This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Higher-order exceptional point in a blue-detuned non-Hermitian cavity optomechanical system

Wei Xiong [email protected] Department of Physics, Wenzhou University, Zhejiang 325035, China    Zhuanxia Li Department of Physics, Wenzhou University, Zhejiang 325035, China    Guo-Qiang Zhang School of Physics, Hangzhou Normal University, Hangzhou 311121, China    Mingfeng Wang Department of Physics, Wenzhou University, Zhejiang 325035, China    Hai-Chao Li [email protected] College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002, China    Xiao-Qing Luo [email protected] Hunan Province Key Laboratory for Ultra-Fast Micro/Nano Technology and Advanced Laser Manufacture, School of Electrical Engineering, University of South China, Hengyang 421001, China    Jiaojiao Chen [email protected] School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China Hefei Preschool Education College, Hefei 230013, China
Abstract

Higher-order exceptional points (EPs) in non-Hermitian systems have attracted great interest due to their advantages in sensitive enhancement and distinct topological features. However, realization of such EPs is still challenged because more fine-tuning parameters is generically required in quantum systems, compared to the second-order EP (EP2). Here, we propose a non-Hermitian three-mode optomechanical system in the blue-sideband regime for predicting the third-order EP (EP3). By deriving the pseudo-Hermitian condition for the proposed system, one cavity with loss and the other one with gain must be required. Then we show EP3 or EP2 can be observed when the mechanical resonator (MR) is neutral, loss or gain. For the neutral MR, we find both two degenerate or two non-degenerate EP3s can be predicted by tuning system parameters in the parameter space, while four non-degenerate EP2s can be observed when the system parameters deviate from EP3s, which is distinguished from the previous study in the red-detuned optomechanical system. For the gain (loss) MR, we find only two degenerate EP3s or EP2s can be predicted by tuning enhanced coupling strength. Our proposal provides a potential way to predict higher-order EPs or multiple EP2s and study multimode quantum squeezing around EPs using the blue-detuned non-Hermitian optomechanical systems.

I introduction

Cavity optomechanical (COM) systems, emerged as a promising platform in quantum information science, have been paid considerable attention both theoretically and experimentally Aspelmeyer . The simplest COM system is made up of a mechanical resonator (MR) nonlinearly coupled to a cavity via radiation pressure, which can be well controlled by strong driving fields. In such mystical systems, abundant effects including sensing Schreppler-2014 ; Wu-2017 ; Gil-Santos-2020 ; Fischer-2019 , ground-state cooling Chan-2011 ; Teufel-2011 , squeezed light generation Purdy-2014 ; Safavi-Naeini-2013 ; Aggarwal-2020 , nonreciprocal transport Xu-2019 ; Shen-2016 , optomechanically induced transparency Kronwald-2013 ; Weis-2010 ; Liuy-2013 , coupling enhancement Xiong-2021 ; Lu-2013 ; Xiong2-2021 , and nonlinear behaviors (e.g., bi- and tristability and chaos ) Lu-2015 ; Xiong3-2016 have been investigated.

In addition, COM systems have shown huge potential in studying exceptional points (EPs) of non-Hermitian systems Xiongwei-2021 ; Jing-2014 ; Xu-2016 ; LYL-2017 ; ZhangJQ-2021 ; XuH-2021 ; Xuxw-2015 , at which both eigenvalues and eigenvectors coalesce. This is due to the fact that practical COM systems can be characterized by effective non-Hermitian Hamiltonians when decoherence arising from surrounding environment is considered. Moreover, the driven COM systems can provide fine-tuning parameters for requirement of realizing EPs, assisted by strong driving fields. Owing to these, EPs have been intensively studied in COM systems, especially for the second-order EPs (EP2s) Jing-2014 ; Xu-2016 ; LYL-2017 ; ZhangJQ-2021 ; XuH-2021 ; Xuxw-2015 where two eigenvalues and the corresponding eigenvectors coalesce Minganti-2019 ; Zhang-2021 ; Ozdemir-2019 ; Mostafazadeh1-2002 ; Mostafazadeh2-2002 ; Konotop-2016 ; Bender-2013 ; Parto-2021 ; Bergholtz-2021 ; Wiersig-2020 ; Feng-2017 ; El-Ganainy-2018 . Besides, EP2s are also studied in other systems  Doppler-2016 ; Zhang-2017 ; Harder-2017 ; Quijandria-2018 ; Zhang-2019-2 ; Naghiloo-2019 ; ZhangGQ . Around EP2s, lots of fascinating phenomena like unidirectional invisibility Peng-2014 ; Lin-2011 ; Chang-2014 , single-mode lasing Feng-2014 ; Hodaei-2014 , sensitivity enhancement Chen-2017 ; Hokmabadi-2019 , energy harvesting Fern-2021 , protecting the classification of exceptional nodal topologies Marcus-2021 , electromagnetically induced transparency Guo-2009 ; Wang-2019 ; Wang1-2020 ; Lu-2021 , and quantum squeezing Miranowicz-2019 ; Mukherjee-2019 ; Luo-2022 can be studied.

Instead of EP2s, non-Hermitian systems can also host higher-order EPs, where more than two eigenmodes coalesce into one Graefe-2008 ; Heiss-2008 ; Demange-2012 ; Heiss-2016 ; Jing-2017 ; Ge-2015 ; Lin-2016 ; Quiroz-2019 ; Bian-2020 . It has been shown that higher-order EPs can exhibit greater advantages than EP2s in spontaneous emission enhancement Lin-2016 , sensitive detection Hodaei-2017 ; Zeng-2021 ; Wang-2021 ; Zeng-2019 , topological characteristics Ding-2016 ; Delplace-2021 ; Mandal-2021 . With these superiorities, higher-order EPs are being intensively studied in various systems Roy-2021 ; Zhong-2020 ; Zhang-2020 ; Pan-2019 ; Zhang-2019 ; Kullig-2019 ; Kullig-2018 ; Schnabel-2017 ; Nada-2017 ; Wang-2020 but attract less attention in non-Hermitian COM systems. For this, how to construct higher-order EPs in non-Hermitian COM systems is strongly demanded.

We also note that EPs in non-Hermitian COM systems, including EP2s and EP3s, are mainly focused in the red-sideband regime Xiongwei-2021 ; Jing-2014 . In this regime, fast oscillating terms related to mode squeezing are neglected. This limits nonclassical quantum effects such as quantum squeezing investigation around EPs. For this, we here theoretically propose a paradigmatic COM system consisting of a MR coupled to two cavities via radiation pressure for predicting EP3s, where two cavities are respectively passive (loss) and active (gain), and driven by two blue-detuned classical fields. First, we derive an effective non-Hermitian Hamiltonian for the proposed COM system and analytically give the pseudo-Hermitian condition of the proposed COM system in the general case. Then, three scenarios are specifically considered in the pseudo-Hermitian condition: (i) the neutral MR; (ii) the passive MR; (iii) the active MR. In case (i), the proposed non-Hermitian COM system with symmetric coupling strength can host both two degenerate EP3s and two non-degenerate EP3s in the parameter space. When we tune the system parameters deviation from the critical paraters at EP3s, four non-degenerate EP2s can be predicted, which is different from the situation in the red-sideband non-Hermitian COM system. For the cases (ii) and (iii), the proposed non-Hermitian COM system is required to have asymmetric coupling strength for satisfying pseudo-Hermitian condition. We find only two degenerate EP3s or two degenerate EP2s can be predicted. By investigating the effects of system paramters on EP3s or EP2s, we find large coupling strength or large frequency detuning is benefit to observe EPs more clearly. Our proposal provides a promising path to study nonclassical quantum effects around EP2s and EP3s in non-Hermitian COM systems, and it is the first scheme to study higher-order EPs in the blue-detuned COM system, although two-mode quantum squeezing has been investigated in a system with pseudo-anti-parity-time symmetry Luo-2022 .

This paper is organized as follows. In Sec. II, the model is described and the system effective Hamiltonian is given. Then we derive the pesudo-Hermitian condition for the considered non-Hermitian COM system in Sec. III. In Sec. IV, critical parameters of the proposed COM system at EP3 are anatically derived. In Sec. V, phase diagram of the descriminant for the characteristic equation is studied to predict EP3 and EP2. In Sec. VI, EP3 and EP2 in three cases are specifically studied. Finally, a conclusion is given in Sec. VII.

II Model and Hamiltonian

Refer to caption
Figure 1: (a) Schematic diagram of the proposed blue-detuned three-mode optomechanical system. It consists of two cavities labeled as cavity aa and cavity cc, with respective frequencies ωa\omega_{a} and ωc\omega_{c}, coupled to a common MR with frequency ωb\omega_{b}. The two cavities are driven by two blue-detuned laser fields with frequencies νa\nu_{a} and νb\nu_{b}. The corresponding amplitudes are Ωa\Omega_{a} and Ωc\Omega_{c}. (b) The neutral MR, γb=0\gamma_{b}=0, is considered. (c) The loss MR, i.e., γb>0\gamma_{b}>0, is considered. (d) The gain MR, γb<0\gamma_{b}<0, is considered. In (a), (b) and (c), κa(<0)\kappa_{a}(<0) is the gain rate of the cavity aa, κc(>0)\kappa_{c}(>0) is the loss rate of the cavity. ga(c)g_{a(c)} is the single-photon optomechanical coupling strength of the MR coupled to the cavity a(c)a~{}(c).

We consider an experimental three-mode optomechanical system Dong-2012 ; Hill-2012 ; Andrews-2014 consisting of two driven cavities (labeled as cavity aa and cavity cc) coupled to a MR with frequency ωb\omega_{b} via radiation pressure (see Fig. 1). At the rotating frame respect to two laser fields, the Hamiltonian of the total system can be written as (setting =1\hbar=1Zhangk-2015

Htotal=\displaystyle H_{\rm total}= δaaa+ωbbb+δccc\displaystyle\delta_{a}a^{\dagger}a+\omega_{b}b^{\dagger}b+\delta_{c}c^{\dagger}c
+gaaa(b+b)+gccc(b+b)+HD,\displaystyle+g_{a}a^{\dagger}a(b^{\dagger}+b)+g_{c}c^{\dagger}c(b^{\dagger}+b)+H_{D}, (1)

where δa(c)=ωa(c)νa(c)\delta_{a(c)}=\omega_{a(c)}-\nu_{a(c)}, with ωa(c)\omega_{a(c)} being the frequency of the cavity a(c)a~{}(c) and νa(c)\nu_{a(c)} the frequency of the laser field acting on the cavity a(c)a~{}(c), is the frequency detuning of the cavity a(c)a~{}(c) from the laser field acting on the cavity a(c)a~{}(c). gag_{a} and gcg_{c} are the single-photon optomechanical coupling strengths of the MR coupled to the cavity aa and cavity cc, respectively. The operators a(c)a~{}(c) and a(c)a^{\dagger}~{}(c^{\dagger}) are the annihilation and creation operators of the cavity a(c)a~{}(c). The last term HD=i(Ωaa+Ωcc)+H.c.H_{D}=i(\Omega_{a}a^{\dagger}+\Omega_{c}c^{\dagger})+{\rm H.c.} in Eq. (1) represents the coupling between two cavities and two laser fields with Rabi frequencies Ωa\Omega_{a} and Ωc\Omega_{c}. As we are interested in the blue-sideband regime of the proposed COM system, thus δa,δc<0\delta_{a},~{}\delta_{c}<0 is assumed below.

