This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Higher codimension Iwasawa theory for elliptic curves with supersingular reduction

Takenori Kataoka Faculty of Science and Technology, Keio University. 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan [email protected]
Abstract.

Bleher et al. began studying higher codimension Iwasawa theory for classical Iwasawa modules. Subsequently, Lei and Palvannan studied an analogue for elliptic curves with supersingular reduction. In this paper, we obtain a vast generalization of the work of Lei and Palvannan. A key technique is an approach to the work of Bleher et al. that the author previously proposed. For this purpose, we also study the structure of ±\pm-norm subgroups and duality properties of multiply-signed Selmer groups.

Key words and phrases:
Iwasawa theory, elliptic curves, Selmer groups, algebraic pp-adic LL-functions
2010 Mathematics Subject Classification:
11R23

1. Introduction

In Iwasawa theory, we study various Iwasawa modules, or Selmer groups, associated to various arithmetic objects. In [2], Bleher et al. began studying higher codimension behavior of unramified Iwasawa modules which are assumed to be pseudo-null. The pseudo-nullity of the unramified Iwasawa modules is known as Greenberg’s conjecture. In [2] they mainly deal with rank one cases in a sense, and subsequently in [3] they extend the study to higher rank cases, where the unramified Iwasawa modules concerned are replaced by certain modules defined via exterior powers.

In [8], the author proposed a new approach to the theory of [2] and [3]. The new approach enables us to deal with equivariant situations and, moreover, to avoid localizing at prime ideals of height 22.

On the other hand, Lei and Palvannan [16] developed an analogue of the work [2], concerning Selmer groups of elliptic curves. This is partly motivated by a conjecture on the pseudo-nullity of the fine Selmer groups, which was predicted by Coates and Sujatha [4, Conjecture B] as an analogue of Greenberg’s conjecture. More concretely, given an elliptic curve with supersingular reduction over an imaginary quadratic field in which pp splits, Lei and Palvannan studied the doubly-signed Selmer groups. Those Selmer groups were introduced by B. D. Kim [12] after the ±\pm-theory developed by Kobayashi [14].

In the present paper, by applying the approach of [8], we develop higher codimension Iwasawa theory for elliptic curves with supersingular reduction. This work generalizes the results of [16] in the following aspects:

  • We work over a general base number field, whereas in [16] the base field is an imaginary quadratic field.

  • We deal with an arbitrary (even equivariant) abelian pp-adic Lie extension of the base field (containing the cyclotomic p\mathbb{Z}_{p}-extension), whereas [16] deals with the unique p2\mathbb{Z}_{p}^{2}-extension of the imaginary quadratic field.

  • We do not have to localize at prime ideals, whereas [16] studies only behavior after localization at prime ideals of height 22.

  • We deal with arbitrary ranks, whereas [16] deals with rank one cases only. Here, the rank means the integer l1l\geq 1 in §1.2 below. To do this, we make use of exterior powers, following the idea of [3].

Note that [16] also deals with another kind of Selmer groups (defined by Greenberg’s Panchishkin condition), but we do not study them in this paper.

The basic idea of this paper is the same as in [8]. However, we need a couple of extra ingredients which are specific to elliptic curves with supersingular reduction. One is precise descriptions of the ±\pm-norm subgroups. This will be studied in §4, which relies on previous work [6] of the author. The results are of independent interest and are so precise that we can recover several previous results (see Remark 4.9). Another is the behavior of Selmer groups under duality that we state as Theorem 1.3. The result can be regarded as an extension of algebraic functional equations for multiply-signed Selmer groups, which is also of independent interest (see Remark 1.5).

After introducing basic notations in §1.1, we state the main results in §§1.2 and 1.3.

1.1. Notations

Let us fix an odd prime number pp and a number field FF. Let EE be an elliptic curve over FF that has good reduction at all pp-adic primes of FF.

Let K/FK_{\infty}/F be an abelian pp-adic Lie extension. Equivalently, K/FK_{\infty}/F is an abelian extension which is a finite extension of a multiple p\mathbb{Z}_{p}-extension. We suppose that KμpK_{\infty}\supset\mu_{p^{\infty}}, where μpn\mu_{p^{n}} denotes the group of pnp^{n}-th roots of unity and μp=nμpn\mu_{p^{\infty}}=\bigcup_{n}\mu_{p^{n}}. The associated Iwasawa algebra is denoted by =p[[Gal(K/F)]]\mathcal{R}=\mathbb{Z}_{p}[[\operatorname{Gal}(K_{\infty}/F)]]. In this introduction we always assume Assumptions 2.1 and 2.2 introduced in §2.1.

We write SpssS_{p}^{\operatorname{ss}} for the set of pp-adic primes of FF at which EE has supersingular reduction. We call an element of 𝔭Spss{+,}\prod_{\mathfrak{p}\in S_{p}^{\operatorname{ss}}}\{+,-\} a multi-sign. More generally, we call an element of 𝔭Spss{0,1,+,,rel}\prod_{\mathfrak{p}\in S_{p}^{\operatorname{ss}}}\{0,1,+,-,\operatorname{rel}\} a multi-index (here, 0 and 11 are just symbols and have no relation with the natural numbers).

For each multi-index ϵ=(ϵ𝔭)𝔭\epsilon=(\epsilon_{\mathfrak{p}})_{\mathfrak{p}}, in §2.2, we will introduce the ϵ\epsilon-Selmer group Selϵ(E/K)\operatorname{Sel}^{\epsilon}(E/K_{\infty}). It is defined by imposing ϵ𝔭\epsilon_{\mathfrak{p}}-local condition at each 𝔭Spss\mathfrak{p}\in S_{p}^{\operatorname{ss}}; 0 denotes the strict condition, rel\operatorname{rel} denotes the relaxed condition, and the ±\pm-local condition is essentially introduced by Kobayashi [14]. The original work of Kobayashi dealt with the case where F=F=\mathbb{Q}, and B. D. Kim [12] gave an extension to the case where FF is an imaginary quadratic field. The definition for general FF was given by Lei and Lim [15].

We take a finite set SS of non-pp-adic finite primes of FF that satisfies a certain condition that we label as (2.1). Then we also define the SS-imprimitive ϵ\epsilon-Selmer group SelSϵ(E/K)\operatorname{Sel}^{\epsilon}_{S}(E/K_{\infty}) by relaxing the local condition at the primes in SS. We put

𝔛ϵ=Selϵ(E/K),𝔛Sϵ=SelSϵ(E/K),\mathfrak{X}^{\epsilon}=\operatorname{Sel}^{\epsilon}(E/K_{\infty})^{\vee},\qquad\mathfrak{X}_{S}^{\epsilon}=\operatorname{Sel}^{\epsilon}_{S}(E/K_{\infty})^{\vee},

where ()(-)^{\vee} denotes the Pontryagin dual. It is known that 𝔛ϵ\mathfrak{X}^{\epsilon} and 𝔛Sϵ\mathfrak{X}_{S}^{\epsilon} are finitely generated \mathcal{R}-modules. Moreover, we assume Assumption 2.6, which claims that these modules are torsion if ϵ\epsilon is a multi-sign.

For each multi-sign ϵ\epsilon, in §2.3, we will define an algebraic (SS-imprimitive) ϵ\epsilon-pp-adic LL-function

Sϵ=Sϵ(E/K)\mathcal{L}_{S}^{\epsilon}=\mathcal{L}_{S}^{\epsilon}(E/K_{\infty})\in\mathcal{R}

by requiring Fitt(𝔛Sϵ)=(Sϵ)\operatorname{Fitt}_{\mathcal{R}}(\mathfrak{X}_{S}^{\epsilon})=(\mathcal{L}_{S}^{\epsilon}), where Fitt()\operatorname{Fitt}_{\mathcal{R}}(-) denotes the initial Fitting ideal. Note that Sϵ\mathcal{L}_{S}^{\epsilon} is defined in an algebraic way, not an analytic way. Therefore, a main conjecture is expected to be formulated as an equality between Sϵ\mathcal{L}_{S}^{\epsilon} and a certain analytic pp-adic LL-function, up to unit (see Remark 2.8 for the case F=F=\mathbb{Q}). However, in this paper we do not study such a main conjecture and we only deal with algebraic aspects.

1.2. The first main result

Let us take distinct multi-signs ϵ1,,ϵn𝔭Spss{+,}\epsilon_{1},\dots,\epsilon_{n}\in\prod_{\mathfrak{p}\in S_{p}^{\operatorname{ss}}}\{+,-\} with n2n\geq 2 (this forces SpssS_{p}^{\operatorname{ss}}\neq\emptyset). We then define multi-indices ϵ¯\overline{\epsilon} and ϵ¯\underline{\epsilon} by

(ϵ¯𝔭,ϵ¯𝔭)={(rel,1)(unless ϵ1,𝔭==ϵn,𝔭)(±,±)(if ϵ1,𝔭==ϵn,𝔭=±)(\overline{\epsilon}_{\mathfrak{p}},\underline{\epsilon}_{\mathfrak{p}})=\begin{cases}(\operatorname{rel},1)&(\text{unless $\epsilon_{1,\mathfrak{p}}=\cdots=\epsilon_{n,\mathfrak{p}}$})\\ (\pm,\pm)&(\text{if $\epsilon_{1,\mathfrak{p}}=\cdots=\epsilon_{n,\mathfrak{p}}=\pm$})\end{cases}

for each 𝔭Spss\mathfrak{p}\in S_{p}^{\operatorname{ss}}. Put

l=#{𝔭Spssϵ¯𝔭=rel}1.l=\#\{\mathfrak{p}\in S_{p}^{\operatorname{ss}}\mid\overline{\epsilon}_{\mathfrak{p}}=\operatorname{rel}\}\geq 1.

For each finite prime vv of FF, we put K,v=KFFvK_{\infty,v}=K_{\infty}\otimes_{F}F_{v}. For 1in1\leq i\leq n, we define

𝔇i=𝔭Spss,ϵ¯𝔭=rel(H1(K,𝔭,E[p])Eϵi,𝔭(K,𝔭)(p/p)),\mathfrak{D}_{i}=\bigoplus_{\mathfrak{p}\in S_{p}^{\operatorname{ss}},\overline{\epsilon}_{\mathfrak{p}}=\operatorname{rel}}\left(H^{1}(K_{\infty,\mathfrak{p}},E[p^{\infty}])\over E^{\epsilon_{i,\mathfrak{p}}}(K_{\infty,\mathfrak{p}})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p})\right)^{\vee},

where E±(K,𝔭)E^{\pm}(K_{\infty,\mathfrak{p}}) denotes the ±\pm-norm subgroup of E(K,𝔭)E(K_{\infty,\mathfrak{p}}) (see §2.1) and we use the Kummer map to embed E±(K,𝔭)(p/p)E^{\pm}(K_{\infty,\mathfrak{p}})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p}) into H1(K,𝔭,E[p])H^{1}(K_{\infty,\mathfrak{p}},E[p^{\infty}]). By comparing the local conditions between 𝔛Sϵ¯\mathfrak{X}_{S}^{\underline{\epsilon}} and 𝔛Sϵ¯\mathfrak{X}_{S}^{\overline{\epsilon}}, we obtain a natural exact sequence of \mathcal{R}-modules

(1.1) i=1n𝔇i𝔛Sϵ¯𝔛Sϵ¯0.\bigoplus_{i=1}^{n}\mathfrak{D}_{i}\to\mathfrak{X}_{S}^{\overline{\epsilon}}\to\mathfrak{X}_{S}^{\underline{\epsilon}}\to 0.

As we will see in §7.1, the generic ranks of both 𝔇i\mathfrak{D}_{i} and 𝔛Sϵ¯\mathfrak{X}_{S}^{\overline{\epsilon}} as \mathcal{R}-modules are ll. It is of critical importance that 𝔇i\mathfrak{D}_{i} is free as an \mathcal{R}-module. To prove this fact, in §4 we study the structure of E±(K,𝔭)E^{\pm}(K_{\infty,\mathfrak{p}}) closely.

Then (1.1) implies that the first map to 𝔛Sϵ¯\mathfrak{X}_{S}^{\overline{\epsilon}} has information about 𝔛Sϵ¯\mathfrak{X}_{S}^{\underline{\epsilon}}. Motivated by the work [3], we take the exterior powers and obtain a map

i=1nl𝔇il𝔛Sϵ¯.\bigoplus_{i=1}^{n}\bigwedge_{\mathcal{R}}^{l}\mathfrak{D}_{i}\to\bigwedge_{\mathcal{R}}^{l}\mathfrak{X}_{S}^{\overline{\epsilon}}.

The module in Theorem 1.1 below involving exterior powers denotes the cokernel of this map after taking the quotient of the target module by its torsion part.

In general, for a finitely generated \mathcal{R}-module MM and i0i\geq 0, we put Ei(M)=Exti(M,)E^{i}(M)=\operatorname{Ext}_{\mathcal{R}}^{i}(M,\mathcal{R}). We define MtorM_{\operatorname{tor}} (resp. MPNM_{\operatorname{PN}}) as the maximal torsion (resp. pseudo-null) submodule of MM and we put M/tor=M/MtorM_{/\operatorname{tor}}=M/M_{\operatorname{tor}} (resp. M/PN=M/MPNM_{/\operatorname{PN}}=M/M_{\operatorname{PN}}).

Theorem 1.1.

We have an exact sequence

(1.2) 0(l𝔛Sϵ¯)/tori=1nl𝔇ii=1n(Sϵi)Fitt(E1(𝔛Sϵ¯))0.\displaystyle 0\to\frac{\left(\bigwedge_{\mathcal{R}}^{l}\mathfrak{X}_{S}^{\overline{\epsilon}}\right)_{/\operatorname{tor}}}{\sum_{i=1}^{n}\bigwedge_{\mathcal{R}}^{l}\mathfrak{D}_{i}}\to\frac{\mathcal{R}}{\sum_{i=1}^{n}(\mathcal{L}_{S}^{\epsilon_{i}})}\to\frac{\mathcal{R}}{\operatorname{Fitt}_{\mathcal{R}}(E^{1}(\mathfrak{X}_{S}^{\overline{\epsilon}}))}\to 0.

The proof of Theorem 1.1 will be given in §7.1. The structure of E1(𝔛Sϵ¯)E^{1}(\mathfrak{X}_{S}^{\overline{\epsilon}}) will be the theme of Theorem 1.3 below. Actually, by combining Theorems 1.1 and 1.3, we obtain an analogue of [8, Theorem 5.3] for classical Iwasawa modules for CM-fields. (The statement of the results in this paper is much simpler than that of [8]; this is essentially because we have H0(K,𝔭,E[p])=0H^{0}(K_{\infty,\mathfrak{p}},E[p^{\infty}])=0 for any pp-adic prime 𝔭\mathfrak{p} of FF.)

We also have a refined version of Theorem 1.1 for the l=1l=1 case. Note that l=1l=1 is equivalent to that n=2n=2 and the two multi-signs ϵ1\epsilon_{1} and ϵ2\epsilon_{2} differ at a single component. By assuming l=1l=1, thanks to (1.1), we can immediately reformulate Theorem 1.1 as claim (1) of the following corollary; claim (2) will be proved in §7.2.

Corollary 1.2.

Let us suppose l=1l=1.

(1) We have an exact sequence

(1.3) (𝔛Sϵ¯)tor𝔛Sϵ¯(Sϵ1,Sϵ2)Fitt(E1(𝔛Sϵ¯))0.\displaystyle\left(\mathfrak{X}_{S}^{\overline{\epsilon}}\right)_{\operatorname{tor}}\to\mathfrak{X}_{S}^{\underline{\epsilon}}\to\frac{\mathcal{R}}{(\mathcal{L}_{S}^{\epsilon_{1}},\mathcal{L}_{S}^{\epsilon_{2}})}\to\frac{\mathcal{R}}{\operatorname{Fitt}_{\mathcal{R}}\left(E^{1}(\mathfrak{X}_{S}^{\overline{\epsilon}})\right)}\to 0.

(2) Let us moreover suppose that E1(𝔛Sϵ¯)E^{1}(\mathfrak{X}_{S}^{\overline{\epsilon}}) is pseudo-null over \mathcal{R}. Then we have (𝔛Sϵ¯)tor=0\left(\mathfrak{X}_{S}^{\overline{\epsilon}}\right)_{\operatorname{tor}}=0 and an (abstract) isomorphism

Fitt(E1(𝔛Sϵ¯))E2(E1(𝔛Sϵ¯)).\frac{\mathcal{R}}{\operatorname{Fitt}_{\mathcal{R}}\left(E^{1}(\mathfrak{X}_{S}^{\overline{\epsilon}})\right)}\simeq E^{2}(E^{1}(\mathfrak{X}_{S}^{\overline{\epsilon}})).

Therefore, we obtain an exact sequence

0𝔛Sϵ¯(Sϵ1,Sϵ2)E2(E1(𝔛Sϵ¯))0.0\to\mathfrak{X}_{S}^{\underline{\epsilon}}\to\frac{\mathcal{R}}{(\mathcal{L}_{S}^{\epsilon_{1}},\mathcal{L}_{S}^{\epsilon_{2}})}\to E^{2}(E^{1}(\mathfrak{X}_{S}^{\overline{\epsilon}}))\to 0.

