This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Helicity transfer in strong laser fields via the electron anomalous magnetic moment

Yan-Fei Li [email protected] Department of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China    Yue-Yue Chen [email protected] Department of Physics, Shanghai Normal University, Shanghai 200234, China    Karen Z. Hatsagortsyan    Christoph H. Keitel Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
Abstract

Electron beam longitudinal polarization during the interaction with counterpropagating circularly-polarized ultraintense laser pulses is investigated, while accounting for the anomalous magnetic moment of the electron. Although it is known that the helicity transfer from the laser photons to the electron beam is suppressed in linear and nonlinear Compton scattering processes, we show that the helicity transfer nevertheless can happen via an intermediate step of the electron radiative transverse polarization, phase-matched with the driving field, followed up by spin rotation into the longitudinal direction as induced by the anomalous magnetic moment of the electron. With spin-resolved QED Monte Carlo simulations, we demonstrate the consequent helicity transfer from laser photons to the electron beam with a degree up to 10%, along with an electron radial polarization up to 65% after multiple photon emissions in a femtosecond timescale. This effect is detectable with currently achievable laser facilities, evidencing the role of the leading QED vertex correction to the electron anomalous magnetic moment in the polarization dynamics in ultrastrong laser fields.

The development of modern ultraintense laser facilities, with a record intensity already reaching 102310^{23} W/cm2 [1], brings about new possibilities for testing predictions of strong-field quantum electrodynamics (QED) theory. The typical field strength characterizing the strong-field QED regime is the Schwinger critical field ES=1.3×1016E_{S}=1.3\times 10^{16} V/cm (corresponding to the intensity of IS=4.6×1029I_{S}=4.6\times 10^{29}W/cm2) [2, 3]. While directly not attainable by lasers, the critical field can be achieved using the Lorentz boost of ultrarelativistic electrons in a head-on collision geometry [4], which enables the experimental study of nonlinear regimes of strong-field QED processes. In particular, recently such experiments are proposed at DESY (LUXE) [5], and at FACET-II (E320) in the Stanford Linear Accelerator Center (SLAC) [6].

In strong background fields electrons can be polarized due to the spin-flip during photon emissions, which was first discovered for synchrotron radiation [7, 8, 9, 10, 11] and termed as radiative polarization. Recently, the possibility has been proven of efficient radiative polarization using ultrastrong laser fields, applied to produce polarized electrons [12, 13] and positrons [14, 15, 16] in a femtosecond timescale, as well as for polarization transfer from electrons to γ\gamma-rays in laser fields [17, 18]. The polarization effects in strong laser fields have a capability of detecting the quantum stochastic nature of electron dynamics [19], diagnosing magnetic fields of plasma [20], and providing ultra-short, high-brilliance, low-emittance polarized beam sources for fundamental studies in high-energy physics [21, 22, 23] and material science [24, 25]. The completely spin- and photon-polarization-resolved probability rates for nonlinear Compton scattering have been derived from strong-field QED theory in the Furry picture for a plane-wave laser field [26], and for the locally constant fields [27], as well as via the quantum operator method [28], and employed for a deep analysis of all polarization channels, helicity transfer in the perturbative regime, and investigation of the polarization dependent energy and angle distributions [29]. Furthermore, the study of polarization effects has been extended to higher-order QED processes [30, 31, 32, 33, 34, 35], and QED cascades [36].

In radiative polarization the electron spin-flip is preferable along the instantaneous magnetic field in the rest-frame of the electron. Because of that in a storage ring or in ultrastrong laser fields initially unpolarized electrons are mostly polarized transversely after the interaction. Nevertheless, high-precision high-energy physics at accelerators demands longitudinal beam polarization, e.g., the Qweak experiment at Jefferson Lab [37] and E158 at SLAC [38]. Presently, one common way of producing circularly polarized electrons in accelerators is via photoemission induced by a circular polarized laser field from a solid [39, 40]. There were a series of attempts to employ Compton scattering for this purpose. While here the helicity of the laser photons is efficiently transferred to emitted γ\gamma-rays [41, 42], the longitudinal polarization of the scattered electrons is not efficient in the linear regime and suppressed in the nonlinear regime. Thus, the electron longitudinal polarization can reach only P103P_{\parallel}\sim 10^{-3} during a single photon emission in a circularly polarized laser field [43] at the laser strong field parameter a0=100a_{0}=100. Moreover, while scattered electrons in the Compton process are weakly polarized, the total longitudinal polarization of the electron beam is vanishing. This is due to the polarization of unscattered electrons, which exactly cancels that of scattered ones [44, 45]. The latter is explained as interference of the incoming electron wave function with that of the forward scattered one.

Recently, it has been demonstrated that QED radiative corrections, i.e., the interaction of the electron with its own radiation field, can also affect the electron spin dynamics in intense background fields [31, 32, 33]. In particular, due to QED loop corrections, the electrons exact spin-dependent wave function becomes unstable inside a strong background field, leading to 1% polarization for unscattered electrons [31, 32]. The latter provides the QED description of the polarization of unscattered electrons discussed in [44]. The spin effects resulted from the electron mass loop are also described as a spin rotation, which appeared to be more significant within the tail of a tightly focused laser beam [33]. Furthermore, there are experimental plans to reach the fully nonperturbative regime of QED employing beam-beam collisions in TeV-class lepton colliders [46, 47, 48, 49, 50, 51], when the effective field in the rest frame of electrons could be supercritical, and radiative corrections to QED processes nonperturbative and substantial.

In this Letter, we investigate the role of the electrons anomalous magnetic moment on the helicity transfer from a circularly polarized (CP) laser pulse to an ultrarelativistic electron beam for the nonlinear Compton scattering process in the radiation reaction dominated regime. The electron three-dimensional polarization properties are analyzed using numerical Monte Carlo simulations based on the spin-resolved radiation probabilities in the local constant field approximation (LCFA). While previous studies neglecting the QED radiative corrections came to a conclusion that the helicity transfer from laser photons to electrons is forbidden in the nonlinear Compton scattering process,we obtain a sizable longitudinal polarization of electrons when the one-loop QED vertex correction [52, 8] to the anomalous contribution to the magnetic moment is accounted for. A longitudinal polarization degree close to 3%3\% is shown, which could be further improved up to 10% with post-selection techniques. We prove the scenario of the helicity transfer. Initially, spin-flips during photon emissions induce electron transverse polarization which is phase-matched with the laser field. Due to the latter property and the anomalous correction to the magnetic moment [53, 54, 55], the oscillating transverse polarization is transformed into accumulated longitudinal polarization during the interaction. The latter demonstrates a signature of QED radiative corrections for electron polarization dynamics in ultrastrong laser fields. Additionally, the electron transverse radiative polarization with a degree over 60% is shown after the interaction, of interest for high-energy applications.