In the strong-field limit, the nonlinear COM system can be linearized by writing each operator as the expectation value (as,bs,csa_{s},~{}b_{s},~{}c_{s}) plus the corresponding fluctuation (δa,δb,δc\delta a,~{}\delta_{b},~{}\delta_{c}). Neglecting the higher-order fluctuations, the linearized Hamiltonian including dissipations can be given by (see details in the Appendix)

Heff=\displaystyle H_{\rm eff}= (δaiκa)δaδa+(ωbiγb)δbδb+(δciκc)δcδc\displaystyle(\delta_{a}^{\prime}-i\kappa_{a})\delta a^{\dagger}\delta a+(\omega_{b}-i\gamma_{b})\delta b^{\dagger}\delta b+(\delta_{c}^{\prime}-i\kappa_{c})\delta c^{\dagger}\delta c
+Ga(δaδb+δaδb)+Gc(δbδc+δbδc).\displaystyle+G_{a}(\delta a^{\dagger}\delta b^{\dagger}+\delta a\delta b)+G_{c}(\delta b^{\dagger}\delta c^{\dagger}+\delta b\delta c). (2)

Here, fast oscillating terms have been discarded with the condition |δa(c)+ωb||δa(c)ωb||\delta_{a(c)}^{\prime}+\omega_{b}|\ll|\delta_{a(c)}^{\prime}-\omega_{b}| and |Ga(c)||δa(c)||G_{a(c)}|\ll|\delta_{a(c)}^{\prime}|, where δa(c)\delta_{a(c)}^{\prime} is the effective frequency detuning of the cavity a(c)a~{}(c) shifted by the displacement of the mechanical resonator, and Ga(c)G_{a(c)} is the effective optomechanical coupling strength enhanced by the photon number in the cavity a(c)a~{}(c). This effective Hamiltonian is the typical three-mode squeezing Hamiltonian without dissipations. For convenience, we assume GaG_{a} and GcG_{c} to be real, which can be realized by tuning the phase of two laser fields.

III Pseudo-Hermitian condition

The effective Hamiltonian in Eq. (2) can also be equivalently expressed as

Heff=(δaiκaGa0GaωbiγbGc0Gcδciκc)H_{\rm eff}=\left(\begin{array}[]{ccc}\delta_{a}^{\prime}-i\kappa_{a}&G_{a}&0\\ -G_{a}^{*}&-\omega_{b}-i\gamma_{b}&-G_{c}^{*}\\ 0&G_{c}&\delta_{c}^{\prime}-i\kappa_{c}\end{array}\right) (3)

is just the matrix form of HeffH_{\rm eff}. For the non-Hermitian Hamiltonian in Eq. (3), three eigenvalues can be predicted. When these three eigenvalues are all real, or one is real and the other two are a complex-conjugate pair, the considered three-mode optomechanical system characterized by the Hamiltonian in Eq. (2) or Eq. (3) is pseudo-Hermitian Mostafazadeh1-2002 ; Mostafazadeh2-2002 . For the pseudo-Hermitian systems, the characteristic polynomial equation

|HeffΩ𝕀|=0\displaystyle|H_{\rm eff}-\Omega\mathbb{I}|=0 (4)

is the same as

|HeffΩ𝕀|=0,\displaystyle|H_{\rm eff}^{*}-\Omega\mathbb{I}|=0, (5)

where HeffH_{\rm eff}^{*} is the complex conjugate transpose of HeffH_{\rm eff}, 𝕀\mathbb{I} is a 3×33\times 3 identity matrix, and Ω\Omega denotes the eigenvalue of the effective Hamiltonian HeffH_{\rm eff}. By expanding Eqs. (4) and (5), and comparing the corresponding coefficients, we can obtain

κa+γb+κc=\displaystyle\kappa_{a}+\gamma_{b}+\kappa_{c}= 0,\displaystyle 0,
γb(δa+δc)=\displaystyle\gamma_{b}(\delta_{a}^{\prime}+\delta_{c}^{\prime})= κa(ωbδc)+κc(ωbδa),\displaystyle\kappa_{a}(\omega_{b}-\delta_{c}^{\prime})+\kappa_{c}(\omega_{b}-\delta_{a}^{\prime}), (6)
(δaωb+κaγb)κc=\displaystyle(\delta_{a}^{\prime}\omega_{b}+\kappa_{a}\gamma_{b})\kappa_{c}= Ga2κc+Gc2κa+(δaγbκaωb)δc.\displaystyle G_{a}^{2}\kappa_{c}+G_{c}^{2}\kappa_{a}+(\delta_{a}^{\prime}\gamma_{b}-\kappa_{a}\omega_{b})\delta_{c}^{\prime}.

By setting

η=\displaystyle\eta= κa/κc,λ=Gc/Ga,Δa(c)=δa(c)+ωb,\displaystyle\kappa_{a}/\kappa_{c},~{}~{}~{}\lambda=G_{c}/G_{a},~{}~{}\Delta_{\rm a(c)}=\delta_{a(c)}^{\prime}+\omega_{b}, (7)

Eq. (III) can be further simplified as

γb+(1+η)κc=0,\displaystyle\gamma_{b}+(1+\eta)\kappa_{c}=0,
Δc+Δaη=0,\displaystyle\Delta_{c}+\Delta_{a}\eta=0, (8)
(1+λ2η)Ga2+η(1+η)(Δa2+κc2)=0.\displaystyle(1+\lambda^{2}\eta)G_{a}^{2}+\eta(1+\eta)(\Delta_{a}^{2}+\kappa_{c}^{2})=0.

Obviously, only when the conditions in Eq. (III) are simutaneously satisfied, the considered three-mode optomechanical system is pseudo-Hermitian. From the first condition in Eq. (III), we can see that the decay rates from the cavity aa, the mecahanical resonator and the cavity cc are required to be balanced. This means gain effect must be introduced to the considered system. From the third condition, η<0\eta<0 is obtained, which shows one loss cavity and the other gain cavity are always needed to satisfy the pseudo-Hermitian condition for the proposed COM system in the blue-sideband regime. This situation is completely different from the previous study of EPs using a COM system in the red-sideband regime. Without loss of generality, the cavity aa with gain, and the cavity cc with loss are taken, i.e., κa<0\kappa_{a}<0 and κc>0\kappa_{c}>0. From the third equation in Eq. (III), it is not difficult to find the fact that λ=1\lambda=1 when η=1\eta=-1, which indicates that the coupling strengths between the MR and two cavities must be uniform, i.e., Ga=GcG_{a}=G_{c}. When η1\eta\neq-1,

(1+η)(1+λ2η)>0forη1\displaystyle(1+\eta)(1+\lambda^{2}\eta)>0~{}~{}{\rm for}~{}~{}\eta\neq-1 (9)

is directly given by the third equality in Eq. (III), which in turn gives rise to a boundary for the parameter λ\lambda or equivalently GaG_{a} and GcG_{c}. Such the boundary can be achieved here owing to the tunable parameters Δa,Δc,Ga\Delta_{a},~{}\Delta_{c},~{}G_{a} and GcG_{c}.

IV critical parameters at EP3

When the pseudo-Hermitian conditions in Eq. (III) are satisfied and x=Ω+ωbx=\Omega+\omega_{b} is defined, the characteristic equation in Eq. (4) reduces to

x3+c2x2+c1x+c0=0,\displaystyle x^{3}+c_{2}x^{2}+c_{1}x+c_{0}=0, (10)

where

c2=\displaystyle c_{2}= (η1)Δa,\displaystyle(\eta-1)\Delta_{a},
c1=\displaystyle c_{1}= (1+λ2)Ga2ηΔa2+(1+η+η2)κc2,\displaystyle(1+\lambda^{2})G_{a}^{2}-\eta\Delta_{a}^{2}+(1+\eta+\eta^{2})\kappa_{c}^{2}, (11)
c0=\displaystyle c_{0}= (ηλ2)Ga2Δa(1+η)2(1η)κc2Δa.\displaystyle(\eta-\lambda^{2})G_{a}^{2}\Delta_{a}-(1+\eta)^{2}(1-\eta)\kappa_{c}^{2}\Delta_{a}.

According to Cardano’s formula kORN-1968 , the solutions of this characteristic equation is determined by the discriminant

D=B24AC,\displaystyle D=B^{2}-4AC, (12)

where

A=\displaystyle A= c223c1,B=c1c29c0,C=c123c0c2.\displaystyle c_{2}^{2}-3c_{1},~{}~{}B=c_{1}c_{2}-9c_{0},~{}~{}C=c_{1}^{2}-3c_{0}c_{2}. (13)

For D<0D<0, Eq. (10) has three real roots. But for D>0D>0, Eq. (10) only has one real root and the other two are complex roots. Interestingly, three roots coalesce to the same value ΩEP3\Omega_{\rm EP3} at D=0D=0 with A=B=0A=B=0, which is so-called EP3. For the case of D=0D=0 but A0A\neq 0 and B0B\neq 0, only two roots coalesce to the value ΩEP2\Omega_{\rm EP2}, corresponding to EP2.

