This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

High-lying states in the charmonium family

Zhi-Hao Pan1,2,3,4,6 [email protected]    Cheng-Xi Liu1,2,3,4,6 [email protected]    Zi-Long Man1,2,3,4,6    Xiang Liu1,2,3,4,5,6 [email protected] 1School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
2Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, China
3Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou University, Lanzhou 730000, China
4Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China
5MoE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
6Research Center for Hadron and CSR Physics, Lanzhou University and Institute of Modern Physics of CAS, Lanzhou 730000, China
(May 2024)
Abstract

Our understanding of high-lying states within the charmonium family remains incomplete, particularly in light of recent observations of charmonium states at energies above 4 GeV. In this study, we investigate the spectroscopic properties of several high-lying charmonia, focusing on the DD-, FF-, and GG-wave states. A mass spectrum analysis is conducted, incorporating the unquenched effects. We then present a detailed study of the strong decay properties, including partial decay widths for two-body strong decays permitted by the Okubo-Zweig-Iizuka (OZI) rule. Additionally, we explore the primary radiative decay channels associated with these states. Theoretical predictions provided here aim to guide future experimental searches for high-lying charmonium states, particularly at BESIII, Belle II and LHCb.

I Introduction

Since the 1974 discovery of the J/ψJ/\psi particle [1, 2], numerous charmonium states have been experimentally observed, including the ψ(3686)\psi(3686) [3], ηc(1S)\eta_{c}(1S) [4], ηc(2S)\eta_{c}(2S) [5], ψ(4040)\psi(4040) [6], ψ(4415)\psi(4415) [7], hc(1P)h_{c}(1P) [8], χc0(1P)\chi_{c0}(1P) [9], χc1(1P)\chi_{c1}(1P) [10], χc2(1P)\chi_{c2}(1P) [11], and ψ(3770)\psi(3770) [12]. These low-lying charmonium states have significantly influenced the development of theoretical models, particularly the Cornell potential model [13, 14], which provided a quantitative framework for hadron spectroscopy. Building on the Cornell model, several other potential models have been proposed [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28], including the well-known Godfrey-Isgur (GI) model [24]. Collectively, these developments are generally classified under the category of quenched potential models.

Entering the 21st century, the discovery of new hadronic states, including the XYZXYZ charmonium-like states [29, 30, 31, 32, 33, 34, 35], has significantly advanced hadron spectroscopy. This field serves as an essential tool for deepening our understanding of the non-perturbative behavior of the strong interaction. Among these discoveries, the observation of the X(3872)X(3872) [36] garnered considerable attention and sparked widespread discussion within the whole community. The mass discrepancy between the X(3872)X(3872) and the charmonium state χc1(2P)\chi_{c1}(2P), as predicted by the quenched potential model, led several research groups [37, 38] to propose the X(3872)X(3872) as a DD¯D\bar{D}^{*} molecular state, while others argued for a tetraquark interpretation [39, 40]. The significance of unquenched effects [41, 42, 43] in hadron spectroscopy became increasingly recognized with the subsequent observation of the Ds0(2317)D_{s0}^{*}(2317) and Ds1(2460)D_{s1}(2460) mesons, following the discovery of the X(3872)X(3872). In this context, the X(3872)X(3872) can still be classified as part of the charmonium family, as shown by studies employing the unquenched potential model [44, 45, 46, 47, 48]. These developments underscore the importance of considering unquenched effects when studying hadron spectroscopy.

More recently, experiments have identified additional states, such as the ψ3(3842)\psi_{3}(3842) [49], ηc(3945)\eta_{c}(3945), hc(4000)h_{c}(4000), χc1(4010)\chi_{c1}(4010), and hc(4300)h_{c}(4300) [50], along with heavier YY states, including Y(4544)Y(4544) [51], Y(4710)Y(4710) [52], and Y(4790)Y(4790) [53]. These discoveries show the possibility of constructing the charmonium family with high-lying states, offering a promising avenue to enhance our understanding of the hadron spectroscopy.

Refer to caption
Figure 1: Table of Charmonium States. The yellow and green background colors represent well-established low-lying charmonium states [54] and high-lying charmonium states under investigation in this work, respectively. Significant progress has been made over the past few decades in constructing the charmonium family [30, 31, 55, 34, 35]. We have compiled the corresponding charmonium candidates[56, 57, 35], which are highlighted with a red background. In fact, charmonium is not limited to the states listed here; there are many more highly radial and orbital excited states.

In fact, our understanding of high-lying charmonia remains limited compared to the well-established low-lying charmonia. Given the current state of knowledge, there is both strong motivation and significant interest in exploring the spectroscopic properties of high-lying states within the charmonium family. In this work, we focus on the DD-, FF-, and GG-wave states. The mass spectrum and decay properties of these states are critical for their identification in future experiments. Therefore, it is essential to conduct a quantitative calculation to better understand these states.

To obtain the mass spectrum of the high-lying charmonia discussed here, we perform a mass spectrum analysis using a potential model that incorporates the unquenched effect. It is important to highlight the modified Godfrey-Isgur (MGI) model adopted in this work, an effective and successful unquenched approach for the quantitative analysis of high-lying hadron mass spectra [58, 59, 60, 61, 56, 62, 63]. A key feature of the MGI model is its incorporation of the screened potential, which effectively reflects the unquenched effects and has proven successful in calculating the mass spectra of high-lying states [56, 62]. This modification is particularly important for accurately capturing the masses of higher radial and orbital excitations. In this study, we calculate the masses of high-lying states, including the ground states and the first and second radial excitations, for the DD-, FF-, and GG-wave states. This allows us to construct a comprehensive charmonium family, extending from the SS-wave to the GG-wave.

After analyzing the mass spectrum of high-lying charmonium, we examine their two-body Okubo-Zweig-Iizuka (OZI)-allowed decays using the quark pair creation (QPC) model [64, 65, 66, 67], a widely used model for calculating strong decays. By employing the MGI model, we derive the numerical wave functions for these charmonia, which are then used to calculate their strong decays. This allows us to obtain the partial and total decay widths, providing valuable insights for the identification of these states in future experiments.

In addition to studying the strong decays of high-lying charmonia, we also investigate the electromagnetic transitions of charmonium. Radiative decays offer a crucial reference for identifying charmonium states in experiments. In this work, we calculate the radiative decays of DD-, FF-, and GG-wave states and identify their dominant radiative decay channels.

This paper is organized as follows. In Sec. II, we illustrate the MGI model and analyze the mass spectrum of charmonium states with MGI model. And then, in Sec. III we further study the corresponding two body OZI-allowed strong decay behaviors of the discussed states and compare our results with previous results [46]. Then, the calculation method of the radiative decays of singly charmonium states, along with the numerical results are given in Sec. III. The paper ends with a summary.

II Framework and models

II.1 The MGI model

In this study, we employ the MGI model to calculate the mass spectrum of the DD-, FF-, and GG-wave states of charmonium. To obtain the mass spectrum, we introduce a screening potential within the MGI framework [58, 59, 60, 61, 56, 62, 63]. The relevant Hamiltonian is

H~=(p2+m12)1/2+(p2+m22)1/2+V~eff(𝒑,𝒓),\displaystyle\tilde{H}=(p^{2}+m_{1}^{2})^{1/2}+(p^{2}+m_{2}^{2})^{1/2}+\tilde{V}_{\rm eff}(\bm{p},\bm{r}), (1)

where m1m_{1} and m2m_{2} are equal and represent the mass of the cc or c¯\bar{c} quark, respectively. The effective potential V~eff(𝒑,𝒓)\tilde{V}_{\rm eff}(\bm{p},\bm{r}) describes the interaction between cc and c¯\bar{c}, including both a short-range one-gluon-exchange term γμγμ\gamma^{\mu}\otimes\gamma_{\mu} and a long-range confinement term 111\otimes 1. In the non-relativistic limit, V~eff(𝒑,𝒓)\tilde{V}_{\rm eff}(\bm{p},\bm{r}) is reduced to the nonrelativistic potential Veff(r)V_{\rm eff}(r):

Veff(r)=Hconf+Hhyp+Hso,\displaystyle V_{\rm eff}(r)=H^{\rm conf}+H^{\rm hyp}+H^{\rm so}, (2)

where

Hconf=br4αs(r)3r+c\displaystyle H^{\rm conf}=br-\frac{4\alpha_{s}(r)}{3r}+c (3)

is the spin-independent potential, which includes the confining potential, the Coulomb-like potential, and a constant term. Here, αs(r)\alpha_{s}(r) is the running coupling constant. To account for the unquenched effect, it is common to replace the line potential with the screening potential:

brb(1eμr)μ,\displaystyle br\to\frac{b(1-e^{-\mu r})}{\mu}, (4)

where μ\mu represents the strength of the screening effects. Therefore, the spin-independent potential in the MGI model becomes

Hscr=b(1eμr)μ4αs(r)3r+c.\displaystyle H^{\rm scr}=\frac{b(1-e^{-\mu r})}{\mu}-\frac{4\alpha_{s}(r)}{3r}+c. (5)

The color-hyperfine interaction Hhyp H^{\text{hyp }} in Eq. (2) consists of the spin-spin and tensor terms, given by

Hhyp =\displaystyle H^{\text{hyp }}= 4αS(r)3m1m2[8π3𝑺1𝑺2δ3(𝒓)\displaystyle\frac{4\alpha_{S}(r)}{3m_{1}m_{2}}\left[\frac{8\pi}{3}\bm{S}_{1}\cdot\bm{S}_{2}\delta^{3}(\bm{r})\right. (6)
+1r3(3𝑺1𝒓𝑺2𝒓r2𝑺1𝑺2)],\displaystyle\left.+\frac{1}{r^{3}}\left(\frac{3\bm{S}_{1}\cdot\bm{r}\bm{S}_{2}\cdot\bm{r}}{r^{2}}-\bm{S}_{1}\cdot\bm{S}_{2}\right)\right],

where 𝑺1(2)\bm{S}_{1(2)} denotes the spin of the quark (antiquark). The spin-orbit interaction in Eq. (2) is expressed as

Hso=Hso(cm)+Hso(tp).\displaystyle H^{\rm so}=H^{\rm so(cm)}+H^{\rm so(tp)}. (7)

Here, Hso(cm)H^{\rm so(cm)} represents the color-magnetic term, which can be written as

Hso(cm)=4αs(r)3r3(𝑺1m12+𝑺2m22+𝑺1+𝑺2m1m2)𝑳,\displaystyle H^{\rm so(cm)}=\frac{4\alpha_{s}(r)}{3r^{3}}\left(\frac{\bm{S}_{1}}{m^{2}_{1}}+\frac{\bm{S}_{2}}{m^{2}_{2}}+\frac{\bm{S}_{1}+\bm{S}_{2}}{m_{1}m_{2}}\right)\cdot\bm{L}, (8)

where 𝑳\bm{L} is the relative orbital angular momentum between quark and antiquark. Hso(tp)H^{\rm so(tp)} is the Thomas precession term, with the screening effects expressed as

Hso(tp)=12rHscrr(𝑺1m12+𝑺2m22)𝑳.\displaystyle H^{\rm so(tp)}=-\frac{1}{2r}\frac{\partial H^{\rm scr}}{\partial r}\left(\frac{\bm{S}_{1}}{m_{1}^{2}}+\frac{\bm{S}_{2}}{m_{2}^{2}}\right)\cdot\bm{L}. (9)

Additionally, the smearing transformation and momentum-dependent factors play a dominant role in the relativistic effects within the MGI model. On the one hand, we apply the smearing to the screened potential S(r)=b(1eμr)μ+cS(r)=\frac{b(1-e^{-\mu r})}{\mu}+c and the Coulomb-like potential G(r)=4αs(r)3rG(r)=-\frac{4\alpha_{s}(r)}{3r}. For simplicity, we use the general symbol V(r)V(r) to represent both G(r)G(r) and S(r)S(r). The smearing transformation is given by

V~(r)=d3𝒓ρ(𝒓𝒓)V(r),\displaystyle\tilde{V}(r)=\int d^{3}\bm{r}^{\prime}\rho(\bm{r}-\bm{r}^{\prime})V(r^{\prime}), (10)

where

ρ(𝒓𝒓)=σ3π3/2exp[σ2(𝒓𝒓)2]\displaystyle\rho(\bm{r}-\bm{r}^{\prime})=\frac{\sigma^{3}}{\pi^{3/2}}\mathrm{exp}\left[-\sigma^{2}(\bm{r}-\bm{r}^{\prime})^{2}\right] (11)

is the smearing function, with σ\sigma as the smearing parameter. On the other hand, momentum dependent factors are introduced. For the smeared Coulomb-like and smeared spin-dependent term, the semirelativistic corrections are

G~(r)(1+p2E1E2)1/2G~(r)(1+p2E1E2)1/2,\displaystyle\tilde{G}(r)\to\left(1+\frac{p^{2}}{E_{1}E_{2}}\right)^{1/2}\tilde{G}(r)\left(1+\frac{p^{2}}{E_{1}E_{2}}\right)^{1/2},
V~i(r)(m1m2E1E2)1/2+ϵiV~i(r)(m1m2E1E2)1/2+ϵi,\displaystyle\tilde{V}_{i}(r)\to\left(\frac{m_{1}m_{2}}{E_{1}E_{2}}\right)^{1/2+\epsilon_{i}}\tilde{V}_{i}(r)\left(\frac{m_{1}m_{2}}{E_{1}E_{2}}\right)^{1/2+\epsilon_{i}}, (12)

respectively. E1E_{1} and E2E_{2} represent the energies of the c-quark and c¯\bar{c}-quark in charmonium, respectively. The correction factors, ϵi\epsilon_{i}, account for various types of hyperfine interactions, including spin-spin and tensor terms, as described in Ref. [24].

