This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Hidden-charm pentaquark states in a mass splitting model

Shi-Yuan Li1    Yan-Rui Liu1 [email protected]    Zi-Long Man1 [email protected]    Zong-Guo Si1    Jing Wu2 [email protected] 1School of Physics, Shandong University, Jinan, Shandong 250100, China
2School of Science, Shandong Jianzhu University, Jinan 250101, China
Abstract

Assuming that the PψN(4312)+P^{N}_{\psi}(4312)^{+} is a I(JP)=12(32)I(J^{P})=\frac{1}{2}(\frac{3}{2}^{-}) compact pentaquark, we study the mass spectrum of its S-wave hidden-charm partner states in a color-magnetic interaction model. Combining the information from their decays obtained in a simple rearrangement scheme, one finds that the quantum numbers of PψN(4457)+P^{N}_{\psi}(4457)^{+}, PψN(4440)+P^{N}_{\psi}(4440)^{+}, and PψN(4337)+P^{N}_{\psi}(4337)^{+} can be assigned to be I(JP)=12(32)I(J^{P})=\frac{1}{2}(\frac{3}{2}^{-}), 12(12)\frac{1}{2}(\frac{1}{2}^{-}), and 12(12)\frac{1}{2}(\frac{1}{2}^{-}), respectively, while both PψsΛ(4338)0P^{\Lambda}_{\psi s}(4338)^{0} and PψsΛ(4459)0P^{\Lambda}_{\psi s}(4459)^{0} can be interpreted as I(JP)=0(12)I(J^{P})=0(\frac{1}{2}^{-}) udscc¯udsc\bar{c} compact states. Based on the numerical results, we also find narrow pentaquarks in ssncc¯ssnc\bar{c} (n=u,dn=u,d) and ssscc¯sssc\bar{c} systems. The decay properties of the studied pentaquarks and the searching channels for them can be tested in future experiments.

I Introduction

In 2015, two exotic states PψN(4380)+P^{N}_{\psi}(4380)^{+} and PψN(4450)+P^{N}_{\psi}(4450)^{+} were observed in the J/ψpJ/\psi p invariant mass distributions in the decay Λb0J/ψpK\Lambda_{b}^{0}\to J/\psi pK^{-} by the LHCb Collaboration LHCb:2015yax . Because their masses are very high, one cannot interpret them as excited three-quark baryons. Their minimal quark content should be uudcc¯uudc\bar{c}. Therefore, they are good candidates of hidden-charm pentaquark states. In 2019, LHCbLHCb:2019kea reported a new hidden-charm pentaquark-like state PψN(4312)+P^{N}_{\psi}(4312)^{+}, while the PψN(4450)+P^{N}_{\psi}(4450)^{+} were resolved into two states PψN(4440)+P^{N}_{\psi}(4440)^{+} and PψN(4457)+P^{N}_{\psi}(4457)^{+} with updated statistics. Recently, LHCb announced the evidence of new pentaquark-like states PψN(4337)+P^{N}_{\psi}(4337)^{+}, PψsΛ(4459)0P^{\Lambda}_{\psi s}(4459)^{0}, and PψsΛ(4338)0P^{\Lambda}_{\psi s}(4338)^{0} in the decay channels Bs0J/ψpp¯B^{0}_{s}\to J/\psi p\bar{p} LHCb:2021chn , ΞbJ/ψΛK\Xi_{b}^{-}\to J/\psi\Lambda K^{-} LHCb:2020jpq , and BJ/ψΛp¯B^{-}\to J/\psi\Lambda\bar{p} LHCb:2023cph , respectively. The minimal quark content of the PψsΛ(4459)0P^{\Lambda}_{\psi s}(4459)^{0} and PψsΛ(4338)0P^{\Lambda}_{\psi s}(4338)^{0} is udscc¯udsc\bar{c}. We summarize the masses, decay widths, and observed channels of these states in Table 1. The newly observed hidden-charm pentaquark-like states inspired lot of debates about their inner structures and quantum numbers Ali:2019npk ; Zhu:2019iwm ; Giron:2019bcs ; Stancu:2019qga ; Giron:2021fnl ; Deng:2022vkv ; Wang:2019got ; Wang:2020eep ; Chen:2019asm ; Li:2023zag ; Chen:2019bip ; Liu:2019tjn ; Guo:2019kdc ; Wang:2019ato ; He:2019ify ; Du:2019pij ; Xiao:2019aya ; Yamaguchi:2019seo ; Wang:2022gfb ; Du:2021fmf ; Feijoo:2022rxf ; Liu:2023wfo ; Du:2021bgb ; Peng:2020hql ; Chen:2020uif ; Chen:2020kco ; Hu:2021nvs ; Xiao:2021rgp ; Zhu:2022wpi ; Wang:2022nqs ; Nakamura:2022gtu ; Giachino:2022pws ; Nakamura:2021dix ; Nakamura:2021qvy ; Park:2022nza .

Table 1: The masses, decay widths, and observed channels of the hidden-charm pentaquark-like states reported by the LHCb Collaboration.
Mass(MeV) Γ\Gamma (MeV) observed channels
PψN(4380)+P^{N}_{\psi}(4380)^{+}LHCb:2015yax 4380±8±294380\pm 8\pm 29 215±18±86215\pm 18\pm 86 Λb0J/ψpK\Lambda_{b}^{0}\to J/\psi pK^{-}
PψN(4312)+P^{N}_{\psi}(4312)^{+}LHCb:2019kea 4311.9±0.70.6+6.84311.9\pm 0.7^{+6.8}_{-0.6} 9.8±2.74.5+3.79.8\pm 2.7^{+3.7}_{-4.5} Λb0J/ψpK\Lambda_{b}^{0}\to J/\psi pK^{-}
PψN(4440)+P^{N}_{\psi}(4440)^{+}LHCb:2019kea 4440±1.34.7+4.14440\pm 1.3^{+4.1}_{-4.7} 20.6±4.910.2+8.720.6\pm 4.9^{+8.7}_{-10.2} Λb0J/ψpK\Lambda_{b}^{0}\to J/\psi pK^{-}
PψN(4457)+P^{N}_{\psi}(4457)^{+}LHCb:2019kea 4457.3±0.61.7+4.14457.3\pm 0.6^{+4.1}_{-1.7} 6.4±2.01.9+5.76.4\pm 2.0^{+5.7}_{-1.9} Λb0J/ψpK\Lambda_{b}^{0}\to J/\psi pK^{-}
PψsΛ4459)0P^{\Lambda}_{\psi s}4459)^{0}LHCb:2020jpq 4458.8±2.91.1+4.74458.8\pm 2.9^{+4.7}_{-1.1} 17.3±6.55.7+8.017.3\pm 6.5^{+8.0}_{-5.7} ΞbJ/ψΛK\Xi_{b}^{-}\to J/\psi\Lambda K^{-}
PψN(4337)+P^{N}_{\psi}(4337)^{+}LHCb:2021chn 433742+7+24337^{+7\;+2}_{-4\;-2} 291214+26+1429^{+26\;+14}_{-12\;-14} Bs0J/ψpp¯B^{0}_{s}\to J/\psi p\bar{p}
PψsΛ(4338)0P^{\Lambda}_{\psi s}(4338)^{0} LHCb:2023cph 4338.2±0.7±0.44338.2\pm 0.7\pm 0.4 7.0±1.2±1.37.0\pm 1.2\pm 1.3 BJ/ψΛp¯B^{-}\to J/\psi\Lambda\bar{p}

In the literature, interpretations of the above mentioned exotic baryons include compact pentaquark states Ali:2019npk ; Zhu:2019iwm ; Giron:2019bcs ; Stancu:2019qga ; Giron:2021fnl ; Deng:2022vkv ; Wang:2019got ; Wang:2020eep , molecule states Chen:2019asm ; Li:2023zag ; Chen:2019bip ; Liu:2019tjn ; Guo:2019kdc ; Wang:2019ato ; He:2019ify ; Du:2019pij ; Xiao:2019aya ; Yamaguchi:2019seo ; Du:2021fmf ; Feijoo:2022rxf ; Liu:2023wfo ; Du:2021bgb ; Peng:2020hql ; Chen:2020uif ; Chen:2020kco ; Hu:2021nvs ; Xiao:2021rgp ; Zhu:2022wpi ; Wang:2022nqs ; Nakamura:2022gtu ; Giachino:2022pws ; Wang:2022gfb , cusp effects Nakamura:2021dix ; Nakamura:2021qvy , coupled channel effects Yan:2021nio , etc. There are also studies of their decay and production properties Guo:2019fdo ; Lin:2019qiv ; Wang:2019spc ; Gutsche:2019mkg ; Burns:2019iih ; Xiao:2020frg ; Burns:2022uiv ; Lin:2023dbp ; Azizi:2021utt ; Wu:2021caw . One may consult Refs. Liu:2019zoy ; Chen:2022asf ; Meng:2022ozq ; Mutuk:2019snd for more discussions. Most studies support the molecule interpretation. In fact, one still hardly distinguishs the inner structures of these observed pentatquark-like states from the current experimental data. The possibility that their properties can be understood in the compact pentaquark picture is still not ruled out.

In previous papers Wu:2017weo ; Cheng:2019obk , we have studied the mass spectra and rearrangement decays of S-wave hidden-charm pentaquark states with the (qqq)8c(QQ¯)8c(qqq)_{8_{c}}(Q\bar{Q})_{8_{c}} (q=u,d,sq=u,d,s) configuration in the chromomagnetic interaction (CMI) model by choosing a reference hadron-hadron channel. From the combined analysis of spectrum and decay, our results indicate that the PψN(4457)+P^{N}_{\psi}(4457)^{+}, PψN(4440)+P^{N}_{\psi}(4440)^{+}, and PψN(4312)+P^{N}_{\psi}(4312)^{+} are probably JP=3/2J^{P}=3/2^{-}, 1/21/2^{-}, and 3/23/2^{-} (uud)8c(cc¯)8c(uud)_{8_{c}}(c\bar{c})_{8_{c}} pentaquark states, respectively. However, there are two drawbacks in these works. On the one hand, the mass spectra are estimated by using a hadron-hadron threshold as the reference scale and the choice of meson-baryon channel affects the results. On the other hand, the contributions from the color-singlet (qqq)1c(cc¯)1c(qqq)_{1_{c}}(c\bar{c})_{1_{c}} component were not considered in the pentaquark wave functions, which caused the lack of information of charmonium decay channels. Here, we revisit the compact hidden-charm pentaquark states with an improved framework.

In Ref. Wu:2016gas , we found that the χc1(4140)\chi_{c1}(4140) can be interpreted as a compact csc¯s¯cs\bar{c}\bar{s} tetraquark state. Later in Refs. Wu:2018xdi ; Cheng:2020nho , we found that the mass spectra of other tetraquarks may be obtained by treating the χc1(4140)\chi_{c1}(4140) as a reference state. Now, we use a similar idea to study compact pentaquarks. We improve the CMI model to estimate masses of the hidden-charm pentaquark states assuming that the PψN(4312)+P^{N}_{\psi}(4312)^{+} is a compact pentaquark with JP=32J^{P}=\frac{3}{2}^{-}. This assumption differs from that in the molecule picture where the PψN(4312)+P^{N}_{\psi}(4312)^{+} is a ΣcD¯\Sigma_{c}\bar{D} molecule with JP=12J^{P}=\frac{1}{2}^{-}. The main reason why we adopt this assumption is from the consideration on the theoretical side. Since the estimated masses for the compact pentaquarks Cheng:2019obk have some uncertainties, the assignment for the spin of an observed state is not unique. We further tried to make a reasonable assignment for the observed states from their decay information. By exploring the width ratios between different pentaquarks with various assignments, we found that the JP=32J^{P}=\frac{3}{2}^{-} for PψN(4312)+P^{N}_{\psi}(4312)^{+} correspond to the most appropriate assignment. Another reason for using the assumption is that the spin of PψN(4312)+P^{N}_{\psi}(4312)^{+} has not been determined experimentally yet. We are going to investigate a different possibility from the molecule picture for the nature of the observed pentaquark-like exotic states in a self-consistent way.

Up to now, all the hidden-charm pentaquarks are observed in the J/ψJ/\psi channels. It is necessary to include the (qqq)1c(cc¯)1c(qqq)_{1_{c}}(c\bar{c})_{1_{c}} components in the wavefunctions of the compact pentaquark states. By comparing the theoretical calculations and experimental data, such decay properties can provide more information about the internal structures of hadrons. Therefore, we also include the hidden-charm channels in the calculation of decay widths with a simple scheme.

This paper is arranged as follows. After the introduction, we present the formalism to study mass spectra and rearrangement decays of hidden-charm pentaquark states in Sec. II. The numerical results which include discussions about predicted stable pentaquarks and possible assignments for the observed states will be given in Sec. III. The last section is for summary.

II Formalism

II.1 Mass splitting model

We employ the chromomagnetic interaction model to study the S-wave qqqcc¯qqqc\bar{c} (q=u,d,sq=u,d,s) systems. The model Hamiltonian reads

H=imi+HCMI=imii<jCijλiλjσiσj,H=\sum_{i}m_{i}+H_{CMI}=\sum_{i}m_{i}-\sum_{i<j}C_{ij}\lambda_{i}\cdot\lambda_{j}\sigma_{i}\cdot\sigma_{j}, (1)

where λi\lambda_{i} and σi\sigma_{i} are the Gell-Mann matrix and the Pauli matrix for the ii-th quark, respectively. mim_{i} is effective quark mass. The effective coupling coefficient CijC_{ij} reflects the strength between the ii-th and jj-th quarks, which can be extracted from the ground hadrons. One calculates the mass of an S-wave pentaquark with

M=imi+HCMIM=\sum_{i}m_{i}+\langle H_{CMI}\rangle (2)

after diagonalizing the Hamiltonian. In fact, we obtained overestimated hadron masses with this formula in our previous studies. They may be regarded as theoretical upper limits Wu:2016vtq ; Luo:2017eub ; Wu:2017weo ; Wu:2016gas ; Zhou:2018bkn ; Liu:2019zoy ; Li:2018vhp . The overestimated masses are mainly due to the values of mim_{i}’s. Because each system actually has its own mism_{i}^{\prime}s, the model can not afford an appropriate description of the attraction between quark components for all systems. To get more reasonable theoretical results, the mass of a pentaquark state can be rewritten as

M=(MrefHCMIref)+HCMI,M=(M_{ref}-\langle H_{CMI}\rangle_{ref})+\langle H_{CMI}\rangle, (3)

where MrefM_{ref} and HCMIref\langle H_{CMI}\rangle_{ref} are the measureed mass and choromomagnetic interaction matrix of the reference system, respectively. This method can partially compensate the uncertainty caused by effective quark masses Wu:2018xdi .

There are two schemes to choose the reference system for the hidden-charm pentaquark states. The first scheme involves a meson-baryon channel whose threshold is treated as the reference scale. It yields more reasonable results than the scheme adopting Eq. (2). In our previous work Wu:2017weo , we obtained masses of hidden-charm pentaquark states with different thresholds, but it is difficult to determine which threshold is a more appropriate choice. The second scheme adopts a compact reference pentaquark, which is more reasonable than the first scheme since the structure of a meson-baryon state is actually different from a compact state. The procedure is similar to getting the estimated masses for tetraquark systems, where one identifys the χc1(4140)\chi_{c1}(4140) as the lowest 1++1^{++} csc¯s¯cs\bar{c}\bar{s} compact tetraquark and treats it as the reference state Wu:2018xdi ; Cheng:2020nho . In Ref. Cheng:2019obk , we studied the (uud)8c(cc¯)8c(uud)_{8_{c}}(c\bar{c})_{8_{c}} pentaquark states within the CMI model using a (charmed meson)-(charmed baryon) threshold as a reference. The results indicate that the PψN(4312)+P^{N}_{\psi}(4312)^{+} can be assigned as a J=32J=\frac{3}{2} (uud)8c(cc¯)8c(uud)_{8_{c}}(c\bar{c})_{8_{c}} compact pentaquark. Here, we still assume that the PψN(4312)+P^{N}_{\psi}(4312)^{+} is a compact state with I(JP)=12(32)I(J^{P})=\frac{1}{2}(\frac{3}{2}^{-}) and choose it as a reference in the present case. The difference is that it is now a mixed state of (uud)8c(cc¯)8c(uud)_{8_{c}}(c\bar{c})_{8_{c}} and (uud)1c(cc¯)1c(uud)_{1_{c}}(c\bar{c})_{1_{c}}. From the following numerical results (see Sec. III.2), one finds that the colored (qqq)8c(cc¯)8c(qqq)_{8_{c}}(c\bar{c})_{8_{c}} component of PψN(4312)+P^{N}_{\psi}(4312)^{+} plays a dominant role in the wave function and the adopted assumption is consistent with Ref. Cheng:2019obk . In this updated scheme, the mass formulas for the considered systems are

Mnnncc¯=(MPψN(4312)+HCMIPψN(4312)+)+HCMInnncc¯,\displaystyle M_{nnnc\bar{c}}=(M_{P^{N}_{\psi}(4312)^{+}}-\langle H_{CMI}\rangle_{P^{N}_{\psi}(4312)^{+}})+\langle H_{CMI}\rangle_{nnnc\bar{c}}, (4)
Mnnscc¯=(MPψN(4312)+HCMIPψN(4312)+)+Δsn+HCMInnscc¯,\displaystyle M_{nnsc\bar{c}}=(M_{P^{N}_{\psi}(4312)^{+}}-\langle H_{CMI}\rangle_{P^{N}_{\psi}(4312)^{+}})+\Delta_{sn}+\langle H_{CMI}\rangle_{nnsc\bar{c}}, (5)
Mssncc¯=(MPψN(4312)+HCMIPψN(4312)+)+2Δsn+HCMIssncc¯,\displaystyle M_{ssnc\bar{c}}=(M_{P^{N}_{\psi}(4312)^{+}}-\langle H_{CMI}\rangle_{P^{N}_{\psi}(4312)^{+}})+2\Delta_{sn}+\langle H_{CMI}\rangle_{ssnc\bar{c}}, (6)
Mssscc¯=(MPψN(4312)+HCMIPψN(4312)+)+3Δsn+HCMIssscc¯,\displaystyle M_{sssc\bar{c}}=(M_{P^{N}_{\psi}(4312)^{+}}-\langle H_{CMI}\rangle_{P^{N}_{\psi}(4312)^{+}})+3\Delta_{sn}+\langle H_{CMI}\rangle_{sssc\bar{c}}, (7)

where Δsn=msmn\Delta_{sn}=m_{s}-m_{n} denotes the effective quark mass gap between ss quark and n(=u,d)n(=u,d) quark. To relate the masses of nnscc¯nnsc\bar{c}, nsscc¯nssc\bar{c}, and ssscc¯sssc\bar{c} to that of PψN(4312)+P^{N}_{\psi}(4312)^{+}, we introduce this parameter. Compared with Eq. (2), the problem of effective quark mass becomes that of mass gap between different flavors of quarks and the uncertainty caused by effective quark masses are partially compensated Wu:2018xdi .