Refer to caption
Figure 2: The parameter λ\lambda at EP3 as a function of η\eta. The red, blue and green dots respectively denote (η,λEP3)=(1,1),(1.1,1.33),(0.8,0.49)(\eta,\lambda_{\rm EP3})=(-1,1),(-1.1,1.33),(-0.8,0.49).
Refer to caption
Refer to caption
Refer to caption
Figure 3: The phase diagram of the discriminant given by Eq. (12) vs the normalized parameters (a) Ga/κcG_{a}/\kappa_{c} and Δa/κc\Delta_{a}/\kappa_{c}; (b) and (c) Ga/κcG_{a}/\kappa_{c} and Gc/κcG_{c}/\kappa_{c}. In (a), (b) and (c), η\eta is respectively taken as η=1\eta=-1, η=1.1\eta=-1.1, and η=0.8\eta=-0.8.

Below we analytically derive the critical parameters at EP3. When EP3 appears at Ω=ΩEP3\Omega=\Omega_{\rm EP3}, we have

(ΩΩEP3)3=0\displaystyle(\Omega-\Omega_{\rm EP3})^{3}=0 (14)

Comparing coefficients of this equation with Eq. (10),

3xEP3=c2,3xEP32=c1,xEP33=c0\displaystyle-3x_{\rm EP3}=c_{2},~{}~{}3x_{\rm EP3}^{2}=c_{1},~{}~{}x_{\rm EP3}^{3}=-c_{0} (15)

are obtained. The first equation directly leads to

xEP3=13(1η)Δa.\displaystyle x_{\rm EP3}=\frac{1}{3}(1-\eta)\Delta_{a}. (16)

Substituting this solution back into the second equation in Eq. (15), the critical coupling strength at EP3 is given by

Ga,EP3=\displaystyle G_{\rm a,EP3}= 2κc[3(1+λ2)1+η+η21+λ2ηη(1+η)]1/2,\displaystyle 2\kappa_{c}\left[-\frac{3(1+\lambda^{2})}{1+\eta+\eta^{2}}-\frac{1+\lambda^{2}\eta}{\eta(1+\eta)}\right]^{-1/2}, (17)

where

Δa,EP3=±[1+λ2ηη(1+η)Ga,EP32κc2]1/2\displaystyle\Delta_{\rm a,EP3}=\pm\left[-\frac{1+\lambda^{2}\eta}{\eta(1+\eta)}G_{\rm a,EP3}^{2}-\kappa_{c}^{2}\right]^{1/2} (18)

is derived from the third equation in Eq. (III). As Δa,EP320\Delta_{\rm a,EP3}^{2}\geq 0, so the minimal value of GaG_{a} for predicting EP3 is

Ga,EP3min=[η(1+η)1+λ2ηκc]1/2.\displaystyle G_{\rm a,EP3}^{\rm min}=\left[-\frac{\eta(1+\eta)}{1+\lambda^{2}\eta}\kappa_{c}\right]^{1/2}. (19)

At EP3, the parameter λ\lambda is required to meet

λEP3=\displaystyle\lambda_{\rm EP3}= [2η+1η(η+2)]3/2,\displaystyle\left[\frac{2\eta+1}{\eta(\eta+2)}\right]^{3/2}, (20)

which is obtained by substituting the solution in Eq. (16) back into the third equality in Eq. (15). To see the dependent relationship between λ\lambda and η\eta at EP3 more clearly, we plot λ\lambda as a function of η\eta in Fig. 2. Obviously, λ\lambda monotonously decreases with the absolute value of η\eta. Eq. (20) also requires η\eta to satisfy

(η+2)(2η+1)<0.\displaystyle(\eta+2)(2\eta+1)<0. (21)

Combine Eqs. (9) and (21) together, the parameter η\eta for predicting EP3 can take

{2<η<1,η=1,1<η<12,\left\{\begin{aligned} -2<&\eta<-1,\\ &\eta=-1,\\ -1<&\eta<-\frac{1}{2},\end{aligned}\right. (22)

leading to

{γb>0,lossmechanicalresonator,γb=0,neuralmechanicalresonator,γb<0,gainmechanicalresonator.\left\{\begin{aligned} &\gamma_{b}>0,~{}~{}~{}~{}~{}{\rm loss~{}mechanical~{}resonator},\\ &\gamma_{b}=0,~{}~{}~{}~{}~{}{\rm neural~{}mechanical~{}resonator},\\ &\gamma_{b}<0,~{}~{}~{}~{}~{}{\rm gain~{}mechanical~{}resonator}.\end{aligned}\right. (23)

The corresponding value of λEP3\lambda_{\rm EP3} is given by Eq. (20).

V Phase diagram for prediction of EP3 and EP2

Next, we numerically predict EP3 and EP2 via phase diagram of the discriminant [see Eq. (12)] with in the three cases given by Eq. (22).

V.1 η=1\eta=-1

When η=1\eta=-1, i.e., κa=κc\kappa_{a}=-\kappa_{c}, two optomechanical cavities are gain-loss balanced, Eq. (III) reduces to

γb=0,Δc=Δa,λEP3=1.\displaystyle\gamma_{b}=0,~{}~{}\Delta_{\rm c}=\Delta_{\rm a},~{}~{}\lambda_{\rm EP3}=1. (24)

For the condition γb=0\gamma_{b}=0, it is difficult to be perfectly satisfied. But for COM systems, the decay rate of the MR is in general much smaller than the decay rate of the optomechanical cavity, i.e., γbκc\gamma_{b}\ll\kappa_{c}. Therefore, we can safely ignore the effect of the decay rate of the MR on EP3, and thus we assume γb0\gamma_{b}\approx 0. In addition, the coefficients in Eq. (IV) are simplified as

c2=\displaystyle c_{2}= 2Δa,c1=2Ga2+Δa2+κc2,c0=2Ga2Δa.\displaystyle-2\Delta_{a},~{}c_{1}=2G_{a}^{2}+\Delta_{a}^{2}+\kappa_{c}^{2},~{}c_{0}=-2G_{a}^{2}\Delta_{a}. (25)

Correspondingly, the discriminant in Eq. (12) becomes

D=κc2Δa4(Ga4+10κc2Ga22κc4)Δa2+(2Ga2+κc2)3,\displaystyle D=\kappa_{c}^{2}\Delta_{a}^{4}-(G_{a}^{4}+10\kappa_{c}^{2}G_{a}^{2}-2\kappa_{c}^{4})\Delta_{a}^{2}+(2G_{a}^{2}+\kappa_{c}^{2})^{3}, (26)

and A,B,CA,~{}B,~{}C in Eq. (13) are

A=\displaystyle A= Δa26Ga23κc2,\displaystyle\Delta_{a}^{2}-6G_{a}^{2}-3\kappa_{c}^{2},
B=\displaystyle B= 2Δa(7Ga2Δa2κc2),\displaystyle 2\Delta_{a}(7G_{a}^{2}-\Delta_{a}^{2}-\kappa_{c}^{2}), (27)
C=\displaystyle C= (2Ga2+Δa2+κc2)212Ga2Δa2.\displaystyle(2G_{a}^{2}+\Delta_{a}^{2}+\kappa_{c}^{2})^{2}-12G_{a}^{2}\Delta_{a}^{2}.

In Fig. 3(a), we plot the phase diagram determined by the sign of the discriminant [see Eq. (26)] vs the normalized parameters Δa/κc\Delta_{a}/\kappa_{c} and Ga/κcG_{a}/\kappa_{c}, where the purple (yellow) region indicates D>0(D<0)D>0~{}(D<0). The boundary curve in red means D=0D=0. The curves in black and green respectively denote A=0A=0 and B=0B=0. Obviously, three curves have four cross points, that is, four EP3s in the parameter space can be found according to the Cardano’s formula kORN-1968 . Also, EP2 can be predicted by the red curve only (i.e., D=0D=0, but A0A\neq 0 and B0B\neq 0).

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 4: The real and imaginary parts of the eigenvalue (x=Ω+ωbx=\Omega+\omega_{b}) as a function of the normalized parameter Ga/κcG_{a}/\kappa_{c} with (a) Δa=33κc\Delta_{a}=3\sqrt{3}\kappa_{c}, (b) Δa=10κc\Delta_{a}=10\kappa_{c}, and (c) Δa=15κc\Delta_{a}=15\kappa_{c}. Here η=1\eta=-1 and λ=1\lambda=1.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 5: The real and imaginary parts of the eigenvalue (x=Ω+ωbx=\Omega+\omega_{b}) as a function of the normalized parameter Δa/κc\Delta_{a}/\kappa_{c} with (a) Ga=2κcG_{a}=2\kappa_{c}, (b) Ga=3κcG_{a}=3\kappa_{c}, and (c) Ga=4κcG_{a}=4\kappa_{c}. The other parameters are the same as in Fig. 4.

V.2 η1\eta\neq-1

For the more realistic case, η1\eta\neq-1 is further considered. This indicates that two optomechanical cavities are gain-loss unbalanced. According to Eq. (22), we can discuss the case of η1\eta\neq-1 in two scenarios, i.e., (i) 2<η<1-2<\eta<-1 (or γb>0\gamma_{b}>0); (ii) 1<η<12-1<\eta<-\frac{1}{2} (or γb<0\gamma_{b}<0). The first scenario indicates that the loss MR and λ>1\lambda>1 (i.e., |Gc|>|Ga||G_{c}|>|G_{a}|) are needed to predict EP3 in our proposed COM system. On the contrary, the gain MR and λ<1\lambda<1 (i.e., |Gc|<|Ga||G_{c}|<|G_{a}|) is required in the second scenario. As examples, we take η=1.1\eta=-1.1 and η=0.8\eta=-0.8 [see the blue and green dots in Fig. 2]. Then we plot the phase diagram of the discriminant with η=1.1\eta=-1.1 [see Fig. 3(b)] and 0.8-0.8 [see Fig. 3(c)] vs the normalized parameters Ga/κcG_{a}/\kappa_{c} and Gc/κcG_{c}/\kappa_{c}, where D=0D=0, A=0A=0, and B=0B=0 are shown by the red, black and green curves, respectively. The purple (yellow) region means D<0(D>0)D<0~{}(D>0). Obviously, four EP3s [see the red dots] produced by three curves, at which D=A=B=0D=A=B=0, can be predicted in both Figs. 3(b) and 3(c) by tuning GaG_{a} and GcG_{c}. This can be realized because both GaG_{a} and GcG_{c} are tunable coupling strengths via tuning the Rabi frequencies of the two laser fields. When we deviate GaG_{a} (GbG_{b}) from Ga,EP3G_{\rm a,EP3} (Gb,EP3G_{\rm b,EP3}) at EP3, EP2 emerges [see the red curve only in Figs. 3(b) and 3(c)]. When one parameter is fixed in Figs. 3(a-c), we can easily find that only two EP3s or four EP2s can be observed by varying the other parameter, which is different from the case considered in the red-detuned COM system.

