This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Hierarchical-Absolute Reciprocity Calibration for Millimeter-wave Hybrid Beamforming Systems

Li Chen, Rongjiang Nie, Yunfei Chen, and Weidong Wang Li Chen, Rongjiang Nie, and Weidong Wang are with the CAS Key Laboratory of Wireless Optical Communication, University of Science and Technology of China, Hefei 230027, China (e-mail:[email protected]; [email protected]; [email protected]).Yunfei Chen is with the School of Engineering, University of Warwick, Coventry CV4 7AL, U.K. (e-mail: [email protected]).
Abstract

In time-division duplexing (TDD) millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems, the reciprocity mismatch severely degrades the performance of the hybrid beamforming (HBF). In this work, to mitigate the detrimental effect of the reciprocity mismatch, we investigate reciprocity calibration for the mmWave-HBF system with a fully-connected phase shifter network. To reduce the overhead and computational complexity of reciprocity calibration, we first decouple digital radio frequency (RF) chains and analog RF chains with beamforming design. Then, the entire calibration problem of the HBF system is equivalently decomposed into two subproblems corresponding to the digital-chain calibration and analog-chain calibration. To solve the calibration problems efficiently, a closed-form solution to the digital-chain calibration problem is derived, while an iterative-alternating optimization algorithm for the analog-chain calibration problem is proposed. To measure the performance of the proposed algorithm, we derive the Cramér-Rao lower bound on the errors in estimating mismatch coefficients. The results reveal that the estimation errors of mismatch coefficients of digital and analog chains are uncorrelated, and that the mismatch coefficients of receive digital chains can be estimated perfectly. Simulation results are presented to validate the analytical results and to show the performance of the proposed calibration approach.

Index Terms:
Calibration, hybrid beamforming, massive MIMO, millimeter-wave, reciprocity mismatch.

Introduction In time-division duplexing (TDD) massive multiple-input multiple-output (MIMO) systems, the base station (BS) estimates the downlink channel state information (CSI) by exploiting the reciprocity of the wireless channel, to relieve the overhead of acquiring CSI[1, 2].

In practice, the estimated CSI is composed of not only the wireless propagation channel response but also the radio frequency (RF) response of RF chains [3]. The transmit and receive RF chains consist of different RF components. The transmit chain is composed of a digital-to-analog converter, a power amplifier, etc., while the receive RF chain consists of an analog-to-digital converter, a low noise amplifier, etc. Due to the different compositions, the RF responses of transmit and receive chains are generally asymmetric, which results in the reciprocity mismatch of the uplink and downlink channels [4].

The study of reciprocity mismatch has attracted extensive attention in the past decade and can be mainly classified into impact analysis and calibration design. To examine the impact of the reciprocity mismatch, some theoretical analyses have been provided for massive MIMO systems with linear precoding techniques, e.g., the zero-forcing (ZF) and matched filter (MF). W. Zhang et al. in [5] studied the performance of the multi-user massive MIMO system with regularized ZF and MF precoding. They found that the reciprocity mismatch hardly caused any performance loss in the low signal-to-noise ratio (SNR) regime but severe performance loss in the high SNR regime. The theoretical results in [6] revealed that the reciprocity mismatch at the BS side was the key contributing factor to the multi-user interference and led to severe system performance degradation for the ZF precoding, while the mismatch at the user equipment (UE) side only led to very slight performance loss. Further, the theoretical comparison of MF and ZF precoding in [7, 8] indicated that the ZF-precoded system was more sensitive to the reciprocity mismatch than the MF-precoded system. The experimental results in [9] verified the theoretical conclusions of the system performance in the presence of the reciprocity mismatch.

Since the reciprocity mismatch causes severe system performance degradation, the reciprocity calibration plays an essential role in the deployment of the massive MIMO system. Unlike the CSI estimation error [10], which changes with each channel realization, the reciprocity mismatch coefficients remain constant over hours or even days, and reciprocity calibration can be performed infrequently, e.g., once an hour. Reciprocity calibration techniques can be mainly classified into two categories, which are hardware-based calibration and over-the-air (OTA) calibration. The hardware-based calibration utilizes the auxiliary circuits and components to connect the transmit RF chains and the receive RF chains. A real-time hardware-based calibration was first proposed in [11] for narrowband conventional MIMO systems, where the transmitted data signals were used to calibrate the antenna array. Then, A. Bourdoux et al. in [12] proposed a calibration approach which calibrated the different subcarriers respectively for wideband systems. To reduce transceiver interconnection effort, a daisy chain interconnection structure of the hardware circuits was proposed in [13], which also reduces the hardware cost of realizing reciprocal calibration to a certain extent. To study the trade-off between the connection structure and performance of the hardware-based calibration, X. Luo et al. in [14] proposed an optimal interconnection by minimizing the Cramér-Rao lower bound (CRLB) of mismatch coefficients, which revealed that the star structure of hardware circuits was optimal. The hardware cost and circuit complexity of these hardware-based calibration methods increase with the number of antennas and may be unaffordable in the massive MIMO systems.

Different from the hardware-based calibration, the OTA calibration is based on the software and protocol design, which only utilizes air-interface signals between uncalibrated antennas to compute the calibration coefficients [15]. OTA calibration approaches can be divided into the full-end OTA calibration which was mainly used for conventional MIMO systems, and the partial-end OTA calibration which was designed for massive MIMO systems. In conventional systems, the OTA calibration requires both the BS and UE to get involved in the operation, and is therefore known as the full-end calibration. The full-end reciprocity calibration was first proposed in [16], and the total least squares (LS) algorithm was applied to solve calibration coefficients. Then, in [17], the full-end calibration was extended to OFDM systems with each subcarrier calibrated independently in the frequency domain. In this case, the overhead and complexity of the reciprocity calibration increased with the number of subcarriers. To reduce the overhead and complexity, B. Kouassi et al. in [18] proposed a time-domain calibration for OFDM systems because the number of coefficients in the time domain was much less than those in the frequency domain. Since the overhead of channel feedback increases with the antenna number, the full-end calibration would produce heavy overhead pressure in massive MIMO systems.

Thanks to the theoretical and experimental results that the reciprocity mismatch at the single-antenna UE only causes minor performance loss, the OTA calibration only needs to be performed at the BS side, which is known as the partial-end calibration or one-side calibration. C. Shepard et al. in [19] proposed a simple one-side calibration for the massive MIMO Argos prototype, which was sensitive to the fading channel and the location of the reference antenna. To avoid the issue of the Argos calibration, a partial-end calibration based on the strong mutual coupling between the adjacent antennas was presented in [20]. By summarizing existing partial-end calibration approaches, X. Jiang et al. proposed an OTA calibration framework in [21]. Compared with co-located system, the calibration in distributed systems needs to gather the CSI from access points (APs). To reduce the overhead of gathering the CSI, R. Roganlin et al. in [22] proposed a hierarchical calibration which consisted of the intra-calibration and inter-calibration of AP. In [23], an OTA calibration with supporters was proposed for coordinated multi-point transmission systems to improve the SNR of calibration signals. To combat the path loss between the APs, our work in [24] proposed a beamforming-based OTA calibration for distribution MIMO relaying systems.

Although the reciprocity calibration designs for full-digital beamforming (DBF) MIMO systems have been extensively investigated in recently, they can not be applied to the hybrid analog-digital beamforming (HBF) systems. Due to the more complex structure than DBF systems, the reciprocity calibration in HBF systems is more challenging. On one hand, a typical HBF transceiver possesses a hierarchical structure consisting of the digital precoder, digital RF chains, the analog precoder, and analog RF chains[25], which results in more complex modeling of the uplink-downlink channel reciprocity mismatch. On the other hand, the digital RF chains and the analog RF chains are coupled with the analog precoder, e.g., a phase-shifter network[26], so that the digital chains and analog chains can not transmit signals independently. A reciprocity calibration for the sub-connected phase-shifter network HBF system was proposed in [27], which transformed the sub-connected HBF transceiver to a DBF transceiver by virtually changing the position of the RF components to the front end near the antennas. When it is applied to the fully-connected HBF system, the dimension of the equivalent channel matrix after the transformation becomes much larger than the realistic channel, which results in a large overhead of the calibration. Additionally, since this reciprocity calibration can only acquire the ratio of coefficients of transmit and receive RF chains, mmWave channel estimation approaches, e.g., the approaches in [28, 29, 30] which requires mismatch coefficients rather their ratios, remain unusable. To reduce the overhead and recover the mmWave channel estimation, a relative reciprocity calibration approach was proposed for fully-connected mmWave HBF system in [31]. Although this approach can reduce the calibration overhead to a certain extent, it requires UE to feed back received downlink calibration signals to BS, which can still causes large overhead. Further, since the relative calibration can not construct the equivalent channel, some existing hybrid beamforming designs, e.g. the designs proposed in [32, 33, 34], cannot be applied in the calibrated systems.

Motivated by the above observations, we investigate the reciprocity calibration for TDD mmWave-HBF systems with the fully-connected phase shifter network. To reduce the overhead and complexity of the reciprocity mismatch in the fully-connected HBF system, hierarchical ideology is employed to calibrate digital and analog RF chains. Since digital and analog RF chains are physically coupled via a phase shifter network, we propose a beamforming design to virtually decouple the reciprocity calibration of digital and analog RF chains. Based on the decoupling operation, the entire reciprocity calibration problem is decoupled into two subproblems corresponding to the calibrations of digital RF chains and analog RF chains. To guarantee the application of mmWave channel estimation approaches, we propose an absolute reciprocity calibration approach to estimate the mismatch coefficients of transmit and receive RF chains. The mismatch coefficients of digital RF chains are solved from the closed-form expression of the solution to the digital-chain problem, while the mismatch coefficients of analog chains are jointly estimated with mmWave channel coefficients. Finally, the CRLB of the mismatch coefficients is derived to measure the performance of the proposed calibration. The main contributions of this work can be summarized as follows.

  • Reciprocity mismatch decoupling. Since digital and analog RF chains are physically coupled via a phase shifter network, we propose a beamforming design to virtually decouple the digital and analog RF chains. Then, the entire reciprocity mismatch calibration problem of the HBF system is decomposed into two separate problems of digital-chain calibration and analog-chain calibration.

  • Absolute reciprocity calibration. To guarantee the efficacy of mmWave-channel estimation approaches, we propose novel estimating methods to acquire the mismatch coefficients of RF chains. Specifically, the closed-form expression of digital-chain mismatch coefficients is derived, and an iterative-alternating estimation algorithm is proposed for analog-chain mismatch coefficients.

  • CRLB for estimating mismatch coefficients. To measure the performance of the proposed algorithms, we derive the CRLB for the mismatch coefficient estimation. The CRLB reveals that the errors in estimating mismatch coefficients of digital chains and analog chains are independent of each other, and the mismatch coefficients of receive digital chains can be estimated perfectly.

The rest of the paper is organized as follows. Section II describes the system model. The hierarchical-absolute reciprocity calibration for the mmWave-HBF system is proposed in Section III. In Section IV, the performance including the overhead, computational complexity, and CRLB of the proposed calibration is derived. Simulation results are given in Section V, and the conclusion is given in Section VI. For readability, some proofs are deferred to the supplementary material.

Throughout the paper, vectors and matrices are denoted in bold lowercase and uppercase respectively, e.g., 𝐚\mathbf{a} and 𝐀\mathbf{A}. Let 𝐀T\mathbf{A}^{T}, 𝐀H\mathbf{A}^{H}, and 𝐀1\mathbf{A}^{-1} denote the transpose, conjugate transpose, and inverse of a matrix 𝐀,\mathbf{A}, respectively. tr()\mathrm{tr}(\cdot), 𝔼()\mathbb{E}(\cdot), and vec()\mathrm{vec}(\cdot) stand for the trace operator, the expectation operation, and column vectorization. Let |a||a| and a\angle a denote the amplitude and phase of the complex number aa, and F\|\cdot\|_{\mathrm{F}} denotes the Frobenius norm. diag(a1,,aN)\mathrm{diag}(a_{1},\cdots,a_{N}) denotes an NN by NN diagonal matrix with diagonal entries given by a1,,aNa_{1},\cdots,a_{N}, and blkdiag(𝐚1,,𝐚N)\mathrm{blkdiag}(\mathbf{a}_{1},\cdots,\mathbf{a}_{N}) represents a block diagonal matrix. \otimes, \odot, and \circ represent the Kronecker product, Khatri–Rao product, and Hadamard product, respectively. \mathbb{C} and \mathbb{R} stand for the complex numbers and real numbers, respectively. Let [1:N][1:N] denote the set {1,2,,N}\left\{1,2,\cdots,N\right\}, and a%ba\%b denote the remainder of aa divided by bb.

I System Model

Refer to caption
Figure 1: Hybrid beamforming massive MIMO with reciprocity mismatch.

We consider an mmWave massive MIMO system as illustrated in Fig. 1, where the BS is assumed to communicate with a single UE. The BS is quipped with MtM_{\mathrm{t}} digital RF chains and NtN_{\mathrm{t}} analog RF chains, and the UE is equipped with MrM_{\mathrm{r}} digital RF chains and NrN_{\mathrm{r}} analog RF chains. In both BS and UE, each analog chain is connected to an antenna in the uniform linear array (ULA), and the digital chains are connected to the analog chains via a fully-connected phase shift network.

In mmWave systems, the wireless channel is generally considered to possess limited scattering. Thus, we adopt a geometric channel model with K(KNt,Nr)K\ (K\ll N_{\mathrm{t}},N_{\mathrm{r}}) scatters, and each scatter contributes to a single propagation path between the BS and UE. Based on these assumptions, the wireless channel between the BS and the UE can be modeled as

𝐇=NtNrKk=1Kαk𝐚t(θk)𝐚rT(ϕk),\mathbf{H}=\sqrt{\frac{N_{\mathrm{t}}N_{\mathrm{r}}}{K}}\sum_{k=1}^{K}\alpha_{k}\mathbf{a}_{\mathrm{t}}(\theta_{k})\mathbf{a}_{\mathrm{r}}^{T}(\phi_{k}), (1)

where αk𝒞𝒩(0,σα2)\alpha_{k}\sim\mathcal{CN}(0,\sigma_{\alpha}^{2}) is the complex gain of the kk-th path, 𝐚t(θk)Nt\mathbf{a}_{\mathrm{t}}(\theta_{k})\in\mathbb{C}^{N_{\mathrm{t}}} and 𝐚r(ϕk)Nr\mathbf{a}_{\mathrm{r}}(\phi_{k})\in\mathbb{C}^{N_{\mathrm{r}}} denote the array steering vectors of the BS and UE which are given by

𝐚t(θk)=[1,ej2πdλsinθk,,ej2πdλ(Nt1)sinθk]T,𝐚r(ϕk)=[1,ej2πdλsinϕk,,ej2πdλ(Nr1)sinϕk]T,\begin{split}\mathbf{a}_{\mathrm{t}}(\theta_{k})&=\left[1,e^{-j\frac{2\pi d}{\lambda}\sin\theta_{k}},\cdots,e^{-j\frac{2\pi d}{\lambda}(N_{\mathrm{t}}-1)\sin\theta_{k}}\right]^{T},\\ \mathbf{a}_{\mathrm{r}}(\phi_{k})&=\left[1,e^{-j\frac{2\pi d}{\lambda}\sin\phi_{k}},\cdots,e^{-j\frac{2\pi d}{\lambda}(N_{\mathrm{r}}-1)\sin\phi_{k}}\right]^{T},\end{split} (2)

λ\lambda is the wavelength of the carrier, and dd is the distance of the adjacent antenna set to λ/2\lambda/2, θk[π/2,π/2)\theta_{k}\in[-\pi/2,\pi/2) and ϕk[π/2,π/2)\phi_{k}\in[-\pi/2,\pi/2) are the azimuth angles of arrival or departure (AoAs/AoDs) of the BS and MS.

In a practical system, the receive and transmit RF chains are generally asymmetric. Let 𝐓1/𝐑1\mathbf{T}_{1}/\mathbf{R}_{1} and 𝐓2/𝐑2\mathbf{T}_{2}/\mathbf{R}_{2} represent the mismatch matrices of the transmit/receive digital and analog RF chains of the BS, and denote 𝐕1/𝐔1\mathbf{V}_{1}/\mathbf{U}_{1} and 𝐕2/𝐔2\mathbf{V}_{2}/\mathbf{U}_{2} as the mismatch matrices of the transmit/receive digital and analog RF chains of the UE. All of these matrices are diagonal and defined as

𝐓1=diag(t1,1,,t1,Mt),𝐓2=diag(t2,1,,t2,Nt),𝐑1=diag(r1,1,,r1,Mt),𝐑2=diag(r2,1,,r2,Nt),𝐕1=diag(v1,1,,v1,Mr),𝐕2=diag(v2,1,,v2,Nr),𝐔1=diag(u1,1,,u1,Mr),𝐔2=diag(u2,1,,u2,Nr)\begin{split}&\mathbf{T}_{1}=\mathrm{diag}(t_{1,1},\cdots,t_{1,M_{\mathrm{t}}}),\ \mathbf{T}_{2}=\mathrm{diag}(t_{2,1},\cdots,t_{2,N_{\mathrm{t}}}),\\ &\mathbf{R}_{1}=\mathrm{diag}(r_{1,1},\cdots,r_{1,M_{\mathrm{t}}}),\ \mathbf{R}_{2}=\mathrm{diag}(r_{2,1},\cdots,r_{2,N_{\mathrm{t}}}),\\ &\mathbf{V}_{1}=\mathrm{diag}(v_{1,1},\cdots,v_{1,M_{\mathrm{r}}}),\ \mathbf{V}_{2}=\mathrm{diag}(v_{2,1},\cdots,v_{2,N_{\mathrm{r}}}),\\ &\mathbf{U}_{1}=\mathrm{diag}(u_{1,1},\cdots,u_{1,M_{\mathrm{r}}}),\ \mathbf{U}_{2}=\mathrm{diag}(u_{2,1},\cdots,u_{2,N_{\mathrm{r}}})\end{split} (3)

where t1,m/r1,mt_{1,m}/r_{1,m} denotes the mismatch coefficient of the mm-th (m[1:Mt]m\in[1:M_{\mathrm{t}}]) transmit/receive digital RF chain of the BS, and t2,i/r2,it_{2,i}/r_{2,i} denotes the mismatch coefficient of the ii-th (i[1:Nt]i\in[1:N_{\mathrm{t}}]) transmit/receive analog RF chain of the BS. At the UE side, v1,m¯/u1,m¯v_{1,\bar{m}}/u_{1,\bar{m}} denotes the mismatch coefficient of the m¯\bar{m}-th (m¯[1:Mr]\bar{m}\in[1:M_{\mathrm{r}}]) transmit/receive digital RF chain, and v2,i¯/u2,i¯v_{2,\bar{i}}/u_{2,\bar{i}} denotes the mismatch coefficient of the i¯\bar{i}-th (i¯[1:Nr]\bar{i}\in[1:N_{\mathrm{r}}]) transmit/receive analog RF chain.

As depicted in Fig. 1, the overall channel observed by the baseband processor is the combination of the wireless channel, the digital RF chain, the phase shifter network, and the analog RF chain, which can be expressed by

𝐇~UL=𝐑~𝐇𝐕~,𝐇~DL=𝐔~𝐇T𝐓~,\tilde{\mathbf{H}}_{\mathrm{UL}}=\tilde{\mathbf{R}}\mathbf{H}\tilde{\mathbf{V}},\quad\tilde{\mathbf{H}}_{\mathrm{DL}}=\tilde{\mathbf{U}}\mathbf{H}^{T}\tilde{\mathbf{T}}, (4)

where 𝐑~=𝐑2𝐅rT𝐑1\tilde{\mathbf{R}}=\mathbf{R}_{2}\mathbf{F}_{\mathrm{r}}^{T}\mathbf{R}_{1}, 𝐓~=𝐓1𝐅t𝐓2\tilde{\mathbf{T}}=\mathbf{T}_{1}\mathbf{F}_{\mathrm{t}}\mathbf{T}_{2}, 𝐅rNt×Mt\mathbf{F}_{\mathrm{r}}\in\mathbb{C}^{N_{\mathrm{t}}\times M_{\mathrm{t}}} and 𝐅tNt×Mt\mathbf{F}_{\mathrm{t}}\in\mathbb{C}^{N_{\mathrm{t}}\times M_{\mathrm{t}}} are the analog receive and transmit beamforming matrices of the BS, 𝐕~=𝐕1𝐁t𝐕2\tilde{\mathbf{V}}=\mathbf{V}_{1}\mathbf{B}_{\mathrm{t}}\mathbf{V}_{2}, 𝐔~=𝐔2𝐁rT𝐔1\tilde{\mathbf{U}}=\mathbf{U}_{2}\mathbf{B}_{r}^{T}\mathbf{U}_{1}, 𝐁tNr×Mr\mathbf{B}_{\mathrm{t}}\in\mathbb{C}^{N_{\mathrm{r}}\times M_{\mathrm{r}}} and 𝐁rNr×Mr\mathbf{B}_{\mathrm{r}}\in\mathbb{C}^{N_{\mathrm{r}}\times M_{\mathrm{r}}} are the analog beamforming matrices of the UE.

Based on the channel modeling and system setting, the downlink transmission signal received by the UE can be denoted as

𝐲=𝐃rT𝐔1𝐁rT𝐔2𝐇T𝐓2𝐅t𝐓1𝐖t𝐬+𝐃rT𝐔1𝐁rT𝐧,\mathbf{y}=\mathbf{D}_{\mathrm{r}}^{T}\mathbf{U}_{1}\mathbf{B}_{\mathrm{r}}^{T}\mathbf{U}_{2}\mathbf{H}^{T}\mathbf{T}_{2}\mathbf{F}_{\mathrm{t}}\mathbf{T}_{1}\mathbf{W}_{\mathrm{t}}\mathbf{s}+\mathbf{D}_{\mathrm{r}}^{T}\mathbf{U}_{\mathrm{1}}\mathbf{B}_{\mathrm{r}}^{T}\mathbf{n}, (5)

where 𝐃rMr×Mr\mathbf{D}_{\mathrm{r}}\in\mathbb{C}^{M_{\mathrm{r}}\times M_{\mathrm{r}}} is the digital combining matrix of the UE, 𝐖tMt×Mt\mathbf{W}_{\mathrm{t}}\in\mathbb{C}^{M_{\mathrm{t}}\times M_{\mathrm{t}}} denotes the digital precoding matrix of the BS, 𝐬Ns\mathbf{s}\in\mathbb{C}^{N_{\mathrm{s}}} denotes the data vector satisfying 𝔼{𝐬𝐬H}=ρd𝐈Ns\mathbb{E}\left\{\mathbf{s}\mathbf{s}^{H}\right\}=\rho_{\mathrm{d}}\mathbf{I}_{N_{\mathrm{s}}}, ρd\rho_{\mathrm{d}} denotes the average transmit power, NsN_{\mathrm{s}} is the number of data streams, and 𝐧Nr\mathbf{n}\in\mathbb{C}^{N_{\mathrm{r}}} represents the additive white Gaussian noise (AWGN) vector with distribution 𝐧𝒞𝒩(𝟎,σn2𝐈Nr)\mathbf{n}\sim\mathcal{CN}(\mathbf{0},\sigma_{\mathrm{n}}^{2}\mathbf{I}_{N_{\mathrm{r}}}).

In TDD mode, the digital and analog beamforming matrices are computed by the BS based on the knowledge of uplink CSI. According to (4), the estimated uplink CSI is unequal to the downlink channel response at all, which is known as the reciprocity mismatch of the uplink and downlink channel. With the reciprocity mismatch, the existing beamforming approaches for HBF systems, e.g., [35], fail to achieve satisfactory performance. Further, due to the uncertainty of the reciprocity mismatch coefficients, mmWave channel estimation approaches like [28] are invalid. Accordingly, the reciprocity calibration is essential for mmWave-HBF systems.

II Reciprocity Calibration for mmWave-HBF System

In this section, the reciprocity calibration approach is proposed. We first introduce an existing reciprocity calibration approach for HBF systems and discuss its limitation in applying to the fully-connected structure. Then, an absolute reciprocity calibration for the mmWave-HBF system is proposed, which takes advantage of the particularity of the fully-connected structure to decouple the calibrations of digital RF chains and analog RF chains.

II-A Conventional Reciprocity Calibration Approach of HBF System

The conventional reciprocity calibration (CRC) of HBF was proposed in [27], which is an extension of the relative calibration of the full-digital MIMO system. The CRC treats the HBF system as a virtual full-digital MIMO with NtMtN_{\mathrm{t}}M_{\mathrm{t}} virtual antennas and applies OTA signals to estimate the ratio of the transmit and receive mismatch coefficients, which are also called relative calibration coefficients.

In the CRC, the equivalent transmit and receive mismatch coefficients of the BS are defined as 𝐓eq=𝐓1𝐓2\mathbf{T}_{\mathrm{eq}}=\mathbf{T}_{1}\otimes\mathbf{T}_{2} and 𝐑eq=𝐑1𝐑2\mathbf{R}_{\mathrm{eq}}=\mathbf{R}_{1}\otimes\mathbf{R}_{2}, and the equivalent mismatch coefficients of the UE are defined as 𝐕eq=𝐕1𝐕2\mathbf{V}_{\mathrm{eq}}=\mathbf{V}_{1}\otimes\mathbf{V}_{2} and 𝐔eq=𝐔1𝐔2\mathbf{U}_{\mathrm{eq}}=\mathbf{U}_{1}\otimes\mathbf{U}_{2}. The equivalent uplink and downlink channels are defined as 𝐇UL,eq=(𝐫𝐑2)𝐇(𝐯1𝐕2)\mathbf{H}_{\mathrm{UL,eq}}=(\mathbf{r}\otimes\mathbf{R}_{2})\mathbf{H}(\mathbf{v}_{1}\otimes\mathbf{V}_{2}) and 𝐇DL,eq=(𝐮1𝐔2)𝐇T(𝐭1𝐓2)\mathbf{H}_{\mathrm{DL,eq}}=(\mathbf{u}_{1}\otimes\mathbf{U}_{2})\mathbf{H}^{T}(\mathbf{t}_{1}\otimes\mathbf{T}_{2}), where 𝐭1\mathbf{t}_{1}, 𝐫1\mathbf{r}_{1}, 𝐯1\mathbf{v}_{1}, and 𝐮1\mathbf{u}_{1} consist of the diagonal entries of 𝐓1\mathbf{T}_{1}, 𝐑1\mathbf{R}_{1}, 𝐕1\mathbf{V}_{1}, and 𝐔1\mathbf{U}_{1}, respectively. Based on these definitions, the equation of CRC can be denoted as

𝐇DL,eq=𝐔eq𝐕eq1𝐂UE1𝐇UL,eqT𝐑eq1𝐓eq𝐂BS,\mathbf{H}_{\mathrm{DL,eq}}=\underbrace{\mathbf{U}_{\mathrm{eq}}\mathbf{V}_{\mathrm{eq}}^{-1}}_{\mathbf{C}_{\mathrm{UE}}^{-1}}\mathbf{H}_{\mathrm{UL,eq}}^{T}\underbrace{\mathbf{R}_{\mathrm{eq}}^{-1}\mathbf{T}_{\mathrm{eq}}}_{\mathbf{C}_{\mathrm{BS}}}, (6)

where 𝐂BS\mathbf{C}_{\mathrm{BS}} and 𝐂UE\mathbf{C}_{\mathrm{UE}} represent the relative calibration matrices of the BS and UE.