Note that the pseudo-nullity of E1(𝔛Sϵ¯)E^{1}(\mathfrak{X}_{S}^{\overline{\epsilon}}) is closely related to that of 𝔛η\mathfrak{X}^{\eta} in Theorem 1.3 below (as long as we assume condition (\star) there). Taking [4, Conjecture B] of Coates and Sujatha into account, we may expect that 𝔛η\mathfrak{X}^{\eta} is often pseudo-null.

1.3. The second main result

The following is the second main result of this paper (the proof will be given in §8). It gives an alternative description of E1(𝔛Sϵ¯)E^{1}(\mathfrak{X}_{S}^{\overline{\epsilon}}) in Theorem 1.1; we set ϵ\epsilon as ϵ¯\overline{\epsilon} in Theorem 1.1.

Theorem 1.3.

We take a multi-index ϵ=(ϵ𝔭)𝔭𝔭Spss{+,,rel}\epsilon=(\epsilon_{\mathfrak{p}})_{\mathfrak{p}}\in\prod_{\mathfrak{p}\in S_{p}^{\operatorname{ss}}}\{+,-,\operatorname{rel}\}. We define a multi-index η=(η𝔭)𝔭𝔭Spss{0,+,}\eta=(\eta_{\mathfrak{p}})_{\mathfrak{p}}\in\prod_{\mathfrak{p}\in S_{p}^{\operatorname{ss}}}\{0,+,-\} by

η𝔭={ϵ𝔭(if ϵ𝔭{+,})0(if ϵ𝔭=rel).\eta_{\mathfrak{p}}=\begin{cases}\epsilon_{\mathfrak{p}}&(\text{if $\epsilon_{\mathfrak{p}}\in\{+,-\}$})\\ 0&(\text{if $\epsilon_{\mathfrak{p}}=\operatorname{rel}$}).\end{cases}

We suppose:

  • ()(\star)

    For each 𝔭Spss\mathfrak{p}\in S_{p}^{\operatorname{ss}} with ϵ𝔭=+\epsilon_{\mathfrak{p}}=+, the residue degree of K/FK_{\infty}/F at 𝔭\mathfrak{p} is not divisible by 44.

Then we have an exact sequence

(1.4) 0(𝔛η)ιE1(𝔛Sϵ)vSE(K,v)[p],ιvSp(F)SE2((E(K,v)[p])PN)0.\displaystyle 0\to(\mathfrak{X}^{\eta})^{\iota}\to E^{1}(\mathfrak{X}_{S}^{\epsilon})\to\bigoplus_{v\in S}E(K_{\infty,v})[p^{\infty}]^{\vee,\iota}\oplus\bigoplus_{v\not\in S_{p}(F)\cup S}E^{2}\left(\left(E(K_{\infty,v})[p^{\infty}]^{\vee}\right)_{\operatorname{PN}}\right)\to 0.

Here, vSp(F)S\bigoplus_{v\not\in S_{p}(F)\cup S} denotes the direct sum for the finite primes vv of FF with vSp(F)Sv\not\in S_{p}(F)\cup S (see Remark 1.4 below). We write ι\iota for the involution on \mathcal{R} that inverts every group element. For an \mathcal{R}-module MM, we write MιM^{\iota} for the \mathcal{R}-module whose additive structure is the same as MM and the action of \mathcal{R} is twisted by ι\iota.

Note that, in condition ()(\star), the residue degree is not finite in general, and in that case we regard it as a supernatural number (cf. Definition 4.1). Without the assumption ()(\star), the description of E1(𝔛Sϵ)E^{1}(\mathfrak{X}_{S}^{\epsilon}) seems to get harder.

Remark 1.4.

For vSp(F)v\not\in S_{p}(F), it is not hard to see (E(K,v)[p])PN=0\left(E(K_{\infty,v})[p^{\infty}]^{\vee}\right)_{\operatorname{PN}}=0 if EE has good reduction at vv. Therefore, in the last direct sum of Theorem 1.3, we may restrict the range of vv to the primes at which EE has bad reduction. In the situation of [16], the corresponding factors already played a role in [16, Theorem 1], and the structure was studied in [16, §7.3]. However, only the second Chern classes were computed in that work. The exact sequence in Theorem 1.3 is a novel observation of this paper.

Remark 1.5.

In the main stream of this paper, we apply Theorem 1.3 to the case where ϵ\epsilon is ϵ¯\overline{\epsilon} in Theorem 1.1, which is not a multi-sign but a multi-index. On the other hand, we can also apply Theorem 1.3 to multi-signs ϵ\epsilon. Note that then η=ϵ\eta=\epsilon by the definition. In this case, Theorem 1.3 can be regarded as an algebraic functional equation for the multiply-signed Selmer groups. The result is a refinement of previous work (e.g., Ahmed and Lim [1, Theorem 3.3]). Actually, the previous work mainly focused on the pseudo-isomorphism classes, and the exact sequence in Theorem 1.3 provides us more information. To recover the previous results (in non-equivariant settings), we only need to consider S=S=\emptyset and observe that E1()E^{1}(-) does not change the pseudo-isomorphism classes for finitely generated torsion \mathcal{R}-modules. Note also that our proof of Theorem 1.3 relies on a complex version of duality (Proposition 8.6), which is even stronger.

1.4. Organization of this paper

In §2, we give the definitions of Selmer groups and algebraic pp-adic LL-functions. In §3, we illustrate the main results of this paper in special cases; in particular, we explain how to recover a main result of [16]. In §4, we study the structures of ±\pm-norm subgroups. In §§5 and 6, we review facts on perfect complexes and then introduce arithmetic complexes whose cohomology groups know the Selmer groups concerned. In §§7 and 8, we prove the first and the second main results, respectively.

2. Definitions of Selmer groups and algebraic pp-adic LL-functions

In this section, we give the definitions of the Selmer groups and the algebraic pp-adic LL-functions. We keep the notations in §1.1 and here introduce some more notations.

Let Sp(F)S_{p}(F) (resp. S(F)S_{\infty}(F)) denote the set of pp-adic primes (resp. archimedean places) of FF. As in [8, §3.1], we define Sram,p(K/F)S_{\operatorname{ram},p}(K_{\infty}/F) as the set of finite primes vv of FF such that vv is not lying above pp and that the ramification index of K/FK_{\infty}/F at vv is divisible by pp. For instance, we have Sram,p(K/F)=S_{\operatorname{ram},p}(K_{\infty}/F)=\emptyset as long as Gal(K/F)\operatorname{Gal}(K_{\infty}/F) does not contain an element of order pp (this case will be called the non-equivariant case). The set Sram,p(K/F)S_{\operatorname{ram},p}(K_{\infty}/F) corresponds to the set ΦK/F\Phi_{K/F} in [5, Theorem 1], and the necessity of the set in our study is also explained in [8, Proposition 3.1]. We take a finite set SS of primes of FF such that

(2.1) SSram,p(K/F),S(Sp(F)S(F))=.S\supset S_{\operatorname{ram},p}(K_{\infty}/F),\qquad S\cap(S_{p}(F)\cup S_{\infty}(F))=\emptyset.

For each finite prime vv of FF, let FvF_{v} be the localization of FF at vv and we put K,v=KFFvK_{\infty,v}=K_{\infty}\otimes_{F}F_{v}. Note that then K,vK_{\infty,v} is the inductive limit of KFFvK^{\prime}\otimes_{F}F_{v}, where KK^{\prime} runs over intermediate number field in K/FK_{\infty}/F and so each KFFvK^{\prime}\otimes_{F}F_{v} is a finite product of fields. In general we interpret cohomology group Hi(K,v,)H^{i}(K_{\infty,v},-) as the inductive limit of Hi(KFFv,)H^{i}(K^{\prime}\otimes_{F}F_{v},-).

We define SpordS_{p}^{\operatorname{ord}} as the set of pp-adic primes of FF at which EE has ordinary reduction. Note that then Sp(F)S_{p}(F) is the disjoint union of SpssS_{p}^{\operatorname{ss}} and SpordS_{p}^{\operatorname{ord}}. We are mainly interested in the case where Spord=S_{p}^{\operatorname{ord}}=\emptyset and (equivalently) Spss=Sp(F)S_{p}^{\operatorname{ss}}=S_{p}(F), but we do not assume this for more generality.

2.1. The ±\pm-norm subgroups

As already remarked, the key idea to define the signed Selmer groups is given by Kobayashi [14], and there are a number of subsequent studies to generalize the idea. The definition below basically follows [15, Definition 4.7].

As usual, for each prime 𝔭Sp(F)\mathfrak{p}\in S_{p}(F), we put a𝔭(E)=(1+#𝔽𝔭)#E~(𝔽𝔭)a_{\mathfrak{p}}(E)=(1+\#\mathbb{F}_{\mathfrak{p}})-\#\widetilde{E}(\mathbb{F}_{\mathfrak{p}}), where 𝔽𝔭\mathbb{F}_{\mathfrak{p}} denotes the residue field of FF at 𝔭\mathfrak{p} and E~\widetilde{E} denotes the reduction of EE at 𝔭\mathfrak{p}. We also put deg(𝔭)=[F𝔭:p]\deg(\mathfrak{p})=[F_{\mathfrak{p}}:\mathbb{Q}_{p}].

In order to use the ±\pm-theory, we need to assume the following.

Assumption 2.1.

For each 𝔭Spss\mathfrak{p}\in S_{p}^{\operatorname{ss}}, we have deg(𝔭)=1\deg(\mathfrak{p})=1 and a𝔭(E)=0a_{\mathfrak{p}}(E)=0.

We also assume the non-anomalous condition at ordinary primes:

Assumption 2.2.

For each 𝔭Spord\mathfrak{p}\in S_{p}^{\operatorname{ord}}, we have E(K,𝔭)[p]=0E(K_{\infty,\mathfrak{p}})[p]=0.

Let 𝔭Spss\mathfrak{p}\in S_{p}^{\operatorname{ss}}. We define M𝔭M^{\mathfrak{p}} as the inertia field in the given extension K/FK_{\infty}/F at 𝔭\mathfrak{p}. Thanks to Assumption 2.1 and KμpK_{\infty}\supset\mu_{p^{\infty}}, it is easy to see K=M𝔭(μp)K_{\infty}=M^{\mathfrak{p}}(\mu_{p^{\infty}}) and Gal(K/M𝔭)p×\operatorname{Gal}(K_{\infty}/M^{\mathfrak{p}})\simeq\mathbb{Z}_{p}^{\times}. For each integer n1n\geq-1, we put Mn𝔭=M𝔭(μpn+1)M^{\mathfrak{p}}_{n}=M^{\mathfrak{p}}(\mu_{p^{n+1}}).

Definition 2.3.

Let 𝔭Spss\mathfrak{p}\in S_{p}^{\operatorname{ss}}. For each n1n\geq-1 and for each choice of ±\pm, we define

(2.2) E±(Mn𝔭F𝔭)\displaystyle E^{\pm}(M^{\mathfrak{p}}_{n}\otimes F_{\mathfrak{p}})
(2.3) ={xE(Mn𝔭F𝔭)TrMn𝔭/Mn+1𝔭(x)E(Mn𝔭F𝔭),1n<n,(1)n=±1}.\displaystyle=\{x\in E(M^{\mathfrak{p}}_{n}\otimes F_{\mathfrak{p}})\mid\operatorname{Tr}_{M^{\mathfrak{p}}_{n}/M^{\mathfrak{p}}_{n^{\prime}+1}}(x)\in E(M^{\mathfrak{p}}_{n^{\prime}}\otimes F_{\mathfrak{p}}),-1\leq\forall n^{\prime}<n,(-1)^{n^{\prime}}=\pm 1\}.

Here, TrMn𝔭/Mn+1𝔭\operatorname{Tr}_{M^{\mathfrak{p}}_{n}/M^{\mathfrak{p}}_{n^{\prime}+1}} denotes the trace map from E(Mn𝔭F𝔭)E(M^{\mathfrak{p}}_{n}\otimes F_{\mathfrak{p}}) to E(Mn+1𝔭F𝔭)E(M^{\mathfrak{p}}_{n^{\prime}+1}\otimes F_{\mathfrak{p}}). The tensor products are taken over FF. We define

E±(K,𝔭)=n1E±(Mn𝔭F𝔭).E^{\pm}(K_{\infty,\mathfrak{p}})=\bigcup_{n\geq-1}E^{\pm}(M^{\mathfrak{p}}_{n}\otimes F_{\mathfrak{p}}).
Definition 2.4.

Let 𝔭Spss\mathfrak{p}\in S_{p}^{\operatorname{ss}}. For {0,1,+,,rel}\bullet\in\{0,1,+,-,\operatorname{rel}\}, we define an \mathcal{R}-submodule Loc𝔭\operatorname{Loc}_{\mathfrak{p}}^{\bullet} of H1(K,𝔭,E[p])H^{1}(K_{\infty,\mathfrak{p}},E[p^{\infty}]) by

Loc𝔭={0(if =0)E(M𝔭F𝔭)(p/p)(if =1)E(K,𝔭)(p/p)(if {+,})H1(K,𝔭,E[p])(if =rel).\operatorname{Loc}_{\mathfrak{p}}^{\bullet}=\begin{cases}0&(\text{if $\bullet=0$})\\ E(M^{\mathfrak{p}}\otimes F_{\mathfrak{p}})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p})&(\text{if $\bullet=1$})\\ E^{\bullet}(K_{\infty,\mathfrak{p}})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p})&(\text{if $\bullet\in\{+,-\}$})\\ H^{1}(K_{\infty,\mathfrak{p}},E[p^{\infty}])&(\text{if $\bullet=\operatorname{rel}$}).\end{cases}

Here, when {1,+,}\bullet\in\{1,+,-\}, we use the Kummer map to embed Loc𝔭\operatorname{Loc}_{\mathfrak{p}}^{\bullet} into H1(K,𝔭,E[p])H^{1}(K_{\infty,\mathfrak{p}},E[p^{\infty}]) (it is actually injective). Note that, by (a semi-local variant of) Proposition 4.3 below, we actually have Loc𝔭1=Loc𝔭+Loc𝔭\operatorname{Loc}_{\mathfrak{p}}^{1}=\operatorname{Loc}_{\mathfrak{p}}^{+}\cap\operatorname{Loc}_{\mathfrak{p}}^{-}. This is a motivation for the definition of Loc𝔭1\operatorname{Loc}_{\mathfrak{p}}^{1} (the symbol 11 is used in [14, §10.1]).

2.2. The Selmer groups

Definition 2.5.

Let ϵ=(ϵ𝔭)𝔭𝔭Spss{0,1,+,,rel}\epsilon=(\epsilon_{\mathfrak{p}})_{\mathfrak{p}}\in\prod_{\mathfrak{p}\in S_{p}^{\operatorname{ss}}}\{0,1,+,-,\operatorname{rel}\} be a multi-index. We define the SS-imprimitive ϵ\epsilon-Selmer group SelSϵ(E/K)\operatorname{Sel}^{\epsilon}_{S}(E/K_{\infty}) as the kernel of the localization homomorphism

(2.4) H1(K,E[p])𝔭SpssH1(K,𝔭,E[p])Loc𝔭ϵ𝔭\displaystyle H^{1}(K_{\infty},E[p^{\infty}])\to\bigoplus_{\mathfrak{p}\in S_{p}^{\operatorname{ss}}}\frac{H^{1}(K_{\infty,\mathfrak{p}},E[p^{\infty}])}{\operatorname{Loc}_{\mathfrak{p}}^{\epsilon_{\mathfrak{p}}}} 𝔭SpordH1(K,𝔭,E[p])E(K,𝔭)(p/p)\displaystyle\oplus\bigoplus_{\mathfrak{p}\in S_{p}^{\operatorname{ord}}}\frac{H^{1}(K_{\infty,\mathfrak{p}},E[p^{\infty}])}{E(K_{\infty,\mathfrak{p}})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p})}
(2.5) vSp(F)SH1(K,v,E[p]),\displaystyle\oplus\bigoplus_{v\not\in S_{p}(F)\cup S}H^{1}(K_{\infty,v},E[p^{\infty}]),

where, in the last direct sum, vv runs over the finite primes of FF not in Sp(F)SS_{p}(F)\cup S. We also define the (primitive) ϵ\epsilon-Selmer group Selϵ(E/K)\operatorname{Sel}^{\epsilon}(E/K_{\infty}) as the kernel of the localization homomorphism

SelSϵ(E/K)vSH1(K,v,E[p]).\operatorname{Sel}^{\epsilon}_{S}(E/K_{\infty})\to\bigoplus_{v\in S}H^{1}(K_{\infty,v},E[p^{\infty}]).

As in §1.1, we write 𝔛ϵ\mathfrak{X}^{\epsilon} and 𝔛Sϵ\mathfrak{X}_{S}^{\epsilon} for the Pontryagin duals of Selϵ(E/K)\operatorname{Sel}^{\epsilon}(E/K_{\infty}) and SelSϵ(E/K)\operatorname{Sel}^{\epsilon}_{S}(E/K_{\infty}), respectively. As stated in [15, Conjecture 4.11], it is natural to conjecture the following.

Assumption 2.6.

For each multi-sign ϵ𝔭Spss{+,}\epsilon\in\prod_{\mathfrak{p}\in S_{p}^{\operatorname{ss}}}\{+,-\}, the \mathcal{R}-module 𝔛Sϵ\mathfrak{X}_{S}^{\epsilon} is torsion.