VI EP3 and EP2 in the blue-sideband three-mode optomechanical system

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 6: The real and imaginary parts of the eigenvalue (x=Ω+ωbx=\Omega+\omega_{b}) with η=1.1\eta=-1.1 as a function of the normalized parameter Ga/κcG_{a}/\kappa_{c} with different λ\lambda. In (a) and (b), λ=λEP3\lambda=\lambda_{\rm EP3}. In (c) and (d), λ=1.2λEP3\lambda=1.2\lambda_{\rm EP3}.

VI.1 η=1\eta=-1

In Fig. 3(a), we have predicted that EP3 and EP2 can be observed in our considered system for the case of η=1\eta=-1. For clarity, we below study the behavior of three eigenvalues of the Hamiltonian HeffH_{\rm eff} given by Eq. (2) with different frequency detunings Δa\Delta_{a} and coupling strengths GaG_{a}.

In Fig. 4, we plot the real and imaginary parts of the eigenvalue (x=Ω+ωbx=\Omega+\omega_{b}) as a function of the normalized parameter Ga/κcG_{a}/\kappa_{c} with Δa=33κc,10κc,15κc\Delta_{a}=3\sqrt{3}\kappa_{c},~{}10\kappa_{c},~{}15\kappa_{c}. For simplicity, we assume that the red, blue and black curves respectively denote three eigenvalues x1,x2x_{1},~{}x_{2} and x3x_{3} for the Hamiltonian HeffH_{\rm eff} hereafter. For Δa=33κc\Delta_{a}=3\sqrt{3}\kappa_{c} [see Figs. 4(a) and 4(b)], x1x_{1} is real and the other two eigenvalues (x2x_{2} and x3x_{3}) are a complex-conjugate pair in the region of Ga>Ga,EP3(+)=2κcG_{a}>G_{\rm a,EP3}^{(+)}=2\kappa_{c} or Ga<Ga,EP3()=2κcG_{a}<G_{\rm a,EP3}^{(-)}=-2\kappa_{c}. But when Ga,EP3()<Ga<Ga,EP3(+)G_{\rm a,EP3}^{(-)}<G_{a}<G_{\rm a,EP3}^{(+)}, x2x_{2} becomes real, and x1x_{1}, x3x_{3} become a complex-conjugate pair. At the points Ga=Ga,EP3(±)G_{a}=G_{\rm a,EP3}^{(\pm)} [see the red and black dots in Figs. 4(a) and 4(b)], three eigenvalues coalesce to one value, i.e., ΩEP3=3.39κcωb\Omega_{\rm EP3}=3.39\kappa_{c}-\omega_{b}, corresponding to two degenerate EP3s. It is not difficult to verify that D=0,A=0D=0,~{}A=0 and B=0B=0 at two EP3s. Then we increase Δa\Delta_{a} to Δa=10κc\Delta_{a}=10\kappa_{c} [see Figs. 4(c) and 4(d)] for deviation from EP3s, that is, D=0D=0 but A0A\neq 0 and B0B\neq 0. For Ga<Ga,EP3(1,)=3.6κcG_{a}<G_{\rm a,EP3}^{(1,-)}=-3.6\kappa_{c} or Ga>Ga,EP3(1,+)=3.6κcG_{a}>G_{\rm a,EP3}^{(1,+)}=3.6\kappa_{c} , x1x_{1} is real, x2x_{2} and x3x_{3} are a complex-conjugate pair, At Ga=Ga,EP3(1,±)G_{a}=G_{\rm a,EP3}^{(1,\pm)} [see the red and black dots in Figs. 4(c) and 4(d)], x2x_{2} and x3x_{3} coalesce to ΩEP2(1)=5.22κcωb\Omega_{\rm EP2}^{(1)}=5.22\kappa_{c}-\omega_{b}, corresponding to two degenerate EP2s. By increasing GaG_{a} to Ga,EP3(1,)<Ga<Ga,EP3(2,)=2.99κcG_{\rm a,EP3}^{(1,-)}<G_{a}<G_{\rm a,EP3}^{(2,-)}=-2.99\kappa_{c} or 2.99κc=Ga,EP3(2,+)<Ga<Ga,EP3(1,+)=3.6κc2.99\kappa_{c}=G_{\rm a,EP3}^{(2,+)}<G_{a}<G_{\rm a,EP3}^{(1,+)}=3.6\kappa_{c}, the real parts of x2x_{2} and x3x_{3} bifurcate into two values. At Ga=Ga,EP3(2,±)G_{a}=G_{\rm a,EP3}^{(2,\pm)} [see the blue and green dots in Figs. 4(c) and 4(d)], x1x_{1} and x3x_{3} coalesce to the value ΩEP2(2)=2.28κcωb\Omega_{\rm EP2}^{(2)}=2.28\kappa_{c}-\omega_{b}, corresponding another two degenerate EP2s. When Ga,EP3(2,)<Ga<Ga,EP3(2,+)G_{\rm a,EP3}^{(2,-)}<G_{a}<G_{\rm a,EP3}^{(2,+)}, x2x_{2} is real and the other two eigenvalues x1x_{1} and x3x_{3} are complex conjugates. We also find the separation between arbitrary two EP2s can be increased using larger Δa\Delta_{a} such as Δa=15κc\Delta_{a}=15\kappa_{c} [see Figs. 4(c-f)], which indicates that larger Δa\Delta_{a} is benifit to distinguishably observe multiple EP2s.

In Fig. 5, we also plot the real and imaginary parts of the eigenvalue (x=Ω+ωbx=\Omega+\omega_{b}) vs the normalized parameter Δa/κc\Delta_{a}/\kappa_{c} with different GaG_{a}. For Ga=2κcG_{a}=2\kappa_{c} [see Figs. 5(a) and 5(b)], x1x_{1} is real, and x2x_{2}, x3x_{3} are a complex-conjugate pair when Δa<Δa,EP3()=5.2κc\Delta_{a}<\Delta_{\rm a,EP3}^{(-)}=-5.2\kappa_{c}. At Δa,EP3()=5.2κc\Delta_{\rm a,EP3}^{(-)}=-5.2\kappa_{c} [see the black dot in Figs. 5(a) and 5(b)], three eigenvalues coalesce to ΩEP3(1)=3.55κcωb\Omega_{\rm EP3}^{(1)}=3.55\kappa_{c}-\omega_{b}, corresponding to EP3. When Δa,EP3()<Δa<Δa,EP3(+)=5.2κc\Delta_{\rm a,EP3}^{(-)}<\Delta_{a}<\Delta_{\rm a,EP3}^{(+)}=5.2\kappa_{c}, x2x_{2} and x3x_{3} become a complex-conjugate pair again, and x1x_{1} is real. But when Δa>Δa,EP3(+)\Delta_{a}>\Delta_{\rm a,EP3}^{(+)}, x2x_{2} becomes real, x1x_{1} and x3x_{3} are a complex-conjugate pair. At Δa=Δa,EP3(+)\Delta_{a}=\Delta_{\rm a,EP3}^{(+)}, three eigenvalues remerge into the same value ΩEP3(2)3.55ΩEP3(1)\Omega_{\rm EP3}^{(2)}\approx 3.55\Omega_{\rm EP3}^{(1)}. By increasing GaG_{a} to Ga=3κcG_{a}=3\kappa_{c} [see the red dot in Figs. 5(c) and 5(d)], two EP3s in Figs. 5(a) and 5(b) split into four EP2s. Specifically, x1x_{1} is real, x2x_{2} and x3x_{3} are a complex-conjugate pair when Ga<Ga,EP2(1,)=10.1κcG_{a}<G_{\rm a,EP2}^{(1,-)}=-10.1\kappa_{c}. At Ga=Ga,EP2(1,)=10.1κcG_{a}=G_{\rm a,EP2}^{(1,-)}=-10.1\kappa_{c} [see the black dot in Figs. 5(c) and 5(d)], x2x_{2} and x3x_{3} coalesce to ΩEP2(1)=2.27κcωb\Omega_{\rm EP2}^{(1)}=-2.27\kappa_{c}-\omega_{b}, corresponding to the first EP2. When Ga,EP2(1,)<Ga<Ga,EP2(2,)=8.23κcG_{\rm a,EP2}^{(1,-)}<G_{a}<G_{\rm a,EP2}^{(2,-)}=-8.23\kappa_{c}, three eigenvalues are all real but have different values. At Ga=Ga,EP2(2,)G_{a}=G_{\rm a,EP2}^{(2,-)} [see the green dot in Figs. 5(c) and 5(d)], x1x_{1} and x3x_{3} coalesce to ΩEP2(2)=4.4κcωb\Omega_{\rm EP2}^{(2)}=-4.4\kappa_{c}-\omega_{b}, corresponding to the second EP2. For Ga,EP2(2,)<Ga<Ga,EP2(2,+)=8.23κcG_{\rm a,EP2}^{(2,-)}<G_{a}<G_{\rm a,EP2}^{(2,+)}=8.23\kappa_{c}, x1x_{1} is real, x2x_{2} and x3x_{3} are a complex-conjugate pair. At Ga=Ga,EP2(2,+)G_{a}=G_{\rm a,EP2}^{(2,+)} [see the blue dot in Figs. 5(c) and 5(d)], x2x_{2} and x3x_{3} remerge into one value ΩEP2(3)ΩEP2(2)\Omega_{\rm EP2}^{(3)}\approx\Omega_{\rm EP2}^{(2)}, corresponding to the third EP2. By tuning GaG_{a} to Ga=Ga,EP2(1,+)=10.1κcG_{a}=G_{\rm a,EP2}^{(1,+)}=10.1\kappa_{c} [see the red dot in Figs. 5(c) and 5(d)], two different real eigenvalues (i.e., x1x_{1} and x3x_{3}) in Ga,EP2(2,+)<Ga<Ga,EP2(1,+)G_{\rm a,EP2}^{(2,+)}<G_{a}<G_{\rm a,EP2}^{(1,+)} degenerate as ΩEP2(4)=8.93κcωb\Omega_{\rm EP2}^{(4)}=8.93\kappa_{c}-\omega_{b}, corresping to the fourth EP2. When GaG_{a} exceeds Ga,EP2(1,+)G_{\rm a,EP2}^{(1,+)}, x2x_{2} becomes real, x2x_{2} and x3x_{3} are a complex conjugates. By considering a larger GaG_{a} such as Ga=15κcG_{a}=15\kappa_{c} [see Figs. 5(e) and 5(f)], we find EP2s can be distinguished more easily. This indicates that larger coupling strength can also be used to observe EP2s clearly, similar to the role of the above discussed frequency detuning Δa\Delta_{a}.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 7: The real and imaginary parts of the eigenvalue (x=Ω+ωbx=\Omega+\omega_{b}) with η=0.8\eta=-0.8 as a function of the normalized parameter Ga/κcG_{a}/\kappa_{c} with different λ\lambda. In (a) and (b), λ=λEP3\lambda=\lambda_{\rm EP3}. In (c) and (d), λ=0.25λEP3\lambda=0.25\lambda_{\rm EP3}.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 8: The real and imaginary parts of the eigenvalue (x=Ω+ωbx=\Omega+\omega_{b}) as a function of the normalized parameter Ga/κcG_{a}/\kappa_{c} with (a) and (b) Δa=33κc\Delta_{a}=3\sqrt{3}\kappa_{c}, (c) and (d) Δa=10κc\Delta_{a}=10\kappa_{c}. Here η=1\eta=-1, λ=1\lambda=1 and κa+κb+κc=0.1κc\kappa_{a}+\kappa_{b}+\kappa_{c}=0.1\kappa_{c}.

