=4(1-\sum_{j}p_{j}a_{j}). (149)

Combining Eq. (B) and Eq. (149), we obtain

jpj|ψψ|𝒢j(|ψψ|)12\displaystyle\sum_{j}p_{j}\|\ket{\psi}\bra{\psi}-\mathcal{G}_{j}(\ket{\psi}\bra{\psi})\|_{1}^{2} 4(1jpjaj)\displaystyle\leq 4(1-\sum_{j}p_{j}a_{j})
2Δ,\displaystyle\leq 2\Delta,

which proves Eq. (143).∎

Proof of Theorem 2. The sufficiency of the statement (Eq. (142) \Rightarrow Eq. (143)) for proving Theorem 2 is based on the equivalence of Eq. (141) (the weaker version of Eq. (138)) and Eq. (142), and the equivalence of Eq. (139) and Eq. (143). The one-norm 1\|\cdot\|_{1} is invariant under unitary transformations, namely, for an arbitrary linear operator AA and a unitary operator VV^{\prime}, A1=VA1=AV1\|A\|_{1}=\|V^{\prime}A\|_{1}=\|AV^{\prime}\|_{1} holds. This is because

supV:unitary|tr(AV)|=supV:unitary|tr(VAV)|=supV:unitary|tr(AVV)|\underset{V:\text{unitary}}{\mathrm{sup}}|\mathrm{tr}(AV)|=\underset{V:\text{unitary}}{\mathrm{sup}}|\mathrm{tr}(V^{\prime}AV)|=\underset{V:\text{unitary}}{\mathrm{sup}}|\mathrm{tr}(AV^{\prime}V)|

holds. Therefore, the left hand side of Eq. (141) and the left hand side of Eq. (142) can be shown to be equal as

𝒰(|ψψ|)jpjj(|ψψ|)1\displaystyle\|\mathcal{U}(\ket{\psi}\bra{\psi})-\sum_{j}p_{j}\mathcal{F}_{j}(\ket{\psi}\bra{\psi})\|_{1}
=\displaystyle= U(𝒰(|ψψ|)jpjj(|ψψ|))U1\displaystyle\left\|U^{\dagger}\left(\mathcal{U}(\ket{\psi}\bra{\psi})-\sum_{j}p_{j}\mathcal{F}_{j}(\ket{\psi}\bra{\psi})\right)U\right\|_{1}
=\displaystyle= 𝒰1𝒰(|ψψ|)jpj𝒰1j(|ψψ|)1\displaystyle\left\|\mathcal{U}^{-1}\circ\mathcal{U}(\ket{\psi}\bra{\psi})-\sum_{j}p_{j}\mathcal{U}^{-1}\circ\mathcal{F}_{j}(\ket{\psi}\bra{\psi})\right\|_{1}
=\displaystyle= |ψψ|jpj𝒢j(|ψψ|)1.\displaystyle\left\|\ket{\psi}\bra{\psi}-\sum_{j}p_{j}\mathcal{G}_{j}(\ket{\psi}\bra{\psi})\right\|_{1}.

The equality of the left-hand side of Eq. (139) and the left-hand side of Eq. (143) can be shown in the same way. Thus the equivalence of Eq. (141) and Eq. (142), and the equivalence of Eq. (139) and Eq. (143) can be shown.∎

Appendix C Appendix C: Universality of Algorithm 1

In this section, we show that our algorithm simulating eiHτeif(H)te^{-iH\tau}\mapsto e^{-if(H)t} (τ,t>0)(\tau,t>0) is a universal algorithm to simulate physically realizable linear transformation on a Hamiltonian. Under the assumption that f(H)f(H) can also be seen as a Hamiltonian if an input HH is a Hamiltonian, we can assume that ff is a hermitian-preserving linear map. The universality of our algorithm can be shown in the following lemma.

Lemma 5.

The following two classes of linear maps are equal:

  1. (a)

    The class of hermitian-preserving linear maps f:()()f:\mathcal{L}(\mathcal{H})\mapsto\mathcal{L}(\mathcal{H}) such that the transformation eiHτeif(H)te^{-iH\tau}\mapsto e^{-if(H)t} (τ,t>0)(\tau,t>0) is physically realizable with an arbitrarily small error

  2. (b)

    The class of hermitian-preserving linear maps f:()()f:\mathcal{L}(\mathcal{H})\mapsto\mathcal{L}(\mathcal{H}) such that f(I)If(I)\propto I

Since our algorithm can simulate an arbitrary ff in class (b), it is shown to be able to simulate arbitrary “physically realizable” ff.