When F=F=\mathbb{Q}, Assumption 2.6 is known to be true, thanks to the celebrated work [10] of Kato (see [14, Theorem 1.2] or [6, Proposition 2.3]). See the last paragraph of [16, §6.2] for progress on the case where FF is an imaginary quadratic field.

It is convenient to introduce an order on the 5-element set {0,1,+,,rel}\{0,1,+,-,\operatorname{rel}\} defined by

0<1,1<+<rel,1<<rel0<1,\qquad 1<+<\operatorname{rel},\qquad 1<-<\operatorname{rel}

(there is no order between ++ and -). We extend this order to the set 𝔭Spss{0,1,+,,rel}\prod_{\mathfrak{p}\in S_{p}^{\operatorname{ss}}}\{0,1,+,-,\operatorname{rel}\} by defining ϵϵ\epsilon^{\prime}\leq\epsilon if and only if ϵ𝔭ϵ𝔭\epsilon^{\prime}_{\mathfrak{p}}\leq\epsilon_{\mathfrak{p}} for every 𝔭Spss\mathfrak{p}\in S_{p}^{\operatorname{ss}}. Then we have SelSϵ(E/K)SelSϵ(E/K)\operatorname{Sel}^{\epsilon^{\prime}}_{S}(E/K_{\infty})\subset\operatorname{Sel}^{\epsilon}_{S}(E/K_{\infty}) if ϵϵ\epsilon^{\prime}\leq\epsilon since we have the corresponding inclusions concerning the local conditions. Note also that the definition of ϵ¯,ϵ¯\overline{\epsilon},\underline{\epsilon} in §1.2 can be rephrased as

ϵ¯=sup{ϵ1,,ϵn},ϵ¯=inf{ϵ1,,ϵn}.\overline{\epsilon}=\sup\{\epsilon_{1},\dots,\epsilon_{n}\},\quad\underline{\epsilon}=\inf\{\epsilon_{1},\dots,\epsilon_{n}\}.

2.3. The pp-adic LL-functions

Next we define the algebraic pp-adic LL-functions.

Definition 2.7.

Let ϵ𝔭Spss{+,}\epsilon\in\prod_{\mathfrak{p}\in S_{p}^{\operatorname{ss}}}\{+,-\} be a multi-sign such that Assumption 2.6 holds. As we will show in Proposition 6.5, we have

pd(𝔛Sϵ)1,\operatorname{pd}_{\mathcal{R}}\left(\mathfrak{X}_{S}^{\epsilon}\right)\leq 1,

where pd\operatorname{pd} denotes the projective dimension. (When F=F=\mathbb{Q}, this is nothing but [6, Theorem 1.1 and Remark 5.9]. More generally this is also established by Lim [17, Theorem 4.8] for the case where KK_{\infty} is the cyclotomic p\mathbb{Z}_{p}-extension of a number field.) Note that assumption (2.1) is required here. Then we define the algebraic ϵ\epsilon-pp-adic LL-function Sϵ=Sϵ(E/K)\mathcal{L}_{S}^{\epsilon}=\mathcal{L}_{S}^{\epsilon}(E/K_{\infty})\in\mathcal{R}, up to units, by requiring

Fitt(𝔛Sϵ)=(Sϵ)\operatorname{Fitt}_{\mathcal{R}}(\mathfrak{X}_{S}^{\epsilon})=(\mathcal{L}_{S}^{\epsilon})

as principal ideals of \mathcal{R}.

Remark 2.8.

Let us suppose F=F=\mathbb{Q} and write San,±\mathcal{L}_{S}^{\operatorname{an},\pm} for the analytic pp-adic LL-function (see [6, §2.2] for the precise definition). Then, as in [6, Equation (1.1)], the (equivariant) main conjecture should be formulated as an equality between principal ideals

W±(S±)=(San,±),W^{\pm}(\mathcal{L}_{S}^{\pm})=(\mathcal{L}_{S}^{\operatorname{an},\pm}),

where W±W^{\pm} is an explicit auxiliary ideal.

3. Applications of the main results

In this section, we illustrate the main results of this paper in the case where FF is either \mathbb{Q} or an imaginary quadratic field.

3.1. The case where F=F=\mathbb{Q}

We suppose F=F=\mathbb{Q}, so we consider an abelian extension K/K_{\infty}/\mathbb{Q} which is a finite extension of (μp)\mathbb{Q}(\mu_{p^{\infty}}). Let E/E/\mathbb{Q} be an elliptic curve which has good supersingular reduction at pp. We moreover suppose ap(E)=0a_{p}(E)=0 (this is automatically true if p5p\geq 5 by the Hasse bound). Since SpssS_{p}^{\operatorname{ss}} is a singleton, a multi-index can be simply denoted by an element of {0,1,+,,rel}\{0,1,+,-,\operatorname{rel}\}. Note that Assumptions 2.1, 2.2, and 2.6 hold automatically.

The unique choice (up to permutation) of distinct multi-signs is ϵ1=+\epsilon_{1}=+ and ϵ2=\epsilon_{2}=-. Then we have l=1l=1 and ϵ¯=rel\overline{\epsilon}=\operatorname{rel}, ϵ¯=1\underline{\epsilon}=1. As a consequence of Corollary 1.2 and Theorem 1.3 (note that the condition ()(\star) trivially holds), we obtain the following.

Theorem 3.1.

The following are true.

  • (1)

    We have an exact sequence

    (3.1) (𝔛Srel)tor𝔛S1(S+,S)Fitt(E1(𝔛Srel))0.\displaystyle\left(\mathfrak{X}_{S}^{\operatorname{rel}}\right)_{\operatorname{tor}}\to\mathfrak{X}_{S}^{1}\to\frac{\mathcal{R}}{(\mathcal{L}_{S}^{+},\mathcal{L}_{S}^{-})}\to\frac{\mathcal{R}}{\operatorname{Fitt}_{\mathcal{R}}\left(E^{1}(\mathfrak{X}_{S}^{\operatorname{rel}})\right)}\to 0.
  • (2)

    If E1(𝔛Srel)E^{1}(\mathfrak{X}_{S}^{\operatorname{rel}}) is pseudo-null over \mathcal{R} (i.e., is finite), then we have an exact sequence

    0𝔛S1(S+,S)E2(E1(𝔛Srel))0.0\to\mathfrak{X}_{S}^{1}\to\frac{\mathcal{R}}{(\mathcal{L}_{S}^{+},\mathcal{L}_{S}^{-})}\to E^{2}(E^{1}(\mathfrak{X}_{S}^{\operatorname{rel}}))\to 0.
  • (3)

    We have an exact sequence

    (3.2) 0(𝔛0)ιE1(𝔛Srel)vSE(K,v)[p],ιvSp()SE2((E(K,v)[p])PN)0.\displaystyle 0\to(\mathfrak{X}^{0})^{\iota}\to E^{1}(\mathfrak{X}_{S}^{\operatorname{rel}})\to\bigoplus_{v\in S}E(K_{\infty,v})[p^{\infty}]^{\vee,\iota}\oplus\bigoplus_{v\not\in S_{p}(\mathbb{Q})\cup S}E^{2}\left(\left(E(K_{\infty,v})[p^{\infty}]^{\vee}\right)_{\operatorname{PN}}\right)\to 0.

3.2. The case where FF is an imaginary quadratic field

We shall deduce a main result of [16] from Corollary 1.2 and Theorem 1.3. Let us suppose that FF is an imaginary quadratic field in which pp splits into 𝔭\mathfrak{p} and 𝔭¯\overline{\mathfrak{p}}. We also suppose that the dimension of Gal(K/F)\operatorname{Gal}(K_{\infty}/F) is two. Equivalently, K/FK_{\infty}/F is an abelian extension which is a finite extension of F~(μp)\widetilde{F}(\mu_{p}), where F~\widetilde{F} denotes the unique p2\mathbb{Z}_{p}^{2}-extension of FF.

Let E/FE/F be an elliptic curve which has good supersingular reduction at both 𝔭\mathfrak{p} and 𝔭¯\overline{\mathfrak{p}}, and we suppose that a𝔭(E)=a𝔭¯(E)=0a_{\mathfrak{p}}(E)=a_{\overline{\mathfrak{p}}}(E)=0 so that Assumptions 2.1 and 2.2 hold. Fixing the order 𝔭,𝔭¯\mathfrak{p},\overline{\mathfrak{p}}, we express a multi-index ϵ\epsilon simply by writing (ϵ𝔭,ϵ𝔭¯)(\epsilon_{\mathfrak{p}},\epsilon_{\overline{\mathfrak{p}}}).

Then there are, up to permutation, exactly 4 choices of ϵ1,ϵ2\epsilon_{1},\epsilon_{2} such that l=1l=1, namely

(3.3) (ϵ1,ϵ2)=((+,+),(+,)),((,+),(,)),((+,+),(,+)),((+,),(,)).(\epsilon_{1},\epsilon_{2})=((+,+),(+,-)),((-,+),(-,-)),((+,+),(-,+)),((+,-),(-,-)).

Moreover, we define η\eta as in Theorem 1.3 for ϵ¯\overline{\epsilon}; in other words, η\eta equals ϵ¯\underline{\epsilon} with 11 replaced by 0. For instance, when ϵ1=(+,+)\epsilon_{1}=(+,+) and ϵ2=(+,)\epsilon_{2}=(+,-), we have ϵ¯=(+,rel)\overline{\epsilon}=(+,\operatorname{rel}), ϵ¯=(+,1)\underline{\epsilon}=(+,1), and η=(+,0)\eta=(+,0).

As a consequence of Corollary 1.2 and Theorem 1.3, we obtain a completely analogous theorem to Theorem 3.1. We omit to state it. Note that we have to assume the validity of Assumption 2.6, and in addition condition (\star) to apply Theorem 1.3.

Our theorem recovers [16, Theorem 1] (except for the cases involving θ4,2Gr\theta^{\textrm{Gr}}_{4,2}) in the following way. We consider K=F~(μp)K_{\infty}=\widetilde{F}(\mu_{p}). Then Sram,p=S_{\operatorname{ram},p}=\emptyset, so S=S=\emptyset satisfies (2.1). We write ϵ=ϵ\mathcal{L}^{\epsilon}=\mathcal{L}_{\emptyset}^{\epsilon} for each multi-sign ϵ\epsilon. Note that \mathcal{R} is a finite product of regular local rings. For a pseudo-null \mathcal{R}-module MM, as in [2, §1.1], we define the second Chern class c2(M)c_{2}(M) by a formal sum

c2(M)=𝔮length𝔮(M𝔮)[𝔮],c_{2}(M)=\sum_{\mathfrak{q}}\operatorname{length}_{\mathcal{R}_{\mathfrak{q}}}(M_{\mathfrak{q}})[\mathfrak{q}],

where 𝔮\mathfrak{q} runs over the prime ideals of \mathcal{R} of height 22.

Corollary 3.2 ([16, Theorem 1]).

Let (ϵ1,ϵ2)(\epsilon_{1},\epsilon_{2}) be one of (3.3). Let K=F~(μp)K_{\infty}=\widetilde{F}(\mu_{p}) and suppose Assumption 2.6 for ϵ1,ϵ2\epsilon_{1},\epsilon_{2}. We moreover suppose that the elements ϵ1\mathcal{L}^{\epsilon_{1}} and ϵ2\mathcal{L}^{\epsilon_{2}} of \mathcal{R} are coprime to each other. Then we have

(3.4) c2(𝔛ϵ¯)+c2((𝔛η)ι)+vSp(F)c2((E(K,v)[p])PN)=c2((ϵ1,ϵ2)).\displaystyle c_{2}\left(\mathfrak{X}^{\underline{\epsilon}}\right)+c_{2}\left((\mathfrak{X}^{\eta})^{\iota}\right)+\sum_{v\not\in S_{p}(F)}c_{2}\left(\left(E(K_{\infty,v})[p^{\infty}]^{\vee}\right)_{\operatorname{PN}}\right)=c_{2}\left(\frac{\mathcal{R}}{(\mathcal{L}^{\epsilon_{1}},\mathcal{L}^{\epsilon_{2}})}\right).
Proof.

By the assumption and Corollary 1.2(1), the module E1(𝔛+,rel)E^{1}(\mathfrak{X}^{+,\operatorname{rel}}) is pseudo-null. Moreover, condition (\star) holds as K=F~(μp)K_{\infty}=\widetilde{F}(\mu_{p}). Therefore, we can apply Corollary 1.2(2) and Theorem 1.3. Then we only have to use the additivity of c2()c_{2}(-) with respect to exact sequences, together with the fact [3, Remark 5.10] that c2(E2(M))=c2(M)c_{2}(E^{2}(M))=c_{2}(M) for each pseudo-null module MM. ∎

4. Structures of the local conditions

In this section, we study the local conditions for elliptic curves. In §§4.14.3, we study the ±\pm-norm subgroups for supersingular elliptic curves over p\mathbb{Q}_{p}. The results are very close to [6, Theorem 1.2(3)], and actually the basic strategy is the same. However, we have to generalize the situation from finite unramified extensions of p\mathbb{Q}_{p} to infinite unramified extensions of p\mathbb{Q}_{p}. We will accomplish the task by taking the limit suitably. See Remark 4.9 for a relation with other previous work (Lei and Lim [15] and Lim [17]). Finally in §4.4, we briefly observe ordinary analogues.

4.1. The local situation

It is convenient to introduce the following formal terminology.

Definition 4.1.

Let ={0,1,2,}\mathbb{N}=\{0,1,2,\dots\} be the set of nonnegative integers. We put ={}\mathbb{N}^{*}=\mathbb{N}\cup\{\infty\}. An element of l\prod_{l}\mathbb{N}^{*}, where ll runs over all prime numbers, is called a supernatural number. If g=(gl)lg=(g_{l})_{l} is a supernatural number, we also write gl=ordl(g)g_{l}=\operatorname{ord}_{l}(g)\in\mathbb{N}^{*} and we express gg as a formal product g=llordl(g)g=\prod_{l}l^{\operatorname{ord}_{l}(g)}. This notion is an extension of positive integers; a positive integer ff can be decomposed uniquely as f=llordl(f)f=\prod_{l}l^{\operatorname{ord}_{l}(f)}, where ordl(f)\operatorname{ord}_{l}(f)\in\mathbb{N} is the normalized additive valuation of ff at ll. For supernatural numbers gg and gg^{\prime}, we write ggg\mid g^{\prime} if ordl(g)ordl(g)\operatorname{ord}_{l}(g)\leq\operatorname{ord}_{l}(g^{\prime}) holds for all prime numbers ll.

In this section, we basically write ff for a positive integer and gg for a supernatural number. Note that, for the applications to global settings, we only need to consider supernatural numbers gg of the form g=fg=f or g=fpg=fp^{\infty} with positive integers ff.

For each positive integer ff, let 𝔽pf\mathbb{F}_{p^{f}} be the finite field with pfp^{f} elements (in a fixed algebraic closure 𝔽p¯\overline{\mathbb{F}_{p}} of 𝔽p\mathbb{F}_{p}), and pf\mathbb{Q}_{p^{f}} the unramified extension of p\mathbb{Q}_{p} of degree ff (in a fixed maximal unramified extension pur\mathbb{Q}_{p}^{\operatorname{ur}} of p\mathbb{Q}_{p}). For each supernatural number gg, we put

𝔽pg=fg𝔽pf,pg=fgpf,\mathbb{F}_{p^{g}}=\bigcup_{f\mid g}\mathbb{F}_{p^{f}},\qquad\mathbb{Q}_{p^{g}}=\bigcup_{f\mid g}\mathbb{Q}_{p^{f}},

where ff runs over the positive integers with fgf\mid g. Then the correspondence g𝔽pgg\mapsto\mathbb{F}_{p^{g}} (resp. gpgg\mapsto\mathbb{Q}_{p^{g}}) is a bijection between the set of supernatural numbers and the set of intermediate fields of 𝔽p¯/𝔽p\overline{\mathbb{F}_{p}}/\mathbb{F}_{p} (resp. of pur/p\mathbb{Q}_{p}^{\operatorname{ur}}/\mathbb{Q}_{p}). We write φGal(pur/p)\varphi\in\operatorname{Gal}(\mathbb{Q}_{p}^{\operatorname{ur}}/\mathbb{Q}_{p}) for the arithmetic Frobenius.

Let gg be a supernatural number. For an integer n1n\geq-1, we put pg,n=pg(μpn+1)\mathbb{Q}_{p^{g},n}=\mathbb{Q}_{p^{g}}(\mu_{p^{n+1}}) and Rg,n=p[[Gal(pg,n/p)]]R_{g,n}=\mathbb{Z}_{p}[[\operatorname{Gal}(\mathbb{Q}_{p^{g},n}/\mathbb{Q}_{p})]]. We also put pg,=pg(μp)\mathbb{Q}_{p^{g},\infty}=\mathbb{Q}_{p^{g}}(\mu_{p^{\infty}}) and g=p[[Gal(pg,/p)]]\mathcal{R}_{g}=\mathbb{Z}_{p}[[\operatorname{Gal}(\mathbb{Q}_{p^{g},\infty}/\mathbb{Q}_{p})]]. Since Gal(pg,0/pg,1)Gal(p(μp)/p)\operatorname{Gal}(\mathbb{Q}_{p^{g},0}/\mathbb{Q}_{p^{g},-1})\simeq\operatorname{Gal}(\mathbb{Q}_{p}(\mu_{p})/\mathbb{Q}_{p}) is of order p1p-1, we can decompose the algebra Rg,0R_{g,0} with respect to the characters of that Galois group. Noting that the trivial character component is isomorphic to Rg,1R_{g,-1}, we write Rg,0ntR_{g,0}^{\operatorname{nt}} for the direct product of the non-trivial character components, so we have a natural decomposition as an algebra

Rg,0Rg,1×Rg,0nt.R_{g,0}\simeq R_{g,-1}\times R_{g,0}^{\operatorname{nt}}.