VI.2 η1\eta\neq-1

For the case of η1\eta\neq-1, we also have numerically proved that EP3 and EP2 can be predicted in our proposed blue-sideband optomechanical system by respectively taking η=1.1\eta=-1.1 and 0.8-0.8 as examples in Figs. 3(b) and 3(c). Here we further specifically study EP3 and EP2 by investigating the eigenvalues of HeffH_{\rm eff} with η=1.1\eta=-1.1 and 0.8-0.8.

For η=1.1\eta=-1.1 (or equivalently γb>0\gamma_{b}>0), which leads to λ=λEP31.33\lambda=\lambda_{\rm EP3}\approx 1.33 and Ga,EP3min=0.04κcG_{\rm a,EP3}^{\rm min}=0.04\kappa_{c}. we plot the real and imaginary parts of the eigenvalue (x=Ω+ωbx=\Omega+\omega_{b}) vs the normalized parameter Ga/κcG_{a}/\kappa_{c} with different λ\lambda in Fig. 6. From Figs. 6(a) and 6(b) in which λ=λEP3\lambda=\lambda_{\rm EP3}, we can see that the eigenvalue x3x_{3} denoted by the black curve is always real for arbitrary Ga(Ga,EP3min,Ga,EP3min)G_{a}\notin(-G_{\rm a,EP3}^{\rm min},G_{\rm a,EP3}^{\rm min}), and the other two eigenvalues (x1x_{1} and x2x_{2}) are a complex-conjugate pair except for at points Ga,EP3(±)=±1.82κcG_{\rm a,EP3}^{(\pm)}=\pm 1.82\kappa_{c}. At these two points, three eigenvalues coalesce into one value ΩEP3±=3.7κcωb\Omega_{\rm EP3}^{\pm}=3.7\kappa_{c}-\omega_{b}, corresponding to two EP3s. When we take λ=1.2λEP3\lambda=1.2\lambda_{\rm EP3}, slightly derivating from λEP3\lambda_{\rm EP3} at EP3s, the condition for predicting EP3s is broken, thus EP3 disappears. According to Fig. 3(b), EP2 can be observed. In Figs. 6(c) and 6(d), we plot the real and imaginary parts of the eigenvalue (x=Ω+ωbx=\Omega+\omega_{b}) vs the normalized parameter Ga/κcG_{a}/\kappa_{c} with λ=1.2λEP3\lambda=1.2\lambda_{\rm EP3}. It is not difficult to find that three eigenvalues are all real when Ga>Ga,EP2(+)=2.44κcG_{a}>G_{\rm a,EP2}^{(+)}=2.44\kappa_{c} or Ga<Ga,EP2()=2.44κcG_{a}<G_{\rm a,EP2}^{(-)}=-2.44\kappa_{c}. At Ga=Ga,EP2(±)G_{a}=G_{\rm a,EP2}^{(\pm)}, x1x_{1} and x3x_{3} coalesce to ΩEP2±=9.05κcωb\Omega_{\rm EP2}^{\pm}=9.05\kappa_{c}-\omega_{b}, corresponding to two EP2s. When Ga,EP2()<Ga<Ga,EP2(+)G_{\rm a,EP2}^{(-)}<G_{a}<G_{\rm a,EP2}^{(+)}, the real parts of x1x_{1} and x3x_{3} are still degenerate, but their imaginary parts bifurcate into two values.

For the case of η=0.8\eta=-0.8 (or equivalently γb<0\gamma_{b}<0), the behaviors of three eigenvalues are similar to the case of η=1.1\eta=-1.1 for predicting EP3s [see Figs. 7(a) and 7(b)] and EP2s [see Figs. 7(c) and 7(d)].

VII Discussion and Conclusion

Note that our studies are constrainted in the pseudo-Hermitian condition, which can ensure the emergence of EPs in our proposed non-Hermitian COM system. But actually, the strict pseudo-Hermitian condition in general can not be fully satisfied, which means that the pseudo-Hermitian condition is broken [see Eq. (III) or Eq. (III)]. For example, the gain and loss in Eq. (III) are not balanced, i.e., κa+κb+κc0\kappa_{a}+\kappa_{b}+\kappa_{c}\neq 0. In this situation, we find that both EP3 and EP2 can also be predicted in our setup, as shown in Fig. 8 where η=1\eta=-1 and κa+κb+κc=0.1κc\kappa_{a}+\kappa_{b}+\kappa_{c}=0.1\kappa_{c} is taken. This shows that EPs in our proposal are robust against the slightly unbalanced gain and loss, which also reveals that the pseudo-Hermitian condition is neither sufficient nor necessary condition for predicting EPs. For the case of η1\eta\neq-1, we also numerically check it, and the same result is obtained.

In summary, we have proposed a blue-detuned non-Hermitian cavity optomechanical system consisting of a MR coupled to both a passive (loss) and an active (gain) cavities via radiation pressure for predicting EP3s. Under the pseudo-Hermitian condition, the cases of the neural, loss and gain MRs are considered. By investigating the phase diagram of the discriminant, we find that both two degenerate or two non-degenerate EP3s can be predicted by tuning system parameters in the parameter space for the neutral MR. Also, four non-degenerate EP2s can be observed when system parameters deviate from EP3s, which is distinguished from the previous study in the red-detuned optomechanical system. For the gain (loss) MR, we find only two degenerate EP3s or EP2s can be predicted by tuning enhanced coupling strength. By studying the effect of parameters on EP3s or EP2s, we show that large parameters, such as frequency detuning and enhanced optomechanical coupling strength, can be employed to observe EPs more clearly. Our proposal is the first scheme to study higher-order EPs in the blue-detuned COM system, and it provides a potential way to investigate multimode quantum squeezing effects around higher-order EPs

ACKNOWLEDGMENTS

This paper is supported by the key program of the Natural Science Foundation of Anhui (Grant No. KJ2021A1301), the National Natural Science Foundation of China (Grants No. 12205069, No. 11904201 and No. 12104214), and the Natural Science Foundation of Hunan Province of China (Grant No. 2020JJ5466).

Appendix A The derivation of the effective Hamiltonian HeffH_{\rm eff}

In this Appendix, we derive the effective Hamiltonian given by Eq. (2) in the main text. Following the quantum Langevin equation method Benguria-1981 , the dynamics of the proposed system including dissipations can be given by

a˙=\displaystyle\dot{a}= (κa+iδa)aigaa(b+b)+Ωa+2κaain,\displaystyle-(\kappa_{a}+i\delta_{a})a-ig_{a}a(b^{\dagger}+b)+\Omega_{a}+\sqrt{2\kappa_{a}}a_{\rm in},
b˙=\displaystyle\dot{b}= (γb+iωb)bigaaaigccc+2γbbin,\displaystyle-(\gamma_{b}+i\omega_{b})b-ig_{a}a^{\dagger}a-ig_{c}c^{\dagger}c+\sqrt{2\gamma_{b}}b_{\rm in}, (A1)
c˙=\displaystyle\dot{c}= (κc+iδc)cigcc(b+b)+Ωc+2κccin,\displaystyle-(\kappa_{c}+i\delta_{c})c-ig_{c}c(b^{\dagger}+b)+\Omega_{c}+\sqrt{2\kappa_{c}}c_{\rm in},

where κa(c)\kappa_{a(c)} is the decay rate of the cavity a(c)a~{}(c), and γb\gamma_{b} is the decay rate of the MR. Note that when one of the cavities such as the cavity aa is subject to the dissipative gain, its corresponding dynamics in Eq. (A) should be corrected as Gardiner-2000 a˙=(iδaκa)aigaa(b+b)+Ωa+2κaain\dot{a}=-(i\delta_{a}-\kappa_{a})a-ig_{a}a(b^{\dagger}+b)+\Omega_{a}+\sqrt{2\kappa_{a}}a_{\rm in}, which is different from the first equation in Eq. (A). aina_{\rm in}, binb_{\rm in} and cinc_{\rm in} are vacuum input noises with zero expectation value, i.e., ain=bin=cin=0\langle a_{\rm in}\rangle=\langle b_{\rm in}\rangle=\langle c_{\rm in}\rangle=0. To linearize the nonlinear equations in Eq. (A), we write the operators aa, bb, and cc as a=as+δa,b=bs+δb,c=cs+δca=a_{s}+\delta a,~{}b=b_{s}+\delta b,~{}c=c_{s}+\delta c, where as=εa/(κa+iΔa)a_{s}={\varepsilon_{a}}/{(\kappa_{a}+i\Delta_{a})}, bs=i(ga|as|2+gc|cs|2)/(κb+iωb)b_{s}=-i{(g_{a}|a_{s}|^{2}+g_{c}|c_{s}|^{2})}/{(\kappa_{b}+i\omega_{b})}, cs=εc/(κc+iΔc)c_{s}={\varepsilon_{c}}/{(\kappa_{c}+i\Delta_{c})} are steady-state values, and δa\delta a, δb\delta b, δc\delta c are fluctuation operators. Then we substitute these transformations into Eq. (A). In the strong-field limit, i.e., |as|,|cs|1|a_{s}|,|c_{s}|\gg 1, higher-order fluctuation terms can be safely neglected. Thus, the dynamics of the fluctuation operators in Eq. (A) can be linearized as