We model the laser-electron interaction process with the Monte Carlo method [56, 57, 58, 59], which treats the photon emissions quantum mechanically with the spin-resolved photon emission probabilities in the LCFA [12, 17]. The LCFA [60, 11, 61, 62, 63, 64] is valid at a0|e|E0/(mω0)1a_{0}\equiv|e|E_{0}/(m\omega_{0})\gg 1, when the coherence length of the photon emission, lλL/a0l\sim\lambda_{L}/a_{0}, is much smaller than the typical length of the trajectory (here the laser wavelength λL\lambda_{L}). Furthermore, E0E_{0} is the laser field amplitude, ω0\omega_{0} the laser frequency, and e(<0)e(<0), mm are the electron charge and mass, respectively. Relativistic units =c=1\hbar=c=1 are used throughout. The photon emission probability is determined by the local value of the quantum strong-field parameter χe|e|(Fμνpν)2/m3\chi_{e}\equiv|e|\sqrt{-(F_{\mu\nu}p^{\nu})^{2}}/m^{3}, where FμνF_{\mu\nu} is the field tensor and pνp^{\nu} the four-vector of electron momentum. The simulation method is the following [65]: The common statistical event generator is conducted at each simulation step to determine whether or not a photon-emission occurs. If a photon-emission occurs, the emitted photon energy is determined via the stochastic procedure and spectral probability, while the electron and photon polarizations via the averaged algorithm involving the density matrix for the mixed state of an electron ensemble [59, 66] to reduce the statistical fluctuation. If the photon-emission event is rejected, the electron spin changes according to the non-radiation probability [59, 14]. This no-emission spin variation originates from the radiative correction of the one-loop propagator correction where the electron propagator is modified by the process that a virtual photon is emitted and reabsorbed by the electron [31]. At first order in the fine-structure constant α\alpha, it cancels the longitudinal polarization of the electrons induced by emitting soft photons in a circularly polarized field [44, 67, 34]. In the regime a01a_{0}\sim 1, the cancellation is broken after including radiation reaction, leading to a nonzero longitudinal polarization of the final electrons [35].

The spin precession between photon emissions is governed by the Thomas-Bargmann-Michel-Telegdi equation [68]: d𝐒/dt=𝑺×𝑭{\rm d}{\bf S}/{\rm d}t=\bm{S}\times\bm{F}, with

𝑭\displaystyle{\bm{F}} =\displaystyle= em[(g21)γγ+1(𝜷𝐁)𝜷\displaystyle\frac{e}{m}\left[-\left(\frac{g}{2}-1\right)\frac{\gamma}{\gamma+1}\left({\bm{\beta}}\cdot{\bf B}\right){\bm{\beta}}\right. (1)
+(g21+1γ)𝐁(g2γγ+1)𝜷×𝐄],\displaystyle\left.+\left(\frac{g}{2}-1+\frac{1}{\gamma}\right){\bf B}-\left(\frac{g}{2}-\frac{\gamma}{\gamma+1}\right){\bm{\beta}}\times{\bf E}\right],

where 𝐄{\bf E} and 𝐁{\bf B} are the laser electric and magnetic fields, respectively, β1\beta\approx-1 the electron velocity, and gg the electron gyromagnetic factor. Taking into account the radiative correction to the first order of α\alpha in the interaction with the radiation field and being exact with respect to the external field [9],

g(χe)=2+2μ(χe),μ(χe)=απχe0y(1+y)3𝐋13(2y3χe)dy,g\left(\chi_{e}\right)=2+2\mu\left(\chi_{e}\right),\,\,\,\,\,\mu\left(\chi_{e}\right)=\frac{\alpha}{\pi\chi_{e}}\int_{0}^{\infty}\frac{y}{\left(1+y\right)^{3}}{\bf L}_{\frac{1}{3}}\left(\frac{2y}{3\chi_{e}}\right){\rm d}y, (2)

with 𝐋13(z)=0sin[3z2(x+x33)]dx{\bf L}_{\frac{1}{3}}\left(z\right)=\int_{0}^{\infty}{\rm sin}\left[\frac{3z}{2}\left(x+\frac{x^{3}}{3}\right)\right]{\rm d}x. At χe1\chi_{e}\ll 1, one obtains the Schwinger result g=2+απ2.00232g=2+\frac{\alpha}{\pi}\approx 2.00232. The electron dynamics is described by the Newton equation with the Lorentz force. The modification of the equation of motion due to the anomalous magnetic moment [69, 70] does not change the electron dynamics [65].

Refer to caption
(a)log10(𝒩e\mathcal{N}_{e})(b)PP_{\parallel}(c)|P||P_{\perp}|(d)

log(10{}_{10}(dNe~/[\widetilde{N_{e}}/[dθ\thetasin(θ)(\theta)])

P|PP_{\parallel}|P_{\perp}

θ\theta
Figure 1: (a) Distribution of electron number density log10(𝒩e\mathcal{N}_{e}), with 𝒩e=\mathcal{N}_{e}= dNe/[N_{e}/[dφ\varphidsinθ\sin\theta dθ\theta dϕ\phi]; (b) Average longitudinal polarization P=𝜷𝑺fP_{\parallel}={\bm{\beta}}\cdot{\bm{S}_{f}}; (c) Average transverse polarization |P|=|𝑺f𝜷𝑺f||P_{\perp}|=|{\bm{S}}_{f}-{\bm{\beta}}\cdot{\bm{S}_{f}}|, vs polar angle θ\theta in [155,180155^{\circ},180^{\circ}] and the azimuthal angle of φ\varphi in [0,3600^{\circ},360^{\circ}], respectively; (d) PP_{\parallel} (red-solid), PP_{\perp} (black-dashed) and log(10{}_{10}(dNe/[{N_{e}}/[dθ\thetasin(θ)(\theta)]) (yellow-dotted) at φ=180\varphi=180^{\circ} vs θ\theta, respectively.