4.2. Structures of ±\pm-norm subgroups

Let EE be a supersingular elliptic curve over p\mathbb{Q}_{p} satisfying ap(E)=(1+p)#E~(𝔽p)=0a_{p}(E)=(1+p)-\#\widetilde{E}(\mathbb{F}_{p})=0.

We first define the ±\pm-norm subgroups in the current local situation.

Definition 4.2.

Let gg be a supernatural number. For each n1n\geq-1 and a choice of ±\pm, we define

E±(pg,n)={xE(pg,n)Trpg,n/pg,n+1(x)E(pg,n),1n<n,(1)n=±1}.E^{\pm}(\mathbb{Q}_{p^{g},n})=\{x\in E(\mathbb{Q}_{p^{g},n})\mid\operatorname{Tr}_{\mathbb{Q}_{p^{g},n}/\mathbb{Q}_{p^{g},n^{\prime}+1}}(x)\in E(\mathbb{Q}_{p^{g},n^{\prime}}),-1\leq\forall n^{\prime}<n,(-1)^{n^{\prime}}=\pm 1\}.

We also define

E±(pg,)=n1E±(pg,n).E^{\pm}(\mathbb{Q}_{p^{g},\infty})=\bigcup_{n\geq-1}E^{\pm}(\mathbb{Q}_{p^{g},n}).

Note that we have E±(pg,n)=fgE±(pf,n)E^{\pm}(\mathbb{Q}_{p^{g},n})=\bigcup_{f\mid g}E^{\pm}(\mathbb{Q}_{p^{f},n}), where ff runs over all positive integers with fgf\mid g.

For a positive integer ff, we define E(pf,n)pE(\mathbb{Q}_{p^{f},n})_{p} as the pp-adic completion of E(pf,n)E(\mathbb{Q}_{p^{f},n}), which we regard as a submodule of E(pf,n)E(\mathbb{Q}_{p^{f},n}) of finite index (the index is prime to pp). We also define E±(pf,n)pE^{\pm}(\mathbb{Q}_{p^{f},n})_{p} similarly. Then, for each supernatural number gg, we define E(pg,n)pE(\mathbb{Q}_{p^{g},n})_{p} and E±(pg,n)pE^{\pm}(\mathbb{Q}_{p^{g},n})_{p} as the union of E(pf,n)pE(\mathbb{Q}_{p^{f},n})_{p} and E±(pf,n)pE^{\pm}(\mathbb{Q}_{p^{f},n})_{p} for fgf\mid g, respectively.

Proposition 4.3.

Let gg be a supernatural number. Let nn be an integer 1\geq-1 or n=n=\infty. Then we have

E+(pg,n)pE(pg,n)p=E(pg,1)p,E+(pg,n)p+E(pg,n)p=E(pg,n)p.E^{+}(\mathbb{Q}_{p^{g},n})_{p}\cap E^{-}(\mathbb{Q}_{p^{g},n})_{p}=E(\mathbb{Q}_{p^{g},-1})_{p},\qquad E^{+}(\mathbb{Q}_{p^{g},n})_{p}+E^{-}(\mathbb{Q}_{p^{g},n})_{p}=E(\mathbb{Q}_{p^{g},n})_{p}.
Proof.

When g=fg=f is a positive integer, this is known (e.g., [13, Proposition 3.16]). Note that the proof makes use of a family of local points that we review in Proposition 4.5 below. Then the general case follows from taking the inductive limit with respect to fgf\mid g. ∎

The goal of this subsection is to prove the following (cf. [6, Theorem 1.2(3)]).

Proposition 4.4.

Let gg be a supernatural number.

  • (1)

    We have exact sequences of g\mathcal{R}_{g}-modules

    0(E+(pg,)(p/p))gRg,1Rg,10,0\to(E^{+}(\mathbb{Q}_{p^{g},\infty})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p}))^{\vee}\to\mathcal{R}_{g}\oplus R_{g,-1}\overset{\ast}{\to}R_{g,-1}\to 0,

    where the first component of \ast is the natural projection and the second is given by φ+φ1\varphi+\varphi^{-1}, and

    0(E(pg,)(p/p))gRg,0nt0,0\to(E^{-}(\mathbb{Q}_{p^{g},\infty})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p}))^{\vee}\to\mathcal{R}_{g}\overset{\ast}{\to}R_{g,0}^{\operatorname{nt}}\to 0,

    where \ast is the natural projection.

  • (2)

    In particular, the g\mathcal{R}_{g}-module (E±(pg,)(p/p))(E^{\pm}(\mathbb{Q}_{p^{g},\infty})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p}))^{\vee} is generically of rank one and satisfies

    pdg((E±(pg,)(p/p)))1.\operatorname{pd}_{\mathcal{R}_{g}}((E^{\pm}(\mathbb{Q}_{p^{g},\infty})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p}))^{\vee})\leq 1.

    Moreover, (E(pg,)(p/p))(E^{-}(\mathbb{Q}_{p^{g},\infty})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p}))^{\vee} is always free of rank one over g\mathcal{R}_{g}, while so is (E+(pg,)(p/p))(E^{+}(\mathbb{Q}_{p^{g},\infty})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p}))^{\vee} if and only if 4g4\nmid g (i.e. ord2(g){0,1}\operatorname{ord}_{2}(g)\in\{0,1\}).

We note here that our construction of the exact sequences in claim (1) is not canonical.

The rest of this subsection is devoted to the proof of Proposition 4.4. We begin with reviewing the following proposition. For the proof, we refer to Kitajima and Otsuki [13], which in turn is based on Kobayashi [14].

For each positive integer ff, we define pf\mathbb{Z}_{p^{f}} as the ring of integers of pf\mathbb{Q}_{p^{f}}. Let μ(pf)\mu(\mathbb{Q}_{p^{f}}) denote the group of roots of unity in pf\mathbb{Q}_{p^{f}}. Let us fix a family (ζpn+1)n(\zeta_{p^{n+1}})_{n} such that ζpn+1\zeta_{p^{n+1}} is a primitive pn+1p^{n+1}-th root of unity and (ζpn+1)p=ζpn(\zeta_{p^{n+1}})^{p}=\zeta_{p^{n}} for any nn.

Proposition 4.5 ([13, Proposition 3.4 and Corollary 3.11]).

Let f1f\geq 1 be an integer and we choose an element ζ(f)μ(pf)\zeta_{(f)}\in\mu(\mathbb{Q}_{p^{f}}) which is a basis of pf\mathbb{Z}_{p^{f}} as a p[Gal(pf/p)]\mathbb{Z}_{p}[\operatorname{Gal}(\mathbb{Q}_{p^{f}}/\mathbb{Q}_{p})]-module. Then, for each n1n\geq-1, there exists a unique element df,nE(pf,n)pd_{f,n}\in E(\mathbb{Q}_{p^{f},n})_{p} such that

logE^(df,n)=εf,n+j=0[(n+1)/2](1)jπf,n2jpj,\log_{\hat{E}}(d_{f,n})=\varepsilon_{f,n}+\sum_{j=0}^{[(n+1)/2]}(-1)^{j}\frac{\pi_{f,n-2j}}{p^{j}},

where logE^\log_{\hat{E}} denotes the logarithm map of the formal group law E^\hat{E} associated to EE, and we put

εf,n=j=1(1)j1ζ(f)φ(n+1+2j)pj\varepsilon_{f,n}=\sum_{j=1}^{\infty}(-1)^{j-1}\zeta_{(f)}^{\varphi^{-(n+1+2j)}}p^{j}

and

πf,n=ζ(f)φ(n+1)(ζpn+11).\pi_{f,n}=\zeta_{(f)}^{\varphi^{-(n+1)}}(\zeta_{p^{n+1}}-1).

Moreover, the family (df,n)n1(d_{f,n})_{n\geq-1} satisfies the following.

  • (1)
    Trpf,n/pf,n1(df,n)={df,n2(n1)(φ+φ1)df,1(n=0).\operatorname{Tr}_{\mathbb{Q}_{p^{f},n}/\mathbb{Q}_{p^{f},n-1}}(d_{f,n})=\begin{cases}-d_{f,n-2}&(n\geq 1)\\ -(\varphi+\varphi^{-1})d_{f,-1}&(n=0).\end{cases}
  • (2)
    E(pf,n)p={(df,n,df,n1)Rf,n(n0)(df,1)Rf,1(n=1).E(\mathbb{Q}_{p^{f},n})_{p}=\begin{cases}(d_{f,n},d_{f,n-1})_{R_{f,n}}&(n\geq 0)\\ (d_{f,-1})_{R_{f,-1}}&(n=-1).\end{cases}

We should stress that the family (df,n)n1(d_{f,n})_{n\geq-1} in Proposition 4.5 depends on the choice of ζ(f)\zeta_{(f)}. In Lemma 4.7 below, we will construct a certain compatible system (ζ(f))f1(\zeta_{(f)})_{f\geq 1}.

Lemma 4.6.

There exists a family (ζ(f))f1f1𝔽pf×(\zeta_{(f)})_{f\geq 1}\in\prod_{f\geq 1}\mathbb{F}_{p^{f}}^{\times}, indexed by the positive integers ff, satisfying the following.

  • For each f1f\geq 1, the element ζ(f)\zeta_{(f)} is a basis of 𝔽pf\mathbb{F}_{p^{f}} as an 𝔽p[Gal(𝔽pf/𝔽p)]\mathbb{F}_{p}[\operatorname{Gal}(\mathbb{F}_{p^{f}}/\mathbb{F}_{p})]-module.

  • For each fff^{\prime}\mid f, we have Tr𝔽pf/𝔽pf(ζ(f))=ζ(f)\operatorname{Tr}_{\mathbb{F}_{p^{f}}/\mathbb{F}_{p^{f^{\prime}}}}(\zeta_{(f)})=\zeta_{(f^{\prime})}.

Proof.

For each f1f\geq 1, it is well-known that 𝔽pf\mathbb{F}_{p^{f}} is free of rank one over 𝔽p[Gal(𝔽pf/𝔽p)]\mathbb{F}_{p}[\operatorname{Gal}(\mathbb{F}_{p^{f}}/\mathbb{F}_{p})]. Let BfB_{f} be the (non-empty) set of bases of 𝔽pf\mathbb{F}_{p^{f}} as an 𝔽p[Gal(𝔽pf/𝔽p)]\mathbb{F}_{p}[\operatorname{Gal}(\mathbb{F}_{p^{f}}/\mathbb{F}_{p})]-module. Since Tr𝔽pf/𝔽pf:𝔽pf𝔽pf\operatorname{Tr}_{\mathbb{F}_{p^{f}}/\mathbb{F}_{p^{f^{\prime}}}}:\mathbb{F}_{p^{f}}\to\mathbb{F}_{p^{f^{\prime}}} is surjective for each fff^{\prime}\mid f as is also well-known, the family (Bf)f1(B_{f})_{f\geq 1} consists a projective system of sets with respect to the trace maps. As each BfB_{f} is a finite set, the projective limit limf1Bf\varprojlim_{f\geq 1}B_{f} must be non-empty, and any element of the limit is what we want. ∎

Lemma 4.7.

There exists a family (ζ(f))f1f1μ(pf)(\zeta_{(f)})_{f\geq 1}\in\prod_{f\geq 1}\mu(\mathbb{Q}_{p^{f}}) satisfying the following.

  • For each f1f\geq 1, the element ζ(f)\zeta_{(f)} is a basis of pf\mathbb{Z}_{p^{f}} as a p[Gal(pf/p)]\mathbb{Z}_{p}[\operatorname{Gal}(\mathbb{Q}_{p^{f}}/\mathbb{Q}_{p})]-module.

  • For each fff^{\prime}\mid f, there exists an element αf/fp[Gal(pf/p)]×\alpha_{f/f^{\prime}}\in\mathbb{Z}_{p}[\operatorname{Gal}(\mathbb{Q}_{p^{f^{\prime}}}/\mathbb{Q}_{p})]^{\times} such that we have Trpf/pf(ζ(f))=αf/fζ(f)\operatorname{Tr}_{\mathbb{Q}_{p^{f}}/\mathbb{Q}_{p^{f^{\prime}}}}(\zeta_{(f)})=\alpha_{f/f^{\prime}}\zeta_{(f^{\prime})}.

Proof.

For each f1f\geq 1, the mod pp reduction map gives rise to a one-to-one correspondence

(4.1) μ(pf)𝔽pf×.\mu(\mathbb{Q}_{p^{f}})\simeq\mathbb{F}_{p^{f}}^{\times}.

We take a family (ζ(f))f1f1𝔽pf×(\zeta_{(f)})_{f\geq 1}\in\prod_{f\geq 1}\mathbb{F}_{p^{f}}^{\times} as in Lemma 4.6, and then lift it to (ζ(f))f1f1μ(pf)(\zeta_{(f)})_{f\geq 1}\in\prod_{f\geq 1}\mu(\mathbb{Q}_{p^{f}}) via the above correspondence (we abuse the notation). Then by Nakayama’s lemma, the first condition holds. The second condition is also easy to see; we actually have αf/f1mod(p)\alpha_{f/f^{\prime}}\equiv 1\mod(p). ∎

Now we begin the proof of Proposition 4.4.

Proof of Proposition 4.4.

As noted in [6, Remark 3.4], properties (1) and (2) in Proposition 4.5 enable us to mimic the argument of [6, §4.3]. As a consequence, we obtain the exact sequences claimed in Proposition 4.4(1) for each positive integer ff instead of gg.

In order to deal with a supernatural number gg, we shall take limits with respect to positive integers fgf\mid g. For that purpose, we make use of the system (ζ(f))fgfgμ(pf)(\zeta_{(f)})_{f\mid g}\in\prod_{f\mid g}\mu(\mathbb{Q}_{p^{f}}) as in Lemma 4.7, and accordingly construct a family

(df,n)fg,n1fg,n1E(pf,n)(d_{f,n})_{f\mid g,n\geq-1}\in\prod_{f\mid g,n\geq-1}E(\mathbb{Q}_{p^{f},n})

by Proposition 4.5. Then we have

(4.2) Trpf,n/pf,n(df,n)=αf/fdf,n\operatorname{Tr}_{\mathbb{Q}_{p^{f},n}/\mathbb{Q}_{p^{f^{\prime}},n}}(d_{f,n})=\alpha_{f/f^{\prime}}d_{f^{\prime},n}

for each ffgf^{\prime}\mid f\mid g and n1n\geq-1. This is because both (εf,n)f(\varepsilon_{f,n})_{f} and (πf,n)f(\pi_{f,n})_{f} in Proposition 4.5 satisfy the corresponding relations.

Thanks to (4.2), we have compatibility between the exact sequences for various ff. For instance, for the ++ case, we have a commutative diagram

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(E+(pf,)(p/p))\textstyle{(E^{+}(\mathbb{Q}_{p^{f},\infty})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p}))^{\vee}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}αf/f\scriptstyle{\alpha_{f/f^{\prime}}}fRf,1\textstyle{\mathcal{R}_{f}\oplus R_{f,-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Rf,1\textstyle{R_{f,-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(E+(pf,)(p/p))\textstyle{(E^{+}(\mathbb{Q}_{p^{f^{\prime}},\infty})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p}))^{\vee}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}fRf,1\textstyle{\mathcal{R}_{f^{\prime}}\oplus R_{f^{\prime},-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Rf,1\textstyle{R_{f^{\prime},-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}

for each fff^{\prime}\mid f. Here, the middle and the right vertical arrows are the natural homomorphisms, while the left vertical arrow is the multiplication by αf/f\alpha_{f/f^{\prime}} following the natural map. The commutativity easily follows from (4.2), but we need to recall the detailed construction of the exact sequences, so we omit it. Therefore, by taking the projective limit with respect to positive integers fgf\mid g, we obtain the exact sequences claimed in Proposition 4.4(1) for a supernatural number gg. Note that we ignored the multiplication by αf/f\alpha_{f/f^{\prime}}, which is possible since it is at any rate a unit and does not affect the module structure of the limit.

We briefly check that claim (2) follows from (1). Since the g\mathcal{R}_{g}-module Rg,0ntR_{g,0}^{\operatorname{nt}} is torsion, the statement on the generic rank is clear. Since pdg(Rg,0nt)1\operatorname{pd}_{\mathcal{R}_{g}}(R_{g,0}^{\operatorname{nt}})\leq 1, the module (E(pg,)(p/p))(E^{-}(\mathbb{Q}_{p^{g},\infty})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p}))^{\vee} is free over g\mathcal{R}_{g}. On the other hand, the structure of (E+(pg,)(p/p))(E^{+}(\mathbb{Q}_{p^{g},\infty})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p}))^{\vee} depends on the endomorphism φ+φ1\varphi+\varphi^{-1} on Rg,1R_{g,-1}. As in [13, Lemma 3.6] or [6, Remark 4.27], it is isomorphic if and only if 4g4\nmid g. If 4g4\mid g, the homomorphism is not injective, so (E+(pg,)(p/p))(E^{+}(\mathbb{Q}_{p^{g},\infty})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p}))^{\vee} cannot be free. Thus we obtain claim (2). ∎

4.3. Consequences of Proposition 4.4

We shall observe immediate consequences of Proposition 4.4. We continue to suppose that E/pE/\mathbb{Q}_{p} is a supersingular elliptic curve with ap(E)=0a_{p}(E)=0. Let gg be a supernatural number.