δa˙=\displaystyle\dot{\delta a}= (κa+iδa)δaiGa(δb+δb)+2κaain,\displaystyle-(\kappa_{a}+i\delta_{a}^{\prime})\delta a-iG_{a}(\delta b^{\dagger}+\delta b)+\sqrt{2\kappa_{a}}a_{\rm in},
δb˙=\displaystyle\dot{\delta b}= (γb+iωb)δbi(Gaδa+Gaδa)\displaystyle-(\gamma_{b}+i\omega_{b})\delta b-i(G_{a}^{*}\delta a+G_{a}\delta a^{\dagger})
i(Gcδc+Gcδc)+2γbbin,\displaystyle-i(G_{c}^{*}\delta c+G_{c}\delta c^{\dagger})+\sqrt{2\gamma_{b}}b_{\rm in}, (A2)
δc˙=\displaystyle\dot{\delta c}= (κc+iδc)δciGc(δb+δb)+2κccin.\displaystyle-(\kappa_{c}+i\delta_{c}^{\prime})\delta c-iG_{c}(\delta b^{\dagger}+\delta b)+\sqrt{2\kappa_{c}}c_{\rm in}.

where δa=δa+gaas(bs+bs)\delta_{a}^{\prime}=\delta_{a}+g_{a}a_{s}(b_{s}^{*}+b_{s}) and δc=δc+gccs(bs+bs)\delta_{c}^{\prime}=\delta_{c}+g_{c}c_{s}(b_{s}^{*}+b_{s}) are the effective frequency detunings of the cavity aa and the cavity cc, respectively, shifted by the displacement of the MR. In general, such frequency shifts are tiny due to weak single-photon optomechanical coupling strengths. Experimentally, δa(c)δa(c)\delta_{a(c)}^{\prime}\approx\delta_{a(c)} are used. Ga=gaasG_{a}=g_{a}a_{s} and Gc=gccsG_{c}=g_{c}c_{s} are the effective enhanced optomechanical coupling strengths, which can be tuned by the amplitudes of the two laser fields. Under the condition |δa(c)+ωb||δa(c)ωb||\delta_{a(c)}^{\prime}+\omega_{b}|\ll|\delta_{a(c)}^{\prime}-\omega_{b}| and |Ga(c)||δa(c)||G_{a(c)}|\ll|\delta_{a(c)}^{\prime}|, the fast oscillating terms in Eq. (A) can be neglected, then Eq. (A) reduces to

δa˙=\displaystyle\dot{\delta a}= (κa+iδa)δaiGaδb+2κaain,\displaystyle-(\kappa_{a}+i\delta_{a}^{\prime})\delta a-iG_{a}\delta b^{\dagger}+\sqrt{2\kappa_{a}}a_{\rm in},
δb˙=\displaystyle\dot{\delta b}= (γb+iωb)δbiGaδaiGcδc+2γbbin,\displaystyle-(\gamma_{b}+i\omega_{b})\delta b-iG_{a}\delta a^{\dagger}-iG_{c}\delta c^{\dagger}+\sqrt{2\gamma_{b}}b_{\rm in},
δc˙=\displaystyle\dot{\delta c}= (κc+iδc)δciGcδb+2κccin.\displaystyle-(\kappa_{c}+i\delta_{c}^{\prime})\delta c-iG_{c}\delta b^{\dagger}+\sqrt{2\kappa_{c}}c_{\rm in}. (A3)

By rewriting the equations of motion in Eq. (A) as δa˙=i[δa,Heff]+2κaain\dot{\delta a}=-i[\delta a,H_{\rm eff}]+\sqrt{2\kappa_{a}}a_{\rm in}, δb˙=i[δb,Heff]+2γbbin\dot{\delta b}=-i[\delta b,H_{\rm eff}]+\sqrt{2\gamma_{b}}b_{\rm in}, and δc˙=i[δc,Heff]+2κccin\dot{\delta c}=-i[\delta c,H_{\rm eff}]+\sqrt{2\kappa_{c}}c_{\rm in}, the effective non-Hermitian Hamiltonian in the blue-sideband regime can be obtained,

Heff=\displaystyle H_{\rm eff}= (δaiκa)δaδa+(ωbiγb)δbδb+(δciκc)δcδc\displaystyle(\delta_{a}^{\prime}-i\kappa_{a})\delta a^{\dagger}\delta a+(\omega_{b}-i\gamma_{b})\delta b^{\dagger}\delta b+(\delta_{c}^{\prime}-i\kappa_{c})\delta c^{\dagger}\delta c
+Ga(δaδb+δaδb)+Gc(δbδc+δbδc),\displaystyle+G_{a}(\delta a^{\dagger}\delta b^{\dagger}+\delta a\delta b)+G_{c}(\delta b^{\dagger}\delta c^{\dagger}+\delta b\delta c), (A4)

which is just the effective Hamitonian in Eq. (2).

Appendix B Stability

From Eq. (A), we can obtain the following equations,

δa˙=\displaystyle\dot{\delta a}= (κa+iδa)δaiGaδb+2κaain,\displaystyle-(\kappa_{a}+i\delta_{a}^{\prime})\delta a-iG_{a}\delta b^{\dagger}+\sqrt{2\kappa_{a}}a_{\rm in},
δb˙=\displaystyle\dot{\delta b}= (γb+iωb)δbiGaδaiGcδc+2γbbin,\displaystyle-(\gamma_{b}+i\omega_{b})\delta b-iG_{a}\delta a^{\dagger}-iG_{c}\delta c^{\dagger}+\sqrt{2\gamma_{b}}b_{\rm in},
δc˙=\displaystyle\dot{\delta c}= (κc+iδc)δciGcδb+2κccin.\displaystyle-(\kappa_{c}+i\delta_{c}^{\prime})\delta c-iG_{c}\delta b^{\dagger}+\sqrt{2\kappa_{c}}c_{\rm in}. (B5)
δa˙=\displaystyle\dot{\delta a^{\dagger}}= (κaiδa)δa+iGaδb+2κaain,\displaystyle-(\kappa_{a}-i\delta_{a}^{\prime})\delta a^{\dagger}+iG_{a}\delta b+\sqrt{2\kappa_{a}}a_{\rm in}^{\dagger},
δb˙=\displaystyle\dot{\delta b^{\dagger}}= (γbiωb)δb+iGaδa+iGcδc+2γbbin,\displaystyle-(\gamma_{b}-i\omega_{b})\delta b^{\dagger}+iG_{a}\delta a+iG_{c}\delta c+\sqrt{2\gamma_{b}}b_{\rm in}^{\dagger},
δc˙=\displaystyle\dot{\delta c^{\dagger}}= (κciδc)δc+iGcδb+2κccin.\displaystyle-(\kappa_{c}-i\delta_{c}^{\prime})\delta c^{\dagger}+iG_{c}\delta b+\sqrt{2\kappa_{c}}c_{\rm in}^{\dagger}.

By setting

δXa=\displaystyle\delta X_{a}= a+a2,δYa=aai2,\displaystyle\frac{a+a^{\dagger}}{\sqrt{2}},~{}~{}\delta Y_{a}=\frac{a-a^{\dagger}}{i\sqrt{2}},
δXb=\displaystyle\delta X_{b}= b+b2,δYb=bbi2,\displaystyle\frac{b+b^{\dagger}}{\sqrt{2}},~{}~{}\delta Y_{b}=\frac{b-b^{\dagger}}{i\sqrt{2}},
δXc=\displaystyle\delta X_{c}= c+c2,δYc=cci2,\displaystyle\frac{c+c^{\dagger}}{\sqrt{2}},~{}~{}\delta Y_{c}=\frac{c-c^{\dagger}}{i\sqrt{2}},
δXain=\displaystyle\delta X_{a_{\rm in}}= ain+ain2,δYain=ainaini2,\displaystyle\frac{a_{\rm in}+a_{\rm in}^{\dagger}}{\sqrt{2}},~{}~{}\delta Y_{a_{\rm in}}=\frac{a_{\rm in}-a_{\rm in}^{\dagger}}{i\sqrt{2}},
δXbin=\displaystyle\delta X_{b_{\rm in}}= bin+bin2,δYbin=binbini2,\displaystyle\frac{b_{\rm in}+b_{\rm in}^{\dagger}}{\sqrt{2}},~{}~{}\delta Y_{b_{\rm in}}=\frac{b_{\rm in}-b_{\rm in}^{\dagger}}{i\sqrt{2}},
δXcin=\displaystyle\delta X_{c_{\rm in}}= cin+cin2,δYcin=cincini2,\displaystyle\frac{c_{\rm in}+c_{\rm in}^{\dagger}}{\sqrt{2}},~{}~{}\delta Y_{c_{\rm in}}=\frac{c_{\rm in}-c_{\rm in}^{\dagger}}{i\sqrt{2}}, (B6)

Eq. (B) can be rewritten as

u˙=Mu+fin,\displaystyle\dot{u}=Mu+f_{\rm in}, (B7)

where u=[δXa,δYa,δXb,δYb,δXc,δYc]Tu=[\delta X_{a},\delta Y_{a},\delta X_{b},\delta Y_{b},\delta X_{c},\delta Y_{c}]^{T}, fin=[δXain,δYain,δXbin,δYbin,δXcin,δYcin]Tf_{\rm in}=[\delta X_{a_{\rm in}},\delta Y_{a_{\rm in}},\delta X_{b_{\rm in}},\delta Y_{b_{\rm in}},\delta X_{c_{\rm in}},\delta Y_{c_{\rm in}}]^{T}, and MM is given by

M=(κaδa0Ga00δaκaGa0000Gaκbωb0GcGa0ωbκbGc0000Gcκcδc00Gc0δcκc).M=\left(\begin{array}[]{cccccc}-\kappa_{a}&\delta_{a}^{\prime}&0&-G_{a}&0&0\\ -\delta_{a}^{\prime}&-\kappa_{a}&-G_{a}&0&0&0\\ 0&-G_{a}&-\kappa_{b}&\omega_{b}&0&-G_{c}\\ -G_{a}&0&-\omega_{b}&-\kappa_{b}&-G_{c}&0\\ 0&0&0&-G_{c}&-\kappa_{c}&\delta_{c}^{\prime}\\ 0&0&-G_{c}&0&-\delta_{c}^{\prime}&-\kappa_{c}\\ \end{array}\right). (B8)

The considered COM system is stable only when the real parts of the eigenvalues λ\lambda of the matrix MM are all negative, which can be judged by the Routh-Hurwitz criterion Gradshteyn . To using this criterion, we expand the characteristic equation |MIλ|=0|M-I\lambda|=0 as λ6+c5λ5+c4λ4+c3λ3+c2λ2+c1λ+c0=0\lambda^{6}+c_{5}\lambda^{5}+c_{4}\lambda^{4}+c_{3}\lambda^{3}+c_{2}\lambda^{2}+c_{1}\lambda+c_{0}=0, where the coefficients cjc_{j} with j=0,1,,5j=0,1,...,5 can be derived using straightforward but tedious algebra. Interestingly, we find c5=0c_{5}=0 when κa+γb+κc=0\kappa_{a}+\gamma_{b}+\kappa_{c}=0, which breaks the Routh-Hurwitz criterion for prediction of the stability. This indicates that when the pseudo-Hermitian condition is strictly satisfied, the considered system is possibly unstable. To ensure the system stable, κa+γb+κc>0\kappa_{a}+\gamma_{b}+\kappa_{c}>0 is required in experiment. This requirement can be achieved when two cavities are gain-loss balanced and the loss mechanical resonatr is employed. Although the pseudo-Hermitian condition is broken, EP3s or EP2s can also be predicted (see Fig. 8). Other stable conditions obtained from the Routh-Hurwitz criterion can be well satisfied. This is due to the tunable frequency detunings and linearized optomechanical coupling strengths via tuning driving fields.