Proof.  The Algorithm 1 can simulate eiHτeif(H)te^{-iH\tau}\mapsto e^{-if(H)t} (τ,t>0)(\tau,t>0) for ff such that f(I)If(I)\propto I, thus (b)\subseteq(a). Assuming that eiHτeif(H)te^{-iH\tau}\mapsto e^{-if(H)t} (τ,t>0)(\tau,t>0) is physically realizable for an ff such that f(I)f(I) is not proportional to II, the output unitaries eif(H1)t=Ie^{-if(H_{1})t}=I, ef(H2)te^{-f(H_{2})t} for H1:=0,H2:=IH_{1}:=0,H_{2}:=I are physically distinguishable. However, the inputs eiH1τ=Ie^{-iH_{1}\tau}=I and eiH2τ=eiτIe^{-iH_{2}\tau}=e^{-i\tau}I are only different up to the global phase and thus physically indistinguishable, which leads to a contradiction. Thus (a)\subseteq(b) is proved. ∎

Appendix D Appendix D: The application of simulating the negative time-evolution to Hamiltonian block encoding

One application of simulating the negative time-evolution is the block-encoding of an unknown operator given as a block of an unknown Hamiltonian. In this appendix, we present an algorithm for Hamiltonian block encoding utilizing our algorithm and analyze the approximation errors of the algorithm.

D.0.1 Algorithm for Hamiltonian block encoding

Assume we are given access to the Hamiltonian dynamics eiH(A)τe^{-iH(A)\tau} (τ>0)(\tau>0) of a Hamiltonian H(A)H(A) with an upper bound ΔH(A)\Delta_{H(A)} of the maximum difference in energy eigenvalues represented as

H(A):=(AA),\displaystyle H(A):=\left(\begin{array}[]{cc}\cdot&A^{\dagger}\\ A&\cdot\\ \end{array}\right), (152)

where diagonal blocks can be of arbitrary operators, and the smallest singular value λmin\lambda_{\mathrm{min}} of the operator AA on the off-diagonal part is positive. Then, we can construct a quantum operation \mathcal{E} approximating the operation of a unitary operator U(A)U(A), giving a block-encoding of AA defined as

U(A):=i(IAAAAIAA)\displaystyle U(A):=i\left(\begin{array}[]{cc}\sqrt{I-A^{\dagger}A}&A^{\dagger}\\ A&-\sqrt{I-AA^{\dagger}}\\ \end{array}\right) (155)

in a runtime of O(β2ΔH(A)2(log(1/ϵ))2n/ϵλmin2)O({\beta^{2}\Delta_{H(A)}^{2}(\log(1/\epsilon))^{2}n}/{\epsilon\lambda_{\mathrm{min}}^{2}}) with an allowed error

max𝜌U(A)ρU(A)(ρ)opϵ.\displaystyle\underset{\rho}{\mathrm{max}}\|U(A)\rho U(A)^{\dagger}-\mathcal{E}(\rho)\|_{\mathrm{op}}\leq\epsilon\,. (156)

If we know that H(A)H(A) belongs to a subspace of ()\mathcal{L}(\mathcal{H}) spanned by J{0,1,2,3}nJ\subset{\{0,1,2,3\}^{n}}, then β:=2|J|\beta:=2|J|.

This construction is realized by combining the algorithm presented in [8] with our algorithm simulating the negative time-evolution. The algorithm presented in [8] requires the use of eiH(A)τe^{-iH(A)\tau} for both positive and negative τ\tau, but eiH(A)τe^{-iH(A)\tau} for only positive τ\tau is used in our algorithm. Therefore our algorithm broadens the applicability of the quantum singular value transformation [41, 42] to the case where the classical description of the target operator AA is unknown, but is given as the dynamics of a Hamiltonian whose off-diagonal block is guaranteed to be given by AA.

D.0.2 Analysis of the runtime

Ref. [8] gives an algorithm which simulates U(A)U(A) from dynamics e±iH(A)τe^{\pm iH^{\prime}(A)\tau} (τ>0)(\tau>0) where H(A)H^{\prime}(A) is defined as