To calculate the CMI Hamiltonians of pentaquark systems, one constructs their wave functions. In Refs. Wu:2017weo ; Cheng:2019obk , the wave functions involving color-octet component (qqq)8c(cc¯)8c(qqq)_{8_{c}}(c\bar{c})_{8_{c}} have been obtained. In the present work, we reconstruct wave functions by incorporating the color-singlet component (qqq)1c(cc¯)1c(qqq)_{1_{c}}(c\bar{c})_{1_{c}}. These wave functions which are summarized in Table 2 will also be used to understand the decay properties of hidden-charm pentaquark states. In the table, we adopt the notation [(qqqflavor)colorspin(cc¯)colorspin]colorspin[(qqq_{flavor})^{spin}_{color}(c\bar{c})^{spin}_{color}]^{spin}_{color}. For brevity, we use FF (DD) to denote the flavor wave function of the first three (two) light quarks. The notation MSMS (MAMA) indicates that the first two light quarks are symmetric (antisymmetric) and SS (AA) means that the wave function is totally symmetric (antisymmetric) in flavor, spin, or color space. For example, the wave function [(FS)AS(cc¯)11]152[(F_{S})^{S}_{A}(c\bar{c})^{1}_{1}]^{\frac{5}{2}}_{1} is for the I(J)=32(52)I(J)=\frac{3}{2}(\frac{5}{2}) case. The subscript SS in FSF_{S} indicates that the flavor wave function for the first three quarks is symmetric under the permutation of any two quarks and the superscript SS (subscript AA) of FSF_{S} means that the spin (color) wave function for the three light quarks is totally symmetric (antisymmetric).

Table 2: Possible wave functions for the hidden-charm pentaquark states with notation [(qqqflavor)colorspin(cc¯)colorspin]colorspin[(qqq_{flavor})^{spin}_{color}(c\bar{c})^{spin}_{color}]^{spin}_{color} (q=u,d,sq=u,d,s). FF (DD) represents the flavor wave function of the first three (two) light quarks. MSMS (MAMA) means that the wave function is symmetric (antisymmetric) under the permutation of the first two light quarks and SS (AA) means that the wave function is symmetric (antisymmetric) under the permutation of any two light quarks.
(I=32,Y=1,J=52)(I=\frac{3}{2},Y=1,J=\frac{5}{2}) [(FS)AS(cc¯)11]152[(F_{S})^{S}_{A}(c\bar{c})^{1}_{1}]^{\frac{5}{2}}_{1}
(I=32,Y=1,J=32)(I=\frac{3}{2},Y=1,J=\frac{3}{2}) 12{[(FS)MAMS(cc¯)81]132[(FS)MSMA(cc¯)81]132}\frac{1}{\sqrt{2}}\{[(F_{S})^{MS}_{MA}(c\bar{c})^{1}_{8}]^{\frac{3}{2}}_{1}-[(F_{S})^{MA}_{MS}(c\bar{c})^{1}_{8}]^{\frac{3}{2}}_{1}\}; [(FS)AS(cc¯)10]132[(F_{S})^{S}_{A}(c\bar{c})^{0}_{1}]^{\frac{3}{2}}_{1};[(FS)AS(cc¯)11]132[(F_{S})^{S}_{A}(c\bar{c})^{1}_{1}]^{\frac{3}{2}}_{1}
(I=32,Y=1,J=12)(I=\frac{3}{2},Y=1,J=\frac{1}{2}) 12{[(FS)MAMS(cc¯)80]112[(FS)MSMA(cc¯)80]112}\frac{1}{\sqrt{2}}\{[(F_{S})^{MS}_{MA}(c\bar{c})^{0}_{8}]^{\frac{1}{2}}_{1}-[(F_{S})^{MA}_{MS}(c\bar{c})^{0}_{8}]^{\frac{1}{2}}_{1}\}; 12{[(FS)MAMS(cc¯)81]112[(FS)MSMA(cc¯)81]112};\frac{1}{\sqrt{2}}\{[(F_{S})^{MS}_{MA}(c\bar{c})^{1}_{8}]^{\frac{1}{2}}_{1}-[(F_{S})^{MA}_{MS}(c\bar{c})^{1}_{8}]^{\frac{1}{2}}_{1}\};
[(FS)AS(cc¯)11]112[(F_{S})^{S}_{A}(c\bar{c})^{1}_{1}]^{\frac{1}{2}}_{1}
(I=12,Y=1,J=52)(I=\frac{1}{2},Y=1,J=\frac{5}{2}) 12{[(FMS)MAS(cc¯)81]152[(FMA)MSS(cc¯)81]152}\frac{1}{\sqrt{2}}\{[(F_{MS})^{S}_{MA}(c\bar{c})_{8}^{1}]^{\frac{5}{2}}_{{1}}-[(F_{MA})^{S}_{MS}(c\bar{c})_{8}^{1}]^{\frac{5}{2}}_{1}\}
(I=12,Y=1,J=32)(I=\frac{1}{2},Y=1,J=\frac{3}{2}) 12{[(FMS)MSMA(cc¯)81]132+[(FMA)MSMS(cc¯)81]132+[(FMS)MAMS(cc¯)81]132[(FMA)MAMA(cc¯)81]132}\frac{1}{2}\{[(F_{MS})^{MA}_{MS}(c\bar{c})_{8}^{1}]^{\frac{3}{2}}_{{1}}+[(F_{MA})^{MS}_{MS}(c\bar{c})_{8}^{1}]^{\frac{3}{2}}_{{1}}+[(F_{MS})^{MS}_{MA}(c\bar{c})_{8}^{1}]^{\frac{3}{2}}_{{1}}-[(F_{MA})^{MA}_{MA}(c\bar{c})_{8}^{1}]^{\frac{3}{2}}_{{1}}\}
12{[(FMS)MAS(cc¯)80]132[(FMA)MSS(cc¯)80]132}\frac{1}{\sqrt{2}}\{[(F_{MS})^{S}_{MA}(c\bar{c})_{8}^{0}]^{\frac{3}{2}}_{{1}}-[(F_{MA})^{S}_{MS}(c\bar{c})_{8}^{0}]^{\frac{3}{2}}_{{1}}\}
12{[(FMS)MAS(cc¯)81]132[(FMA)MSS(cc¯)81]32}1\frac{1}{\sqrt{2}}\{[(F_{MS})^{S}_{MA}(c\bar{c})_{8}^{1}]^{\frac{3}{2}}_{{1}}-[(F_{MA})^{S}_{MS}(c\bar{c})_{8}^{1}]^{\frac{3}{2}}\}_{{1}}
12{[(FMS)AMS(cc¯)11]132+[(FMA)AMA(cc¯)11]32}1\frac{1}{\sqrt{2}}\{[(F_{MS})^{MS}_{A}(c\bar{c})_{1}^{1}]^{\frac{3}{2}}_{{1}}+[(F_{MA})^{MA}_{A}(c\bar{c})_{1}^{1}]^{\frac{3}{2}}\}_{{1}}
(I=12,Y=1,J=12)(I=\frac{1}{2},Y=1,J=\frac{1}{2}) 12{[(FMS)MSMA(cc¯)80]112+[(FMA)MSMS(cc¯)80]112+[(FMS)MAMS(cc¯)80]112[(FMA)MAMA(cc¯)80]112}\frac{1}{2}\{[(F_{MS})^{MA}_{MS}(c\bar{c})_{8}^{0}]^{\frac{1}{2}}_{{1}}+[(F_{MA})^{MS}_{MS}(c\bar{c})_{8}^{0}]^{\frac{1}{2}}_{{1}}+[(F_{MS})^{MS}_{MA}(c\bar{c})_{8}^{0}]^{\frac{1}{2}}_{{1}}-[(F_{MA})^{MA}_{MA}(c\bar{c})_{8}^{0}]^{\frac{1}{2}}_{{1}}\}
12{[(FMS)MSMA(cc¯)81]112+[(FMA)MSMS(cc¯)81]112+[(FMS)MAMS(cc¯)81]112[(FMA)MAMA(cc¯)81]112}\frac{1}{2}\{[(F_{MS})^{MA}_{MS}(c\bar{c})_{8}^{1}]^{\frac{1}{2}}_{{1}}+[(F_{MA})^{MS}_{MS}(c\bar{c})_{8}^{1}]^{\frac{1}{2}}_{{1}}+[(F_{MS})^{MS}_{MA}(c\bar{c})_{8}^{1}]^{\frac{1}{2}}_{{1}}-[(F_{MA})^{MA}_{MA}(c\bar{c})_{8}^{1}]^{\frac{1}{2}}_{{1}}\}
12{[(FMS)MAS(cc¯)81]112[(FMA)MSS(cc¯)81]112}\frac{1}{\sqrt{2}}\{[(F_{MS})^{S}_{MA}(c\bar{c})_{8}^{1}]^{\frac{1}{2}}_{{1}}-[(F_{MA})^{S}_{MS}(c\bar{c})_{8}^{1}]^{\frac{1}{2}}_{{1}}\}
12{[(FMS)AMS(cc¯)10]112+[(FMA)AMA(cc¯)10]112}\frac{1}{\sqrt{2}}\{[(F_{MS})^{MS}_{A}(c\bar{c})_{1}^{0}]^{\frac{1}{2}}_{{1}}+[(F_{MA})^{MA}_{A}(c\bar{c})_{1}^{0}]^{\frac{1}{2}}_{{1}}\}
12{[(FMS)AMS(cc¯)11]112+[(FMA)AMA(cc¯)11]112}\frac{1}{\sqrt{2}}\{[(F_{MS})^{MS}_{A}(c\bar{c})_{1}^{1}]^{\frac{1}{2}}_{{1}}+[(F_{MA})^{MA}_{A}(c\bar{c})_{1}^{1}]^{\frac{1}{2}}_{{1}}\}
(I=1,Y=0,J=52)(I=1,Y=0,J=\frac{5}{2}) [(DSs)MAS(cc¯)81]152;[(DSs)AS(cc¯)11]152[(D_{S}s)^{S}_{MA}(c\bar{c})^{1}_{8}]_{1}^{\frac{5}{2}};\;[(D_{S}s)^{S}_{A}(c\bar{c})^{1}_{1}]_{1}^{\frac{5}{2}}
(I=1,Y=0,J=32)(I=1,Y=0,J=\frac{3}{2}) [(DSs)MAMS(cc¯)81]132;[(DSs)MAS(cc¯)80]132;[(DSs)MAS(cc¯)81]132[(D_{S}s)^{MS}_{MA}(c\bar{c})^{1}_{8}]_{1}^{\frac{3}{2}};\;[(D_{S}s)^{S}_{MA}(c\bar{c})^{0}_{8}]_{1}^{\frac{3}{2}};\;[(D_{S}s)^{S}_{MA}(c\bar{c})^{1}_{8}]_{1}^{\frac{3}{2}};
[(DSs)MSMA(cc¯)81]132;[(DSs)AMS(cc¯)11]132;[(DSs)AS(cc¯)10]132;[(DSs)AS(cc¯)11]132[(D_{S}s)^{MA}_{MS}(c\bar{c})^{1}_{8}]_{1}^{\frac{3}{2}};\;[(D_{S}s)^{MS}_{A}(c\bar{c})^{1}_{1}]_{1}^{\frac{3}{2}};\ [(D_{S}s)^{S}_{A}(c\bar{c})^{0}_{1}]_{1}^{\frac{3}{2}};\;[(D_{S}s)^{S}_{A}(c\bar{c})^{1}_{1}]_{1}^{\frac{3}{2}}
(I=1,Y=0,J=12)(I=1,Y=0,J=\frac{1}{2}) [(DSs)MAMS(cc¯)80]112;[(DSs)MAMS(cc¯)81]112;[(DSs)MAS(cc¯)81]112;[(DSs)MSMA(cc¯)80]112;[(D_{S}s)^{MS}_{MA}(c\bar{c})^{0}_{8}]_{1}^{\frac{1}{2}};\;[(D_{S}s)^{MS}_{MA}(c\bar{c})^{1}_{8}]_{1}^{\frac{1}{2}};\;[(D_{S}s)^{S}_{MA}(c\bar{c})^{1}_{8}]_{1}^{\frac{1}{2}};\;[(D_{S}s)^{MA}_{MS}(c\bar{c})^{0}_{8}]_{1}^{\frac{1}{2}};
[(DSs)MSMA(cc¯)81]112;[(DSs)AMS(cc¯)10]112;[(DSs)AMS(cc¯)11]112;[(DSs)AS(cc¯)11]112[(D_{S}s)^{MA}_{MS}(c\bar{c})^{1}_{8}]_{1}^{\frac{1}{2}};\;[(D_{S}s)^{MS}_{A}(c\bar{c})^{0}_{1}]_{1}^{\frac{1}{2}};\;[(D_{S}s)^{MS}_{A}(c\bar{c})^{1}_{1}]_{1}^{\frac{1}{2}};\;[(D_{S}s)^{S}_{A}(c\bar{c})^{1}_{1}]_{1}^{\frac{1}{2}}
(I=0,Y=0,J=52)(I=0,Y=0,J=\frac{5}{2}) [(DAs)MSS(cc¯)81]152[(D_{A}s)^{S}_{MS}(c\bar{c})^{1}_{8}]_{1}^{\frac{5}{2}}
(I=0,Y=0,J=32)(I=0,Y=0,J=\frac{3}{2}) [(DAs)MSMS(cc¯)81]132;[(DAs)MSS(cc¯)80]132;[(DAs)MSS(cc¯)81]132;[(DAs)MAMA(cc¯)81]132;[(DAs)AMA(cc¯)11]132[(D_{A}s)^{MS}_{MS}(c\bar{c})^{1}_{8}]_{1}^{\frac{3}{2}};\;[(D_{A}s)^{S}_{MS}(c\bar{c})^{0}_{8}]_{1}^{\frac{3}{2}};\;[(D_{A}s)^{S}_{MS}(c\bar{c})^{1}_{8}]_{1}^{\frac{3}{2}};\;[(D_{A}s)^{MA}_{MA}(c\bar{c})^{1}_{8}]_{1}^{\frac{3}{2}};\;[(D_{A}s)^{MA}_{A}(c\bar{c})^{1}_{1}]_{1}^{\frac{3}{2}}
(I=0,Y=0,J=12)(I=0,Y=0,J=\frac{1}{2}) [(DAs)MSMS(cc¯)80]112;[(DAs)MSMS(cc¯)81]112;[(DAs)MSS(cc¯)81]112;[(DAs)MAMA(cc¯)80]112[(DAs)MAMA(cc¯)81]112[(D_{A}s)^{MS}_{MS}(c\bar{c})^{0}_{8}]_{1}^{\frac{1}{2}};\;[(D_{A}s)^{MS}_{MS}(c\bar{c})^{1}_{8}]_{1}^{\frac{1}{2}};\;[(D_{A}s)^{S}_{MS}(c\bar{c})^{1}_{8}]_{1}^{\frac{1}{2}};\;[(D_{A}s)^{MA}_{MA}(c\bar{c})^{0}_{8}]_{1}^{\frac{1}{2}}\;[(D_{A}s)^{MA}_{MA}(c\bar{c})^{1}_{8}]_{1}^{\frac{1}{2}}\;
[(DAs)AMA(cc¯)10]112;[(DAs)AMA(cc¯)11]112[(D_{A}s)^{MA}_{A}(c\bar{c})^{0}_{1}]_{1}^{\frac{1}{2}};\;[(D_{A}s)^{MA}_{A}(c\bar{c})^{1}_{1}]_{1}^{\frac{1}{2}}
(I=12,Y=1,J=52)(I=\frac{1}{2},Y=-1,J=\frac{5}{2}) [(DSn)MAS(cc¯)81]152;[(DSn)AS(cc¯)11]152[(D_{S}{n})^{S}_{MA}(c\bar{c})^{1}_{8}]_{1}^{\frac{5}{2}};\;[(D_{S}{n})^{S}_{A}(c\bar{c})^{1}_{1}]_{1}^{\frac{5}{2}}
(I=12,Y=1,J=32)(I=\frac{1}{2},Y=-1,J=\frac{3}{2}) [(DSn)MAMS(cc¯)81]132;[(DSn)MAS(cc¯)80]132;[(DSn)MAS(cc¯)81]132[(D_{S}{n})^{MS}_{MA}(c\bar{c})^{1}_{8}]_{1}^{\frac{3}{2}};\;[(D_{S}{n})^{S}_{MA}(c\bar{c})^{0}_{8}]_{1}^{\frac{3}{2}};\;[(D_{S}{n})^{S}_{MA}(c\bar{c})^{1}_{8}]_{1}^{\frac{3}{2}};
[(DSn)MSMA(cc¯)81]132;[(DSn)AMS(cc¯)11]132;[(DSn)AS(cc¯)10]132;[(DSn)AS(cc¯)11]132[(D_{S}{n})^{MA}_{MS}(c\bar{c})^{1}_{8}]_{1}^{\frac{3}{2}};\;[(D_{S}{n})^{MS}_{A}(c\bar{c})^{1}_{1}]_{1}^{\frac{3}{2}};\ [(D_{S}{n})^{S}_{A}(c\bar{c})^{0}_{1}]_{1}^{\frac{3}{2}};\;[(D_{S}{n})^{S}_{A}(c\bar{c})^{1}_{1}]_{1}^{\frac{3}{2}}
(I=12,Y=1,J=12)(I=\frac{1}{2},Y=-1,J=\frac{1}{2}) [(DSn)MAMS(cc¯)80]112;[(DSn)MAMS(cc¯)81]112;[(DSn)MAS(cc¯)81]112;[(DSn)MSMA(cc¯)80]112;[(D_{S}{n})^{MS}_{MA}(c\bar{c})^{0}_{8}]_{1}^{\frac{1}{2}};\;[(D_{S}{n})^{MS}_{MA}(c\bar{c})^{1}_{8}]_{1}^{\frac{1}{2}};\;[(D_{S}{n})^{S}_{MA}(c\bar{c})^{1}_{8}]_{1}^{\frac{1}{2}};\;[(D_{S}{n})^{MA}_{MS}(c\bar{c})^{0}_{8}]_{1}^{\frac{1}{2}};
[(DSn)MSMA(cc¯)81]112;[(DSn)AMS(cc¯)10]112;[(DSn)AMS(cc¯)11]112;[(DSn)AS(cc¯)11]112[(D_{S}{n})^{MA}_{MS}(c\bar{c})^{1}_{8}]_{1}^{\frac{1}{2}};\;[(D_{S}{n})^{MS}_{A}(c\bar{c})^{0}_{1}]_{1}^{\frac{1}{2}};\;[(D_{S}{n})^{MS}_{A}(c\bar{c})^{1}_{1}]_{1}^{\frac{1}{2}};\;[(D_{S}{n})^{S}_{A}(c\bar{c})^{1}_{1}]_{1}^{\frac{1}{2}}
(I=0,Y=2,J=52)(I=0,Y=-2,J=\frac{5}{2}) [(FS)AS(cc¯)11]152[(F_{S})^{S}_{A}(c\bar{c})^{1}_{1}]^{\frac{5}{2}}_{1}
(I=0,Y=2,J=32)(I=0,Y=-2,J=\frac{3}{2}) 12{[(FS)MAMS(cc¯)81]132[(FS)MSMA(cc¯)81]132}\frac{1}{\sqrt{2}}\{[(F_{S})^{MS}_{MA}(c\bar{c})^{1}_{8}]^{\frac{3}{2}}_{1}-[(F_{S})^{MA}_{MS}(c\bar{c})^{1}_{8}]^{\frac{3}{2}}_{1}\}; [(FS)AS(cc¯)10]132[(F_{S})^{S}_{A}(c\bar{c})^{0}_{1}]^{\frac{3}{2}}_{1};[(FS)AS(cc¯)11]132[(F_{S})^{S}_{A}(c\bar{c})^{1}_{1}]^{\frac{3}{2}}_{1}
(I=0,Y=2,J=12)(I=0,Y=-2,J=\frac{1}{2}) 12{[(FS)MAMS(cc¯)80]112[(FS)MSMA(cc¯)80]112}\frac{1}{\sqrt{2}}\{[(F_{S})^{MS}_{MA}(c\bar{c})^{0}_{8}]^{\frac{1}{2}}_{1}-[(F_{S})^{MA}_{MS}(c\bar{c})^{0}_{8}]^{\frac{1}{2}}_{1}\}; 12{[(FS)MAMS(cc¯)81]112[(FS)MSMA(cc¯)81]112};\frac{1}{\sqrt{2}}\{[(F_{S})^{MS}_{MA}(c\bar{c})^{1}_{8}]^{\frac{1}{2}}_{1}-[(F_{S})^{MA}_{MS}(c\bar{c})^{1}_{8}]^{\frac{1}{2}}_{1}\};
[(FS)AS(cc¯)11]112[(F_{S})^{S}_{A}(c\bar{c})^{1}_{1}]^{\frac{1}{2}}_{1}