The polarization effect of electrons is illustrated in Fig. 1. A right-hand CP tightly-focused Gaussian laser pulse is used, with peak intensity I02×1022I_{0}\approx 2\times 10^{22} W/cm2 (a0=1002)(a_{0}=100\sqrt{2}), pulse duration (FWHM) τ=5T0\tau=5T_{0}, with the laser period T0T_{0}, λ=1μ\lambda=1\mum, and focal radius w0=5λw_{0}=5\lambda. The counterpropagating cylindrical electron bunch has a length of Le=5λL_{e}=5\lambda and radius of we=1λw_{e}=1\lambda. Ne=106N_{e}=10^{6} unpolarized electrons are distributed longitudinally uniformly. The transverse distribution is Gaussian with the variance of σx,y=0.3λ\sigma_{x,y}=0.3\lambda. The initial electron kinetic energy is ε0=1\varepsilon_{0}=1 GeV, the energy spread Δε0/ε0=10%\Delta\varepsilon_{0}/\varepsilon_{0}=10\%, and the angular divergence (FWHM) Δθ=0.1\Delta\theta=0.1 mrad. The feasibility of our scheme for larger beam spreadings is shown in [65]. As the quantum parameter for pair creation χ¯γ|e|(Fμνkν)2/m30.0051\overline{\chi}_{\gamma}\equiv|e|\sqrt{-(F_{\mu\nu}k^{\nu})^{2}}/m^{3}\approx 0.005\ll 1, with kμ=(ω,𝒌)k^{\mu}=(\omega,{\bm{k}}) being the four-momentum of laser photons, the pair creation effect can be neglected [65].

After the interaction the scattered electrons concentrate in the center of the angle distribution, and have longitudinal, as well as transverse polarization, see Figs. 1(a)-(c). The average longitudinal polarization degree is not large P¯=1Nei=1Ne𝑺i𝜷i|𝜷i|\overline{P}_{\parallel}=\frac{1}{N_{e}}\sum\limits_{i=1}^{N_{e}}{\bm{S}_{i}}\cdot\frac{\bm{\beta}_{i}}{|\bm{\beta}_{i}|}\approx 2.65%, nevertheless exceeding by an order of magnitude the QED tree-level result P¯0.1%\overline{P}_{\parallel}\approx 0.1\% [43]. The electrons are highly polarized in the transverse plane with polarization vector pointing to the center of the beam. The electron number-density decreases exponentially from the center to the peripheries [Fig.1(d)], while the polarization PP_{\parallel} and PP_{\perp} increase with the deflection angle. Therefore, the polarization purity can be increased by selecting large angle electrons with post-momentum-angle selection techniques. Meanwhile, the longitudinal polarization degree can be increased by post-energy-selection due to the PP_{\parallel} dependency on the electrons energy [Fig. 2]. Higher PP_{\parallel} can be obtained by collecting low energy electrons. For instance, by collecting the electrons with energies less than 45 MeV, we can get a polarization degree of P=10%P_{\parallel}=10\% with the percentage of number of 1%.

Refer to caption

PP_{\parallel}

log10(dNeN_{e}/dεe\varepsilon_{e})

εe\varepsilon_{e}(MeV)
Figure 2: Longitudinal polarization PP_{\parallel}, and number density log10(dNeN_{e}/dεe\varepsilon_{e}) (MeV-1), versus final electron energy εe\varepsilon_{e}, respectively.
Refer to caption
(a)

a.u.

t/T0t/T_{0}

SxS_{x}

ExE_{x}pyp_{y}SxS_{x}(b)

a.u.

t/T0t/T_{0}

SyS_{y}

EyE_{y}pxp_{x}SyS_{y}(c)

SzS_{z}

t/T0t/T_{0}g(χe)g(\chi_{e})g=2g=2w/o RP(d)ωγ/ε0\omega_{\gamma}/\varepsilon_{0}𝒯1\mathcal{T}_{1}𝒯2\mathcal{T}_{2}𝒯3\mathcal{T}_{3}
Figure 3: The evolution of the field and electron parameters: (a) ExE_{x}, pyp_{y} and SxS_{x}; (b) EyE_{y}, pxp_{x} and SyS_{y}; (c) SzS_{z} for g=g(χe)g=g(\chi_{e}) (red solid), g=2g=2 (blue dotted), and g=g(χe)g=g(\chi_{e}) but without radiative polarization (magenta dashed), for an initially unpolarized electron beam. The electron spin dynamics is calculated numerically with Eq.(3). At t=0t=0 the peak of the laser pulse reaches the focal spot. The field and momentum components are normalized to their maximum. Radiation reaction for the electron momenta is neglected for simplicity [71]. (d) The values of the three terms in Eq.(5) are defined as 𝒯1=1a{u2K2/3uK1/3[𝑺i(𝜷×𝒔)]}\mathcal{T}_{1}=\frac{1}{a}\{u^{2}\textrm{K}_{2/3}-u\textrm{K}_{1/3}[{\bm{S}}_{i}\cdot({\bm{\beta}}\times\bm{s})]\}, 𝒯2=1a{u2IntK1/3uK1/3[𝑺i(𝜷×𝒔)]}\mathcal{T}_{2}=\frac{1}{a}\{u^{2}\textrm{IntK}_{1/3}-u\textrm{K}_{1/3}[{\bm{S}}_{i}\cdot({\bm{\beta}}\times\bm{s})]\} and 𝒯3=1au(1+u)K1/3(𝜷×𝒔)\mathcal{T}_{3}=\frac{1}{a}u(1+u)\textrm{K}_{1/3}({\bm{\beta}}\times\bm{s}), with a=(1+u)IntK1/3(2+2u+u2)K2/3+𝑺i(𝜷×𝒔)uK1/3a=(1+u)\mathrm{IntK_{1/3}}-(2+2u+u^{2})\mathrm{K_{2/3}}+\bm{S}_{i}\cdot({\bm{\beta}}\times\bm{s})u\mathrm{K_{1/3}} and Si=0.01S_{i}=0.01, 𝑺i\bm{S}_{i} is parallel to (𝜷×𝒔)({\bm{\beta}}\times\bm{s}).