H(A):=(0AA0),\displaystyle H^{\prime}(A):=\left(\begin{array}[]{cc}0&A^{\dagger}\\ A&0\\ \end{array}\right), (159)

where AA is a linear operator satisfying AAIA^{\dagger}A\leq I, in an error smaller than ϵ>0\epsilon>0 using O(log(1/ϵ)λmin)O(\frac{\log(1/\epsilon)}{\lambda_{\mathrm{min}}}) queries in total to e±iH(A)τe^{\pm iH^{\prime}(A)\tau}. Moreover, τ\tau can be fixed to τ=1\tau=1. This is achieved by constructing a unitary

j\displaystyle\bigoplus_{j}
(|rj|lj)(P(cosλj)isinλjQ(cosλj)isinλjQ(cosλj)P(cosλj))(rj|lj|)\displaystyle(\ket{r_{j}}\ \ket{l_{j}})\left(\begin{array}[]{cc}P(\cos\lambda_{j})&i\sin\lambda_{j}Q(\cos\lambda_{j})\\ i\sin\lambda_{j}Q^{*}(\cos\lambda_{j})&P^{*}(\cos\lambda_{j})\\ \end{array}\right)\left(\begin{array}[]{c}\bra{r_{j}}\\ \bra{l_{j}}\\ \end{array}\right) (164)

by performing the quantum singular value transformation using

j(|rj|lj)(cosλjisinλjisinλjcosλj)(rj|lj|)\displaystyle\bigoplus_{j}(\ket{r_{j}}\ \ket{l_{j}})\left(\begin{array}[]{cc}\cos\lambda_{j}&i\sin\lambda_{j}\\ i\sin\lambda_{j}&\cos\lambda_{j}\\ \end{array}\right)\left(\begin{array}[]{c}\bra{r_{j}}\\ \bra{l_{j}}\\ \end{array}\right) (169)
=\displaystyle= eiH(A)\displaystyle e^{iH^{\prime}(A)}

and its dagger eiH(A)e^{-iH^{\prime}(A)}, where A=jλj|ljrj|A=\sum_{j}\lambda_{j}\ket{l_{j}}\bra{r_{j}} (λminλj1)(\lambda_{\mathrm{min}}\leq\lambda_{j}\leq 1) is a singular value decomposition of AA, and polynomial functions PP, QQ are chosen in such a way that sinλjQ(cosλj)=1cos2λjQ(cosλj)\sin\lambda_{j}Q^{*}(\cos\lambda_{j})=\sqrt{1-\cos^{2}\lambda_{j}}Q^{*}(\cos\lambda_{j}) approximates λj\lambda_{j} and iP(cosλj)-iP(\cos\lambda_{j}) approximates 1λj2\sqrt{1-\lambda_{j}^{2}} both with an error smaller than or equal to ϵ\epsilon for all λminλj1\lambda_{\mathrm{min}}\leq\lambda_{j}\leq 1 (equivalently, 1x2Q(x)\sqrt{1-x^{2}}Q^{*}(x) approximates arccos(x)\mathrm{arccos}(x) and iP(x)-iP(x) approximates 1arccos(x)2\sqrt{1-\mathrm{arccos}(x)^{2}} both with an error smaller than or equal to ϵ\epsilon for all cos1xcosλmin=1O(λmin2)\cos 1\leq x\leq\cos\lambda_{\mathrm{min}}=1-O(\lambda_{\mathrm{min}}^{2})). The measure of the approximation error is based on the error of approximating arccos\mathrm{arccos} and is different from the measure used in Eq. (156), but it can be easily shown that the error in terms of Eq. (156) is bounded by

maxaj,bj,cj,dj|aj|,|bj|,|cj|,|dj|1j(ϵajϵbjϵcjϵdj)op4ϵ,\displaystyle\underset{\begin{subarray}{c}a_{j},b_{j},c_{j},d_{j}\in\mathbb{C}\\ |a_{j}|,|b_{j}|,|c_{j}|,|d_{j}|\leq 1\end{subarray}}{\mathrm{max}}\left\|\bigoplus_{j}\left(\begin{array}[]{cc}\epsilon a_{j}&\epsilon b_{j}\\ \epsilon c_{j}&\epsilon d_{j}\\ \end{array}\right)\right\|_{\mathrm{op}}\leq 4\epsilon\,, (172)

thus the total number of queries to e±iH(A)e^{\pm iH^{\prime}(A)} for the case where the allowed error in terms of Eq. (156) is chosen as ϵ\epsilon is also O(log(1/ϵ)λmin)=:d(ϵ)O(\frac{\log(1/\epsilon)}{\lambda_{\mathrm{min}}})=:d(\epsilon).