We put

Dg±=(H1(pg,,E[p])E±(pg,)(p/p))D_{g}^{\pm}=\left(H^{1}(\mathbb{Q}_{p^{g},\infty},E[p^{\infty}])\over E^{\pm}(\mathbb{Q}_{p^{g},\infty})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p})\right)^{\vee}

and

Dg1=(H1(pg,,E[p])E(pg)(p/p)).D_{g}^{1}=\left(H^{1}(\mathbb{Q}_{p^{g},\infty},E[p^{\infty}])\over E(\mathbb{Q}_{p^{g}})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p})\right)^{\vee}.

These are regarded as submodules of H1(pg,,E[p])H^{1}(\mathbb{Q}_{p^{g},\infty},E[p^{\infty}])^{\vee}.

Proposition 4.8.

The following are true.

  • (i)

    The g\mathcal{R}_{g}-module H1(pg,,E[p])H^{1}(\mathbb{Q}_{p^{g},\infty},E[p^{\infty}])^{\vee} is free of rank two.

  • (ii)

    The g\mathcal{R}_{g}-module Dg±D_{g}^{\pm} is free of rank one. Moreover, Dg±D_{g}^{\pm} is a direct summand of H1(pg,,E[p])H^{1}(\mathbb{Q}_{p^{g},\infty},E[p^{\infty}])^{\vee} if and only if either ±=\pm=- or 4g4\nmid g.

  • (iii)

    We have

    Dg1=Dg+Dg.D_{g}^{1}=D_{g}^{+}\oplus D_{g}^{-}.
Proof.

(i) We have E(pg,)[p]=0E(\mathbb{Q}_{p^{g},\infty})[p]=0 because of the reduction type (e.g., [13, Proposition 3.1]). It is known to experts that the claim follows from this, together with the self-duality of TpET_{p}E and the local Tate duality. We briefly explain the proof by using the notion of perfect complexes that will be introduced in the subsequent sections. Let us consider the Iwasawa cohomology complex 𝖱ΓIw(pg,,TpE)D[0,2](g)\mathsf{R}\Gamma_{\operatorname{Iw}}(\mathbb{Q}_{p^{g},\infty},T_{p}E)\in D^{[0,2]}(\mathcal{R}_{g}) (see §5.1 and §6). The local Tate duality implies H1(pg,,E[p])HIw1(pg,,TpE)H^{1}(\mathbb{Q}_{p^{g},\infty},E[p^{\infty}])^{\vee}\simeq H^{1}_{\operatorname{Iw}}(\mathbb{Q}_{p^{g},\infty},T_{p}E). Moreover, the fact E(pg,)[p]=0E(\mathbb{Q}_{p^{g},\infty})[p]=0, together with the self-duality of TpET_{p}E and the local Tate duality, implies 𝖱ΓIw(pg,,TpE)D[1,1](g)\mathsf{R}\Gamma_{\operatorname{Iw}}(\mathbb{Q}_{p^{g},\infty},T_{p}E)\in D^{[1,1]}(\mathcal{R}_{g}). Then the claim follows by combining with the Euler-Poincare characteristic formula.

(ii) This immediately follows from Proposition 4.4(2) and claim (i).

(iii) By Proposition 4.3, we have

E(pg)(p/p)=(E+(pg,)(p/p))(E(pg,)(p/p))E(\mathbb{Q}_{p^{g}})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p})=\left(E^{+}(\mathbb{Q}_{p^{g},\infty})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p})\right)\cap\left(E^{-}(\mathbb{Q}_{p^{g},\infty})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p})\right)

in E(pg,)(p/p)E(\mathbb{Q}_{p^{g},\infty})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p}). This implies that we have a natural exact sequence

Dg+DgH1(pg,,E[p])(E(pg)(p/p))0.D_{g}^{+}\oplus D_{g}^{-}\to H^{1}(\mathbb{Q}_{p^{g},\infty},E[p^{\infty}])^{\vee}\to(E(\mathbb{Q}_{p^{g}})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p}))^{\vee}\to 0.

By claims (i) and (ii), the first arrow is injective since (E(pg)(p/p))(E(\mathbb{Q}_{p^{g}})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p}))^{\vee} is torsion. Thus we obtain the claim. ∎

Remark 4.9.

When g=fpg=fp^{\infty} (resp. g=fg=f) with a positive integer ff, Lei and Lim [15, §3.2] (resp. Lim [17, §3.2]) studied the structure of (the Gal(p(μp)/p)\operatorname{Gal}(\mathbb{Q}_{p}(\mu_{p})/\mathbb{Q}_{p})-invariant part of) E±(pg,)(p/p)E^{\pm}(\mathbb{Q}_{p^{g},\infty})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p}) in a different way. The results in this paper are more precise as the module structures are completely determined, and it is actually possible to reprove those previous results.

4.4. The ordinary case

As an ordinary analogue of Proposition 4.8, we also have the following. We omit the proof as it is well-known (see, e.g., [5]).

Proposition 4.10.

Let kk be a finite extension of p\mathbb{Q}_{p} and L/kL/k an abelian pp-adic Lie extension such that Lk(μp)L\supset k(\mu_{p^{\infty}}). Let E/kE/k be an elliptic curve with good ordinary reduction such that E(L)[p]=0E(L)[p]=0. Then the following are true.

  • (i)

    The p[[Gal(L/k)]]\mathbb{Z}_{p}[[\operatorname{Gal}(L/k)]]-module H1(L,E[p])H^{1}(L,E[p^{\infty}])^{\vee} is free of rank 2[k:p]2[k:\mathbb{Q}_{p}].

  • (ii)

    The p[[Gal(L/k)]]\mathbb{Z}_{p}[[\operatorname{Gal}(L/k)]]-module

    D=(H1(L,E[p])E(L)(p/p))D=\left(H^{1}(L,E[p^{\infty}])\over E(L)\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p})\right)^{\vee}

    is free of rank [k:p][k:\mathbb{Q}_{p}] and is a direct summand of H1(L,E[p])H^{1}(L,E[p^{\infty}])^{\vee}.

5. Algebraic ingredients

In this section, we review known facts on homological algebra, following notations in [8].

5.1. Perfect complexes

We fix notations concerning perfect complexes.

Let RR be a (commutative) noetherian ring. For integers aba\leq b, let D[a,b](R)D^{[a,b]}(R) be the derived category of perfect complexes which admits a quasi-isomorphism to a complex of the form

C[CaCa+1Cb],C\simeq[C^{a}\to C^{a+1}\to\dots\to C^{b}],

concentrated in degrees a,a+1,,ba,a+1,\dots,b, such that each CiC^{i} is finitely generated and projective over RR. For such a complex CC, we define the determinant of CC by

DetR(C)=iDetR(1)i(Ci).\operatorname{Det}_{R}(C)=\bigotimes_{i}\operatorname{Det}_{R}^{(-1)^{i}}(C^{i}).

Here, for each finitely generated projective RR-module FF, let rankR(F)\operatorname{rank}_{R}(F) be the (locally constant) rank of FF and put

DetR(F)=RrankR(F)F,DetR1(F)=HomR(DetR(F),R).\operatorname{Det}_{R}(F)=\bigwedge_{R}^{\operatorname{rank}_{R}(F)}F,\qquad\operatorname{Det}_{R}^{-1}(F)=\operatorname{Hom}_{R}(\operatorname{Det}_{R}(F),R).

These are invertible RR-modules. We also define the Euler characteristic of CC by

χR(C)=i(1)i1rankR(Ci).\chi_{R}(C)=\sum_{i}(-1)^{i-1}\operatorname{rank}_{R}(C^{i}).

We define C=𝖱HomR(C,R)D[b,a](R)C^{*}=\mathsf{R}\operatorname{Hom}_{R}(C,R)\in D^{[-b,-a]}(R) by using the derived homomorphism.

5.2. Determinant modules and Fitting ideals

We recall a relation between determinant modules and Fitting ideals. See [7, §3] for more details.

Let \mathcal{R} be a ring which contains a regular local ring Λ\Lambda\subset\mathcal{R} such that \mathcal{R} is free of finite rank over Λ\Lambda. We moreover assume that we have an isomorphism

HomΛ(,Λ)\operatorname{Hom}_{\Lambda}(\mathcal{R},\Lambda)\simeq\mathcal{R}

as \mathcal{R}-modules. Note that this condition implies that there is an isomorphism Exti(M,)ExtΛi(M,Λ)\operatorname{Ext}^{i}_{\mathcal{R}}(M,\mathcal{R})\simeq\operatorname{Ext}^{i}_{\Lambda}(M,\Lambda) for each \mathcal{R}-module MM. Each ring \mathcal{R} defined as the Iwasawa algebra in this paper satisfies this condition.

Let CC be a perfect complex such that all cohomology groups of CC are torsion over \mathcal{R} (equivalently, over Λ\Lambda). Let Q()Q(\mathcal{R}) be the total ring of fractions of \mathcal{R}. Then we have a natural homomorphism ιC:Det1(C)Q()\iota_{C}:\operatorname{Det}_{\mathcal{R}}^{-1}(C)\to Q(\mathcal{R}) defined as the composite map

ιC:Det1(C)Q()Det1(C)DetQ()1(Q()𝕃C)Q(),\iota_{C}:\operatorname{Det}_{\mathcal{R}}^{-1}(C)\hookrightarrow Q(\mathcal{R})\otimes_{\mathcal{R}}\operatorname{Det}_{\mathcal{R}}^{-1}(C)\simeq\operatorname{Det}_{Q(\mathcal{R})}^{-1}(Q(\mathcal{R})\otimes^{\mathbb{L}}_{\mathcal{R}}C)\simeq Q(\mathcal{R}),

where 𝕃\otimes^{\mathbb{L}} denotes the derived tensor product and the last isomorphism comes from the assumption that Q()𝕃CQ(\mathcal{R})\otimes^{\mathbb{L}}_{\mathcal{R}}C is acyclic. We put d(C)=ιC(Det1(C))Q()\mathrm{d}_{\mathcal{R}}(C)=\iota_{C}(\operatorname{Det}_{\mathcal{R}}^{-1}(C))\subset Q(\mathcal{R}), which is an invertible \mathcal{R}-submodule of Q()Q(\mathcal{R}).

We have the following relation between the Fitting ideals and determinant modules. See [7, §3] and [8, just before Definition 4.5].

Proposition 5.1.

Let CD[1,2]()C\in D^{[1,2]}(\mathcal{R}) be a complex such that H1(C)=0H^{1}(C)=0 and that H2(C)H^{2}(C) is torsion over \mathcal{R}. Then we have d(C)=Fitt(H2(C))\mathrm{d}_{\mathcal{R}}(C)=\operatorname{Fitt}_{\mathcal{R}}(H^{2}(C))\subset\mathcal{R}.

5.3. The key algebraic proposition

We recall a key algebraic proposition in [8]. Let \mathcal{R} be as in §5.2.

Proposition 5.2 ([8, Proposition 2.1]).

Let CD[0,1]()C\in D^{[0,1]}(\mathcal{R}) be a complex such that H0(C)=0H^{0}(C)=0. We put l=χ(C)l=\chi_{\mathcal{R}}(C). Then we have a natural homomorphism

ΨC:lH1(C)Det1(C)\Psi_{C}:\bigwedge_{\mathcal{R}}^{l}H^{1}(C)\to\operatorname{Det}_{\mathcal{R}}^{-1}(C)

such that

Ker(ΨC)=(lH1(C))tor\operatorname{Ker}(\Psi_{C})=\left(\bigwedge_{\mathcal{R}}^{l}H^{1}(C)\right)_{\operatorname{tor}}

and

Coker(ΨC)Fitt(E1(H1(C))).\operatorname{Coker}(\Psi_{C})\simeq\frac{\mathcal{R}}{\operatorname{Fitt}_{\mathcal{R}}(E^{1}(H^{1}(C)))}.

We briefly review the construction of ΨC\Psi_{C}. We have natural maps

lH1(C)Q()lH1(C)Q()lH1(Q()𝕃C)DetQ()1(Q()𝕃C).\bigwedge_{\mathcal{R}}^{l}H^{1}(C)\to Q(\mathcal{R})\otimes_{\mathcal{R}}\bigwedge_{\mathcal{R}}^{l}H^{1}(C)\simeq\bigwedge_{Q(\mathcal{R})}^{l}H^{1}(Q(\mathcal{R})\otimes^{\mathbb{L}}_{\mathcal{R}}C)\simeq\operatorname{Det}^{-1}_{Q(\mathcal{R})}(Q(\mathcal{R})\otimes^{\mathbb{L}}_{\mathcal{R}}C).

A key point is that the image of this composite map is contained in Det1(C)\operatorname{Det}^{-1}_{\mathcal{R}}(C), and then we define the map ΨC\Psi_{C} as the induced one. There is a generalization [8, Proposition 2.2] of this proposition, but we do not need it in this paper.

6. Cohomological interpretations of Selmer groups and pp-adic LL-functions

We keep the notations in §2, assuming Assumptions 2.1 and 2.2. In this section, for each multi-index ϵ\epsilon, we introduce a complex CSϵC_{S}^{\epsilon} that satisfies H2(CSϵ)𝔛SϵH^{2}(C_{S}^{\epsilon})\simeq\mathfrak{X}_{S}^{\epsilon}. When ϵ\epsilon is a multi-sign, we will reformulate the definition of the algebraic pp-adic LL-functions by using CSϵC_{S}^{\epsilon}.

We make use of well-known facts on complexes associated to Galois representations; see the book [18] by Nekovář as a comprehensive reference. The facts that we need in this paper are reviewed in [8, §3.1], and we follow the notations there.

Recall that we took a set SS satisfying (2.1). Let us take an auxiliary finite set Σ\Sigma of places of FF such that

ΣSSp(F)S(F)\Sigma\supset S\cup S_{p}(F)\cup S_{\infty}(F)

and such that EE has good reduction at any finite prime of FF not in Σ\Sigma. We define K,ΣK_{\infty,\Sigma} as the maximal algebraic extension of KK_{\infty} which is unramified outside Σ\Sigma. Note that then the module TpET_{p}E is equipped with an action of Gal(K,Σ/F)\operatorname{Gal}(K_{\infty,\Sigma}/F). We put

Σ0=Σ(Sp(F)S(F))S.\Sigma_{0}=\Sigma\setminus(S_{p}(F)\cup S_{\infty}(F))\supset S.

As in [8, §3.1], we let 𝖱ΓIw(K,Σ/K,TpE)\mathsf{R}\Gamma_{\operatorname{Iw}}(K_{\infty,\Sigma}/K_{\infty},T_{p}E) (resp. 𝖱ΓIw(K,v,TpE)\mathsf{R}\Gamma_{\operatorname{Iw}}(K_{\infty,v},T_{p}E) for each finite prime vv of FF) be the global (resp. local) Iwasawa cohomology complex. Since we assume (2.1), by [8, Proposition 3.1], these are perfect complexes in D[0,2]()D^{[0,2]}(\mathcal{R}). In Definition 6.3 below, we define CSϵC_{S}^{\epsilon} by using these complexes. Before that, we have to study the local cohomology groups for both pp-adic and non-pp-adic primes.

For 𝔭Spss\mathfrak{p}\in S_{p}^{\operatorname{ss}} and {0,1,+,,rel}\bullet\in\{0,1,+,-,\operatorname{rel}\}, we put

D𝔭=(H1(K,𝔭,E[p])Loc𝔭),D_{\mathfrak{p}}^{\bullet}=\left(\frac{H^{1}(K_{\infty,\mathfrak{p}},E[p^{\infty}])}{\operatorname{Loc}_{\mathfrak{p}}^{\bullet}}\right)^{\vee},

where Loc𝔭\operatorname{Loc}_{\mathfrak{p}}^{\bullet} is defined in Definition 2.4. As an ordinary counterpart, for 𝔭Spord\mathfrak{p}\in S_{p}^{\operatorname{ord}}, we define

D𝔭=(H1(K,𝔭,E[p])E(K,𝔭)(p/p)).D_{\mathfrak{p}}=\left(H^{1}(K_{\infty,\mathfrak{p}},E[p^{\infty}])\over E(K_{\infty,\mathfrak{p}})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p})\right)^{\vee}.

These are regarded as submodules of H1(K,𝔭,E[p])H^{1}(K_{\infty,\mathfrak{p}},E[p^{\infty}])^{\vee}, which is by the local Tate duality isomorphic to HIw1(K,𝔭,TpE)H^{1}_{\operatorname{Iw}}(K_{\infty,\mathfrak{p}},T_{p}E).