To obtain the relative calibration coefficients, it is necessary to acquire the equivalent uplink and downlink CSI. To estimate the equivalent downlink CSI, the BS transmits LcrcL_{\mathrm{crc}}-length pilots by using QcrcQ_{\mathrm{crc}} transmit beamforming matrices, and the UE receives the pilots with PcrcP_{\mathrm{crc}} receive beamforming matrices, where PcrcQcrc=LcrcP_{\mathrm{crc}}Q_{\mathrm{crc}}=L_{\mathrm{crc}}. Assume that a QcrcQ_{\mathrm{crc}}-length pilot sequence is denoted as {𝐱1,𝐱2,,𝐱Qcrc}\{\mathbf{x}_{1},\mathbf{x}_{2},\cdots,\mathbf{x}_{Q_{\mathrm{crc}}}\}, where 𝐱q\mathbf{x}_{q} denotes the pilot during the [(p1)Qcrc+q][(p-1)Q_{\mathrm{crc}}+q]-th transmission (p[1:Pcrc])(p\in[1:P_{\mathrm{crc}}]) satisfying 𝔼{𝐱q𝐱qH}=ρc𝐈Mr\mathbb{E}\left\{\mathbf{x}_{q}\mathbf{x}_{q}^{H}\right\}=\rho_{\mathrm{c}}\mathbf{I}_{M_{\mathrm{r}}}. During the training, the digital precoding and combining matrices are set as identity matrices, i.e., 𝐃r=𝐈Mr\mathbf{D}_{\mathrm{r}}=\mathbf{I}_{M_{\mathrm{r}}} and 𝐖t=𝐈Mt/Mt\mathbf{W}_{\mathrm{t}}=\mathbf{I}_{M_{\mathrm{t}}}/\sqrt{M_{\mathrm{t}}}, and the signal received by the UE can be denoted as

𝐲UE,p,q=𝐔1𝐁r,p𝐇DL𝐅t,q𝐓1𝐱q+𝐔1𝐁r,p𝐧UE,p,q=𝐁eq,p𝐇DL,eq𝐅eq,q𝐱q+𝐧eq,p,q,\begin{split}\mathbf{y}_{\mathrm{UE},p,q}&=\mathbf{U}_{1}\mathbf{B}_{\mathrm{r},p}\mathbf{H}_{\mathrm{DL}}\mathbf{F}_{\mathrm{t},q}\mathbf{T}_{1}\mathbf{x}_{q}+\mathbf{U}_{1}\mathbf{B}_{\mathrm{r},p}\mathbf{n}_{\mathrm{UE},p,q}\\ &=\mathbf{B}_{\mathrm{eq},p}\mathbf{H}_{\mathrm{DL,eq}}\mathbf{F}_{\mathrm{eq},q}\mathbf{x}_{q}+\mathbf{n}_{\mathrm{eq},p,q},\end{split} (7)

where 𝐇DL=𝐔2𝐇T𝐓2\mathbf{H}_{\mathrm{DL}}=\mathbf{U}_{2}\mathbf{H}^{T}\mathbf{T}_{2}, 𝐅t,q\mathbf{F}_{\mathrm{t},q} denotes the analog beamforming matrix at the BS, 𝐁r,q\mathbf{B}_{\mathrm{r},q} is the analog combining matrix at the UE, 𝐅eq,q=blkdiag(𝐟q,1,𝐟q,2,,𝐟q,Mt)\mathbf{F}_{\mathrm{eq},q}=\mathrm{blkdiag}(\mathbf{f}_{q,1},\mathbf{f}_{q,2},\cdots,\mathbf{f}_{q,M_{\mathrm{t}}}), 𝐟q,m\mathbf{f}_{q,m} denotes the mm-th column of 𝐅t,q\mathbf{F}_{\mathrm{t},q}, 𝐁eq,p=blkdiag(𝐛p,1,𝐛p,2,,𝐛p,Mr)\mathbf{B}_{\mathrm{eq},p}=\mathrm{blkdiag}(\mathbf{b}_{p,1},\mathbf{b}_{p,2},\cdots,\mathbf{b}_{p,M_{\mathrm{r}}}), and 𝐛p,m\mathbf{b}_{p,m} is the mm-th row of 𝐁r,p\mathbf{B}_{\mathrm{r},p}.

By stacking all LcrcL_{\mathrm{crc}}-length signals in matrix form denoted as 𝐘UE=[𝐘¯UE,1T,,𝐘¯UE,PcrcT]TMrPcrc×Qcrc\mathbf{Y}_{\mathrm{UE}}=[\bar{\mathbf{Y}}_{\mathrm{UE},1}^{T},\cdots,\bar{\mathbf{Y}}_{\mathrm{UE},P_{\mathrm{crc}}}^{T}]^{T}\in\mathbb{C}^{M_{\mathrm{r}}P_{\mathrm{crc}}\times Q_{\mathrm{crc}}} and 𝐘¯UE,p=[𝐲UE,p,1,,𝐲UE,p,Qcrc]\bar{\mathbf{Y}}_{\mathrm{UE},p}=[\mathbf{y}_{\mathrm{UE},p,1},\cdots,\mathbf{y}_{\mathrm{UE},p,Q_{\mathrm{crc}}}], the received signal model can be given by

𝐘UE=𝐁~eq𝐇DL,eq𝐅~eq+𝐍eq,\mathbf{Y}_{\mathrm{UE}}=\tilde{\mathbf{B}}_{\mathrm{eq}}\mathbf{H}_{\mathrm{DL,eq}}\tilde{\mathbf{F}}_{\mathrm{eq}}+\mathbf{N}_{\mathrm{eq}}, (8)

where 𝐁~eq=[𝐁eq,1T,𝐁eq,2T,,𝐁eq,PcrcT]TMrPcrc×Nr\tilde{\mathbf{B}}_{\mathrm{eq}}=[\mathbf{B}_{\mathrm{eq},1}^{T},\mathbf{B}_{\mathrm{eq},2}^{T},\cdots,\mathbf{B}_{\mathrm{eq},P_{\mathrm{crc}}}^{T}]^{T}\in\mathbb{C}^{M_{\mathrm{r}}P_{\mathrm{crc}}\times N_{\mathrm{r}}}, 𝐅~eq=[𝐅eq,1𝐱1,𝐅eq,2𝐱2,,𝐅eq,Qcrc𝐱Qcrc]Nt×Qcrc\tilde{\mathbf{F}}_{\mathrm{eq}}=[\mathbf{F}_{\mathrm{eq},1}\mathbf{x}_{1},\mathbf{F}_{\mathrm{eq},2}\mathbf{x}_{2},\cdots,\mathbf{F}_{\mathrm{eq},Q_{\mathrm{crc}}}\mathbf{x}_{Q_{\mathrm{crc}}}]\in\mathbb{C}^{N_{\mathrm{t}}\times Q_{\mathrm{crc}}}, 𝐍eq=[𝐍¯eq,1T,,𝐍¯eq,PcrcT]T\mathbf{N}_{\mathrm{eq}}=[\bar{\mathbf{N}}_{\mathrm{eq},1}^{T},\cdots,\bar{\mathbf{N}}_{\mathrm{eq},P_{\mathrm{crc}}}^{T}]^{T}, and 𝐍¯eq,p=[𝐧eq,p,1,,𝐧eq,p,Qcrc]\bar{\mathbf{N}}_{\mathrm{eq},p}=[\mathbf{n}_{\mathrm{eq},p,1},\cdots,\mathbf{n}_{\mathrm{eq},p,Q_{\mathrm{crc}}}]. By vectoring the matrix 𝐘UE\mathbf{Y}_{\mathrm{UE}}, the received signal can be further denoted as

vec(𝐘UE)=𝐁crcvec(𝐇DL,eq)+vec(𝐍eq),\mathrm{vec}(\mathbf{Y}_{\mathrm{UE}})=\mathbf{B}_{\mathrm{crc}}\mathrm{vec}(\mathbf{H}_{\mathrm{DL,eq}})+\mathrm{vec}(\mathbf{N}_{\mathrm{eq}}), (9)

where 𝐁crc=(𝐅~eqT𝐁~eq)\mathbf{B}_{\mathrm{crc}}=(\tilde{\mathbf{F}}_{\mathrm{eq}}^{T}\otimes\tilde{\mathbf{B}}_{\mathrm{eq}}). Using the LS approach[36], the equivalent downlink channel is estimated as

vec(𝐇DL,eq)=(𝐁crcH𝐁crc)1𝐁crcHvec(𝐘UE).\mathrm{vec}(\mathbf{H}_{\mathrm{DL,eq}})=(\mathbf{B}_{\mathrm{crc}}^{H}\mathbf{B}_{\mathrm{crc}})^{-1}\mathbf{B}_{\mathrm{crc}}^{H}\mathrm{vec}(\mathbf{Y}_{\mathrm{UE}}). (10)

Similarly, to estimate the equivalent uplink channel, the UE transmit the uplink training pilots to the BS. Further, to estimate the calibration coefficients, the UE feeds back the estimated downlink channel to the BS.

After the BS estimates the uplink channel and receives the downlink channel fed back from the UE, the calibration coefficients can be computed by the following proposition.

Proposition 1 (CRC coefficients).

With the knowledge of the equivalent uplink and downlink channels, the CRC coefficients can be computed by

𝐜=[1,𝐡CRC,1T𝐇CRC,2(𝐇CRC,2T𝐇CRC,2)1]T,\mathbf{c}=[1,-\mathbf{h}_{\mathrm{CRC},1}^{T}\mathbf{H}_{\mathrm{CRC},2}^{*}(\mathbf{H}_{\mathrm{CRC},2}^{T}\mathbf{H}_{\mathrm{CRC},2}^{*})^{-1}]^{T}, (11)

where 𝐡CRC,1\mathbf{h}_{\mathrm{CRC},1} is the first column of matrix 𝐇CRC\mathbf{H}_{\mathrm{CRC}}, 𝐇CRC,2\mathbf{H}_{\mathrm{CRC},2} consists of the second to last columns of matrix 𝐇CRC\mathbf{H}_{\mathrm{CRC}}, 𝐇CRC\mathbf{H}_{\mathrm{CRC}} is an (NtMt+NrMr)(N_{\mathrm{t}}M_{\mathrm{t}}+N_{\mathrm{r}}M_{\mathrm{r}})-order square matrix defined as 𝐇CRC=[𝐈MtNt𝐇UL,eqT,𝐇DL,eqT𝐈MrNr]\mathbf{H}_{\mathrm{CRC}}=[\mathbf{I}_{M_{\mathrm{t}}N_{\mathrm{t}}}\odot\mathbf{H}_{\mathrm{UL,eq}}^{T},-\mathbf{H}_{\mathrm{DL,eq}}^{T}\odot\mathbf{I}_{M_{\mathrm{r}}N_{\mathrm{r}}}].

Proof:

The results can be derived based on [27] by assuming that the antennas of the BS are divided into the group 𝒜\mathcal{A} and the antennas of the UE are divided into the group \mathcal{B}. ∎

To measure the complexity of the CRC, we further derive the overhead and computational complexity. The overhead of reciprocity calibration can be expressed by the count of channel use for transmitting calibration signals and feeding back the estimated CSI. The computational complexity can be measured by the times of multiplication for estimating the channel state information and computing the mismatch coefficients.

Remark 1 (Overhead and complexity of CRC).

According to (10), 𝐅~eqT𝐁~eq\tilde{\mathbf{F}}_{\mathrm{eq}}^{T}\otimes\tilde{\mathbf{B}}_{\mathrm{eq}} must be a full column rank matrix to estimate the downlink channel. Based on the property of the Kronecker product, the pilots must satisfy the condition that QcrcNtMtQ_{\mathrm{crc}}\geq N_{\mathrm{t}}M_{\mathrm{t}} and PcrcNrP_{\mathrm{crc}}\geq N_{\mathrm{r}}, and LcrcNtMtNrL_{\mathrm{crc}}\geq N_{\mathrm{t}}M_{\mathrm{t}}N_{\mathrm{r}}. This result means that the least overhead of downlink channel estimation is NtMtNrN_{\mathrm{t}}M_{\mathrm{t}}N_{\mathrm{r}}. Since the uplink channel estimation is similar to the downlink channel estimation, the entire overhead of the CRC can be denoted as NtNr(Mt+Mr+1)N_{\mathrm{t}}N_{\mathrm{r}}(M_{\mathrm{t}}+M_{\mathrm{r}}+1). Further, since the computation complexity is mainly determined by computing the inverse matrices of 𝐁crcH𝐁crcNtMtNrMr×NtMtNrMr\mathbf{B}_{\mathrm{crc}}^{H}\mathbf{B}_{\mathrm{crc}}\in\mathbb{C}^{N_{\mathrm{t}}M_{\mathrm{t}}N_{\mathrm{r}}M_{\mathrm{r}}\times N_{\mathrm{t}}M_{\mathrm{t}}N_{\mathrm{r}}M_{\mathrm{r}}} and 𝐇CRC,2T𝐇CRC,2(NtMt+NrMr)×(NtMt+NrMr)\mathbf{H}_{\mathrm{CRC},2}^{T}\mathbf{H}_{\mathrm{CRC},2}^{*}\in\mathbb{C}^{(N_{\mathrm{t}}M_{\mathrm{t}}+N_{\mathrm{r}}M_{\mathrm{r}})\times(N_{\mathrm{t}}M_{\mathrm{t}}+N_{\mathrm{r}}M_{\mathrm{r}})}, the computation complexity of the CRC is 𝒪(Nt3Mt3Nr3Mr3)\mathcal{O}(N_{\mathrm{t}}^{3}M_{\mathrm{t}}^{3}N_{\mathrm{r}}^{3}M_{\mathrm{r}}^{3}).

In the CRC, the dimensions of the equivalent channels 𝐇UL,eq\mathbf{H}_{\mathrm{UL,eq}} and 𝐇DL,eq\mathbf{H}_{\mathrm{DL,eq}} (see (6)) are much larger than that of the actual wireless channel matrix 𝐇\mathbf{H} (see (1)), which generates the heavy overhead of the channel estimation and high computational complexity. Further, since the CRC only estimates the ratio of the mismatch coefficients of transmit chains and receive chains, mmWave channel estimation of mmWave systems, which requires the knowledge of the individual mismatch coefficients, becomes invalid. Thus, due to limitations of the CRC in fully connected mmWave-HBF systems, we propose a hierarchical-absolute calibration (HAC) approach, which decouples the reciprocity calibration of digital RF chains and analog RF chains and estimates the individual mismatch coefficients of transmit chains and receive chains, respectively.

II-B Decouple Principle of HAC

To reduce the overhead and complexity of the reciprocity calibration of fully connected HBF systems, digital RF chains and analog RF chains must be calibrated individually, which means hierarchical calibration. To adopt the mmWave channel estimation approaches of mmWave systems, the individual mismatch coefficients are required rather than the ratio of the mismatch coefficients, which can be addressed by applying the absolute reciprocity calibration.

However, due to the fully-connected structure of the HBF system, HAC encounters two challenges. On the one hand, the digital RF chains and analog RF chains are physically coupled via the fully-connected phase shift network, which results in the decoupling challenge. On the other hand, the fully-connected phase shift network causes that the RF chains can not transmit and receive signals independently, which results in the calibration challenge. To a certain degree, these problems can be addressed by using extra auxiliary circuits to assistant the reciprocity calibration, e.g. the calibration approaches presented in [37, 38]. But the auxiliary circuits may bring extra non-reciprocity, and the calibration accuracy of hardware-circuit calibration highly depends on the auxiliary circuits [20]. Thus, we propose an OTA-based HAC for mmWave-HBF systems. Specifically, the calibrations of digital and analog RF chains are decoupled by a targeted beamforming scheme, and the mismatch coefficients are estimated by the OTA training signals between the BS and UE.

In the rest of this section, we will introduce the decoupling principle of the proposed HAC. Since the transmitter and receiver employ similar HBF structures, the decouple operation is first explained in the multi-input single-output (MISO) system for clarity, and then we will propose the concrete design for the general HBF-MIMO system.

Refer to caption
(a) The HBF structure of transmited signals.
Refer to caption
(b) The virtual array of transmited signals.
Figure 2: Decouple the digital RF chains from the analog RF chains.

MISO system for decoupling digital chains from the analog chains: We consider a MISO system where the transmitter is equipped with the fully-connected HBF structure and the receiver is equipped with a single antenna as illustrated in Fig. 2a. Thanks to the fully-connected structure, the signal transmitted from each digital RF chain passes through all antennas in the transmitter and all wireless channels. For example, if the mm-th transmit digital chain transmit a signal xmx_{m} to the receiver, the received signal can be denoted as

ym=t1,m𝐡T𝐓2𝐟mheq,mxm+nm=t1,mheq,mxm+nm,y_{m}=t_{1,m}\underbrace{\mathbf{h}^{T}\mathbf{T}_{2}\mathbf{f}_{m}}_{h_{\mathrm{eq},m}}x_{m}+n_{m}=t_{1,m}h_{\mathrm{eq},m}x_{m}+n_{m}, (12)

where heq,mh_{\mathrm{eq},m} denotes the virtual equivalent channel between the mm-th transmit digital chain and the receive antenna. Based on this, the HBF MISO system can be virtually constructed as a DBF MISO system as illustrated in Fig. 2b, where the virtual antennas are the transmit digital chains, and the virtual-equivalent channels consist of the phase shift network, the analog RF chains, and the wireless channel. Further, it can be found that the virtual-equivalent channels equal to each other when the beamforming vectors are identical, i.e., 𝐟1==𝐟M\mathbf{f}_{1}=\cdots=\mathbf{f}_{M}. Thus, by applying this analog beamforming design, the digital chains can be decoupled from the analog chains, and the absolute reciprocity calibration can be considered as the calibration with known channel gains.

MISO system for decoupling the analog chains from the digital chains: Since each digital RF chain is connected to all analog RF chains via the fully-connected phase shifter network, the antenna array can be considered as an ABF system as shown in Fig. 3a. By using only one digital RF chain to transmit and receive calibration signals, the analog RF chains can be decoupled from the digital RF chains as illustrated in Fig. 3b. Based on this design, the analog RF chains can be calibrated with signal processing approaches.

Refer to caption
(a) The ABF structure of transmited signals.
Refer to caption
(b) The virtual array of transmited signals.
Figure 3: Decouple the analog RF chains from digital RF chains.
Refer to caption
Figure 4: The overall calibration process.

Concrete design: Based on the above MISO systems, the decoupling principle can be extended to a general case where both the BS and UE are equipped with multiple antennas and HBF structures as illustrated in Fig. 1. For general point-to-point HBF MIMO systems, the overall HAC training phases can be divided into two phases, which are downlink training and uplink training as illustrated in Fig. 4. During the training processes, the calibration training signals and beamforming matrices of the BS and UE should be designed to decouple digital and analog RF chains. By taking the downlink training phase as an example, the concrete designs are given as follows.

  • Downlink training pilots: The entire LdL_{\mathrm{d}}-length downlink training pilots consist of LdrL_{\mathrm{dr}}-length pilots for calibrating digital RF chains and LdaL_{\mathrm{da}}-length pilots for calibrating the analog RF chains, where Ldr+Lda=LdL_{\mathrm{dr}}+L_{\mathrm{da}}=L_{\mathrm{d}}. To increase the degree of freedom of received signals, the LdrL_{\mathrm{dr}}-length pilots are transmitted by using QdrQ_{\mathrm{dr}} transmit beamforming matrices and received by using PdrP_{\mathrm{dr}} receive beamforming matrices, where Ldr=QdrPdrL_{\mathrm{dr}}=Q_{\mathrm{dr}}P_{\mathrm{dr}}. The LdaL_{\mathrm{da}}-length pilots possess the homologous structure, i.e., Lda=QdaPdaL_{\mathrm{da}}=Q_{\mathrm{da}}P_{\mathrm{da}}. By using {𝐱1,,𝐱Qmax}\{\mathbf{x}_{1},\cdots,\mathbf{x}_{Q_{\mathrm{max}}}\} to represent the pilots set, the transmitted pilot 𝐱d,l\mathbf{x}_{\mathrm{d},l} during the ll-th transmission can be denoted as 𝐱d,l=𝐱q\mathbf{x}_{\mathrm{d},l}=\mathbf{x}_{q}, where 𝔼{𝐱q𝐱qH}=ρc𝐈Mt\mathbb{E}\left\{\mathbf{x}_{q}\mathbf{x}_{q}^{H}\right\}=\rho_{\mathrm{c}}\mathbf{I}_{\mathrm{M}_{t}}, q=l%Qdrq=l\%Q_{\mathrm{dr}} when lLdrl\leq L_{\mathrm{dr}}, and q=(lLdr)%Qdaq=(l-L_{\mathrm{dr}})\%Q_{\mathrm{da}} when Lda<lLdL_{\mathrm{da}}<l\leq L_{\mathrm{d}}, Qmax=max{Qdr,Qda}Q_{\mathrm{max}}=\max\{Q_{\mathrm{dr}},Q_{\mathrm{da}}\}.

  • Beamforming design for calibrating digital chains: Let 𝐅dr,qNt×Mt\mathbf{F}_{\mathrm{dr},q}\in\mathbb{C}^{N_{\mathrm{t}}\times M_{\mathrm{t}}} denote the analog transmit beamforming matrix and 𝐁dr,pNr×Mr\mathbf{B}_{\mathrm{dr},p}\in\mathbb{C}^{N_{\mathrm{r}}\times M_{\mathrm{r}}} represent the receive beamforming matrix during the ll-th transmission, where lLdrl\leq L_{\mathrm{dr}}, q=l%Qdrq=l\%Q_{\mathrm{dr}}, and p=l%P𝐝𝐫p=l\%P_{\mathbf{dr}}. To decouple the mismatch of the digital chains from the analog chains, analog beamforming matrices are designed as 𝐅dr,1==𝐅dr,Qdr=𝐟dr𝟏MtT\mathbf{F}_{\mathrm{dr},1}=\cdots=\mathbf{F}_{\mathrm{dr},Q_{\mathrm{dr}}}=\mathbf{f}_{\mathrm{dr}}\mathbf{1}_{M_{\mathrm{t}}}^{T} and 𝐁dr,1==𝐁dr,Pdr=𝐛dr𝟏MrT\mathbf{B}_{\mathrm{dr},1}=\cdots=\mathbf{B}_{\mathrm{dr},P_{\mathrm{dr}}}=\mathbf{b}_{\mathrm{dr}}\mathbf{1}_{M_{\mathrm{r}}}^{T}, where each element of 𝐟drNt\mathbf{f}_{\mathrm{dr}}\in\mathbb{C}^{N_{\mathrm{t}}} and 𝐛drNr\mathbf{b}_{\mathrm{dr}}\in\mathbb{C}^{N_{\mathrm{r}}} possesses random phase. Further, the digital precoding matrix can be designed as 𝐖dr,q=𝐈Mt/Mt\mathbf{W}_{\mathrm{dr},q}=\mathbf{I}_{M_{\mathrm{t}}}/\sqrt{M_{\mathrm{t}}} and the digital receive combining matrix is given by 𝐃dr,p=𝐈Mr\mathbf{D}_{\mathrm{dr},p}=\mathbf{I}_{M_{\mathrm{r}}} during the downlink training phase.

  • Beamforming design for calibrating analog chains: During the ll-th transmission (l>Ldrl>L_{\mathrm{dr}}), the analog transmit beamforming matrix 𝐅da,q\mathbf{F}_{\mathrm{da},q} and receive beamforming matrix 𝐁da,p\mathbf{B}_{\mathrm{da},p} can be designed as random phase matrices, i.e., the elements of 𝐅da,q\mathbf{F}_{\mathrm{da},q} and 𝐁da,p\mathbf{B}_{\mathrm{da},p} possess random phases. Let 𝐖da,q\mathbf{W}_{\mathrm{da},q} denote the digital precoding matrix and 𝐃da,p\mathbf{D}_{\mathrm{da},p} denote the digital receive combining matrix, where q=(lLdr)%Qdaq=(l-L_{\mathrm{dr}})\%Q_{\mathrm{da}}, and p=(lLdr)%Pdap=(l-L_{\mathrm{dr}})\%P_{\mathrm{da}}. To decouple the mismatch of analog RF chains from the mismatch of digital RF chains, the digital precoding matrix can be designed as 𝐖da,q=blkdiag(1,𝟎Mt1,Mt1)\mathbf{W}_{\mathrm{da},q}=\mathrm{blkdiag}(1,\mathbf{0}_{M_{\mathrm{t}}-1,M_{\mathrm{t}}-1}), and the digital receive combining matrix can be given by 𝐃da,p=blkdiag(1,𝟎Mr1,Mr1)\mathbf{D}_{\mathrm{da},p}=\mathrm{blkdiag}(1,\mathbf{0}_{M_{\mathrm{r}}-1,M_{\mathrm{r}}-1}).

II-C Problem Formulation and Decomposition of HAC

Since the mismatch coefficients of transmit chains have nothing to do with that of receive chains, HAC can be divided into downlink HAC and uplink HAC. The downlink HAC is applied to calibrate the transmit chains of the BS and the receive chains of the UE, while the uplink HAC can calibrate the receive chains of the BS as well as the transmit chains of the UE. The uplink HAC is similar to the downlink HAC. Thus, we introduce the signal modeling, the problem formulation, and the problem decoupling by taking the downlink HAC as an example.

By considering the BS transmits ll-th pilot to the UE, the signal received by the UE can be modeled as

𝐲d,l=𝐃r,lT𝐔1𝐁r,lT𝐔2𝐇T𝐓2𝐅t,l𝐓1𝐖t,l𝐱d,l+𝐧~d,l,\mathbf{y}_{\mathrm{d},l}=\mathbf{D}_{\mathrm{r},l}^{T}\mathbf{U}_{1}\mathbf{B}_{\mathrm{r},l}^{T}\mathbf{U}_{2}\mathbf{H}^{T}\mathbf{T}_{2}\mathbf{F}_{\mathrm{t},l}\mathbf{T}_{1}\mathbf{W}_{\mathrm{t},l}\mathbf{x}_{\mathrm{d},l}+\tilde{\mathbf{n}}_{\mathrm{d},l}, (13)

where 𝐧~d,l=𝐃r,lT𝐔1𝐁r,lT𝐧d,l\tilde{\mathbf{n}}_{\mathrm{d},l}=\mathbf{D}_{\mathrm{r},l}^{T}\mathbf{U}_{1}\mathbf{B}_{\mathrm{r},l}^{T}\mathbf{n}_{\mathrm{d},l}. When lLdrl\leq L_{\mathrm{dr}}, 𝐃r,l=𝐃dr,p\mathbf{D}_{\mathrm{r},l}=\mathbf{D}_{\mathrm{dr},p}, 𝐁r,l=𝐁dr,p\mathbf{B}_{\mathrm{r},l}=\mathbf{B}_{\mathrm{dr},p}, 𝐅t,q=𝐅dr,q\mathbf{F}_{\mathrm{t},q}=\mathbf{F}_{\mathrm{dr},q}, and 𝐖t,l=𝐖dr,q\mathbf{W}_{\mathrm{t},l}=\mathbf{W}_{\mathrm{dr},q}, where p=l%Pdrp=l\%P_{\mathrm{dr}}, and q=l%Qdrq=l\%Q_{\mathrm{dr}}. When l>Ldrl>L_{\mathrm{dr}}, 𝐃r,l=𝐃da,p\mathbf{D}_{\mathrm{r},l}=\mathbf{D}_{\mathrm{da},p}, 𝐁r,l=𝐁da,p\mathbf{B}_{\mathrm{r},l}=\mathbf{B}_{\mathrm{da},p}, 𝐅t,q=𝐅da,q\mathbf{F}_{\mathrm{t},q}=\mathbf{F}_{\mathrm{da},q}, and 𝐖t,l=𝐖da,q\mathbf{W}_{\mathrm{t},l}=\mathbf{W}_{\mathrm{da},q}, where p=(lLdr)%Pdap=(l-L_{\mathrm{dr}})\%P_{\mathrm{da}}, and q=(lLdr)%Qdaq=(l-L_{\mathrm{dr}})\%Q_{\mathrm{da}}.