Suppose that we approximate U(A)U(A) using this algorithm for the case where the allowed error in terms of Eq. (156) is set as ϵ/2\epsilon/2 using eiH(A)e^{-iH^{\prime}(A)} and a quantum operation \mathcal{E}^{\prime} which approximates the quantum operation of eiH(A)e^{iH^{\prime}(A)} using eiH(A)e^{-iH^{\prime}(A)} instead of preparing eiH(A)e^{iH^{\prime}(A)}. For implementing \mathcal{E}^{\prime}, we choose an allowed error in terms of Eq. (33) to be ϵ/4d(ϵ/2)\epsilon/4d(\epsilon/2). In this situation, the overall procedure only requires eiH(A)τe^{-iH^{\prime}(A)\tau} as input. Because the error measured by Eq. (33) times two is larger than the error measured by Eq. (156) based on the fact the the diamond norm P\|P\|_{\diamond} of an operation PP is greater than or equal to the operator norm P(ρ)op\|P(\rho)\|_{\mathrm{op}} for an arbitrary input density operator ρ\rho, the overall error of simulating U(A)U(A) in terms of Eq. (156) is upper bounded by

ϵ2+2ϵ4d(ϵ/2)d(ϵ/2)=ϵ,\displaystyle\frac{\epsilon}{2}+2\cdot\frac{\epsilon}{4d(\epsilon/2)}\cdot d(\epsilon/2)=\epsilon,

where the second term of the left hand side corresponds to the total error arising from the approximation error for \mathcal{E}^{\prime} calculated by (error of approximating \mathcal{E}^{\prime}) ×\times (upper bound of the number of queries to \mathcal{E}^{\prime}). Because \mathcal{E}^{\prime} can be constructed from eiτH(A)e^{-i\tau H^{\prime}(A)} by simulating eiH(A)e^{iH^{\prime}(A)} with the negative time-evolution for t=1t=1 with an allowed error in terms of Eq. (33) being chosen as ϵ/4d(ϵ/2)\epsilon/4d(\epsilon/2) in a runtime O(β212ΔH(A)2nϵ/4d(ϵ/2))=O(β2ΔH(A)2nd(ϵ/2)ϵ)O(\frac{\beta^{2}1^{2}\Delta_{H^{\prime}(A)}^{2}n}{\epsilon/4d(\epsilon/2)})=O(\frac{\beta^{2}\Delta_{H^{\prime}(A)}^{2}nd(\epsilon/2)}{\epsilon}) (see the main text), the total runtime of constructing U(A)U(A) will be

O\displaystyle O (β2ΔH(A)2nd(ϵ/2)ϵd(ϵ/2))=O(β2ΔH(A)2d(ϵ/2)2nϵ)\displaystyle\left(\frac{\beta^{2}\Delta_{H^{\prime}(A)}^{2}nd(\epsilon/2)}{\epsilon}\cdot d(\epsilon/2)\right)=O\left(\frac{\beta^{2}\Delta_{H^{\prime}(A)}^{2}d(\epsilon/2)^{2}n}{\epsilon}\right)
=\displaystyle= O(β2ΔH(A)2(log(1/ϵ))2nϵλmin2)\displaystyle O\left(\frac{\beta^{2}\Delta_{H^{\prime}(A)}^{2}(\log(1/\epsilon))^{2}n}{\epsilon\lambda_{\mathrm{min}}^{2}}\right) (173)

calculated by (runtime of simulating \mathcal{E}^{\prime}) ×\times (upper bound of the number of queries to \mathcal{E}^{\prime}).

We have described the runtime analysis of constructing U(A)U(A) using eiH(A)τe^{-iH^{\prime}(A)\tau} so far. This procedure can be extended to the case where the input dynamics is eiH(A)τe^{-iH(A)\tau} instead of eiH(A)τe^{-iH^{\prime}(A)\tau} because e±iH(A)te^{\pm iH^{\prime}(A)t} can be constructed from eiH(A)τe^{-iH(A)\tau} and eiH(A)τe^{iH(A)\tau}, and eiH(A)τe^{iH(A)\tau} is further constructed from eiH(A)τe^{-iH(A)\tau} by negative time-evolution based on the equation

±12[H(A)+(ZI)(H(A))(ZI)]=±H(A).\displaystyle\pm\frac{1}{2}[H(A)+(Z\otimes I)(-H(A))(Z\otimes I)]=\pm H^{\prime}(A). (174)