Table 1: The parameters of the MGI model used in this work.
Parameters Values Parameters Values
bb 0.2687GeV20.2687~{}\text{GeV}^{2} ϵt\epsilon_{t} 0.012
cc 0.3673-0.3673 GeV ϵso(V)\epsilon_{\text{so(V)}} 0.053-0.053
μ\mu 0.15GeV0.15~{}\text{GeV} ϵso(S)\epsilon_{\text{so(S)}} 0.0830.083
ϵc\epsilon_{c} 0.084-0.084 mum_{u} 0.22GeV0.22~{}\text{GeV}
mdm_{d} 0.22GeV0.22~{}\text{GeV} mcm_{c} 1.65GeV1.65~{}\text{GeV}

In Ref. [56], we find that the Y(4200)Y(4200) can be treated as a good scaling point to construct high-lying charmonium states above 4 GeV in an unquenched quark potential mode. Especially, two related D13{}^{3}D_{1} wave dominated charmonium partner states ψ(4380)\psi(4380) and ψ(4500)\psi(4500) are predicted. The analysis indicates that the reported vector YY states below 4.5 GeV can be well described under the SDS-D mixing scheme. Therefore, it is necessary to extend our study to predict the higher radial and orbital charmonium spectrum using the same model as that in Ref. [56].

The MGI model parameters adopted in this study are the same as those in Ref. [56], and they effectively reproduce the observed charmonium mass spectrum. These parameters are listed in Table 1. The mass spectrum and spatial wave functions are determined by solving the Schrödinger equation with the MGI potential and the specified parameters.

II.2 The QPC model

In the QPC model [64, 65, 66, 67], the transition matrix for the AB+CA\rightarrow B+C process is written as BC|𝒯|A=δ3(𝑷B+𝑷C)\langle BC|\mathcal{T}|A\rangle=\delta^{3}\left(\bm{P}_{B}+\bm{P}_{C}\right) MJAMJBMJC(𝑷)\mathcal{M}^{M_{J_{A}}M_{J_{B}}M_{J_{C}}}(\bm{P}), where MJAMJBMJC(𝑷)\mathcal{M}^{M_{J_{A}}M_{J_{B}}M_{J_{C}}}(\bm{P}) represents the helicity amplitude, and 𝑷B\bm{P}_{B} and 𝑷C\bm{P}_{C} are the momenta of mesons BB and CC, respectively, in the stationary reference frame of meson AA. The states |A,|B|A\rangle,|B\rangle, and |C|C\rangle refer to the mock states associated with mesons A,BA,B, and CC, respectively. The transition operator 𝒯\mathcal{T} describes the quark-antiquark pair creation from the vacuum, and it has the form

𝒯=\displaystyle\mathcal{T}= 3γm,i,j1m;1m00𝑑𝒑3𝑑𝒑4δ3(𝒑3+𝒑4)\displaystyle-3\gamma\sum_{m,i,j}\langle 1m;1-m\mid 00\rangle\int d\bm{p}_{3}d\bm{p}_{4}\delta^{3}\left(\bm{p}_{3}+\bm{p}_{4}\right) (13)
×𝒴1m(𝒑3𝒑42)χ1,m34ϕ034(ω034)ijb3i(𝒑3)b4j(𝒑4),\displaystyle\times\mathcal{Y}_{1m}\left(\frac{\bm{p}_{3}-\bm{p}_{4}}{2}\right)\chi_{1,-m}^{34}\phi_{0}^{34}\left(\omega_{0}^{34}\right)_{ij}b_{3i}^{\dagger}\left(\bm{p}_{3}\right)b_{4j}^{\dagger}\left(\bm{p}_{4}\right),

where the dimensionless constant γ\gamma describe the intensity of quark pairs uu¯u\bar{u}, dd¯d\bar{d}, or ss¯s\bar{s} produced from the vacuum and can be determined from experimental data. The state χ1,m34\chi_{1,-m}^{34} is a spin-triplet configuration, while ϕ034\phi_{0}^{34} and ω034\omega_{0}^{34} represent the SU(3) flavor and color singlets, respectively. The term 𝒴lm(p)=|p|lYlm(p)\mathcal{Y}_{lm}(p)=|p|^{l}Y_{lm}(p) is the solid harmonic function.

The helicity amplitude MJAMJBMJC(𝑷){\cal M}^{M_{J_{A}}M_{J_{B}}M_{J_{C}}}(\bm{P}) can be related to the partial wave amplitude using the Jacob-Wick formula [68]:

JL(ABC)\displaystyle{\cal M}^{JL}(A\rightarrow BC) =4π(2L+1)2JA+1MJBMJCL0;JMJA|JAMJA\displaystyle=\frac{\sqrt{4\pi(2L+1)}}{2J_{A}+1}\sum_{M_{J_{B}}M_{J_{C}}}\langle L0;JM_{J_{A}}|J_{A}M_{J_{A}}\rangle (14)
×JBMJB;JCMJC|JAMJA\displaystyle\quad\times\langle J_{B}M_{J_{B}};J_{C}M_{J_{C}}|J_{A}M_{J_{A}}\rangle
×MJAMJBMJC(𝑷),\displaystyle\quad\times{\cal M}^{M_{J_{A}}M_{J_{B}}M_{J_{C}}}(\bm{P}),

where 𝑳\bm{L} is the orbital angular momentum between the final states BB and CC, and 𝑱=𝑱B+𝑱C\bm{J}=\bm{J}_{B}+\bm{J}_{C}. The general partial width for the ABCA\rightarrow BC decay is

ΓABC=π4|𝑷|mA2J,L|JL(𝑷)|2,\Gamma_{A\rightarrow BC}=\frac{\pi}{4}\frac{|\bm{P}|}{m^{2}_{A}}\sum_{J,L}|{\cal M}^{JL}(\bm{P})|^{2}, (15)

where mA{m}_{A} is the mass of the parent meson AA. The dimensionless parameter γ=5.84\gamma=5.84 is the same as in Ref. [56] , and the strength for creating ss¯s\bar{s} from the vacuum satisfies the relation of γs=γ/3\gamma_{s}=\gamma/\sqrt{3}.

For our calculations, we use the numerical spatial wave functions obtained in Section II as inputs. The numerical spatial wave functions of the final mesons are the same as those used in Refs. [58, 59]. The results of our calculations are presented in Table 3.

II.3 The formula involved in radiative decay

In this section, we briefly outline the model used to calculate radiative decay. The quark-photon electromagnetic coupling is described by

He=jejψ¯jγμjAμ(𝐤,𝐫)ψj,\displaystyle H_{e}=-\sum_{j}e_{j}\bar{\psi}_{j}\gamma_{\mu}^{j}A^{\mu}(\mathbf{k},\mathbf{r})\psi_{j}, (16)

where ψj\psi_{j} is the jj-th quark field with a charge eje_{j} in a hadron, and 𝐤\mathbf{k} denotes the 3-momentum of the photon.

The spatial wave functions are calculated using the potential models outlined in Sec. II. The nonrelativistic expansion of HeH_{e} can be written as [69, 70, 71, 72, 73, 74]

hej[ej𝐫jϵej2mj𝝈j(ϵ×𝐤^)]ei𝐤𝐫j,h_{e}\simeq\sum_{j}\left[e_{j}\mathbf{r}_{j}\cdot\bm{\epsilon}-\frac{e_{j}}{2m_{j}}\bm{\sigma}_{j}\cdot(\bm{\epsilon}\times\hat{\mathbf{k}})\right]e^{-i\mathbf{k}\cdot\mathbf{r}_{j}}, (17)

where 𝝈j\bm{\sigma}_{j}, mjm_{j}, and 𝐫j\mathbf{r}_{j} stand for Pauli spin vector, the constituent mass and the coordinate for the jj-th quark, respectively. The vector ϵ\bm{\epsilon} is the polarization vector of the photon. The standard helicity transition amplitude 𝒜λ\mathcal{A}_{\lambda} between the initial state |Jiλi|J_{i}\lambda_{i}\rangle and the final state |Jfλf\left|J_{f}\lambda_{f}\right\rangle is given by

𝒜λ=iωγ2Jfλf|he|Jiλi,\mathcal{A}_{\lambda}=-i\sqrt{\frac{\omega_{\gamma}}{2}}\left\langle J_{f}\lambda_{f}\left|h_{e}\right|J_{i}\lambda_{i}\right\rangle, (18)

where ωγ\omega_{\gamma} is the photon energy. JfJ_{f} and JiJ_{i} are the total angular momenta of the final and initial mesons, respectively, and λf\lambda_{f} and λi\lambda_{i} are the components of their total angular momentum along the zz axis. In our calculations, we choose the initial hadron-rest frame for the radiative decay process, so that the momentum of the initial hadron is 𝐏i=0\mathbf{P}_{i}=0, and the final hadron’s momentum is 𝐏f=𝐤\mathbf{P}_{f}=-\mathbf{k}. We set the polarization vector of the photon as ϵ=12(1,i,0)\bm{\epsilon}=-\frac{1}{\sqrt{2}}(1,i,0), with the photon momentum directed along the zz axial (𝐤=k𝐳^)(\mathbf{k}=k\hat{\mathbf{z}}).

The partial decay widths for the electromagnetic transitions are given by

Γ=|𝐤|2π22Ji+1MfMiλ|𝒜λ|2,\Gamma=\frac{|\mathbf{k}|^{2}}{\pi}\frac{2}{2J_{i}+1}\frac{M_{f}}{M_{i}}\sum_{\lambda}\left|\mathcal{A}_{\lambda}\right|^{2}, (19)

where JiJ_{i} is the total angular momenta of the initial mesons, and MiM_{i} and MfM_{f} are the masses of the initial and final charmonium states, respectively. The electromagnetic transition rates we calculated are presented in Tables 4 and 5.

III Numerical Results And Discussions

III.1 Mass spectrum and strong decay analysis

Table 2: Mass spectrum of DD-, FF- and GG- wave chamonia obtained in MGI model. The theoretical predictions from other unquenched and quenched models [75, 73, 76, 77, 78, 79, 80, 46] are also presented for comparison. All the masses are given in units of MeV.
Unquenched Quenched
States Ours Ref. [75] Ref. [73] Ref. [76] Ref. [77] Ref. [81] Ref. [78] Ref. [79] Ref. [80] Ref. [46]
21D22^{1}D_{2} 4137 4135.3 4108 4099 4203 4150 4182.5 4196 4164.9 4208
31D23^{1}D_{2} 4343 4357.9 4336 4326 4566 4455 4480.2 4549 4521.4
23D12^{3}D_{1} 4125 4123.3 4095 4089 4196 4145 4173.7 4150 4154.4 4194
33D13^{3}D_{1} 4334 4346.0 4324 4317 4562 4448 4470.4 4507 4502.2
23D22^{3}D_{2} 4137 4137.5 4109 4100 4203 4152 4186.7 4190 4168.7 4208
33D23^{3}D_{2} 4343 4359.2 4337 4327 4566 4456 4484.6 4544 4523.6
23D32^{3}D_{3} 4144 4141.8 4112 4103 4206 4151 4195.2 4220 4166.1 4217
33D33^{3}D_{3} 4348 4365.3 4340 4331 4568 4457 4497.1 4574 4526.5
11F31^{1}F_{3} 4074 4056.6 4039 4069.0 4071 4040.8 4094
21F32^{1}F_{3} 4296 4299.0 4413 4378.3 4406 4356.8 4424
31F33^{1}F_{3} 4457 4477.5 4756 4652.6 4694.3
13F21^{3}F_{2} 4070 4064.8 4015 4078.1 4041 4059.7 4092
23F22^{3}F_{2} 4293 4302.1 4403 4384.3 4361 4369.8 4422
33F23^{3}F_{2} 4454 4478.1 4751 4656.5 4704.2
13F31^{3}F_{3} 4075 4061.2 4039 4073.5 4068 4047.6 4097
23F32^{3}F_{3} 4297 4301.9 4413 4382.3 4400 4362.4 4426
33F33^{3}F_{3} 4457 4479.4 4756 4656.3 4698.5
13F41^{3}F_{4} 4076 4048.6 4052 4061.0 4093 4024.7 4095
23F42^{3}F_{4} 4298 4295.3 4418 4373.3 4434 4344.7 4425
33F43^{3}F_{4} 4459 4476.0 4759 4649.9 4698.5
11G41^{1}G_{4} 4250 4241.2 4271.7 4345 4317
21G42^{1}G_{4} 4424 4434.3
31G43^{1}G_{4} 4549 4577.6
13G31^{3}G_{3} 4252 4254.8 4289.0 4321 4323
23G32^{3}G_{3} 4424 4442.7
33G33^{3}G_{3} 4549 4582.8
13G41^{3}G_{4} 4252 4245.2 4276.3 4343 4320
23G42^{3}G_{4} 4425 4442.7
33G43^{3}G_{4} 4549 4579.5
13G51^{3}G_{5} 4249 4229.2 4257.7 4357 4321
23G52^{3}G_{5} 4424 4426.7
33G53^{3}G_{5} 4549 4572.8

In this section, we present numerical results for the masses, strong decay widths, and radiative decay widths of various charmonium states. We focus on charmonium states with orbital angular momentum LL up to 4 and principal quantum number nn up to 3, where an unquenched model is required to account for screening effects.