The reason for the electron beam polarization is analyzed in Fig. 3. Without radiation reaction, the electrons typically move along a spiral trajectory in the CP laser pulse, with the transverse momentum perpendicular to the electric field [Figs. 3(a,b)]. In each time step, the spin vector of an electron flips to the direction parallel or anti-parallel to the instantaneous spin quantization axis according to the quantum probabilities [14]. The evolution of polarization of an electron ensemble including both effects of spin-flip and spin precession is described by the following equation [9]:

d𝑺dt\displaystyle\frac{d\bm{S}}{dt} =\displaystyle= 𝑺×𝑭αm3πγ0u2du(1+u)3(K2/3𝑺\displaystyle{\bm{S}}\times{\bm{F}}-\frac{\alpha m}{\sqrt{3}\pi\gamma}\int_{0}^{\infty}\frac{u^{2}du}{\left(1+u\right)^{3}}\left(\mathrm{K_{2/3}}\bm{S}\right. (3)
+(IntK1/3K2/3)(𝑺𝜷)𝜷+(𝜷×𝒂)K1/3),\displaystyle\left.+\left(\mathrm{IntK_{1/3}}-\mathrm{K_{2/3}}\right)\left(\bm{S}\cdot\bm{\beta}\right)\bm{\beta}+\left(\bm{\beta}\times\bm{a}\right)\mathrm{K_{1/3}}\right),

where IntK13udzK13(z){\rm IntK}_{\frac{1}{3}}\equiv\int_{u^{\prime}}^{\infty}{\rm d}z{\rm K}_{\frac{1}{3}}(z), K2/3=K2/3(u){\rm K}_{2/3}={\rm K}_{2/3}(u^{\prime}), K1/3=K1/3(u){\rm K}_{1/3}={\rm K}_{1/3}(u^{\prime}), Kn{\rm K}_{n} is the nthn^{\rm th}-order modified Bessel function of the second kind, u=2u/3χeu^{\prime}=2u/3\chi_{e}, u=ωγ/(ε0ωγ)u=\omega_{\gamma}/(\varepsilon_{0}-\omega_{\gamma}), ε0\varepsilon_{0} the electron energy, ωγ\omega_{\gamma} the photon energy, and 𝒂=𝜷˙/|𝜷˙|\bm{a}=\dot{\bm{\beta}}/|\dot{\bm{\beta}}|. As shown in Figs. 3 (a)-(c), the transverse polarization 𝑺\bm{S_{\perp}} oscillates synchronously with 𝑬\bm{E}, and |Sz||S_{z}| builds up exponentially. The phase matching between Sx,yS_{x,y} and Ex,yE_{x,y} follows from the domination of the last term in Eq. (3) for 𝑺\bm{S_{\perp}}. In fact, K2/3|𝑺|K1/3\mathrm{K_{2/3}}|\bm{S_{\perp}}|\ll\mathrm{K_{1/3}}, and the spin precession role [first term in Eq. (3)] is known to be minor for the transverse radiative polarization. Consequently, d𝑺/dtd\bm{S_{\perp}}/dt is parallel to 𝜷×𝒂-\bm{\beta}\times\bm{a}, and thus, 𝑺\bm{S_{\perp}} is parallel to 𝑬\bm{E}. We analyze the accumulation of the longitudinal polarization:

dSdt\displaystyle\frac{dS_{\parallel}}{dt} =\displaystyle= em𝑺[(g21)𝜷×𝐁+(gβ21β)𝐄]\displaystyle-\frac{e}{m}{\bm{S}_{\perp}}\cdot\left[\left(\frac{g}{2}-1\right){{\bm{\beta}}}\times{\bf B}+\left(\frac{g\beta}{2}-\frac{1}{\beta}\right){\bf E}\right] (4)
αm3πγS0u2du(1+u)3IntK1/3,\displaystyle-\frac{\alpha m}{\sqrt{3}\pi\gamma}S_{\parallel}\int_{0}^{\infty}\frac{u^{2}du}{\left(1+u\right)^{3}}\mathrm{IntK_{1/3}},

with the use of Eq. (11.171) in [72]. For an initially unpolarized electrons beam, the longitudinal polarization arises due to the 𝑺\bm{S_{\perp}} term, connected to the spin procession, which can be approximated as dS/dt2em(g21)𝑺𝐄dS_{\parallel}/dt\approx-\frac{2e}{m}(\frac{g}{2}-1){\bm{S}_{\perp}}\cdot{\bf E}, taking account of Si=0S^{i}_{\parallel}=0, β1\beta\approx 1 and 𝜷𝒌{\bm{\beta}}\parallel-{\bm{k}}. As well known, the Dirac theory predicts precisely g=2, which leads to vanishing longitudinal polarization [Fig.3(c)]. However, the QED loop corrections induce an anomalous contribution to the electron’s magnetic moment, g2g\neq 2 [Eq. (2)], which results in rotation of the transverse polarization to longitudinal direction in the case when 𝑺\bm{S}_{\perp} and 𝑬\bm{E} are phase matched. Note that, the phase matching of 𝑺\bm{S}_{\perp} and 𝑬\bm{E} is a unique feature of electrons in a counter propagating circularly polarized laser field, and consequently such a configuration is essential for producing PP_{\parallel} [65]. Therefore, the electron anomalous magnetic moment is the origin of helicity transfer. Our estimation of 𝑺{\bm{S}_{\parallel}} via Eq. (3) yields P=3.26%P_{\parallel}=3.26\% after the interaction, which is in accordance with the simulation result. Thus, even though the spin precession is trivial for the well-studied transverse polarization in strong-field QED [12, 9, 13], it plays an essential role in generating longitudinal polarization. The correlation between anomalous magnetic moment and longitudinal polarization may consequently provide new potential of accurately measuring g/21g/2-1. For instance, the maximum and the changing rate of the averaged polarization degree exclusively depend on the anomalous magnetic moment, which would be sensitive measures of the anomaly g/21g/2-1 [73].