Since H(A)H(A)H(A)\mapsto-H(A) is simulated by a Class T transformation (see Appendix A), the above equation also provides the description of Class T transformations which transform H(A)H(A) to ±H(A)\pm H^{\prime}(A). Denoting this transformation as H(A)jhjUjH(A)UjH(A)\mapsto\sum_{j}h_{j}U_{j}H(A)U_{j}^{\dagger}, the sum jhj\sum_{j}h_{j} is calculated as (β+1)/2(\beta+1)/2 which is O(β)O(\beta). This technique is also introduced in [8]. Using this technique, quantum operations approximating e±iH(A)e^{\pm iH^{\prime}(A)} with an allowed error ϵ/4d(ϵ/2)\epsilon/4d(\epsilon/2) can be constructed from eiH(A)τe^{-iH(A)\tau} (τ>0)(\tau>0) also in time O(β2ΔH(A)2nd(ϵ/2)ϵ)O(\frac{\beta^{2}\Delta_{H(A)}^{2}nd(\epsilon/2)}{\epsilon}), thus U(A)U(A) can be constructed in runtime O(β2ΔH(A)2(log(1/ϵ))2nϵλmin2)O(\frac{\beta^{2}\Delta_{H(A)}^{2}(\log(1/\epsilon))^{2}n}{\epsilon\lambda_{\mathrm{min}}^{2}}) as well.

Appendix E Appendix E: Runtime and total evolution time analysis of Hamiltonian single-parameter learning

In this appendix, we present the runtime and total evolution time analysis of our algorithm for the Hamiltonian single-parameter learning task of efficiently estimating a single parameter from the dynamics of a nn-qubit unknown Hamiltonian H=ucuσuH=\sum_{\vec{u}}c_{\vec{u}}\sigma_{\vec{u}} satisfying (|cu|1)(|c_{\vec{u}}|\leq 1) with the Pauli vectors (v{0,1,2,3}n)(\vec{v}\in\{0,1,2,3\}^{n}) presented in the main text.

In the Hamiltonian transformation algorithm (Algorithm 1) applied for the Hamiltonian single-parameter learning task, we choose the transformation of the Hamiltonian given by

fv(H)=cvYII.\displaystyle f_{\vec{v}}(H)=c_{\vec{v}}Y\otimes I\otimes\cdots\otimes I. (175)

The set of linear operators fvf_{\vec{v}} (v{0,1,2,3}n)(\vec{v}\in\{0,1,2,3\}^{n}) is characterized by γw,u\gamma_{\vec{w},\vec{u}} defined as

γw,u:=δw,(2,0,,0)δu,v.\displaystyle\gamma_{\vec{w},\vec{u}}:=\delta_{\vec{w},(2,0,\ldots,0)}\delta_{\vec{u},\vec{v}}.

E.0.1 Probability distribution obtained by Algorithm 1

We consider performing a projective measurement on the basis of {|0,|1}\{\ket{0},\ket{1}\} or {|+,|}\{\ket{+},\ket{-}\} on the first qubit, namely, the qubit on which the YY operator appears in Eq. (175) of the state eifv(H)t(|0|0n1)e^{-if_{\vec{v}}(H)t}(\ket{0}\otimes\ket{0}^{\otimes n-1}). The probability of obtaining the outcome 0 for the projective measurement in the basis of {|0,|1}\{\ket{0},\ket{1}\} is given by

p0:=tr[\displaystyle p_{0}:=\mathrm{tr}[ (|00|In1)\displaystyle(\ket{0}\bra{0}\otimes I^{\otimes n-1})\cdot
{eifv(H)t(|00|(|00|)n1)eifv(H)t}]\displaystyle\{e^{-if_{\vec{v}}(H)t}(\ket{0}\bra{0}\otimes(\ket{0}\bra{0})^{\otimes n-1})e^{if_{\vec{v}}(H)t}\}]
=\displaystyle= tr[|00|(eicvtY|00|(eicvtY)]\displaystyle\mathrm{tr}[\ket{0}\bra{0}(e^{-ic_{\vec{v}}tY}\ket{0}\bra{0}(e^{ic_{\vec{v}}tY})]
=\displaystyle= 1+cos(2cvt)2\displaystyle\frac{1+\cos{(2c_{\vec{v}}t)}}{2} (176)

and the probability of obtaining the outcome ++ for the projective measurement in the basis of {|+,|}\{\ket{+},\ket{-}\} is given by

p+:=tr[\displaystyle p_{+}:=\mathrm{tr}[ (|++|In1)\displaystyle(\ket{+}\bra{+}\otimes I^{\otimes n-1})\cdot
{eifv(H)t(|00|(|00|)n1)eifv(H)t}]\displaystyle\{e^{-if_{\vec{v}}(H)t}(\ket{0}\bra{0}\otimes(\ket{0}\bra{0})^{\otimes n-1})e^{if_{\vec{v}}(H)t}\}]
=\displaystyle= tr[|++|(eicvtY|00|(eicvtY)]\displaystyle\mathrm{tr}[\ket{+}\bra{+}(e^{-ic_{\vec{v}}tY}\ket{0}\bra{0}(e^{ic_{\vec{v}}tY})]
=\displaystyle= 1+sin(2cvt)2.\displaystyle\frac{1+\sin{(2c_{\vec{v}}t)}}{2}. (177)

Suppose that we construct a quantum operation approx{\mathcal{F}}_{\mathrm{approx}} that approximates (ρ):=eifv(H)tρeifv(H)t\mathcal{F}(\rho):=e^{-if_{\vec{v}}(H)t}\rho e^{if_{\vec{v}}(H)t} with an allowed error ϵ/2\epsilon/2 in terms of Eq. (33).