References

  • (1) M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86, 1391 (2014).
  • (2) S. Schreppler, N. Spethmann, N. Brahms, T. Botter, M. Barrios, and D. M. Stamper-Kurn, Optically measuring force near the standard quantum limit. Science 344, 1486 (2014).
  • (3) M. Wu, N. L.Y. Wu, T. Firdous, F. F. Sani, J. E. Losby, M. R. Freeman, and P. E. Barclay, Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry, Nat. Nanotechnol. 12, 127 (2017).
  • (4) E. Gil-Santos, J. J. Ruz, O. Malvar, I. Favero, A. Lemaître, P. M. Kosaka, S. García-López, M. Calleja, and J. Tamayo, Optomechanical detection of vibration modes of a single bacterium, Nat. Nanotechnol. 15, 469 (2020).
  • (5) R. Fischer, D. P. McNally, C. Reetz, G. G.T. Assumpção, T. Knief, Y. Lin, and C. A. Regal, Spin detection with a micromechanical trampoline: Towards magnetic resonance microscopy harnessing cavity optomechanics, New J. Phys. 21, 43049 (2019).
  • (6) J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, Laser cooling of a nanomechanical oscillator into its quantum ground state, Nature (London) 478, 89 (2011).
  • (7) J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, Sideband cooling of micromechanical motion to the quantum ground state, Nature (London) 475, 359 (2011).
  • (8) T. P. Purdy, P. L. Yu, R. W. Peterson, N. S. Kampel, and C. A. Regal, Strong optomechanical squeezing of light, Phys. Rev. X 3, 031012 (2013).
  • (9) A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, Squeezed light from a silicon micromechanical resonator, Nature (London) 500, 1852013).
  • (10) N. Aggarwal, T. J. Cullen, J. Cripe, G. D. Cole, R. Lanza, A. Libson, D. Follman, P. Heu, T. Corbitt, and N. Mavalvala, Room-temperature optomechanical squeezing, Nat. Phys. 16, 784 (2020).
  • (11) H. Xu, L. Jiang, A. A. Clerk, and J. G. E. Harris, Nonreciprocal control and cooling of phonon modes in an optomechanical system, Nature (London) 568, 65 (2019).
  • (12) Z. Shen, Y. L. Zhang, Y. Chen, C. L. Zou, Y. F. Xiao, X. B. Zou, F. W. Sun, G. C. Guo, and C. H. Dong, Experimental realization of optomechanically induced non-reciprocity, Nat. Photonics 10, 657 (2016).
  • (13) A. Kronwald and F. Marquardt, Optomechanically Induced Transparency in the Nonlinear Quantum Regime, Phys. Rev. Lett. 111, 133601 (2013).
  • (14) S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, Optomechanically Induced Transparency, Science 330, 1520 (2010).
  • (15) Y. Liu, M. Davanço, V. Aksyuk, and K. Srinivasan, Electromagnetically Induced Transparency and Wideband Wavelength Conversion in Silicon Nitride Microdisk Optomechanical Resonators, Phys. Rev. Lett. 110, 223603 (2013).
  • (16) W. Xiong, J. Chen, B. Fang, M. Wang, L. Ye, and J. Q. You, Strong tunable spin-spin interaction in a weakly coupled nitrogen vacancy spin-cavity electromechanical system, Phys. Rev. B 103, 174106 (2021).
  • (17) X. Y. Lu¨\ddot{\rm u}, W. M. Zhang, S. Ashhab, Y. Wu, and F. Nori, Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems, Sci. Rep. 3, 2943 (2013).
  • (18) J. Chen, Z. Li, X. Q. Luo, W. Xiong, M. Wang, and H. C. Li, Strong single-photon optomechanical coupling in a hybrid quantum system, Opt. Express 29, 32639 (2021).
  • (19) W. Xiong, D. Y. Jin, Y. Qiu, C. H. Lam, and J. Q. You, Cross-Kerr effect on an optomechanical system, Phys. Rev. A 93, 023844 (2016).
  • (20) X. Y. Lü, H. Jing, J. Y. Ma, and Y. Wu, 𝒫T{\mathcal{P}T}-Symmetry Breaking Chaos in Optomechanics, Phys. Rev. Lett. 114, 253601 (2015).
  • (21) W. Xiong, Z. Li, Y. Song, J. Chen, G. Q. Zhang, M. Wang, Higher-order exceptional point in a pseudo-Hermitian cavity optomechanical system, Phys. Rev. A 104, 063508 (2021).
  • (22) H. Jing, ¸S. K. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, and F. Nori, 𝒫𝒯\mathcal{PT}-Symmetric Phonon Laser, Phys. Rev. Lett. 113, 053604 (2014).
  • (23) Y. L. Liu, R. Wu, J. Zhang, S. K. Özdemir, L. Yang, F. Nori, and Y. X. Liu, Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system, Phys. Rev. A 95, 013843 (2017).
  • (24) H. Xu, D. Mason, L. Jiang, and J. G. E. Harris, Topological energy transfer in an optomechanical system with exceptional points, Nature (London) 537, 80 (2016).
  • (25) J. Q. Zhang, J. X. Liu, H. L. Zhang, Z. R. Gong, S. Zhang, L. L. Yan, S. L. Su, H. Jing, and M. Feng, Synthetic 𝒫T{\mathcal{P}T}-Symmetry and Nonreciprocal Amplification in Optomechanics, arXiv:2107.10421.
  • (26) H. Xu, D.-G. Lai, Y.-B. Qian, B.-P. Hou, A. Miranowicz, and F. Nori, Optomechanical dynamics in the 𝒫𝒯\mathcal{PT}-and broken-𝒫𝒯\mathcal{PT}-symmetric regimes, Phys. Rev. A 104, 053518 (2021).
  • (27) X. W. Xu, Y. X. Liu, C. P. Sun, and Y. Li, Mechanical 𝒫𝒯\mathcal{PT}-symmetry in coupled optomechanical systems, Phys. Rev. A 92, 013852 (2015).
  • (28) F. Minganti, A. Miranowicz, R. W. Chhajlany, and F. Nori, Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: The effects of quantum jumps, Phys. Rev. A 100, 062131 (2019).
  • (29) G. Q. Zhang, Z. Chen, D. Xu, N. Shammah, M. Liao, T. F. Li, L. Tong, S. Y. Zhu, F. Nori, and J. Q. You, Exceptional Point and Cross-Relaxation Effect in a Hybrid Quantum System, PRX Quantum 2, 020307 (2021).
  • (30) S. K. Özdemir, S. Rotter, F. Nori, and L. Yang, Parity-time symmetry and exceptional points in photonics, Nat. Mater. 18, 783 (2019).
  • (31) A. Mostafazadeh, Pseudo-Hermiticity versus 𝒫𝒯{\mathcal{PT}}-symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian, J. Math. Phys. 43, 205 (2002).
  • (32) A. Mostafazadeh, Pseudo-Hermiticity versus 𝒫𝒯{\mathcal{PT}}-symmetry II: A complete characterization of non-Hermitian Hamiltonians with a real spectrum, J. Math. Phys. 43, 2814 (2002).
  • (33) V. V. Konotop, J. Yang, and D. A. Zezyulin, Nonlinear waves in 𝒫T{\mathcal{P}T}-symmetric systems, Rev. Mod. Phys. 88, 035002 (2016).
  • (34) C. M. Bender, B. K. Berntson, D. Parker, and E. Samuel, Observation of 𝒫𝒯\mathcal{PT} phase transition in a simple mechanicalsystem, Am. J. Phys. 81, 173 (2013).
  • (35) M. Parto, Y. G. N. Liu, B. Bahari, M. Khajavikhan, and D. N. Christodoulides, Non-Hermitian and topological photonics: Optics at an exceptional point, Nanophotonics 10, 403 (2021).
  • (36) E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional topology of non-Hermitian systems, Rev. Mod. Phys. 93, 015005 (2021).
  • (37) J. Wiersig, Review of exceptional point-based sensors, Photonics Res. 8, 1457 (2020).
  • (38) L. Feng, R. El-Ganainy, and L. Ge, Non-Hermitian photonics based on parity-time symmetry, Nat. Photonics 11, 752 (2017).
  • (39) R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, and D. N. Christodoulides, Non-Hermitian physics and 𝒫𝒯\mathcal{PT} symmetry, Nat. Phys. 14, 11 (2018).
  • (40) J. Doppler, A. A. Mailybaev, J. BÖhm, U. Kuhl, A. Girschik, F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, and S. Rotter, Dynamically encircling an exceptional point for asymmetric mode switching, Nature (London) 537, 76 (2016).
  • (41) D. Zhang, X. Q. Luo, Y. P. Wang, T. F. Li, and J. Q. You, Observation of the exceptional point in cavity magnon-polaritons, Nat. Commun. 8, 1368 (2017).
  • (42) M. Harder, L. Bai, P. Hyde, and C. M. Hu, Topological properties of a coupled spin-photon system induced by damping, Phys. Rev. B 95, 214411 (2017).
  • (43) F. Quijandri´\acute{\rm i}a, U. Naether, S. K. Özdemir, F. Nori, and D. Zueco, PT-symmetric circuit QED, Phys. Rev. A 97, 053846 (2018).
  • (44) G. Q. Zhang, Y. P. Wang, and J. Q. You, Dispersive readout of a weakly coupled qubit via the parity-time-symmetric phase transition, Phys. Rev. A 99, 052341 (2019).
  • (45) M. Naghiloo, M. Abbasi, Y. N. Joglekar, and K. W. Murch, Quantum state tomography across the exceptional point in a single dissipative qubit, Nat. Phys. 15, 1232 (2019).
  • (46) G. Q. Zhang, Z. Chen, W. Xiong, C. H. Lam, and J. Q. You, Parity-symmetry-breaking quantum phase transition via parametric drive in a cavity magnonic system, Physical Review B 104, 064423 (2021).