Moreover, the Monte-Carlo simulation reveals a radial polarization feature of the electron beam with absolute value PP_{\perp} up to 65% [Fig. 1(c)]. Even though the averaged transverse polarization is negligible due to the cancellation from opposite angles, which coincides with the prediction of modified BMT equations [Fig. 3(a,b)], it is possible to collect electrons in a certain angle to obtain a high transverse polarization, as well as a high longitudinal polarization by applying a spin-rotating system [12]. We can give a simple estimation of the radial polarization using the spin-flip transition probabilities, which determine the spin change after a photon emission [12, 14]:

Δ𝑺R=[u2K2/3uK1/3[𝑺i(𝜷×𝒂)]]𝑺+[u2IntK1/3uK1/3[𝑺i(𝜷×𝒂)]]𝑺+u(1+u)K1/3(𝜷×𝒂)(1+u)IntK1/3(2+2u+u2)K2/3+𝑺i(𝜷×𝒂)uK1/3.\Delta{\bm{S}^{R}}=\frac{\left[u^{2}\textrm{K}_{2/3}-u\textrm{K}_{1/3}\left[\bm{S}_{i}\cdot\left(\bm{\beta}\times\bm{a}\right)\right]\right]\bm{S}_{\perp}+\left[u^{2}\textrm{IntK}_{1/3}-u\textrm{K}_{1/3}\left[\bm{S}_{i}\cdot\left(\bm{\beta}\times\bm{a}\right)\right]\right]\bm{S}_{\parallel}+u\left(1+u\right)\textrm{K}_{1/3}\left(\bm{\beta}\times\bm{a}\right)}{(1+u)\mathrm{IntK_{1/3}}-(2+2u+u^{2})\mathrm{K_{2/3}}+\bm{S}_{i}\cdot({\bm{\beta}}\times\bm{a})u\mathrm{K_{1/3}}}. (5)

The initial spin 𝑺i\bm{S}_{i} is taken as the average polarization of the ensemble shown in Fig.3 (a)-(c), i.e. |𝑷|102|{\bm{P}_{\perp}}|\sim 10^{-2} and |𝑷|102|{\bm{P}_{\parallel}}|\sim 10^{-2}. In this case, the fist two terms of Eq. (5) are negligible compared with the last term since |𝑺|1|\bm{S}|\ll 1, and the remaining terms with modified Bessel functions are comparable, see Fig.3 (d). Consequently, the change of transverse spin is estimated as Δ𝑺R𝜷×𝒂\Delta{\bm{S}^{R}_{\perp}}\propto-{\bm{\beta}}\times\bm{a}, anti-parallel to the momentum of the scattered electron after one photon-emission [65]. This feature is preserved during multiple photon emissions, yielding the radial transverse electron polarization [Fig. 1(c)].

Since the transverse polarization |Δ𝑺R||\Delta\bm{S}^{R}_{\perp}| increases with the emitted photon energy [65], the electrons that experience more energy loss obtain higher transverse polarization, which subsequently contributes to higher longitudinal polarization according to Eq. (4). Meanwhile, as the deflection angle of electron θD1/γ\theta_{D}\sim 1/\gamma, the transverse polarization degree increases with the decrease of θ\theta [Fig.1(d)]. Therefore, PP_{\parallel} is inversely proportional to εe\varepsilon_{e} and θ\theta [Figs. 1(d), 2]. The above analysis is not relevant for scattered electrons with energy higher than 135 MeV, corresponding to those within angle of θ>167\theta>167^{\circ}. These electrons are polarized opposite to the laser helicity and the polarization degree increases with εe\varepsilon_{e} and θ\theta [Fig. 2]. This counterintuitive polarization feature highlights two different contributions of QED loop effects to the electron polarization in background fields. Firstly, the loop effects induce anomalous magnetic moment g>2g>2, which yields the rotation of the radiative transverse polarization into the longitudinal direction. Secondly, the loop effects result in varying the electron spin even without photon emissions [31]. The latter effect is included in our Monte Carlo simulations by means of an additional no-photon-emission probability for the spin-flip [59]. We estimate this effect via turning off artificially the photon-emission in the modified BMT equation [65]:

d𝑺NRdt\displaystyle\frac{d\bm{S}^{NR}}{dt} =\displaystyle= em[𝑺×𝑭]αm3πγ0du(1+u)3{[𝑺(𝜷×𝒂)\displaystyle\frac{e}{m}\left[\bm{S}\times\bm{F}\right]-\frac{\alpha m}{\sqrt{3}\pi\gamma}\int_{0}^{\infty}\frac{du}{\left(1+u\right)^{3}}\left\{\left[\bm{S}\cdot({\bm{\beta}}\times\bm{a})\right.\right. (6)
uK1/3]𝑺(𝜷×𝒂)uK1/3}.\displaystyle\left.\left.u\mathrm{K_{1/3}}\right]\bm{S}-({\bm{\beta}}\times\bm{a})u\mathrm{K_{1/3}}\right\}.

Compared with Eq. (3), the dominant term (𝜷×𝒂)({\bm{\beta}}\times\bm{a}) has opposite sign. Thus, if the transverse spin dynamics is governed by no-emission polarization, the phase of 𝑺{\bm{S}}_{\perp} is opposite to 𝑬{\bm{E}}. Consequently, the energetic electrons obtain a negative longitudinal polarization [Fig.3(c)] due to polarization rotation associated with anomalous magnetic moment, i.e. P=Pz𝐒𝐄<0P_{\parallel}=-P_{z}\propto{\bf S_{\perp}}\cdot{\bf E}<0, which is opposite to the low-energy electrons in the remaining contribution to the spectrum, as shown in Fig. 2.

Refer to caption
(a)

τ/T0\tau/T_{0}

ε0\varepsilon_{0}PP_{\parallel}(b)

τ/T0\tau/T_{0}

ε0\varepsilon_{0}PP_{\parallel}
Figure 4: The dependence of the longitudinal polarization PP_{\parallel} on the laser duration τ\tau and the initial electron energy ε0\varepsilon_{0} at the laser intensity of a0=1002a_{0}=100\sqrt{2} and 50250\sqrt{2}, respectively.

The impacts of the laser and electron beam parameters on the longitudinal polarization are analyzed in Fig. 4. With the increase of ε0\varepsilon_{0} and a0a_{0}, the transverse polarization PP_{\perp} increases since radiative polarization is enhanced for a larger radiation loss scaled by χe5×106a0γ\chi_{e}\approx 5\times 10^{-6}a_{0}\gamma , and consequently, the longitudinal polarization PP_{\parallel} grows. While for a certain ε0\varepsilon_{0} and a0a_{0}, PP_{\parallel} rises at first and then declines with respect to τ\tau. Without radiation reaction, one would expect a monotonously increase of PP_{\parallel} with the increase of interaction time from Eq.(3). Unfortunately, radiation reaction breaks the phase correlation between 𝑺{\bm{S}}_{\perp} and 𝑬{\bm{E}}, and disrupts the longitudinal polarization built at the preliminary stage of the interaction, resulting in the decrease of PP_{\parallel} for a long laser pulse [65].