Here, we present the calculated CMI matrices with explicit expressions. For the I=32,Y=1I=\frac{3}{2},Y=1 case, we have

HCMIJ=52=8C12+163C45;\displaystyle\langle H_{CMI}\rangle_{J=\frac{5}{2}}=8C_{12}+\frac{16}{3}C_{45}; (8)
HCMIJ=32=(10C12+103C14103C1523C4583(C14+4C15)853(C14+C15)8(C122C45)08C12+163C45);\displaystyle\langle H_{CMI}\rangle_{J=\frac{3}{2}}=\begin{pmatrix}10C_{12}+\frac{10}{3}C_{14}-\frac{10}{3}C_{15}-\frac{2}{3}C_{45}&\frac{8}{\sqrt{3}}(C_{14}+4C_{15})&\frac{8\sqrt{5}}{3}(-C_{14}+C_{15})\\ &8(C_{12}-2C_{45})&0\\ &&8C_{12}+\frac{16}{3}C_{45}\\ \end{pmatrix}; (9)
HCMIJ=12=(10C12+2C45103(C14+C15)823(C14+C15)10C12203(C14C15)23C45823(C14+C15)8C12+163C45).\displaystyle\langle H_{CMI}\rangle_{J=\frac{1}{2}}=\begin{pmatrix}10C_{12}+2C_{45}&\frac{10}{\sqrt{3}}(C_{14}+C_{15})&-8\sqrt{\frac{2}{3}}(C_{14}+C_{15})\\ &10C_{12}-\frac{20}{3}(C_{14}-C_{15})-\frac{2}{3}C_{45}&\frac{8\sqrt{2}}{3}(-C_{14}+C_{15})\\ &&8C_{12}+\frac{16}{3}C_{45}\end{pmatrix}. (10)

For the I=12,Y=1I=\frac{1}{2},Y=1 case, the matrices are

HCMIJ=52=2C12+6C14+6C1523C45;\displaystyle\langle H_{CMI}\rangle_{J=\frac{5}{2}}=2C_{12}+6C_{14}+6C_{15}-\frac{2}{3}C_{45}; (11)
HJ=32=(2C12+2C14+2C1523C45223(C14+4C15)2310(C144C15)83(C14C15)2(C12+C45)215(C14C15)423(C14+C15)2C1223(6c14+6C15+C45)4310(C14+C15)8C12+163C45);\displaystyle\langle H\rangle_{J=\frac{3}{2}}=\begin{pmatrix}-2C_{12}+2C_{14}+2C_{15}-\frac{2}{3}C_{45}&2\sqrt{\frac{2}{3}}(C_{14}+4C_{15})&-\frac{2}{3}\sqrt{10}(C_{14}-4C_{15})&\frac{8}{3}(C_{14}-C_{15})\\ &2(C_{12}+C_{45})&2\sqrt{15}(C_{14}-C_{15})&4\sqrt{\frac{2}{3}}(C_{14}+C_{15})\\ &&2C_{12}-\frac{2}{3}(6c_{14}+6C_{15}+C_{45})&\frac{4}{3}\sqrt{10}(-C_{14}+C_{15})\\ &&&-8C_{12}+\frac{16}{3}C_{45}\end{pmatrix}; (12)
HCMIJ=12=(2C12+2C4523(C14C15)43(C14+4C15)083(C14+C15)23(3C12+6C14+6C15+C45)43(C144C15)83(C14+C15)163(C14C15)(2C1210C1410C1523C45)83(C14+C15)83(C14C15)8C1216C4508C12+163C45).\displaystyle\langle H_{CMI}\rangle_{J=\frac{1}{2}}=\begin{pmatrix}-2C_{12}+2C_{45}&2\sqrt{3}(C_{14}-C_{15})&-\frac{4}{\sqrt{3}}(C_{14}+4C_{15})&0&\frac{8}{\sqrt{3}}(C_{14}+C_{15})\\ &-\frac{2}{3}\left(\begin{array}[]{c}3C_{12}+6C_{14}\\ +6C_{15}+C_{45}\end{array}\right)&-\frac{4}{3}(C_{14}-4C_{15})&\frac{8}{\sqrt{3}}(C_{14}+C_{15})&-\frac{16}{3}(C_{14}-C_{15})\\ &&\left(\begin{array}[]{c}2C_{12}-10C_{14}\\ -10C_{15}-\frac{2}{3}C_{45}\end{array}\right)&-\frac{8}{\sqrt{3}}(C_{14}+C_{15})&-\frac{8}{3}(C_{14}-C_{15})\\ &&&-8C_{12}-16C_{45}&0\\ &&&&-8C_{12}+\frac{16}{3}C_{45}\end{pmatrix}. (13)

Now we move on to the nnscc¯nnsc\bar{c} systems. For simplicity, we write the CMI matrix in the form

HCMI=(XYYTZ),\displaystyle\langle H_{CMI}\rangle=\begin{pmatrix}X&Y\\ Y^{T}&Z\end{pmatrix}, (14)

where the symmetric matrix XX involves only color-octet contributions and the symmetric ZZ is for the color-singlet component. The XX expressions can be found in Ref. Cheng:2019obk . We here just give YY and ZZ results. For the I=1,Y=0I=1,Y=0 case, we have

YJ=52=423(βν),ZJ=52=83(C12+2C13+2C45);\displaystyle Y_{J=\frac{5}{2}}=\frac{4\sqrt{2}}{3}(\beta-\nu),\quad Z_{J=\frac{5}{2}}=\frac{8}{3}(C_{12}+2C_{13}+2C_{45}); (15)
YJ=32=(429(2β+ν)4323(α+2μ)4109(β+2ν)4323(α+2μ)043103(αμ)4109(β+2ν)43103(αμ)829(βν)423β423α4103β),\displaystyle Y_{J=\frac{3}{2}}=\begin{pmatrix}\frac{4\sqrt{2}}{9}(2\beta+\nu)&\frac{4}{3}\sqrt{\frac{2}{3}}(\alpha+2\mu)&-\frac{4\sqrt{10}}{9}(\beta+2\nu)\\ \frac{4}{3}\sqrt{\frac{2}{3}}(\alpha+2\mu)&0&\frac{4}{3}\sqrt{\frac{10}{3}}(\alpha-\mu)\\ -\frac{4\sqrt{10}}{9}(\beta+2\nu)&\frac{4}{3}\sqrt{\frac{10}{3}}(\alpha-\mu)&-\frac{8\sqrt{2}}{9}(\beta-\nu)\\ \frac{4\sqrt{2}}{3}\beta&-4\sqrt{\frac{2}{3}}\alpha&\frac{4\sqrt{10}}{3}\beta\end{pmatrix}, (16)
ZJ=32=diag(83(C124C13+2C45),83(C12+2C13)16C45,83(C12+2C13+2C45));\displaystyle Z_{J=\frac{3}{2}}=\mathrm{diag}\left(\frac{8}{3}(C_{12}-4C_{13}+2C_{45}),\frac{8}{3}(C_{12}+2C_{13})-16C_{45},\frac{8}{3}(C_{12}+2C_{13}+2C_{45})\right); (17)
YJ=12=(04323(2α+μ)833(α+2μ)4323(2α+μ)829(2β+ν)89(β+2ν)833(α+2μ)89(β+2ν)2029(βν)0423α83α423α823β83β),\displaystyle Y_{J=\frac{1}{2}}=\begin{pmatrix}0&\frac{4}{3}\sqrt{\frac{2}{3}}(2\alpha+\mu)&-\frac{8}{3\sqrt{3}}(\alpha+2\mu)\\ \frac{4}{3}\sqrt{\frac{2}{3}}(2\alpha+\mu)&-\frac{8\sqrt{2}}{9}(2\beta+\nu)&-\frac{8}{9}(\beta+2\nu)\\ -\frac{8}{3\sqrt{3}}(\alpha+2\mu)&-\frac{8}{9}(\beta+2\nu)&-\frac{20\sqrt{2}}{9}(\beta-\nu)\\ 0&4\sqrt{\frac{2}{3}}\alpha&\frac{8}{\sqrt{3}}\alpha\\ 4\sqrt{\frac{2}{3}}\alpha&-\frac{8\sqrt{2}}{3}\beta&\frac{8}{3}\beta\end{pmatrix}, (18)
ZJ=12=diag(83(C124C13)16C45,83(C124C13+2C45),83(C12+2C13+2C45)),\displaystyle Z_{J=\frac{1}{2}}=\mathrm{diag}\Big{(}\frac{8}{3}(C_{12}-4C_{13})-16C_{45},\frac{8}{3}(C_{12}-4C_{13}+2C_{45}),\frac{8}{3}(C_{12}+2C_{13}+2C_{45})\Big{)}, (19)

where α=C14+C15\alpha=C_{14}+C_{15}, β=C14C15\beta=C_{14}-C_{15}, μ=C34+C35\mu=C_{34}+C_{35}, and ν=C34C35\nu=C_{34}-C_{35}. For the I=0,Y=0I=0,Y=0 case, the YY and ZZ blocks are

YJ=32=(423β423α4103β423ν),\displaystyle Y_{J=\frac{3}{2}}=\begin{pmatrix}\frac{4\sqrt{2}}{3}\beta\\ -4\sqrt{\frac{2}{3}}\alpha\\ \frac{4\sqrt{10}}{3}\beta\\ -\frac{4\sqrt{2}}{3}\nu\end{pmatrix}, (20)
ZJ=32=8C12+163C45;\displaystyle Z_{J=\frac{3}{2}}=-8C_{12}+\frac{16}{3}C_{45}; (21)
YJ=12=(0423α423α823β83α83β0423μ423μ823ν),\displaystyle Y_{J=\frac{1}{2}}=\begin{pmatrix}0&4\sqrt{\frac{2}{3}}\alpha\\ 4\sqrt{\frac{2}{3}}\alpha&-\frac{8\sqrt{2}}{3}\beta\\ \frac{8}{\sqrt{3}}\alpha&\frac{8}{3}\beta\\ 0&-4\sqrt{\frac{2}{3}}\mu\\ -4\sqrt{\frac{2}{3}}\mu&\frac{8\sqrt{2}}{3}\nu\\ \end{pmatrix}, (22)
ZJ=12=diag(8(C12+2C45),8C12+163C45),\displaystyle Z_{J=\frac{1}{2}}=\mathrm{diag}\left(-8(C_{12}+2C_{45}),-8C_{12}+\frac{16}{3}C_{45}\right), (23)

For the I=12I=\frac{1}{2}, Y=1Y=-1 (I=0I=0, Y=2Y=-2) case, the matrices are similar to the I=1I=1, Y=0Y=0 (I=32(I=\frac{3}{2}, Y=1)Y=1) case.

II.2 Rearrangement decay

In previous works Cheng:2019obk ; Cheng:2020nho , a simple decay scheme with a constant Hamiltonian H=αH=\alpha has been adopted in order to study the rearrangement decay properties of a multiquark state into two conventional hadrons. In principle, the decay constant α\alpha should be changed for different systems. From our study, one finds that the theoretical ratios between widths of PψN(4312)+P^{N}_{\psi}(4312)^{+}, PψN(4440)+P^{N}_{\psi}(4440)^{+}, and PψN(4457)+P^{N}_{\psi}(4457)^{+} by using this simple model are roughly consistent with the experimental results. Here, we still adopt this model to investigate decay properties of the hidden-charm pentaquark states.

There are four possible rearrangement decay types,

(q1q2q3)(cc¯)(q1q2c)1c+(q3c¯)1c,\displaystyle(q_{1}q_{2}q_{3})(c\bar{c})\to(q_{1}q_{2}c)_{1c}+(q_{3}\bar{c})_{1c},
(q1q2q3)(cc¯)(q1cq3)1c+(q2c¯)1c,\displaystyle(q_{1}q_{2}q_{3})(c\bar{c})\to(q_{1}cq_{3})_{1c}+(q_{2}\bar{c})_{1c}, (24)
(q1q2q3)(cc¯)(cq2q3)1c+(q1c¯)1c,\displaystyle(q_{1}q_{2}q_{3})(c\bar{c})\to(cq_{2}q_{3})_{1c}+(q_{1}\bar{c})_{1c},
(q1q2q3)(cc¯)(q1q2q3)1c+(cc¯)1c.\displaystyle(q_{1}q_{2}q_{3})(c\bar{c})\to(q_{1}q_{2}q_{3})_{1c}+(c\bar{c})_{1c}.

To calculate their matrix elements, one projects the wave function of the final meson-baryon state onto the initial pentaquark. In the color space, the final state is recoupled to the (qqq)(cc¯)(qqq)(c\bar{c}) base by using the SU(3) Clebsch-Gordan coefficients deSwart:1963pdg ; Kaeding:1995vq ,

(q1q2c)1(q3c¯)1=223(q1q2q3)MA(cc¯)8+13(q1q2q3)1(cc¯)1,(q1cq3)1(q2c¯)1=23(q1q2q3)MS(cc¯)823(q1q2q3)MA(cc¯)8+13(q1q2q3)1(cc¯)1,(cq2q3)1(q1c¯)1=23(q1q2q3)MS(cc¯)823(q1q2q3)MA(cc¯)8+13(q1q2q3)1(cc¯)1,(q1q2q3)1(cc¯)1=(q1q2q3)1(cc¯)1.\begin{split}(q_{1}q_{2}c)_{1}(q_{3}\bar{c})_{1}&=\frac{2\sqrt{2}}{3}(q_{1}q_{2}q_{3})_{MA}(c\bar{c})_{8}+\frac{1}{3}(q_{1}q_{2}q_{3})_{1}(c\bar{c})_{1},\\ (q_{1}cq_{3})_{1}(q_{2}\bar{c})_{1}&=-\sqrt{\frac{2}{3}}(q_{1}q_{2}q_{3})_{MS}(c\bar{c})_{8}-\frac{\sqrt{2}}{3}(q_{1}q_{2}q_{3})_{MA}(c\bar{c})_{8}+\frac{1}{3}(q_{1}q_{2}q_{3})_{1}(c\bar{c})_{1},\\ (cq_{2}q_{3})_{1}(q_{1}\bar{c})_{1}&=\sqrt{\frac{2}{3}}(q_{1}q_{2}q_{3})_{MS}(c\bar{c})_{8}-\frac{\sqrt{2}}{3}(q_{1}q_{2}q_{3})_{MA}(c\bar{c})_{8}+\frac{1}{3}(q_{1}q_{2}q_{3})_{1}(c\bar{c})_{1},\\ (q_{1}q_{2}q_{3})_{1}(c\bar{c})_{1}&=(q_{1}q_{2}q_{3})_{1}(c\bar{c})_{1}.\end{split} (25)

In the spin and flavor spaces, similar recouplings are also conducted. The initial wave function of a pentaquark state, as an eigenstate of the chromomagnetic interaction, can be written as Ψpenta=ixi(q1q2q3cc¯)\Psi_{penta}=\sum_{i}x_{i}(q_{1}q_{2}q_{3}c\bar{c}) where xix_{i} is the element of an eigenvactor of the CMI matrix. Then the amplitude squared of a rearrangement decay channel is ||2=α2|ixiyi|2|\mathcal{M}|^{2}=\alpha^{2}|\sum_{i}x_{i}y_{i}|^{2}. Here, yiy_{i} represents the coefficient when one recouples the meson-baryon base to the (qqq)(cc¯)(qqq)(c\bar{c}) base. The rearrangement decay width for a pentaquark is then given by

Γ=||2|p1|8πMpentaquark2.\displaystyle\Gamma=|\mathcal{M}|^{2}\frac{|\vec{p}_{1}|}{8\pi M^{2}_{pentaquark}}. (26)

where p1\vec{p}_{1} is the three momentum of a final hadron in the center-of-mass frame.

III Numerical results

III.1 Model parameters

In our calculations, we use the coupling parameters listed in the last column of Table 3. They are extracted from the experimental masses of the conventional ground hadrons. We show the adopted hadrons and related CMI formulas in the first four columns of Table 3. More information about the extraction procedure is given in Ref. Wu:2018xdi . We will set mn=362m_{n}=362 MeV, ms=540m_{s}=540 MeV, mc=1725m_{c}=1725 MeV, and mb=5053m_{b}=5053 MeV Wu:2018xdi for the effective quark masses when adopting Eq. (2). The mass gap Δsn=90.6\Delta_{sn}=90.6 MeV extracted from ground hadrons is taken from Ref. Cheng:2020nho . One may consult Ref. Cheng:2020nho for details regarding the selection procedure for this parameter. The masses of final hadrons used in calculations are taken from the particle data book ParticleDataGroup:2022pth . Here, we assume that the two-body rearrangement decays saturate the total width. That is, the sum of two-body rearrangement decay widths is equal to the measured width for a hidden-charm pentaquark state, Γsum=Γtotal\Gamma_{sum}=\Gamma_{total}. One determines the parameter α=4647.94\alpha=4647.94 MeV from the decay width of Pc(4312)+P_{c}(4312)^{+}.