After the BS transmits LdL_{\mathrm{d}}-length pilots to the UE, the optimization problem for jointly estimating 𝐔1,𝐔2,𝐓1,𝐓2\mathbf{U}_{1},\ \mathbf{U}_{2},\ \mathbf{T}_{1},\ \mathbf{T}_{2}, and 𝐇\mathbf{H} can be formulated as

min𝐔1,𝐓1,𝐔2,𝐓2,𝐇l=1Ld𝐲d,l𝐃r,lT𝐔1𝐁r,lT𝐇DL𝐅t,l𝐓1𝐱~d,lF2,\min_{\mathbf{U}_{\mathrm{1}},\mathbf{T}_{\mathrm{1}},\mathbf{U}_{2},\mathbf{T}_{2},\mathbf{H}}\quad\sum_{l=1}^{L_{\mathrm{d}}}\left\|\mathbf{y}_{\mathrm{d},l}-\mathbf{D}_{\mathrm{r},l}^{T}\mathbf{U}_{1}\mathbf{B}_{\mathrm{r},l}^{T}\mathbf{H}_{\mathrm{DL}}\mathbf{F}_{\mathrm{t},l}\mathbf{T}_{1}\tilde{\mathbf{x}}_{\mathrm{d},l}\right\|_{\mathrm{F}}^{2}, (14)

where 𝐇DL=𝐔2𝐇T𝐓2\mathbf{H}_{\mathrm{DL}}=\mathbf{U}_{2}\mathbf{H}^{T}\mathbf{T}_{2}, 𝐱~d,l=𝐖t,l𝐱d,l\tilde{\mathbf{x}}_{\mathrm{d},l}=\mathbf{W}_{\mathrm{t},l}\mathbf{x}_{\mathrm{d},l}. Thanks to the proposed pilots and training scheme design, the above joint optimization problem can be equivalently decoupled into two subproblems demonstrated in the following proposition.

Proposition 2 (HAC problem decoupling).

Based on the specific pilots and training scheme design in Section II-B, the problem of HAC in (14) can be equivalently decoupled into two independent problems as

𝒫1:min𝐮1,𝐭1𝐘dr(𝟏Pdr𝐮1)𝐭1T𝐗drF2,\displaystyle\mathcal{P}_{1}:\min_{\ \ \mathbf{u}_{\mathrm{1}},\mathbf{t}_{\mathrm{1}}\ }\quad\left\|\mathbf{Y}_{\mathrm{dr}}-(\mathbf{1}_{P_{\mathrm{dr}}}\otimes\mathbf{u}_{1})\mathbf{t}_{1}^{T}\mathbf{X}_{\mathrm{dr}}\right\|_{\mathrm{F}}^{2}, (15)
𝒫2:min𝐔2,𝐓2,𝐇𝐘da𝐁¯daT𝐔2𝐇T𝐓2𝐅¯da𝐗daF2,\displaystyle\mathcal{P}_{2}:\min_{\mathbf{U}_{\mathrm{2}},\mathbf{T}_{\mathrm{2}},\mathbf{H}}\quad\left\|\mathbf{Y}_{\mathrm{da}}-\bar{\mathbf{B}}_{\mathrm{da}}^{T}\mathbf{U}_{2}\mathbf{H}^{T}\mathbf{T}_{2}\bar{\mathbf{F}}_{\mathrm{da}}\mathbf{X}_{\mathrm{da}}\right\|_{\mathrm{F}}^{2}, (16)

where 𝐘dr=[𝐘¯dr,1T,,𝐘¯dr,PdrT]T\mathbf{Y}_{\mathrm{dr}}=[\bar{\mathbf{Y}}_{\mathrm{dr},1}^{T},\cdots,\bar{\mathbf{Y}}_{\mathrm{dr},P_{\mathrm{dr}}}^{T}]^{T}, 𝐘¯dr,p=[𝐲d,(p1)Qdr+1,,𝐲d,pQdr]\bar{\mathbf{Y}}_{\mathrm{dr},p}=[\mathbf{y}_{\mathrm{d},(p-1)Q_{\mathrm{dr}}+1},\cdots,\mathbf{y}_{\mathrm{d},pQ_{\mathrm{dr}}}], 𝐮1\mathbf{u}_{1} consists of the diagonal entries of 𝐔1\mathbf{U}_{1}, 𝐭1\mathbf{t}_{1} is composed of the diagonal entries of 𝐓1\mathbf{T}_{1}, 𝐗dr=[𝐱1,,𝐱Qdr]\mathbf{X}_{\mathrm{dr}}=[\mathbf{x}_{1},\cdots,\mathbf{x}_{Q_{\mathrm{dr}}}], 𝐘da=[𝐲da,1T,,𝐲da,PdaT]T\mathbf{Y}_{\mathrm{da}}=[\mathbf{y}_{\mathrm{da},1}^{T},\cdots,\mathbf{y}_{\mathrm{da},P_{\mathrm{da}}}^{T}]^{T}, 𝐲da,p=[yd,(p1)Qda+1,1,,yd,pQda,1]\mathbf{y}_{\mathrm{da},p}=[y_{\mathrm{d},(p-1)Q_{\mathrm{da}}+1,1},\cdots,y_{\mathrm{d},pQ_{\mathrm{da}},1}], 𝐁¯da=[𝐛da,1,1,,𝐛da,Pda,1]\bar{\mathbf{B}}_{\mathrm{da}}=[\mathbf{b}_{\mathrm{da},1,1},\cdots,\mathbf{b}_{\mathrm{da},P_{\mathrm{da}},1}], 𝐅¯da=[𝐟da,1,1,,𝐟da,Qda,1]\bar{\mathbf{F}}_{\mathrm{da}}=[\mathbf{f}_{\mathrm{da},1,1},\cdots,\mathbf{f}_{\mathrm{da},Q_{\mathrm{da}},1}], 𝐗da=diag(x1,1,,xQda,1)\mathbf{X}_{\mathrm{da}}=\mathrm{diag}(x_{1,1},\cdots,x_{Q_{\mathrm{da}},1}), 𝐛da,p,1\mathbf{b}_{\mathrm{da},p,1} is the first column of 𝐁da,p\mathbf{B}_{\mathrm{da},p}, 𝐟da,q,1\mathbf{f}_{\mathrm{da},q,1} denotes the first column of 𝐅da,q\mathbf{F}_{\mathrm{da},q}, and xq,1x_{q,1} represents the first entry of 𝐱q\mathbf{x}_{q}.

Proof:

See Appendix A. ∎

Remark 2 (HAC decoupling).

Since the problem 𝒫1\mathcal{P}_{1} can solve the mismatch coefficients of the transmit digital RF chains of the BS and those of the receive digital RF chains of the UE, it is known as the downlink calibration problem of digital RF chains. Similarly, the problem 𝒫2\mathcal{P}_{2} is the downlink calibration problem of analog RF chains. Thus, Proposition 2 indicates that HAC can be decoupled into the calibration of digital RF chains and the calibration of the analog RF chains, which is the purpose of the hierarchical calibration.

II-D Solution to Calibration Problem of HAC

As 𝒫1\mathcal{P}_{1} and 𝒫2\mathcal{P}_{2} are independent of each other, we first find the solution to 𝒫1\mathcal{P}_{1}, then solve 𝒫2\mathcal{P}_{2}. As the objective of 𝒫1\mathcal{P}_{1} is bilinear, it can be solved by iterative approaches but this is inefficient. To solve 𝒫1\mathcal{P}_{1} efficiently, we propose a closed-form solution by regarding the first receive digital chain of the UE as the calibration reference.

By using the auxiliary variables 𝐗¯dr,p=𝐮1𝐱dt,pT\bar{\mathbf{X}}_{\mathrm{dr},p}=\mathbf{u}_{1}\mathbf{x}_{\mathrm{dt},p}^{T} and 𝐱dt,p=𝐗drT𝐭1\mathbf{x}_{\mathrm{dt},p}=\mathbf{X}_{\mathrm{dr}}^{T}\mathbf{t}_{1}, the problem 𝒫1\mathcal{P}_{1} can be further formulated by

𝒫1.1:min{𝐗¯dr,p}p[1:Pdr]p=1Pdr𝐘¯dr,p𝐗¯dr,pF2,\mathcal{P}_{1.1}:\min_{\{\bar{\mathbf{X}}_{\mathrm{dr},p}\}_{p\in[1:P_{\mathrm{dr}}]}}\quad\sum_{p=1}^{P_{\mathrm{dr}}}\left\|\bar{\mathbf{Y}}_{\mathrm{dr},p}-\bar{\mathbf{X}}_{\mathrm{dr},p}\right\|_{\mathrm{F}}^{2}, (17)

By taking the derivative of the objective function of 𝒫1,1\mathcal{P}_{1,1}, the solution can be given by[36]

𝐗¯dr,p=𝐘¯dr,p,p[1:Pdr].\bar{\mathbf{X}}_{\mathrm{dr},p}=\bar{\mathbf{Y}}_{\mathrm{dr},p},\quad\forall p\in[1:P_{\mathrm{dr}}]. (18)

Since the first receive digital RF chain of the UE is the reference, its mismatch coefficient can be treated as a known constant, e.g., u1,1=cdr0u_{1,1}=c_{\mathrm{dr}}\neq 0. Based on this assumption and (18), 𝐱dt,pT\mathbf{x}_{\mathrm{dt},p}^{T} equals to the first column of 𝐗¯dr,p\bar{\mathbf{X}}_{\mathrm{dr},p}, i.e.,

𝐱dt,p=1cdr𝐲dr,(p1)Mr+1T,p[1:Pdr],\mathbf{x}_{\mathrm{dt},p}=\frac{1}{c_{\mathrm{dr}}}\mathbf{y}_{\mathrm{dr},(p-1)M_{\mathrm{r}}+1}^{T},\quad\forall p\in[1:P_{\mathrm{dr}}], (19)

where 𝐲dr,m\mathbf{y}_{\mathrm{dr},m} is the mm-th row of 𝐘dr\mathbf{Y}_{\mathrm{dr}}.

By substituting (19) into (15), the solution to the problem 𝒫1\mathcal{P}_{1} can be given in the following proposition.

Proposition 3 (Solutions to the problem 𝒫1\mathcal{P}_{1}).

By assuming that the first receive digital RF chain is set as the reference, i.e., u1,1=cdru_{1,1}=c_{\mathrm{dr}}, the solutions to 𝐭1\mathbf{t}_{1} and 𝐮1\mathbf{u}_{1} can be given by

𝐮^1=cdr[1,𝐲~drH𝐘ˇdr(𝐘ˇdrH𝐘ˇdr)1]H,\displaystyle\hat{\mathbf{u}}_{1}=c_{\mathrm{dr}}\bigl{[}1,\tilde{\mathbf{y}}_{\mathrm{dr}}^{H}\check{\mathbf{Y}}_{\mathrm{dr}}(\check{\mathbf{Y}}_{\mathrm{dr}}^{H}\check{\mathbf{Y}}_{\mathrm{dr}})^{-1}\bigr{]}^{H}, (20)
𝐭^1=1cdrPdr[𝟏PdrT(𝐗dr𝐗drT)1𝐗dr]𝐲dt,\displaystyle\hat{\mathbf{t}}_{1}=\frac{1}{c_{\mathrm{dr}}P_{\mathrm{dr}}}\Bigl{[}\mathbf{1}_{P_{\mathrm{dr}}}^{T}\otimes\bigl{(}\mathbf{X}_{\mathrm{dr}}^{*}\mathbf{X}_{\mathrm{dr}}^{T}\bigr{)}^{-1}\mathbf{X}_{\mathrm{dr}}^{*}\Bigr{]}\mathbf{y}_{\mathrm{dt}}, (21)

where 𝐲~dr=[vec(𝐘~dr,1)T,,vec(𝐘~dr,Pdr)T]TPdrQdr(Mr1)\tilde{\mathbf{y}}_{\mathrm{dr}}=[\mathrm{vec}(\tilde{\mathbf{Y}}_{\mathrm{dr},1})^{T},\cdots,\mathrm{vec}(\tilde{\mathbf{Y}}_{\mathrm{dr},P_{\mathrm{dr}}})^{T}]^{T}\in\mathbb{C}^{P_{\mathrm{dr}}Q_{\mathrm{dr}}(M_{\mathrm{r}}-1)},𝐘~dr,p\tilde{\mathbf{Y}}_{\mathrm{dr},p} consists of the second to the last row of 𝐘¯dr,p\bar{\mathbf{Y}}_{\mathrm{dr},p}, 𝐘ˇdr=[(𝐲dr,1𝐈Mr1),,(𝐲dr,(Pdr1)Mr+1𝐈Mr1)]TPdrQdr(Mr1)×(Mr1)\check{\mathbf{Y}}_{\mathrm{dr}}=[(\mathbf{y}_{\mathrm{dr},1}\otimes\mathbf{I}_{M_{\mathrm{r}}-1}),\cdots,(\mathbf{y}_{\mathrm{dr},(P_{\mathrm{dr}}-1)M_{\mathrm{r}}+1}\otimes\mathbf{I}_{M_{\mathrm{r}}-1})]^{T}\in\mathbb{C}^{P_{\mathrm{dr}}Q_{\mathrm{dr}}(M_{\mathrm{r}}-1)\times(M_{\mathrm{r}}-1)}, and 𝐲dt=[𝐲dr,1,,𝐲dr,(Pdr1)Mr+1]T\mathbf{y}_{\mathrm{dt}}=[\mathbf{y}_{\mathrm{dr},1},\cdots,\mathbf{y}_{\mathrm{dr},(P_{\mathrm{dr}}-1)M_{\mathrm{r}}+1}]^{T}.

Proof:

See Appendix B. ∎

Remark 3 (The special solution to 𝒫1\mathcal{P}_{1}).

Equations (20) and (21) give the general solutions to 𝒫1\mathcal{P}_{1} and are dependent on the value of cdrc_{\mathrm{dr}}. In practice, it is difficult to determine the value of cdrc_{\mathrm{dr}}. To avoid this issue, the mismatch coefficient of the reference can be set to 11, i.e., cdr=1c_{\mathrm{dr}}=1. In this case, equations (20) and (21) degenerate to a special solution to 𝒫1\mathcal{P}_{1}. Since the vectors parallel to 𝐭1\mathbf{t}_{1} and 𝐮1\mathbf{u}_{1} can be applied to the calibration, the special solution to 𝒫1\mathcal{P}_{1} still works for the reciprocity calibration.

Then, the mismatch coefficients of analog RF chains can be estimated by solving 𝒫2\mathcal{P}_{2}. By exploiting the geometry channel model of mmWave, the calibration problem of analog chains can be further written as

𝒫2.1:min𝐔2,𝐓2,𝚯,𝚽,𝐇α𝐘da𝐁¯daT𝐔2𝐀r𝐇α𝐀tT𝐓2𝐗~daF2,\mathcal{P}_{2.1}:\min_{\mathbf{U}_{2},\mathbf{T}_{2},\boldsymbol{\Theta},\boldsymbol{\Phi},\mathbf{H}_{\alpha}}\quad\left\|\mathbf{Y}_{\mathrm{da}}-\bar{\mathbf{B}}_{\mathrm{da}}^{T}\mathbf{U}_{2}\mathbf{A}_{\mathrm{r}}\mathbf{H}_{\alpha}\mathbf{A}_{\mathrm{t}}^{T}\mathbf{T}_{2}\tilde{\mathbf{X}}_{\mathrm{da}}\right\|_{\mathrm{F}}^{2}, (22)

where 𝐗~da=𝐅¯da𝐗da\tilde{\mathbf{X}}_{\mathrm{da}}=\bar{\mathbf{F}}_{\mathrm{da}}\mathbf{X}_{\mathrm{da}}, 𝐀t=[𝐚t(θ1),,𝐚t(θK)]Nt×K\mathbf{A}_{\mathrm{t}}=[\mathbf{a}_{\mathrm{t}}(\theta_{1}),\cdots,\mathbf{a}_{\mathrm{t}}(\theta_{K})]\in\mathbb{C}^{N_{\mathrm{t}}\times K}, 𝐀r=[𝐚r(ϕ1),,𝐚r(ϕK)]Nr×K\mathbf{A}_{\mathrm{r}}=[\mathbf{a}_{\mathrm{r}}(\phi_{1}),\cdots,\mathbf{a}_{\mathrm{r}}(\phi_{K})]\in\mathbb{C}^{N_{\mathrm{r}}\times K}, and 𝐇α=diag(α1,,αK)NtNr/K\mathbf{H}_{\alpha}=\mathrm{diag}(\alpha_{1},\cdots,\alpha_{K})\sqrt{N_{\mathrm{t}}N_{\mathrm{r}}}/{\sqrt{K}}. As the variables are correlated with each other, this problem is nonconvex and there is no tractable solution to the problem. To solve 𝒫2.1\mathcal{P}_{2.1} efficiently, inspired by [39], we propose an alternating optimization algorithm to solve a locally optimal solution.

During the laol_{\mathrm{ao}}-th iteration, we apply the least square algorithm to estimate the diagonal matrices 𝐔2\mathbf{U}_{2}, 𝐓2\mathbf{T}_{2}, 𝐇α\mathbf{H}_{\alpha}, then, propose an algorithm to estimate the AoA and AoD matrices 𝚯\boldsymbol{\Theta}, 𝚽\boldsymbol{\Phi}.

Lemma 1 (Solution to the diagonal matrices).

During the laol_{\mathrm{ao}}-th iteration, when 𝐓2lao1,𝐔2lao1\mathbf{T}_{2}^{l_{\mathrm{ao}}-1},\mathbf{U}_{2}^{l_{\mathrm{ao}}-1}, 𝚯lao1\boldsymbol{\Theta}^{l_{\mathrm{ao}}-1}, and 𝚽lao1\boldsymbol{\Phi}^{l_{\mathrm{ao}}-1} are known, the diagonal elements of 𝐇αlao\mathbf{H}_{\alpha}^{l_{\mathrm{ao}}} can be estimated by

𝐡αlao=argmin𝐡αg¯(𝐓2lao1,𝐔2lao1,𝐇α,𝚯lao1,𝚽lao1)=(𝚪hH𝚪h)1𝚪hHvec{𝐘da},{\mathbf{h}}_{\alpha}^{l_{\mathrm{ao}}}=\mathrm{arg}\min_{\mathbf{h}_{\alpha}}\bar{g}(\mathbf{T}_{2}^{l_{\mathrm{ao}}-1},\mathbf{U}_{2}^{l_{\mathrm{ao}}-1},\mathbf{H}_{\alpha},\boldsymbol{\Theta}^{l_{\mathrm{ao}}-1},\boldsymbol{\Phi}^{l_{\mathrm{ao}}-1})=(\boldsymbol{\Gamma}_{\mathrm{h}}^{H}\boldsymbol{\Gamma}_{\mathrm{h}})^{-1}\boldsymbol{\Gamma}_{\mathrm{h}}^{H}\mathrm{vec}\left\{\mathbf{Y}_{\mathrm{da}}\right\}, (23)

where 𝚪h=(𝐗~daT𝐓2lao1𝐀tlao1𝐁¯r𝐔2lao1𝐀rlao1)\boldsymbol{\Gamma}_{\mathrm{h}}=(\tilde{\mathbf{X}}_{\mathrm{da}}^{T}\mathbf{T}_{2}^{l_{\mathrm{ao}}-1}\mathbf{A}_{\mathrm{t}}^{l_{\mathrm{ao}}-1}\odot\bar{\mathbf{B}}_{\mathrm{r}}\mathbf{U}_{2}^{l_{\mathrm{ao}}-1}\mathbf{A}_{\mathrm{r}}^{l_{\mathrm{ao}}-1}). When 𝐓2lao1,𝐇αlao\mathbf{T}_{2}^{l_{\mathrm{ao}}-1},\mathbf{H}_{\alpha}^{l_{\mathrm{ao}}}, and 𝚯lao1\boldsymbol{\Theta}^{l_{\mathrm{ao}}-1}, 𝚽lao1\boldsymbol{\Phi}^{l_{\mathrm{ao}}-1} are known, the diagonal elements of 𝐔2lao\mathbf{U}_{2}^{l_{\mathrm{ao}}} can be estimated by

𝐮2lao=argmin𝐮2g¯(𝐓2lao1,𝐔2,𝐇αlao,𝚯lao1,𝚽lao1)=(𝚪uH𝚪u)1𝚪uHvec{𝐘da},\mathbf{u}_{2}^{l_{\mathrm{ao}}}=\mathrm{arg}\min_{\mathbf{u}_{2}}\bar{g}(\mathbf{T}_{2}^{l_{\mathrm{ao}}-1},\mathbf{U}_{2},\mathbf{H}_{\alpha}^{l_{\mathrm{ao}}},\boldsymbol{\Theta}^{l_{\mathrm{ao}}-1},\boldsymbol{\Phi}^{l_{\mathrm{ao}}-1})=(\boldsymbol{\Gamma}_{\mathrm{u}}^{H}\boldsymbol{\Gamma}_{\mathrm{u}})^{-1}\boldsymbol{\Gamma}_{\mathrm{u}}^{H}\mathrm{vec}\left\{\mathbf{Y}_{\mathrm{da}}\right\}, (24)

where 𝚪u=(𝐗~daT𝐓2lao1𝐀tlao1𝐇αlao(𝐀rlao1)T𝐁¯r)\boldsymbol{\Gamma}_{\mathrm{u}}=(\tilde{\mathbf{X}}_{\mathrm{da}}^{T}\mathbf{T}_{2}^{l_{\mathrm{ao}}-1}\mathbf{A}_{\mathrm{t}}^{l_{\mathrm{ao}}-1}\mathbf{H}_{\alpha}^{l_{\mathrm{ao}}}(\mathbf{A}_{\mathrm{r}}^{l_{\mathrm{ao}}-1})^{T}\odot\bar{\mathbf{B}}_{\mathrm{r}}). Similarly, by giving 𝐔2lao,𝐇αlao\mathbf{U}_{2}^{l_{\mathrm{ao}}},\mathbf{H}_{\alpha}^{l_{\mathrm{ao}}}, 𝚯lao1\boldsymbol{\Theta}^{l_{\mathrm{ao}}-1}, and 𝚽lao1\boldsymbol{\Phi}^{l_{\mathrm{ao}}-1}, the diagonal entries of 𝐓2\mathbf{T}_{2} can be given by

𝐭2lao=argmin𝐭2g¯(𝐓2,𝐔2lao,𝐇αlao,𝚯lao1,𝚽lao1)=(𝚪tH𝚪t)1𝚪tHvec{𝐘da},\mathbf{t}_{2}^{l_{\mathrm{ao}}}=\mathrm{arg}\min_{\mathbf{t}_{2}}\bar{g}(\mathbf{T}_{2},\mathbf{U}_{2}^{l_{\mathrm{ao}}},\mathbf{H}_{\alpha}^{l_{\mathrm{ao}}},\boldsymbol{\Theta}^{l_{\mathrm{ao}}-1},\boldsymbol{\Phi}^{l_{\mathrm{ao}}-1})=(\boldsymbol{\Gamma}_{\mathrm{t}}^{H}\boldsymbol{\Gamma}_{\mathrm{t}})^{-1}\boldsymbol{\Gamma}_{\mathrm{t}}^{H}\mathrm{vec}\left\{\mathbf{Y}_{\mathrm{da}}\right\}, (25)

where 𝚪t=(𝐗~daT𝐁¯r𝐔2lao𝐀rlao1𝐇αlao(𝐀tlao1)T)\boldsymbol{\Gamma}_{\mathrm{t}}=(\tilde{\mathbf{X}}_{\mathrm{da}}^{T}\odot\bar{\mathbf{B}}_{\mathrm{r}}\mathbf{U}_{2}^{l_{\mathrm{ao}}}\mathbf{A}_{\mathrm{r}}^{l_{\mathrm{ao}}-1}\mathbf{H}_{\alpha}^{l_{\mathrm{ao}}}(\mathbf{A}_{\mathrm{t}}^{l_{\mathrm{ao}}-1})^{T}).