Concluding, we have analyzed the role of the anomalous magnetic moment and no-photon-emission spin dynamics, i.e. effects which both are consequences of QED radiative corrections, for electron polarization in the radiation dominated regime with multiple photon emissions. We showed that exclusively due to these effects helicity transfer is possible from CP laser photons to electrons in ultrastrong field regime a01a_{0}\gg 1,

which challenged the belief that circularly polarized laser beams cannot induce high longitudinal polarization. This signature is robust with respect to the laser and electron parameters and measurable with currently available experimental technology. It could serve for testing QED predictions on radiative corrections.

Acknowledgement: The authors thank Y.-T. Li, W.-M. Wang and Q.-Z. Lv for helpful discussions. This work is supported by the National Natural Science Foundation of China (Grants No. 12075187, and No. 11804269), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, Shanghai Rising-Star Program.

References

  • Yoon et al. [2021] J. W. Yoon, Y. G. Kim, I. W. Choi, J. H. Sung, H. W. Lee, S. K. Lee, and C. H. Nam, Realization of laser intensity over 102310^{23} w/cm2, Optica 8, 630 (2021).
  • Schwinger [1951] J. Schwinger, On gauge invariance and vacuum polarization, Physical Review 82, 664 (1951).
  • Di Piazza et al. [2012] A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems, Rev. Mod. Phys. 84, 1177 (2012).
  • Jackson [1999a] J. D. Jackson, Classical electrodynamics (American Association of Physics Teachers, 1999).
  • Abramowicz et al. [2019] H. Abramowicz, M. Altarelli, R. Aßmann, T. Behnke, Y. Benhammou, O. Borysov, M. Borysova, R. Brinkmann, F. Burkart, K. Büßer, et al., Letter of intent for the luxe experiment, arXiv preprint arXiv:1909.00860  (2019).
  • [6] The FACET-II SFQED Collaboration, Probing strong-field QED at FACET-II (SLAC E-320) (unpublished).
  • Sokolov and Ternov [1964] A. A. Sokolov and I. M. Ternov, Sov. Phys. Dokl. 8, 1203 (1964).
  • Baier et al. [1971] V. Baier, V. Katkov, and V. Strakhovenko, Radiative effects in an external electromagnetic field., in Soviet Physics Doklady, Vol. 16 (1971) p. 230.
  • Baǐer [1972] V. N. Baǐer, Radiative polarization of electrons in storage rings, Sov. Phys. Usp. 14, 695 (1972).
  • Derbenev and Kondratenko [1973] Y. Derbenev and A. M. Kondratenko, Polarization kinematics of particles in storage rings, Zh. Èksper. Teoret. Fiz. 64, 1918 (1973).
  • Baier et al. [1998] V. N. Baier, V. M. Katkov, and V. M. Strakhovenko, Electromagnetic Processes at High Energies in Oriented Single Crystals (World Scientific, Singapore, 1998).
  • Li et al. [2019] Y.-F. Li, R. Shaisultanov, K. Z. Hatsagortsyan, F. Wan, C. H. Keitel, and J.-X. Li, Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse, Phys. Rev. Lett. 122, 154801 (2019).
  • Seipt et al. [2019] D. Seipt, D. Del Sorbo, C. P. Ridgers, and A. G. R. Thomas, Ultrafast polarization of an electron beam in an intense bichromatic laser field, Phys. Rev. A 100, 061402 (2019).
  • Li et al. [2020a] Y.-F. Li, Y.-Y. Chen, W.-M. Wang, and H.-S. Hu, Production of highly polarized positron beams via helicity transfer from polarized electrons in a strong laser field, Phys. Rev. Lett. 125, 044802 (2020a).
  • Chen et al. [2019] Y.-Y. Chen, P.-L. He, R. Shaisultanov, K. Z. Hatsagortsyan, and C. H. Keitel, Polarized positron beams via intense two-color laser pulses, Phys. Rev. Lett. 123, 174801 (2019).
  • Wan et al. [2020] F. Wan, R. Shaisultanov, Y.-F. Li, K. Z. Hatsagortsyan, C. H. Keitel, and J.-X. Li, Ultrarelativistic polarized positron jets via collision of electron and ultraintense laser beams, Physics Letters B 800, 135120 (2020).
  • Li et al. [2020b] Y.-F. Li, R. Shaisultanov, Y.-Y. Chen, F. Wan, K. Z. Hatsagortsyan, C. H. Keitel, and J.-X. Li, Polarized ultrashort brilliant multi-gev γ\gamma rays via single-shot laser-electron interaction, Phys. Rev. Lett. 124, 014801 (2020b).
  • Tang et al. [2020] S. Tang, B. King, and H. Hu, Highly polarised gamma photons from electron-laser collisions, Physics Letters B 809, 135701 (2020).
  • Guo et al. [2020] R.-T. Guo, Y. Wang, R. Shaisultanov, F. Wan, Z.-F. Xu, Y.-Y. Chen, K. Z. Hatsagortsyan, and J.-X. Li, Stochasticity in radiative polarization of ultrarelativistic electrons in an ultrastrong laser pulse, Phys. Rev. Research 2, 033483 (2020).
  • Gong et al. [2021] Z. Gong, K. Z. Hatsagortsyan, and C. H. Keitel, Retrieving transient magnetic fields of ultrarelativistic laser plasma via ejected electron polarization, Phys. Rev. Lett. 127, 165002 (2021).