The estimated charmonium mass spectrum is shown in Table 2. The second column lists our results from the MGI model, while the subsequent columns provide comparative results from various potential models. Predicted masses from unquenched potential models are shown in the third to fifth columns, whereas masses from multiple quenched potential models are listed in the last six columns.

We observe that for the FF-wave state with n=1n=1, the mass predictions from unquenched potential models are close to those from quenched models. However, for higher states such as the 2D2D and 1G1G states, unquenched models generally predict lower masses, highlighting a growing discrepancy between the two approaches. As the radial excitation nn increases for the DD-, FF-, and GG-wave states, these mass differences between unquenched and quenched models become more pronounced. This trend suggests that the screening effect intensifies with increasing quantum numbers LL and nn. These differences in mass spectra also impact the calculated strong decay widths, which we discuss in the following sections.

We compare our strong decay results with those from Ref. [46] in Table 3. In that study, the mass values obtained from the quenched model were used to calculate the open-charm decay widths, resulting in differences between our calculations and those presented in that work.

III.1.1 The DD-wave case

Following the gradual discovery of the ground states of DD-wave charmonium mesons, there is increasing optimism that the 2D2D states will be identified in future experimental efforts. Consequently, this work begins with an analysis of the masses and decay properties of the predicted 2D2D states.

Our results indicate that the masses of the 2D2D states are predicted to be around 4.12–4.14 GeV, which is approximately 70 MeV smaller than the values reported in Ref. [46]. From Table 3, we observe that the two primary decay channels for the 21D22^{1}D_{2} state are DDDD^{*} and DDD^{*}D^{*}, with the branching fraction reaching up to 98%. Therefore, we suggest that the 21D22^{1}D_{2} state may be detected via these decay modes. When comparing our results to those in Ref. [46], we find that our decay widths are generally smaller. Notably, the DsDsD_{s}D_{s}^{*} decay mode is an order of magnitude smaller in our work than in Ref. [46].

For the JPC=1J^{PC}=1^{--} states with n=2n=2, the two dominant decay channels are DDDD and DDD^{*}D^{*}, with the DDDD^{*} process being suppressed. In our calculations, the total decay width is 48.73 MeV, with branching ratios of 39.81% and 56.78% for the DDDD and DDD^{*}D^{*} channels, respectively. The ratio of partial widths is Γ(DD):Γ(DD)=1.0:1.4\Gamma(DD):\Gamma(D^{*}D^{*})=1.0:1.4. Although the decay modes of this state reported in Ref. [46] show a similar trend, there is a notable discrepancy in the total decay width, which they estimate to be 74 MeV. This difference may be attributed to our calculated mass of 4125 MeV, which is lower than their value of 4194 MeV. Furthermore, the decay widths for the DsDsD_{s}D_{s} and DsDsD_{s}D_{s}^{*} modes are significantly different: 0.04 MeV and 1.08 MeV in our work, compared to 8.0 MeV and 14 MeV in Ref. [46].

For the 23D22^{3}D_{2} state, the dominant decay channels are DDDD^{*} and DDD^{*}D^{*}, with decay widths of 22.88 MeV and 23.95 MeV, respectively. Their branching ratios are 47.05% and 49.25%. Compared to Ref. [46], our mass is 21 MeV lower, and our total decay width of 48.63 MeV is significantly smaller than their value of 92 MeV. Specifically, for the DsDsD_{s}D_{s}^{*} decay mode, we predict a decay width of 1.8 MeV with a branching ratio of 3.7%, while Ref. [46] estimates a decay width of 26 MeV with a branching ratio of 28.26%.

For the 23D32^{3}D_{3} state, the two main decay channels are DDDD^{*} and DDD^{*}D^{*}, with branching ratios of 40.1% and 53.0%, respectively. The DDDD decay channel for the 23D32^{3}D_{3} state is notably smaller than the value reported in Ref. [46], showing a difference of about one order of magnitude. However, the decay modes involving strange quarks remain consistent with those in the other 2D2D states, and are similarly smaller than those reported in Ref. [46]. Despite slight differences in the calculated masses of the 2D2D states, the decay modes and branching ratios are largely consistent.

For the 21D22^{1}D_{2}, 23D22^{3}D_{2}, and 23D32^{3}D_{3} states, the dominant decay channels are DDDD^{*} and DDD^{*}D^{*}. However, compared to Ref. [46], the branching ratios for these two channels are notably higher in our study. On the other hand, decay modes involving strange quarks are less pronounced in our results, which highlights the need for further experimental validation.

In the MGI model, the predicted masses of the four 3D3D states are approximately 4.34 GeV. The dominant decay channels for the 31D23^{1}D_{2} state remain DDDD^{*} and DDD^{*}D^{*}. We predict the branching ratios for these channels to be 63.17% and 23.77%, respectively. Additionally, the DD2DD_{2}^{*} channel exhibits a greater decay width compared to the DD0DD_{0}^{*}, DD1DD_{1}, and DD1DD_{1}^{\prime} channels. The 31D23^{1}D_{2} state also shows three decay processes involving strange quarks, with the DsDs0D_{s}D_{s0}^{*} channel contributing the largest decay width (3.22%) due to its higher mass threshold.

The 33D13^{3}D_{1} state has three primary decay channels: DDDD, DDD^{*}D^{*}, and DD1DD_{1}^{\prime}, with the ratios of partial widths predicted to be Γ(DD):Γ(DD):Γ(DD1)=1.9:1.7:1.0\Gamma(DD):\Gamma(D^{*}D^{*}):\Gamma(DD_{1}^{\prime})=1.9:1.7:1.0. Compared to the 23D12^{3}D_{1} state, the DDDD^{*} and DDD^{*}D^{*} channels remain dominant, but the new DD1DD_{1}^{\prime} channel contributes a branching ratio of 18.76%. For the 33D23^{3}D_{2} state, the DDDD^{*} channel dominates, with a branching ratio higher than that of the DDD^{*}D^{*} channel, which contrasts with the 23D22^{3}D_{2} state, where DDD^{*}D^{*} dominates. This state primarily decays into DDDD^{*}, DDD^{*}D^{*}, DD1DD_{1}, DD1DD_{1}^{\prime}, and DD2DD^{*}_{2}, with the ratio of partial widths predicted to be Γ(DD):Γ(DD):Γ(DD1):Γ(DD1):Γ(DD2)=9.2:4.9:1.1:1.2:1.0\Gamma(DD^{*}):\Gamma(D^{*}D^{*}):\Gamma(DD_{1}):\Gamma(DD_{1}^{\prime}):\Gamma(DD^{*}_{2})=9.2:4.9:1.1:1.2:1.0.

Finally, for the 33D33^{3}D_{3} state, the most significant decay channel is DDDD^{*}, with a branching ratio of 51.2%. Compared to the 23D32^{3}D_{3} state, the partial decay width of the 33D33^{3}D_{3} state into the DDD^{*}D^{*} channel decreases significantly, primarily due to the node effect in the corresponding spatial wave function.

III.1.2 The FF-wave case

Considering that the 1D1D state has already been observed, the prospects for detecting the 1F1F states have increased significantly with advancements in experimental techniques. In Table 3, we present the decay information for the FF states with n=1,2,3n=1,2,3.

The masses of the 1F1F states are approximately 4.07 GeV, about 20 MeV smaller than the estimates provided in Ref. [46]. For the 11F31^{1}F_{3} state, the dominant strong decay channel is DDDD^{*}, followed by DDD^{*}D^{*}, which also contributes notably. We predict the ratio of partial widths to be Γ(DD):Γ(DD)=6.2:1.0\Gamma(DD^{*}):\Gamma(D^{*}D^{*})=6.2:1.0. However, Ref. [46] reports that the DDDD^{*} channel accounts for nearly the entire strong decay width in their calculations.

Among these states, the broadest is the 13F21^{3}F_{2} state, with a width of 112.48 MeV. The primary decay channels contributing to its width are DDDD and DDDD^{*}, which together account for 95% of the strong decay width. This result is in agreement with Ref. [46], although our findings show that the partial width of the DDDD^{*} channel is larger than that of the DDDD channel, which differs from the calculation in Ref. [46]. Similar to the 11F31^{1}F_{3} state, the 13F31^{3}F_{3} state also exhibits DDDD^{*} as the dominant strong decay channel, contributing 92% to the total width, with the DDD^{*}D^{*} channel being relatively suppressed.

The 13F41^{3}F_{4} state is a narrow state, with a strong decay width of 37.97 MeV, which is larger than the estimated width of 8.6 MeV reported in Ref. [46]. The 13F41^{3}F_{4} state predominantly decays into the DDDD, DDDD^{*}, and DDD^{*}D^{*} channels, with a partial width ratio of Γ(DD):Γ(DD):Γ(DD)=1.4:1.0:4.0\Gamma(DD):\Gamma(DD^{*}):\Gamma(D^{*}D^{*})=1.4:1.0:4.0. This ratio differs from that reported in Ref. [46], where smaller phase spaces in the DDD^{*}D^{*} decay mode lead to narrower partial widths. Additionally, this mass discrepancy may influence the widths of other decay channels.

For the 2F2F states, we find masses around 4.29 GeV, which is lower than those predicted by the quenched model in Ref. [46]. We observe fewer decay modes compared to those reported in the quenched model, and the total decay width is smaller. This is likely due to unquenched effects in the MGI model, which reduce the masses of high-lying states, making some decay channels inaccessible. The strong decay width of the 21F32^{1}F_{3} state is approximately 38.78 MeV, and it predominantly decays into DDDD^{*} and DDD^{*}D^{*}, with DD0DD^{*}_{0}, DsDsD_{s}D_{s}^{*}, and DsDsD^{*}_{s}D_{s}^{*} channels being relatively suppressed. The ratio between the main decay channels is predicted to be Γ(DD):Γ(DD)=2:1\Gamma(DD^{*}):\Gamma(D^{*}D^{*})=2:1.

The 23F22^{3}F_{2} state has its decay width primarily contributed by the DDDD, DDDD^{*}, and DDD^{*}D^{*} modes, with a corresponding partial width ratio of Γ(DD):Γ(DD):Γ(DD)=1.2:1.0:1.1\Gamma(DD):\Gamma(DD^{*}):\Gamma(D^{*}D^{*})=1.2:1.0:1.1. The 23F32^{3}F_{3} state exhibits two dominant decay modes: DDDD^{*} and DDD^{*}D^{*}, with a predicted partial width ratio of Γ(DD):Γ(DD)=2.4\Gamma(DD^{*}):\Gamma(D^{*}D^{*})=2.4. The narrowest of the 2F2F states is the 23F42^{3}F_{4} state, which primarily decays into the DDD^{*}D^{*} channel, with the branching fraction reaching 85.12%. Similar to the 2D2D states, decay modes involving strange quarks in the 2F2F states are less prominent in our results.

The decay channels DDDD^{*} and DDD^{*}D^{*} account for nearly the entire decay width of the 21F32^{1}F_{3}, 23F32^{3}F_{3}, and 23F42^{3}F_{4} states, which contrasts sharply with the results from Ref. [46], where multiple decay channels exhibit significant branching ratios. This difference is likely due to unquenched effects in our model. For the 3F3F states, the MGI model predicts masses around 4.45 GeV. The primary decay channels for these states remain DDDD^{*} and DDD^{*}D^{*}, but with increasing mass, new decay channels become accessible. The 31F33^{1}F_{3} state has two dominant decay channels, DDDD^{*} and DDD^{*}D^{*}, with the DD2DD^{*}_{2} channel also contributing significantly. The predicted ratio of partial widths is Γ(DD):Γ(DD):Γ(DD2)=2.8:1.6:1.0\Gamma(DD^{*}):\Gamma(D^{*}D^{*}):\Gamma(DD^{*}_{2})=2.8:1.6:1.0. The decay width of the 33F23^{3}F_{2} state is governed by the DDDD, DDDD^{*}, DDD^{*}D^{*}, and DD1DD_{1} channels, with the branching fraction Br[χc2(33F2)DD,DD,DD,DD1]\text{Br}[\chi_{c2}(3^{3}F_{2})\to DD,\,DD^{*},D^{*}D^{*},\,DD_{1}] reaching up to 92%. The 33F33^{3}F_{3} state has three dominant decay modes: DDDD^{*}, DDD^{*}D^{*}, and DD2DD^{*}_{2}, with the ratio of partial widths predicted to be Γ(DD):Γ(DD):Γ(DD2)=2.7:1.3:1.0\Gamma(DD^{*}):\Gamma(D^{*}D^{*}):\Gamma(DD^{*}_{2})=2.7:1.3:1.0. Finally, the 33F43^{3}F_{4} state predominantly decays into DDDD^{*} and DDD^{*}D^{*}, with the ratio between partial widths being approximately Γ(DD):Γ(DD)=1.0:4.1\Gamma(DD^{*}):\Gamma(D^{*}D^{*})=1.0:4.1. The decay pattern for the 3F3F states closely follows that of the 1F1F and 2F2F states, with the DDDD^{*} channel remaining dominant.