Algorithm 1 The AoAs/AoDs updating
0:  𝐔2lao\mathbf{U}_{2}^{l_{\mathrm{ao}}}, 𝐓2lao\mathbf{T}_{2}^{l_{\mathrm{ao}}}, 𝐇αlao\mathbf{H}_{\alpha}^{l_{\mathrm{ao}}}, 𝚯lao1\boldsymbol{\Theta}^{l_{\mathrm{ao}}-1}, 𝚽lao1\boldsymbol{\Phi}^{l_{\mathrm{ao}}-1}, and the convergence condition ϵan\epsilon_{\mathrm{an}}.
1:  Initialize lan=1l_{\mathrm{an}}=1, and 𝚽¯lan1=𝚽lao1\bar{\boldsymbol{\Phi}}^{l_{\mathrm{an}}-1}=\boldsymbol{\Phi}^{l_{\mathrm{ao}}-1}.
2:  repeat
3:     Compute the array steering matrix 𝐀r(𝚽¯lan1)\mathbf{A}_{\mathrm{r}}(\bar{\boldsymbol{\Phi}}^{l_{\mathrm{an}}-1}) and its gradient matrix 𝐀¯r(𝚽¯lan1)\bar{\mathbf{A}}_{\mathrm{r}}(\bar{\boldsymbol{\Phi}}^{l_{\mathrm{an}}-1});
4:     Compute the equivalent receive signal matrix 𝐘dar=𝐘da𝐁¯daT𝐔2lao𝐀r(𝚽¯lan1)𝐇rlao\mathbf{Y}_{\mathrm{dar}}=\mathbf{Y}_{\mathrm{da}}-\bar{\mathbf{B}}_{\mathrm{da}}^{T}\mathbf{U}_{2}^{l_{\mathrm{ao}}}\mathbf{A}_{\mathrm{r}}(\bar{\boldsymbol{\Phi}}^{l_{\mathrm{an}}-1})\mathbf{H}_{\mathrm{r}}^{l_{\mathrm{ao}}};
5:     Compute the increase of direction angles 𝝃={(𝚪ξH𝚪ξ)}1{𝚪ξHvec(𝐘dar)}\boldsymbol{\xi}=\Re\{(\boldsymbol{\Gamma}_{\xi}^{H}\boldsymbol{\Gamma}_{\xi})\}^{-1}\Re\{\boldsymbol{\Gamma}_{\xi}^{H}\mathrm{vec}(\mathbf{Y}_{\mathrm{dar}})\};
6:     Upgrade the direction angles 𝚽¯lan=𝚽¯lan1+𝝃\bar{\boldsymbol{\Phi}}^{l_{\mathrm{an}}}=\bar{\boldsymbol{\Phi}}^{l_{\mathrm{an}}-1}+\boldsymbol{\xi}, and set lan=lan+1l_{\mathrm{an}}=l_{\mathrm{an}}+1;
7:  until 𝚽¯lan𝚽¯lan1F2<ϵan\|\bar{\boldsymbol{\Phi}}^{l_{\mathrm{an}}}-\bar{\boldsymbol{\Phi}}^{l_{\mathrm{an}}-1}\|_{\mathrm{F}}^{2}<\epsilon_{\mathrm{an}}
7:  The updated 𝚽lao\boldsymbol{\Phi}^{l_{\mathrm{ao}}}.
Proof:

The complete proof is presented in Appendix C of Supplementary Material. ∎

Finally, we propose a AoAs and AoDs updating algorithm111The update method of AoA/AoD is not restricted to the algorithm proposed in this paper. Some existing methods, such as those presented in [30], can be employed. when 𝐔2lao\mathbf{U}_{2}^{l_{\mathrm{ao}}}, 𝐓2lao\mathbf{T}_{2}^{l_{\mathrm{ao}}}, 𝐇αlao\mathbf{H}_{\alpha}^{l_{\mathrm{ao}}}, 𝚯lao1\boldsymbol{\Theta}^{l_{\mathrm{ao}}-1}, and 𝚽lao1\boldsymbol{\Phi}^{l_{\mathrm{ao}}-1} are given. Since the AoAs and AoDs can be estimated using the same approaches, we introduce the updating algorithm by taking updating the AoDs 𝚽\boldsymbol{\Phi} as an example. Since the problem for estimating AoDs is nonlinear, it is difficult to solve the AoDs directly. To address this issue, as presented in [40], the nonlinear problem is transformed into a series of linear problems by using the first-order Taylor expansion to approximate the array steering vector. Let ξk(k[1:K])\xi_{k}\ (k\in[1:K]) denotes the differences between the estimated AoDs 𝚽¯\bar{\boldsymbol{\Phi}} and the real AoDs 𝚽\boldsymbol{\Phi}. By assuming that the differences are small, the array steering vector can be approximated by the first-order Taylor expansion denoted as 𝐚r(ϕk)=𝐚r(ϕ¯k)+𝐚¯r(ϕ¯k)ξk\mathbf{a}_{\mathrm{r}}(\phi_{k})=\mathbf{a}_{\mathrm{r}}(\bar{\phi}_{k})+\bar{\mathbf{a}}_{\mathrm{r}}(\bar{\phi}_{k})\xi_{k}, where 𝐚¯r(ϕ¯k)=𝐚r(ϕk)/ϕk|ϕk=ϕ¯k=𝐚r(ϕ¯k)[0,j2πdλcosϕ¯k,,j2πdλ(Nr1)cosϕ¯k]T\bar{\mathbf{a}}_{\mathrm{r}}(\bar{\phi}_{k})=\partial\mathbf{a}_{\mathrm{r}}(\phi_{k})/\partial\phi_{k}|_{\phi_{k}=\bar{\phi}_{k}}=\mathbf{a}_{\mathrm{r}}(\bar{\phi}_{k})\circ[0,-j\frac{2\pi d}{\lambda}\cos\bar{\phi}_{k},\cdots,-j\frac{2\pi d}{\lambda}(N_{\mathrm{r}}-1)\cos\bar{\phi}_{k}]^{T}. Then, the problem 𝒫2.1\mathcal{P}_{2.1} can be further formulated as

𝒫2.2:min{ξk}k[1:K]𝐘darlao𝐁¯daT𝐔2lao𝐀¯r(𝚽¯)𝚲𝐇rlaoF2,\mathcal{P}_{2.2}:\min_{\{\xi_{k}\}_{k\in[1:K]}}\quad\left\|\mathbf{Y}_{\mathrm{dar}}^{l_{\mathrm{ao}}}-\bar{\mathbf{B}}_{\mathrm{da}}^{T}\mathbf{U}_{2}^{l_{\mathrm{ao}}}\bar{\mathbf{A}}_{\mathrm{r}}(\bar{\boldsymbol{\Phi}})\boldsymbol{\Lambda}\mathbf{H}_{\mathrm{r}}^{l_{\mathrm{ao}}}\right\|_{\mathrm{F}}^{2}, (26)

where 𝐇rlao=𝐇αlao𝐀tT𝐓2lao𝐗~da\mathbf{H}_{\mathrm{r}}^{l_{\mathrm{ao}}}=\mathbf{H}_{\alpha}^{l_{\mathrm{ao}}}\mathbf{A}_{\mathrm{t}}^{T}\mathbf{T}_{2}^{l_{\mathrm{ao}}}\tilde{\mathbf{X}}_{\mathrm{da}}, 𝐘dar=𝐘da𝐁¯daT𝐔2lao𝐀r(𝚽¯)𝐇rlao\mathbf{Y}_{\mathrm{dar}}=\mathbf{Y}_{\mathrm{da}}-\bar{\mathbf{B}}_{\mathrm{da}}^{T}\mathbf{U}_{2}^{l_{\mathrm{ao}}}\mathbf{A}_{\mathrm{r}}(\bar{\boldsymbol{\Phi}})\mathbf{H}_{\mathrm{r}}^{l_{\mathrm{ao}}}, 𝚲=diag(ξ1,,ξK)\boldsymbol{\Lambda}=\mathrm{diag}(\xi_{1},\cdots,\xi_{K}), and 𝐀¯r(𝚽¯)=[𝐚¯r(ϕ¯1),,𝐚¯r(ϕ¯K)]\bar{\mathbf{A}}_{\mathrm{r}}(\bar{\boldsymbol{\Phi}})=[\bar{\mathbf{a}}_{\mathrm{r}}(\bar{\phi}_{1}),\cdots,\bar{\mathbf{a}}_{\mathrm{r}}(\bar{\phi}_{K})]. The solution can be given by

𝝃={(𝚪ξH𝚪ξ)}1{𝚪ξHvec(𝐘dar)},\boldsymbol{\xi}=\Re\{(\boldsymbol{\Gamma}_{\xi}^{H}\boldsymbol{\Gamma}_{\xi})\}^{-1}\Re\{\boldsymbol{\Gamma}_{\xi}^{H}\mathrm{vec}(\mathbf{Y}_{\mathrm{dar}})\}, (27)

𝚪ξ=(𝐇rlao)T𝐁¯daT𝐔2lao𝐀¯r(𝚽¯)\boldsymbol{\Gamma}_{\xi}=(\mathbf{H}_{\mathrm{r}}^{l_{\mathrm{ao}}})^{T}\odot\bar{\mathbf{B}}_{\mathrm{da}}^{T}\mathbf{U}_{2}^{l_{\mathrm{ao}}}\bar{\mathbf{A}}_{\mathrm{r}}(\bar{\boldsymbol{\Phi}}). Since ξk\xi_{k} is assumed to be small, the updating requires several iterations, and the iterative updating algorithm is summarized as Algorithm 1.

It is worth noting that the initial values of AoAs 𝚯\boldsymbol{\Theta} and AoDs 𝚽\boldsymbol{\Phi} can be roughly calculated by direction finding methods, e.g., the modified MUSIC algorithm in [41].

Finally, based on Lemma 1 and Algorithm 1, the problem 𝒫2.1\mathcal{P}_{2.1} can be solved by an alternating optimization algorithm, which is summarized as Algorithm 2.

Algorithm 2 Alternating Optimization for solving 𝒫2.1\mathcal{P}_{2.1}
0:  The received signals 𝐘da\mathbf{Y}_{\mathrm{da}}, and the convergence threshold ϵ\epsilon.
1:  Set lao=1l_{\mathrm{ao}}=1; initialize 𝐔2lao1\mathbf{U}_{2}^{l_{\mathrm{ao}}-1}, 𝐓2lao1\mathbf{T}_{2}^{l_{\mathrm{ao}}-1}, and 𝐇αlao1\mathbf{H}_{\alpha}^{l_{\mathrm{ao}}-1} randomly; initialize AoAs 𝚯lao1\boldsymbol{\Theta}^{l_{\mathrm{ao}}-1} and AoDs 𝚽lao1\boldsymbol{\Phi}^{l_{\mathrm{ao}}-1} by the modified MUSIC algorithm in [41];
2:  repeat
3:     Estimate the channel gain 𝐇αlao\mathbf{H}_{\alpha}^{l_{\mathrm{ao}}} by using (23);
4:     Estimate mismatch coefficients 𝐓2lao\mathbf{T}_{2}^{l_{\mathrm{ao}}} by using (25);
5:     Estimated mismatch coefficients 𝐔2lao\mathbf{U}_{2}^{l_{\mathrm{ao}}} by using (24);
6:     Upgrade the AoAs 𝚯lao\boldsymbol{\Theta}^{l_{\mathrm{ao}}} and AoDs 𝚽lao\boldsymbol{\Phi}^{l_{\mathrm{ao}}} with Algorithm 1; set lao=lao+1l_{\mathrm{ao}}=l_{\mathrm{ao}}+1;
7:  until |g¯(𝐓2lao1,𝐔2lao1,𝐇αlao1,𝚯lao1,𝚽lao1)g¯(𝐓2lao,𝐔2lao,𝐇αlao,𝚯lao,𝚽lao)|<ϵ|\bar{g}(\mathbf{T}_{2}^{l_{\mathrm{ao}}-1},\mathbf{U}_{2}^{l_{\mathrm{ao}}-1},\mathbf{H}_{\alpha}^{l_{\mathrm{ao}}-1},\boldsymbol{\Theta}^{l_{\mathrm{ao}}-1},\boldsymbol{\Phi}^{l_{\mathrm{ao}}-1})-\bar{g}(\mathbf{T}_{2}^{l_{\mathrm{ao}}},\mathbf{U}_{2}^{l_{\mathrm{ao}}},\mathbf{H}_{\alpha}^{l_{\mathrm{ao}}},\boldsymbol{\Theta}^{l_{\mathrm{ao}}},\boldsymbol{\Phi}^{l_{\mathrm{ao}}})|<\epsilon
7:  The mismatch coefficients 𝐔2lao\mathbf{U}_{2}^{l_{\mathrm{ao}}} and 𝐓2lao\mathbf{T}_{2}^{l_{\mathrm{ao}}}.
Remark 4 (Convergence analysis).

In Algorithm 1, each iteration can minimize the objective of 𝒫2.1\mathcal{P}_{2.1}, i.e.,

𝐘darlao𝐁¯daT𝐔2lao𝐀¯r(𝚽¯lan1)𝚲𝐇rlaoF2𝐘darlao𝐁¯daT𝐔2lao𝐀¯r(𝚽¯lan)𝚲𝐇rlaoF2.\left\|\mathbf{Y}_{\mathrm{dar}}^{l_{\mathrm{ao}}}-\bar{\mathbf{B}}_{\mathrm{da}}^{T}\mathbf{U}_{2}^{l_{\mathrm{ao}}}\bar{\mathbf{A}}_{\mathrm{r}}(\bar{\boldsymbol{\Phi}}^{l_{\mathrm{an}}-1})\boldsymbol{\Lambda}\mathbf{H}_{\mathrm{r}}^{l_{\mathrm{ao}}}\right\|_{\mathrm{F}}^{2}\geq\left\|\mathbf{Y}_{\mathrm{dar}}^{l_{\mathrm{ao}}}-\bar{\mathbf{B}}_{\mathrm{da}}^{T}\mathbf{U}_{2}^{l_{\mathrm{ao}}}\bar{\mathbf{A}}_{\mathrm{r}}(\bar{\boldsymbol{\Phi}}^{l_{\mathrm{an}}})\boldsymbol{\Lambda}\mathbf{H}_{\mathrm{r}}^{l_{\mathrm{ao}}}\right\|_{\mathrm{F}}^{2}. (28)

Thus, Algorithm 1 can achieve a local convergence. For Algorithm 2, each alternating optimization can minimize the objective g¯(𝐓2,𝐔2,𝐇α,𝚯,𝚽)\bar{g}(\mathbf{T}_{2},\mathbf{U}_{2},\mathbf{H}_{\alpha},\boldsymbol{\Theta},\boldsymbol{\Phi}). In other words, we have

g¯(𝐓2lao1,𝐔2lao1,𝐇αlao1,𝚯lao1,𝚽lao1)g¯(𝐓2lao1,𝐔2lao1,𝐇αlao,𝚯lao1,𝚽lao1)g¯(𝐓2lao1,𝐔2lao,𝐇αlao,𝚯lao1,𝚽lao1)g¯(𝐓2lao,𝐔2lao,𝐇αlao,𝚯lao,𝚽lao),\begin{split}&\bar{g}(\mathbf{T}_{2}^{l_{\mathrm{ao}}-1},\mathbf{U}_{2}^{l_{\mathrm{ao}}-1},\mathbf{H}_{\alpha}^{l_{\mathrm{ao}}-1},\boldsymbol{\Theta}^{l_{\mathrm{ao}}-1},\boldsymbol{\Phi}^{l_{\mathrm{ao}}-1})\geq\bar{g}(\mathbf{T}_{2}^{l_{\mathrm{ao}}-1},\mathbf{U}_{2}^{l_{\mathrm{ao}}-1},\mathbf{H}_{\alpha}^{l_{\mathrm{ao}}},\boldsymbol{\Theta}^{l_{\mathrm{ao}}-1},\boldsymbol{\Phi}^{l_{\mathrm{ao}}-1})\\ &\geq\bar{g}(\mathbf{T}_{2}^{l_{\mathrm{ao}}-1},\mathbf{U}_{2}^{l_{\mathrm{ao}}},\mathbf{H}_{\alpha}^{l_{\mathrm{ao}}},\boldsymbol{\Theta}^{l_{\mathrm{ao}}-1},\boldsymbol{\Phi}^{l_{\mathrm{ao}}-1})\geq\cdots\geq\bar{g}(\mathbf{T}_{2}^{l_{\mathrm{ao}}},\mathbf{U}_{2}^{l_{\mathrm{ao}}},\mathbf{H}_{\alpha}^{l_{\mathrm{ao}}},\boldsymbol{\Theta}^{l_{\mathrm{ao}}},\boldsymbol{\Phi}^{l_{\mathrm{ao}}}),\end{split} (29)

and thus, Algorithm 2 converges to a minimum.

Similarly, the mismatch coefficients of the receive RF chains of the BS and the transmit RF chains of the UE can be estimated by the uplink calibration. During the uplink calibration, the UE transmits pilots to the BS, and the BS estimates the mismatch coefficients by Proposition 3 and Algorithm 2. With estimated mismatch coefficients, the reciprocity mismatch can be compensated in the digital domain. Thus, the overall procedure of HAC can be summarized as follows.

  1. Step 1

    (Downlink calibration) The BS sends downlink pilots to the UE. After receiving the downlink pilots, the UE jointly estimates the mismatch coefficients of the transmit RF chains of BS and the receive RF chains of UE by Algorithm 2;

  2. Step 2

    (Uplink calibration) The UE transmits uplink pilots to the BS. Based on the received uplink pilots, the BS calculates the mismatch coefficients of the receive RF chains of BS and the transmit RF chains of UE with Algorithm 2;

  3. Step 3

    (Mismatch coefficients feedback) The UE feeds back the estimated mismatch coefficients to the BS, and the BS sends the mismatch coefficients to the UE;

  4. Step 4

    (Reciprocity mismatch compensation) During data transmission phases, CSI 𝐇\mathbf{H} can be estimated by utilizing the knowledge of mismatch coefficients and some existing approaches , e.g., the methods presented in [28, 29, 30]. Then, the equivalent downlink CSI can be formulated as 𝐔2𝐇T𝐓2\mathbf{U}_{2}\mathbf{H}^{T}\mathbf{T}_{2}, and the precoding/combining and beamforming matrices can be designed by some existing approaches, e.g. the methods proposed in [32, 33, 34]. Finally, the mismatch of digital RF chains can be compensated by multiplying the inverse of mismatch coefficients matrices of digital chains on the precoding/combining matrices.

II-E Extend HAC to the multi-user scenario

Although the HAC is introduced in a point-to-point HBF system, it can be also applied in multi-user HBF systems, where a single BS serves GG UEs simultaneously. Each UE is equipped with an HBF transceiver. Same as the single-UE case, the HAC consists of the downlink calibration and the uplink calibration. For both downlink and uplink calibrations, the pilots and beamforming designs remain consistent to the single-UE case.

Downlink calibration: The BS sends training pilots to the UEs, and the gg-th UE received signal can be denoted as

𝐲d,g,l=𝐃r,g,lT𝐔g,1𝐁r,g,lT𝐔g,2𝐇gT𝐓2𝐅t,l𝐓1𝐖t,l𝐱d,l+𝐧~d,g,l,\mathbf{y}_{\mathrm{d},g,l}=\mathbf{D}_{\mathrm{r},g,l}^{T}\mathbf{U}_{g,1}\mathbf{B}_{\mathrm{r},g,l}^{T}\mathbf{U}_{g,2}\mathbf{H}_{g}^{T}\mathbf{T}_{2}\mathbf{F}_{\mathrm{t},l}\mathbf{T}_{1}\mathbf{W}_{\mathrm{t},l}\mathbf{x}_{\mathrm{d},l}+\tilde{\mathbf{n}}_{\mathrm{d},g,l}, (30)

where 𝐇g\mathbf{H}_{g} denotes the wireless channel between the gg-th UE and the BS, 𝐔g,1\mathbf{U}_{g,1} and 𝐔g,2\mathbf{U}_{g,2} are the mismatch coefficient matrices of the receive digital and analog chains of the gg-th UE. Since (30) of each UE is same as (13), it can be solved by the same approach, i.e., Proposition 2, Proposition 3, and Algorithm 2.

Uplink calibration: The UEs sends training pilots to the BS, and the received signal can be given by

𝐲u,l=𝐖r,lT𝐑1𝐅r,lT𝐑2𝐇mu𝐕¯2𝐁t,l𝐕¯1𝐃t,l𝐱u,l+𝐧~u,l,\mathbf{y}_{\mathrm{u},l}=\mathbf{W}_{\mathrm{r},l}^{T}\mathbf{R}_{1}\mathbf{F}_{\mathrm{r},l}^{T}\mathbf{R}_{2}\mathbf{H}_{\mathrm{mu}}\bar{\mathbf{V}}_{2}\mathbf{B}_{\mathrm{t},l}\bar{\mathbf{V}}_{1}\mathbf{D}_{\mathrm{t},l}\mathbf{x}_{\mathrm{u},l}+\tilde{\mathbf{n}}_{\mathrm{u},l}, (31)

where 𝐇mu=[𝐇1,,𝐇G]\mathbf{H}_{\mathrm{mu}}=[\mathbf{H}_{1},\cdots,\mathbf{H}_{G}], 𝐕¯2=blkdiag(𝐕1,2,,𝐕G,2)\bar{\mathbf{V}}_{2}=\mathrm{blkdiag}(\mathbf{V}_{1,2},\cdots,\mathbf{V}_{G,2}), 𝐁t,l=blkdiag(𝐁t,1,l,,𝐁t,G,l)\mathbf{B}_{\mathrm{t},l}=\mathrm{blkdiag}(\mathbf{B}_{\mathrm{t},1,l},\cdots,\mathbf{B}_{\mathrm{t},G,l}), 𝐕¯1=blkdiag(𝐕1,1,,𝐕G,1)\bar{\mathbf{V}}_{1}=\mathrm{blkdiag}(\mathbf{V}_{1,1},\cdots,\mathbf{V}_{G,1}), 𝐱u,l=[𝐱u,1,lT𝐃t,1,lT,,𝐱u,G,lT𝐃t,G,lT]T\mathbf{x}_{\mathrm{u},l}=[\mathbf{x}_{\mathrm{u},1,l}^{T}\mathbf{D}_{\mathrm{t},1,l}^{T},\cdots,\mathbf{x}_{\mathrm{u},G,l}^{T}\mathbf{D}_{\mathrm{t},G,l}^{T}]^{T}, 𝐕g,1\mathbf{V}_{g,1} and 𝐕g,2\mathbf{V}_{g,2} represent the mismatch matrices of the transmit digital and analog chains of the gg-th UE. The uplink calibration problem can be formulated as

min𝐕¯i,𝐑i,𝐇mul=1Lu𝐲u,l𝐖r,lT𝐑1𝐅r,lT𝐑2𝐇mu𝐕¯2𝐁t,l𝐕¯1𝐱u,lF2,\min_{\bar{\mathbf{V}}_{i},\mathbf{R}_{i},\mathbf{H}_{\mathrm{mu}}}\ \sum_{l=1}^{L_{\mathrm{u}}}\left\|\mathbf{y}_{\mathrm{u},l}-\mathbf{W}_{\mathrm{r},l}^{T}\mathbf{R}_{1}\mathbf{F}_{\mathrm{r},l}^{T}\mathbf{R}_{2}\mathbf{H}_{\mathrm{mu}}\bar{\mathbf{V}}_{2}\mathbf{B}_{\mathrm{t},l}\bar{\mathbf{V}}_{1}\mathbf{x}_{\mathrm{u},l}\right\|_{\mathrm{F}}^{2}, (32)

which can be decomposed into the calibration problem of digital chains and analog chains by Proposition 2. The uplink calibration problem of digital chains can be solved by Proposition 3, whereas the problem of analog chains can not solved by Algorithm 2 due to the different structure of 𝐇mu\mathbf{H}_{\mathrm{mu}}. Fortunately, if UEs feed back AoAs and AoDs estimated in the downlink calibration to the BS, the BS only estimates the mismatch coefficients 𝐕¯2\bar{\mathbf{V}}_{2} and 𝐑2\mathbf{R}_{2} which can be solved by alternating optimization approach similar to Algorithm 2.

III Performance Analysis of Reciprocity Calibration

In this section, we will analyze the performance of the proposed HAC. The minimum length of the calibration pilots will be first derived, followed by the overhead and computational complexity analysis. To measure the performance of the proposed calibration approach, the Cramér-Rao lower bound will be derived as the benchmark of the calibration performance.

III-A Overhead and Complexity of HAC

Based on the calibration signal design and estimation approaches, we can derive the requirements of the length of calibration pilots.

Proposition 4 (Length of downlink pilots).

The proposed downlink training and estimation approaches require that the length of pilots meets the following conditions

{QdrMt,Pdr1,QdaNtK+1,PdaNrK+1.\begin{cases}Q_{\mathrm{dr}}\geq M_{\mathrm{t}},\\ P_{\mathrm{dr}}\geq 1,\\ Q_{\mathrm{da}}\geq N_{\mathrm{t}}-K+1,\\ P_{\mathrm{da}}\geq N_{\mathrm{r}}-K+1.\end{cases} (33)
Proof:

The complete proof is presented in Appendix D of Supplementary Material. ∎

Based on the above pilot requirements and the proposed calibration algorithms, the overhead and computational complexity of HAC can be given in the following lemma.

Remark 5 (Overhead and complexity of the proposed HAC).

By considering the length of pilots exactly meets the requirements denoted as (33), the overhead of downlink training is proportional to Mt+NrNrM_{\mathrm{t}}+N_{\mathrm{r}}N_{\mathrm{r}}. In each iteration , the computational complexity is mainly caused by computing the inverse of matrices. Let 𝒪(LanK3)\mathcal{O}(L_{\mathrm{an}}K^{3}) denote the total iteration number of updating AoA/AoD and LaoL_{\mathrm{ao}} represent the iteration number of Algorithm 2. The complexity of solve problem 𝒫2.1\mathcal{P}_{2.1} can be given by 𝒪[Lao(Mr3+Mt3+Nr3+Nt3+LaoK3)]\mathcal{O}[L_{\mathrm{ao}}(M_{\mathrm{r}}^{3}+M_{\mathrm{t}}^{3}+N_{\mathrm{r}}^{3}+N_{\mathrm{t}}^{3}+L_{\mathrm{ao}}K^{3})]. The comparisons between the overhead and complexity of HAC and CRC are shown in Table I, which indicates that the proposed HAC requires requires less overhead. According to experiments, both Algorithm 1 and Algorithm 2 converge after several iterations, and the complexity of the HAC is also lower than the CRC.

TABLE I: Comparison of HAC and CRC
Overhead Complexity
CRC NtMtNrN_{\mathrm{t}}M_{\mathrm{t}}N_{\mathrm{r}} 𝒪(Nt3Mt3Nr3Mr3)\mathcal{O}(N_{\mathrm{t}}^{3}M_{\mathrm{t}}^{3}N_{\mathrm{r}}^{3}M_{\mathrm{r}}^{3})
HAC Mt+NtNrM_{\mathrm{t}}+N_{\mathrm{t}}N_{\mathrm{r}} 𝒪[Lao(Mr3+Mt3+Nr3+Nt3+LaoK3)]\mathcal{O}[L_{\mathrm{ao}}(M_{\mathrm{r}}^{3}+M_{\mathrm{t}}^{3}+N_{\mathrm{r}}^{3}+N_{\mathrm{t}}^{3}+L_{\mathrm{ao}}K^{3})]

III-B CRLB of Calibration Coefficients

To verify the performance of proposed joint estimation approaches, we derive the CRLB of 𝐮~1\tilde{\mathbf{u}}_{1}, 𝐭1\mathbf{t}_{1}, 𝐮2\mathbf{u}_{2}, and 𝐭2\mathbf{t}_{2} to be the performance benchmark, where 𝐮~1=[u1,2,,u1,Mr]T\tilde{\mathbf{u}}_{1}=[u_{1,2},\cdots,u_{1,M_{\mathrm{r}}}]^{T}. We first define the variable vectors as

𝜼=[{𝐮~1T},{𝐮~1T},{𝐭1T},{𝐭1T},[{𝐮2T},{𝐮2T},{𝐭2T},{𝐭2T},{𝐡αT},{𝐡αT},𝚯T,𝚽T]T,\begin{split}\boldsymbol{\eta}=&[\Re\{\tilde{\mathbf{u}}_{1}^{T}\},\Im\{\tilde{\mathbf{u}}_{1}^{T}\},\Re\{\mathbf{t}_{1}^{T}\},\Im\{\mathbf{t}_{1}^{T}\},[\Re\{\mathbf{u}_{2}^{T}\},\Im\{\mathbf{u}_{2}^{T}\},\\ &\Re\{\mathbf{t}_{2}^{T}\},\Im\{\mathbf{t}_{2}^{T}\},\Re\{\mathbf{h}_{\alpha}^{T}\},\Im\{\mathbf{h}_{\alpha}^{T}\},\boldsymbol{\Theta}^{T},\boldsymbol{\Phi}^{T}]^{T},\\ \end{split} (34)
𝜼ut=[𝐮~1T,𝐭1T,𝐮2T,𝐭2T]T,\boldsymbol{\eta}_{\mathrm{ut}}=[\tilde{\mathbf{u}}_{1}^{T},\mathbf{t}_{1}^{T},\mathbf{u}_{2}^{T},\mathbf{t}_{2}^{T}]^{T}, (35)

and the transformation function vector 𝐠(𝜼)\mathbf{g}(\boldsymbol{\eta}) as

𝜼ut=𝐠(𝜼)=[{𝐮~1T}+j{𝐮~1T},{𝐭1T}+j{𝐭1T},{𝐮2T}+j{𝐮2T},{𝐭2T}+j{𝐭2T}]T.\begin{split}\boldsymbol{\eta}_{\mathrm{ut}}=\mathbf{g}(\boldsymbol{\eta})=&\bigl{[}\Re\{\tilde{\mathbf{u}}_{1}^{T}\}+j\Im\{\tilde{\mathbf{u}}_{1}^{T}\},\Re\{\mathbf{t}_{1}^{T}\}+j\Im\{\mathbf{t}_{1}^{T}\},\\ &\Re\{\mathbf{u}_{2}^{T}\}+j\Im\{\mathbf{u}_{2}^{T}\},\Re\{\mathbf{t}_{2}^{T}\}+j\Im\{\mathbf{t}_{2}^{T}\}\bigr{]}^{T}.\end{split} (36)

Based on this definition, the CRLB of the equivalent mismatch coefficients 𝜼ut\boldsymbol{\eta}_{\mathrm{ut}} can be defined as follows.

Definition 1 (CRLB of 𝜼ut{\boldsymbol{\eta}}_{\mathrm{ut}}).