We apply the results in §4 to the current semi-local setting (recall that we are assuming Assumptions 2.1 and 2.2). A bit more precisely, for 𝔭Spss\mathfrak{p}\in S_{p}^{\operatorname{ss}}, let gg be the residue degree of K/FK_{\infty}/F at 𝔭\mathfrak{p}, which is in general a supernatural number. By choosing a prime of KK_{\infty} above 𝔭\mathfrak{p}, modules that we are studying are the induced modules of local counterparts associated to pg,\mathbb{Q}_{p^{g},\infty}, to which we can apply the results in §4. Therefore, as a consequence of Propositions 4.8 and 4.10, we obtain the following.

Proposition 6.1.

The following are true.

  • (1)

    Let 𝔭Spss\mathfrak{p}\in S_{p}^{\operatorname{ss}}.

    • (i)

      The \mathcal{R}-module HIw1(K,𝔭,TpE)H^{1}_{\operatorname{Iw}}(K_{\infty,\mathfrak{p}},T_{p}E) is free of rank two.

    • (ii)

      The \mathcal{R}-module D𝔭±D_{\mathfrak{p}}^{\pm} is free of rank one. Moreover, D𝔭±D_{\mathfrak{p}}^{\pm} is a direct summand of HIw1(K,𝔭,TpE)H^{1}_{\operatorname{Iw}}(K_{\infty,\mathfrak{p}},T_{p}E) if and only if either ±=\pm=- or the residual degree of K/FK_{\infty}/F at 𝔭\mathfrak{p} is not divisible by 44.

    • (iii)

      We have D𝔭1=D𝔭+D𝔭D_{\mathfrak{p}}^{1}=D_{\mathfrak{p}}^{+}\oplus D_{\mathfrak{p}}^{-}.

    • (iv)

      We have D𝔭rel=0D_{\mathfrak{p}}^{\operatorname{rel}}=0 and D𝔭0=HIw1(K,𝔭,TpE)D_{\mathfrak{p}}^{0}=H^{1}_{\operatorname{Iw}}(K_{\infty,\mathfrak{p}},T_{p}E).

  • (2)

    Let 𝔭Spord\mathfrak{p}\in S_{p}^{\operatorname{ord}}.

    • (i)

      The \mathcal{R}-module HIw1(K,𝔭,TpE)H^{1}_{\operatorname{Iw}}(K_{\infty,\mathfrak{p}},T_{p}E) is free of rank 2deg(𝔭)2\deg(\mathfrak{p}).

    • (ii)

      The \mathcal{R}-module D𝔭D_{\mathfrak{p}} is free of rank deg(𝔭)\deg(\mathfrak{p}) and is a direct summand of HIw1(K,𝔭,TpE)H^{1}_{\operatorname{Iw}}(K_{\infty,\mathfrak{p}},T_{p}E).

Now let ϵ𝔭Spss{0,1,+,,rel}\epsilon\in\prod_{\mathfrak{p}\in S_{p}^{\operatorname{ss}}}\{0,1,+,-,\operatorname{rel}\} be a multi-index. We put

DSpssϵ=𝔭SpssD𝔭ϵ𝔭,DSpord=𝔭SpordD𝔭D_{S_{p}^{\operatorname{ss}}}^{\epsilon}=\bigoplus_{\mathfrak{p}\in S_{p}^{\operatorname{ss}}}D_{\mathfrak{p}}^{\epsilon_{\mathfrak{p}}},\qquad D_{S_{p}^{\operatorname{ord}}}=\bigoplus_{\mathfrak{p}\in S_{p}^{\operatorname{ord}}}D_{\mathfrak{p}}

and

Dpϵ=DSpssϵDSpord.D_{p}^{\epsilon}=D_{S_{p}^{\operatorname{ss}}}^{\epsilon}\oplus D_{S_{p}^{\operatorname{ord}}}.

By Proposition 6.1, the \mathcal{R}-module DpϵD_{p}^{\epsilon} is free of rank

(6.1) 2×#{𝔭Spssϵ𝔭{0,1}}+#{𝔭Spssϵ𝔭{+,}}+𝔭Sporddeg(𝔭).2\times\#\{\mathfrak{p}\in S_{p}^{\operatorname{ss}}\mid\epsilon_{\mathfrak{p}}\in\{0,1\}\}+\#\{\mathfrak{p}\in S_{p}^{\operatorname{ss}}\mid\epsilon_{\mathfrak{p}}\in\{+,-\}\}+\sum_{\mathfrak{p}\in S_{p}^{\operatorname{ord}}}\deg(\mathfrak{p}).

Next we consider non-pp-adic primes.

Lemma 6.2.

Let vv be a finite prime of FF with vSram,p(K/F)Sp(F)v\not\in S_{\operatorname{ram},p}(K_{\infty}/F)\cup S_{p}(F). Then we have

pd(HIw1(K,v,TpE))1,pd(HIw2(K,v,TpE))2.\operatorname{pd}_{\mathcal{R}}(H^{1}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E))\leq 1,\qquad\operatorname{pd}_{\mathcal{R}}(H^{2}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E))\leq 2.
Proof.

Let Gv(K/F)G_{v}(K_{\infty}/F) be the decomposition subgroup of Gal(K/F)\operatorname{Gal}(K_{\infty}/F) at vv, and we put v=p[[Gv(K/F)]]\mathcal{R}_{v}=\mathbb{Z}_{p}[[G_{v}(K_{\infty}/F)]]. By the assumption vSram,p(K/F)Sp(F)v\not\in S_{\operatorname{ram},p}(K_{\infty}/F)\cup S_{p}(F) (and KμpK_{\infty}\supset\mu_{p^{\infty}}), the topological group Gv(K/F)G_{v}(K_{\infty}/F) is isomorphic to the product of p\mathbb{Z}_{p} and a finite abelian group of order prime to pp. Hence the algebra v\mathcal{R}_{v} is a finite product of regular local rings of Krull dimension 22.

Let us take a finite prime ww of KK_{\infty} lying above vv. Then, for each i=1,2i=1,2, the cohomology group HIwi(K,v,TpE)H^{i}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E) is the induced module of HIwi(K,w,TpE)H^{i}_{\operatorname{Iw}}(K_{\infty,w},T_{p}E) with respect to the ring extension v\mathcal{R}_{v}\subset\mathcal{R}. The observation on v\mathcal{R}_{v} above immediately shows pdv(HIwi(K,w,TpE))2\operatorname{pd}_{\mathcal{R}_{v}}(H^{i}_{\operatorname{Iw}}(K_{\infty,w},T_{p}E))\leq 2 for i=1,2i=1,2. Moreover, it is also well-known that pdv(HIw1(K,w,TpE))1\operatorname{pd}_{\mathcal{R}_{v}}(H^{1}_{\operatorname{Iw}}(K_{\infty,w},T_{p}E))\leq 1, namely, HIw1(K,w,TpE)H^{1}_{\operatorname{Iw}}(K_{\infty,w},T_{p}E) does not contain a non-trivial finite submodule. Therefore, we obtain the lemma. ∎

Now we begin the definition of CSϵC_{S}^{\epsilon}. For each 𝔭Sp(F)\mathfrak{p}\in S_{p}(F), as explained in the proof of Proposition 4.8(i), we have 𝖱ΓIw(K,𝔭,TpE)D[1,1]()\mathsf{R}\Gamma_{\operatorname{Iw}}(K_{\infty,\mathfrak{p}},T_{p}E)\in D^{[1,1]}(\mathcal{R}), so

𝖱ΓIw(K,𝔭,TpE)HIw1(K,𝔭,TpE)[1].\mathsf{R}\Gamma_{\operatorname{Iw}}(K_{\infty,\mathfrak{p}},T_{p}E)\simeq H^{1}_{\operatorname{Iw}}(K_{\infty,\mathfrak{p}},T_{p}E)[-1].

By Proposition 6.1, we then obtain a triangle of perfect complexes

(6.2) Dpϵ[1]𝖱ΓIw(Kp,TpE)HIw1(Kp,TpE)Dpϵ[1].D_{p}^{\epsilon}[-1]\to\mathsf{R}\Gamma_{\operatorname{Iw}}(K_{\infty}\otimes\mathbb{Q}_{p},T_{p}E)\to{H^{1}_{\operatorname{Iw}}(K_{\infty}\otimes\mathbb{Q}_{p},T_{p}E)\over D_{p}^{\epsilon}}[-1].

By Lemma 6.2, for vSram,p(K/F)Sp(F)v\not\in S_{\operatorname{ram},p}(K_{\infty}/F)\cup S_{p}(F), we have a triangle of perfect complexes

(6.3) HIw1(K,v,TpE)[1]𝖱ΓIw(K,v,TpE)HIw2(K,v,TpE)[2].H^{1}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)[-1]\to\mathsf{R}\Gamma_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)\to H^{2}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)[-2].
Definition 6.3.

Let ϵ\epsilon be a multi-index. We define a perfect complex CSϵC_{S}^{\epsilon} over \mathcal{R} by a triangle

(6.4) CSϵ𝖱ΓIw(K,Σ/K,TpE)\displaystyle C_{S}^{\epsilon}\to\mathsf{R}\Gamma_{\operatorname{Iw}}(K_{\infty,\Sigma}/K_{\infty},T_{p}E)
(6.5) vS𝖱ΓIw(K,v,TpE)HIw1(Kp,TpE)Dpϵ[1]vΣ0SHIw2(K,v,TpE)[2],\displaystyle\to\bigoplus_{v\in S}\mathsf{R}\Gamma_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)\oplus{H^{1}_{\operatorname{Iw}}(K_{\infty}\otimes\mathbb{Q}_{p},T_{p}E)\over D_{p}^{\epsilon}}[-1]\oplus\bigoplus_{v\in\Sigma_{0}\setminus S}H^{2}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)[-2],

where the last arrow is defined by using the second arrows of triangles (6.2) and (6.3).

Note that, as the notation indicates, CSϵC_{S}^{\epsilon} does not depend on the choice of Σ\Sigma (up to quasi-isomorphism). This is because, if ΣΣ\Sigma^{\prime}\supset\Sigma, we have a triangle

𝖱ΓIw(K,Σ/K,TpE)𝖱ΓIw(K,Σ/K,TpE)vΣΣ𝖱ΓIw,/f(K,v,TpE),\mathsf{R}\Gamma_{\operatorname{Iw}}(K_{\infty,\Sigma}/K_{\infty},T_{p}E)\to\mathsf{R}\Gamma_{\operatorname{Iw}}(K_{\infty,\Sigma^{\prime}}/K_{\infty},T_{p}E)\to\bigoplus_{v\in\Sigma^{\prime}\setminus\Sigma}\mathsf{R}\Gamma_{\operatorname{Iw},/f}(K_{\infty,v},T_{p}E),

and we also have a quasi-isomorphism 𝖱ΓIw,/f(K,v,TpE)HIw2(K,v,TpE)[2]\mathsf{R}\Gamma_{\operatorname{Iw},/f}(K_{\infty,v},T_{p}E)\simeq H^{2}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)[-2] for a finite prime vSp(F)v\not\in S_{p}(F) of FF at which EE has good reduction. Here, the subscript /f/f denotes the singular part.

By the Poitou–Tate duality (e.g., [8, Equation (3.2)]) and triangles (6.2) and (6.3), we also have an alternative description

(6.6) CSϵDpϵ[1]vΣ0SHIw1(K,v,TpE)[1]𝖱Γ(K,Σ/K,E[p])[2].C_{S}^{\epsilon}\to D_{p}^{\epsilon}[-1]\oplus\bigoplus_{v\in\Sigma_{0}\setminus S}H^{1}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)[-1]\to\mathsf{R}\Gamma(K_{\infty,\Sigma}/K_{\infty},E[p^{\infty}])^{\vee}[-2].

Now we summarize properties of CSϵC_{S}^{\epsilon}. Note that E(K)[p]=0E(K_{\infty})[p]=0 holds, thanks to Assumptions 2.1 and 2.2.

Proposition 6.4.

Let ϵ\epsilon be a multi-index.

  • (1)

    We have CSϵD[1,2]()C_{S}^{\epsilon}\in D^{[1,2]}(\mathcal{R}), H2(CSϵ)𝔛SϵH^{2}(C_{S}^{\epsilon})\simeq\mathfrak{X}_{S}^{\epsilon}, and

    χ(CSϵ)=#{𝔭Spssϵ𝔭{0,1}}#{𝔭Spssϵ𝔭=rel}.\chi_{\mathcal{R}}(C_{S}^{\epsilon})=\#\{\mathfrak{p}\in S_{p}^{\operatorname{ss}}\mid\epsilon_{\mathfrak{p}}\in\{0,1\}\}-\#\{\mathfrak{p}\in S_{p}^{\operatorname{ss}}\mid\epsilon_{\mathfrak{p}}=\operatorname{rel}\}.
  • (2)

    If ϵ𝔭Spss{+,,rel}\epsilon\in\prod_{\mathfrak{p}\in S_{p}^{\operatorname{ss}}}\{+,-,\operatorname{rel}\} and Assumption 2.6 holds for at least one multi-sign ϵ\epsilon^{\prime} with ϵϵ\epsilon^{\prime}\leq\epsilon, then we also have H1(CSϵ)=0H^{1}(C_{S}^{\epsilon})=0.

Proof.

(1) By E(K)[p]=0E(K_{\infty})[p]=0, we have 𝖱ΓIw(K,Σ/K,TpE)D[1,2]()\mathsf{R}\Gamma_{\operatorname{Iw}}(K_{\infty,\Sigma}/K_{\infty},T_{p}E)\in D^{[1,2]}(\mathcal{R}). Then by Proposition 6.1 and Lemma 6.2, we obtain CSϵD[1,2]()C_{S}^{\epsilon}\in D^{[1,2]}(\mathcal{R}). By (6.6), we immediately obtain H2(CSϵ)𝔛SϵH^{2}(C_{S}^{\epsilon})\simeq\mathfrak{X}_{S}^{\epsilon}. The formula about χ(CSϵ)\chi_{\mathcal{R}}(C_{S}^{\epsilon}) follows from a standard application of Euler-Poincare characteristic formulas (e.g., [19, (7.3.1), (8.7.4)]), together with the formula (6.1).

(2) For the given ϵ\epsilon^{\prime}, we have χ(CSϵ)=0\chi_{\mathcal{R}}(C_{S}^{\epsilon^{\prime}})=0 by (1) and so H1(CSϵ)=0H^{1}(C_{S}^{\epsilon^{\prime}})=0 as H2(CSϵ)𝔛SϵH^{2}(C_{S}^{\epsilon^{\prime}})\simeq\mathfrak{X}_{S}^{\epsilon^{\prime}} is torsion. Since we have an injective homomorphism H1(CSϵ)H1(CSϵ)H^{1}(C_{S}^{\epsilon})\hookrightarrow H^{1}(C_{S}^{\epsilon^{\prime}}), we obtain the claim. ∎

We now obtain a reformulation of the definition of the algebraic pp-adic LL-functions (Definition 2.7).

Proposition 6.5.

Let ϵ\epsilon be a multi-sign satisfying Assumption 2.6. Then we have H1(CSϵ)=0H^{1}(C_{S}^{\epsilon})=0, pd(𝔛Sϵ)1\operatorname{pd}_{\mathcal{R}}(\mathfrak{X}_{S}^{\epsilon})\leq 1, and

d(CSϵ)=(Sϵ).\mathrm{d}_{\mathcal{R}}(C_{S}^{\epsilon})=(\mathcal{L}_{S}^{\epsilon}).
Proof.

As we saw in Proposition 6.4, we have H1(CSϵ)=0H^{1}(C_{S}^{\epsilon})=0 and so pd(H2(CSϵ))1\operatorname{pd}_{\mathcal{R}}(H^{2}(C_{S}^{\epsilon}))\leq 1. The displayed formula follows from Proposition 5.1 applied to CSϵC_{S}^{\epsilon}. ∎

7. The proof of the first main result

In this section, we prove Theorem 1.1 and Corollary 1.2.

7.1. The proof of Theorem 1.1

We mimic the proof of [8, Theorem 5.3]. We first construct a key diagram in Proposition 7.1, and then apply the snake lemma.

As in §1.2, let us take multi-signs ϵ1,,ϵn\epsilon_{1},\dots,\epsilon_{n} and define ϵ¯\overline{\epsilon} and ϵ¯\underline{\epsilon}. For each 1in1\leq i\leq n, we define a multi-index δi=(δi,𝔭)𝔭𝔭Spss{+,,rel}\delta_{i}=(\delta_{i,\mathfrak{p}})_{\mathfrak{p}}\in\prod_{\mathfrak{p}\in S_{p}^{\operatorname{ss}}}\{+,-,\operatorname{rel}\} by

δi,𝔭={ϵi,𝔭(if ϵ¯𝔭=rel)rel(if ϵ¯𝔭=ϵi,𝔭).\delta_{i,\mathfrak{p}}=\begin{cases}\epsilon_{i,\mathfrak{p}}&(\text{if $\overline{\epsilon}_{\mathfrak{p}}=\operatorname{rel}$})\\ \operatorname{rel}&(\text{if $\overline{\epsilon}_{\mathfrak{p}}=\epsilon_{i,\mathfrak{p}}$}).\end{cases}

Equivalently, δi\delta_{i} is the maximum element such that inf{δi,ϵ¯}=ϵi\inf\{\delta_{i},\overline{\epsilon}\}=\epsilon_{i}. Using the notation in §6, we define

𝔇i=DSpssδi.\mathfrak{D}_{i}=D_{S_{p}^{\operatorname{ss}}}^{\delta_{i}}.