  • Moortgat-Pick et al. [2008] G. Moortgat-Pick, T. Abe, G. Alexander, B. Ananthanarayan, A. Babich, V. Bharadwaj, D. Barber, A. Bartl, A. Brachmann, S. Chen, J. Clarke, J. Clendenin, J. Dainton, K. Desch, M. Diehl, B. Dobos, T. Dorland, H. Dreiner, H. Eberl, J. Ellis, K. Flöttmann, H. Fraas, F. Franco-Sollova, F. Franke, A. Freitas, J. Goodson, J. Gray, A. Han, S. Heinemeyer, S. Hesselbach, T. Hirose, K. Hohenwarter-Sodek, A. Juste, J. Kalinowski, T. Kernreiter, O. Kittel, S. Kraml, U. Langenfeld, W. Majerotto, A. Martinez, H.-U. Martyn, A. Mikhailichenko, C. Milstene, W. Menges, N. Meyners, K. Mönig, K. Moffeit, S. Moretti, O. Nachtmann, F. Nagel, T. Nakanishi, U. Nauenberg, H. Nowak, T. Omori, P. Osland, A. Pankov, N. Paver, R. Pitthan, R. Pöschl, W. Porod, J. Proulx, P. Richardson, S. Riemann, S. Rindani, T. Rizzo, A. Schälicke, P. Schüler, C. Schwanenberger, D. Scott, J. Sheppard, R. Singh, A. Sopczak, H. Spiesberger, A. Stahl, H. Steiner, A. Wagner, A. Weber, G. Weiglein, G. Wilson, M. Woods, P. Zerwas, J. Zhang, and F. Zomer, Polarized positrons and electrons at the linear collider, Phys. Rep. 460, 131 (2008).
  • Subashiev et al. [1998] A. V. Subashiev, Y. P. Yashin, J. E. Clendenin, and Y. A.Mamaev, Spin polarized electrons: Generation and applications, Phys. Low Dimens. Struct. 1 (1998), [SLAC PUB 8035 (1998)] .
  • Elouadrhiri et al. [2009] L. Elouadrhiri, T. A. Forest, J. Grames, W. Melnitchouk, and E. Voutier, Proceedings of the international workshop on positrons at jefferson lab, AIP Conf. Proc. 1160 (2009).
  • Rich et al. [1987] A. Rich, J. V. House, D. W. Gidley, and R. S. Conti, Spin-polarized low-energy positron beams and their applications, Appl. Phys. A 43, 275 (1987).
  • Gidley et al. [1982] D. W. Gidley, A. R. Köymen, and T. W. Capehart, Polarized low-energy positrons: A new probe of surface magnetism, Phys. Rev. Lett. 49, 1779 (1982).
  • Ivanov et al. [2004] D. Y. Ivanov, G. L. Kotkin, and V. G. Serbo, Complete description of polarization effects in emission of a photon by an electron in the field of a strong laser wave, Eur. Phys. J. C 36, 127 (2004).
  • Seipt and King [2020] D. Seipt and B. King, Spin- and polarization-dependent locally-constant-field-approximation rates for nonlinear compton and breit-wheeler processes, Phys. Rev. A 102, 052805 (2020).
  • Wistisen and Di Piazza [2019] T. Wistisen and A. Di Piazza, Numerical approach to the semiclassical method of radiation emission for arbitrary electron spin and photon polarization, Physical Review D 100, 116001 (2019).
  • King and Tang [2020] B. King and S. Tang, Nonlinear compton scattering of polarized photons in plane-wave backgrounds, Physical Review A 102, 022809 (2020).
  • Baier et al. [1975] V. N. Baier, V. M. Katkov, A. I. Milshtein, and Strakhovenko, The theory of quantum processes in the field of a strong electromagnetic wave, Zh. Eksp. Teor. Fiz 69, 783 (1975).
  • Meuren and Di Piazza [2011] S. Meuren and A. Di Piazza, Quantum electron self-interaction in a strong laser field, Phys. Rev. Lett. 107, 260401 (2011).
  • Podszus and Di Piazza [2021] T. Podszus and A. Di Piazza, First-order strong-field qed processes including the damping of particle states, Physical Review D 104, 016014 (2021).
  • Ilderton et al. [2020] A. Ilderton, B. King, and S. Tang, Loop spin effects in intense background fields, Phys. Rev. D 102, 076013 (2020).
  • Torgrimsson [2021a] G. Torgrimsson, Loops and polarization in strong-field QED, New J. Phys. 23, 065001 (2021a).
  • Torgrimsson [2021b] G. Torgrimsson, Resummation of quantum radiation reaction and induced polarization, Physical Review D 104, 056016 (2021b).
  • Seipt et al. [2021] D. Seipt, C. P. Ridgers, D. D. Sorbo, and A. G. R. Thomas, Polarized QED cascades, New Journal of Physics 23, 053025 (2021).
  • Carlini et al. [2012] R. D. Carlini, J. Finn, S. Kowalski, S. Page, D. Armstrong, A. Asaturyan, T. Averett, J. Benesch, J. Birchall, P. Bosted, et al., The qweak experiment: A search for new physics at the tev scale via a measurement of the proton’s weak charge, arXiv preprint arXiv:1202.1255  (2012).
  • Kowalski [2020] S. Kowalski, Parity-violating electron scattering, HNPS Advances in Nuclear Physics 15, 2 (2020).
  • Pierce and Meier [1976] D. T. Pierce and F. Meier, Photoemission of spin-polarized electrons from gaas, Phys. Rev. B 13, 5484 (1976).
  • Swartz [1988] M. Swartz, Physics with polarized beams, Report No. SLAC-PUB-4656  (1988).
  • Ohgaki et al. [1996] H. Ohgaki, T. Noguchi, S. Sugiyama, T. Mikado, M. Chiwaki, K. Yamada, R. Suzuki, N. Sei, T. Ohdaira, and T. Yamazaki, Polarized gamma-rays with laser-compton backscattering, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 375, 602 (1996), proceedings of the 17th International Free Electron Laser Conference.
  • Omori et al. [2006] T. Omori, M. Fukuda, T. Hirose, Y. Kurihara, R. Kuroda, M. Nomura, A. Ohashi, T. Okugi, K. Sakaue, T. Saito, J. Urakawa, M. Washio, and I. Yamazaki, Efficient propagation of polarization from laser photons to positrons through compton scattering and electron-positron pair creation, Phys. Rev. Lett. 96, 114801 (2006).
  • Seipt et al. [2018] D. Seipt, D. Del Sorbo, C. P. Ridgers, and A. G. R. Thomas, Theory of radiative electron polarization in strong laser fields, Phys. Rev. A 98, 023417 (2018).
  • Kotkin et al. [2003] G. L. Kotkin, V. G. Serbo, and V. I. Telnov, Electron (positron) beam polarization by compton scattering on circularly polarized laser photons, Phys. Rev. ST Accel. Beams 6, 011001 (2003).
  • Karlovets [2011] D. V. Karlovets, Radiative polarization of electrons in a strong laser wave, Phys. Rev. A 84, 062116 (2011).