According to the transformation relation in [44], the CRLB of 𝜼ut\boldsymbol{\eta}_{\mathrm{ut}} can be given by

CRLB(ηut,i)=[𝐠(𝜼)𝜼T𝓘(𝜼)1(𝐠(𝜼)𝜼T)H]i,i,\mathrm{CRLB}({\eta}_{\mathrm{ut},i})=\left[\frac{\partial\mathbf{g}(\boldsymbol{\eta})}{\partial\boldsymbol{\eta}^{T}}\boldsymbol{\mathcal{I}}(\boldsymbol{\eta})^{-1}\left(\frac{\partial\mathbf{g}(\boldsymbol{\eta})}{\partial\boldsymbol{\eta}^{T}}\right)^{H}\right]_{i,i}, (37)

where 𝓘(𝜼)\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}) denotes the Fisher information matrix of 𝜼\boldsymbol{\eta}, and ηut,i{\eta}_{\mathrm{ut},i} is the ii-th entry of 𝜼ut\boldsymbol{\eta}_{\mathrm{ut}}.

Lemma 2 (Transformation of the Fisher information matrix).

By dividing the variables into two parts and defining the vectors 𝜼1=[{𝐮~1T},{𝐮~1T},{𝐭1T},{𝐭1T}]T\boldsymbol{\eta}_{1}=[\Re\{\tilde{\mathbf{u}}_{1}^{T}\},\Im\{\tilde{\mathbf{u}}_{1}^{T}\},\Re\{\mathbf{t}_{1}^{T}\},\Im\{\mathbf{t}_{1}^{T}\}]^{T} and 𝜼2=[{𝐮2T},{𝐮2T},{𝐭2T},{𝐭2T},{𝐡αT},{𝐡αT},𝚯T,𝚽T]T\boldsymbol{\eta}_{2}=[\Re\{\mathbf{u}_{2}^{T}\},\Im\{\mathbf{u}_{2}^{T}\},\\ \Re\{\mathbf{t}_{2}^{T}\},\Im\{\mathbf{t}_{2}^{T}\},\Re\{\mathbf{h}_{\alpha}^{T}\},\Im\{\mathbf{h}_{\alpha}^{T}\},\boldsymbol{\Theta}^{T},\boldsymbol{\Phi}^{T}]^{T}, the Fisher information matrix 𝓘(𝜼)\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}) can be further denoted as

𝓘(𝜼)=blkdiag[𝓘(𝜼1),𝓘(𝜼2)],\boldsymbol{\mathcal{I}}(\boldsymbol{\eta})=\mathrm{blkdiag}[\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}_{1}),\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}_{2})], (38)

where 𝓘(𝜼i)\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}_{i}) denotes the Fisher information matrix of 𝜼i\boldsymbol{\eta}_{i}, i{1,2}\forall i\in\{1,2\}.

Proof:

The complete proof is presented in Appendix E of Supplementary Material. ∎

Thus, to derive the closed-form expressions of the CRLB of 𝜼ut\boldsymbol{\eta}_{\mathrm{ut}}, we first derive the closed-form expression of (𝜼1)\mathcal{I}(\boldsymbol{\eta}_{1}) denoted as follows.

Lemma 3 (Closed-form expression of (𝜼1)\mathcal{I}(\boldsymbol{\eta}_{1}) ).

The closed-form expression can be given by

𝓘(𝜼1)=blkdiag(𝓘(𝜼1,1),𝓘(𝜼1,2)),\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}_{1})=\mathrm{blkdiag}(\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}_{1,1}),\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}_{1,2})), (39)

where 𝓘(𝜼1,1)=limγ02γ1p=1Pdr𝐱tn,p2𝐈2Mr2\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}_{1,1})=\lim_{\gamma\rightarrow 0}2\gamma^{-1}\sum_{p=1}^{P_{\mathrm{dr}}}\|\mathbf{x}_{\mathrm{tn},p}\|^{2}\mathbf{I}_{2M_{\mathrm{r}}-2}, 𝓘(𝜼1,2)=2ρc|βd|2Ldrσn2𝐈2Mt\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}_{1,2})=2\rho_{\mathrm{c}}|\beta_{\mathrm{d}}|^{2}L_{\mathrm{dr}}\sigma_{\mathrm{n}}^{-2}\mathbf{I}_{2M_{\mathrm{t}}}, 𝜼1,1=[{𝐮~1T},{𝐮~1T}]T\boldsymbol{\eta}_{1,1}=[\Re\{\tilde{\mathbf{u}}_{1}^{T}\},\Im\{\tilde{\mathbf{u}}_{1}^{T}\}]^{T}, and 𝜼1,2=[{𝐭1T},{𝐭1T}]T\boldsymbol{\eta}_{1,2}=[\Re\{\mathbf{t}_{1}^{T}\},\Im\{\mathbf{t}_{1}^{T}\}]^{T}.

Proof:

The complete proof is presented in Appendix F of Supplementary Material. ∎

Similarly, for deriving the closed-form expressions of 𝜼ut\boldsymbol{\eta}_{\mathrm{ut}}, we derive (𝜼2)\mathcal{I}(\boldsymbol{\eta}_{2}) denoted in the following lemma.

Lemma 4 (Closed-form expression of 𝑰(𝜼2)\boldsymbol{I}(\boldsymbol{\eta}_{2})).

The closed-form expression of 𝑰(𝜼2)\boldsymbol{I}(\boldsymbol{\eta}_{2}) can be given by

𝑰(𝜼2)=2σn2{𝚼ηH𝚼η},\boldsymbol{I}(\boldsymbol{\eta}_{2})=\frac{2}{\sigma_{\mathrm{n}}^{2}}\Re\left\{\boldsymbol{\Upsilon}_{\mathrm{\eta}}^{H}\boldsymbol{\Upsilon}_{\mathrm{\eta}}\right\}, (40)

where 𝚼η=[𝚪t,j𝚪t,𝚪u,j𝚪u,𝚪h,j𝚪h,𝚪θ,𝚪Φ]\boldsymbol{\Upsilon}_{\mathrm{\eta}}=[\mathbf{\Gamma}_{\mathrm{t}},j\mathbf{\Gamma}_{\mathrm{t}},\mathbf{\Gamma}_{\mathrm{u}},j\mathbf{\Gamma}_{\mathrm{u}},\mathbf{\Gamma}_{\mathrm{h}},j\mathbf{\Gamma}_{\mathrm{h}},\mathbf{\Gamma}_{\mathrm{\theta}},\mathbf{\Gamma}_{\mathrm{\Phi}}], 𝚪h\mathbf{\Gamma_{\mathrm{h}}}, 𝚪u\mathbf{\Gamma}_{\mathrm{u}}, and 𝚪t\mathbf{\Gamma_{\mathrm{t}}} are defined in Lemma 1, 𝚪θ=(𝐗~daT𝐓2𝐁¯r𝐔2𝐀r𝐇α)𝐄x,NtKblkdiag(𝐚¯t(θ1),,𝐚¯t(θK))\mathbf{\Gamma_{\mathrm{\theta}}}=(\tilde{\mathbf{X}}_{\mathrm{da}}^{T}\mathbf{T}_{2}\otimes\bar{\mathbf{B}}_{\mathrm{r}}\mathbf{U}_{2}\mathbf{A}_{\mathrm{r}}\mathbf{H}_{\alpha})\mathbf{E}_{\mathrm{x},N_{\mathrm{t}}K}\mathrm{blkdiag}(\bar{\mathbf{a}}_{\mathrm{t}}(\theta_{1}),\cdots,\bar{\mathbf{a}}_{\mathrm{t}}(\theta_{K})), 𝐚¯t(θk)=𝐚t(θk)[0,j2πdλcosθk,,j2πdλ(Nt1)cosθk]T\bar{\mathbf{a}}_{\mathrm{t}}(\theta_{k})=\mathbf{a}_{\mathrm{t}}(\theta_{k})\circ[0,-j\frac{2\pi d}{\lambda}\cos\theta_{k},\cdots,\\ -j\frac{2\pi d}{\lambda}(N_{\mathrm{t}}-1)\cos\theta_{k}]^{T}, and 𝐄x,Nt,K=k=1K(𝐞kT𝐈Nt𝐞k)\mathbf{E}_{\mathrm{x},N_{\mathrm{t}},K}=\sum_{k=1}^{K}(\mathbf{e}_{k}^{T}\otimes\mathbf{I}_{N_{\mathrm{t}}}\otimes\mathbf{e}_{k}), 𝐞k\mathbf{e}_{k} is the kk-the column of 𝐈K\mathbf{I}_{K}, 𝚪Φ=(𝐗~daT𝐓2𝐀t𝐇α𝐁¯r𝐔2)blkdiag(𝐚¯r(ϕ1),,𝐚¯r(ϕK))\mathbf{\Gamma_{\mathrm{\Phi}}}=(\tilde{\mathbf{X}}_{\mathrm{da}}^{T}\mathbf{T}_{2}\mathbf{A}_{\mathrm{t}}\mathbf{H}_{\alpha}\otimes\bar{\mathbf{B}}_{\mathrm{r}}\mathbf{U}_{2})\mathrm{blkdiag}(\bar{\mathbf{a}}_{\mathrm{r}}(\phi_{1}),\cdots,\bar{\mathbf{a}}_{\mathrm{r}}(\phi_{K})), and 𝐚¯r(ϕk)=𝐚r(ϕk)[0,j2πdλcosϕk,,j2πdλ(Nr1)cosϕk]T\bar{\mathbf{a}}_{\mathrm{r}}(\phi_{k})=\mathbf{a}_{\mathrm{r}}(\phi_{k})\circ[0,-j\frac{2\pi d}{\lambda}\cos\phi_{k},\cdots,\\ -j\frac{2\pi d}{\lambda}(N_{\mathrm{r}}-1)\cos\phi_{k}]^{T}.

Proof:

The complete proof is presented in Appendix G of Supplementary Material. ∎

Based on Lemma 3 and Lemma 4, the CRLB of 𝜼ut\boldsymbol{\eta}_{\mathrm{ut}} can be given in the following proposition.

Proposition 5 (CRLB of 𝜼ut\boldsymbol{\eta}_{\mathrm{ut}}).

Based on the Definition 1, Lemma 3, and Lemma 4, the closed-form expression of the CRLB of 𝜼ut\boldsymbol{\eta}_{\mathrm{ut}} can be given by

CRLB(ηut,i)=[𝓙(𝜼ut)]i,i,\mathrm{CRLB}(\eta_{\mathrm{ut},i})=\left[\boldsymbol{\mathcal{J}}(\boldsymbol{\eta}_{\mathrm{ut}})\right]_{i,i}, (41)

with

𝓙(𝜼ut)=blkdiag(𝟎Mr1,σn2ρc|βd|2Ldr𝐈Mt,σn22𝚷({𝚼ηH𝚼η})1𝚷H),\boldsymbol{\mathcal{J}}(\boldsymbol{\eta}_{\mathrm{ut}})=\mathrm{blkdiag}\left(\mathbf{0}_{M_{\mathrm{r}}-1},\frac{\sigma_{\mathrm{n}}^{2}}{\rho_{\mathrm{c}}|\beta_{\mathrm{d}}|^{2}L_{\mathrm{dr}}}\mathbf{I}_{M_{\mathrm{t}}},\frac{\sigma_{\mathrm{n}}^{2}}{2}\boldsymbol{\Pi}\left(\Re\left\{\boldsymbol{\Upsilon}_{\eta}^{H}\boldsymbol{\Upsilon}_{\eta}\right\}\right)^{-1}\boldsymbol{\Pi}^{H}\right), (42)

where 𝚷=[blkdiag([𝐈Nr,j𝐈Nr],[𝐈Nt,j𝐈Nt]),𝟎Nr+Nt,4K]\boldsymbol{\Pi}=[\mathrm{blkdiag}([\mathbf{I}_{N_{\mathrm{r}}},j\mathbf{I}_{N_{\mathrm{r}}}],[\mathbf{I}_{N_{\mathrm{t}}},j\mathbf{I}_{N_{\mathrm{t}}}]),\mathbf{0}_{N_{\mathrm{r}}+N_{\mathrm{t}},4K}].

Proof:

The complete proof is presented in Appendix H of Supplementary Material. ∎

Remark 6 (CRLB analysis).

From (41), the CRLB of u1,m(m[1:Mr])u_{1,m}\ (m\in[1:M_{\mathrm{r}}]) is equal to zeros. This result is because u1,mu_{1,m} is estimated from the deterministic signals. The CRLB of t1,m(m[1:Mt])t_{1,m}\ (m\in[1:M_{\mathrm{t}}]) can be given by σn2/(ρc|βd|2Ldr)\sigma_{\mathrm{n}}^{2}/(\rho_{\mathrm{c}}|\beta_{\mathrm{d}}|^{2}L_{\mathrm{dr}}), which indicates that increasing the pilots can improve the accuracy of t1,mt_{1,m}.

IV Simulation Results and Discussions

In this section, we will provide simulation results to evaluate the performance of the proposed reciprocity calibration approach for the mmWave-HBF system.

The system parameters are set as follows. Analog RF chains of the BS and UE, and the number of data streams are different in each simulation, while the number of digital RF chains equals to a quarter of the number of analog RF chains, i.e., Mt=Nt/4M_{\mathrm{t}}=N_{\mathrm{t}}/4 and Mr=Nr/4M_{\mathrm{r}}=N_{\mathrm{r}}/4. The path number KK of the mmWave channel is set to 44. The variance σα2\sigma_{\alpha}^{2} of the channel gain αk\alpha_{k} is set to 11, and the AoAs and DoAs obey the uniform distribution, i.e., {θk,ϕk}𝒰(π/2,π/2)\{\theta_{k},\phi_{k}\}\sim\mathcal{U}(-\pi/2,\pi/2). Then, the amplitudes of reciprocity mismatch coefficients obey the log-normal distribution, i.e., {ln|ti,m|,ln|ri,m|,ln|ui,m|,ln|vi,m|}𝒞𝒩(0,0.01)\{\ln|t_{i,m}|,\ln|r_{i,m}|,\ln|u_{i,m}|,\ln|v_{i,m}|\}\sim\mathcal{CN}(0,0.01), and the phases of reciprocity mismatch coefficients follow the uniform distribution, i.e., {ti,m,ri,m,ui,m,vi,m}𝒰(π/6,π/6)\{\angle t_{i,m},\angle r_{i,m},\angle u_{i,m},\angle v_{i,m}\}\sim\mathcal{U}(-\pi/6,\pi/6). Further, the length of pilots is set to Qdr=MrQ_{\mathrm{dr}}=M_{\mathrm{r}}, Pdr=1P_{\mathrm{dr}}=1, and Qda=Pda=125Q_{\mathrm{da}}=P_{\mathrm{da}}=125. Finally, the variance of the AWGN is 11, and ρ¯c=ρc/σn2\bar{\rho}_{\mathrm{c}}=\rho_{\mathrm{c}}/\sigma_{\mathrm{n}}^{2} denotes the average SNR of received calibration signals during the simulation.

IV-A NMSE of Estimated Mismatch Parameters

To illustrate the performance of the proposed HAC calibration approach, we compare the normalized mean square error (NMSE) of the mismatch coefficients with the CRLB. The NMSE of the mismatch coefficients is defined as NMSE(𝜼ut)=𝔼{𝜼ut𝜼^utF2/𝜼utF2}\mathrm{NMSE}(\boldsymbol{\eta}_{\mathrm{ut}})=\mathbb{E}\left\{\|\boldsymbol{\eta}_{\mathrm{ut}}-\hat{\boldsymbol{\eta}}_{\mathrm{ut}}\|_{\mathrm{F}}^{2}/\|\boldsymbol{\eta}_{\mathrm{ut}}\|_{\mathrm{F}}^{2}\right\}. It is worth noting that the Oracle HAC represents the reciprocity calibration with the knowledge of AoAs and AODs, which is a performance benchmark of the proposed HAC.

Refer to caption
Figure 5: The NMSE of the estimated mismatch coefficients versus the SNR of calibration signals.
Refer to caption
Figure 6: The NMSE of the estimated mismatch coefficients versus the length of calibration pilots.

Fig. 6 demonstrates the NMSE of the mismatch coefficients versus the SNR ρ¯c\bar{\rho}_{\mathrm{c}} of the calibration signals, where the antenna numbers of the BS and the UE are set to three different sets of parameters given by (Nt,Nr){(32,32),(64,32),(128,64)}(N_{\mathrm{t}},N_{\mathrm{r}})\in\{(32,32),(64,32),(128,64)\}. It can be seen that the NMSE of the proposed HAC gradually achieves a floor with the increase of calibration SNR. This is because the solution to the nonconvex problem gets stuck in local optima. Further, the figure also shows that the floor effect can be alleviated when the antenna number increases, which is because the independence between array steering vectors increases with the increase of antenna number. Besides, we find that the NMSE increases with the antenna number. This result indicates that the system with more antennas requires higher calibration SNR to guarantee the same calibration performance as the system possessing fewer antennas.

Then, the NMSE of the mismatch coefficients versus the length of calibration pilots is illustrated in Fig. 6 with the SNR of calibration signals set to ρ¯c=10\bar{\rho}_{\mathrm{c}}=10 dB. From the figure, it can be found that the NMSE and CRLB decrease with the increase of calibration pilots, which is consistent with the theoretical results shown in Proposition 5. This result indicates that better performance of the proposed HAC can be achieved at the cost of overhead or power. Also, the curves of the proposed HAC gradually approach floors when the length of pilots increases, while the curves of the Oracle HAC gradually converge to the CRLB. Increasing the antenna number can reduce the floor effect.

IV-B NMSE of Channel Estimation

To examine the efficacy of the reciprocity calibration in mmWave-HBF systems, we study the NMSE of the uplink channel estimation by using the two-dimension MUSIC algorithm proposed in [28], and the pilot block is set to 4040.The NSME of the estimated channel is defined as

NMSE(𝐇UL)=𝔼{𝐇^UL𝐇ULF2/𝐇ULF2},\mathrm{NMSE}(\mathbf{H}_{\mathrm{UL}})=\mathbb{E}\left\{\|\hat{\mathbf{H}}_{\mathrm{UL}}-\mathbf{H}_{\mathrm{UL}}\|_{\mathrm{F}}^{2}/\|\mathbf{H}_{\mathrm{UL}}\|_{\mathrm{F}}^{2}\right\}, (43)

where 𝐇^UL\hat{\mathbf{H}}_{\mathrm{UL}} denotes the estimated channel from the uplink pilots. It is worth noting that ”Perfect Cal.” denotes the mismatch coefficients 𝐔1\mathbf{U}_{1}, 𝐓1\mathbf{T}_{1}, 𝐔2\mathbf{U}_{2}, and 𝐓2\mathbf{T}_{2} are known perfectly, and ”Without Cal.” represents that the mismatch coefficients are completely unknown.

Refer to caption
Figure 7: The NMSE of the uplink channel estimation versus the SNR of training signals.
Refer to caption
Figure 8: The sum achievable rate of downlink transmission versus the SNR of transmit signals.

Fig. 8 demonstrates the NMSE of estimated uplink channel versus the SNR ρ¯t\bar{\rho}_{\mathrm{t}} of the training signals for the channel estimation, where the SNR ρ¯c\bar{\rho}_{\mathrm{c}} of calibration signals is set to 1010 dB, 2020 dB, and 3030 dB. It can be seen that the NMSE of the perfect calibration decreases with the increase of the training SNR, while the NMSE of the uncalibrated case almost remains constant. The NMSE of the channel estimation with the proposed HAC also decreases and gradually achieves floors with the training SNR increasing. The floor effect is caused by the estimation error of mismatch coefficients. When the SNR of calibration signals increases, the curves of the proposed HAC can approach the curve of the perfect calibration, which is because the estimation error of mismatch coefficients decreases. Further, since the NMSE of HAC is much less than the NMSE of the uncalibrated case, the proposed HAC can improve the system performance of the mmWave-HBF system, significantly.

IV-C Achievable Rate of Downlink Transmission

To further examine the efficacy of the reciprocity calibration in mmWave-HBF systems, we study the achievable rate of the downlink transmission. During the downlink transmission, the transmit analog beamforming 𝐅t\mathbf{F}_{\mathrm{t}} is set to 𝐅t=𝐕¯a\mathbf{F}_{\mathrm{t}}=\angle\bar{\mathbf{V}}_{\mathrm{a}}, and the receive analog beamforming 𝐁r\mathbf{B}_{\mathrm{r}} is equal to 𝐁r=𝐔¯a\mathbf{B}_{\mathrm{r}}=\angle\bar{\mathbf{U}}_{\mathrm{a}}^{*}, where 𝐕¯a\bar{\mathbf{V}}_{\mathrm{a}} is the first MtM_{\mathrm{t}} columns of 𝐕a\mathbf{V}_{\mathrm{a}}, 𝐔¯a\bar{\mathbf{U}}_{\mathrm{a}} is the first MrM_{\mathrm{r}} columns of 𝐔a\mathbf{U}_{\mathrm{a}}, 𝐕a\mathbf{V}_{\mathrm{a}} and 𝐔a\mathbf{U}_{\mathrm{a}} are obtained from the SVD of 𝐇^DL=𝐔^2𝐇𝐓^2\hat{\mathbf{H}}_{\mathrm{DL}}=\hat{\mathbf{U}}_{2}\mathbf{H}\hat{\mathbf{T}}_{2}, i.e., 𝐇^DL=𝐔d𝚺a𝐕aH\hat{\mathbf{H}}_{\mathrm{DL}}=\mathbf{U}_{\mathrm{d}}\boldsymbol{\Sigma}_{\mathrm{a}}\mathbf{V}_{\mathrm{a}}^{H}. The digital precoding and the digital receiver are set to 𝐖t=𝐕¯d\mathbf{W}_{\mathrm{t}}=\bar{\mathbf{V}}_{\mathrm{d}} and 𝐃r=𝐔¯d\mathbf{D}_{\mathrm{r}}=\bar{\mathbf{U}}_{\mathrm{d}}, where 𝐕¯d\bar{\mathbf{V}}_{\mathrm{d}} and 𝐔¯d\bar{\mathbf{U}}_{\mathrm{d}} consist of the first NsN_{\mathrm{s}} columns of 𝐕d\mathbf{V}_{\mathrm{d}} and 𝐔d\mathbf{U}_{\mathrm{d}}, 𝐕d\mathbf{V}_{\mathrm{d}} and 𝐔d\mathbf{U}_{\mathrm{d}} can be obtained from the SVD of the equivalent downlink channel 𝐇eq=𝐔1𝐁rT𝐇¯DL𝐅t𝐓1\mathbf{H}_{\mathrm{eq}}=\mathbf{U}_{1}\mathbf{B}_{\mathrm{r}}^{T}\bar{\mathbf{H}}_{\mathrm{DL}}\mathbf{F}_{\mathrm{t}}\mathbf{T}_{1}. Thus, based on the downlink transmission model (5), the sum achievable rate can be denoted as

RDL=ns=1Ns𝔼{log(1+ρd|h¯ns,ns|2ρdinsNs|h¯eq,ns,i|2+σ¯n2)},R_{\mathrm{DL}}=\sum_{n_{\mathrm{s}}=1}^{N_{\mathrm{s}}}\mathbb{E}\left\{\log\left(1+\frac{\rho_{\mathrm{d}}|\bar{h}_{n_{\mathrm{s}},n_{\mathrm{s}}}|^{2}}{\rho_{\mathrm{d}}\sum_{i\neq n_{\mathrm{s}}}^{N_{\mathrm{s}}}|\bar{h}_{\mathrm{eq},n_{\mathrm{s}},i}|^{2}+\bar{\sigma}_{\mathrm{n}}^{2}}\right)\right\}, (44)

where NsN_{\mathrm{s}} denotes the data stream number, and σ¯n2=𝐝r,nsT𝐔1𝐁rTF2σn2\bar{\sigma}_{\mathrm{n}}^{2}=\|\mathbf{d}_{\mathrm{r},n_{\mathrm{s}}}^{T}\mathbf{U}_{1}\mathbf{B}_{\mathrm{r}}^{T}\|_{\mathrm{F}}^{2}\sigma_{\mathrm{n}}^{2}, h¯eq,ns,i\bar{h}_{\mathrm{eq},n_{\mathrm{s}},i} denotes the ii-th entry of 𝐡¯eq,ns\bar{\mathbf{h}}_{\mathrm{eq},n_{\mathrm{s}}}, and 𝐡¯eq,ns\bar{\mathbf{h}}_{\mathrm{eq},n_{\mathrm{s}}} is the nsn_{\mathrm{s}}-row of 𝐃rT𝐔1𝐁rT𝐇DL𝐅t𝐓2𝐖t𝐓1\mathbf{D}_{\mathrm{r}}^{T}\mathbf{U}_{1}\mathbf{B}_{\mathrm{r}}^{T}\mathbf{H}_{\mathrm{DL}}\mathbf{F}_{\mathrm{t}}\mathbf{T}_{2}\mathbf{W}_{\mathrm{t}}\mathbf{T}_{1}.

The sum achievable rate of downlink transmission with the reciprocity calibration versus the downlink transmission SNR ρ¯d\bar{\rho}_{\mathrm{d}} is illustrated in Fig. 8. From the figure, it can be observed that the curves of the systems with the perfect calibration, HAC, CRC, and without calibration achieve the same performance in the low SNR regime. This is because the impact of the noise is much larger than the reciprocity mismatch when the transmission SNR is small. In the high SNR regime, the achievable rate of the uncalibrated system converges to an upper bound, which is caused by multi-stream interference. Also, the achievable rate of the system applying HAC achieves the upper limit when the transmit SNR increases. For the perfectly calibrated system, the achievable rate linearly increases with the log function of the transmit SNR increasing. This is because the multi-stream interference can be completely mitigated by the HBF beamforming with perfect knowledge of mismatch coefficients. Further, we can also find that the achievable rate of HAC with ρ¯c=30\bar{\rho}_{c}=30 dB is almost twice larger than that of the uncalibrated case. This result implies that the reciprocity calibration can significantly improve the system performance as expected. Besides, the achievable rate of the system using HAC is larger than that using CRC, which indicates the proposed HAC outperforms the CRC.

Fig. 10 demonstrates the sum achievable rate versus the SNR of the calibration signals, where the number NsN_{\mathrm{s}} of data streams is set to 22 and 44, and the SNR ρ¯d\bar{\rho}_{\mathrm{d}} of the downlink transmission signals is set to 3030 dB. It can be found that the sum achievable rate increases with the SNR of calibration signals increasing. This is because the estimation error decreases with the increase of the calibration SNR and the power of the interference decreases with the decrease of the estimation error of the mismatch coefficients. The gaps between the rates of the system using the proposed HAC and those of the perfectly calibrated systems are much smaller than the gaps between the rates of the system using CRC and those of the perfectly calibrated system. Further, when Ns=2N_{\mathrm{s}}=2, the curve of HAC approaches the curve of the perfect calibration more quickly. This result indicates that the system transmitting more data streams requires higher calibration SNR to have the same performance loss.

Refer to caption
Figure 9: The sum achievable rate of the downlink transmission versus the SNR of calibration signals.
Refer to caption
Figure 10: The sum achievable rate of the downlink transmission versus the length of calibration pilots.

Finally, we examine the sum achievable rate versus the length of calibration pilots illustrated in Fig. 10, where the SNR ρ¯d\bar{\rho}_{\mathrm{d}} of the downlink transmission signals is set to 2020 dB and 3030 dB, and the SNR of calibrations signals is set to 1010 dB. From the figure, it can be observed that the achievable rate increases with the length of calibration pilots increasing, which is because the estimation error of the mismatch coefficients decreases with the increase of the calibration pilots. Further, the system with higher transmit SNR requires smaller calibration errors to guarantee the same performance loss.