III.1.3 The GG-wave case

We observe in Table 2 that for all GG-wave states, the masses are nearly identical for states with the same nn. In Table 3, we present the strong decay widths for the 13G31^{3}G_{3}, 23G32^{3}G_{3}, and 33G33^{3}G_{3} states. As a result, the strong decay widths of these states are similar.

For the 1G1G states, the masses are approximately 4.25 GeV, and the dominant decay channels are DDDD^{*} and DDD^{*}D^{*}. Due to the near equivalence in mass among these states, their strong decay widths are similar, although the ratios of the partial widths differ. The total decay widths of the 1G1G states are approximately equal, while the ratios between the partial widths of DDDD^{*} and DDD^{*}D^{*} vary. Specifically, for the 11G41^{1}G_{4} state, the ratio is Γ(DD):Γ(DD)=1.4:1.0\Gamma(DD^{*}):\Gamma(D^{*}D^{*})=1.4:1.0, while for the 13G41^{3}G_{4} state, it is Γ(DD):Γ(DD)=1.9:1.0\Gamma(DD^{*}):\Gamma(D^{*}D^{*})=1.9:1.0, and for the 13G51^{3}G_{5} state, the ratio is Γ(DD):Γ(DD)=1.6:8.0\Gamma(DD^{*}):\Gamma(D^{*}D^{*})=1.6:8.0.

When compared to the results in Ref. [46], we find that the DDDD^{*} and DDD^{*}D^{*} channels remain the dominant decay modes across all 1G1G states. However, Ref. [46] reports that the DDDD channel contributes more significantly to the decay width, particularly for the 13G31^{3}G_{3} and 13G51^{3}G_{5} states. In fact, the width of the DDDD channel significantly exceeds that of the DDD^{*}D^{*} channel for the 13G31^{3}G_{3} state, which contrasts with our findings. This discrepancy may stem from differences in the wave function for the DD^{*} meson used in our calculation, which is based on the MGI model, as opposed to the simple harmonic oscillator (SHO) wave function employed in Ref. [46].

The masses of the 2G2G states are approximately 4.43 GeV, and their decay behaviors closely resemble those of the GG states. The dominant decay channels for the 21G42^{1}G_{4} and 23G42^{3}G_{4} states remain DDDD^{*} and DDD^{*}D^{*}. However, the open-charm decay channels DD0DD_{0}^{*}, DD1DD_{1}, DD1DD_{1}^{\prime}, DD2DD^{*}_{2}, and DD0D^{*}D^{*}_{0} are relatively suppressed.

The ratios of the main partial widths for the 21G42^{1}G_{4} and 23G42^{3}G_{4} states are Γ(DD):Γ(DD)=1.6\Gamma(DD^{*}):\Gamma(D^{*}D^{*})=1.6 and Γ(DD):Γ(DD)=2.5\Gamma(DD^{*}):\Gamma(D^{*}D^{*})=2.5, respectively. In addition to the DDDD^{*} and DDD^{*}D^{*} modes, the DDDD channel exhibits a considerable branching ratio for the 23G32^{3}G_{3} state. The partial width ratios of the dominant channels for the 23G32^{3}G_{3} state are Γ(DD):Γ(DD):Γ(DD)=2.2:3.3:1.0\Gamma(DD):\Gamma(DD^{*}):\Gamma(D^{*}D^{*})=2.2:3.3:1.0.

For both the 23G32^{3}G_{3} and 33G33^{3}G_{3} states, the DDDD^{*} decay channel exhibits the largest partial width. Among the 2G2G states, the 23G52^{3}G_{5} state is the narrowest. Its decays are dominated by the DDDD and DDD^{*}D^{*} channels, with a corresponding partial width ratio of Γ(DD):Γ(DD)=1.0:11.4\Gamma(DD):\Gamma(D^{*}D^{*})=1.0:11.4.

Additionally, channels involving strange quarks also contribute to the decay widths. For example, the DsDsD_{s}D_{s}^{*} channel contributes to the widths of the 21G42^{1}G_{4}, 23G32^{3}G_{3}, and 23G42^{3}G_{4} states, while the DsDsD_{s}D_{s} channel contributes to the 23G32^{3}G_{3} state. However, these contributions to the total widths are negligible.

Regarding the 3G3G-wave state, their masses are all around 4.54 GeV. The channel with the largest decay widths is DDDD^{*} for the 31G43^{1}G_{4}, 33G33^{3}G_{3}, and 33G43^{3}G_{4} states, while the DDD^{*}D^{*} channel is dominant for the 33G53^{3}G_{5} state. Although the DDDD^{*} and DDD^{*}D^{*} channels are still the dominant decay channels for all 3G3G states, their branching ratios are smaller than those of the corresponding 2G2G states. The corresponding ratios of 31G43^{1}G_{4} and 33G43^{3}G_{4} states between main partial widths are Γ(DD):Γ(DD)=1.5\Gamma(DD^{*}):\Gamma(D^{*}D^{*})=1.5 and Γ(DD):Γ(DD)=2.3\Gamma(DD^{*}):\Gamma(D^{*}D^{*})=2.3 , respectively. The decay rates into DD0DD_{0}^{*}, DD2DD_{2}^{*}, DD1D^{*}D_{1}^{\prime} and DD2D^{*}D_{2}^{*} channels are also sizable for 31G43^{1}G_{4} and 33G43^{3}G_{4} states, with the branching fractions of Br[ψ(31G4)/ψ(33G4)DD0,DD2,DD1,DD2]\text{Br}[\psi(3^{1}G_{4})/\psi(3^{3}G_{4})\to DD_{0}^{*},DD_{2}^{*},D^{*}D_{1}^{\prime},D^{*}D_{2}^{*}] around 20%. The 33G33^{3}G_{3} state mainly decays into DDDD,DDDD^{*}, DDD^{*}D^{*}, DD1DD_{1}, and DD1D^{*}D_{1}. Other open charm decay channels are relatively suppressed. The predicted ratio between the dominant partial widths in the MGI model is Γ(DD):Γ(DD):Γ(DD):Γ(DD1):Γ(DD1)=4.4:5.9:2.5:1.6:1.0\Gamma(DD):\Gamma(DD^{*}):\Gamma(D^{*}D^{*}):\Gamma(DD_{1}):\Gamma(D^{*}D_{1})=4.4:5.9:2.5:1.6:1.0. The branching ratio of the DDDD channel for 33G33^{3}G_{3} state is 24.38%, which is larger than that of the DDD^{*}D^{*} channel, similar to the 23G32^{3}G_{3} state The 33G53^{3}G_{5} state is narrowest 3G3G state with the width 23 MeV. The branching ratios of the DDDD and DDDD^{*} decay channels are smaller, while the DDD^{*}D^{*} and DD2D^{*}D_{2}^{*} channels dominate. The ratio between the main partial widths is Γ(DD):Γ(DD2)=5:1\Gamma(D^{*}D^{*}):\Gamma(D^{*}D^{*}_{2})=5:1.

III.2 Radiative decay behavior

III.2.1 The DD-wave case

In Tables 4 and 5, we present the radiative decay information for the DD-wave states. The numerical results indicate that the decay widths for transitions to PP-wave and FF-wave states are generally larger, whereas those to SS-wave and DD-wave states are comparatively smaller. For the 21D22^{1}D_{2} state, the dominant radiative decay channels are 21D221P1γ2^{1}D_{2}\rightarrow 2^{1}P_{1}\gamma and 11P1γ1^{1}P_{1}\gamma, with decay widths of 167.10 keV and 58.45 keV, respectively. The 31D23^{1}D_{2} state primarily decays through the channels 11P1γ1^{1}P_{1}\gamma, 21P1γ2^{1}P_{1}\gamma, and 31P1γ3^{1}P_{1}\gamma. For the 23D12^{3}D_{1} state, the largest radiative decay width corresponds to the 23D123P0γ2^{3}D_{1}\rightarrow 2^{3}P_{0}\gamma channel, with a value of 126.39 keV. Other notable decay channels for this state include 23D123P1γ2^{3}D_{1}\rightarrow 2^{3}P_{1}\gamma and 13P0γ1^{3}P_{0}\gamma, with widths of 115.98 keV and 82.20 keV, respectively. For the 33D13^{3}D_{1} state, while transitions to both PP-wave and FF-wave states still yield large widths, the dominant decay process is 33D133P0γ3^{3}D_{1}\rightarrow 3^{3}P_{0}\gamma, rather than 33D123P0γ3^{3}D_{1}\rightarrow 2^{3}P_{0}\gamma.

Table 4 shows that the largest decay width for the 23D22^{3}D_{2} state occurs for the 23D223P1γ2^{3}D_{2}\rightarrow 2^{3}P_{1}\gamma channel, with a width of 127.69 keV. In contrast, the largest decay width for the 33D23^{3}D_{2} state is found for the 33D233P1γ3^{3}D_{2}\rightarrow 3^{3}P_{1}\gamma channel, with a relatively narrow width of 81.40 keV, which is smaller than that of other 3D3D states.

The dominant decay channel for the 23D32^{3}D_{3} state is 23D323P2γ2^{3}D_{3}\rightarrow 2^{3}P_{2}\gamma, with a decay width of 212.66 keV, while other decay channels for this state are significantly smaller. For the 33D33^{3}D_{3} state, the most significant decay channel is 33D333P2γ3^{3}D_{3}\rightarrow 3^{3}P_{2}\gamma, with a width of 93.97 keV.

Our results reveal that the broadest partial radiative widths correspond to transitions where both the initial and final states have the same quantum numbers nn and SS for DD states.

III.2.2 The FF-wave case

Regarding the FF-wave states, we observe from Tables 4 and 5 that their primary electromagnetic decay channel is to DD-wave states. However, transitions to SS-wave and GG-wave states also exhibit decay widths on the order of keV.

For the FF-wave states, the decay channels with the largest widths follow a trend similar to that of the DD-wave states. For instance, the most significant decay channel for the 13F21^{3}F_{2} state is 13F213D1γ1^{3}F_{2}\rightarrow 1^{3}D_{1}\gamma, with a decay width of 439.69 keV, which is notably large. For the 11F31^{1}F_{3}, 13F31^{3}F_{3}, and 13F41^{3}F_{4} states, the major decay channels are to 11D2γ1^{1}D_{2}\gamma, 13D2γ1^{3}D_{2}\gamma, and 13D3γ1^{3}D_{3}\gamma, with decay widths of 249.14 keV, 295.43 keV, and 269.26 keV, respectively. The 2F2F and 3F3F states follow the same pattern as the 1F1F states, but as the principal quantum number nn increases, the radiative decay widths decrease. For example, the decay width for 23F323D2γ2^{3}F_{3}\rightarrow 2^{3}D_{2}\gamma is 137.72 keV, which is larger than the width for 33F333D2γ3^{3}F_{3}\rightarrow 3^{3}D_{2}\gamma (82.87 keV). Similarly, for the F23{}^{3}F_{2}, F31{}^{1}F_{3}, and F43{}^{3}F_{4} states, the largest decay widths for the n=2n=2 states are approximately twice those of the corresponding n=3n=3 states.

For the 23F22^{3}F_{2} state, the dominant radiative decay partial widths are 23F213D1γ2^{3}F_{2}\rightarrow 1^{3}D_{1}\gamma and 23F223D1γ2^{3}F_{2}\rightarrow 2^{3}D_{1}\gamma, with widths of 73.05 keV and 76.97 keV, respectively. The 33F23^{3}F_{2} state has three primary transition channels: 13D1γ1^{3}D_{1}\gamma, 23D1γ2^{3}D_{1}\gamma, and 33D1γ3^{3}D_{1}\gamma, with corresponding partial widths of 24.00 keV, 29.52 keV, and 30.37 keV.

For the 21F32^{1}F_{3} and 31F33^{1}F_{3} states, the broadest radiative decay channels are predicted to be 21D2γ2^{1}D_{2}\gamma and 31D2γ3^{1}D_{2}\gamma, respectively. The radiative width for the 23F42^{3}F_{4} state (and similarly for the 33F43^{3}F_{4} state) is primarily contributed by the 23D3γ2^{3}D_{3}\gamma (or 33D3γ3^{3}D_{3}\gamma) channel.