Table 3: Chromomagnetic interactions for various hadrons and obtained effective coupling parameters CijC_{ij}’s in units of MeV.
Hadron HCMI\langle H_{CMI}\rangle Hadron HCMI\langle H_{CMI}\rangle CijC_{ij}
NN 8Cnn-8C_{nn} Δ\Delta 8Cnn8C_{nn} Cnn=18.3C_{nn}=18.3
Σ\Sigma 83Cnn323Cns\frac{8}{3}C_{nn}-\frac{32}{3}C_{ns} Σ\Sigma^{*} 83Cnn+163Cns\frac{8}{3}C_{nn}+\frac{16}{3}C_{ns} Cns=12.0C_{ns}=12.0
Σc\Sigma_{c} 83Cnn323Ccn\frac{8}{3}C_{nn}-\frac{32}{3}C_{cn} Σc\Sigma_{c}^{*} 83Cnn+163Ccn\frac{8}{3}C_{nn}+\frac{16}{3}C_{cn} Ccn=4.0C_{cn}=4.0
Ξc\Xi_{c}^{\prime} 83Cns163Ccn163Ccs\frac{8}{3}C_{ns}-\frac{16}{3}C_{cn}-\frac{16}{3}C_{cs} Ξc\Xi_{c}^{*} 83Cns+83Ccn+83Ccs\frac{8}{3}C_{ns}+\frac{8}{3}C_{cn}+\frac{8}{3}C_{cs} Ccs=4.4C_{cs}=4.4
ηc\eta_{c} 16Ccc¯-16C_{c\bar{c}} J/ψJ/\psi 163Ccc¯\frac{16}{3}C_{c\bar{c}} Ccc¯=5.3C_{c\bar{c}}=5.3
DsD_{s} 16Ccs¯-16C_{c\bar{s}} DsD^{*}_{s} 163Ccs¯\frac{16}{3}C_{c\bar{s}} Ccs¯=6.7C_{c\bar{s}}=6.7
DD 16Ccn¯-16C_{c\bar{n}} DD^{*} 163Ccn¯\frac{16}{3}C_{c\bar{n}} Ccn¯=6.6C_{c\bar{n}}=6.6
Ω\Omega 8Css8C_{ss} Css=5.7C_{ss}=5.7

With the above parameters, the masses and decay widths of ground hidden-charm pentaquark states are calculated. We list these results in Tables 4-14.

III.2 The nnncc¯nnnc\bar{c} system

There are four I(JP)=12(32)I(J^{P})=\frac{1}{2}(\frac{3}{2}^{-}) nnncc¯nnnc\bar{c} states when one considers contributions from both color-octet and color-singlet structures. Following the conclusion of Ref. Cheng:2019obk , we assume that the PψN(4312)+P^{N}_{\psi}(4312)^{+} is the second lowest I(JP)=12(32)I(J^{P})=\frac{1}{2}(\frac{3}{2}^{-}) nnncc¯nnnc\bar{c} compact pentaquark and treat it as the reference state in studying other pentaquarks.

We collect the numerical results for the masses of nnncc¯nnnc\bar{c} compact states in Table 4. In the table, the first column shows the quantum numbers. The second and third columns list the numerical values for the CMI matrix and the corresponding eigenvalues, respectively. The fourth column gives the pentaquark masses by referencing to PψN(4312)+P^{N}_{\psi}(4312)^{+}. The masses in the fifth and sixth columns are estimated with the NJ/ψNJ/\psi (ΔJ/ψ\Delta J/\psi) threshold and Eq. (2), respectively. They can be treated as the lower and upper limits for the masses of the nnncc¯nnnc\bar{c} states.

Table 4: Calculated CMI eigenvalues and estimated masses for the nnncc¯nnnc\bar{c} pentaquark states in units of MeV. The masses in the forth, fifth, and sixth columns are obtained with PψN(4312)+P^{N}_{\psi}(4312)^{+}, meson-baryon threshold, and effective quark masses, respectively.
I(JP)I(J^{P}) HCMI\langle H_{CMI}\rangle Eigenvalue Mass J/ΨNJ/\Psi N (J/ψΔJ/\psi\Delta) Upper limits
12(52)\frac{1}{2}(\frac{5}{2}^{-}) (96.7)\left(\begin{array}[]{c}96.7\end{array}\right) (96.7)\left(\begin{array}[]{c}96.7\end{array}\right) (4479.2)\left(\begin{array}[]{c}4479.2\end{array}\right) (4250.7)\left(\begin{array}[]{c}4250.7\end{array}\right) (4810.9)\left(\begin{array}[]{c}4810.9\end{array}\right)
12(32)\frac{1}{2}(\frac{3}{2}^{-}) (18.949.647.26.949.647.220.134.647.220.19.311.06.934.611.0118.1)\left(\begin{array}[]{cccc}-18.9&49.6&47.2&-6.9\\ 49.6&47.2&-20.1&34.6\\ 47.2&-20.1&-9.3&11.0\\ -6.9&34.6&11.0&-118.1\end{array}\right) (78.026.870.7133.3)\left(\begin{array}[]{c}78.0\\ 26.8\\ -70.7\\ -133.3\end{array}\right) (4460.64409.34311.94249.3)\left(\begin{array}[]{c}4460.6\\ 4409.3\\ 4311.9\\ 4249.3\end{array}\right) (4232.04180.84083.34020.7)\left(\begin{array}[]{c}4232.0\\ 4180.8\\ 4083.3\\ 4020.7\end{array}\right) (4792.24741.04643.54580.9)\left(\begin{array}[]{c}4792.2\\ 4741.0\\ 4643.5\\ 4580.9\end{array}\right)
12(12)\frac{1}{2}(\frac{1}{2}^{-}) (26.09.070.2049.09.082.529.949.013.970.229.972.949.06.9049.049.0231.2049.013.96.90118.1)\left(\begin{array}[]{ccccc}-26.0&-9.0&-70.2&0&49.0\\ -9.0&-82.5&29.9&49.0&13.9\\ -70.2&29.9&-72.9&-49.0&6.9\\ 0&49.0&-49.0&-231.2&0\\ 49.0&13.9&6.9&0&-118.1\end{array}\right) (38.258.691.3155.4263.6)\left(\begin{array}[]{c}38.2\\ -58.6\\ -91.3\\ -155.4\\ -263.6\end{array}\right) (4420.74323.94291.24227.24118.9)\left(\begin{array}[]{c}4420.7\\ 4323.9\\ 4291.2\\ 4227.2\\ 4118.9\end{array}\right) (4192.24095.44062.73998.63890.4)\left(\begin{array}[]{c}4192.2\\ 4095.4\\ 4062.7\\ 3998.6\\ 3890.4\end{array}\right) (4752.44655.64622.94558.84450.6)\left(\begin{array}[]{c}4752.4\\ 4655.6\\ 4622.9\\ 4558.8\\ 4450.6\end{array}\right)
32(52)\frac{3}{2}(\frac{5}{2}^{-}) (174.7)\left(\begin{array}[]{c}174.7\end{array}\right) (174.7)\left(\begin{array}[]{c}174.7\end{array}\right) (4557.2)\left(\begin{array}[]{c}4557.2\end{array}\right) (4329.5)\left(\begin{array}[]{c}4329.5\end{array}\right) (4888.9)\left(\begin{array}[]{c}4888.9\end{array}\right)
32(32)\frac{3}{2}(\frac{3}{2}^{-}) (170.849.015.549.061.6015.50174.7)\left(\begin{array}[]{ccc}170.8&49.0&15.5\\ 49.0&61.6&0\\ 15.5&0&174.7\end{array}\right) (198.4166.042.6)\left(\begin{array}[]{c}198.4\\ 166.0\\ 42.6\end{array}\right) (4581.04548.64425.2)\left(\begin{array}[]{c}4581.0\\ 4548.6\\ 4425.2\end{array}\right) (4353.34320.84197.5)\left(\begin{array}[]{c}4353.3\\ 4320.8\\ 4197.5\end{array}\right) (4912.64880.24756.8)\left(\begin{array}[]{c}4912.6\\ 4880.2\\ 4756.8\end{array}\right)
32(12)\frac{3}{2}(\frac{1}{2}^{-}) (193.661.269.261.2196.89.869.29.8174.7)\left(\begin{array}[]{ccc}193.6&61.2&-69.2\\ 61.2&196.8&9.8\\ -69.2&9.8&174.7\end{array}\right) (277.5196.890.7)\left(\begin{array}[]{c}277.5\\ 196.8\\ 90.7\end{array}\right) (4660.14579.34473.3)\left(\begin{array}[]{c}4660.1\\ 4579.3\\ 4473.3\end{array}\right) (4432.44351.64245.6)\left(\begin{array}[]{c}4432.4\\ 4351.6\\ 4245.6\end{array}\right) (4991.74911.04804.9)\left(\begin{array}[]{c}4991.7\\ 4911.0\\ 4804.9\end{array}\right)
Refer to caption Refer to caption
(a) I=32I=\frac{3}{2} nnncc¯nnnc\bar{c} states (b) I=12I=\frac{1}{2} nnncc¯nnnc\bar{c} states
Figure 1: Relative positions for the hidden-charm pentaquark states. The red solid and blue dashed lines correspond to the pentaquark masses and various thresholds, respectively.
Table 5: Rearrangement decay widths for the I=12,Y=1I=\frac{1}{2},Y=1 nnncc¯nnnc\bar{c} states in units of MeV.
I(JP)=12(52)I(J^{P})=\frac{1}{2}(\frac{5}{2}^{-}) ΣcD¯\Sigma_{c}^{*}\bar{D}^{*} Γsum\Gamma_{sum}
4479.2 (11.1,-) 0.0
I(JP)=12(32)I(J^{P})=\frac{1}{2}(\frac{3}{2}^{-}) ΣcD¯\Sigma_{c}^{*}\bar{D^{*}} ΣcD¯\Sigma_{c}^{*}\bar{D} ΣcD¯\Sigma_{c}\bar{D^{*}} ΛcD¯\Lambda_{c}\bar{D^{*}} NJ/ψNJ/\psi Γsum\Gamma_{sum}
4460.6 (32.7,-) (3.0,1.6) (4.6,-) (3.5,2.8) (2.0,0.7) 5.0
4409.3 (1.3,-) (1.3,0.4) (36.0,-) (5.8,3.8) (0.2,0.1) 4.2
4311.9 (0.0,-) (20.2,-) (0.9,-) (17.7,4.6) (17.1,5.2) 9.8
4249.3 (1.2,-) (14.5,-) (1.1,-) (0.8,-) (80.7,22.0) 22.0
I(JP)=12(12)I(J^{P})=\frac{1}{2}(\frac{1}{2}^{-}) ΣcD¯\Sigma_{c}^{*}\bar{D^{*}} ΣcD¯\Sigma_{c}\bar{D^{*}} ΣcD¯\Sigma_{c}\bar{D} ΛcD¯\Lambda_{c}\bar{D^{*}} ΛcD¯\Lambda_{c}\bar{D} NJ/ψNJ/\psi NηcN\eta_{c} Γsum\Gamma_{sum}
4420.7 (18.8,-) (9.1,-) (1.1,0.6) (13.3,9.1) (0.6,0.6) (4.4,1.5) (0.6,0.2) 12.1
4323.9 (7.9,-) (20.5,-) (0.8,0.1) (0.7,0.2) (8.2,6.8) (16.9,5.2) (2.3,0.9) 13.2
4291.2 (2.3,-) (0.9,-) (15.4,-) (12.1,-) (2.6,2.0) (19.4,5.7) (14.0,5.0) 12.7
4227.2 (0.1,-) (0.2,-) (10.5,-) (1.0,-) (12.3,6.9) (59.3,15.4) (1.7,0.6) 22.9
4118.9 (0.5,-) (0.9,-) (11.2,-) (0.7,-) (4.1,-) (0.0,0.0) (81.4,22.5) 22.5
Table 6: Rearrangement decay widths for the I=32,Y=1I=\frac{3}{2},Y=1 nnncc¯nnnc\bar{c} states in units of MeV.
I(JP)=32(52)I(J^{P})=\frac{3}{2}(\frac{5}{2}^{-}) ΣcD¯\Sigma_{c}^{*}\bar{D}^{*} ΔJ/ψ\Delta J/\psi Γsum\Gamma_{sum}
4557.2 (11.1,3.6) (100.0,26.9) 30.4
I(JP)=32(32)I(J^{P})=\frac{3}{2}(\frac{3}{2}^{-}) ΣcD¯\Sigma_{c}^{*}\bar{D^{*}} ΣcD¯\Sigma_{c}^{*}\bar{D} ΣcD¯\Sigma_{c}\bar{D^{*}} ΔJ/ψ\Delta J/\psi Δηc\Delta\eta_{c} Γsum\Gamma_{sum}
4581.0 (24.0,10.2) (2.2,1.8) (6.4,4.1) (8.2,2.3) (27.4,9.3) 27.6
4548.6 (5.6,1.5) (10.8,8.0) (2.2,1.2) (5.0,1.3) (72.4,23.7) 35.8
4425.2 (0.1,-) (9.2,3.5) (6.2,-) (86.8,15.8) (0.2,0.0) 19.4
I(JP)=32(12)I(J^{P})=\frac{3}{2}(\frac{1}{2}^{-}) ΣcD¯\Sigma_{c}^{*}\bar{D^{*}} ΣcD¯\Sigma_{c}\bar{D^{*}} ΣcD¯\Sigma_{c}\bar{D} ΔJ/ψ\Delta J/\psi Γsum\Gamma_{sum}
4660.1 (37.2,24.3) (0.5,0.4) (0.1,0.1) (20.1,6.3) 31.0
4579.3 (1.0,0.4) (28.8,18.1) (0.0,0.0) (43.7,12.2) 30.8
4473.3 (2.5,-) (7.8,1.5) (22.2,16.3) (36.2,7.9) 25.8

Fig. 1 displays the relative positions for the nnncc¯nnnc\bar{c} compact states. In the I=1/2I=1/2 case, four pentaquark states are located above 4.4 GeV and three pentaquarks have masses around 4.3 GeV. The results indicate that one may identify the calculated JP=32J^{P}=\frac{3}{2}^{-} (JP=12)(J^{P}=\frac{1}{2}^{-}) pentaquark with mass 4461 (4421) MeV to be the PψN(4457)+P^{N}_{\psi}(4457)^{+} (PψN(4440)+P^{N}_{\psi}(4440)^{+}), which is consistent with the assignment given in Ref. Cheng:2019obk . Just from the mass, the PψN(4337)+P^{N}_{\psi}(4337)^{+} seems to be a J=12J=\frac{1}{2} state. One can check whether this assignment is reasonable from the decay properties.

In Table 5 (Table 6), we present the rearrangement decay widths for the I=1/2I=1/2 (I=3/2I=3/2) nnncc¯nnnc\bar{c} pentaquarks. The ratios between widths of the interested states will be checked. To avoid confusion, we use the symbol P~\tilde{P} to denote theoretical states. From the results in Table 5, one gets

Γ(P~ψN(4421)+):Γ(P~ψN(4461)+)=2.42,\displaystyle\Gamma(\tilde{P}^{N}_{\psi}(4421)^{+}):\Gamma(\tilde{P}^{N}_{\psi}(4461)^{+})=2.42,
Γ(P~ψN(4421)+):Γ(P~ψN(4312)+)=1.24,\displaystyle\Gamma(\tilde{P}^{N}_{\psi}(4421)^{+}):\Gamma(\tilde{P}^{N}_{\psi}(4312)^{+})=1.24,
Γ(P~ψN(4312)+):Γ(P~ψN(4461)+)=1.96,\displaystyle\Gamma(\tilde{P}^{N}_{\psi}(4312)^{+}):\Gamma(\tilde{P}^{N}_{\psi}(4461)^{+})=1.96, (27)
Γ(P~ψN(4324)+):Γ(P~ψN(4461)+)=2.64,\displaystyle\Gamma(\tilde{P}^{N}_{\psi}(4324)^{+}):\Gamma(\tilde{P}^{N}_{\psi}(4461)^{+})=2.64,
Γ(P~ψN(4324)+):Γ(P~ψN(4312)+)=1.35,\displaystyle\Gamma(\tilde{P}^{N}_{\psi}(4324)^{+}):\Gamma(\tilde{P}^{N}_{\psi}(4312)^{+})=1.35,
Γ(P~ψN(4324)+):Γ(P~ψN(4421)+)=1.09.\displaystyle\Gamma(\tilde{P}^{N}_{\psi}(4324)^{+}):\Gamma(\tilde{P}^{N}_{\psi}(4421)^{+})=1.09.

On the other hand, the ratios between the measured widths are

Γ(PψN(4440)+):Γ(PψN(4457)+)=3.23.5+2.1,\displaystyle\Gamma(P^{N}_{\psi}(4440)^{+}):\Gamma(P^{N}_{\psi}(4457)^{+})=3.2^{+2.1}_{-3.5},
Γ(PψN(4440)+):Γ(PψN(4312)+)=2.11.5+1.5,\displaystyle\Gamma(P^{N}_{\psi}(4440)^{+}):\Gamma(P^{N}_{\psi}(4312)^{+})=2.1^{+1.5}_{-1.5},
Γ(PψN(4312)+):Γ(PψN(4457)+)=1.51.7+1.0,\displaystyle\Gamma(P^{N}_{\psi}(4312)^{+}):\Gamma(P^{N}_{\psi}(4457)^{+})=1.5^{+1.0}_{-1.7}, (28)
Γ(PψN(4337)+):Γ(PψN(4457)+)=4.55.2+5.0,\displaystyle\Gamma(P^{N}_{\psi}(4337)^{+}):\Gamma(P^{N}_{\psi}(4457)^{+})=4.5^{+5.0}_{-5.2},
Γ(PψN(4337)+):Γ(PψN(4312)+)=3.02.3+3.4,\displaystyle\Gamma(P^{N}_{\psi}(4337)^{+}):\Gamma(P^{N}_{\psi}(4312)^{+})=3.0^{+3.4}_{-2.3},
Γ(PψN(4337)+):Γ(PψN(4440)+)=1.41.1+1.6.\displaystyle\Gamma(P^{N}_{\psi}(4337)^{+}):\Gamma(P^{N}_{\psi}(4440)^{+})=1.4^{+1.6}_{-1.1}.

In order to clearly compare the results in Eq. (III.2) with those in Eq. (III.2), we plot the values of ratios in Fig. 2. One finds that the calculated ratios between widths are compatible with the experimental data within error. Then it is reasonable to regard the PψN(4457)+P^{N}_{\psi}(4457)^{+}, PψN(4440)+P^{N}_{\psi}(4440)^{+}, and PψN(4337)+P^{N}_{\psi}(4337)^{+} as our P~ψN(4461)\tilde{P}^{N}_{\psi}(4461) with I(JP)=12(32)I(J^{P})=\frac{1}{2}(\frac{3}{2}^{-}), P~ψN(4421)\tilde{P}^{N}_{\psi}(4421) with I(JP)=12(12)I(J^{P})=\frac{1}{2}(\frac{1}{2}^{-}), and P~ψN(4324)\tilde{P}^{N}_{\psi}(4324) with I(JP)=12(12)I(J^{P})=\frac{1}{2}(\frac{1}{2}^{-}), respectively.