The runtime for simulating approx{\mathcal{F}}_{\mathrm{approx}} is O(β2t2ΔH2n/ϵ)O(\beta^{2}t^{2}\Delta_{H}^{2}n/\epsilon) for β=2\beta=2, while the total evolution time of eiHτe^{-iH\tau} will only be 2t2t, as can be seen from the procedure of Algorithm 1.

In this case, the probability of obtaining the outcome 0 in the {|0,|1}\{\ket{0},\ket{1}\} basis measurement and ++ in the {|+,|}\{\ket{+},\ket{-}\} basis measurement will be close by ϵ\epsilon to values in Eq. (176) and Eq. (177), respectively. This can be proved for the ++ case (and similarly for the 0 case) as

|tr([|++|In1]approx(|00|(|00|)n1))\displaystyle\left|\mathrm{tr}\left(\left[\ket{+}\bra{+}\otimes I^{\otimes n-1}\right]{\mathcal{F}}_{\mathrm{approx}}\left(\ket{0}\bra{0}\otimes(\ket{0}\bra{0})^{\otimes n-1}\right)\right)\right.
tr([|++|In1](|00|(|00|)n1))|\displaystyle\left.-\mathrm{tr}\left(\left[\ket{+}\bra{+}\otimes I^{\otimes n-1}\right]\mathcal{F}\left(\ket{0}\bra{0}\otimes(\ket{0}\bra{0})^{\otimes n-1}\right)\right)\right|
=\displaystyle= |j+|j|[approx(|00|(|00|)n1)\displaystyle\left|\sum_{j}\bra{+}\bra{j}\left[{\mathcal{F}}_{\mathrm{approx}}\left(\ket{0}\bra{0}\otimes(\ket{0}\bra{0})^{\otimes n-1}\right)\right.\right.
(|00|(|00|)n1)]|+|j|\displaystyle-\left.\left.\mathcal{F}\left(\ket{0}\bra{0}\otimes(\ket{0}\bra{0})^{\otimes n-1}\right)\right]\ket{+}\ket{j}\right|
\displaystyle\leq a{+,},j|a|j|[approx(|00|(|00|)n1)\displaystyle\sum_{a\in\{+,-\},j}\left|\bra{a}\bra{j}\left[{\mathcal{F}}_{\mathrm{approx}}\left(\ket{0}\bra{0}\otimes(\ket{0}\bra{0})^{\otimes n-1}\right)\right.\right.
(|00|(|00|)n1)]|a|j|\displaystyle-\left.\left.\mathcal{F}\left(\ket{0}\bra{0}\otimes(\ket{0}\bra{0})^{\otimes n-1}\right)\right]\ket{a}\ket{j}\right|
=\displaystyle= supsa,j{1,1}tr({a{+,},jsa,j|aa||jj|}\displaystyle\underset{s_{a,j}\in\{1,-1\}}{\mathrm{sup}}\mathrm{tr}\left(\left\{\sum_{a\in\{+,-\},j}s_{a,j}\ket{a}\bra{a}\otimes\ket{j}\bra{j}\right\}\right.
[(Fapprox)(|00|(|00|)n1)])\displaystyle\quad\quad\quad\quad\quad\left.\left[(F_{\mathrm{approx}}-\mathcal{F})\left(\ket{0}\bra{0}\otimes(\ket{0}\bra{0})^{\otimes n-1}\right)\right]\right)
\displaystyle\leq supU:unitarytr(U[(approx)(|00|(|00|)n1)])\displaystyle\underset{U:\text{unitary}}{\mathrm{sup}}\mathrm{tr}\left(U\left[({\mathcal{F}}_{\mathrm{approx}}-\mathcal{F})\left(\ket{0}\bra{0}\otimes(\ket{0}\bra{0})^{\otimes n-1}\right)\right]\right)
=\displaystyle= (approx)(|00|(|00|)n1)1ϵ.\displaystyle\left\|({\mathcal{F}}_{\mathrm{approx}}-\mathcal{F})\left(\ket{0}\bra{0}\otimes(\ket{0}\bra{0})^{\otimes n-1}\right)\right\|_{1}\leq\epsilon.