Notably, the strong decay width of the 13F21^{3}F_{2} state in our calculations is 112.48 MeV, meaning the branching ratio for the 13F213D1γ1^{3}F_{2}\rightarrow 1^{3}D_{1}\gamma channel is approximately 0.4%. This could be detectable in future experiments. Similarly, the branching ratio for the 2D2Pγ2D\rightarrow 2P\gamma channel is also significant. Since the 23D22^{3}D_{2}, 21D22^{1}D_{2}, and 23D32^{3}D_{3} states have not yet been observed, we suggest further investigation into the radiative decay channels involving the 2P2P states.

III.2.3 The GG-wave case

For the GG-wave states, as shown in Tables 4 and 5, the primary decay channels are to FF-wave states, consistent with previous studies [75]. Our calculations also reveal that electromagnetic transitions from GG-wave states to PP-wave states are non-negligible, with some decay widths to PP-wave states slightly exceeding those to FF-wave states. As the principal quantum number nn increases, the maximum decay width for GG-wave state transitions to FF-wave states decreases. For example, the decay width for 13G313F2γ1^{3}G_{3}\rightarrow 1^{3}F_{2}\gamma is 219.87 keV, while for 33G333F2γ3^{3}G_{3}\rightarrow 3^{3}F_{2}\gamma, it is 76.66 keV. This trend is consistent across other GG-wave states.

Almost all primary transition processes for GG-wave states have significantly larger widths than other decay channels. For instance, the dominant decay channel for the 31G43^{1}G_{4} state is 31G431F3γ3^{1}G_{4}\rightarrow 3^{1}F_{3}\gamma, with a width of 77.78 keV, while the second-largest decay channel, 31G421F3γ3^{1}G_{4}\rightarrow 2^{1}F_{3}\gamma, has a width of 34.10 keV, less than half of 77.78 keV. Similarly, for the 33G43^{3}G_{4} state, the primary decay channel is 33G433F3γ3^{3}G_{4}\rightarrow 3^{3}F_{3}\gamma, with a width of 74.94 keV, more than twice the width of 33G423F3γ3^{3}G_{4}\rightarrow 2^{3}F_{3}\gamma, which is 32.00 keV.

By comparing the results for high-lying charmonia in Tables 4 and 5, we observe that the radial quantum number nn and the spin quantum number SS of the broadest partial width of the final state are consistent with the quantum numbers of the initial state. Additionally, the orbital angular momentum LL and total angular momentum JJ of the final state with the largest width are typically one unit less than those of the initial state. The largest partial widths for high-lying charmonia mainly arise from electric multipole transitions, with magnetic transition widths typically being weaker [82].

It is important to note that the node effect of higher radial excitations significantly suppresses the radiative decay widths. A general property of radiative transitions is that decay widths are highly suppressed when there is a significant difference in the radial quantum numbers nn between the initial and final states [83].

IV SUMMARY

Our understanding of the high-lying states within the charmonium family remains limited. With the recent observation of charmonium states above 4 GeV, we seize the opportunity to investigate the high-lying charmonium family. This includes a mass spectrum analysis using the MGI model, followed by two-body strong decay calculations within the framework of the QPC model, along with an analysis of radiative decays. This theoretical approach allows us to derive the resonance parameters for the charmonium states discussed, providing valuable insights for future research in heavy hadron spectroscopy.

In this study, we have calculated the mass spectrum for DD-, FF-, and GG-wave charmonium states, incorporating unquenched effects by introducing a screening potential. Additionally, we provide a detailed analysis of the strong decay properties of these states, including several key decay channels and partial decay widths that are crucial for the identification of potential charmed meson candidates in upcoming experiments. We also investigate the radiative decay behaviors and highlight the primary radiative decay channels for the states considered.

We are currently entering a new era of high-precision hadron spectroscopy, driven by the upgrades to the Large Hadron Collider (LHC), the operation of Belle II, and the planned upgrades for the Beijing Electron Positron Collider (BEPC). The theoretical insights presented in this work regarding high-lying charmonium mesonic states may provide important guidance for experimental studies at BESIII and other upcoming facilities.

Acknowledgements.
This work is supported by the National Natural Science Foundation of China under Grant Nos. 12335001 and 12247101, National Key Research and Development Program of China under Contract No. 2020YFA0406400, the 111 Project under Grant No. B20063, the fundamental Research Funds for the Central Universities, and the project for top-notch innovative talents of Gansu province.

21D22^{1}D_{2} 23D12^{3}D_{1} 23D22^{3}D_{2} 23D32^{3}D_{3} 11F31^{1}{F}_{3} 13F21^{3}{F}_{2} Our Ref. [46] Our Ref. [46] Our Ref. [46] Our Ref. [46] Our Ref. [46] Our Ref. [46] Mass 4137 4158 4125 4159 4137 4158 4144 4167 4074 4026 4070 4029 Mode Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br DDDD  ✗  ✗ 19.4 39.81% 16 21.62%  ✗  ✗ 3.27 6.03% 24 16.22%  ✗  ✗ 50.51 44.91% 98 60.87% DDDD^{*} 29.47 50.97% 50 45.05% 0.53 1.09% 0.4 0.54% 22.88 47.05% 34 36.96% 21.77 40.11% 50 33.78% 67.83 86.10% 61 99.84% 56.37 50.12% 57 35.40% DDD^{*}D^{*} 27.15 46.96% 43 38.74% 27.67 56.78% 35 47.30% 23.95 49.25% 32 34.78% 28.78 53.03% 67 45.27% 10.95 13.90% 0.1 0.16% 3.43 3.05% 0.1 0.06% DsDsD_{s}D_{s}  ✗  ✗ 0.04 0.08% 8 10.81%  ✗  ✗ 0.36 0.66% 5.7 3.85%  ✗  ✗ 2.17 1.93% 5.9 3.66% DsDsD_{s}D_{s}^{*} 1.2 2.08% 18 16.22% 1.08 2.22% 14 18.92% 1.8 3.70% 26 28.26% 0.09 0.17% 1.2 0.81%  ✗  ✗  ✗  ✗ total 57.82 100% 111 100% 48.73 100% 74 100% 48.63 100% 92 100% 54.27 100% 148 100% 78.78 100% 61.1 100% 112.48 100% 161 100% 13F31^{3}{F}_{3} 13F41^{3}{F}_{4} 11G41^{1}G_{4} 13G31^{3}G_{3} 13G41^{3}G_{4} 13G51^{3}G_{5} Our Ref. [46] Our Ref. [46] Our Ref. [46] Our Ref. [46] Our Ref. [46] Our Ref. [46] Mass 4075 4029 4076 4021 4250 4225 4252 4237 4252 4228 4249 4214 Mode Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br DDDD  ✗  ✗ 8.12 21.39% 6.8 81.93%  ✗  ✗ 19.34 24.28% 63 40.65%  ✗  ✗ 8.32 9.43% 10 17.24% DDDD^{*} 87.57 92.01% 83 98.81% 5.93 15.62% 1.4 16.87% 50.3 57.21% 72 72.73% 36.39 45.68% 66 42.58% 57.21 64.78% 88 79.28% 12.91 14.64% 6.4 11.03% DDD^{*}D^{*} 7.6 7.99% 0.2 0.24% 23.88 62.89% 0.05 0.60% 36.46 41.47% 24 24.24% 21.23 26.65% 13 8.39% 29.66 33.59% 19 17.12% 66.76 75.70% 41 70.69% DD0D^{*}D_{0}^{*}  ✗  ✗  ✗  ✗ 0.01 0.01%  ✗  ✗  ✗  ✗  ✗  ✗  ✗ DsDsD_{s}D_{s}  ✗  ✗ 0.04 0.11% 0.02 0.24%  ✗  ✗ 1.63 2.05% 10 6.45%  ✗  ✗ 0.15 0.17% 0.4 0.69% DsDsD_{s}D_{s}^{*}  ✗  ✗  ✗  ✗ 1.14 1.30% 3 3.03% 1.08 1.36% 3 1.94% 1.44 1.63% 3.5 3.15% 0.04 0.05% 0 0.00% DsDsD_{s}^{*}D_{s}^{*}  ✗  ✗  ✗  ✗ 0.01 0.01% 0 0.00%  ✗ 0 0.00%  ✗ 0 0.00% 0.01 0.01%  ✗ total 95.17 100% 84 100% 37.97 100% 8.3 100% 87.92 100% 99 100% 79.67 100% 155 100% 88.31 100% 111 100% 88.19 100% 58 100% 21F32^{1}F_{3} 23F22^{3}F_{2} 23F32^{3}F_{3} 23F42^{3}F_{4} 31D23^{1}{D}_{2} 33D13^{3}{D}_{1} 33D23^{3}{D}_{2} 13D31^{3}{D}_{3} Our Ref. [46] Our Ref. [46] Our Ref. [46] Our Ref. [46] Our Mass 4296 4350 4293 4351 4297 4352 4298 4348 4343 4334 4343 4348 Mode Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br DDDD  ✗  ✗ 22.2 35.94% 15 8.33%  ✗  ✗ 0.21 1.26% 12 13.79%  ✗ 10.12 36.17%  ✗ 2.83 11.84% DDDD^{*} 24.28 62.61% 34 31.19% 17.95 29.06% 2 1.11% 31.01 69.67% 27 24.55% 1.68 10.04% 31 35.63% 17.65 63.17% 1.14 4.07% 14.83 51.65% 12.14 50.77% DDD^{*}D^{*} 11.99 30.92% 24 22.02% 19.9 32.22% 41 22.78% 13.1 29.43% 27 24.55% 14.24 85.12% 21 24.14% 6.64 23.77% 8.88 31.74% 7.93 27.62% 4.93 20.62% DD0DD_{0}^{*} 2.04 5.26% 11 10.09%  ✗  ✗ 0.03 0.07% 0.6 0.55%  ✗  ✗ 0.66 2.36%  ✗ 0.01 0.03%  ✗ DD1DD_{1}  ✗ 0.02 0.02% 0.47 0.76% 105 58.33%  ✗ 3.4 3.09%  ✗ 0.5 0.57% 10310^{-3} 5.25 18.76% 1.81 6.30% 0.47 1.97% DD1DD_{1}^{\prime}  ✗ 0.03 0.03% 0.38 0.62% 0.3 0.17%  ✗ 1.3 1.18%  ✗ 2 2.30% 10310^{-3} 1.97 7.04% 1.92 6.69% 2.23 9.33% DD2DD_{2}^{*}  ✗  ✗  ✗ 5.5 3.06%  ✗ 32 29.09%  ✗ 0.04 0.05% 1.46 5.23% 0.07 0.25% 1.61 5.61% 0.42 1.76% DD0D^{*}D_{0}^{*}  ✗ 0.006 0.01%  ✗ 0.2 0.11%  ✗ 0.2 0.18%  ✗ 0.06 0.07%  ✗  ✗  ✗  ✗ DsDsD_{s}D_{s}  ✗  ✗ 0.76 1.23% 1.1 0.61%  ✗  ✗ 0.05 0.30% 5 5.75% 0.32 1.15% 0.01 0.04% 0.42 1.46% 0.22 0.92% DsDsD_{s}D_{s}^{*} 0.27 0.70% 12 11.01%  ✗ 6.9 3.83% 0.22 0.49% 13 11.82% 0.21 1.26% 4.3 4.94% 0.31 1.11% 0.37 1.32% 0.18 0.63% 0.13 0.54% DsDsD_{s}^{*}D_{s}^{*} 0.2 0.52% 6 5.50% 0.11 0.18% 2.7 1.50% 0.15 0.34% 4.3 3.91% 0.34 2.03% 11 12.64%  ✗ 0.17 0.61%  ✗ 0.54 2.26% DsDs0D_{s}D_{s0}^{*}  ✗ 0.3 0.28%  ✗  ✗  ✗ 0.04 0.04%  ✗  ✗ 0.9 3.22%  ✗  ✗  ✗ total 38.78 100% 109 100% 61.77 100% 180 100% 44.51 100% 110 100% 16.73 100% 87 100% 27.94 100% 27.98 100% 28.71 100% 23.91 100% 31F33^{1}F_{3} 33F23^{3}F_{2} 33F33^{3}F_{3} 33F43^{3}F_{4} 21G42^{1}G_{4} 23G32^{3}G_{3} 23G42^{3}G_{4} 23G52^{3}G_{5} 31G43^{1}G_{4} 33G33^{3}G_{3} 33G43^{3}G_{4} 33G53^{3}G_{5} Our Mass 4457 4454 4457 4459 4424 4425 4425 4424 4549 4549 4549 4549 Mode Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br Γthy\Gamma_{thy} Br DDDD  ✗ 12.3 28.13%  ✗ 0.02 0.14%  ✗ 13.09 29.76%  ✗ 2.44 6.97%  ✗ 8.39 24.38%  ✗ 0.83 3.61% DDDD^{*} 14.98 48.64% 9.29 21.24% 18.02 51.59% 2.47 16.85% 21.64 53.12% 19.52 44.38% 26.63 62.28% 1.26 3.60% 12.18 44.91% 11.35 32.98% 15.2 53.84% 0.09 0.39% DDD^{*}D^{*} 8.3 26.95% 13.11 29.98% 8.97 25.68% 10.2 69.58% 13.72 33.68% 5.85 13.30% 10.49 24.53% 27.91 79.74% 8.2 30.24% 4.77 13.86% 6.53 23.13% 15.95 69.35% DD0DD_{0}^{*} 1.57 5.10%  ✗ 0.04 0.11%  ✗ 1.87 4.59%  ✗ 10310^{-3}  ✗ 1.67 6.16%  ✗ 10310^{-3}  ✗ DD1DD_{1} 0.01 0.03% 5.55 12.69% 0.41 1.17% 0.69 4.71% 0.01 0.02% 0.99 2.25% 1.61 3.77% 0.53 1.51% 0.01 0.04% 3.09 8.98% 1.39 4.92% 0.24 1.04% DD1DD_{1}^{\prime} 0.01 0.03% 0.02 0.05% 0.01 0.03% 0.11 0.75% 0.01 0.02% 1.1 2.50% 1.13 2.64% 1.59 4.54% 0.01 0.04% 0.79 2.30% 0.92 3.26% 1.29 5.61% DD2DD_{2}^{*} 5.31 17.24% 1.35 3.09% 6.76 19.35% 0.4 2.73% 2.85 7.00% 1.65 3.75% 1.85 4.33% 0.95 2.71% 1.31 4.83% 0.98 2.85% 0.14 0.50% 0.88 3.83% DD0D^{*}D_{0}^{*} 0.01 0.03% 0.25 0.57% 0.19 0.54% 0.17 1.16% 10310^{-3} 0.38 0.86% 0.33 0.77% 0.24 0.69% 0.01 0.04% 0.51 1.48% 0.41 1.45% 0.3 1.30% DD0DD_{0}  ✗ 1.14 2.61%  ✗ 0.1 0.68%  ✗ 0.01 0.02%  ✗  ✗  ✗ 1.29 3.75%  ✗ 0.09 0.39% DD1D^{*}D_{1} 0.13 0.42% 0.18 0.41% 0.14 0.40% 0.04 0.27%  ✗  ✗  ✗  ✗ 0.25 0.92% 1.92 5.58% 2.22 7.86% 0.07 0.30% DD1D^{*}D_{1}^{\prime} 0.14 0.45% 0.05 0.11% 0.1 0.29% 0.09 0.61%  ✗  ✗  ✗  ✗ 1.63 6.01% 0.02 0.06% 0.02 0.07% 0.01 0.04% DD2D^{*}D_{2}^{*}  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗ 1.32 4.87% 0.42 1.22% 0.87 3.08% 3.14 13.65% DD1DD_{1}^{*}  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗ 0.07 0.26% 0.05 0.15% 0.08 0.28% 0.03 0.13% DsDsD_{s}D_{s}  ✗ 0.39 0.89%  ✗ 0.06 0.41%  ✗ 0.85 1.93%  ✗ 0.01 0.03%  ✗ 0.49 1.42%  ✗  ✗ DsDsD_{s}D_{s}^{*} 0.23 0.75% 0.01 0.02% 0.2 0.57% 0.17 1.16% 0.54 1.33% 0.46 1.05% 0.67 1.57% 0.02 0.06% 0.33 1.22% 0.25 0.73% 0.4 1.42% 0.03 0.13% DsDsD_{s}^{*}D_{s}^{*} 0.11 0.36% 0.09 0.21% 0.09 0.26% 0.14 0.95% 0.04 0.10% 0.08 0.18% 0.05 0.12% 0.05 0.14% 0.05 0.18% 0.08 0.23% 0.05 0.18% 0.05 0.22% DsDs0D_{s}D_{s0}^{*}  ✗ 10310^{-3} 10310^{-3} 10310^{-3} 0.06 0.15%  ✗ 10310^{-3}  ✗ 0.08 0.29% 10310^{-3} 10310^{-3}  ✗ DsDs1D_{s}D_{s1}  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗ 0.02 0.06%  ✗  ✗ total 30.8 100.00% 43.73 100.00% 34.93 100.00% 14.66 100.00% 40.74 100.00% 43.98 100.00% 42.76 100.00% 35 100.00% 27.12 100.00% 34.42 100.00% 28.23 100.00% 23 100.00%