Refer to caption
Figure 2: Ratios between decay widths of different pentaquarks. Those obtained from the model calculation and experimental data are represented by red solid lines and green rectangles, respectively. The numbers 1, 2, \cdots, 7 below the xx-axis correspond to Γ(PψN(4440)+)Γ(PψN(4457)+)\frac{\Gamma(P^{N}_{\psi}(4440)^{+})}{\Gamma(P^{N}_{\psi}(4457)^{+})}, Γ(PψN(4440)+)Γ(PψN(4312)+)\frac{\Gamma(P^{N}_{\psi}(4440)^{+})}{\Gamma(P^{N}_{\psi}(4312)^{+})}, Γ(PψN(4312)+)Γ(PψN(4457)+)\frac{\Gamma(P^{N}_{\psi}(4312)^{+})}{\Gamma(P^{N}_{\psi}(4457)^{+})}, Γ(PψN(4337)+)Γ(PψN(4457)+)\frac{\Gamma(P^{N}_{\psi}(4337)^{+})}{\Gamma(P^{N}_{\psi}(4457)^{+})}, Γ(PψN(4337)+)Γ(PψN(4312)+)\frac{\Gamma(P^{N}_{\psi}(4337)^{+})}{\Gamma(P^{N}_{\psi}(4312)^{+})}, Γ(PψN(4337)+)Γ(PψN(4440)+)\frac{\Gamma(P^{N}_{\psi}(4337)^{+})}{\Gamma(P^{N}_{\psi}(4440)^{+})}, and Γ(PψsΛ(4459)0)Γ(PψsΛ(4338)0)\frac{\Gamma(P^{\Lambda}_{\psi s}(4459)^{0})}{\Gamma(P^{\Lambda}_{\psi s}(4338)^{0})}, respectively.

.

If the above assignment is correct, we can give an estimate for the partial width ratios for the four PψNP^{N}_{\psi} states. In the PψN(4457)+P^{N}_{\psi}(4457)^{+} case, one has Γ(ΣcD¯):Γ(ΛcD¯):Γ(NJ/Ψ)=2.3:4.0:1.0\Gamma(\Sigma^{*}_{c}\bar{D}):\Gamma(\Lambda_{c}\bar{D}^{*}):\Gamma(NJ/\Psi)=2.3:4.0:1.0. Since the contributions from the color-singlet component are included now, the hidden-charm decay modes can be described. The PψN(4440)+P^{N}_{\psi}(4440)^{+} would mainly decay into ΛcD¯\Lambda_{c}\bar{D}^{*}, while its decays into ΣcD¯\Sigma_{c}\bar{D}, ΛcD¯\Lambda_{c}\bar{D}, NJ/ΨNJ/\Psi, and NηcN\eta_{c} are relatively suppressed. The ratios between partial widths of these five channels are 45.5:3.0:3.0:7.5:1.045.5:3.0:3.0:7.5:1.0. For the PψN(4312)+P^{N}_{\psi}(4312)^{+}, the partial width ratio between the two dominant decay modes ΛcD¯\Lambda_{c}\bar{D}^{*} and NJ/ΨNJ/\Psi is Γ(NJ/Ψ):Γ(ΛcD¯)=1.1\Gamma(NJ/\Psi):\Gamma(\Lambda_{c}\bar{D}^{*})=1.1. This is different from our previous result Cheng:2019obk . The PψN(4337)+P^{N}_{\psi}(4337)^{+} may have two dominant decay channels ΛcD¯\Lambda_{c}\bar{D} and NJ/ΨNJ/\Psi with the branching fraction reaching up to 91%91\%. The ratio between their partial widths is found to be Γ(ΛcD¯):Γ(NJ/Ψ)=1.3\Gamma(\Lambda_{c}\bar{D}):\Gamma(NJ/\Psi)=1.3. The decay into NηcN\eta_{c} is also sizable with the branching fraction of Br[PψN(4337)+Nηc]7%[P^{N}_{\psi}(4337)^{+}\to N\eta_{c}]\sim 7\%. However, the decay channels ΣcD¯\Sigma_{c}\bar{D} and ΛcD¯\Lambda_{c}\bar{D}^{*} are suppressed. If our results are all acceptable, it is worth noting that the I(JP)=12(52)I(J^{P})=\frac{1}{2}(\frac{5}{2}^{-}) hidden-charm state P~ψN(4479)+\tilde{P}^{N}_{\psi}(4479)^{+}, a compact structure without hidden-charm decay channels, may be stable, because its mass is lower than the ΣcD¯\Sigma_{c}^{*}\bar{D}^{*} threshold. Beside these five states, four additional pentaquarks may also exist whose decay properties can be found in Table 5.

Compared with the I=12I=\frac{1}{2} nnncc¯nnnc\bar{c} pentaquarks, the masses and rearrangement decay widths of the I=32I=\frac{3}{2} states are overall larger. All the I=32I=\frac{3}{2} states can decay into ΔJ/ψ\Delta J/\psi and search for all of them in this mode is possible. However, the J=52J=\frac{5}{2} state (P~ψN(4557)\tilde{P}^{N}_{\psi}(4557)), the two heaviest J=32J=\frac{3}{2} states (P~ψN(4581)\tilde{P}^{N}_{\psi}(4581) and P~ψN(4549)\tilde{P}^{N}_{\psi}(4549)), and the second heaviest J=12J=\frac{1}{2} state (P~ψN(4579)\tilde{P}^{N}_{\psi}(4579)) have similar masses, which probably makes it difficult to distinguish them in a preliminary experimental study. The P~ψN(4557)\tilde{P}^{N}_{\psi}(4557) mainly decays into ΔJ/ψ\Delta J/\psi and ΣcD¯\Sigma_{c}^{*}\bar{D}^{*}, while the J=32J=\frac{3}{2} (J=12J=\frac{1}{2}) states have special rearrangement channels ΣcD¯\Sigma_{c}^{*}\bar{D} and Δηc\Delta\eta_{c} (ΣcD¯\Sigma_{c}\bar{D}).

The above discussions are based on the assignment that the PψN(4312)+P^{N}_{\psi}(4312)^{+} is a compact pentaquark with I(JP)=12(32)I(J^{P})=\frac{1}{2}(\frac{3}{2}^{-}). This assumption results from the combined analysis of mass spectrum and decay properties. To see the consistency between the present study and the study in Ref. Cheng:2019obk , we list the eigenvalues and eigenvectors of the I(JP)=12(32)I(J^{P})=\frac{1}{2}(\frac{3}{2}^{-}) CMI matrix in Table 7. Clearly, the color-octet component dominates the wave function of PψN(4312)+P^{N}_{\psi}(4312)^{+} with a probability 83%\sim 83\%.

Table 7: Ratios between the color-octet and color-singlet components of I(JP)=12(32)I(J^{P})=\frac{1}{2}(\frac{3}{2}^{-}) nnncc¯nnnc\bar{c} compact states
Eigenvalue (MeV) Eigenvector Ratio
78.0 {0.264, -0.270, -0.224, 0.898} 0.980:0.020
26.8 {0.489, -0.324, 0.809, -0.040} 0.998:0.002
-70.7 {-0.686, 0.259, 0.539, 0.414} 0.829:0.171
-133.3 {0.264, -0.270, -0.224, 0.898} 0.193:0.807

III.3 The nnscc¯nnsc\bar{c} system

Table 8: Calculated CMI eigenvalues and estimated masses for the nnscc¯nnsc\bar{c} pentaquark states in units of MeV. The masses in the forth, fifth, and sixth columns are obtained with PψN(4312)+P^{N}_{\psi}(4312)^{+}, meson-baryon threshold, and effective quark masses, respectively.
I(JP)I(J^{P}) HCMI\langle H_{CMI}\rangle Eigenvalue Mass J/ΨΣJ/\Psi\Sigma (J/ψΛJ/\psi\Lambda) Upper limits
1(52)1(\frac{5}{2}^{-}) (101.90.60.6141.1)\left(\begin{array}[]{cc}101.9&-0.6\\ -0.6&141.1\end{array}\right) (141.1101.9)\left(\begin{array}[]{c}141.1\\ 101.9\end{array}\right) (4614.24575.0)\left(\begin{array}[]{c}4614.2\\ 4575.0\end{array}\right) (4478.74439.5)\left(\begin{array}[]{c}4478.7\\ 4439.5\end{array}\right) (4855.34816.1)\left(\begin{array}[]{c}4855.3\\ 4816.1\end{array}\right)
1(32)1(\frac{3}{2}^{-}) (67.235.034.957.14.735.710.135.051.420.135.135.701.234.920.15.833.410.11.20.457.135.133.476.94.934.611.04.735.710.14.950.90035.701.234.6028.0010.11.20.411.000141.1)\left(\begin{array}[]{ccccccc}67.2&35.0&34.9&-57.1&-4.7&35.7&10.1\\ 35.0&51.4&-20.1&35.1&35.7&0&-1.2\\ 34.9&-20.1&-5.8&33.4&10.1&-1.2&0.4\\ -57.1&35.1&33.4&76.9&-4.9&-34.6&-11.0\\ -4.7&35.7&10.1&-4.9&-50.9&0&0\\ 35.7&0&-1.2&-34.6&0&28.0&0\\ 10.1&-1.2&0.4&-11.0&0&0&141.1\end{array}\right) (159.9131.192.239.47.536.585.7)\left(\begin{array}[]{c}159.9\\ 131.1\\ 92.2\\ 39.4\\ 7.5\\ -36.5\\ -85.7\end{array}\right) (4633.14604.24565.44512.54480.74436.64387.5)\left(\begin{array}[]{c}4633.1\\ 4604.2\\ 4565.4\\ 4512.5\\ 4480.7\\ 4436.6\\ 4387.5\end{array}\right) (4497.64468.74429.94377.04345.24301.14252.0)\left(\begin{array}[]{c}4497.6\\ 4468.7\\ 4429.9\\ 4377.0\\ 4345.2\\ 4301.1\\ 4252.0\end{array}\right) (4874.14845.34806.44753.64721.74677.74628.5)\left(\begin{array}[]{c}4874.1\\ 4845.3\\ 4806.4\\ 4753.6\\ 4721.7\\ 4677.7\\ 4628.5\end{array}\right)
1(12)1(\frac{1}{2}^{-}) (75.426.149.572.035.1035.250.526.149.422.135.1101.935.29.46.449.522.170.449.621.150.56.40.972.035.149.683.828.1034.649.035.1101.921.128.155.134.69.86.9035.250.5034.6164.00035.29.46.434.69.8050.9050.56.40.949.06.900141.1)\left(\begin{array}[]{cccccccc}75.4&26.1&-49.5&-72.0&-35.1&0&35.2&-50.5\\ 26.1&49.4&22.1&-35.1&-101.9&35.2&9.4&6.4\\ -49.5&22.1&-70.4&-49.6&21.1&-50.5&6.4&0.9\\ -72.0&-35.1&-49.6&83.8&28.1&0&34.6&49.0\\ -35.1&-101.9&21.1&28.1&55.1&34.6&9.8&-6.9\\ 0&35.2&-50.5&0&34.6&-164.0&0&0\\ 35.2&9.4&6.4&34.6&9.8&0&-50.9&0\\ -50.5&6.4&0.9&49.0&-6.9&0&0&141.1\end{array}\right) (238.9157.866.749.919.952.9110.5210.4)\left(\begin{array}[]{c}238.9\\ 157.8\\ 66.7\\ 49.9\\ -19.9\\ -52.9\\ -110.5\\ -210.4\end{array}\right) (4712.04630.94539.94523.04453.34420.24362.64262.8)\left(\begin{array}[]{c}4712.0\\ 4630.9\\ 4539.9\\ 4523.0\\ 4453.3\\ 4420.2\\ 4362.6\\ 4262.8\end{array}\right) (4576.54495.44404.44387.54317.74284.74227.14127.2)\left(\begin{array}[]{c}4576.5\\ 4495.4\\ 4404.4\\ 4387.5\\ 4317.7\\ 4284.7\\ 4227.1\\ 4127.2\end{array}\right) (4953.14872.04780.94764.14694.34661.34603.74503.8)\left(\begin{array}[]{c}4953.1\\ 4872.0\\ 4780.9\\ 4764.1\\ 4694.3\\ 4661.3\\ 4603.7\\ 4503.8\end{array}\right)
0(52)0(\frac{5}{2}^{-}) (76.7)\left(\begin{array}[]{c}76.7\end{array}\right) (76.7)\left(\begin{array}[]{c}76.7\end{array}\right) (4549.8)\left(\begin{array}[]{c}4549.8\end{array}\right) (4407.4)\left(\begin{array}[]{c}4407.4\end{array}\right) (4790.9)\left(\begin{array}[]{c}4790.9\end{array}\right)
0(32)0(\frac{3}{2}^{-}) (72.136.431.957.14.936.426.218.735.134.631.918.731.033.411.057.135.133.4112.84.34.934.611.04.3118.1)\left(\begin{array}[]{ccccc}-72.1&-36.4&-31.9&-57.1&-4.9\\ -36.4&26.2&-18.7&35.1&-34.6\\ -31.9&-18.7&-31.0&33.4&-11.0\\ -57.1&35.1&33.4&-112.8&4.3\\ -4.9&-34.6&-11.0&4.3&-118.1\end{array}\right) (60.05.082.0135.3155.5)\left(\begin{array}[]{c}60.0\\ 5.0\\ -82.0\\ -135.3\\ -155.5\end{array}\right) (4533.14478.24391.24337.94317.6)\left(\begin{array}[]{c}4533.1\\ 4478.2\\ 4391.2\\ 4337.9\\ 4317.6\end{array}\right) (4390.74335.74248.74195.44175.2)\left(\begin{array}[]{c}4390.7\\ 4335.7\\ 4248.7\\ 4195.4\\ 4175.2\end{array}\right) (4774.24719.24632.24578.94558.7)\left(\begin{array}[]{c}4774.2\\ 4719.2\\ 4632.2\\ 4578.9\\ 4558.7\end{array}\right)
0(12)0(\frac{1}{2}^{-}) (93.844.851.572.035.1034.644.8179.520.235.1101.934.69.851.520.295.649.621.149.06.972.035.149.6135.844.0036.335.1101.921.144.0224.236.38.7034.649.0036.3231.2034.69.86.936.38.70118.1)\left(\begin{array}[]{ccccccc}-93.8&-44.8&51.5&-72.0&-35.1&0&34.6\\ -44.8&-179.5&-20.2&-35.1&-101.9&34.6&9.8\\ 51.5&-20.2&-95.6&-49.6&21.1&49.0&-6.9\\ -72.0&-35.1&-49.6&-135.8&-44.0&0&-36.3\\ -35.1&-101.9&21.1&-44.0&-224.2&-36.3&-8.7\\ 0&34.6&49.0&0&-36.3&-231.2&0\\ 34.6&9.8&-6.9&-36.3&-8.7&0&-118.1\end{array}\right) (23.871.8101.8145.5168.9268.0346.2)\left(\begin{array}[]{c}23.8\\ -71.8\\ -101.8\\ -145.5\\ -168.9\\ -268.0\\ -346.2\end{array}\right) (4497.04401.44371.44327.74304.34205.14127.0)\left(\begin{array}[]{c}4497.0\\ 4401.4\\ 4371.4\\ 4327.7\\ 4304.3\\ 4205.1\\ 4127.0\end{array}\right) (4354.54258.94229.04185.24161.94062.73984.5)\left(\begin{array}[]{c}4354.5\\ 4258.9\\ 4229.0\\ 4185.2\\ 4161.9\\ 4062.7\\ 3984.5\end{array}\right) (4738.04642.44612.44568.74545.34446.24368.0)\left(\begin{array}[]{c}4738.0\\ 4642.4\\ 4612.4\\ 4568.7\\ 4545.3\\ 4446.2\\ 4368.0\end{array}\right)
Refer to caption Refer to caption
(a) I=1I=1 nnscc¯nnsc\bar{c} states (b) I=0I=0 nnscc¯nnsc\bar{c} states
Figure 3: Relative positions for the hidden-charm pentaquark states. The red solid and blue dashed lines correspond to the pentaquark masses and various thresholds, respectively.

The masses of the nnscc¯nnsc\bar{c} compact pentaquarks are calculated and are listed in Table 8. We depict the relative positions for these states in Fig. 3. In the I=0I=0 case, five pentaquarks have masses around 4338 MeV and two pentaquarks have masses close to 4459 MeV. Just from the spectrum, the theoretical P~ψsΛ(4338)\tilde{P}^{\Lambda}_{\psi s}(4338) and P~ψsΛ(4478)\tilde{P}^{\Lambda}_{\psi s}(4478) with J=32J=\frac{3}{2} are good candidates for the PψsΛ(4338)0P^{\Lambda}_{\psi s}(4338)^{0} and PψsΛ(4459)0P^{\Lambda}_{\psi s}(4459)^{0}, respectively, but there are also other possibilities. To discuss possible assignments for the quantum numbers of the two observed PψsΛP^{\Lambda}_{\psi s} states, we again adopt the decay widths estimated with the simple rearrangement scheme. The results in the isoscalar case are summarized in Table 9.