In the above equations, {|j}j\{\ket{j}\}_{j} is an orthonormal basis of the Hilbert space to which In1I^{\otimes n-1} belongs.

E.0.2 Learning cvc_{\vec{v}} using robust quantum phase estimation

Theorem I.1. in [38] can be rephrased to the following theorem.

Theorem 4.

Suppose that we can perform two families of measurements, (0,k)(0,k)-measurements and (+,k)(+,k)-measurements, where k>0k\in\mathbb{Z}_{>0}, whose success probabilities obtaining the outcome 0 and outcome ++ are given in terms of θ(π,π]\theta\in(-\pi,\pi] as

(0,k)-meas.: p0,k(θ)\displaystyle\textbf{$(0,k)$-meas.: }p_{0,k}(\theta) :=1+cos(kθ)2+δ0(k),\displaystyle:=\frac{1+\cos{(k\theta})}{2}+\delta_{0}(k),
(+,k)-meas.: p+,k(θ)\displaystyle\textbf{$(+,k)$-meas.: }p_{+,k}(\theta) :=1+sin(kθ)2+δ+(k),\displaystyle:=\frac{1+\sin{(k\theta})}{2}+\delta_{+}(k),

respectively, where δ0(k)\delta_{0}(k) and δ+(k)\delta_{+}(k) satisfy

sup𝑘{|δ0(k)|,|δ+(k)|}=:δsup<1/8.\displaystyle\underset{k}{\mathrm{sup}}\{|\delta_{0}(k)|,|\delta_{+}(k)|\}=:\delta_{\mathrm{sup}}<1/\sqrt{8}.

Then for any allowed standard deviation s>0s>0, an estimate θ^\hat{\theta} of θ\theta can be obtained with a standard deviation smaller than or equal to ss by a classical computation with runtime O(polyK)O(\mathrm{poly}K) of a function of the numbers of success of (0,2j1)(0,2^{j-1})-measurements and (+,2j1)(+,2^{j-1})-measurements (j{1,,K})(j\in\{1,\ldots,K\}) both among MjM_{j} times of the measurements. Here, MjM_{j} and KK are defined as

K\displaystyle K :=ceil[log2(3πs)]\displaystyle:=\mathrm{ceil}\left[\log_{2}{\left(\frac{3\pi}{s}\right)}\right] (178)
Mj\displaystyle M_{j} :=F(δsup)(3(Kj)+1)\displaystyle:=F(\delta_{\mathrm{sup}})(3(K-j)+1)
F(δsup)\displaystyle F(\delta_{\mathrm{sup}}) :=ceil[log(12(18δsup))log(112(18δsup)2)].\displaystyle:=\mathrm{ceil}\left[\frac{\log\left(\frac{1}{2}(1-\sqrt{8}\delta_{\mathrm{sup}})\right)}{\log\left(1-\frac{1}{2}(1-\sqrt{8}\delta_{\mathrm{sup}})^{2}\right)}\right].

We can perform (0,2j1)(0,2^{j-1})-measurements and (+,2j1)(+,2^{j-1})-measurements for j>0j\in\mathbb{Z}_{>0} for θ=cv\theta=c_{\vec{v}} using simulation of eifv(H)te^{-if_{\vec{v}}(H)t} for t=2j2t=2^{j-2} and ϵ=1/28\epsilon=1/2\sqrt{8} (or any positive number smaller than 1/81/\sqrt{8} can be used instead). The runtime of (0,2j1)(0,2^{j-1})-measurements and (+,2j1)(+,2^{j-1})-measurements in this case is bounded above using a constant C>0C>0 independent of jj by CΔH24j2nC\Delta_{H}^{2}4^{j-2}n, and the total evolution time of the dynamics eiHτe^{-iH\tau} is 22j2=2j12\cdot 2^{j-2}=2^{j-1}. Therefore, the total time of running the quantum circuit is bounded above as

j=1KMjCΔH24j2n=O(ΔH24Kn)=O(ΔH2ns2),\displaystyle\sum_{j=1}^{K}M_{j}\cdot C\Delta_{H}^{2}4^{j-2}n=O(\Delta_{H}^{2}4^{K}n)=O\left(\frac{\Delta_{H}^{2}n}{s^{2}}\right),

while the total evolution time of eiHτe^{-iH\tau} in the overall experiment is

j=1KMj2j1=O(1s).\displaystyle\sum_{j=1}^{K}M_{j}2^{j-1}=O\left(\frac{1}{s}\right).