Table 3: The open charm decay of the DD-, FF-, and GG-wave states is compared with the results from Ref. [46]. When the two body strong decay channels are not open or forbidden, a symbol ” ✗” is presented. ”0” denotes that the predicted values are negligibly small.All results are in units of MeV.

23D12^{3}D_{1} 33D13^{3}D_{1} 23D22^{3}D_{2} 33D23^{3}D_{2} 23D32^{3}D_{3} 33D33^{3}D_{3} 11F31^{1}F_{3} 21F32^{1}F_{3} 31F33^{1}F_{3} 13G31^{3}G_{3} 23G32^{3}G_{3} 33G33^{3}G_{3} 13G41^{3}G_{4} 23G42^{3}G_{4} 33G43^{3}G_{4} 13G51^{3}G_{5} 23G52^{3}G_{5} 33G53^{3}G_{5} 11S01^{1}S_{0}γ\gamma 0.16 0.11 0.49 0.38 0.32 0.26 8.55 7.08 4.97 103\sim 10^{-3} 103\sim 10^{-3} 103\sim 10^{-3} 0.01 0.01 0.01 103\sim 10^{-3} 103\sim 10^{-3} 0.01 21S02^{1}S_{0}γ\gamma 0.05 0.06 0.09 0.13 0.04 0.07 3.25 0.88 2.09 103\sim 10^{-3} 105\sim 10^{-5} 105\sim 10^{-5} 103\sim 10^{-3} 104\sim 10^{-4} 105\sim 10^{-5} 103\sim 10^{-3} 105\sim 10^{-5} 105\sim 10^{-5} 31S03^{1}S_{0}γ\gamma 104\sim 10^{-4} 0.01 104\sim 10^{-4} 0.02 104\sim 10^{-4} 0.01 105\sim 10^{-5} 1.79 0.06 107\sim 10^{-7} 104\sim 10^{-4} 105\sim 10^{-5} 106\sim 10^{-6} 104\sim 10^{-4} 104\sim 10^{-4} 106\sim 10^{-6} 104\sim 10^{-4} 104\sim 10^{-4} 41S04^{1}S_{0}γ\gamma  ✗ 104\sim 10^{-4}  ✗ 105\sim 10^{-5}  ✗ 105\sim 10^{-5}  ✗ 106\sim 10^{-6} 0.91  ✗ 107\sim 10^{-7} 105\sim 10^{-5}  ✗ 107\sim 10^{-7} 105\sim 10^{-5}  ✗ 107\sim 10^{-7} 105\sim 10^{-5} 13P01^{3}P_{0}γ\gamma 82.20 32.32 0.93 0.65 0.29 0.33 0.17 0.15 0.11 14.82 11.26 7.40 0.03 0.03 0.03 0.04 0.01 104\sim 10^{-4} 23P02^{3}P_{0}γ\gamma 126.39 43.99 0.09 0.16 0.06 0.11 104\sim 10^{-4} 0.01 0.02 1.46 0.61 1.51 103\sim 10^{-3} 104\sim 10^{-4} 103\sim 10^{-3} 104\sim 10^{-4} 0.01 0.01 33P03^{3}P_{0}γ\gamma  ✗ 119.16  ✗ 0.04  ✗ 0.07  ✗ 105\sim 10^{-5} 103\sim 10^{-3} 104\sim 10^{-4} 1.35 0.01 109\sim 10^{-9} 104\sim 10^{-4} 107\sim 10^{-7} 1010\sim 10^{-10} 104\sim 10^{-4} 0.01 43P04^{3}P_{0}γ\gamma  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗ 105\sim 10^{-5}  ✗ 104\sim 10^{-4} 0.64  ✗ 109\sim 10^{-9} 105\sim 10^{-5}  ✗ 1010\sim 10^{-10} 104\sim 10^{-4} 13P11^{3}P_{1}γ\gamma 26.35 7.84 49.12 17.88 1.24 0.96 0.34 0.29 0.21 14.15 9.49 5.75 15.80 10.94 6.76 0.07 0.03 0.02 23P12^{3}P_{1}γ\gamma 115.98 25.57 127.69 38.40 0.22 0.62 104\sim 10^{-4} 0.05 0.08 1.71 1.66 2.75 2.11 1.71 2.93 103\sim 10^{-3} 0.03 0.01 33P13^{3}P_{1}γ\gamma  ✗ 90.29  ✗ 81.40  ✗ 0.11  ✗ 104\sim 10^{-4} 0.01 104\sim 10^{-4} 1.12 0.12 105\sim 10^{-5} 1.42 0.11 1010\sim 10^{-10} 103\sim 10^{-3} 0.01 43P14^{3}P_{1}γ\gamma  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗ 105\sim 10^{-5}  ✗ 105\sim 10^{-5} 0.55  ✗ 105\sim 10^{-5} 0.70  ✗ 1010\sim 10^{-10} 104\sim 10^{-4} 13P21^{3}P_{2}γ\gamma 5.43 2.50 10.90 3.55 40.99 13.06 0.42 0.28 0.17 2.86 1.63 0.91 10.19 6.23 3.55 22.12 13.86 7.99 23P22^{3}P_{2}γ\gamma 11.86 6.95 63.34 12.27 212.66 47.21 103\sim 10^{-3} 0.13 0.14 0.43 0.75 0.85 1.70 2.26 2.94 3.99 4.71 6.24 33P23^{3}P_{2}γ\gamma  ✗ 6.37  ✗ 26.13  ✗ 93.97  ✗ 105\sim 10^{-5} 0.02 107\sim 10^{-7} 0.16 0.08 106\sim 10^{-6} 0.64 0.21 106\sim 10^{-6} 1.57 0.42 43P24^{3}P_{2}γ\gamma  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗ 105\sim 10^{-5}  ✗ 107\sim 10^{-7} 0.08  ✗ 106\sim 10^{-6} 0.33  ✗ 106\sim 10^{-6} 0.80 11D21^{1}D_{2}γ\gamma 0.04 0.04 0.04 0.02 0.15 0.12 249.14 42.32 13.89 0.13 0.09 0.05 0.24 0.19 0.12 0.14 0.12 0.08 21D22^{1}D_{2}γ\gamma 0.02 0.02  ✗ 0.02 105\sim 10^{-5} 0.07  ✗ 154.09 40.82 104\sim 10^{-4} 0.03 0.03 104\sim 10^{-4} 0.05 0.07 104\sim 10^{-4} 0.03 0.04 31D23^{1}D_{2}γ\gamma  ✗ 0.03  ✗  ✗  ✗ 104\sim 10^{-4}  ✗  ✗ 94.51  ✗ 105\sim 10^{-5} 0.01  ✗ 105\sim 10^{-5} 0.01  ✗ 105\sim 10^{-5} 0.01 41D24^{1}D_{2}γ\gamma  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗ 105\sim 10^{-5}  ✗  ✗ 105\sim 10^{-5}  ✗  ✗ 105\sim 10^{-5} 13F21^{3}F_{2}γ\gamma 17.19 0.15 0.72 0.11 0.02 0.02 105\sim 10^{-5} 0.03 0.03 219.87 38.11 12.52 0.20 0.30 0.22 103\sim 10^{-3} 0.01 0.01 23F22^{3}F_{2}γ\gamma  ✗ 32.17  ✗ 0.86  ✗ 0.02  ✗ 105\sim 10^{-5} 0.02  ✗ 129.88 36.55  ✗ 0.08 0.16  ✗ 103\sim 10^{-3} 103\sim 10^{-3} 33F23^{3}F_{2}γ\gamma  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗ 105\sim 10^{-5}  ✗  ✗ 76.66  ✗  ✗ 0.03  ✗  ✗ 103\sim 10^{-3} 13F31^{3}F_{3}γ\gamma 103\sim 10^{-3} 0.37 5.37 0.03 0.56 0.10  ✗ 0.02 0.01 21.54 3.63 1.23 204.82 31.90 9.81 0.10 0.24 0.16 23F32^{3}F_{3}γ\gamma  ✗ 0.01  ✗ 6.13  ✗ 0.65  ✗  ✗ 0.01  ✗ 12.41 3.43  ✗ 124.34 32.00  ✗ 0.06 0.12 33F33^{3}F_{3}γ\gamma  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗ 7.19  ✗  ✗ 74.94  ✗  ✗ 0.02 13F41^{3}F_{4}γ\gamma 105\sim 10^{-5} 0.06 103\sim 10^{-3} 0.14 7.30 0.21  ✗ 103\sim 10^{-3} 103\sim 10^{-3} 0.41 0.11 0.05 15.73 2.83 0.95 200.63 28.77 8.48 23F42^{3}F_{4}γ\gamma  ✗ 104\sim 10^{-4}  ✗ 104\sim 10^{-4}  ✗ 8.07  ✗  ✗ 103\sim 10^{-3}  ✗ 0.23 0.09  ✗ 9.15 2.65  ✗ 126.53 29.57 33F43^{3}F_{4}γ\gamma  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗ 0.13  ✗  ✗ 5.12  ✗  ✗ 73.64 11G41^{1}G_{4}γ\gamma  ✗  ✗  ✗ 105\sim 10^{-5}  ✗ 105\sim 10^{-5}  ✗ 3.19 0.11 105\sim 10^{-5} 103\sim 10^{-3} 103\sim 10^{-3} 105\sim 10^{-5} 0.01 0.01  ✗ 0.01 0.01 21G42^{1}G_{4}γ\gamma  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗ 3.30  ✗  ✗ 103\sim 10^{-3}  ✗ 106\sim 10^{-6} 103\sim 10^{-3}  ✗  ✗ 103\sim 10^{-3}

Table 4: Radiative decay behavior of these discussed high-lying charmonia. The symbol ” ✗” indicates that the radiative decay channels are forbidden. All results are in units of keV.