If one assigns the PψsΛ(4459)0P^{\Lambda}_{\psi s}(4459)^{0} and PψsΛ(4338)0P^{\Lambda}_{\psi s}(4338)^{0} to be J=32J=\frac{3}{2} pentaquark states P~ψsΛ(4478)0\tilde{P}^{\Lambda}_{\psi s}(4478)^{0} and P~ψsΛ(4338)0\tilde{P}^{\Lambda}_{\psi s}(4338)^{0}, respectively, the calculated width ratio Γ(P~ψsΛ(4478)0):Γ(P~ψsΛ(4338)0)=0.12\Gamma(\tilde{P}^{\Lambda}_{\psi s}(4478)^{0}):\Gamma(\tilde{P}^{\Lambda}_{\psi s}(4338)^{0})=0.12 is contradicted with the experimental value Γ(PψsΛ(4459)0):Γ(PψsΛ(4338)0)=2.51.4+1.6\Gamma(P^{\Lambda}_{\psi s}(4459)^{0}):\Gamma(P^{\Lambda}_{\psi s}(4338)^{0})=2.5^{+1.6}_{-1.4}. We have to consider other possible assignments. The relevant width ratios are

Γ(P~ψsΛ(4478)0):Γ(P~ψsΛ(4371)0)\displaystyle\Gamma(\tilde{P}^{\Lambda}_{\psi s}(4478)^{0}):\Gamma(\tilde{P}^{\Lambda}_{\psi s}(4371)^{0}) =\displaystyle= 0.15,\displaystyle 0.15,
Γ(P~ψsΛ(4478)0):Γ(P~ψsΛ(4328)0)\displaystyle\Gamma(\tilde{P}^{\Lambda}_{\psi s}(4478)^{0}):\Gamma(\tilde{P}^{\Lambda}_{\psi s}(4328)^{0}) =\displaystyle= 0.56,\displaystyle 0.56,
Γ(P~ψsΛ(4478)0):Γ(P~ψsΛ(4318)0)\displaystyle\Gamma(\tilde{P}^{\Lambda}_{\psi s}(4478)^{0}):\Gamma(\tilde{P}^{\Lambda}_{\psi s}(4318)^{0}) =\displaystyle= 2.57,\displaystyle 2.57,
Γ(P~ψsΛ(4478)0):Γ(P~ψsΛ(4304)0)\displaystyle\Gamma(\tilde{P}^{\Lambda}_{\psi s}(4478)^{0}):\Gamma(\tilde{P}^{\Lambda}_{\psi s}(4304)^{0}) =\displaystyle= 0.17,\displaystyle 0.17,
Γ(P~ψsΛ(4497)0):Γ(P~ψsΛ(4371)0)\displaystyle\Gamma(\tilde{P}^{\Lambda}_{\psi s}(4497)^{0}):\Gamma(\tilde{P}^{\Lambda}_{\psi s}(4371)^{0}) =\displaystyle= 0.72,\displaystyle 0.72,
Γ(P~ψsΛ(4497)0):Γ(P~ψsΛ(4338)0)\displaystyle\Gamma(\tilde{P}^{\Lambda}_{\psi s}(4497)^{0}):\Gamma(\tilde{P}^{\Lambda}_{\psi s}(4338)^{0}) =\displaystyle= 0.61,\displaystyle 0.61,
Γ(P~ψsΛ(4497)0):Γ(P~ψsΛ(4328)0)\displaystyle\Gamma(\tilde{P}^{\Lambda}_{\psi s}(4497)^{0}):\Gamma(\tilde{P}^{\Lambda}_{\psi s}(4328)^{0}) =\displaystyle= 2.78,\displaystyle 2.78,
Γ(P~ψsΛ(4497)0):Γ(P~ψsΛ(4318)0)\displaystyle\Gamma(\tilde{P}^{\Lambda}_{\psi s}(4497)^{0}):\Gamma(\tilde{P}^{\Lambda}_{\psi s}(4318)^{0}) =\displaystyle= 12.71,\displaystyle 12.71,
Γ(P~ψsΛ(4497)0):Γ(P~ψsΛ(4304)0)\displaystyle\Gamma(\tilde{P}^{\Lambda}_{\psi s}(4497)^{0}):\Gamma(\tilde{P}^{\Lambda}_{\psi s}(4304)^{0}) =\displaystyle= 0.83.\displaystyle 0.83. (29)

The third and seventh ratios are consistent with the experimental value. However, the width of P~ψsΛ(4318)0\tilde{P}^{\Lambda}_{\psi s}(4318)^{0} is much smaller than the measured Γ(PψsΛ(4338)0)\Gamma(P^{\Lambda}_{\psi s}(4338)^{0}), which leads to the most possible assignment that the observed PψsΛ(4459)0P^{\Lambda}_{\psi s}(4459)^{0} and PψsΛ(4338)0P^{\Lambda}_{\psi s}(4338)^{0} correspond to P~ψsΛ(4497)0\tilde{P}^{\Lambda}_{\psi s}(4497)^{0} and P~ψsΛ(4328)0\tilde{P}^{\Lambda}_{\psi s}(4328)^{0}, respectively. Therefore, our analysis indicates that the quantum numbers of both PψsΛ(4338)0P^{\Lambda}_{\psi s}(4338)^{0} and PψsΛ(4459)0P^{\Lambda}_{\psi s}(4459)^{0} may be assigned as I(JP)=0(12)I(J^{P})=0(\frac{1}{2}^{-}). The comparison of width ratio between model calculation and experimental value with this assignment is also shown in Fig. 2.

If the PψsΛ(4459)0P^{\Lambda}_{\psi s}(4459)^{0} indeed corresponds to the highest J=12J=\frac{1}{2} pentaquark state P~ψsΛ(4497)0\tilde{P}^{\Lambda}_{\psi s}(4497)^{0}, it may mainly decay into ΛcD¯s\Lambda_{c}\bar{D}^{*}_{s}, ΞcD¯\Xi_{c}\bar{D}^{*}, and ΛJ/Ψ\Lambda J/\Psi, while the decays into ΛcD¯s\Lambda_{c}\bar{D}_{s}, ΞcD¯\Xi_{c}^{\prime}\bar{D}, ΞcD¯\Xi_{c}\bar{D}, and Ληc\Lambda\eta_{c} are suppressed because of small phase space. The ratios between the main partial widths of PψsΛ(4459)0P^{\Lambda}_{\psi s}(4459)^{0} are predicted to be Γ(ΛcD¯s):Γ(ΞcD¯):Γ(ΛJ/Ψ)=2.3:1.1:1.0\Gamma(\Lambda_{c}\bar{D}^{*}_{s}):\Gamma(\Xi_{c}\bar{D}^{*}):\Gamma(\Lambda J/\Psi)=2.3:1.1:1.0, which can be tested in future experiments. If the PψsΛ(4338)0P^{\Lambda}_{\psi s}(4338)^{0} really corresponds to the fourth highest J=12J=\frac{1}{2} pentaquark state P~ψsΛ(4328)0\tilde{P}^{\Lambda}_{\psi s}(4328)^{0}, its main decay modes would be ΛJ/Ψ\Lambda J/\Psi and ΛcD¯s\Lambda_{c}\bar{D}_{s}. The ratio between the corresponding partial widths is estimated to be Γ(ΛJ/Ψ):Γ(ΛcD¯s)=3.0\Gamma(\Lambda J/\Psi):\Gamma(\Lambda_{c}\bar{D}_{s})=3.0.

It is interesting to note that the J=52J=\frac{5}{2} state P~ψsΛ(4550)0\tilde{P}^{\Lambda}_{\psi s}(4550)^{0}, the lightest J=32J=\frac{3}{2} state P~ψsΛ(4318)0\tilde{P}^{\Lambda}_{\psi s}(4318)^{0}, and the lightest J=12J=\frac{1}{2} state P~ψsΛ(4127)0\tilde{P}^{\Lambda}_{\psi s}(4127)^{0} may be stable. The P~ψsΛ(4550)0\tilde{P}^{\Lambda}_{\psi s}(4550)^{0} being a compact hidden-color structure can be searched for in the radiative decay channel Ξc+Dγ\Xi_{c}^{*+}D^{-}\gamma. The search for P~ψsΛ(4318)0\tilde{P}^{\Lambda}_{\psi s}(4318)^{0} can be conducted with more analyses in the ΛJ/Ψ\Lambda J/\Psi channel. The experimentalists may search for the P~ψsΛ(4127)0\tilde{P}^{\Lambda}_{\psi s}(4127)^{0} in the Λ0ηc\Lambda^{0}\eta_{c} or Λ0π+Ds\Lambda^{0}\pi^{+}D_{s}^{-} channel.

In the I=1I=1 case, many nnscc¯nnsc\bar{c} states have the ΣJ/ψ\Sigma^{*}J/\psi decay mode. They can be searched for in this channel. Of course, other channels listed in Table 10 can also be used. The light J=52J=\frac{5}{2} pentaquark state P~ψsΛ(4575)\tilde{P}^{\Lambda}_{\psi s}(4575) should be a stable one, which can be searched for in the Σ++J/Ψ\Sigma^{*++}J/\Psi and Λc+πDs\Lambda_{c}^{+}\pi^{-}D^{*-}_{s} channels.

Table 9: Rearrangement decay widths for the I=0,Y=0I=0,Y=0 nnscc¯nnsc\bar{c} states in units of MeV.
I(JP)=0(52)I(J^{P})=0(\frac{5}{2}^{-}) ΞcD¯\Xi_{c}^{*}\bar{D}^{*} Γsum\Gamma_{sum}
4549.8 (66.7,-) 0.0
I(JP)=0(32)I(J^{P})=0(\frac{3}{2}^{-}) ΛcDs¯\Lambda_{c}\bar{D_{s}^{*}} ΞcD¯\Xi_{c}^{*}\bar{D^{*}} ΞcD¯\Xi_{c}^{*}\bar{D} ΞcD¯\Xi_{c}^{\prime}\bar{D^{*}} ΞcD¯\Xi_{c}\bar{D^{*}} ΛJ/ψ\Lambda J/\psi Γsum\Gamma_{sum}
4533.1 (6.0,1.4) (49.9,-) (4.2,0.7) (5.4,-) (3.0,0.9) (2.3,0.7) 3.7
4478.2 (9.3,1.7) (1.2,-) (1.3,-) (54.9,-) (4.4,-) (0.3,0.1) 1.8
4391.2 (20.0,-) (0.1,-) (24.8,-) (2.1,-) (17.5,-) (24.3,6.0) 6.0
4337.9 (11.0,-) (1.0,-) (21.7,-) (1.3,-) (2.6,-) (69.3,14.6) 14.6
4317.6 (53.7,-) (0.6,-) (6.3,-) (0.2,-) (30.9,-) (3.8,0.7) 0.7
I(JP)=0(12)I(J^{P})=0(\frac{1}{2}^{-}) ΛcDs¯\Lambda_{c}\bar{D_{s}^{*}} ΛcDs¯\Lambda_{c}\bar{D_{s}} ΞcD¯\Xi_{c}^{*}\bar{D^{*}} ΞcD¯\Xi_{c}^{\prime}\bar{D^{*}} ΞcD¯\Xi_{c}^{\prime}\bar{D} ΞcD¯\Xi_{c}\bar{D^{*}} ΞcD¯\Xi_{c}\bar{D} ΛJ/ψ\Lambda J/\psi Ληc\Lambda\eta_{c} Γsum\Gamma_{sum}
4497.0 (21.0,4.2) (0.9,0.3) (28.3,-) (12.1,-) (1.2,0.3) (11.6,2.0) (0.4,0.2) (5.8,1.8) (0.6,0.2) 8.9
4401.4 (0.8,0.0) (10.6,2.6) (10.8,-) (31.2,-) (0.6,-) (1.0,-) (4.9,1.6) (20.5,5.2) (3.0,1.0) 10.4
4371.4 (12.1,-) (6.0,1.3) (4.4,-) (2.3,-) (18.4,-) (12.5,-) (2.0,0.5) (25.1,5.9) (15.1,4.7) 12.4
4327.7 (40.7,-) (4.2,0.8) (0.1,-) (0.2,-) (2.4,-) (30.0,-) (3.1,-) (12.1,2.4) (0.0,0.0) 3.2
4304.3 (24.9,-) (18.9,2.8) (0.2,-) (0.0,-) (16.1,-) (3.9,-) (5.4,-) (36.4,6.6) (4.5,1.2) 10.7
4205.1 (0.4,-) (4.9,-) (0.6,-) (1.2,-) (19.5,-) (0.5,-) (3.9,-) (0.1,-) (76.5,15.6) 15.6
4127.0 (0.1,-) (54.6,-) (0.1,-) (0.1,-) (0.1,-) (0.1,-) (38.7,-) (0.0,-) (0.3,0.0) 0.0
Table 10: Rearrangement decay widths for the I=1,Y=0I=1,Y=0 nnscc¯nnsc\bar{c} states in units of MeV.
I(JP)=1(52)I(J^{P})=1(\frac{5}{2}^{-}) ΣcD¯s\Sigma_{c}^{*}\bar{D}_{s}^{*} ΞcD¯\Xi_{c}^{*}\bar{D}^{*} ΣJ/ψ\Sigma^{*}J/\psi Γsum\Gamma_{sum}
4614.2 (10.2,-) (11.6,-) (100.0,20.6) 20.6
4575.0 (89.8,-) (21.8,-) (0.0,0.0) 0.0
I(JP)=1(32)I(J^{P})=1(\frac{3}{2}^{-}) ΣcDs¯\Sigma_{c}^{*}\bar{D_{s}^{*}} ΣcDs¯\Sigma_{c}^{*}\bar{D_{s}} ΣcDs¯\Sigma_{c}\bar{D_{s}^{*}} ΞcD¯\Xi_{c}^{*}\bar{D^{*}} ΞcD¯\Xi_{c}^{*}\bar{D} ΞcD¯\Xi_{c}^{\prime}\bar{D^{*}} ΞcD¯\Xi_{c}\bar{D^{*}} ΣJ/ψ\Sigma^{*}J/\psi Σηc\Sigma^{*}\eta_{c} ΣJ/ψ\Sigma J/\psi Γsum\Gamma_{sum}
4633.1 (18.8,0.6) (1.3,0.3) (6.9,1.1) (23.4,-) (1.3,0.5) (6.7,1.8) (0.0,0.0) (35.5,7.8) (8.0,2.3) (0.0,0.0) 14.4
4604.2 (7.3,-) (11.1,2.3) (2.0,0.2) (8.0,-) (11.4,4.1) (1.5,0.3) (0.0,0.0) (64.3,12.8) (6.7,1.9) (0.0,0.0) 21.6
4565.4 (72.4,-) (3.9,0.7) (3.1,-) (15.5,-) (1.1,0.3) (0.9,-) (7.9,2.9) (0.0,0.0) (0.1,0.0) (3.2,0.9) 4.8
4512.5 (0.3,-) (0.2,0.0) (72.1,-) (0.0,-) (0.1,-) (18.2,-) (11.0,2.6) (0.0,0.0) (0.0,0.0) (2.0,0.5) 3.1
4480.7 (0.0,-) (7.5,-) (7.1,-) (0.0,-) (10.7,-) (5.9,-) (0.0,0.0) (0.2,-) (85.0,16.9) (0.0,0.0) 17.0
4436.6 (0.6,-) (15.0,-) (8.3,-) (0.2,-) (2.8,-) (2.7,-) (22.0,-) (0.0,-) (0.1,0.0) (53.9,12.2) 12.2
4387.5 (0.6,-) (61.1,-) (0.5,-) (0.1,-) (14.3,-) (0.1,-) (0.7,-) (0.0,-) (0.0,0.0) (40.8,7.7) 7.7
I(JP)=1(12)I(J^{P})=1(\frac{1}{2}^{-}) ΣcDs¯\Sigma_{c}^{*}\bar{D_{s}^{*}} ΣcDs¯\Sigma_{c}\bar{D_{s}^{*}} ΣcDs¯\Sigma_{c}\bar{D_{s}} ΞcD¯\Xi_{c}^{*}\bar{D^{*}} ΞcD¯\Xi_{c}^{\prime}\bar{D^{*}} ΞcD¯\Xi_{c}^{\prime}\bar{D} ΞcD¯\Xi_{c}\bar{D^{*}} ΞcD¯\Xi_{c}\bar{D} ΣJ/ψ\Sigma^{*}J/\psi Σηc\Sigma\eta_{c} ΣJ/ψ\Sigma J/\psi Γsum\Gamma_{sum}
4712.0 (35.2,5.9) (0.3,0.1) (0.0,0.0) (37.1,10.4) (0.3,0.1) (0.0,0.0) (0.0,0.0) (0.0,0.0) (23.0,6.0) (0.0,0.0) (0.0,0.0) 22.6
4630.9 (1.3,0.0) (27.9,4.3) (0.0,0.0) (1.8,-) (28.1,7.1) (0.0,0.0) (0.0,0.0) (0.0,0.0) (44.1,9.6) (0.0,0.0) (0.0,0.0) 21.1
4539.9 (36.0,-) (8.3,-) (2.1,0.5) (10.6,-) (5.0,-) (0.1,0.0) (21.4,6.6) (0.9,0.5) (0.7,0.1) (0.6,0.2) (9.2,2.6) 10.5
4523.0 (6.6,-) (11.6,-) (20.0,4.0) (1.3,-) (7.1,-) (22.4,7.8) (0.5,0.1) (0.0,0.0) (32.2,3.8) (0.0,0.0) (0.3,0.1) 15.8
4453.3 (9.8,-) (47.3,-) (0.4,0.1) (2.4,-) (11.1,-) (0.1,0.0) (2.8,-) (6.9,3.0) (0.0,-) (2.9,0.9) (25.5,6.0) 10.0
4420.2 (8.2,-) (2.5,-) (12.8,-) (2.3,-) (0.7,-) (3.2,-) (12.0,-) (9.3,3.5) (0.0,-) (18.8,5.5) (34.4,7.4) 16.3
4362.6 (0.2,-) (1.0,-) (30.0,-) (0.0,-) (0.3,-) (7.1,-) (4.7,-) (19.0,4.0) (0.0,-) (9.6,2.5) (30.5,5.0) 11.5
4262.8 (0.0,-) (1.1,-) (34.5,-) (0.1,-) (0.2,-) (8.5,-) (0.2,-) (5.5,-) (0.0,-) (68.1,12.7) (0.1,-) 12.7