V Conclusion

In this paper, we have proposed a hierarchical-absolute reciprocity calibration for the mmWave-HBF system with the fully-connected phase shifter network. By proposing a specific beamforming design, the reciprocity calibration of the HBF system has been decoupled into the reciprocity calibration of digital RF chains and analog RF chains. Based on the decoupling, the entire reciprocity calibration problem of the HBF system has been equivalently decomposed into two subproblems corresponding to the reciprocity calibrations of digital and analog RF chains. Theoretical analysis has revealed that the overhead and computational complexity of the proposed HAC is much smaller than the conventional reciprocity calibration of HBF systems due to the decoupling. Further, based on the proposed calibration approach, we have derived the CRLB of the mismatch coefficients, which indicated that the estimation errors of the mismatch coefficients of digital and analog RF chains were independent, and the mismatch coefficients of receive digital chains could be estimated perfectly. Finally, simulation results have demonstrated that the proposed HAC significantly improved the system performance and outperformed the conventional calibration.

Appendix A Proof of Proposition 2

Based on the specific design of the digital/analog beamforming matrices, when lLdrl\leq L_{\mathrm{dr}}, the received signal in (13) can be rewritten as

𝐲d,l=1Mt𝐮1𝐛drT𝐇DL𝐟dr𝐭1T𝐱q+𝐮1𝐛drT𝐧d,l=βd𝐮1𝐭1T𝐱q+𝐮1𝐛drT𝐧d,l,\mathbf{y}_{\mathrm{d},l}=\frac{1}{\sqrt{M_{\mathrm{t}}}}\mathbf{u}_{1}\mathbf{b}_{\mathrm{dr}}^{T}\mathbf{H}_{\mathrm{DL}}\mathbf{f}_{\mathrm{dr}}\mathbf{t}_{1}^{T}\mathbf{x}_{q}+\mathbf{u}_{1}\mathbf{b}_{\mathrm{dr}}^{T}\mathbf{n}_{\mathrm{d},l}\\ =\beta_{\mathrm{d}}\mathbf{u}_{1}\mathbf{t}_{1}^{T}\mathbf{x}_{q}+\mathbf{u}_{1}\mathbf{b}_{\mathrm{dr}}^{T}\mathbf{n}_{\mathrm{d},l}, (45)

where βd=1Mt𝐛drT𝐇DL𝐟dr\beta_{\mathrm{d}}=\frac{1}{\sqrt{M_{\mathrm{t}}}}\mathbf{b}_{\mathrm{dr}}^{T}\mathbf{H}_{\mathrm{DL}}\mathbf{f}_{\mathrm{dr}}, 𝐮1\mathbf{u}_{1} consists of the diagonal entries of 𝐔1\mathbf{U}_{1}, and 𝐭1\mathbf{t}_{1} is composed of the diagonal entries of 𝐓1\mathbf{T}_{1}. By stacking all LdrL_{\mathrm{dr}}-length signals 𝐲d,l\mathbf{y}_{\mathrm{d},l} into the matrix form, the received signals can be further denoted as

𝐘dr=βd(𝟏Pdr𝐮1)𝐭1T𝐗dr+(𝐈Pdr𝐮1𝐛drT)𝐍dr,\mathbf{Y}_{\mathrm{dr}}=\beta_{\mathrm{d}}(\mathbf{1}_{P_{\mathrm{dr}}}\otimes\mathbf{u}_{1})\mathbf{t}_{1}^{T}\mathbf{X}_{\mathrm{dr}}+(\mathbf{I}_{P_{\mathrm{dr}}}\otimes\mathbf{u}_{1}\mathbf{b}_{\mathrm{dr}}^{T})\mathbf{N}_{\mathrm{dr}}, (46)

where 𝐘dr=[𝐘¯dr,1T,,𝐘¯dr,PdrT]T\mathbf{Y}_{\mathrm{dr}}=[\bar{\mathbf{Y}}_{\mathrm{dr},1}^{T},\cdots,\bar{\mathbf{Y}}_{\mathrm{dr},P_{\mathrm{dr}}}^{T}]^{T}, 𝐘¯dr,p=[𝐲d,(p1)Qdr+1,,𝐲d,pQdr]\bar{\mathbf{Y}}_{\mathrm{dr},p}=[\mathbf{y}_{\mathrm{d},(p-1)Q_{\mathrm{dr}}+1},\cdots,\mathbf{y}_{\mathrm{d},pQ_{\mathrm{dr}}}], 𝐗dr=[𝐱1,,𝐱Qdr]\mathbf{X}_{\mathrm{dr}}=[\mathbf{x}_{1},\cdots,\mathbf{x}_{Q_{\mathrm{dr}}}], 𝐍dr=[𝐍¯dr,1T,,𝐍¯dr,PdrT]T\mathbf{N}_{\mathrm{dr}}=[\bar{\mathbf{N}}_{\mathrm{dr},1}^{T},\cdots,\bar{\mathbf{N}}_{\mathrm{dr},P_{\mathrm{dr}}}^{T}]^{T}, 𝐍¯dr,p=[𝐧d,(p1)Qdr+1,,𝐧d,pQdr]\bar{\mathbf{N}}_{\mathrm{dr},p}=[\mathbf{n}_{\mathrm{d},(p-1)Q_{\mathrm{dr}}+1},\cdots,\mathbf{n}_{\mathrm{d},pQ_{\mathrm{dr}}}].

Similarly, when l>Ldrl>L_{\mathrm{dr}}, by substituting the designed beamforming matrices into (13), the received signal can be rewritten as

𝐲d,l=𝐃da,pT𝐔1𝐁da,pT𝐇DL𝐅da,q𝐓1𝐖da,q𝐱q+𝐧~d,l=(a)[u1,1t1,1𝐛da,p,1T𝐇DL𝐟da,q,1xq,1+n~d,l𝟎Mr1],\mathbf{y}_{\mathrm{d},l}=\mathbf{D}_{\mathrm{da},p}^{T}\mathbf{U}_{1}\mathbf{B}_{\mathrm{da},p}^{T}\mathbf{H}_{\mathrm{DL}}\mathbf{F}_{\mathrm{da},q}\mathbf{T}_{1}\mathbf{W}_{\mathrm{da},q}\mathbf{x}_{q}+\tilde{\mathbf{n}}_{\mathrm{d},l}\overset{(a)}{=}\left[\begin{matrix}u_{1,1}t_{1,1}\mathbf{b}_{\mathrm{da},p,1}^{T}\mathbf{H}_{\mathrm{DL}}\mathbf{f}_{\mathrm{da},q,1}x_{q,1}+\tilde{n}_{\mathrm{d},l}\\ \mathbf{0}_{M_{\mathrm{r}}-1}\end{matrix}\right], (47)

which indicates that signal yd,l,1y_{\mathrm{d},l,1} received by the first receive digital RF chain is valid. By stacking all LdaL_{\mathrm{da}}-length signals yd,l,1y_{\mathrm{d},l,1} into matrix form, the received signal can be further denoted as

𝐘da=u1,1t1,1𝐁¯daT𝐇DL𝐅¯da𝐗da+𝐍da\mathbf{Y}_{\mathrm{da}}=u_{1,1}t_{1,1}\bar{\mathbf{B}}_{\mathrm{da}}^{T}\mathbf{H}_{\mathrm{DL}}\bar{\mathbf{F}}_{\mathrm{da}}\mathbf{X}_{\mathrm{da}}+\mathbf{N}_{\mathrm{da}} (48)

where 𝐘da=[𝐲da,1T,,𝐲da,PdaT]T\mathbf{Y}_{\mathrm{da}}=[\mathbf{y}_{\mathrm{da},1}^{T},\cdots,\mathbf{y}_{\mathrm{da},P_{\mathrm{da}}}^{T}]^{T}, 𝐲da,p=[yd,(p1)Qda+1,1,,yd,pQda,1]\mathbf{y}_{\mathrm{da},p}=[y_{\mathrm{d},(p-1)Q_{\mathrm{da}}+1,1},\cdots,y_{\mathrm{d},pQ_{\mathrm{da}},1}], 𝐁¯da=[𝐛da,1,1,,𝐛da,Pda,1]\bar{\mathbf{B}}_{\mathrm{da}}=[\mathbf{b}_{\mathrm{da},1,1},\cdots,\mathbf{b}_{\mathrm{da},P_{\mathrm{da}},1}], 𝐅¯da=[𝐟da,1,1,,𝐟da,Qda,1]\bar{\mathbf{F}}_{\mathrm{da}}=[\mathbf{f}_{\mathrm{da},1,1},\cdots,\mathbf{f}_{\mathrm{da},Q_{\mathrm{da}},1}], 𝐗da=diag(x1,1,,xQda,1)\mathbf{X}_{\mathrm{da}}=\mathrm{diag}(x_{1,1},\cdots,x_{Q_{\mathrm{da}},1}), 𝐍da=blkdiag(𝐛da,1,1T,,𝐛da,Pda,1T)[𝐍¯da,1T,,𝐍¯da,PdaT]T\mathbf{N}_{\mathrm{da}}=\mathrm{blkdiag}(\mathbf{b}_{\mathrm{da},1,1}^{T},\cdots,\mathbf{b}_{\mathrm{da},P_{\mathrm{da}},1}^{T})[\bar{\mathbf{N}}_{\mathrm{da},1}^{T},\\ \cdots,\bar{\mathbf{N}}_{\mathrm{da},P_{\mathrm{da}}}^{T}]^{T}, and 𝐍¯da,p=[𝐧d,(p1)Qda+1,,𝐧d,pQda]\bar{\mathbf{N}}_{\mathrm{da},p}=[\mathbf{n}_{\mathrm{d},(p-1)Q_{\mathrm{da}}+1},\cdots,\mathbf{n}_{\mathrm{d},pQ_{\mathrm{da}}}].

By substituting (46) and (48) into (14), the optimization problem can be rewritten as

min𝐮1,𝐭1,𝐔2,𝐓2,𝐇𝐘drβd(𝟏Pdr𝐮1)𝐭1T𝐗drF2f(βd,𝐮1,𝐭1)+𝐘dau1,1t1,1𝐁¯daT𝐇DL𝐅¯da𝐗daF2g(u1,1,t1,1,𝐔2,𝐓2,𝐇).\min_{\mathbf{u}_{\mathrm{1}},\mathbf{t}_{\mathrm{1}},\mathbf{U}_{2},\mathbf{T}_{2},\mathbf{H}}\quad\underbrace{\left\|\mathbf{Y}_{\mathrm{dr}}-\beta_{\mathrm{d}}(\mathbf{1}_{P_{\mathrm{dr}}}\otimes\mathbf{u}_{1})\mathbf{t}_{1}^{T}\mathbf{X}_{\mathrm{dr}}\right\|_{\mathrm{F}}^{2}}_{f(\beta_{\mathrm{d}},\mathbf{u}_{1},\mathbf{t}_{1})}+\underbrace{\left\|\mathbf{Y}_{\mathrm{da}}-u_{1,1}t_{1,1}\bar{\mathbf{B}}_{\mathrm{da}}^{T}\mathbf{H}_{\mathrm{DL}}\bar{\mathbf{F}}_{\mathrm{da}}\mathbf{X}_{\mathrm{da}}\right\|_{\mathrm{F}}^{2}}_{g(u_{1,1},t_{1,1},\mathbf{U}_{2},\mathbf{T}_{2},\mathbf{H})}. (49)

From (49), it can be observed that the functions f(βd,𝐮1,𝐭1)f(\beta_{\mathrm{d}},\mathbf{u}_{1},\mathbf{t}_{1}) and g(u1,1,t1,1,𝐔2,𝐓2,𝐇)g(u_{1,1},t_{1,1},\mathbf{U}_{2},\mathbf{T}_{2},\mathbf{H}) are coupled to each other through the variables βd\beta_{\mathrm{d}}, u1,1u_{1,1}, and t1,1t_{1,1}. Fortunately, any vector 𝐭^1\hat{\mathbf{t}}_{1} parallel to the mismatch coefficient vector 𝐭1\mathbf{t}_{1} can be exploited to calibrate the reciprocity mismatch of digital RF chains. This fact indicates that the unknown variable βd\beta_{\mathrm{d}} in the function f(βd,𝐮1,𝐭1)f(\beta_{\mathrm{d}},\mathbf{u}_{1},\mathbf{t}_{1}) can be regarded as a scale factor of 𝐭1\mathbf{t}_{1} or 𝐮1\mathbf{u}_{1}. Similarly, since any vector 𝐮^2\hat{\mathbf{u}}_{2} parallel to the mismatch coefficient vector 𝐮2\mathbf{u}_{2} can be used to calibrate the reciprocity mismatch of analog RF chains, the unknown variable u1,1t1,1u_{1,1}t_{1,1} in the function g(u1,1,t1,1,𝐔2,𝐓2,𝐇)g(u_{1,1},t_{1,1},\mathbf{U}_{2},\mathbf{T}_{2},\mathbf{H}) can be also treated as a scale factor of 𝐔2\mathbf{U}_{2} or 𝐓2\mathbf{T}_{2}. Therefore, (49) can be equivalently written as

min𝐮1,𝐭1,𝐔2,𝐓2,𝐇𝐘dr(𝟏Pdr𝐮1)𝐭1T𝐗drF2f¯(𝐮1,𝐭1)+𝐘da𝐁¯daT𝐔2𝐇T𝐓2𝐅¯da𝐗daF2g¯(𝐔2,𝐓2,𝐇).\min_{\mathbf{u}_{\mathrm{1}},\mathbf{t}_{\mathrm{1}},\mathbf{U}_{2},\mathbf{T}_{2},\mathbf{H}}\quad\underbrace{\left\|\mathbf{Y}_{\mathrm{dr}}-(\mathbf{1}_{P_{\mathrm{dr}}}\otimes\mathbf{u}_{1})\mathbf{t}_{1}^{T}\mathbf{X}_{\mathrm{dr}}\right\|_{\mathrm{F}}^{2}}_{\bar{f}(\mathbf{u}_{1},\mathbf{t}_{1})}+\underbrace{\left\|\mathbf{Y}_{\mathrm{da}}-\bar{\mathbf{B}}_{\mathrm{da}}^{T}\mathbf{U}_{2}\mathbf{H}^{T}\mathbf{T}_{2}\bar{\mathbf{F}}_{\mathrm{da}}\mathbf{X}_{\mathrm{da}}\right\|_{\mathrm{F}}^{2}}_{\bar{g}(\mathbf{U}_{2},\mathbf{T}_{2},\mathbf{H})}. (50)

It is worth noting that the solutions to the problem (50) are also the solutions to the problem (49). Further, since f¯(𝐮1,𝐭1)\bar{f}(\mathbf{u}_{1},\mathbf{t}_{1}) and g¯(𝐔2,𝐓2,𝐇)\bar{g}(\mathbf{U}_{2},\mathbf{T}_{2},\mathbf{H}) are independent of each other, the minimum sum of these two functions is equal to the sum of the minimum of each function, i.e., min{f¯(𝐮1,𝐭1)+g¯(𝐔2,𝐓2,𝐇)}=min{f¯(𝐮1,𝐭1)}+min{g¯(𝐔2,𝐓2,𝐇)}\min\{\bar{f}(\mathbf{u}_{1},\mathbf{t}_{1})+\bar{g}(\mathbf{U}_{2},\mathbf{T}_{2},\mathbf{H})\}=\min\{\bar{f}(\mathbf{u}_{1},\mathbf{t}_{1})\}+\min\{\bar{g}(\mathbf{U}_{2},\mathbf{T}_{2},\mathbf{H})\}. Consequently, the problem (50) can be decoupled into two independent subproblems denoted as

min𝐮1,𝐭1f¯(𝐮1,𝐭1),min𝐓2,𝐔2,𝐇g¯(𝐔2,𝐓2,𝐇).\begin{split}&\min_{\ \ \mathbf{u}_{\mathrm{1}},\mathbf{t}_{\mathrm{1}}\ }\quad\bar{f}(\mathbf{u}_{1},\mathbf{t}_{1}),\\ &\min_{\mathbf{T}_{2},\mathbf{U}_{2},\mathbf{H}}\quad\bar{g}(\mathbf{U}_{2},\mathbf{T}_{2},\mathbf{H}).\end{split} (51)

Thus, Proposition 2 holds.

Appendix B Proof of Proposition 3

By substituting 𝐱dt,p\mathbf{x}_{\mathrm{dt},p} in (19) and u1,1=1u_{1,1}=1 into (15), the objective of the problem 𝒫1\mathcal{P}_{1} can be further denoted as

f¯(𝐮1,𝐭1)=p=1Pdr[𝐲dr,(p1)Mr+1Tcdr𝐗drT𝐭1F2+𝐘~dr,p1cdr𝐮~1𝐲dr,(p1)Mr+1F2]=fˇ(𝐮~1,𝐭1)\begin{split}\bar{f}(\mathbf{u}_{1},\mathbf{t}_{1})=&\sum_{p=1}^{P_{\mathrm{dr}}}\Bigl{[}\left\|\mathbf{y}_{\mathrm{dr},(p-1)M_{\mathrm{r}}+1}^{T}-c_{\mathrm{dr}}\mathbf{X}_{\mathrm{dr}}^{T}\mathbf{t}_{1}\right\|_{\mathrm{F}}^{2}+\left\|\tilde{\mathbf{Y}}_{\mathrm{dr},p}-\frac{1}{c_{\mathrm{dr}}}\tilde{\mathbf{u}}_{1}\mathbf{y}_{\mathrm{dr},(p-1)M_{\mathrm{r}}+1}\right\|_{\mathrm{F}}^{2}\Bigr{]}\\ &=\check{f}(\tilde{\mathbf{u}}_{1},\mathbf{t}_{1})\end{split} (52)

where 𝐘~dr,p\tilde{\mathbf{Y}}_{\mathrm{dr},p} consists of the second to the last row of 𝐘¯dr,p\bar{\mathbf{Y}}_{\mathrm{dr},p}, and 𝐮~1=[u1,2,,u1,Mr]T\tilde{\mathbf{u}}_{1}=[u_{1,2},\cdots,u_{1,M_{\mathrm{r}}}]^{T}. By defining 𝐲dt=[𝐲dr,1,,𝐲dr,(Pdr1)Mr+1]T\mathbf{y}_{\mathrm{dt}}=[\mathbf{y}_{\mathrm{dr},1},\cdots,\mathbf{y}_{\mathrm{dr},(P_{\mathrm{dr}}-1)M_{\mathrm{r}}+1}]^{T}, 𝐲~dr=[vec(𝐘~dr,1)T,,vec(𝐘~dr,Pdr)T]T\tilde{\mathbf{y}}_{\mathrm{dr}}=[\mathrm{vec}(\tilde{\mathbf{Y}}_{\mathrm{dr},1})^{T},\cdots,\mathrm{vec}(\tilde{\mathbf{Y}}_{\mathrm{dr},P_{\mathrm{dr}}})^{T}]^{T}, and 𝐘ˇdr=[(𝐲dr,1𝐈Mr1),,(𝐲dr,(Pdr1)Mr+1𝐈Mr1)]T\check{\mathbf{Y}}_{\mathrm{dr}}=[(\mathbf{y}_{\mathrm{dr},1}\otimes\mathbf{I}_{M_{\mathrm{r}}-1}),\cdots,(\mathbf{y}_{\mathrm{dr},(P_{\mathrm{dr}}-1)M_{\mathrm{r}}+1}\otimes\mathbf{I}_{M_{\mathrm{r}}-1})]^{T}, fˇ(𝐮~1,𝐭1)\check{f}(\tilde{\mathbf{u}}_{1},\mathbf{t}_{1}) can be rewritten into the matrix form denoted as

fˇ(𝐮~1,𝐭1)=𝐲dtcdr(𝟏Pdr𝐗drT)𝐭1F2+𝐲~dr1cdr𝐘ˇdr𝐮~1F2.\check{f}(\tilde{\mathbf{u}}_{1},\mathbf{t}_{1})=\left\|\mathbf{y}_{\mathrm{dt}}-c_{\mathrm{dr}}(\mathbf{1}_{P_{\mathrm{\mathrm{dr}}}}\otimes\mathbf{X}_{\mathrm{dr}}^{T})\mathbf{t}_{1}\right\|_{\mathrm{F}}^{2}+\left\|\tilde{\mathbf{y}}_{\mathrm{dr}}-\frac{1}{c_{\mathrm{dr}}}\check{\mathbf{Y}}_{\mathrm{dr}}\tilde{\mathbf{u}}_{1}\right\|_{\mathrm{F}}^{2}. (53)

Then, 𝒫1\mathcal{P}_{1} can be equivalently transformed into

𝒫1,2:min𝐮~1,𝐭1fˇ(𝐮~1,𝐭1).\mathcal{P}_{1,2}:\min_{\tilde{\mathbf{u}}_{1},\mathbf{t}_{1}}\quad\check{f}(\tilde{\mathbf{u}}_{1},\mathbf{t}_{1}). (54)

Since the objective fˇ(𝐮~1,𝐭1)\check{f}(\tilde{\mathbf{u}}_{1},\mathbf{t}_{1}) of 𝒫1.2\mathcal{P}_{1.2} is the sum of two convex functions, 𝒫1.2\mathcal{P}_{1.2} is a convex problem without constraints. Thus, to solve 𝐮~1\tilde{\mathbf{u}}_{1}, we take the partial derivative of fˇ(𝐮~1,𝐭1)\check{f}(\tilde{\mathbf{u}}_{1},\mathbf{t}_{1}) with respect to 𝐮~1\tilde{\mathbf{u}}_{1} as follows

fˇ(𝐮~1,𝐭1)𝐮~1=𝐲~dr1cdr𝐘ˇdr𝐮~1F2𝐮~1=𝐘ˇdrT(𝐲~dr1cdr𝐘ˇdr𝐮~1).\frac{\partial\check{f}(\tilde{\mathbf{u}}_{1},\mathbf{t}_{1})}{\partial\tilde{\mathbf{u}}_{1}}=\frac{\partial\left\|\tilde{\mathbf{y}}_{\mathrm{dr}}-\frac{1}{c_{\mathrm{dr}}}\check{\mathbf{Y}}_{\mathrm{dr}}\tilde{\mathbf{u}}_{1}\right\|_{\mathrm{F}}^{2}}{\partial\tilde{\mathbf{u}}_{1}}=-\check{\mathbf{Y}}_{\mathrm{dr}}^{T}(\tilde{\mathbf{y}}_{\mathrm{dr}}-\frac{1}{c_{\mathrm{dr}}}\check{\mathbf{Y}}_{\mathrm{dr}}\tilde{\mathbf{u}}_{1})^{*}. (55)

By setting the derivative equal to zero, the solution to 𝐮1\mathbf{u}_{1} can be given by

𝐮~1=(b)cdr(𝐘ˇdrH𝐘ˇdr)1𝐘ˇdrH𝐲~dr,\tilde{\mathbf{u}}_{1}\overset{(b)}{=}c_{\mathrm{dr}}(\check{\mathbf{Y}}_{\mathrm{dr}}^{H}\check{\mathbf{Y}}_{\mathrm{dr}})^{-1}\check{\mathbf{Y}}_{\mathrm{dr}}^{H}\tilde{\mathbf{y}}_{\mathrm{dr}}, (56)

where the condition (b)(b) holds when 𝐘ˇdr\check{\mathbf{Y}}_{\mathrm{dr}} is a full column rank matrix.

Similarly, by taking the partial derivative of fˇ(𝐮~1,𝐭1)\check{f}(\tilde{\mathbf{u}}_{1},\mathbf{t}_{1}) with respect to 𝐭1\mathbf{t}_{1} and setting the partial derivative to zero, we can obtain the solution to 𝐭1\mathbf{t}_{1} denoted as follows

𝐭^1=(c)1cdr[(𝟏Pdr𝐗drT)H(𝟏Pdr𝐗drT)]1(𝟏Pdr𝐗drT)H𝐲dt=1cdrPdr[𝟏PdrT(𝐗dr𝐗drT)1𝐗dr]𝐲dt,\begin{split}\hat{\mathbf{t}}_{1}&\overset{(c)}{=}\frac{1}{c_{\mathrm{dr}}}\bigl{[}(\mathbf{1}_{P_{\mathrm{dr}}}\otimes\mathbf{X}_{\mathrm{dr}}^{T})^{H}(\mathbf{1}_{P_{\mathrm{dr}}}\otimes\mathbf{X}_{\mathrm{dr}}^{T})\bigr{]}^{-1}(\mathbf{1}_{P_{\mathrm{dr}}}\otimes\mathbf{X}_{\mathrm{dr}}^{T})^{H}\mathbf{y}_{\mathrm{dt}}\\ &=\frac{1}{c_{\mathrm{dr}}P_{\mathrm{dr}}}\Bigl{[}\mathbf{1}_{P_{\mathrm{dr}}}^{T}\otimes\bigl{(}\mathbf{X}_{\mathrm{dr}}^{*}\mathbf{X}_{\mathrm{dr}}^{T}\bigr{)}^{-1}\mathbf{X}_{\mathrm{dr}}^{*}\Bigr{]}\mathbf{y}_{\mathrm{dt}},\end{split} (57)

where the condition (c)(c) holds when (𝟏Pdr𝐗drT)(\mathbf{1}_{P_{\mathrm{dr}}}\otimes\mathbf{X}_{\mathrm{dr}}^{T}) is full column rank. Thus, Proposition 3 holds.