2D212{}^{1}D_{2} 3D213{}^{1}D_{2} 13F21^{3}F_{2} 23F22^{3}F_{2} 33F23^{3}F_{2} 13F31^{3}F_{3} 23F32^{3}F_{3} 33F33^{3}F_{3} 13F41^{3}F_{4} 23F42^{3}F_{4} 33F43^{3}F_{4} 11G41^{1}G_{4} 21G42^{1}G_{4} 31G43^{1}G_{4} 13S11^{3}S_{1}γ\gamma 0.64 0.44 11.36 7.62 4.66 9.99 7.17 4.57 8.13 6.05 3.97 0.01 0.02 0.01 23S12^{3}S_{1}γ\gamma 0.15 0.20 1.85 2.43 3.49 1.95 1.75 2.81 1.87 1.20 2.12 103\sim 10^{-3} 106\sim 10^{-6} 103\sim 10^{-3} 33S13^{3}S_{1}γ\gamma 103\sim 10^{-3} 0.04 107\sim 10^{-7} 1.19 0.47 107\sim 10^{-7} 1.25 0.28 106\sim 10^{-6} 1.19 0.17 106\sim 10^{-6} 103\sim 10^{-3} 104\sim 10^{-4} 43S14^{3}S_{1}γ\gamma  ✗ 103\sim 10^{-3}  ✗ 104\sim 10^{-4} 3.61  ✗ 103\sim 10^{-3} 3.65  ✗ 103\sim 10^{-3} 3.56  ✗ 105\sim 10^{-5} 103\sim 10^{-3} 11P11^{1}P_{1}γ\gamma 58.45 21.04 0.19 0.13 0.08 0.42 0.33 0.23 0.25 0.22 0.16 24.29 16.49 10.03 21P12^{1}P_{1}γ\gamma 167.10 49.09 104\sim 10^{-4} 0.04 0.04 104\sim 10^{-4} 0.07 0.10 104\sim 10^{-4} 0.04 0.06 3.09 3.07 4.92 31P13^{1}P_{1}γ\gamma  ✗ 105.64  ✗ 104\sim 10^{-4} 0.01  ✗ 104\sim 10^{-4} 0.02  ✗ 105\sim 10^{-5} 0.01 105\sim 10^{-5} 2.10 0.25 41P14^{1}P_{1}γ\gamma  ✗  ✗  ✗  ✗ 105\sim 10^{-5}  ✗  ✗ 105\sim 10^{-5}  ✗  ✗ 105\sim 10^{-5}  ✗ 105\sim 10^{-5} 1.04 13D11^{3}D_{1}γ\gamma 0.28 0.17 439.69 73.05 24.00 1.12 1.22 0.83 0.02 0.07 0.05 0.21 0.16 0.10 23D12^{3}D_{1}γ\gamma  ✗ 0.03  ✗ 76.97 29.52  ✗ 0.05 0.19  ✗ 103\sim 10^{-3} 0.01 105\sim 10^{-5} 0.01 0.02 33D13^{3}D_{1}γ\gamma  ✗  ✗  ✗  ✗ 30.37  ✗  ✗ 0.01  ✗  ✗ 104\sim 10^{-4}  ✗ 106\sim 10^{-6} 103\sim 10^{-3} 43D14^{3}D_{1}γ\gamma  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗ 105\sim 10^{-5} 13D21^{3}D_{2}γ\gamma 0.10 0.06 60.89 9.37 3.05 295.43 45.97 14.29 0.41 0.69 0.48 0.27 0.20 0.13 23D22^{3}D_{2}γ\gamma  ✗ 0.03  ✗ 27.01 7.11  ✗ 137.72 36.31  ✗ 0.11 0.30 104\sim 10^{-4} 0.04 0.05 33D23^{3}D_{2}γ\gamma  ✗  ✗  ✗  ✗ 15.86  ✗  ✗ 82.87  ✗  ✗ 0.05  ✗ 105\sim 10^{-5} 0.01 43D24^{3}D_{2}γ\gamma  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗ 105\sim 10^{-5} 13D31^{3}D_{3}γ\gamma 0.01 0.01 1.79 0.54 0.25 38.83 5.95 1.92 269.26 38.03 11.37 0.27 0.18 0.11 23D32^{3}D_{3}γ\gamma  ✗ 104\sim 10^{-4}  ✗ 0.85 0.36  ✗ 19.16 4.81  ✗ 141.37 33.97 104\sim 10^{-4} 0.05 0.06 33D33^{3}D_{3}γ\gamma  ✗  ✗  ✗  ✗ 0.49  ✗  ✗ 11.28  ✗  ✗ 89.20  ✗ 105\sim 10^{-5} 0.01 43D34^{3}D_{3}γ\gamma  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗ 105\sim 10^{-5} 11F31^{1}F_{3}γ\gamma 6.28 0.26  ✗ 103\sim 10^{-3} 103\sim 10^{-3} 106\sim 10^{-6} 0.02 0.01 105\sim 10^{-5} 0.04 0.03 214.94 34.28 10.74 21F32^{1}F_{3}γ\gamma  ✗ 7.29  ✗  ✗ 103\sim 10^{-3}  ✗ 105\sim 10^{-5} 0.01  ✗ 105\sim 10^{-5} 0.02  ✗ 133.06 34.10 31F33^{1}F_{3}γ\gamma  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗  ✗ 105\sim 10^{-5}  ✗  ✗ 77.78 13G31^{3}G_{3}γ\gamma  ✗ 105\sim 10^{-5}  ✗ 2.29 0.06  ✗ 0.14 0.03  ✗ 103\sim 10^{-3} 103\sim 10^{-3}  ✗ 0.01 0.01 23G32^{3}G_{3}γ\gamma  ✗  ✗  ✗  ✗ 2.51  ✗  ✗ 0.16  ✗  ✗ 103\sim 10^{-3}  ✗  ✗ 103\sim 10^{-3} 13G41^{3}G_{4}γ\gamma  ✗ 105\sim 10^{-5}  ✗ 104\sim 10^{-4} 0.04  ✗ 2.82 0.04  ✗ 0.14 0.02  ✗ 0.01 0.01 23G42^{3}G_{4}γ\gamma  ✗  ✗  ✗  ✗ 105\sim 10^{-5}  ✗  ✗ 2.84  ✗  ✗ 0.16  ✗  ✗ 103\sim 10^{-3} 13G51^{3}G_{5}γ\gamma  ✗ 105\sim 10^{-5}  ✗ 107\sim 10^{-7} 103\sim 10^{-3}  ✗ 104\sim 10^{-4} 0.03  ✗ 3.65 0.11 106\sim 10^{-6} 103\sim 10^{-3} 103\sim 10^{-3} 23G52^{3}G_{5}γ\gamma  ✗  ✗  ✗  ✗ 107\sim 10^{-7}  ✗  ✗ 104\sim 10^{-4}  ✗  ✗ 3.25  ✗  ✗ 103\sim 10^{-3}

Table 5: Radiative decay behavior of these discussed high-lying charmonia. All results are in units of keV.