  • Di Piazza et al. [2020] A. Di Piazza, T. Wistisen, M. Tamburini, and U. Uggerhøj, Testing strong field qed close to the fully nonperturbative regime using aligned crystals, Physical review letters 124, 044801 (2020).
  • Blackburn et al. [2019] T. Blackburn, A. Ilderton, M. Marklund, and C. Ridgers, Reaching supercritical field strengths with intense lasers, New Journal of Physics 21, 053040 (2019).
  • Baumann et al. [2019] C. Baumann, E. Nerush, A. Pukhov, and I. Y. Kostyukov, Probing non-perturbative qed with electron-laser collisions, Scientific reports 9, 1 (2019).
  • Fedotov [2017] A. Fedotov, Conjecture of perturbative qed breakdown at α\alphaχ\chi2/3\gtrsim1, in Journal of Physics: Conference Series, Vol. 826 (IOP Publishing, 2017) p. 012027.
  • Yakimenko et al. [2019] V. Yakimenko, S. Meuren, F. Del Gaudio, C. Baumann, A. Fedotov, F. Fiuza, T. Grismayer, M. Hogan, A. Pukhov, L. Silva, et al., Prospect of studying nonperturbative qed with beam-beam collisions, Physical review letters 122, 190404 (2019).
  • Mironov et al. [2020] A. A. Mironov, S. Meuren, and A. M. Fedotov, Resummation of qed radiative corrections in a strong constant crossed field, Phys. Rev. D 102, 053005 (2020).
  • Ritus [1970] V. Ritus, Radiative effects and their enhancement in an intense electromagnetic field, Sov. Phys. JETP 30, 052805 (1970).
  • Hanneke et al. [2008] D. Hanneke, S. Fogwell, and G. Gabrielse, New measurement of the electron magnetic moment and the fine structure constant, Phys. Rev. Lett. 100, 120801 (2008).
  • Sturm et al. [2011] S. Sturm, A. Wagner, B. Schabinger, J. Zatorski, Z. Harman, W. Quint, G. Werth, C. H. Keitel, and K. Blaum, gg factor of hydrogenlike Si13+28{}^{28}\mathrm{Si}^{13+}Phys. Rev. Lett. 107, 023002 (2011).
  • Abi et al. [2021] B. Abi, T. Albahri, S. Al-Kilani, and et al. (Muon g2g-2 Collaboration), Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021).
  • Ridgers et al. [2014] C. Ridgers, J. Kirk, R. Duclous, T. Blackburn, C. Brady, K. Bennett, T. Arber, and A. Bell, Modelling gamma-ray photon emission and pair production in high-intensity laser–matter interactions, Journal of Computational Physics 260, 273 (2014).
  • Elkina et al. [2011] N. V. Elkina, A. M. Fedotov, I. Y. Kostyukov, M. V. Legkov, N. B. Narozhny, E. N. Nerush, and H. Ruhl, Qed cascades induced by circularly polarized laser fields, Phys. Rev. ST Accel. Beams 14, 054401 (2011).
  • Gonoskov et al. [2015] A. Gonoskov, S. Bastrakov, E. Efimenko, A. Ilderton, M. Marklund, I. Meyerov, A. Muraviev, A. Sergeev, I. Surmin, and E. Wallin, Extended particle-in-cell schemes for physics in ultrastrong laser fields: Review and developments, Phys. Rev. E 92, 023305 (2015).
  • of CAIN Version 2. [42] U. M. of CAIN Version 2.42,  http://lcdev.kek.jp/~yokoya/CAIN/.
  • Ritus [1985] V. I. Ritus, J. Sov. Laser Res. 6, 497 (1985).
  • Di Piazza et al. [2018] A. Di Piazza, M. Tamburini, S. Meuren, and C. H. Keitel, Implementing nonlinear compton scattering beyond the local-constant-field approximation, Phys. Rev. A 98, 012134 (2018).
  • Di Piazza et al. [2019] A. Di Piazza, M. Tamburini, S. Meuren, and C. H. Keitel, Improved local-constant-field approximation for strong-field qed codes, Phys. Rev. A 99, 022125 (2019).
  • Ilderton et al. [2019] A. Ilderton, B. King, and D. Seipt, Extended locally constant field approximation for nonlinear compton scattering, Phys. Rev. A 99, 042121 (2019).
  • Lv et al. [2021] Q. Lv, E. Raicher, C. Keitel, and K. Hatsagortsyan, Anomalous violation of the local constant field approximation in colliding laser beams, Physical Review Research 3, 013214 (2021).
  • [65] See Supplemental Materials for details on the applied theoretical model, simulated results for other laser and electron parameters, one-loop effects, and impact of laser polarization.
  • Tang et al. [2021] Y. Tang, Z. Gong, J. Yu, Y. Shou, and X. Yan, Radiative polarization dynamics of relativistic electrons in an intense electromagnetic field, Phys. Rev. A 103, 042807 (2021).
  • Kotkin et al. [1998] G. Kotkin, H. Perlt, and V. Serbo, Polarization of high-energy electrons traversing a laser beam, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 404, 430 (1998).
  • Bargmann et al. [1959] V. Bargmann, L. Michel, and V. L. Telegdi, Precession of the polarization of particles moving in a homogeneous electromagnetic field, Phys. Rev. Lett. 2, 435 (1959).
  • Wen et al. [2016] M. Wen, H. Bauke, and C. H. Keitel, Identifying the stern-gerlach force of classical electron dynamics, Scientific Reports 6, 31624 (2016).
  • Formanek et al. [2021] M. Formanek, A. Steinmetz, and J. Rafelski, Motion of classical charged particles with magnetic moment in external plane-wave electromagnetic fields, Phys. Rev. A 103, 052218 (2021).
  • SM [2] See Sec. VI of Supplemental Materials for the justification of the simplifications.
  • Jackson [1999b] J. D. Jackson, Classical electrodynamics (American Association of Physics Teachers, 1999).
  • Rich and Wesley [1972] A. Rich and J. C. Wesley, The current status of the lepton g factors, Reviews of Modern Physics 44, 250 (1972).