\AtNextBibliography

References

  • [1] Erik G. Larsson, Ove Edfors, Fredrik Tufvesson and Thomas L. Marzetta “Massive MIMO for next Generation Wireless Systems” In IEEE Commun. Mag. 52.2, 2014, pp. 186–195 DOI: 10.1109/MCOM.2014.6736761
  • [2] Jose Flordelis et al. “Massive MIMO Performance—TDD Versus FDD: What Do Measurements Say?” In IEEE Trans. Wireless Commun. 17.4, 2018, pp. 2247–2261 DOI: 10.1109/TWC.2018.2790912
  • [3] Chuanqiang Shan, Li Chen, Xiaohui Chen and Weidong Wang “A General Matched Filter Design for Reciprocity Calibration in Multiuser Massive MIMO Systems” In IEEE Trans. Veh. Technol. 67.9, 2018, pp. 8939–8943 DOI: 10.1109/TVT.2018.2839591
  • [4] Rongjiang Nie et al. “Impact and Calibration of Nonlinear Reciprocity Mismatch in Massive MIMO Systems” In IEEE Trans. Wireless Commun. 20.10, 2021, pp. 6418–6435 DOI: 10.1109/TWC.2021.3073949
  • [5] Wence Zhang et al. “Large-Scale Antenna Systems With UL/DL Hardware Mismatch: Achievable Rates Analysis and Calibration” In IEEE Trans. Commun. 63.4, 2015, pp. 1216–1229 DOI: 10.1109/TCOMM.2015.2395432
  • [6] Hao Wei, Dongming Wang, Jiangzhou Wang and Xiaohu You “Impact of RF Mismatches on the Performance of Massive MIMO Systems with ZF Precoding” In Sci. China Inf. Sci. 59.2, 2016, pp. 1–14 DOI: 10.1007/s11432-015-5509-1
  • [7] Orod Raeesi et al. “Performance Analysis of Multi-User Massive MIMO Downlink Under Channel Non-Reciprocity and Imperfect CSI” In IEEE Trans. Commun. 66.6, 2018, pp. 2456–2471 DOI: 10.1109/TCOMM.2018.2792017
  • [8] Xiliang Luo “Multiuser Massive MIMO Performance With Calibration Errors” In IEEE Trans. Wirel. Commun. 15.7, 2016, pp. 4521–4534
  • [9] Xiwen Jiang et al. “MIMO-TDD Reciprocity under Hardware Imbalances: Experimental Results” In IEEE Int. Conf. Commun., 2015, pp. 4949–4953 DOI: 10.1109/ICC.2015.7249107
  • [10] De Mi et al. “Massive MIMO Performance With Imperfect Channel Reciprocity and Channel Estimation Error” In IEEE Trans. Commun. 65.9, 2017, pp. 3734–3749
  • [11] K. Nishimori, K. Cho, Y. Takatori and T. Hori “Automatic Calibration Method Using Transmitting Signals of an Adaptive Array for TDD Systems” In IEEE Trans. Veh. Technol. 50.6, 2001, pp. 1636–1640 DOI: 10.1109/25.966592
  • [12] A. Bourdoux, B. Come and N. Khaled “Non-Reciprocal Transceivers in OFDM/SDMA Systems: Impact and Mitigation” In Proc. IEEE Radio Wirel. Conf. (RAWCON) Boston, Massachusetts, USA: IEEE, 2003, pp. 183–186 DOI: 10.1109/RAWCON.2003.1227923
  • [13] A. Benzin and G. Caire “Internal Self-Calibration Methods for Large Scale Array Transceiver Software-Defined Radios” In Proc. Int. ITG Workshop Smart Antennas (WSA), 2017, pp. 1–8
  • [14] Xiliang Luo, Fuqian Yang and Hanyu Zhu “Massive MIMO Self-Calibration: Optimal Interconnection for Full Calibration” In IEEE Trans. Veh. Technol. 68.11, 2019, pp. 10357–10371 DOI: 10.1109/TVT.2019.2941544
  • [15] Florian Kaltenberger, Haiyong Jiang, Maxime Guillaud and Raymond Knopp “Relative Channel Reciprocity Calibration in MIMO/TDD Systems” In Proc. Futur. Netw. Mob. Summit, 2010, pp. 1–10
  • [16] M. Guillaud, D.T.M. Slock and R. Knopp “A Practical Method for Wireless Channel Reciprocity Exploitation through Relative Calibration” In Proc. 8th Int. Symp. Signal Process. Applic. (ISSPA) 1 Sydney, Australia: IEEE, 2005, pp. 403–406 DOI: 10.1109/ISSPA.2005.1580281
  • [17] Mark Petermann et al. “Low-Complexity Calibration of Mutually Coupled Non-Reciprocal Multi-Antenna OFDM Transceivers” In Proc. 7th Int. Symp. Wireless Commun. Syst. York: IEEE, 2010, pp. 285–289 DOI: 10.1109/ISWCS.2010.5624277
  • [18] Boris Kouassi, Irfan Ghauri and Luc Deneire “Estimation of Time-Domain Calibration Parameters to Restore MIMO-TDD Channel Reciprocity” In Proc. 7th Int. ICST Conf. Cogn. Radio Oriented Wirel. Networks Commun. Stockholm, Sweden: IEEE, 2012 DOI: 10.4108/icst.crowncom.2012.248472
  • [19] Clayton Shepard et al. “Argos: Practical Many-Antenna Base Stations” In Proc. 18th Annu. Int. Conf. Mobile Comput. Networking (Mobicom) Istanbul, Turkey: ACM Press, 2012, pp. 53 DOI: 10.1145/2348543.2348553
  • [20] Hao Wei et al. “Mutual Coupling Calibration for Multiuser Massive MIMO Systems” In IEEE Trans. Wireless Commun. 15.1, 2016, pp. 606–619 DOI: 10.1109/TWC.2015.2476467
  • [21] Xiwen Jiang et al. “A Framework for Over-the-Air Reciprocity Calibration for TDD Massive MIMO Systems” In IEEE Trans. Wireless Commun. 17.9, 2018, pp. 5975–5990 DOI: 10.1109/TWC.2018.2853743
  • [22] R. Rogalin et al. “Hardware-Impairment Compensation for Enabling Distributed Large-Scale MIMO” In Proc. 2013 Inf. Theory Appl. Work. (ITA) San Diego, CA: IEEE, 2013, pp. 1–10 DOI: 10.1109/ITA.2013.6502966
  • [23] Liyan Su, Chenyang Yang, Gang Wang and Ming Lei “Retrieving Channel Reciprocity for Coordinated Multi-Point Transmission with Joint Processing” In IEEE Trans. Commun. 62.5, 2014, pp. 1541–1553 DOI: 10.1109/TCOMM.2014.031014.130367
  • [24] Rongjiang Nie et al. “Relaying Systems With Reciprocity Mismatch: Impact Analysis and Calibration” In IEEE Trans. Commun. 68.7, 2020, pp. 4035–4049 DOI: 10.1109/TCOMM.2020.2982632
  • [25] Andreas F. Molisch et al. “Hybrid Beamforming for Massive MIMO: A Survey” In IEEE Commun. Mag. 55.9, 2017, pp. 134–141 DOI: 10.1109/MCOM.2017.1600400
  • [26] X. Wei, Y. Jiang, Q. Liu and X. Wang “Calibration of Phase Shifter Network for Hybrid Beamforming in mmWave Massive MIMO Systems” In IEEE Trans. Signal Process. 68, 2020, pp. 2302–2315
  • [27] Xiwen Jiang and Florian Kaltenberger “Channel Reciprocity Calibration in TDD Hybrid Beamforming Massive MIMO Systems” In IEEE J. Sel. Topics Signal Process. 12.3, 2018, pp. 422–431 DOI: 10.1109/JSTSP.2018.2819118
  • [28] Z. Guo, X. Wang and W. Heng “Millimeter-Wave Channel Estimation Based on 2-D Beamspace MUSIC Method” In IEEE Trans. Wireless Commun. 16.8, 2017, pp. 5384–5394 DOI: 10.1109/TWC.2017.2710049
  • [29] Kiran Venugopal, Ahmed Alkhateeb, Nuria González Prelcic and Robert W. Heath “Channel Estimation for Hybrid Architecture-Based Wideband Millimeter Wave Systems” In IEEE J. Sel. Areas Commun. 35.9, 2017, pp. 1996–2009
  • [30] Wei Zhang, Miaomiao Dong and Taejoon Kim “MMV-Based Sequential AoA and AoD Estimation for Millimeter Wave MIMO Channels” In IEEE Trans. Commun. 70.6, 2022, pp. 4063–4077
  • [31] Xizixiang Wei, Yi Jiang, Xin Wang and Cong Shen “Tx-Rx Reciprocity Calibration for Hybrid Massive MIMO Systems” In IEEE Wireless Commun. Lett., 2021, pp. 1–1
  • [32] Foad Sohrabi and Wei Yu “Hybrid Digital and Analog Beamforming Design for Large-Scale Antenna Arrays” In IEEE J. Sel. Topics Signal Process. 10.3, 2016, pp. 501–513
  • [33] Xianghao Yu, Juei-Chin Shen, Jun Zhang and Khaled B. Letaief “Alternating Minimization Algorithms for Hybrid Precoding in Millimeter Wave MIMO Systems” In IEEE J. Sel. Topics Signal Process. 10.3, 2016, pp. 485–500
  • [34] Tian Lin et al. “Hybrid Beamforming for Millimeter Wave Systems Using the MMSE Criterion” In IEEE Trans. Commun. 67.5, 2019, pp. 3693–3708
  • [35] O.. Ayach et al. “Spatially Sparse Precoding in Millimeter Wave MIMO Systems” In IEEE Trans. Wireless Commun. 13.3, 2014, pp. 1499–1513 DOI: 10.1109/TWC.2014.011714.130846
  • [36] Xian-Da Zhang “Matrix Analysis and Applications” Cambridge University Press, 2017, pp. 325–329
  • [37] De Mi et al. “Self-Calibration for Massive MIMO with Channel Reciprocity and Channel Estimation Errors” In in Proc. IEEE Global Commun. Conf. (GLOBECOM) Abu Dhabi, United Arab Emirates: IEEE, 2018, pp. 1–7
  • [38] De Mi et al. “Massive MIMO in Mobile Networks: Self-Calibration with Channel Estimation Error” In in Proc. ACM MobiArch 15th Workshop Mobility Evolving Internet Archit., MobiArch’20 New York, USA: Association for Computing Machinery, 2020, pp. 30–35
  • [39] James C. Bezdek and Richard J. Hathaway “Convergence of Alternating Optimization” In Neural Parallel Sci. Comput. 11.4, 2003, pp. 351–368
  • [40] Zai Yang, Lihua Xie and Cishen Zhang “Off-Grid Direction of Arrival Estimation Using Sparse Bayesian Inference” In IEEE Trans. Signal Process. 61.1, 2013, pp. 38–43
  • [41] Biqing Qi, Wei Wang and Ben Wang “Off-Grid Compressive Channel Estimation for Mm-Wave Massive MIMO With Hybrid Precoding” In IEEE Commun. Lett. 23.1, 2019, pp. 108–111 DOI: 10.1109/LCOMM.2018.2878557
  • [42] Steven M. Kay “Fundamentals of Statistical Signal Processing”, Prentice Hall Signal Processing Series Englewood Cliffs, N.J: Prentice-Hall PTR, 1993, pp. 45–47

References

  • [43] Roger A. Horn and Zai Yang “Rank of a Hadamard Product” In Linear Algebra and its Applications 591, 2020, pp. 87–98 DOI: 10.1016/j.laa.2020.01.005
  • [44] Steven M. Kay “Fundamentals of Statistical Signal Processing”, Prentice Hall Signal Processing Series Englewood Cliffs, N.J: Prentice-Hall PTR, 1993, pp. 45–47

labelnumberR#1

Supplementary Material for “Hierarchical-Absolute Reciprocity Calibration for Millimeter-wave Hybrid Beamforming Systems”

Li Chen, Rongjiang Nie, Yunfei Chen, and Weidong Wang

Some proofs are omitted in the main paper for readability, and we provide the missing content in this supplementary material for completeness.

Appendix C Proof of Lemma 1

To estimate the diagonal matrix 𝐇α\mathbf{H}_{\alpha}, the objective g¯(𝐓2,𝐔2,𝐇α,𝚯,𝚽)\bar{g}(\mathbf{T}_{2},\mathbf{U}_{2},\mathbf{H}_{\alpha},\boldsymbol{\Theta},\boldsymbol{\Phi}) of 𝒫2.1\mathcal{P}_{2.1} can be further denoted as

g¯(𝐓2,𝐔2,𝐇α,𝚯,𝚽)=vec{𝐘da}(𝐗~daT𝐓2𝐀t𝐁¯r𝐔2𝐀r)𝐡αF2.\bar{g}(\mathbf{T}_{2},\mathbf{U}_{2},\mathbf{H}_{\alpha},\boldsymbol{\Theta},\boldsymbol{\Phi})=\left\|\mathrm{vec}\left\{\mathbf{Y}_{\mathrm{da}}\right\}-(\tilde{\mathbf{X}}_{\mathrm{da}}^{T}\mathbf{T}_{2}\mathbf{A}_{\mathrm{t}}\odot\bar{\mathbf{B}}_{\mathrm{r}}\mathbf{U}_{2}\mathbf{A}_{\mathrm{r}})\mathbf{h}_{\alpha}\right\|_{\mathrm{F}}^{2}. (58)

When 𝐔2,𝐓2,𝚯,𝚽\mathbf{U}_{2},\mathbf{T}_{2},\boldsymbol{\Theta},\boldsymbol{\Phi} are known during the laol_{\mathrm{ao}}-iteration, g¯(𝐓2,𝐔2,𝐇α,𝚯,𝚽)\bar{g}(\mathbf{T}_{2},\mathbf{U}_{2},\mathbf{H}_{\alpha},\boldsymbol{\Theta},\boldsymbol{\Phi}) is a convex function corresponding to 𝐡α\mathbf{h}_{\alpha}. Thus, 𝐡α\mathbf{h}_{\alpha} can be estimated by taking the derivative of g¯(𝐓2,𝐔2,𝐇α,𝚯,𝚽)\bar{g}(\mathbf{T}_{2},\mathbf{U}_{2},\mathbf{H}_{\alpha},\boldsymbol{\Theta},\boldsymbol{\Phi}), and the solution to 𝐡α\mathbf{h}_{\alpha} is given by

𝐡α=(𝚪hH𝚪h)1𝚪hHvec{𝐘da},\mathbf{h}_{\alpha}=(\boldsymbol{\Gamma}_{\mathrm{h}}^{H}\boldsymbol{\Gamma}_{\mathrm{h}})^{-1}\boldsymbol{\Gamma}_{\mathrm{h}}^{H}\mathrm{vec}\left\{\mathbf{Y}_{\mathrm{da}}\right\}, (59)

where 𝚪h=(𝐗~daT𝐓2𝐀t𝐁¯r𝐔2𝐀r)\boldsymbol{\Gamma}_{\mathrm{h}}=(\tilde{\mathbf{X}}_{\mathrm{da}}^{T}\mathbf{T}_{2}\mathbf{A}_{\mathrm{t}}\odot\bar{\mathbf{B}}_{\mathrm{r}}\mathbf{U}_{2}\mathbf{A}_{\mathrm{r}}).

Similarly, the diagonal entries of 𝐔2\mathbf{U}_{2} and 𝐓2\mathbf{T}_{2} can be estimated as

𝐮2=argmin𝐮2vec{𝐘da}𝚪u𝐮2F2=(𝚪uH𝚪u)1𝚪uHvec{𝐘da},\displaystyle\mathbf{u}_{2}=\mathrm{arg}\min_{\mathbf{u}_{2}}\|\mathrm{vec}\left\{\mathbf{Y}_{\mathrm{da}}\right\}-\boldsymbol{\Gamma}_{\mathrm{u}}\mathbf{u}_{2}\|_{\mathrm{F}}^{2}=(\boldsymbol{\Gamma}_{\mathrm{u}}^{H}\boldsymbol{\Gamma}_{\mathrm{u}})^{-1}\boldsymbol{\Gamma}_{\mathrm{u}}^{H}\mathrm{vec}\left\{\mathbf{Y}_{\mathrm{da}}\right\}, (60)
𝐭2=argmin𝐭2vec{𝐘da}𝚪t𝐭2F2=(𝚪tH𝚪t)1𝚪tHvec{𝐘da},\displaystyle\mathbf{t}_{2}=\mathrm{arg}\min_{\mathbf{t}_{2}}\left\|\mathrm{vec}\{\mathbf{Y}_{\mathrm{da}}\}-\boldsymbol{\Gamma}_{\mathrm{t}}\mathbf{t}_{2}\right\|_{\mathrm{F}}^{2}=(\boldsymbol{\Gamma}_{\mathrm{t}}^{H}\boldsymbol{\Gamma}_{\mathrm{t}})^{-1}\boldsymbol{\Gamma}_{\mathrm{t}}^{H}\mathrm{vec}\left\{\mathbf{Y}_{\mathrm{da}}\right\}, (61)

where 𝚪u=(𝐗~daT𝐓2𝐀t𝐇α(𝐀r)T𝐁¯r)\boldsymbol{\Gamma}_{\mathrm{u}}=(\tilde{\mathbf{X}}_{\mathrm{da}}^{T}\mathbf{T}_{2}\mathbf{A}_{\mathrm{t}}\mathbf{H}_{\alpha}(\mathbf{A}_{\mathrm{r}})^{T}\odot\bar{\mathbf{B}}_{\mathrm{r}}), and 𝚪t=(𝐗~daT𝐁¯r𝐔2𝐀r𝐇α(𝐀t)T)\boldsymbol{\Gamma}_{\mathrm{t}}=(\tilde{\mathbf{X}}_{\mathrm{da}}^{T}\odot\bar{\mathbf{B}}_{\mathrm{r}}\mathbf{U}_{2}\mathbf{A}_{\mathrm{r}}\mathbf{H}_{\alpha}(\mathbf{A}_{\mathrm{t}})^{T}). Thus, Lemma 1 holds.

Appendix D Proof of Proposition 4

We first derive the pilot requirement for calibrating the digital RF chains. According to (20), to guarantee a unique solution to 𝐮1\mathbf{u}_{1}, the matrix 𝐘ˇdr\check{\mathbf{Y}}_{\mathrm{dr}} should have column rank, which is always satisfied when Pdr1P_{\mathrm{dr}}\geq 1 and Qdr1Q_{\mathrm{dr}}\geq 1. Similarly, based on (21), for computing 𝐭1\mathbf{t}_{1}, the matrix 𝟏Pdr𝐗drT\mathbf{1}_{P_{\mathrm{dr}}}\otimes\mathbf{X}_{\mathrm{dr}}^{T} should have column rank, i.e., rank{𝟏Pdr𝐗drT}=rank{𝐗drT}=min{Mt,Qdr}Mt\mathrm{rank}\{\mathbf{1}_{P_{\mathrm{dr}}}\otimes\mathbf{X}_{\mathrm{dr}}^{T}\}=\mathrm{rank}\{\mathbf{X}_{\mathrm{dr}}^{T}\}=\min\{M_{\mathrm{t}},Q_{\mathrm{dr}}\}\geq M_{\mathrm{t}}. Thus, the pilots of digital RF chain calibration should satisfy

QdrMt, and Pdr1.Q_{\mathrm{dr}}\geq M_{\mathrm{t}},\text{ and }P_{\mathrm{dr}}\geq 1. (62)

Then, we derive the pilot requirement for calibrating the analog RF chains. To guarantee the unique solution to 𝐡α\mathbf{h}_{\alpha}, 𝚪h\boldsymbol{\Gamma}_{\mathrm{h}} must be full column rank, i.e.,

krank(𝐗~daT𝐓2𝐀t)+krank(𝐁¯r𝐔2𝐀r)K+1.\mathrm{krank}(\tilde{\mathbf{X}}_{\mathrm{da}}^{T}\mathbf{T}_{2}\mathbf{A}_{\mathrm{t}})+\mathrm{krank}(\bar{\mathbf{B}}_{\mathrm{r}}\mathbf{U}_{2}\mathbf{A}_{\mathrm{r}})\geq K+1. (63)

Since it is difficult to determine the krank of any matrices, we derive a sufficient condition to guarantee the above inequality to hold, which is denoted as

QdaK,and PdaK.Q_{\mathrm{da}}\geq K,\text{and }P_{\mathrm{da}}\geq K. (64)

To guarantee the unique solution to 𝐭2\mathbf{t}_{2} during the iteration, 𝚪tH𝚪t\boldsymbol{\Gamma}_{\mathrm{t}}^{H}\boldsymbol{\Gamma}_{\mathrm{t}} must be full rank, i.e., rank(𝚪tH𝚪t)=Nt\mathrm{rank}(\boldsymbol{\Gamma}_{\mathrm{t}}^{H}\boldsymbol{\Gamma}_{\mathrm{t}})=N_{\mathrm{t}}. 𝚪tH𝚪t\boldsymbol{\Gamma}_{\mathrm{t}}^{H}\boldsymbol{\Gamma}_{\mathrm{t}} can be further expressed by the Hadamard product denoted as

𝚪tH𝚪t=(𝐗~da𝐗~daT)(𝐀t𝐇αH𝐀rH𝐔2𝐁¯rH𝐁¯r𝐔2𝐀r𝐇α𝐀tT)𝚪~t.\boldsymbol{\Gamma}_{\mathrm{t}}^{H}\boldsymbol{\Gamma}_{\mathrm{t}}=(\tilde{\mathbf{X}}_{\mathrm{da}}^{*}\tilde{\mathbf{X}}_{\mathrm{da}}^{T})\circ(\underbrace{\mathbf{A}_{\mathrm{t}}^{*}\mathbf{H}_{\alpha}^{H}\mathbf{A}_{\mathrm{r}}^{H}\mathbf{U}_{2}^{*}\bar{\mathbf{B}}_{\mathrm{r}}^{H}\bar{\mathbf{B}}_{\mathrm{r}}\mathbf{U}_{2}\mathbf{A}_{\mathrm{r}}\mathbf{H}_{\alpha}\mathbf{A}_{\mathrm{t}}^{T})}_{\tilde{\boldsymbol{\Gamma}}_{\mathrm{t}}}. (65)

According to [43, (10)], the rank of the Hadamard product is given by

rank(𝚪tH𝚪t)min{krank(𝐗~da𝐗~daT)+rank(𝚪~t)1,Nt}.\mathrm{rank}(\boldsymbol{\Gamma}_{\mathrm{t}}^{H}\boldsymbol{\Gamma}_{\mathrm{t}})\geq\min\{\mathrm{krank}(\tilde{\mathbf{X}}_{\mathrm{da}}^{*}\tilde{\mathbf{X}}_{\mathrm{da}}^{T})+\mathrm{rank}(\tilde{\boldsymbol{\Gamma}}_{\mathrm{t}})-1,N_{\mathrm{t}}\}. (66)

As 𝐗~da\tilde{\mathbf{X}}_{\mathrm{da}} is artificially designed, we assume that krank(𝐗~da𝐗~daT)=rank(𝐗~da𝐗~da)=min(Qda,Nt)\mathrm{krank}(\tilde{\mathbf{X}}_{\mathrm{da}}^{*}\tilde{\mathbf{X}}_{\mathrm{da}}^{T})=\mathrm{rank}(\tilde{\mathbf{X}}_{\mathrm{da}}^{*}\tilde{\mathbf{X}}_{\mathrm{da}})=\min(Q_{\mathrm{da}},N_{\mathrm{t}}). Further, because of KNtK\ll N_{\mathrm{t}}, rank(𝚪~t)=min(Pda,K)\mathrm{rank}(\tilde{\boldsymbol{\Gamma}}_{\mathrm{t}})=\min(P_{\mathrm{da}},K). Accordingly, we can obtain the inequality denoted as

min(Qda,Nt)+min(Pda,K)Nt+1.\min(Q_{\mathrm{da}},N_{\mathrm{t}})+\min(P_{\mathrm{da}},K)\geq N_{\mathrm{t}}+1. (67)

Similarly, to guarantee the unique solution to 𝐮2\mathbf{u}_{2} during the iteration, the rank of 𝚪uH𝚪u\boldsymbol{\Gamma}_{\mathrm{u}}^{H}\boldsymbol{\Gamma}_{\mathrm{u}} must be NrN_{\mathrm{r}}. Since 𝐁¯r\bar{\mathbf{B}}_{\mathrm{r}} is artificially designed, we can obtain the following inequality denoted as

min(Qda,K)+min(Pda,Nr)Nr+1.\min(Q_{\mathrm{da}},K)+\min(P_{\mathrm{da}},N_{\mathrm{r}})\geq N_{\mathrm{r}}+1. (68)

The solution to the inequalities consisting of (64), (67), and (68) is given by

QdaNtK+1, and PdaNrK+1.Q_{\mathrm{da}}\geq N_{\mathrm{t}}-K+1,\text{ and }P_{\mathrm{da}}\geq N_{\mathrm{r}}-K+1. (69)

Therefore, Proposition 4 holds.

Appendix E Proof of Lemma 2

We use 𝐲d\mathbf{y}_{\mathrm{d}} to denote the received signal vector for estimating 𝜼\boldsymbol{\eta}. The corresponding probability density function of 𝐲d\mathbf{y}_{\mathrm{d}} is defined as p(𝐲d;𝜼)p(\mathbf{y}_{\mathrm{d}};\boldsymbol{\eta}). Then, the Fisher information matrix 𝓘(𝜼)\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}) can be defined as [44]

𝓘(𝜼)=𝔼{[lnp(𝐲d;𝜼)𝜼][lnp(𝐲d;𝜼)𝜼]T}=𝔼{𝜼[𝜼lnp(𝐲d;𝜼)]T}.\boldsymbol{\mathcal{I}}(\boldsymbol{\eta})=\mathbb{E}\left\{\left[\frac{\partial\ln p(\mathbf{y}_{\mathrm{d}};\boldsymbol{\eta})}{\partial\boldsymbol{\eta}}\right]\left[\frac{\partial\ln p(\mathbf{y}_{\mathrm{d}};\boldsymbol{\eta})}{\partial\boldsymbol{\eta}}\right]^{T}\right\}\\ =-\mathbb{E}\left\{\frac{\partial}{\partial\boldsymbol{\eta}}\left[\frac{\partial}{\partial\boldsymbol{\eta}}\ln p(\mathbf{y}_{\mathrm{d}};\boldsymbol{\eta})\right]^{T}\right\}. (70)

In Section II-C, the received training signal 𝐲d\mathbf{y}_{\mathrm{d}} consists of two independent parts 𝐲dr\mathbf{y}_{\mathrm{dr}} and 𝐲da\mathbf{y}_{\mathrm{da}}, i.e., 𝐲d=[𝐲drT,𝐲daT]T\mathbf{y}_{\mathrm{d}}=[\mathbf{y}_{\mathrm{dr}}^{T},\mathbf{y}_{\mathrm{da}}^{T}]^{T}, where 𝐲dr\mathbf{y}_{\mathrm{dr}} is utilized to estimate 𝐮~1\tilde{\mathbf{u}}_{1} and 𝐭1\mathbf{t}_{1}, and 𝐲da\mathbf{y}_{\mathrm{da}} is used to estimate 𝐮2\mathbf{u}_{2} and 𝐭2\mathbf{t}_{2}. Thus, by dividing the vector 𝜼\boldsymbol{\eta} into two independent parts, i.e., 𝜼=[𝜼1T,𝜼2T]T\boldsymbol{\eta}=[\boldsymbol{\eta}_{1}^{T},\boldsymbol{\eta}_{2}^{T}]^{T}, the corresponding probability density function of 𝐲d\mathbf{y}_{\mathrm{d}} can be further denoted as p(𝐲d;𝜼)=p1(𝐲dr;𝜼1)p2(𝐲da;𝜼2)p(\mathbf{y}_{\mathrm{d}};\boldsymbol{\eta})=p_{1}(\mathbf{y}_{\mathrm{dr}};\boldsymbol{\eta}_{1})p_{2}(\mathbf{y}_{\mathrm{da}};\boldsymbol{\eta}_{2}), where 𝜼1=[{𝐮~1T},{𝐮~1T},{𝐭1T},{𝐭1T}]T\boldsymbol{\eta}_{1}=[\Re\{\tilde{\mathbf{u}}_{1}^{T}\},\Im\{\tilde{\mathbf{u}}_{1}^{T}\},\Re\{\mathbf{t}_{1}^{T}\},\Im\{\mathbf{t}_{1}^{T}\}]^{T}, 𝜼2=[{𝐮2T},{𝐮2T},{𝐭2T},{𝐭2T},{𝐡αT},{𝐡αT},𝚯T,𝚽T]T\boldsymbol{\eta}_{2}=[\Re\{\mathbf{u}_{2}^{T}\},\Im\{\mathbf{u}_{2}^{T}\},\\ \Re\{\mathbf{t}_{2}^{T}\},\Im\{\mathbf{t}_{2}^{T}\},\Re\{\mathbf{h}_{\alpha}^{T}\},\Im\{\mathbf{h}_{\alpha}^{T}\},\boldsymbol{\Theta}^{T},\boldsymbol{\Phi}^{T}]^{T}, p1(𝐲dr;𝜼1)p_{1}(\mathbf{y}_{\mathrm{dr}};\boldsymbol{\eta}_{1}) and p2(𝐲da;𝜼2)p_{2}(\mathbf{y}_{\mathrm{da}};\boldsymbol{\eta}_{2}) denote the corresponding probability density functions of 𝐲dr\mathbf{y}_{\mathrm{dr}} and 𝐲da\mathbf{y}_{\mathrm{da}}. Then, based on (70), the Fisher information matrix can be further given by

𝓘(𝜼)=𝔼{𝜼[𝜼(lnp1(𝐲dr;𝜼1)+lnp2(𝐲da;𝜼2))]T}=𝔼{(2lnp1(𝐲dr;𝜼1)𝜼1𝜼1T2lnp2(𝐲da;𝜼2)𝜼1𝜼2T2lnp1(𝐲dr;𝜼1)𝜼2𝜼1T2lnp2(𝐲da;𝜼2)𝜼2𝜼2T)}=(a)blkdiag[𝓘(𝜼1),𝓘(𝜼2)],\begin{split}\boldsymbol{\mathcal{I}}(\boldsymbol{\eta})&=-\mathbb{E}\left\{\frac{\partial}{\partial\boldsymbol{\eta}}\left[\frac{\partial}{\partial\boldsymbol{\eta}}\bigl{(}\ln p_{1}(\mathbf{y}_{\mathrm{dr}};\boldsymbol{\eta}_{1})+\ln p_{2}(\mathbf{y}_{\mathrm{da}};\boldsymbol{\eta}_{2})\bigr{)}\right]^{T}\right\}\\ &=-\mathbb{E}\left\{\left(\begin{matrix}\frac{\partial^{2}\ln p_{1}(\mathbf{y}_{\mathrm{dr}};\boldsymbol{\eta}_{1})}{\partial\boldsymbol{\eta}_{1}\partial\boldsymbol{\eta}_{1}^{T}}&\frac{\partial^{2}\ln p_{2}(\mathbf{y}_{\mathrm{da}};\boldsymbol{\eta}_{2})}{\partial\boldsymbol{\eta}_{1}\partial\boldsymbol{\eta}_{2}^{T}}\\ \frac{\partial^{2}\ln p_{1}(\mathbf{y}_{\mathrm{dr}};\boldsymbol{\eta}_{1})}{\partial\boldsymbol{\eta}_{2}\partial\boldsymbol{\eta}_{1}^{T}}&\frac{\partial^{2}\ln p_{2}(\mathbf{y}_{\mathrm{da}};\boldsymbol{\eta}_{2})}{\partial\boldsymbol{\eta}_{2}\partial\boldsymbol{\eta}_{2}^{T}}\end{matrix}\right)\right\}\\ &\overset{(a)}{=}\mathrm{blkdiag}[\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}_{1}),\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}_{2})],\end{split} (71)

where (a)(a) holds due to the independence between 𝐲dr\mathbf{y}_{\mathrm{dr}} and 𝜼2\boldsymbol{\eta}_{2} as well as the independence between 𝐲da\mathbf{y}_{\mathrm{da}} and 𝜼1\boldsymbol{\eta}_{1}, 𝓘(𝜼1)=𝔼{2lnp1(𝐲dr;𝜼1)𝜼1𝜼1T}\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}_{1})=-\mathbb{E}\left\{\frac{\partial^{2}\ln p_{1}(\mathbf{y}_{\mathrm{dr}};\boldsymbol{\eta}_{1})}{\partial\boldsymbol{\eta}_{1}\partial\boldsymbol{\eta}_{1}^{T}}\right\} denotes the Fisher information matrix of 𝜼1\boldsymbol{\eta}_{1}, and 𝓘(𝜼2)=𝔼{2lnp2(𝐲da;𝜼2)𝜼2𝜼2T}\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}_{2})=-\mathbb{E}\left\{\frac{\partial^{2}\ln p_{2}(\mathbf{y}_{\mathrm{da}};\boldsymbol{\eta}_{2})}{\partial\boldsymbol{\eta}_{2}\partial\boldsymbol{\eta}_{2}^{T}}\right\} denotes the Fisher information matrix of 𝜼2\boldsymbol{\eta}_{2}. Thus, Lemma 2 holds.