References

  • Aubert et al. [1974] J. J. Aubert et al. (E598), Experimental observation of a heavy particle JJPhys. Rev. Lett. 33, 1404 (1974).
  • Augustin et al. [1974] J. E. Augustin et al. (SLAC-SP-017), Discovery of a narrow resonance in e+ee^{+}e^{-} annihilation, Phys. Rev. Lett. 33, 1406 (1974).
  • Abrams et al. [1974] G. S. Abrams et al., The discovery of a second narrow resonance in e+ee^{+}e^{-} annihilation, Phys. Rev. Lett. 33, 1453 (1974).
  • Himel et al. [1980] T. Himel et al., Observation of the ηc(2980)\eta_{c}(2980) produced in the radiative decay of the ψ\psi^{\prime}(3684), Phys. Rev. Lett. 45, 1146 (1980).
  • Edwards et al. [1982] C. Edwards et al., Observation an an ηc\eta_{c}^{\prime} Candidate State with Mass 3592±53592\pm 5 MeV, Phys. Rev. Lett. 48, 70 (1982).
  • Goldhaber et al. [1977] G. Goldhaber et al.DD and DD^{*} Meson Production Near 4-GeV in e+ee^{+}e^{-} Annihilation, Phys. Lett. B 69, 503 (1977).
  • Siegrist et al. [1976] J. Siegrist et al., Observation of a resonance at 4.4-GeV and additional structure near 4.1-GeV in e+ee^{+}e^{-} annihilation, Phys. Rev. Lett. 36, 700 (1976).
  • Armstrong et al. [1992] T. A. Armstrong et al., Observation of the P-wave singlet state of charmonium, Phys. Rev. Lett. 69, 2337 (1992).
  • Biddick et al. [1977] C. J. Biddick et al., Inclusive gamma-Ray Spectra from ψ\psi(3095) and ψ\psi^{\prime} (3684), Phys. Rev. Lett. 38, 1324 (1977).
  • Tanenbaum et al. [1975] W. M. Tanenbaum et al., Observation of an intermediate state in ψ\psi^{\prime} (3684) radiative cascade decay, Phys. Rev. Lett. 35, 1323 (1975).
  • Whitaker et al. [1976] J. S. Whitaker et al., Radiative decays of ψ\psi(3095) and ψ\psi^{\prime} (3684), Phys. Rev. Lett. 37, 1596 (1976).
  • Rapidis et al. [1977] P. A. Rapidis et al., Observation of a resonance in e+ee^{+}e^{-} annihilation just above charm threshold, Phys. Rev. Lett. 39, 526 (1977), [Erratum: Phys.Rev.Lett. 39, 974 (1977)].
  • Eichten et al. [1975] E. Eichten, K. Gottfried, T. Kinoshita, J. B. Kogut, K. D. Lane, and T.-M. Yan, The spectrum of charmonium, Phys. Rev. Lett. 34, 369 (1975), [Erratum: Phys.Rev.Lett. 36, 1276 (1976)].
  • Eichten et al. [1978] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T.-M. Yan, Charmonium: the model, Phys. Rev. D 17, 3090 (1978), [Erratum: Phys.Rev.D 21, 313 (1980)].
  • Barbieri et al. [1976] R. Barbieri, R. Kogerler, Z. Kunszt, and R. Gatto, Meson masses and widths in a Gauge theory with linear binding potential, Nucl. Phys. B 105, 125 (1976).
  • Stanley and Robson [1980] D. P. Stanley and D. Robson, Nonperturbative potential model for light and heavy quark anti-quark systems, Phys. Rev. D 21, 3180 (1980).
  • Carlson et al. [1983] J. Carlson, J. B. Kogut, and V. R. Pandharipande, Hadron spectroscopy in a flux tube quark model, Phys. Rev. D 28, 2807 (1983).
  • Richardson [1979] J. L. Richardson, The heavy quark potential and the Υ,J/ψ\Upsilon,J/\psi Systems, Phys. Lett. B 82, 272 (1979).
  • Buchmuller et al. [1980] W. Buchmuller, G. Grunberg, and S. H. H. Tye, The Regge slope and the Lambda parameter in QCD: An empirical approach via quarkonia, Phys. Rev. Lett. 45, 103 (1980), [Erratum: Phys.Rev.Lett. 45, 587 (1980)].
  • Buchmuller and Tye [1981] W. Buchmuller and S. H. H. Tye, Quarkonia and quantum chromodynamics, Phys. Rev. D 24, 132 (1981).
  • Martin [1981] A. Martin, A simultaneous fit of bb¯b\bar{b}, cc¯c\bar{c}, ss¯s\bar{s}, (bcsbcs pairs) and cs¯c\bar{s} Spectra, Phys. Lett. B 100, 511 (1981).
  • Bhanot and Rudaz [1978] G. Bhanot and S. Rudaz, A New Potential for Quarkonium, Phys. Lett. B 78, 119 (1978).
  • Quigg and Rosner [1977] C. Quigg and J. L. Rosner, Quarkonium Level Spacings, Phys. Lett. B 71, 153 (1977).
  • Godfrey and Isgur [1985] S. Godfrey and N. Isgur, Mesons in a relativized quark model with chromodynamics, Phys. Rev. D 32, 189 (1985).
  • Fulcher [1991] L. P. Fulcher, Perturbative QCD, a universal QCD scale, long range spin orbit potential, and the properties of heavy quarkonia, Phys. Rev. D 44, 2079 (1991).
  • Gupta et al. [1994] S. N. Gupta, J. M. Johnson, W. W. Repko, and C. J. Suchyta, III, Heavy quarkonium potential model and the P-wave singlet state of charmonium, Phys. Rev. D 49, 1551 (1994).
  • Zeng et al. [1995] J. Zeng, J. W. Van Orden, and W. Roberts, Heavy mesons in a relativistic model, Phys. Rev. D 52, 5229 (1995).
  • Ebert et al. [2003] D. Ebert, R. N. Faustov, and V. O. Galkin, Properties of heavy quarkonia and BcB_{c} mesons in the relativistic quark model, Phys. Rev. D 67, 014027 (2003).
  • Liu et al. [2009] X. Liu, Z.-G. Luo, Y.-R. Liu, and S.-L. Zhu, X(3872) and other possible heavy molecular states, Eur. Phys. J. C 61, 411 (2009).
  • Liu [2014] X. Liu, An overview of XYZ new particles, Chin. Sci. Bull. 59, 3815 (2014).
  • Chen et al. [2016] H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhu, The hidden-charm pentaquark and tetraquark states, Phys. Rept. 639, 1 (2016).
  • Guo et al. [2018] F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, and B.-S. Zou, Hadronic molecules, Rev. Mod. Phys. 90, 015004 (2018), [Erratum: Rev.Mod.Phys. 94, 029901 (2022)], arXiv:1705.00141 [hep-ph] .
  • Brambilla et al. [2020] N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C. E. Thomas, A. Vairo, and C.-Z. Yuan, The XYZXYZ states: experimental and theoretical status and perspectives, Phys. Rept. 873, 1 (2020)arXiv:1907.07583 [hep-ex] .
  • Chen et al. [2023] H.-X. Chen, W. Chen, X. Liu, Y.-R. Liu, and S.-L. Zhu, An updated review of the new hadron states, Rept. Prog. Phys. 86, 026201 (2023).
  • Deng et al. [2024] Q. Deng, R.-H. Ni, Q. Li, and X.-H. Zhong, Charmonia in an unquenched quark model, Phys. Rev. D 110, 056034 (2024).
  • Choi et al. [2003] S. K. Choi et al. (Belle), Observation of a narrow charmonium-like state in exclusive B±K±π+πJ/ψB^{\pm}\to K^{\pm}\pi^{+}\pi^{-}J/\psi decays, Phys. Rev. Lett. 91, 262001 (2003).
  • Wong [2004] C.-Y. Wong, Molecular states of heavy quark mesons, Phys. Rev. C 69, 055202 (2004).
  • Swanson [2004] E. S. Swanson, Short range structure in the X(3872), Phys. Lett. B 588, 189 (2004).
  • Maiani et al. [2005] L. Maiani, F. Piccinini, A. D. Polosa, and V. Riquer, Diquark-antidiquarks with hidden or open charm and the nature of X(3872), Phys. Rev. D 71, 014028 (2005).
  • Chen and Zhu [2011] W. Chen and S.-L. Zhu, The vector and axial-Vector charmonium-like states, Phys. Rev. D 83, 034010 (2011).
  • van Beveren and Rupp [2003] E. van Beveren and G. Rupp, Observed Ds(2317)D_{s}(2317) and tentative D(21002300)D(2100\text{--}2300) as the charmed cousins of the light scalar nonet, Phys. Rev. Lett. 91, 012003 (2003).
  • Dai et al. [2003] Y.-B. Dai, C.-S. Huang, C. Liu, and S.-L. Zhu, Understanding the DsJ+(2317)D^{+}_{sJ}(2317) and DsJ+(2460)D^{+}_{sJ}(2460) with sum rules in HQET, Phys. Rev. D 68, 114011 (2003).
  • van Beveren and Rupp [2004] E. van Beveren and G. Rupp, Continuum bound states KLK_{L}, D1(2420)D_{1}(2420), Dsl(2536)D_{sl}(2536) and their partners KSK_{S}, D1(2400)D_{1}(2400), DsJ(2463)D^{*}_{sJ}(2463)Eur. Phys. J. C 32, 493 (2004).
  • Kalashnikova [2005] Y. S. Kalashnikova, Coupled-channel model for charmonium levels and an option for X(3872), Phys. Rev. D 72, 034010 (2005).
  • Zhang et al. [2009] O. Zhang, C. Meng, and H. Q. Zheng, Ambiversion of X(3872), Phys. Lett. B 680, 453 (2009).
  • Barnes et al. [2005] T. Barnes, S. Godfrey, and E. S. Swanson, Higher charmonia, Phys. Rev. D 72, 054026 (2005).
  • Duan et al. [2020] M.-X. Duan, S.-Q. Luo, X. Liu, and T. Matsuki, Possibility of charmoniumlike state X(3915) as χc0(2P)\chi_{c0}(2P) state, Phys. Rev. D 101, 054029 (2020).
  • Man et al. [2024] Z.-L. Man, C.-R. Shu, Y.-R. Liu, and H. Chen, Charmonium states in a coupled-channel model, Eur. Phys. J. C 84, 810 (2024).
  • Aaij et al. [2019] R. Aaij et al. (LHCb), Near-threshold DD¯D\bar{D} spectroscopy and observation of a new charmonium state, JHEP 07, 035.
  • Aaij et al. [2024] R. Aaij et al. (LHCb), Observation of new charmonium or charmoniumlike states in B+D±DK+B^{+}\rightarrow D^{*\pm}D^{\mp}K^{+} Decays, Phys. Rev. Lett. 133, 131902 (2024).
  • Ablikim et al. [2024] M. Ablikim et al. (BESIII), Observation of Structures in the Processes e+eωχc1e^{+}e^{-}\rightarrow\omega\chi_{c1} and ωχc2\omega\chi_{c2}Phys. Rev. Lett. 132, 161901 (2024).
  • Ablikim et al. [2023a] M. Ablikim et al. (BESIII), Observation of a vector charmoniumlike state at 4.74.7 GeV/c2 and Search for ZcsZ_{cs} in e+eK+KJ/ψe^{+}e^{-}\rightarrow K^{+}K^{-}J/\psiPhys. Rev. Lett. 131, 211902 (2023a).
  • Ablikim et al. [2023b] M. Ablikim et al. (BESIII), Precise Measurement of the e+eDs+Dse^{+}e^{-}\rightarrow D_{s}^{*+}D_{s}^{*-} Cross Sections at Center-of-Mass Energies from Threshold to 4.954.95 GeV, Phys. Rev. Lett. 131, 151903 (2023b).
  • Navas et al. [2024] S. Navas et al. (Particle Data Group), Review of particle physics, Phys. Rev. D 110, 030001 (2024).
  • Chen et al. [2017] H.-X. Chen, W. Chen, X. Liu, Y.-R. Liu, and S.-L. Zhu, A review of the open charm and open bottom systems, Rept. Prog. Phys. 80, 076201 (2017)arXiv:1609.08928 [hep-ph] .
  • Wang et al. [2019] J.-Z. Wang, D.-Y. Chen, X. Liu, and T. Matsuki, Constructing J/ψJ/\psi family with updated data of charmoniumlike Y states, Phys. Rev. D 99, 114003 (2019).
  • Duan and Liu [2021] M.-X. Duan and X. Liu, Where are 3P and higher P-wave states in the charmonium family?, Phys. Rev. D 104, 074010 (2021).
  • Song et al. [2015a] Q.-T. Song, D.-Y. Chen, X. Liu, and T. Matsuki, Charmed-strange mesons revisited: mass spectra and strong decays, Phys. Rev. D 91, 054031 (2015a).
  • Song et al. [2015b] Q.-T. Song, D.-Y. Chen, X. Liu, and T. Matsuki, Higher radial and orbital excitations in the charmed meson family, Phys. Rev. D 92, 074011 (2015b).
  • Pang et al. [2017] C.-Q. Pang, J.-Z. Wang, X. Liu, and T. Matsuki, A systematic study of mass spectra and strong decay of strange mesons, Eur. Phys. J. C 77, 861 (2017).
  • Wang et al. [2018] J.-Z. Wang, Z.-F. Sun, X. Liu, and T. Matsuki, Higher bottomonium zoo, Eur. Phys. J. C 78, 915 (2018).
  • Wang et al. [2020] J.-Z. Wang, R.-Q. Qian, X. Liu, and T. Matsuki, Are the Y states around 4.6 GeV from e+ee^{+}e^{-} annihilation higher charmonia?, Phys. Rev. D 101, 034001 (2020).
  • Wang et al. [2022] L.-M. Wang, S.-Q. Luo, and X. Liu, Light unflavored vector meson spectroscopy around the mass range of 2.4\sim3  GeV and possible experimental evidence, Phys. Rev. D 105, 034011 (2022).
  • Micu [1969] L. Micu, Decay rates of meson resonances in a quark model, Nucl. Phys. B 10, 521 (1969).
  • Le Yaouanc et al. [1974] A. Le Yaouanc, L. Oliver, O. Pene, and J. C. Raynal, Naive quark pair creation model and baryon decays, Phys. Rev. D 9, 1415 (1974).
  • Le Yaouanc et al. [1977a] A. Le Yaouanc, L. Oliver, O. Pene, and J. C. Raynal, Why is ψ′′(4.414)\psi^{\prime\prime}(4.414) so narrow?, Phys. Lett. B 72, 57 (1977a).
  • Le Yaouanc et al. [1977b] A. Le Yaouanc, L. Oliver, O. Pene, and J. C. Raynal, Strong decays of ψ′′(4.028)\psi^{\prime\prime}(4.028) as a radial excitation of charmonium, Phys. Lett. B 71, 397 (1977b).
  • Jacob and Wick [1959] M. Jacob and G. C. Wick, On the general theory of collisions for particles with spin, Annals Phys. 7, 404 (1959).
  • Brodsky and Primack [1969] S. J. Brodsky and J. R. Primack, The electromagnetic interactions of composite systems, Annals Phys. 52, 315 (1969).
  • Close and Copley [1970] F. E. Close and L. A. Copley, Electromagnetic interactions of weakly bound composite systems, Nucl. Phys. B 19, 477 (1970).
  • Li [1994] Z.-P. Li, The threshold pion photoproduction of nucleons in the chiral quark model, Phys. Rev. D 50, 5639 (1994).
  • Li et al. [1997] Z.-p. Li, H.-x. Ye, and M.-h. Lu, An unified approach to pseudoscalar meson photoproductions off nucleons in the quark model, Phys. Rev. C 56, 1099 (1997).
  • Deng et al. [2017] W.-J. Deng, H. Liu, L.-C. Gui, and X.-H. Zhong, Charmonium spectrum and their electromagnetic transitions with higher multipole contributions, Phys. Rev. D 95, 034026 (2017).
  • Wang et al. [2017] K.-L. Wang, Y.-X. Yao, X.-H. Zhong, and Q. Zhao, Strong and radiative decays of the low-lying S- and P-wave singly heavy baryons, Phys. Rev. D 96, 116016 (2017).
  • [75] C. A. Bokade and Bhaghyesh, Charmonium: conventional and XYZ states in a relativistic screened potential model,  arXiv:2408.06759 [hep-ph] .
  • Li and Chao [2009] B.-Q. Li and K.-T. Chao, Higher charmonia and X,Y,Z states with screened potential, Phys. Rev. D 79, 094004 (2009).
  • Chaturvedi and Rai [2020] R. Chaturvedi and A. K. Rai, Charmonium spectroscopy motivated by general features of pNRQCD, Int. J. Theor. Phys. 59, 3508 (2020).
  • Sultan et al. [2014] M. A. Sultan, N. Akbar, B. Masud, and F. Akram, Higher hybrid charmonia in an extended potential model, Phys. Rev. D 90, 054001 (2014).
  • Faustov et al. [2012] R. N. Faustov, D. Ebert, and V. O. Galkin, Spectroscopy and Regge trajectories of heavy quarkonia and BcB_{c} mesons, PoS Baldin-ISHEPP-XXI, 058 (2012).
  • Cao et al. [2012] L. Cao, Y.-C. Yang, and H. Chen, Charmonium states in QCD-inspired quark potential model using Gaussian expansion method, Few Body Syst. 53, 327 (2012).
  • Kher and Rai [2018] V. Kher and A. K. Rai, Spectroscopy and decay properties of charmonium, Chin. Phys. C 42, 083101 (2018).
  • Godfrey and Moats [2015] S. Godfrey and K. Moats, Bottomonium Mesons and Strategies for their Observation, Phys. Rev. D 92, 054034 (2015)arXiv:1507.00024 [hep-ph] .
  • Grant and Rosner [1992] A. Grant and J. L. Rosner, Dipole transition matrix elements for systems with power law potentials, Phys. Rev. D 46, 3862 (1992).