This is consistent with the definition of 𝔇i\mathfrak{D}_{i} in §1.2. Then sequence (1.1) follows from the definition of the Selmer groups. Moreover, by Proposition 6.1, the module 𝔇i\mathfrak{D}_{i} is free of rank ll over \mathcal{R}.

By Definition 6.3, we have a triangle

(7.1) 𝔇i[2]CSϵ¯CSϵi,\mathfrak{D}_{i}[-2]\to C_{S}^{\overline{\epsilon}}\to C_{S}^{\epsilon_{i}},

the long exact sequence of which gives an exact sequence

(7.2) 0𝔇i𝔛Sϵ¯𝔛Sϵi0.0\to\mathfrak{D}_{i}\to\mathfrak{X}_{S}^{\overline{\epsilon}}\to\mathfrak{X}_{S}^{\epsilon_{i}}\to 0.

Here, the injectivity of the map 𝔇i𝔛Sϵ¯\mathfrak{D}_{i}\to\mathfrak{X}_{S}^{\overline{\epsilon}} follows from Assumption 2.6 for ϵi\epsilon_{i} and Proposition 6.4. Then (7.2) implies that 𝔛Sϵ¯\mathfrak{X}_{S}^{\overline{\epsilon}} is generically of rank ll over \mathcal{R}.

The key diagram is the following.

Proposition 7.1.

We have a commutative diagram

i=1nl𝔇i\textstyle{\bigoplus_{i=1}^{n}\bigwedge_{\mathcal{R}}^{l}\mathfrak{D}_{i}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\simeq}f1\scriptstyle{f_{1}}i=1nDet(𝔇i)\textstyle{\bigoplus_{i=1}^{n}\operatorname{Det}_{\mathcal{R}}(\mathfrak{D}_{i})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f2\scriptstyle{f_{2}}l𝔛Sϵ¯\textstyle{\bigwedge_{\mathcal{R}}^{l}\mathfrak{X}_{S}^{\overline{\epsilon}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ψ\scriptstyle{\Psi}Det(CSϵ¯)\textstyle{\operatorname{Det}_{\mathcal{R}}(C_{S}^{\overline{\epsilon}})}

which satisfies the following properties:

Ker(Ψ)=(l𝔛Sϵ¯)tor,Coker(Ψ)Fitt(E1(𝔛Sϵ¯)),\operatorname{Ker}(\Psi)=\left(\bigwedge_{\mathcal{R}}^{l}\mathfrak{X}_{S}^{\overline{\epsilon}}\right)_{\operatorname{tor}},\qquad\operatorname{Coker}(\Psi)\simeq{\mathcal{R}\over\operatorname{Fitt}_{\mathcal{R}}\left(E^{1}(\mathfrak{X}_{S}^{\overline{\epsilon}})\right)},

and

Coker(f2)i=1n(Sϵi).\operatorname{Coker}(f_{2})\simeq\frac{\mathcal{R}}{\sum_{i=1}^{n}(\mathcal{L}_{S}^{\epsilon_{i}})}.
Proof.

We first construct the diagram. We define the upper horizontal arrow as the tautological map. By Proposition 6.4, we can apply Proposition 5.2 to CSϵ¯[1]C_{S}^{\overline{\epsilon}}[1] (note that χ(CSϵ¯[1])=l\chi_{\mathcal{R}}(C_{S}^{\overline{\epsilon}}[1])=l). As a result we construct the map Ψ\Psi in the lower horizontal arrow. The map f1f_{1} is the natural one (see (7.2)). The map f2f_{2} is defined by

(7.3) Det(𝔇i)Det(CSϵ¯)Det1(CSϵi)Det(CSϵ¯),\operatorname{Det}_{\mathcal{R}}(\mathfrak{D}_{i})\simeq\operatorname{Det}_{\mathcal{R}}(C_{S}^{\overline{\epsilon}})\otimes\operatorname{Det}_{\mathcal{R}}^{-1}(C_{S}^{\epsilon_{i}})\hookrightarrow\operatorname{Det}_{\mathcal{R}}(C_{S}^{\overline{\epsilon}}),

where the isomorphism comes from the triangle (7.1) and the injective map is induced by the map ιCSϵi\iota_{C_{S}^{\epsilon_{i}}} introduced before Proposition 5.1. By the constructions, it is easy to show that the diagram is commutative.

We now show the claimed properties. The descriptions of the kernel and the cokernel of Ψ\Psi are just fundamental properties in general. Since the cokernel of (7.3) is isomorphic to

/d(CSϵi)=/(Sϵi)\mathcal{R}/\mathrm{d}(C_{S}^{\epsilon_{i}})=\mathcal{R}/(\mathcal{L}_{S}^{\epsilon_{i}})

by Proposition 6.5, we have the description of Coker(f2)\operatorname{Coker}(f_{2}). ∎

Proof of Theorem 1.1.

By Proposition 7.1, we have a commutative diagram

i=1nl𝔇i\textstyle{\bigoplus_{i=1}^{n}\bigwedge_{\mathcal{R}}^{l}\mathfrak{D}_{i}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\simeq}f1\scriptstyle{f_{1}}i=1nDet(𝔇i)\textstyle{\bigoplus_{i=1}^{n}\operatorname{Det}_{\mathcal{R}}(\mathfrak{D}_{i})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f2\scriptstyle{f_{2}}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(l𝔛Sϵ¯)/tor\textstyle{\left(\bigwedge_{\mathcal{R}}^{l}\mathfrak{X}_{S}^{\overline{\epsilon}}\right)_{/\operatorname{tor}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ψ\scriptstyle{\Psi}Det(CSϵ¯)\textstyle{\operatorname{Det}_{\mathcal{R}}(C_{S}^{\overline{\epsilon}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Coker(Ψ)\textstyle{\operatorname{Coker}(\Psi)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}

with the lower sequence exact. Now Theorem 1.1 follows immediately from the snake lemma applied to this diagram, by using the properties claimed in Proposition 7.1. ∎

7.2. The proof of Corollary 1.2

We first show a general proposition.

Proposition 7.2.

Let \mathcal{R} be a ring as in §5.2. Let MM be a finitely generated \mathcal{R}-module with pd(M)1\operatorname{pd}_{\mathcal{R}}(M)\leq 1. We put N=E1(M)N=E^{1}(M). Then the following hold.

  • (1)

    MM is torsion-free over \mathcal{R} if and only if NN is pseudo-null.

  • (2)

    We suppose the equivalent conditions in (1) and moreover that the generic rank of MM over \mathcal{R} is one. Then we have an (abstract) isomorphism

    /Fitt(N)E2(N).\mathcal{R}/\operatorname{Fitt}_{\mathcal{R}}(N)\simeq E^{2}(N).
Proof.

(1) We regard MM as a module over Λ\Lambda by the forgetful functor. Since pdΛ(M)1\operatorname{pd}_{\Lambda}(M)\leq 1, we have MPN=0M_{\operatorname{PN}}=0. This implies that MM is torsion-free if and only if M𝔮M_{\mathfrak{q}} is torsion-free over Λ𝔮\Lambda_{\mathfrak{q}} for every height one prime ideal 𝔮\mathfrak{q} of Λ\Lambda. Since Λ𝔮\Lambda_{\mathfrak{q}} is a discrete valuation ring, M𝔮M_{\mathfrak{q}} is torsion-free if and only if M𝔮M_{\mathfrak{q}} is free. On the other hand, N=E1(M)N=E^{1}(M) is pseudo-null if and only if

ExtΛ𝔮1(M𝔮,Λ𝔮)ExtΛ1(M,Λ)𝔮\operatorname{Ext}^{1}_{\Lambda_{\mathfrak{q}}}(M_{\mathfrak{q}},\Lambda_{\mathfrak{q}})\simeq\operatorname{Ext}^{1}_{\Lambda}(M,\Lambda)_{\mathfrak{q}}

vanishes, that is, M𝔮M_{\mathfrak{q}} is free over Λ𝔮\Lambda_{\mathfrak{q}} for any 𝔮\mathfrak{q} as above. These observations imply the claim.

(2) We first show that E2(N)E^{2}(N) is a cyclic module over \mathcal{R}. We take an exact sequence

0FFM00\to F\to F^{\prime}\to M\to 0

with FF and FF^{\prime} free modules over \mathcal{R} of finite ranks. By rank(M)=1\operatorname{rank}_{\mathcal{R}}(M)=1, we have rank(F)=rank(F)+1\operatorname{rank}_{\mathcal{R}}(F^{\prime})=\operatorname{rank}_{\mathcal{R}}(F)+1. We obtain an exact sequence

0M(F)FN0,0\to M^{*}\to(F^{\prime})^{*}\to F^{*}\to N\to 0,

where in general we put ()=Hom(,)(-)^{*}=\operatorname{Hom}_{\mathcal{R}}(-,\mathcal{R}). By the assumption that NN is pseudo-null, applying [8, Proposition 2.4], we deduce that MM^{*} is a free module over \mathcal{R} of rank one (alternatively one may apply [9, Proposition 3.1(c)]). Thus the above sequence is a free resolution of NN. Note that this implies pd(N)2\operatorname{pd}_{\mathcal{R}}(N)\leq 2. Moreover, the module E2(N)E^{2}(N) is a quotient of MM^{**}, which is again free of rank one. Therefore, E2(N)E^{2}(N) is a cyclic, as claimed.

This observation implies that we have an isomorphism E2(N)/Fitt(E2(N))E^{2}(N)\simeq\mathcal{R}/\operatorname{Fitt}_{\mathcal{R}}(E^{2}(N)). On the other hand, since NN is pseudo-null and pd(N)2\operatorname{pd}_{\mathcal{R}}(N)\leq 2, we have Fitt(E2(N))=Fitt(N)\operatorname{Fitt}_{\mathcal{R}}(E^{2}(N))=\operatorname{Fitt}_{\mathcal{R}}(N) by [8, Proposition A.2(2)]. This completes the proof. ∎

Proof of Corollary 1.2.

We have only to prove claim (2). By Proposition 6.4, we have pd(𝔛Sϵ¯)1\operatorname{pd}_{\mathcal{R}}(\mathfrak{X}_{S}^{\overline{\epsilon}})\leq 1. Moreover, the generic rank of 𝔛Sϵ¯\mathfrak{X}_{S}^{\overline{\epsilon}} is l=1l=1. Hence the corollary immediately follows from Proposition 7.2 applied to M=𝔛Sϵ¯M=\mathfrak{X}_{S}^{\overline{\epsilon}}. ∎

8. The proof of the second main result

In this section, we prove Theorem 1.3.

8.1. The self-duality

We keep the notations in §§4.14.3, so E/pE/\mathbb{Q}_{p} is a supersingular elliptic curve satisfying ap(E)=0a_{p}(E)=0.

The goal of this subsection is to prove the self-duality of Dg±D_{g}^{\pm} under local duality (Proposition 8.1). The self-duality is stated in [16, Proposition 7.11] in the situation they deal with, but the proof has a flaw; we cannot make use of anti-symmetricity. Instead, we adapt the argument of B. D. Kim [11, Proposition 3.15] (a more general statement is given in [12, Theorem 2.9]). The author thanks Antonio Lei and Bharathwaj Palvannan for answering relevant questions.

We first fix notations on various pairings. Let ff be a positive integer. For each n1n\geq-1 and j0j\geq 0, we have the (perfect) local Tate pairing

[,]f,nj:H1(pf,n,E[pj])×H1(pf,n,E[pj])/pj.[-,-]_{f,n}^{j}:H^{1}(\mathbb{Q}_{p^{f},n},E[p^{j}])\times H^{1}(\mathbb{Q}_{p^{f},n},E[p^{j}])\to\mathbb{Z}/p^{j}\mathbb{Z}.

This pairing is induced by the Weil pairing E[pj]×E[pj]μpjE[p^{j}]\times E[p^{j}]\to\mu_{p^{j}}. Then we define a pairing

,f,nj:H1(pf,n,E[pj])ι×H1(pf,n,E[pj])Rf,n/pj\langle-,-\rangle_{f,n}^{j}:H^{1}(\mathbb{Q}_{p^{f},n},E[p^{j}])^{\iota}\times H^{1}(\mathbb{Q}_{p^{f},n},E[p^{j}])\to R_{f,n}/p^{j}

by

x,yf,nj=σGal(pf,n/p)[xσ,y]f,njσ\langle x,y\rangle_{f,n}^{j}=\sum_{\sigma\in\operatorname{Gal}(\mathbb{Q}_{p^{f},n}/\mathbb{Q}_{p})}[x^{\sigma},y]_{f,n}^{j}\sigma

for xH1(pf,n,E[pj])ιx\in H^{1}(\mathbb{Q}_{p^{f},n},E[p^{j}])^{\iota} and yH1(pf,n,E[pj])y\in H^{1}(\mathbb{Q}_{p^{f},n},E[p^{j}]). Note that ,f,nj\langle-,-\rangle_{f,n}^{j} is Rf,n/pjR_{f,n}/p^{j}-bilinear because [,]f,nj[-,-]_{f,n}^{j} is Galois invariant. Moreover, the pairing ,f,nj\langle-,-\rangle_{f,n}^{j} is compatible with respect to ff, nn, and jj. Therefore, by taking the limit, we obtain a pairing

,g:HIw1(pg,,TpE)ι×HIw1(pg,,TpE)g\langle-,-\rangle_{g}:H^{1}_{\operatorname{Iw}}(\mathbb{Q}_{p^{g},\infty},T_{p}E)^{\iota}\times H^{1}_{\operatorname{Iw}}(\mathbb{Q}_{p^{g},\infty},T_{p}E)\to\mathcal{R}_{g}

for a supernatural number gg. This is nothing but the perfect pairing describing the local Tate duality (cf. (8.3) below).

On the other hand, [,]f,nj[-,-]_{f,n}^{j} also induces a perfect pairing

[,]g:HIw1(pg,,TpE)×H1(pg,,E[p])p/p.[-,-]_{g}:H^{1}_{\operatorname{Iw}}(\mathbb{Q}_{p^{g},\infty},T_{p}E)\times H^{1}(\mathbb{Q}_{p^{g},\infty},E[p^{\infty}])\to\mathbb{Q}_{p}/\mathbb{Z}_{p}.

Now we consider the submodule Dg±D_{g}^{\pm} of H1(pg,,E[p])HIw1(pg,,TpE)H^{1}(\mathbb{Q}_{p^{g},\infty},E[p^{\infty}])^{\vee}\simeq H^{1}_{\operatorname{Iw}}(\mathbb{Q}_{p^{g},\infty},T_{p}E) defined in §4.3. By the definition, Dg±D_{g}^{\pm} is the exact annihilator of E±(pg,)(p/p)E^{\pm}(\mathbb{Q}_{p^{g},\infty})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p}) with respect to [,]g[-,-]_{g}.

Proposition 8.1.

For a supernatural number gg and a choice of ±\pm, we have

(Dg±)ι,Dg±g=0.\langle(D_{g}^{\pm})^{\iota},D_{g}^{\pm}\rangle_{g}=0.
Proof.

First we observe that we may assume that g=fg=f is a positive integer. This is because the pairing ,g\langle-,-\rangle_{g} and the module Dg±D_{g}^{\pm} are both the projective limit with respect to positive integers fgf\mid g.

As in [11, §3.3], let us put

𝕓f±=E±(pf,)(p/p)H1(pf,,E[p]),\mathbb{bH}_{f}^{\pm}=E^{\pm}(\mathbb{Q}_{p^{f},\infty})\otimes(\mathbb{Q}_{p}/\mathbb{Z}_{p})\subset H^{1}(\mathbb{Q}_{p^{f},\infty},E[p^{\infty}]),

whose precise structure is described in Proposition 4.4. For n0n\geq 0, we put

Γn=Gal(pf,/pf,n)Gal(p(μp)/p(μpn+1)).\Gamma_{n}=\operatorname{Gal}(\mathbb{Q}_{p^{f},\infty}/\mathbb{Q}_{p^{f},n})\simeq\operatorname{Gal}(\mathbb{Q}_{p}(\mu_{p^{\infty}})/\mathbb{Q}_{p}(\mu_{p^{n+1}})).

For a while, let us suppose that either ±=\pm=- or 4f4\nmid f holds. Then Proposition 4.4 shows that 𝕓f±\mathbb{bH}_{f}^{\pm} is a cofree module of corank one over f\mathcal{R}_{f}. Therefore, we may apply [12, Theorem 2.9], which is a generalization of [11, Proposition 3.15]. As a consequence, (𝕓f±)Γn[pj](\mathbb{bH}_{f}^{\pm})^{\Gamma_{n}}[p^{j}] is the exact annihilator of itself with respect to [,]f,nj[-,-]_{f,n}^{j}. Since 𝕓f±=limn,j(𝕓f±)Γn[pj]\mathbb{bH}_{f}^{\pm}=\varinjlim_{n,j}(\mathbb{bH}_{f}^{\pm})^{\Gamma_{n}}[p^{j}], by taking the limit, we obtain

Df±=limn,j(𝕓f±)Γn[pj].D_{f}^{\pm}=\varprojlim_{n,j}(\mathbb{bH}_{f}^{\pm})^{\Gamma_{n}}[p^{j}].