Appendix F Proof of Lemma 3

In Section II-C, 𝐮1\mathbf{u}_{1} and 𝐭1\mathbf{t}_{1} are estimated from the received signal 𝐲~dr\tilde{\mathbf{y}}_{\mathrm{dr}} and 𝐲dt\mathbf{y}_{\mathrm{dt}}, respectively. According to Proposition 3, 𝐲~dr\tilde{\mathbf{y}}_{\mathrm{dr}} and 𝐲dt\mathbf{y}_{\mathrm{dt}} are denoted as

𝐲~dr=[vec(𝐘~dr,1)T,,vec(𝐘~dr,Pdr)T]T, and 𝐲dt=[𝐲dr,1,,𝐲dr,(Pdr1)Mr+1]T.\tilde{\mathbf{y}}_{\mathrm{dr}}=[\mathrm{vec}(\tilde{\mathbf{Y}}_{\mathrm{dr},1})^{T},\cdots,\mathrm{vec}(\tilde{\mathbf{Y}}_{\mathrm{dr},P_{\mathrm{dr}}})^{T}]^{T},\text{ and }\mathbf{y}_{\mathrm{dt}}=[\mathbf{y}_{\mathrm{dr},1},\cdots,\mathbf{y}_{\mathrm{dr},(P_{\mathrm{dr}}-1)M_{\mathrm{r}}+1}]^{T}. (72)

Thus, similar to Lemma 2, we have 𝓘(𝜼1)=blkdiag(𝓘(𝜼1,1),𝓘(𝜼1,2))\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}_{1})=\mathrm{blkdiag}(\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}_{1,1}),\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}_{1,2})) due to the independence between 𝐲~dr\tilde{\mathbf{y}}_{\mathrm{dr}} and 𝐲dt\mathbf{y}_{\mathrm{dt}}, where 𝜼1,1=[{𝐮~1T},{𝐮~1T}]T\boldsymbol{\eta}_{1,1}=[\Re\{\tilde{\mathbf{u}}_{1}^{T}\},\Im\{\tilde{\mathbf{u}}_{1}^{T}\}]^{T}, and 𝜼1,2=[{𝐭1T},{𝐭1T}]T\boldsymbol{\eta}_{1,2}=[\Re\{\mathbf{t}_{1}^{T}\},\Im\{\mathbf{t}_{1}^{T}\}]^{T}.

To derive the fishier information matrices, we first model the received signal 𝐘¯dr,p\bar{\mathbf{Y}}_{\mathrm{dr},p}. Based on (45) and (46), 𝐘¯dr,p\bar{\mathbf{Y}}_{\mathrm{dr},p} can be denoted as

𝐘¯dr,p=βd𝐮1𝐭1T𝐗dr+𝐮1𝐛drT𝐍¯dr,p=𝐮1𝐱tn,pT,\bar{\mathbf{Y}}_{\mathrm{dr},p}=\beta_{\mathrm{d}}\mathbf{u}_{1}\mathbf{t}_{1}^{T}\mathbf{X}_{\mathrm{dr}}+\mathbf{u}_{1}\mathbf{b}_{\mathrm{dr}}^{T}\bar{\mathbf{N}}_{\mathrm{dr},p}=\mathbf{u}_{1}\mathbf{x}_{\mathrm{tn},p}^{T}, (73)

where 𝐱tn,p=βd𝐗drT𝐭1+𝐍¯dr,pT𝐛dr\mathbf{x}_{\mathrm{tn},p}=\beta_{\mathrm{d}}\mathbf{X}_{\mathrm{dr}}^{T}\mathbf{t}_{1}+\bar{\mathbf{N}}_{\mathrm{dr},p}^{T}\mathbf{b}_{\mathrm{dr}}. Then, we have

𝐲dr,(p1)Mr+1=u1,1𝐱tn,p, and 𝐘~dr,p=𝐮~1𝐱tn,pT,\mathbf{y}_{\mathrm{dr},(p-1)M_{\mathrm{r}}+1}=u_{1,1}\mathbf{x}_{\mathrm{tn},p},\text{ and }\tilde{\mathbf{Y}}_{\mathrm{dr},p}=\tilde{\mathbf{u}}_{1}\mathbf{x}_{\mathrm{tn},p}^{T}, (74)

As we set the first receive digital RF chain of the UE to be the reference, e.g., u1,1=1u_{1,1}=1, 𝐱tn,p\mathbf{x}_{\mathrm{tn},p} is equal to the first row of 𝐘dr,p\mathbf{Y}_{\mathrm{dr},p}, i.e., 𝐲dr,(p1)Mr+1=𝐱tn,p\mathbf{y}_{\mathrm{dr},(p-1)M_{\mathrm{r}}+1}=\mathbf{x}_{\mathrm{tn},p}. This result indicates that 𝐘~dr,p\tilde{\mathbf{Y}}_{\mathrm{dr},p} is a deterministic signal without noises for computing 𝐮~1\tilde{\mathbf{u}}_{1}. To derive the closed-form expression of 𝓘(𝜼1,1)\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}_{1,1}), we regard computing 𝐮~1\tilde{\mathbf{u}}_{1} as an asymptotic case of the estimation from the signal in white Gaussian noise with zero mean and zero variance. Thus, By using the vectorization of 𝐘~dr,p\tilde{\mathbf{Y}}_{\mathrm{dr},p}, (74) can be rewritten as

vec{𝐘~dr,p}=(𝐱tn,p𝐈Mr)𝐮~1+𝐧au,\mathrm{vec}\{\tilde{\mathbf{Y}}_{\mathrm{dr},p}\}=(\mathbf{x}_{\mathrm{tn},p}\otimes\mathbf{I}_{M_{\mathrm{r}}})\tilde{\mathbf{u}}_{1}+\mathbf{n}_{\mathrm{au}}, (75)

where each entry of 𝐧au\mathbf{n}_{\mathrm{au}} is distributed as 𝒞𝒩(0,γ)\mathcal{CN}(0,\gamma), and γ0\gamma\longrightarrow 0. Thus, vec{𝐘~dr,p}\mathrm{vec}\{\tilde{\mathbf{Y}}_{\mathrm{dr},p}\} is distributed as 𝒞𝒩(𝝁tn,p,γ𝐈QMr)\mathcal{CN}(\boldsymbol{\mu}_{\mathrm{tn},p},\gamma\mathbf{I}_{QM_{\mathrm{r}}}), where 𝝁tn,p=(𝐱tn,p𝐈Mr)𝐮~1\boldsymbol{\mu}_{\mathrm{tn},p}=(\mathbf{x}_{\mathrm{tn},p}\otimes\mathbf{I}_{M_{\mathrm{r}}})\tilde{\mathbf{u}}_{1} . Since 𝝁tn,p𝜼1,1T=[(𝐱tn,p𝐈Mr1),j(𝐱tn,p𝐈Mr1)]\frac{\partial\boldsymbol{\mu}_{\mathrm{tn},p}}{\partial\boldsymbol{\eta}_{1,1}^{T}}=[(\mathbf{x}_{\mathrm{tn},p}\otimes\mathbf{I}_{M_{\mathrm{r}}-1}),j(\mathbf{x}_{\mathrm{tn},p}\otimes\mathbf{I}_{M_{\mathrm{r}}-1})] and based on [44, (3.31)], the Fisher information matrix 𝓘(𝜼1,1)\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}_{1,1}) is given by

𝓘(𝜼1,1)=2γp=1Pdr{(𝝁tn,p𝜼1,1T)H𝝁tn,p𝜼1,1T}=2p=1Pdr𝐱tn,p2γ𝐈2Mr2.\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}_{1,1})=\frac{2}{\gamma}\sum_{p=1}^{P_{\mathrm{dr}}}\Re\left\{\left(\frac{\partial\boldsymbol{\mu}_{\mathrm{tn},p}}{\partial\boldsymbol{\eta}_{1,1}^{T}}\right)^{H}\frac{\partial\boldsymbol{\mu}_{\mathrm{tn},p}}{\partial\boldsymbol{\eta}_{1,1}^{T}}\right\}=\frac{2\sum_{p=1}^{P_{\mathrm{dr}}}\|\mathbf{x}_{\mathrm{tn},p}\|^{2}}{\gamma}\mathbf{I}_{2M_{\mathrm{r}}-2}. (76)

Further, to derive the closed-form expression of 𝓘(𝜼1,2)\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}_{1,2}), we use the fact that 𝐲dr,(p1)Mr+1=βd𝐗drT𝐭1+𝐛drT𝐍¯dr,p\mathbf{y}_{\mathrm{dr},(p-1)M_{\mathrm{r}}+1}=\beta_{\mathrm{d}}\mathbf{X}_{\mathrm{dr}}^{T}\mathbf{t}_{1}+\mathbf{b}_{\mathrm{dr}}^{T}\bar{\mathbf{N}}_{\mathrm{dr},p}. The received signal 𝐲dr,(p1)Mr+1\mathbf{y}_{\mathrm{dr},(p-1)M_{\mathrm{r}}+1} is distributed as 𝒞𝒩(𝝁dt,p,σn2𝐈Q)\mathcal{CN}(\boldsymbol{\mu}_{\mathrm{dt},p},\sigma_{\mathrm{n}}^{2}\mathbf{I}_{\mathrm{Q}}), where 𝝁dt,p=βd𝐗drT𝐭1\boldsymbol{\mu}_{\mathrm{dt},p}=\beta_{\mathrm{d}}\mathbf{X}_{\mathrm{dr}}^{T}\mathbf{t}_{1}. Further, since 𝝁dt,p𝜼1,2T=[βd𝐗drT,jβd𝐗drT]\frac{\partial\boldsymbol{\mu}_{\mathrm{dt},p}}{\partial\boldsymbol{\eta}_{1,2}^{T}}=[\beta_{\mathrm{d}}\mathbf{X}_{\mathrm{dr}}^{T},j\beta_{\mathrm{d}}\mathbf{X}_{\mathrm{dr}}^{T}], the closed-form expression of 𝓘(𝜼1,2)\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}_{1,2}) can be given by

𝓘(𝜼1,2)=2σn2{(𝝁dt,p𝜼1,2T)H𝝁dt,p𝜼1,2T}=2Pdr|βd|2σn2(𝐄au𝐗dr𝐗drT)=(a)2ρcQdrPdr|βd|2σn2𝐈2Mt,\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}_{1,2})=\frac{2}{\sigma_{\mathrm{n}}^{2}}\Re\left\{\left(\frac{\partial\boldsymbol{\mu}_{\mathrm{dt},p}}{\partial\boldsymbol{\eta}_{1,2}^{T}}\right)^{H}\frac{\partial\boldsymbol{\mu}_{\mathrm{dt},p}}{\partial\boldsymbol{\eta}_{1,2}^{T}}\right\}=\frac{2P_{\mathrm{dr}}|\beta_{\mathrm{d}}|^{2}}{\sigma_{\mathrm{n}}^{2}}\Re(\mathbf{E}_{\mathrm{au}}\otimes\mathbf{X}_{\mathrm{dr}}^{*}\mathbf{X}_{\mathrm{dr}}^{T})\overset{(a)}{=}\frac{2\rho_{\mathrm{c}}Q_{\mathrm{dr}}P_{\mathrm{dr}}|\beta_{\mathrm{d}}|^{2}}{\sigma_{\mathrm{n}}^{2}}\mathbf{I}_{2M_{\mathrm{t}}}, (77)

where 𝐄au=[1,j;j,1]\mathbf{E}_{\mathrm{au}}=[1,j;-j,1], and the step (a)(a) holds by assuming that 𝐗dr\mathbf{X}_{\mathrm{dr}} is orthogonal in the time domain and 𝐗dr𝐗drT=ρcQdr𝐈Mt\mathbf{X}_{\mathrm{dr}}^{*}\mathbf{X}_{\mathrm{dr}}^{T}=\rho_{\mathrm{c}}Q_{\mathrm{dr}}\mathbf{I}_{M_{\mathrm{t}}} since Mt<QdrM_{t}<Q_{dr}. Thus, Lemma 3 holds.

Appendix G Proof of Lemma 4

In Section II-D, 𝐮2\mathbf{u}_{2} and 𝐭2\mathbf{t}_{2} are jointly estimated by using the received signal 𝐲da\mathbf{y}_{\mathrm{da}}. According to (48), 𝐲da\mathbf{y}_{\mathrm{da}} can be given by

𝐲da=vec(𝐁¯daT𝐔2𝐀r𝐇α𝐀tT𝐓2𝐗~da)𝝁da+vec(𝐍da),\mathbf{y}_{\mathrm{da}}=\underbrace{\mathrm{vec}(\bar{\mathbf{B}}_{\mathrm{da}}^{T}\mathbf{U}_{2}\mathbf{A}_{\mathrm{r}}\mathbf{H}_{\alpha}\mathbf{A}_{\mathrm{t}}^{T}\mathbf{T}_{2}\tilde{\mathbf{X}}_{\mathrm{da}})}_{\boldsymbol{\mu}_{\mathrm{da}}}+\mathrm{vec}(\mathbf{N}_{\mathrm{da}}), (78)

which obeys complex Gaussian distribution, i.e., 𝐲da𝒞𝒩(𝝁da,𝚺𝐝𝐚)\mathbf{y}_{\mathrm{da}}\sim\mathcal{CN}(\boldsymbol{\mu}_{\mathrm{da}},\boldsymbol{\Sigma_{\mathrm{da}}}), where

𝚺da=𝔼{vec(𝐍da)vec(𝐍da)H}=σn2𝐈QdaPda.\boldsymbol{\Sigma}_{\mathrm{da}}=\mathbb{E}\left\{\mathrm{vec}(\mathbf{N}_{\mathrm{da}})\mathrm{vec}(\mathbf{N}_{\mathrm{da}})^{H}\right\}=\sigma_{\mathrm{n}}^{2}\mathbf{I}_{Q_{\mathrm{da}}P_{\mathrm{da}}}. (79)

We first derive the partial derivative of 𝝁da\boldsymbol{\mu}_{\mathrm{da}} with the respect to 𝚽\boldsymbol{\Phi}, which is denoted as

𝝁da𝚽T=(𝐗~daT𝐓2𝐀t𝐇α𝐁¯r𝐔2)vec(𝐀r)𝚽T=(𝐗~daT𝐓2𝐀t𝐇α𝐁¯r𝐔2)blkdiag(𝐚¯r(ϕ1),,𝐚¯r(ϕK))=𝚪ϕ,\begin{split}\frac{\partial\boldsymbol{\mu}_{\mathrm{da}}}{\partial\boldsymbol{\Phi}^{T}}&=(\tilde{\mathbf{X}}_{\mathrm{da}}^{T}\mathbf{T}_{2}\mathbf{A}_{\mathrm{t}}\mathbf{H}_{\alpha}\otimes\bar{\mathbf{B}}_{\mathrm{r}}\mathbf{U}_{2})\frac{\partial\mathrm{vec}(\mathbf{A}_{\mathrm{r}})}{\partial\boldsymbol{\Phi}^{T}}\\ &=(\tilde{\mathbf{X}}_{\mathrm{da}}^{T}\mathbf{T}_{2}\mathbf{A}_{\mathrm{t}}\mathbf{H}_{\alpha}\otimes\bar{\mathbf{B}}_{\mathrm{r}}\mathbf{U}_{2})\mathrm{blkdiag}(\bar{\mathbf{a}}_{\mathrm{r}}(\phi_{1}),\cdots,\bar{\mathbf{a}}_{\mathrm{r}}(\phi_{K}))\\ &=\mathbf{\Gamma_{\phi}},\end{split} (80)

where 𝐚¯r(ϕk)=𝐚r(ϕk)/ϕk=𝐚r(ϕk)[0,j2πdλcosϕk,,j2πdλ(Nr1)cosϕk]T\bar{\mathbf{a}}_{\mathrm{r}}(\phi_{k})=\partial\mathbf{a}_{\mathrm{r}}(\phi_{k})/\partial\phi_{k}=\mathbf{a}_{\mathrm{r}}(\phi_{k})\circ[0,-j\frac{2\pi d}{\lambda}\cos\phi_{k},\cdots,-j\frac{2\pi d}{\lambda}(N_{\mathrm{r}}-1)\cos\phi_{k}]^{T}. Similarly, the partial derivative of 𝝁da\boldsymbol{\mu}_{\mathrm{da}} with the respect to 𝚯\boldsymbol{\Theta} is denoted as

𝝁da𝚯T=(𝐗~daT𝐓2𝐁¯r𝐔2𝐀r𝐇α)𝐄x,NtKblkdiag(𝐚¯t(θ1),,𝐚¯t(θK))=𝚪θ,\frac{\partial\boldsymbol{\mu}_{\mathrm{da}}}{\partial\boldsymbol{\Theta}^{T}}=(\tilde{\mathbf{X}}_{\mathrm{da}}^{T}\mathbf{T}_{2}\otimes\bar{\mathbf{B}}_{\mathrm{r}}\mathbf{U}_{2}\mathbf{A}_{\mathrm{r}}\mathbf{H}_{\alpha})\mathbf{E}_{\mathrm{x},N_{\mathrm{t}}K}\mathrm{blkdiag}(\bar{\mathbf{a}}_{\mathrm{t}}(\theta_{1}),\cdots,\bar{\mathbf{a}}_{\mathrm{t}}(\theta_{K}))=\mathbf{\Gamma_{\theta}}, (81)

where 𝐚¯t(θk)=𝐚t(θ1)[0,j2πdλcosθk,,j2πdλ(Nt1)cosθk]T\bar{\mathbf{a}}_{\mathrm{t}}(\theta_{k})=\mathbf{a}_{\mathrm{t}}(\theta_{1})\circ[0,-j\frac{2\pi d}{\lambda}\cos\theta_{k},\cdots,-j\frac{2\pi d}{\lambda}(N_{\mathrm{t}}-1)\cos\theta_{k}]^{T}, and 𝐄x,Nt,K=k=1K(𝐞kT𝐈Nt𝐞k)\mathbf{E}_{\mathrm{x},N_{\mathrm{t}},K}=\sum_{k=1}^{K}(\mathbf{e}_{k}^{T}\otimes\mathbf{I}_{N_{\mathrm{t}}}\otimes\mathbf{e}_{k}), 𝐞k\mathbf{e}_{k} is the kk-the column of 𝐈K\mathbf{I}_{K}.

Based on (58), (60), (61), (80) and (81), the partial derivative of 𝝁da\boldsymbol{\mu}_{\mathrm{da}} with the respect to 𝜼2\boldsymbol{\eta}_{2} can be given by 𝝁da𝜼2T=[𝚪t,j𝚪t,𝚪u,j𝚪u,𝚪h,j𝚪h,𝚪θ,𝚪Φ]=𝚼𝜼\frac{\partial\boldsymbol{\mu}_{\mathrm{da}}}{\partial\boldsymbol{\eta}_{2}^{T}}=[\mathbf{\Gamma}_{\mathrm{t}},j\mathbf{\Gamma}_{\mathrm{t}},\mathbf{\Gamma}_{\mathrm{u}},j\mathbf{\Gamma}_{\mathrm{u}},\mathbf{\Gamma}_{\mathrm{h}},j\mathbf{\Gamma}_{\mathrm{h}},\mathbf{\Gamma}_{\mathrm{\theta}},\mathbf{\Gamma}_{\mathrm{\Phi}}]=\boldsymbol{\Upsilon_{\mathrm{\eta}}}. Finally, based on [44, (3.31)], the Fisher information matrix 𝓘(𝜼2)\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}_{2}) can be given by

𝓘(𝜼2)=2{(𝝁da𝜼2T)H𝚺da1𝝁da𝜼2T}=2σn2{𝚼ηH𝚼η}.\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}_{2})=2\Re\left\{\left(\frac{\partial\boldsymbol{\mu}_{\mathrm{da}}}{\partial\boldsymbol{\eta}_{2}^{T}}\right)^{H}\boldsymbol{\Sigma}_{\mathrm{da}}^{-1}\frac{\partial\boldsymbol{\mu}_{\mathrm{da}}}{\partial\boldsymbol{\eta}_{2}^{T}}\right\}=\frac{2}{\sigma_{\mathrm{n}}^{2}}\Re\left\{\boldsymbol{\Upsilon}_{\mathrm{\eta}}^{H}\boldsymbol{\Upsilon}_{\mathrm{\eta}}\right\}. (82)

Accordingly, Lemma 4 holds.

Appendix H Proof of Proposition 5

The partial derivative of the transformation function 𝐠(𝜼)\mathbf{g}(\boldsymbol{\eta}) with respect to 𝜼\boldsymbol{\eta} can be denoted as

𝐠(𝜼)𝜼T=blkdiag([𝐈Mr1,j𝐈Mr1],[𝐈Mt,j𝐈Mt],[𝐈Nr,j𝐈Nr],[𝐈Nt,j𝐈Nt],𝟎4K,4K).\frac{\partial\mathbf{g}(\boldsymbol{\eta})}{\partial\boldsymbol{\eta}^{T}}=\mathrm{blkdiag}([\mathbf{I}_{M_{\mathrm{r}}-1},j\mathbf{I}_{M_{\mathrm{r}}-1}],[\mathbf{I}_{M_{\mathrm{t}}},j\mathbf{I}_{M_{\mathrm{t}}}],[\mathbf{I}_{N_{\mathrm{r}}},j\mathbf{I}_{N_{\mathrm{r}}}],[\mathbf{I}_{N_{\mathrm{t}}},j\mathbf{I}_{N_{\mathrm{t}}}],\mathbf{0}_{4K,4K}). (83)

Based on the definition of CRLB, we can obtain

𝐠(𝜼)𝜼T𝓘(𝜼)1(𝐠(𝜼)𝜼T)H=blkdiag([𝐈Mr1,j𝐈Mr1]𝓘(𝜼1,1)1[𝐈Mr1,j𝐈Mr1]H,[𝐈Mt,j𝐈Mt]𝓘(𝜼1,2)1[𝐈Mt,j𝐈Mt]H,𝚷𝓘(𝜼2)1𝚷H),\begin{split}\frac{\partial\mathbf{g}(\boldsymbol{\eta})}{\partial\boldsymbol{\eta}^{T}}\boldsymbol{\mathcal{I}}(\boldsymbol{\eta})^{-1}\left(\frac{\partial\mathbf{g}(\boldsymbol{\eta})}{\partial\boldsymbol{\eta}^{T}}\right)^{H}=&\mathrm{blkdiag}([\mathbf{I}_{M_{\mathrm{r}}-1},j\mathbf{I}_{M_{\mathrm{r}}-1}]\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}_{1,1})^{-1}[\mathbf{I}_{M_{\mathrm{r}}-1},j\mathbf{I}_{M_{\mathrm{r}}-1}]^{H},\\ &[\mathbf{I}_{M_{\mathrm{t}}},j\mathbf{I}_{M_{\mathrm{t}}}]\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}_{1,2})^{-1}[\mathbf{I}_{M_{\mathrm{t}}},j\mathbf{I}_{M_{\mathrm{t}}}]^{H},\boldsymbol{\Pi}\boldsymbol{\mathcal{I}}(\boldsymbol{\eta}_{2})^{-1}\boldsymbol{\Pi}^{H}),\end{split} (84)

where 𝚷=[blkdiag([𝐈Nr,j𝐈Nr],[𝐈Nt,j𝐈Nt]),𝟎Nr+Nt,4K]\boldsymbol{\Pi}=[\mathrm{blkdiag}([\mathbf{I}_{N_{\mathrm{r}}},j\mathbf{I}_{N_{\mathrm{r}}}],[\mathbf{I}_{N_{\mathrm{t}}},j\mathbf{I}_{N_{\mathrm{t}}}]),\mathbf{0}_{N_{\mathrm{r}}+N_{\mathrm{t}},4K}]. By substituting (39) and (40) into (84), the CRLB of 𝜼ut\boldsymbol{\eta}_{\mathrm{ut}} can be given by (41).

\AtNextBibliography