In the above calculation, we use an equation

j=1K(Kj)rj=rK+1Kr2+(K1)r(r1)2\displaystyle\sum_{j=1}^{K}(K-j)r^{j}=\frac{r^{K+1}-Kr^{2}+(K-1)r}{(r-1)^{2}}

which holds for an arbitrary r>0r>0.

The runtime O(polyK)O(\mathrm{poly}K) of the classical calculation can be ignored in the evaluation of the total runtime of estimating cvc_{\vec{v}}, since it depends on ss as polylog(1/s)\mathrm{poly}\log(1/s) and tends to infinity more slowly than O(1/s2)O(1/s^{2}).

To calculate total evolution time in terms of the error upper bound ϵ>0\epsilon>0 and the maximum failure probability δ>0\delta>0, we can modify the learning procedure to repeating estimation of cvc_{\vec{v}} with standard deviation smaller than or equal to ϵ/2\epsilon/2 for O(log(1/δ))O(\log(1/\delta)) times and adopting the median of O(log(1/δ))O(\log(1/\delta)) estimates. In this case, the total evolution time will be O(log(1/δ)/ϵ)O(\log(1/\delta)/\epsilon). The failure probability is shown to be smaller than or equal to δ\delta using the fact that the probability that an estimate c^v\hat{c}_{\vec{v}} of cvc_{\vec{v}} with standard deviation ϵ/2\epsilon/2 satisfies |c^vcv|>ϵ|\hat{c}_{\vec{v}}-c_{\vec{v}}|>\epsilon is strictly smaller than 1/21/2.

E.0.3 Comparison with the Hamiltonian simulation method in [32]

Recently, another Hamiltonian learning technique achieving the Heisenberg limit for precision scaling in parameter estimation of a low-interaction Hamiltonian has been proposed [32]. Given an nn-qubit Hamiltonian H=vJcvσvH=\sum_{\vec{v}\in J}c_{\vec{v}}\sigma_{\vec{v}} for a known set of vectors JJ satisfying the low-interaction Hamiltonian condition, this technique estimates all values of cvc_{\vec{v}} in a single run with the total evolution time O((logδ)/ϵ)O((\log\delta)/\epsilon) where ϵ\epsilon is precision and δ\delta is the failure probability.

Our method can learn any single parameter cvc_{\vec{v}} of a general Hamiltonian for v{0,1,2,3}n\{0}\vec{v}\in\{0,1,2,3\}^{n}\backslash\{\vec{0}\} with total evolution time O((logδ)/ϵ)O((\log\delta)/\epsilon), which also achieves the Heisenberg-limited precision scaling. Note that the total evolution time has no dependence on Hop\|H\|_{\rm op} or more generally on nn. In this sense, we give a partial answer to the open problem proposed by [32] regarding the learning of Hamiltonians without any structure. We still note that in terms of the total runtime instead of the evolution time, our algorithm is only efficient when ΔH\Delta_{H} is small.

For a low-interaction Hamiltonian, the estimation of all cvc_{\vec{v}}’s using our algorithm requires to run our algorithm for every parameter. Therefore, the total evolution time is (polyn{\rm poly}\ n)×O((logδ)/ϵ)\times O((\log\delta)/\epsilon), which is longer than that of the algorithm in [32] by a polynomial factor (the number of parameters of the nn-qubit low-interaction Hamiltonian). However, for estimation of a single parameter cvc_{\vec{v}} for v\vec{v} representing the high-interaction Hamiltonian, namely, the term consisting of multiplications of k=O(n)k=O(n) non-identity Pauli operators, the algorithm in [32] requires a total evolution time exponential in kk, which leads to an exponential overall runtime, as can be seen from section C.2 of [32] (the algorithm in [32] can be applied to a general nn-qubit Hamiltonian and restricted to estimation of only a single parameter). On the other hand, our algorithm requires a constant total evolution time O((logδ)/ϵ)O((\log\delta)/\epsilon), and a runtime independent of kk. For these reasons, our algorithm is suited to estimate a single parameter of non-local Hamiltonians. With our method, a parameter of an experimentally simulated Hamiltonian with a not-too-large norm, which does not necessarily have a simple structure, becomes obtainable.

Finally, we note that our algorithm also runs in a shorter runtime than the methods based on unitary tomography for the estimation of a single parameter. Recently, a unitary tomography method for estimating only a small number of entries of a unitary operation in a short time has been proposed [43]. However, this is not equivalent to the estimation of a small number of entries of a Hamiltonian. In order to obtain the value of cvc_{\vec{v}} of a Hamiltonian HH by tomography of the unitary evolution eiHte^{-iHt}, the full-tomography of eiHte^{-iHt} is required, which requires a runtime in O(4n/ϵ)O(4^{n}/\epsilon) [43].