On the other hand, [(𝕓f±)Γn[pj],(𝕓f±)Γn[pj]]f,nj=0[(\mathbb{bH}_{f}^{\pm})^{\Gamma_{n}}[p^{j}],(\mathbb{bH}_{f}^{\pm})^{\Gamma_{n}}[p^{j}]]_{f,n}^{j}=0 also implies (𝕓f±)Γn[pj]ι,(𝕓f±)Γn[pj]f,nj=0\langle(\mathbb{bH}_{f}^{\pm})^{\Gamma_{n}}[p^{j}]^{\iota},(\mathbb{bH}_{f}^{\pm})^{\Gamma_{n}}[p^{j}]\rangle_{f,n}^{j}=0, so taking the projective limit, we obtain (Df±)ι,Df±=0\langle(D_{f}^{\pm})^{\iota},D_{f}^{\pm}\rangle=0 as desired.

If ±=+\pm=+ and 4f4\mid f, we cannot directly apply [12, Theorem 2.9]. However, by Proposition 4.4(1), the obstruction is the failure of φ+φ1\varphi+\varphi^{-1} to be an automorphism on Rf,1R_{f,-1}, and can be at any rate bounded by Rf,1R_{f,-1} in some sense. Moreover, the statement of the proposition is the vanishing of a submodule of f\mathcal{R}_{f}, so obstructions caused by torsion modules do not matter at all. These observations enable us to modify the above argument to prove the proposition. We omit the details, as this case is not necessary for the proof of Theorem 1.3. ∎

We give a corollary which will be used in the proof of Theorem 1.3. Recall that ()(-)^{*} denotes the linear dual.

Proposition 8.2.

The isomorphism

HIw1(pg,,TpE)ιHIw1(pg,,TpE),H^{1}_{\operatorname{Iw}}(\mathbb{Q}_{p^{g},\infty},T_{p}E)^{\iota}\overset{\sim}{\to}H^{1}_{\operatorname{Iw}}(\mathbb{Q}_{p^{g},\infty},T_{p}E)^{*},

induced by the pairing ,g\langle-,-\rangle_{g}, induces a homomorphism

(8.1) HIw1(pg,,TpE)ι(Dg±)ι(Dg±).{H^{1}_{\operatorname{Iw}}(\mathbb{Q}_{p^{g},\infty},T_{p}E)^{\iota}\over(D_{g}^{\pm})^{\iota}}\to(D_{g}^{\pm})^{*}.

Moreover, the homomorphism (8.1) is an isomorphism if and only if either ±=\pm=- or 4g4\nmid g.

Proof.

The homomorphism (8.1) is induced because of Proposition 8.1. For the final claim, we use Proposition 4.8. If (8.1) is isomorphic, then (Dg±)ι(D_{g}^{\pm})^{\iota} is a direct summand of HIw1(pg,,TpE)ιH^{1}_{\operatorname{Iw}}(\mathbb{Q}_{p^{g},\infty},T_{p}E)^{\iota}, so either ±=\pm=- or 4g4\nmid g holds. If either ±=\pm=- or 4g4\nmid g holds, then both sides of (8.1) are free of rank one and the homomorphism is surjective, so it is isomorphic. ∎

We also record an ordinary analogue. The proof is similar; we use Proposition 4.10 instead of Proposition 4.8.

Proposition 8.3.

In the situation of Proposition 4.10, the isomorphism

HIw1(L,TpE)ιHIw1(L,TpE)H^{1}_{\operatorname{Iw}}(L,T_{p}E)^{\iota}\overset{\sim}{\to}H^{1}_{\operatorname{Iw}}(L,T_{p}E)^{*}

induces an isomorphism

HIw1(L,TpE)ιDιD.{H^{1}_{\operatorname{Iw}}(L,T_{p}E)^{\iota}\over D^{\iota}}\overset{\sim}{\to}D^{*}.

8.2. The proof of Theorem 1.3

We keep the notations in Theorem 1.3. We assume Assumption 2.6; more precisely, we only have to assume it for at least one multi-sign ϵ\epsilon^{\prime} with ϵϵ\epsilon^{\prime}\leq\epsilon.

Recall the complex CSϵC_{S}^{\epsilon} introduced in §6. Then by the very definition of Ext functors, we have an isomorphism

(8.2) E1(𝔛Sϵ)H1((CSϵ)).E^{1}(\mathfrak{X}_{S}^{\epsilon})\simeq H^{-1}((C_{S}^{\epsilon})^{*}).

In Proposition 8.6 below, we will compute (CSϵ)(C_{S}^{\epsilon})^{*}. We prepare preliminary local results in advance.

By the local duality (cf. [8, Proposition 3.3]), we have

(8.3) 𝖱ΓIw(K,v,TpE)𝖱ΓIw(K,v,TpE)ι[2]\mathsf{R}\Gamma_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)^{*}\simeq\mathsf{R}\Gamma_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)^{\iota}[2]

for each finite prime vv of FF. In Lemmas 8.4 and 8.5 below, we observe the behavior of triangles (6.2) and (6.3) under the local duality, respectively.

Lemma 8.4.

We have a morphism between two triangles obtained by (6.2):

HIw1(Kp,TpE)Dpϵ[1]\textstyle{{H^{1}_{\operatorname{Iw}}(K_{\infty}\otimes\mathbb{Q}_{p},T_{p}E)\over D_{p}^{\epsilon}}[-1]^{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝖱ΓIw(Kp,TpE)\textstyle{\mathsf{R}\Gamma_{\operatorname{Iw}}(K_{\infty}\otimes\mathbb{Q}_{p},T_{p}E)^{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Dpϵ[1]\textstyle{D_{p}^{\epsilon}[-1]^{*}}Dpη,ι[1]\textstyle{D_{p}^{\eta,\iota}[1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝖱ΓIw(Kp,TpE)ι[2]\textstyle{\mathsf{R}\Gamma_{\operatorname{Iw}}(K_{\infty}\otimes\mathbb{Q}_{p},T_{p}E)^{\iota}[2]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}

\sim

HIw1(Kp,TpE)ιDpη,ι[1]\textstyle{{H^{1}_{\operatorname{Iw}}(K_{\infty}\otimes\mathbb{Q}_{p},T_{p}E)^{\iota}\over D_{p}^{\eta,\iota}}[1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}

where the middle vertical arrow is the direct sum of (8.3) for v=𝔭Sp(F)v=\mathfrak{p}\in S_{p}(F). Moreover, under the condition ()(\star) in Theorem 1.3, the vertical arrows are all quasi-isomorphic.

Proof.

We apply Propositions 8.2 and 8.3 to each prime 𝔭Sp(F)\mathfrak{p}\in S_{p}(F). By taking the direct sum, we obtain the lemma. ∎

Lemma 8.5.

For vSp(F)Sram,p(K/F)v\not\in S_{p}(F)\cup S_{\operatorname{ram},p}(K_{\infty}/F), we have a morphism between two triangles obtained by (6.3):

HIw2(K,v,TpE)[2]\textstyle{H^{2}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)[-2]^{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝖱ΓIw(K,v,TpE)\textstyle{\mathsf{R}\Gamma_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)^{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}HIw1(K,v,TpE)[1]\textstyle{H^{1}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)[-1]^{*}}HIw1(K,v,TpE)ι[1]\textstyle{H^{1}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)^{\iota}[1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝖱ΓIw(K,v,TpE)ι[2]\textstyle{\mathsf{R}\Gamma_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)^{\iota}[2]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}

\sim

HIw2(K,v,TpE)ι[0],\textstyle{H^{2}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)^{\iota}[0],\ignorespaces\ignorespaces\ignorespaces\ignorespaces}

where the middle vertical arrow is (8.3). Moreover, the cone of the left vertical arrow is quasi-isomorphic to E2(HIw2(K,v,TpE))[0]E^{2}(H^{2}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E))[0]; in other words, we have a triangle

HIw1(K,v,TpE)ι[1]HIw2(K,v,TpE)[2]E2(HIw2(K,v,TpE))[0].H^{1}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)^{\iota}[1]\to H^{2}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)[-2]^{*}\to E^{2}(H^{2}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E))[0].
Proof.

By Lemma 6.2 and the fact that HIwi(K,v,TpE)H^{i}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E) is a torsion module for i=1,2i=1,2, we have

Hi(HIw1(K,v,TpE)[1])=0H^{i}(H^{1}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)[-1]^{*})=0

for i0i\neq 0 and

Hi(HIw2(K,v,TpE)[2])=0H^{i}(H^{2}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)[-2]^{*})=0

for i1,0i\neq-1,0. Thus the upper triangle of this lemma implies

H1(HIw2(K,v,TpE)[2])H1(𝖱ΓIw(K,v,TpE))HIw1(K,v,TpE)ι,H^{-1}(H^{2}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)[-2]^{*})\simeq H^{-1}(\mathsf{R}\Gamma_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)^{*})\simeq H^{1}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)^{\iota},

where the final isomorphism is due to the middle vertical arrow. This implies the existence of the left vertical arrow, and so the right vertical arrow also exists. We have

H0(HIw2(K,v,TpE)[2])E2(HIw2(K,v,TpE))H^{0}(H^{2}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)[-2]^{*})\simeq E^{2}(H^{2}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E))

by the definition of Ext functor, so the final assertion also holds. ∎

Proposition 8.6.

Under the condition ()(\star), we have a triangle

CSη,ι(CSϵ)[3]vS𝖱ΓIw(K,v,TpE)ιvΣ0SE2(HIw2(K,v,TpE))[2].C_{S}^{\eta,\iota}\to(C_{S}^{\epsilon})^{*}[-3]\to\bigoplus_{v\in S}\mathsf{R}\Gamma_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)^{\iota}\oplus\bigoplus_{v\in\Sigma_{0}\setminus S}E^{2}(H^{2}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E))[-2].
Proof.

By the linear dual of the definition of CSϵC_{S}^{\epsilon} in Definition 6.3, after translation, we obtain a triangle

(8.4) (CSϵ)[3]\displaystyle(C_{S}^{\epsilon})^{*}[-3]
(8.5) vS𝖱ΓIw(K,v,TpE)[2](HIw1(Kp,TpE)Dpϵ)[1]vΣ0SHIw2(K,v,TpE)[0]\displaystyle\to\bigoplus_{v\in S}\mathsf{R}\Gamma_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)^{*}[-2]\oplus\left(H^{1}_{\operatorname{Iw}}(K_{\infty}\otimes\mathbb{Q}_{p},T_{p}E)\over D_{p}^{\epsilon}\right)[1]^{*}\oplus\bigoplus_{v\in\Sigma_{0}\setminus S}H^{2}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)[0]^{*}
(8.6) 𝖱ΓIw(K,Σ/K,TpE)[2].\displaystyle\to\mathsf{R}\Gamma_{\operatorname{Iw}}(K_{\infty,\Sigma}/K_{\infty},T_{p}E)^{*}[-2].

We compare this with (6.6) for η\eta instead of ϵ\epsilon. This is possible by (8.3), Lemmas 8.4 and 8.5, and a quasi-isomorphism

𝖱ΓIw(K,Σ/K,TpE)𝖱Γ(K,Σ/K,E[p]).\mathsf{R}\Gamma_{\operatorname{Iw}}(K_{\infty,\Sigma}/K_{\infty},T_{p}E)^{*}\simeq\mathsf{R}\Gamma(K_{\infty,\Sigma}/K_{\infty},E[p^{\infty}])^{\vee}.

As a result, we obtain the desired triangle. ∎

Proof of Theorem 1.3.

Recall the isomorphism (8.2). The triangle in Proposition 8.6 gives an exact sequence

(8.7) vSHIw1(K,v,TpE)ι\displaystyle\bigoplus_{v\in S}H^{1}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)^{\iota} H2(CSη,ι)H1((CSϵ))\displaystyle\to H^{2}(C_{S}^{\eta,\iota})\to H^{-1}((C_{S}^{\epsilon})^{*})
(8.8) vSHIw2(K,v,TpE)ιvΣ0SE2(HIw2(K,v,TpE))0.\displaystyle\to\bigoplus_{v\in S}H^{2}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)^{\iota}\oplus\bigoplus_{v\in\Sigma_{0}\setminus S}E^{2}(H^{2}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E))\to 0.

Since H2(CSη,ι)(𝔛Sη)ιH^{2}(C_{S}^{\eta,\iota})\simeq(\mathfrak{X}_{S}^{\eta})^{\iota}, the cokernel of the first map to H2(CSη,ι)H^{2}(C_{S}^{\eta,\iota}) is isomorphic to (𝔛η)ι(\mathfrak{X}^{\eta})^{\iota}.

As in the proof of Lemma 6.2, for each vΣ0Sv\in\Sigma_{0}\setminus S, the \mathcal{R}-module HIw2(K,v,TpE)H^{2}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E) is induced from v\mathcal{R}_{v} and the Krull dimension of v\mathcal{R}_{v} is two. This implies pd(HIw2(K,v,TpE)/PN)1\operatorname{pd}_{\mathcal{R}}(H^{2}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)_{/\operatorname{PN}})\leq 1, so we have

E2(HIw2(K,v,TpE)PN)E2(HIw2(K,v,TpE)).E^{2}(H^{2}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)_{\operatorname{PN}})\simeq E^{2}(H^{2}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)).

Moreover, by the local duality, we have HIw2(K,v,TpE)H0(K,v,E[p])H^{2}_{\operatorname{Iw}}(K_{\infty,v},T_{p}E)\simeq H^{0}(K_{\infty,v},E[p^{\infty}])^{\vee} for each finite prime vv of FF. This completes the proof of Theorem 1.3. ∎

Acknowledgments

I am sincerely grateful to Masato Kurihara for his constant support and encouragement during this research. I also thank Antonio Lei and Bharathwaj Palvannan for their responses to my queries concerning their paper [16]. This research was supported by JSPS KAKENHI Grant Number 19J00763.

References

  • [1] S. Ahmed and M. F. Lim. On the algebraic functional equation for the mixed signed Selmer group over multiple p\mathbb{Z}_{p}-extensions. Proc. Amer. Math. Soc., 149(11):4541–4553, 2021.
  • [2] F. M. Bleher, T. Chinburg, R. Greenberg, M. Kakde, G. Pappas, R. Sharifi, and M. J. Taylor. Higher Chern classes in Iwasawa theory. Amer. J. Math., 142(2):627–682, 2020.
  • [3] F. M. Bleher, T. Chinburg, R. Greenberg, M. Kakde, R. Sharifi, and M. J. Taylor. Exterior powers in Iwasawa theory. J. Eur. Math. Soc. (JEMS), 24(3):967–1005, 2022.
  • [4] J. Coates and R. Sujatha. Fine Selmer groups of elliptic curves over pp-adic Lie extensions. Math. Ann., 331(4):809–839, 2005.
  • [5] R. Greenberg. Iwasawa theory, projective modules, and modular representations. Mem. Amer. Math. Soc., 211(992):vi+185, 2011.
  • [6] T. Kataoka. Equivariant Iwasawa theory for elliptic curves. Math. Z., 298(3-4):1653–1725, 2021.
  • [7] T. Kataoka. Fitting ideals in two-variable equivariant Iwasawa theory and an application to CM elliptic curves. to appear in Tokyo Journal of Mathematics, doi: 10.3836/tjm/1502179347, 2021.
  • [8] T. Kataoka. Higher codimension behavior in equivariant Iwasawa theory for CM-fields. arXiv preprint, arXiv:2103.13707, 2021.
  • [9] T. Kataoka. Finite submodules of unramified Iwasawa modules for multi-variable extensions. J. Number Th., 239:228–250, 2022.
  • [10] K. Kato. pp-adic Hodge theory and values of zeta functions of modular forms. Astérisque, (295):ix, 117–290, 2004. Cohomologies pp-adiques et applications arithmétiques. III.
  • [11] B. D. Kim. The parity conjecture for elliptic curves at supersingular reduction primes. Compos. Math., 143(1):47–72, 2007.
  • [12] B. D. Kim. Signed-Selmer groups over the p2\mathbb{Z}_{p}^{2}-extension of an imaginary quadratic field. Canad. J. Math., 66(4):826–843, 2014.
  • [13] T. Kitajima and R. Otsuki. On the plus and the minus Selmer groups for elliptic curves at supersingular primes. Tokyo J. Math., 41(1):273–303, 2018.
  • [14] S. Kobayashi. Iwasawa theory for elliptic curves at supersingular primes. Invent. Math., 152(1):1–36, 2003.
  • [15] A. Lei and M. F. Lim. Akashi series and Euler characteristics of signed Selmer groups of elliptic curves with semistable reduction at primes above pp. J. Théor. Nombres Bordeaux, 33(3, part 2):997–1019, 2021.
  • [16] A. Lei and B. Palvannan. Codimension two cycles in Iwasawa theory and elliptic curves with supersingular reduction. Forum Math. Sigma, 7:e25, 81, 2019.
  • [17] M. F. Lim. On the cohomology of Kobayashi’s plus/minus norm groups and applications. Mathematical Proceedings of the Cambridge Philosophical Society, doi: 10.1017/S0305004121000396, 2021.
  • [18] J. Nekovář. Selmer complexes. Astérisque, 310:viii+559, 2006.
  • [19] J. Neukirch, A. Schmidt, and K. Wingberg. Cohomology of number fields, volume 323 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 2008.