III.4 The ssncc¯ssnc\bar{c} system

Table 11: Calculated CMI eigenvalues and estimated masses for the ssncc¯ssnc\bar{c} pentaquark states in units of MeV. The masses in the forth, fifth, and sixth columns are obtained with PψN(4312)+P^{N}_{\psi}(4312)^{+}, meson-baryon threshold, and effective quark masses, respectively.
I(JP)I(J^{P}) HCMI\langle H_{CMI}\rangle Eigenvalue Mass J/ΨΞJ/\Psi\Xi Upper limits
0(52)0(\frac{5}{2}^{-}) (69.30.60.6107.5)\left(\begin{array}[]{cc}69.3&0.6\\ 0.6&107.5\end{array}\right) (107.569.3)\left(\begin{array}[]{c}107.5\\ 69.3\end{array}\right) (4671.24633.0)\left(\begin{array}[]{c}4671.2\\ 4633.0\end{array}\right) (4607.24569.0)\left(\begin{array}[]{c}4607.2\\ 4569.0\end{array}\right) (5002.34964.1)\left(\begin{array}[]{c}5002.3\\ 4964.1\end{array}\right)
0(32)0(\frac{3}{2}^{-}) (35.336.131.957.14.535.210.536.117.817.936.035.201.231.917.940.133.410.51.20.457.136.033.425.54.336.39.74.535.210.54.384.50035.201.236.305.6010.51.20.49.700107.5)\left(\begin{array}[]{ccccccc}35.3&36.1&31.9&-57.1&-4.5&35.2&10.5\\ 36.1&17.8&-17.9&36.0&35.2&0&1.2\\ 31.9&-17.9&-40.1&33.4&10.5&1.2&-0.4\\ -57.1&36.0&33.4&25.5&-4.3&-36.3&-9.7\\ -4.5&35.2&10.5&-4.3&-84.5&0&0\\ 35.2&0&1.2&-36.3&0&-5.6&0\\ 10.5&1.2&-0.4&-9.7&0&0&107.5\end{array}\right) (121.995.657.40.427.971.1119.7)\left(\begin{array}[]{c}121.9\\ 95.6\\ 57.4\\ -0.4\\ -27.9\\ -71.1\\ -119.7\end{array}\right) (4685.74659.34621.24563.34535.94492.74444.0)\left(\begin{array}[]{c}4685.7\\ 4659.3\\ 4621.2\\ 4563.3\\ 4535.9\\ 4492.7\\ 4444.0\end{array}\right) (4621.64595.34557.24499.34471.94428.74380.0)\left(\begin{array}[]{c}4621.6\\ 4595.3\\ 4557.2\\ 4499.3\\ 4471.9\\ 4428.7\\ 4380.0\end{array}\right) (5016.74990.44952.24894.44866.94823.74775.1)\left(\begin{array}[]{c}5016.7\\ 4990.4\\ 4952.2\\ 4894.4\\ 4866.9\\ 4823.7\\ 4775.1\end{array}\right)
0(12)0(\frac{1}{2}^{-}) (41.828.151.172.036.0035.749.728.112.520.236.0101.935.79.16.751.120.2105.750.921.149.76.70.972.036.050.933.426.1036.351.336.0101.921.126.16.736.38.76.1035.749.7036.3197.60035.79.16.736.38.7084.5049.76.70.951.36.100107.5)\left(\begin{array}[]{cccccccc}41.8&28.1&-51.1&-72.0&-36.0&0&35.7&-49.7\\ 28.1&12.5&20.2&-36.0&-101.9&35.7&9.1&6.7\\ -51.1&20.2&-105.7&-50.9&21.1&-49.7&6.7&-0.9\\ -72.0&-36.0&-50.9&33.4&26.1&0&36.3&51.3\\ -36.0&-101.9&21.1&26.1&6.7&36.3&8.7&-6.1\\ 0&35.7&-49.7&0&36.3&-197.6&0&0\\ 35.7&9.1&6.7&36.3&8.7&0&-84.5&0\\ -49.7&6.7&-0.9&51.3&-6.1&0&0&107.5\end{array}\right) (200.4118.729.29.260.187.4150.4245.6)\left(\begin{array}[]{c}200.4\\ 118.7\\ 29.2\\ 9.2\\ -60.1\\ -87.4\\ -150.4\\ -245.6\end{array}\right) (4764.24682.54593.04573.04503.74476.44413.34318.1)\left(\begin{array}[]{c}4764.2\\ 4682.5\\ 4593.0\\ 4573.0\\ 4503.7\\ 4476.4\\ 4413.3\\ 4318.1\end{array}\right) (4700.14618.54529.04508.94439.64412.34349.34254.1)\left(\begin{array}[]{c}4700.1\\ 4618.5\\ 4529.0\\ 4508.9\\ 4439.6\\ 4412.3\\ 4349.3\\ 4254.1\end{array}\right) (5095.25013.54924.04904.04834.74807.44744.44649.2)\left(\begin{array}[]{c}5095.2\\ 5013.5\\ 4924.0\\ 4904.0\\ 4834.7\\ 4807.4\\ 4744.4\\ 4649.2\end{array}\right)
Refer to caption Refer to caption
(a) I=12I=\frac{1}{2} ssncc¯ssnc\bar{c} states (b) I=0I=0 ssscc¯sssc\bar{c} states
Figure 4: Relative positions for the hidden-charm pentaquark states. The red solid and blue dashed lines correspond to the pentaquark masses and various thresholds, respectively.
Table 12: Rearrangement decay widths for the I=12,Y=1I=\frac{1}{2},Y=-1 ssncc¯ssnc\bar{c} states in units of MeV.
I(JP)=12(52)I(J^{P})=\frac{1}{2}(\frac{5}{2}^{-}) ΩcD¯\Omega_{c}^{*}\bar{D}^{*} ΞcD¯s\Xi_{c}^{*}\bar{D}_{s}^{*} ΞJ/ψ\Xi^{*}J/\psi Γsum\Gamma_{sum}
4671.2 (12.1,-) (10.6,-) (100.0,11.5) 11.5
4633.0 (87.9,-) (22.7,-) (0.0,0.0) 0.0
I(JP)=12(32)I(J^{P})=\frac{1}{2}(\frac{3}{2}^{-}) ΩcD¯\Omega_{c}^{*}\bar{D^{*}} ΩcD¯\Omega_{c}^{*}\bar{D} ΩcD¯\Omega_{c}\bar{D^{*}} ΞcDs¯\Xi_{c}^{*}\bar{D_{s}^{*}} ΞcDs¯\Xi_{c}^{*}\bar{D_{s}} ΞcDs¯\Xi_{c}^{\prime}\bar{D_{s}^{*}} ΞcDs¯\Xi_{c}\bar{D_{s}^{*}} ΞJ/ψ\Xi^{*}J/\psi Ξηc\Xi^{*}\eta_{c} ΞJ/ψ\Xi J/\psi Γsum\Gamma_{sum}
4685.7 (21.8,-) (0.5,0.1) (7.0,-) (17.5,-) (0.5,0.2) (7.3,-) (0.0,0.0) (46.0,6.1) (7.3,1.7) (0.0,0.0) 8.0
4659.3 (11.5,-) (11.9,1.1) (0.9,-) (10.3,-) (11.5,2.9) (1.2,-) (0.0,0.0) (53.7,5.2) (9.2,2.0) (0.0,0.0) 11.2
4621.2 (65.0,-) (4.7,-) (4.5,-) (19.0,-) (1.1,0.1) (1.0,-) (6.8,1.7) (0.0,-) (0.1,0.0) (3.4,0.9) 2.6
4563.3 (0.4,-) (0.7,-) (72.9,-) (0.2,-) (0.1,-) (18.0,-) (10.5,-) (0.0,-) (0.0,0.0) (1.5,0.3) 0.3
4535.9 (0.0,-) (12.5,-) (5.8,-) (0.0,-) (8.9,-) (6.9,-) (0.0,-) (0.2,-) (83.2,6.8) (0.1,0.0) 6.8
4492.7 (0.6,-) (11.0,-) (8.5,-) (0.1,-) (3.7,-) (1.6,-) (23.2,-) (0.0,-) (0.1,-) (56.0,9.1) 9.1
4444.0 (0.6,-) (58.7,-) (0.5,-) (0.2,-) (15.8,-) (0.2,-) (1.0,-) (0.0,-) (0.0,-) (39.0,3.9) 3.9
I(JP)=12(12)I(J^{P})=\frac{1}{2}(\frac{1}{2}^{-}) ΩcD¯\Omega_{c}^{*}\bar{D^{*}} ΩcD¯\Omega_{c}\bar{D^{*}} ΩcD¯\Omega_{c}\bar{D} ΞcDs¯\Xi_{c}^{*}\bar{D_{s}^{*}} ΞcDs¯\Xi_{c}^{\prime}\bar{D_{s}^{*}} ΞcDs¯\Xi_{c}^{\prime}\bar{D_{s}} ΞcDs¯\Xi_{c}\bar{D_{s}^{*}} ΞcDs¯\Xi_{c}\bar{D_{s}} ΞJ/ψ\Xi^{*}J/\psi Ξηc\Xi\eta_{c} ΞJ/ψ\Xi J/\psi Γsum\Gamma_{sum}
4764.2 (36.8,-) (0.1,0.0) (0.0,0.0) (34.9,3.2) (0.1,0.0) (0.0,0.0) (0.0,0.0) (0.0,0.0) (26.1,5.2) (0.0,0.0) (0.0,0.0) 8.5
4682.5 (2.9,-) (27.2,-) (0.1,0.0) (2.2,-) (27.2,-) (0.1,0.1) (0.0,0.0) (0.0,0.0) (44.0,5.7) (0.0,0.0) (0.0,0.0) 5.7
4593.0 (39.6,-) (15.0,-) (0.1,0.0) (9.0,-) (1.5,-) (1.0,0.3) (21.1,2.8) (0.8,0.4) (0.4,-) (0.6,0.2) (10.3,2.4) 6.1
4573.0 (0.7,-) (7.2,-) (23.4,1.4) (4.2,-) (10.7,-) (21.0,4.3) (0.3,-) (0.0,0.0) (29.4,-) (0.0,0.0) (0.3,0.1) 5.7
4503.7 (7.7,-) (46.3,-) (0.8,-) (2.2,-) (12.3,-) (0.2,-) (2.4,-) (5.0,1.6) (0.0,-) (2.6,0.7) (31.2,5.4) 7.7
4476.4 (9.1,-) (1.4,-) (12.2,-) (2.8,-) (0.3,-) (3.0,-) (12.8,-) (10.2,2.6) (0.0,-) (20.5,5.0) (30.2,4.4) 12.0
4413.3 (0.4,-) (1.5,-) (28.6,-) (0.1,-) (0.3,-) (7.6,-) (4.9,-) (20.0,-) (0.0,-) (9.4,1.9) (28.0,-) 1.9
4318.1 (0.0,-) (1.2,-) (34.8,-) (0.1,-) (0.3,-) (8.8,-) (0.1,-) (5.7,-) (0.0,-) (66.8,5.3) (0.1,-) 5.3

The symmetry for the wave functions of ssncc¯ssnc\bar{c} states is the same as that for I=1I=1, Y=0Y=0 nnscc¯nnsc\bar{c} states. Noticing the difference in effective coupling parameters, one can get similar CMI matrices from those for nnscc¯nnsc\bar{c}. The numerical results are collected in Table 11 where the data listed in the fourth, fifth, and sixth columns are estimated with the PψN(4312)+P^{N}_{\psi}(4312)^{+}, J/ΨΞJ/\Psi\Xi threshold, and effective quark masses, respectively. We also plot the relative positions for pentaquark states and relevant meson-baryon thresholds in Fig. 4(a). The rearrangement decay information can be found from Table 12.

From the results, the lightest state whose spin is 1/2 has a mass around 4.34.3 GeV. It has only one rearrangement decay channel Ξηc\Xi\eta_{c}. Although the coupling with this channel is strong, the width is not large because of the small phase space. The rearrangement decay width of the light J=52J=\frac{5}{2} pentaquark is very small, which indicates that it is also stable. Searching for such a state in the ΞJ/ψ\Xi^{*}J/\psi channel will give more information. The fourth highest J=32J=\frac{3}{2} state also has a relatively stable structure. It may be searched for in the Ξηc\Xi^{*}\eta_{c} and ΞJ/Ψ\Xi J/\Psi channels. Compared with the nnncc¯nnnc\bar{c} and nnscc¯nnsc\bar{c} cases, the rearrangement decay widths in the ssncc¯ssnc\bar{c} case are relatively smaller. It is possible to observe many double-strange hidden-charm exotic structures in the ΞJ/ψ\Xi J/\psi or ΞJ/ψ\Xi^{*}J/\psi mass distribution. The open-charm decay channels listed in Table 12 may be used to distinguish the spins of the observed structures.

III.5 The ssscc¯sssc\bar{c} system

As for the ssscc¯sssc\bar{c} case, the calculation procedure and resulting expressions are similar to the I=32,Y=1I=\frac{3}{2},Y=1 nnncc¯nnnc\bar{c} case, but the numerical results are different. We present the mass results in Table 13, show the relative positions for pentaquarks and relevant meson-baryon thresholds in Fig. 4(b), and give the rearrangement decay information in Table 14.

From Tables 6 and 14, compared with the I=32,Y=1I=\frac{3}{2},Y=1 nnncc¯nnnc\bar{c} case, the decay widths of ssscc¯sssc\bar{c} states are relatively small because of the smaller phase space. The model calculation tells us that the lightest J=12J=\frac{1}{2} state with mass 4623 MeV, the lightest J=32J=\frac{3}{2} state with mass 4591 MeV, and the J=52J=\frac{5}{2} state with mass 4728 MeV are below their rearrangement decay thresholds and should all be stable. The search for them in the Ξ0πJ/ψ\Xi^{0}\pi^{-}J/\psi channel is called for. The second lightest J=12J=\frac{1}{2} pentaquark with mass 4734 MeV has one rearrangement decay channel ΩcD¯s\Omega_{c}\bar{D}_{s}. Although it is higher than the threshold, the coupling with this channel is weak. It should also be a stable state and a search for this pentaquark in the ΩcD¯s\Omega_{c}\bar{D}_{s} channel is strongly proposed.

Table 13: Calculated CMI eigenvalues and estimated masses for the ssscc¯sssc\bar{c} pentaquark states in units of MeV. The masses in the forth, fifth, and sixth columns are obtained with PψN(4312)+P^{N}_{\psi}(4312)^{+}, meson-baryon threshold, and effective quark masses, respectively.
I(JP)I(J^{P}) HCM\langle H_{CM}\rangle Eigenvalue Mass J/ΨΩJ/\Psi\Omega Upper limits
0(52)0(\frac{5}{2}^{-}) (73.9)\left(\begin{array}[]{c}73.9\end{array}\right) (73.9)\left(\begin{array}[]{c}73.9\end{array}\right) (4728.2)\left(\begin{array}[]{c}4728.2\end{array}\right) (4769.4)\left(\begin{array}[]{c}4769.4\end{array}\right) (5149.3)\left(\begin{array}[]{c}5149.3\end{array}\right)
0(32)0(\frac{3}{2}^{-}) (45.851.313.751.339.2013.7073.9)\left(\begin{array}[]{ccc}45.8&51.3&13.7\\ 51.3&-39.2&0\\ 13.7&0&73.9\end{array}\right) (84.659.463.5)\left(\begin{array}[]{c}84.6\\ 59.4\\ -63.5\end{array}\right) (4738.94713.84590.8)\left(\begin{array}[]{c}4738.9\\ 4713.8\\ 4590.8\end{array}\right) (4780.14755.04632.0)\left(\begin{array}[]{c}4780.1\\ 4755.0\\ 4632.0\end{array}\right) (5160.05134.85011.9)\left(\begin{array}[]{c}5160.0\\ 5134.8\\ 5011.9\end{array}\right)
0(12)0(\frac{1}{2}^{-}) (67.664.172.564.168.88.772.58.773.9)\left(\begin{array}[]{ccc}67.6&64.1&-72.5\\ 64.1&68.8&8.7\\ -72.5&8.7&73.9\end{array}\right) (162.279.631.5)\left(\begin{array}[]{c}162.2\\ 79.6\\ -31.5\end{array}\right) (4816.64734.04622.8)\left(\begin{array}[]{c}4816.6\\ 4734.0\\ 4622.8\end{array}\right) (4857.74775.14664.0)\left(\begin{array}[]{c}4857.7\\ 4775.1\\ 4664.0\end{array}\right) (5237.65155.05043.9)\left(\begin{array}[]{c}5237.6\\ 5155.0\\ 5043.9\end{array}\right)
Table 14: Rearrangement decay widths for the I=0,Y=2I=0,Y=-2 ssscc¯sssc\bar{c} states in units of MeV.
J=0(52)J=0(\frac{5}{2}^{-}) ΩcD¯s\Omega_{c}^{*}\bar{D}_{s}^{*} ΩJ/ψ\Omega J/\psi Γsum\Gamma_{sum}
4728.2 (11.1,-) (100.0,-) 0.0
J=0(32)J=0(\frac{3}{2}^{-}) ΩcDs¯\Omega_{c}^{*}\bar{D_{s}^{*}} ΩcDs¯\Omega_{c}^{*}\bar{D_{s}} ΩcDs¯\Omega_{c}\bar{D_{s}^{*}} ΩJ/ψ\Omega J/\psi Ωηc\Omega\eta_{c} Γsum\Gamma_{sum}
4738.9 (15.4,-) (0.1,0.0) (7.5,-) (6.1,-) (58.3,9.4) 9.4
4713.8 (14.2,-) (11.6,-) (0.6,-) (12.4,-) (41.5,5.7) 5.7
4590.8 (0.0,-) (10.5,-) (6.7,-) (81.5,-) (0.2,-) 0.0
J=(12)J=(\frac{1}{2}^{-}) ΩcDs¯\Omega_{c}^{*}\bar{D_{s}^{*}} ΩcDs¯\Omega_{c}\bar{D_{s}^{*}} ΩcDs¯\Omega_{c}\bar{D_{s}} ΩJ/ψ\Omega J/\psi Γsum\Gamma_{sum}
4816.6 (34.5,-) (0.0,0.0) (0.0,0.0) (29.5,3.5) 3.5
4734.0 (3.4,-) (26.4,-) (0.2,0.1) (43.3,-) 0.1
4622.8 (2.8,-) (10.6,-) (22.0,-) (27.1,-) 0.0

IV Summary

In this work, we investigate the mass spectra and two-body rearrangement decays of the S-wave hidden-charm pentaquark states within a mass splitting model. In this model, the PψN(4312)+P^{N}_{\psi}(4312)^{+} is assumed to be a hidden-charm compact pentaquark with I(JP)=12(32)I(J^{P})=\frac{1}{2}(\frac{3}{2}^{-}) and the properties of other pentaquarks are studied by treating the PψN(4312)+P^{N}_{\psi}(4312)^{+} as the reference state. Both color-octet (qqq)8c(cc¯)8c(qqq)_{8_{c}}(c\bar{c})_{8_{c}} (q=u,d,sq=u,d,s) and color-singlet (qqq)1c(cc¯)1c(qqq)_{1_{c}}(c\bar{c})_{1_{c}} components are considered for the wave functions.

From the numerical analyses, one finds that the PψN(4457)+P^{N}_{\psi}(4457)^{+}, PψN(4440)+P^{N}_{\psi}(4440)^{+}, and PψN(4337)+P^{N}_{\psi}(4337)^{+} can be regarded as the I(JP)=12(32)I(J^{P})=\frac{1}{2}(\frac{3}{2}^{-}), 12(12)\frac{1}{2}(\frac{1}{2}^{-}), and 12(12)\frac{1}{2}(\frac{1}{2}^{-}) pentaquark states, respectively. The PψN(4457)+P^{N}_{\psi}(4457)^{+} mainly rearranges into ΣcD¯\Sigma^{*}_{c}\bar{D}, ΛcD¯\Lambda_{c}\bar{D}^{*}, and N/J/ΨN/J/\Psi. The dominant decay channel of PψN(4440)+P^{N}_{\psi}(4440)^{+} is ΛcD¯\Lambda_{c}\bar{D}^{*}. For the rearrangement decay of PψN(4312)+P^{N}_{\psi}(4312)^{+}, the NJ/ΨNJ/\Psi and ΛcD¯\Lambda_{c}\bar{D}^{*} channel are of equal importance. The PψN(4337)+P^{N}_{\psi}(4337)^{+} mainly decays into ΛcD¯\Lambda_{c}\bar{D} as well as NJ/ΨNJ/\Psi. The high spin pentaquark state nnncc¯nnnc\bar{c} (n=u,dn=u,d) with I(JP)=12(52)I(J^{P})=\frac{1}{2}(\frac{5}{2}^{-}) has a mass around 4479 MeV, but it should be narrow. This state has only color-octet (nnn)8c(cc¯)8c(nnn)_{8_{c}}(c\bar{c})_{8_{c}} component and can be searched for in the Λc+πD+\Lambda^{+}_{c}\pi^{-}D^{*+} channel in future experiments.