  • (47) L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators, Nat. Photonics 8, 524 (2014).
  • (48) B. Peng, ¸S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Parity-timesymmetric whispering-gallery microcavities, Nat. Phys. 10, 394 (2014).
  • (49) Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, Unidirectional invisibility induced by 𝒫𝒯\mathcal{PT} symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011).
  • (50) L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, Singlemode laser by parity-time symmetry breaking, Science 346, 972 (2014).
  • (51) H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, Parity-time-symmetric microring lasers, Science 346, 975 (2014).
  • (52) W. Chen, ¸S. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, Exceptional points enhance sensing in an optical microcavity, Nature (London) 548, 192 (2017).
  • (53) M. P. Hokmabadi, A. Schumer, D. N. Christodoulides, M. Khajavikhan, Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity, Nature (London) 576, 70 (2019).
  • (54) L. J. Ferna´\acute{\rm a}ndez-Alca´\acute{\rm a}zar, R. Kononchuk, and T. Kottos, Enhanced energy harvesting near exceptional points in systems with (pseudo-) 𝒫𝒯\mathcal{PT} symmetry, Commun. Phys. 4, 79 (2021).
  • (55) M. Stå\mathring{\rm a}lhammar, and E. J. Bergholtz, Classification of exceptional nodal topologies protected by 𝒫𝒯\mathcal{PT} symmetry, Phys. Rev. B 104, L201104 (2021)..
  • (56) A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, Observation of 𝒫𝒯\mathcal{PT} symmetry breaking in complex optical potentials, Phys. Rev. Lett. 103, 093902 (2009).
  • (57) C. Wang, X. Jiang, G. Zhao, M. Zhang, C. W. Hsu, B. Peng, A. D. Stone, L. Jiang, and L. Yang, Electromagnetically induced transparency at a chiral exceptional point, Nat. Phys. 16, 334 (2020).
  • (58) B. Wang, Z. X. Liu, C. Kong, H. Xiong, and Y. Wu, Mechanical exceptional-point-induced transparency and slow light, Opt. Express 27, 8069 (2019).
  • (59) T. X. Lu, H. Zhang, Q. Zhang, and H. Jing, Exceptional-point-engineered cavity magnomechanics, Phys. Rev. A 103, 063708 (2021).
  • (60) J. P. Jr., A. Lukš, J. K. Kalaga, W. Leon´\rm\acute{n}ski, and A. Miranowicz, Nonclassical light at exceptional points of a quantum 𝒫𝒯\mathcal{PT}-symmetric two-mode system, Phys. Rev. A 100, 053820 (2019).
  • (61) K. Mukherjee and P. C.Jana, Enhancement of squeezing effects in 𝒫𝒯\mathcal{PT}-symmetric coupled microcavities, Optik 194, 163058 (2019).
  • (62) X. W. Luo, C. Zhang, and S. Du, Quantum Squeezing and Sensing with Pseudo-Anti-Parity-Time Symmetry, Phys. Rev. Lett. 128, 173602 (2022).
  • (63) E. M. Graefe, U. Günther, H. J. Korsch, and A. E. Niederle, A non-Hermitian 𝒫𝒯\mathcal{PT} symmetric Bose–Hubbard model: Eigenvalue rings from unfolding higher-order exceptional points, J. Phys. A 41, 255206 (2008).
  • (64) W. D. Heiss, Chirality of wavefunctions for three coalescing levels, J. Phys. A 41, 244010 (2008).
  • (65) G. Demange and E.-M. Graefe, Signatures of three coalescing eigenfunctions, J. Phys. A 45, 025303 (2012).
  • (66) W. D. Heiss and G. Wunner, A model of three coupled wave guides and third order exceptional points, J. Phys. A 49, 495303 (2016).
  • (67) L. Ge, Parity-time symmetry in a flat-band system, Phys. Rev. A 92, 052103 (2015).
  • (68) Z. Lin, A. Pick, M. Loncˇ\check{c}ar, and A. W. Rodriguez, Enhanced spontaneous emission at third-order Dirac exceptional points in inverse-designed photonic crystals, Phys. Rev. Lett. 117, 107402 (2016).
  • (69) H. Jing, S. K. Özdemir, H. Lü, and F. Nori, High-order exceptional points in optomechanics, Sci. Rep. 7, 3386 (2017).
  • (70) M. A. Quiroz-Jua´\acute{\rm a}rez, A. Perez-Leija, K. Tschernig, B. M. Rodri´\acute{\rm i}guez-Lara, O. S. Magan~\tilde{\rm n}a-Loaiza, K. Busch, Y. N. Joglekar, and R. de J. Leo´\acute{\rm o}n-Montiel, Exceptional points of any order in a single, lossy waveguide beam splitter by photon-number-resolved detection, Photonics Res. 7, 862 (2019).
  • (71) Z. Bian, L. Xiao, K. Wang, F. A. Onanga, F. Ruzicka, W. Yi, Y. N. Joglekar, and P. Xue, Phys. Rev. A 102, 030201(R) (2020).
  • (72) H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, Enhanced sensitivity at higher-order exceptional points, Nature (London) 548, 187 (2017).
  • (73) C. Zeng, K. Zhu, Y. Sun, G. Li, Z. Guo, J. Jiang, Y. Li, H. Jiang, Y. Yang, and H. Chen, Ultra-sensitive passive wireless sensor exploiting high-order exceptional point for weakly coupling detection, New J. Phys. 23, 063008 (2021).
  • (74) X. G. Wang, G. H. Guo, and J. Berakdar, Enhanced Sensitivity at Magnetic High-Order Exceptional Points and Topological Energy Transfer in Magnonic Planar Waveguides, Phys. Rev. Appl. 15, 034050 (2021).
  • (75) C. Zeng, Y. Sun, G. Li, Y. Li, H. Jiang, Y. Yang, and H. Chen, Enhanced sensitivity at high-order exceptional points in a passive wireless sensing system, Opt. Express 27, 27562 (2019).
  • (76) K. Ding, G. Ma, M. Xiao, Z. Q. Zhang, and C. T. Chan, Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization, Phys. Rev. X 6, 021007 (2016).
  • (77) P. Delplace, T. Yoshida, and Y. Hatsugai, Symmetry-protected higher-order exceptional points and their topological characterization, Phys. Rev. Lett. 127, 186602 (2021).
  • (78) I. Mandal and E. J. Bergholtz, Symmetry and Higher-Order Exceptional Points, Phys. Rev. Lett. 127, 186601 (2021).
  • (79) A. Roy, S. Jahani, Q. Guo, A. Dutt, S. Fan, M. A. Miri, and A. Marandi, Nondissipative non-Hermitian dynamics and exceptional points in coupled optical parametric oscillators, Optica 8, 415 (2021).
  • (80) Q. Zhong, J. Kou, S. K. Özdemir, and R. El-Ganainy, Hierarchical Construction of Higher-Order Exceptional Points, Phys. Rev. Lett. 125, 203602 (2020).
  • (81) S. M. Zhang , X. Z. Zhang, L. Jin, and Z. Son, High-order exceptional points in supersymmetric arrays, Phys. Rev. A 101, 033820 (2020).
  • (82) L. Pan, S. Chen, and X. Cui, High-order exceptional points in ultracold Bose gases, Phys. Rev. A 99, 011601 (R) (2019).
  • (83) G. Q. Zhang and J. Q. You, Higher-order exceptional point in a cavity magnonics system, Phys. Rev. B 99, 054404 (2019).
  • (84) J. Kullig and J. Wiersig, High-order exceptional points of counterpropagating waves in weakly deformed microdisk cavities, Phys. Rev. A 100, 043837 (2019).
  • (85) J. Kullig, C. H. Yi, M. Hentschel, and J. Wiersig, Exceptional points of third-order in a layered optical microdisk cavity, New J. Phys. 20, 083016 (2018).
  • (86) J. Schnabel, H. Cartarius, J. Main, G. Wunner, and W. D. Heiss, 𝒫𝒯\mathcal{PT} symmetric waveguide system with evidence of a third-order exceptional point, Phys. Rev. A 95, 053868 (2017).
  • (87) M. Y. Nada, M. A. K. Othman, and F. Capolino, Theory of coupled resonator optical waveguides exhibiting high-order exceptional points of degeneracy, Phys. Rev. B 96, 184304 (2017).
  • (88) X. Y. Wang, F. F. Wang, and X. Y. Hu, Waveguide-induced coalescence of exceptional points, Phys. Rev. A 101, 053820 (2020).
  • (89) C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, Optomechanical dark mode, Science 338, 1609 (2012).
  • (90) J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, Coherent optical wavelength conversion via cavity optomechanics, Nat. Commun. 3, 1196 (2012).
  • (91) R. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, Bidirectional and efficient conversion between microwave and optical light, Nat. Phys. 10, 321 (2014).
  • (92) K. Zhang, F. Bariani, Y. Dong, W. Zhang, and P. Meystre, Proposal for an Optomechanical Microwave Sensor at the Subphoton Level, Phys. Rev. Lett. 114, 113601 (2015).
  • (93) G. A. Korn, and T. M. Korn, Mathematical handbook for scientists and engineers (McGraw-Hill, New York, 1968).
  • (94) R. Benguria and M. Kac, Quantum Langevin equation, Phys. Rev. Lett. 46, 1 (1981).
  • (95) C. W. Gardiner and P. Zoller,Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics (Berlin Heidelberg,2000).
  • (96) I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic Press, Orlando, 1980).