From the spectrum of I=0,Y=0I=0,Y=0 nnscc¯nnsc\bar{c} pentaquark states, we get good candidates of PψsΛ(4338)0P^{\Lambda}_{\psi s}(4338)^{0} and PψsΛ(4459)0P^{\Lambda}_{\psi s}(4459)^{0} whose quantum numbers are I(JP)=0(32)I(J^{P})=0(\frac{3}{2}^{-}). However, the ratio between their widths cannot be understood. When a slightly larger uncertainty in mass is allowed, we find that assigning both PψsΛ(4338)0P^{\Lambda}_{\psi s}(4338)^{0} and PψsΛ(4459)0P^{\Lambda}_{\psi s}(4459)^{0} to be pentaquark states with I(JP)=0(12)I(J^{P})=0(\frac{1}{2}^{-}) can result in a width ratio consistent with the experimental data. The lightest isoscalar pentaquarks with J=12J=\frac{1}{2}, 32\frac{3}{2}, and 52\frac{5}{2} should all be narrow states. This J=52J=\frac{5}{2} state, similar to the case of I(JP)=12(52)I(J^{P})=\frac{1}{2}(\frac{5}{2}^{-}) nnncc¯nnnc\bar{c}, also has only color-octet component.

According to our results for the ssncc¯ssnc\bar{c} case, the light J=52J=\frac{5}{2} state and the fourth highest J=32J=\frac{3}{2} state have narrow widths. For the ssscc¯sssc\bar{c} case, there may be four stable states which are the lightest ones with J=12,32,52J=\frac{1}{2},\frac{3}{2},\frac{5}{2} and the second lightest one with J=12J=\frac{1}{2}.

Acknowledgments

We would like to thank Dr. Jian-Bo Cheng for useful discussions. This project was supported by the National Natural Science Foundation of China under Grant Nos. 12235008, 12275157, 11775132, and 11905114.

References

  • [1] Roel Aaij et al. Observation of J/ψpJ/\psi p Resonances Consistent with Pentaquark States in Λb0J/ψKp\Lambda_{b}^{0}\to J/\psi K^{-}p Decays. Phys. Rev. Lett., 115:072001, 2015.
  • [2] Roel Aaij et al. Observation of a narrow pentaquark state, Pc(4312)+P_{c}(4312)^{+}, and of two-peak structure of the Pc(4450)+P_{c}(4450)^{+}. Phys. Rev. Lett., 122(22):222001, 2019.
  • [3] Roel Aaij et al. Evidence for a new structure in the J/ψpJ/\psi p and J/ψp¯J/\psi\bar{p} systems in Bs0J/ψpp¯B_{s}^{0}\to J/\psi p\bar{p} decays. Phys. Rev. Lett., 128(6):062001, 2022.
  • [4] Roel Aaij et al. Evidence of a J/ψΛJ/\psi\Lambda structure and observation of excited Ξ\Xi^{-} states in the ΞbJ/ψΛK\Xi^{-}_{b}\to J/\psi\Lambda K^{-} decay. Sci. Bull., 66:1278–1287, 2021.
  • [5] R. Aaij et al. Observation of a J/ψΛJ/\psi\Lambda Resonance Consistent with a Strange Pentaquark Candidate in BJ/ψΛp¯B^{-}\to J/\psi\Lambda\bar{p} Decays. Phys. Rev. Lett., 131(3):031901, 2023.
  • [6] Ahmed Ali and Alexander Ya. Parkhomenko. Interpretation of the narrow J/ψpJ/\psi p Peaks in ΛbJ/ψpK\Lambda_{b}\to J/\psi pK^{-} decay in the compact diquark model. Phys. Lett. B, 793:365–371, 2019.
  • [7] Ruilin Zhu, Xuejie Liu, Hongxia Huang, and Cong-Feng Qiao. Analyzing doubly heavy tetra- and penta-quark states by variational method. Phys. Lett. B, 797:134869, 2019.
  • [8] Jesse F. Giron, Richard F. Lebed, and Curtis T. Peterson. The Dynamical Diquark Model: First Numerical Results. JHEP, 05:061, 2019.
  • [9] Fl Stancu. Spectrum of the uudcc¯uudc\bar{c} hidden charm pentaquark with an SU(4) flavor-spin hyperfine interaction. Eur. Phys. J. C, 79(11):957, 2019.
  • [10] Jesse F. Giron and Richard F. Lebed. Fine structure of pentaquark multiplets in the dynamical diquark model. Phys. Rev. D, 104(11):114028, 2021.
  • [11] Cheng-Rong Deng. Compact hidden charm pentaquark states and QCD isomers. Phys. Rev. D, 105(11):116021, 2022.
  • [12] Zhi-Gang Wang. Analysis of the Pc(4312)P_{c}(4312), Pc(4440)P_{c}(4440), Pc(4457)P_{c}(4457) and related hidden-charm pentaquark states with QCD sum rules. Int. J. Mod. Phys. A, 35(01):2050003, 2020.
  • [13] Zhi-Gang Wang. Analysis of the Pcs(4459)P_{cs}(4459) as the hidden-charm pentaquark state with QCD sum rules. Int. J. Mod. Phys. A, 36(10):2150071, 2021.
  • [14] Rui Chen, Zhi-Feng Sun, Xiang Liu, and Shi-Lin Zhu. Strong LHCb evidence supporting the existence of the hidden-charm molecular pentaquarks. Phys. Rev. D, 100(1):011502, 2019.
  • [15] Qiang Li, Chao-Hsi Chang, Tianhong Wang, and Guo-Li Wang. Strong decays of PψN(4312)+{P}_{\psi}^{N}{(4312)}^{+} to J/ψ\psi(η\etac)p and D¯()Λc{\overline{D}}^{\left(\ast\right)}{\Lambda}_{c} within the Bethe-Salpeter framework. JHEP, 06:189, 2023.
  • [16] Hua-Xing Chen, Wei Chen, and Shi-Lin Zhu. Possible interpretations of the Pc(4312)P_{c}(4312), Pc(4440)P_{c}(4440), and Pc(4457)P_{c}(4457). Phys. Rev. D, 100(5):051501, 2019.
  • [17] Ming-Zhu Liu, Ya-Wen Pan, Fang-Zheng Peng, Mario Sánchez Sánchez, Li-Sheng Geng, Atsushi Hosaka, and Manuel Pavon Valderrama. Emergence of a complete heavy-quark spin symmetry multiplet: seven molecular pentaquarks in light of the latest LHCb analysis. Phys. Rev. Lett., 122(24):242001, 2019.
  • [18] Zhi-Hui Guo and J. A. Oller. Anatomy of the newly observed hidden-charm pentaquark states: Pc(4312)P_{c}(4312), Pc(4440)P_{c}(4440) and Pc(4457)P_{c}(4457). Phys. Lett. B, 793:144–149, 2019.
  • [19] Bo Wang, Lu Meng, and Shi-Lin Zhu. Hidden-charm and hidden-bottom molecular pentaquarks in chiral effective field theory. JHEP, 11:108, 2019.
  • [20] Jun He. Study of Pc(4457)P_{c}(4457), Pc(4440)P_{c}(4440), and Pc(4312)P_{c}(4312) in a quasipotential Bethe-Salpeter equation approach. Eur. Phys. J. C, 79(5):393, 2019.
  • [21] Meng-Lin Du, Vadim Baru, Feng-Kun Guo, Christoph Hanhart, Ulf-G Meißner, José A. Oller, and Qian Wang. Interpretation of the LHCb PcP_{c} States as Hadronic Molecules and Hints of a Narrow Pc(4380)P_{c}(4380). Phys. Rev. Lett., 124(7):072001, 2020.
  • [22] C. W. Xiao, J. Nieves, and E. Oset. Heavy quark spin symmetric molecular states from D¯()Σc(){\bar{D}}^{(*)}\Sigma_{c}^{(*)} and other coupled channels in the light of the recent LHCb pentaquarks. Phys. Rev. D, 100(1):014021, 2019.
  • [23] Yasuhiro Yamaguchi, Hugo García-Tecocoatzi, Alessandro Giachino, Atsushi Hosaka, Elena Santopinto, Sachiko Takeuchi, and Makoto Takizawa. PcP_{c} pentaquarks with chiral tensor and quark dynamics. Phys. Rev. D, 101(9):091502, 2020.
  • [24] Xiu-Wu Wang and Zhi-Gang Wang. Study of isospin eigenstates of the pentaquark molecular states with strangeness. Int. J. Mod. Phys. A, 37(31n32):2250189, 2022.
  • [25] Meng-Lin Du, Vadim Baru, Feng-Kun Guo, Christoph Hanhart, Ulf-G. Meißner, José A. Oller, and Qian Wang. Revisiting the nature of the Pc pentaquarks. JHEP, 08:157, 2021.
  • [26] Albert Feijoo, Wen-Fei Wang, Chu-Wen Xiao, Jia-Jun Wu, Eulogio Oset, Juan Nieves, and Bing-Song Zou. A new look at the Pcs states from a molecular perspective. Phys. Lett. B, 839:137760, 2023.
  • [27] Zhi-Wei Liu, Jun-Xu Lu, Ming-Zhu Liu, and Li-Sheng Geng. Distinguishing the spins of Pc(4440) and Pc(4457) with femtoscopic correlation functions. Phys. Rev. D, 108(3):L031503, 2023.
  • [28] Meng-Lin Du, Zhi-Hui Guo, and J. A. Oller. Insights into the nature of the Pcs(4459). Phys. Rev. D, 104(11):114034, 2021.
  • [29] Fang-Zheng Peng, Mao-Jun Yan, Mario Sánchez Sánchez, and Manuel Pavon Valderrama. The Pcs(4459)P_{cs}(4459) pentaquark from a combined effective field theory and phenomenological perspective. Eur. Phys. J. C, 81(7):666, 2021.
  • [30] Hua-Xing Chen, Wei Chen, Xiang Liu, and Xiao-Hai Liu. Establishing the first hidden-charm pentaquark with strangeness. Eur. Phys. J. C, 81(5):409, 2021.
  • [31] Rui Chen. Can the newly reported Pcs(4459)P_{cs}(4459) be a strange hidden-charm ΞcD¯\Xi_{c}\bar{D}^{*} molecular pentaquark? Phys. Rev. D, 103(5):054007, 2021.
  • [32] Xiaohuang Hu and Jialun Ping. Investigation of hidden-charm pentaquarks with strangeness S=1S=-1. Eur. Phys. J. C, 82(2):118, 2022.
  • [33] C. W. Xiao, J. J. Wu, and B. S. Zou. Molecular nature of Pcs(4459)P_{cs}(4459) and its heavy quark spin partners. Phys. Rev. D, 103(5):054016, 2021.
  • [34] Jun-Tao Zhu, Shu-Yi Kong, and Jun He. Pψ\psisΛ\Lambda(4459) and Pψ\psisΛ\Lambda(4338) as molecular states in J/ψ\psiΛ\Lambda invariant mass spectra. Phys. Rev. D, 107(3):034029, 2023.
  • [35] Fu-Lai Wang, Si-Qiang Luo, Hong-Yan Zhou, Zhan-Wei Liu, and Xiang Liu. Exploring the electromagnetic properties of the Ξ\Xic(’,*)D¯s* and Ω\Omegac(*)D¯s* molecular states. Phys. Rev. D, 108(3):034006, 2023.
  • [36] S. X. Nakamura and J. J. Wu. Pole determination of PψsΛP_{\psi s}^{\Lambda}(4338) and possible PψsΛP_{\psi s}^{\Lambda}(4255) in BJ/ψΛp¯B^{-}\rightarrow J/\psi\Lambda\bar{p} . Phys. Rev. D, 108(1):L011501, 2023.
  • [37] Alessandro Giachino, Atsushi Hosaka, Elena Santopinto, Sachiko Takeuchi, Makoto Takizawa, and Yasuhiro Yamaguchi. Rich structure of the hidden-charm pentaquarks near threshold regions. arXiv:2209.10413 [hep-ph].
  • [38] S. X. Nakamura, A. Hosaka, and Y. Yamaguchi. Pc(4312)+P_{c}(4312)^{+} and Pc(4337)+P_{c}(4337)^{+} as interfering ΣcD¯\Sigma_{c}\bar{D} and ΛcD¯\Lambda_{c}\bar{D}^{*} threshold cusps. Phys. Rev. D, 104(9):L091503, 2021.
  • [39] Satoshi X. Nakamura. Pc(4312)+P_{c}(4312)^{+}, Pc(4380)+P_{c}(4380)^{+}, and Pc(4457)+P_{c}(4457)^{+} as double triangle cusps. Phys. Rev. D, 103:L111503, 2021.
  • [40] In Woo Park, Sungtae Cho, Yongsun Kim, and Su Houng Lee. Production of Pc(4312) state in electron-proton collisions. Phys. Rev. D, 105(11):114023, 2022.
  • [41] Mao-Jun Yan, Fang-Zheng Peng, Mario Sánchez Sánchez, and Manuel Pavon Valderrama. Interpretations of the new LHCb Pc(4337)+P_{c}(4337)^{+} pentaquark state. Eur. Phys. J. C, 82(6):574, 2022.
  • [42] Feng-Kun Guo, Hao-Jie Jing, Ulf-G Meißner, and Shuntaro Sakai. Isospin breaking decays as a diagnosis of the hadronic molecular structure of the Pc(4457)P_{c}(4457). Phys. Rev. D, 99(9):091501, 2019.
  • [43] Yong-Hui Lin and Bing-Song Zou. Strong decays of the latest LHCb pentaquark candidates in hadronic molecule pictures. Phys. Rev. D, 100(5):056005, 2019.
  • [44] Guang-Juan Wang, Li-Ye Xiao, Rui Chen, Xiao-Hai Liu, Xiang Liu, and Shi-Lin Zhu. Probing hidden-charm decay properties of PcP_{c} states in a molecular scenario. Phys. Rev. D, 102(3):036012, 2020.
  • [45] Thomas Gutsche and Valery E. Lyubovitskij. Structure and decays of hidden heavy pentaquarks. Phys. Rev. D, 100(9):094031, 2019.
  • [46] T. J. Burns and E. S. Swanson. Molecular interpretation of the PcP_{c}(4440) and PcP_{c}(4457) states. Phys. Rev. D, 100(11):114033, 2019.
  • [47] C. W. Xiao, J. X. Lu, J. J. Wu, and L. S. Geng. How to reveal the nature of three or more pentaquark states. Phys. Rev. D, 102(5):056018, 2020.
  • [48] T. J. Burns and E. S. Swanson. Production of Pc states in Λ\Lambdab decays. Phys. Rev. D, 106(5):054029, 2022.
  • [49] Zi-Yang Lin, Jian-Bo Cheng, Bo-Lin Huang, and Shi-Lin Zhu. PcP_{c} states and their open-charm decays with the complex scaling method. arXiv:2305.19073 [hep-ph].
  • [50] K. Azizi, Y. Sarac, and H. Sundu. Investigation of Pcs(4459)0P_{cs}(4459)^{0} pentaquark via its strong decay to ΛJ/Ψ\Lambda J/\Psi. Phys. Rev. D, 103(9):094033, 2021.
  • [51] Qi Wu, Dian-Yong Chen, and Ran Ji. Production of Pcs(4459)P_{cs}(4459) from Ξb\Xi_{b} Decay. Chin. Phys. Lett., 38(7):071301, 2021.
  • [52] Yan-Rui Liu, Hua-Xing Chen, Wei Chen, Xiang Liu, and Shi-Lin Zhu. Pentaquark and Tetraquark states. Prog. Part. Nucl. Phys., 107:237–320, 2019.
  • [53] Hua-Xing Chen, Wei Chen, Xiang Liu, Yan-Rui Liu, and Shi-Lin Zhu. An updated review of the new hadron states. Rept. Prog. Phys., 86(2):026201, 2023.
  • [54] Lu Meng, Bo Wang, Guang-Juan Wang, and Shi-Lin Zhu. Chiral perturbation theory for heavy hadrons and chiral effective field theory for heavy hadronic molecules. Phys. Rept., 1019:1–149, 2023.
  • [55] Halil Mutuk. Neural Network Study of Hidden-Charm Pentaquark Resonances. Chin. Phys. C, 43(9):093103, 2019.
  • [56] Jing Wu, Yan-Rui Liu, Kan Chen, Xiang Liu, and Shi-Lin Zhu. Hidden-charm pentaquarks and their hidden-bottom and BcB_{c}-like partner states. Phys. Rev. D, 95(3):034002, 2017.
  • [57] Jian-Bo Cheng and Yan-Rui Liu. Pc(4457)+P_{c}(4457)^{+}, Pc(4440)+P_{c}(4440)^{+}, and Pc(4312)+P_{c}(4312)^{+}: molecules or compact pentaquarks? Phys. Rev. D, 100(5):054002, 2019.
  • [58] Jing Wu, Yan-Rui Liu, Kan Chen, Xiang Liu, and Shi-Lin Zhu. X(4140)X(4140), X(4270)X(4270), X(4500)X(4500) and X(4700)X(4700) and their csc¯s¯cs\bar{c}\bar{s} tetraquark partners. Phys. Rev. D, 94(9):094031, 2016.
  • [59] Jing Wu, Xiang Liu, Yan-Rui Liu, and Shi-Lin Zhu. Systematic studies of charmonium-, bottomonium-, and BcB_{c}-like tetraquark states. Phys. Rev. D, 99(1):014037, 2019.
  • [60] Jian-Bo Cheng, Shi-Yuan Li, Yan-Rui Liu, Yu-Nan Liu, Zong-Guo Si, and Tao Yao. Spectrum and rearrangement decays of tetraquark states with four different flavors. Phys. Rev. D, 101(11):114017, 2020.
  • [61] Jing Wu, Yan-Rui Liu, Kan Chen, Xiang Liu, and Shi-Lin Zhu. Heavy-flavored tetraquark states with the QQQ¯Q¯QQ\bar{Q}\bar{Q} configuration. Phys. Rev. D, 97(9):094015, 2018.
  • [62] Si-Qiang Luo, Kan Chen, Xiang Liu, Yan-Rui Liu, and Shi-Lin Zhu. Exotic tetraquark states with the qqQ¯Q¯qq\bar{Q}\bar{Q} configuration. Eur. Phys. J. C, 77(10):709, 2017.
  • [63] Qin-Song Zhou, Kan Chen, Xiang Liu, Yan-Rui Liu, and Shi-Lin Zhu. Surveying exotic pentaquarks with the typical QQqqq¯QQqq\bar{q} configuration. Phys. Rev. C, 98(4):045204, 2018.
  • [64] Shi-Yuan Li, Yan-Rui Liu, Yu-Nan Liu, Zong-Guo Si, and Jing Wu. Pentaquark states with the QQQqq¯QQQq\bar{q} configuration in a simple model. Eur. Phys. J. C, 79(1):87, 2019.
  • [65] J. J. de Swart. The Octet model and its Clebsch-Gordan coefficients. Rev. Mod. Phys., 35:916–939, 1963. [Erratum: Rev.Mod.Phys. 37, 326–326 (1965)].
  • [66] Thomas A. Kaeding. Tables of SU(3) isoscalar factors. Atom. Data Nucl. Data Tabl., 61:233–288, 1995.
  • [67] R. L. Workman et al. Review of Particle Physics. PTEP, 2022:083C01, 2022.