This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Heights of Special Points on Quaternionic Shimura Varieties

Roy Zhao Department of Mathematics, University of California, Berkeley, CA, USA. [email protected]
Abstract.

Let B/FB/F be a quaternion algebra over a totally real number field. We give an explicit formula for heights of special points on the quaternionic Shimura variety associated with BB in terms of Faltings heights of CM abelian varieties. Special points correspond to CM fields EE and partial CM-types ϕHom(E,)\phi\subset\operatorname{Hom}(E,\mathbb{C}). We then show that our height is compatible with the canonical height of a partial CM-type defined by Pila, Shankar, and Tsimerman in [PST+22]. This gives another proof that the height of a partial CM-type is bounded subpolynomially in terms of the discriminant of EE.

1. Introduction

In this article we study heights of special points on quaternionic Shimura varieties, motivated by the recent proof of the André–Oort conjecture for Shimura varieties by [PST+22]. Let B/FB/F be a quaternion algebra over a totally real field. Special points on an associated quaternionic Shimura variety XX correspond to totally imaginary quadratic extensions E/FE/F lying inside BB. We give a direct formula for the height of a special point in terms of Faltings heights of CM-types of EE and explicit logarithms of discriminants. The splitting behavior of BB at infinity gives rise to a partial CM-type ϕHom(E,)\phi\subset\operatorname{Hom}(E,\mathbb{C}) such that ϕϕ¯=\phi\cap\overline{\phi}=\varnothing. We show that the height of a special point on this quaternionic Shimura variety is compatible with the height of the partial CM-type h(ϕ)h(\phi) defined by [PST+22]. Our direct formula gives another proof that the heights of special points of Shimura varieties are bounded in terms of discriminants of number fields. Our formula for h(ϕ)h(\phi) also differs from the one given by [PST+22]. The formula given by [PST+22] expresses the height h(ϕ)h(\phi) in terms of Faltings heights of CM-types of CM-fields EE^{\prime}, where the relative discriminant of E/EE^{\prime}/E is controlled. Our formula expresses h(ϕ)h(\phi) in terms of CM-types of EE only. The case when BB is split at only one archimedean place of FF was proved by [YZ18], and we recover their formula in that setting. To prove our formula, we follow the strategy of [YZ18] by comparing a Kodaira–Spencer map on XX with that of a related PEL-type Shimura variety XX^{\prime}.

1.1. Statement of Main Theorem

Let EE be a CM field, and FF be its totally real subfield, so that [E:F]=2[E:F]=2. Set g[F:]g\coloneqq[F:\mathbb{Q}]. Let ϕHom(E,)\phi\subset\operatorname{Hom}(E,\mathbb{C}) be a partial CM-type, meaning that ϕϕ¯=\phi\cap\overline{\phi}=\varnothing. Write ΣHom(F,)\Sigma\subset\operatorname{Hom}(F,\mathbb{R}) for the restriction of ϕ\phi to FF. Suppose that B/FB/F is a quaternion algebra with the following properties:

  1. (1)

    There exists an embedding EBE\hookrightarrow B;

  2. (2)

    The ramification set of BB at infinity is Σc\Sigma^{c};

  3. (3)

    If BB is ramified at a finite prime 𝔭\mathfrak{p} of FF, then EE is also ramified over 𝔭\mathfrak{p}.

We define the algebraic group GG over \mathbb{Q} as

GResF/B×.G\coloneqq\operatorname{Res}_{F/\mathbb{Q}}B^{\times}.

For each compact open subgroup UG(𝔸f)U\subset G(\mathbb{A}_{f}), we obtain a (quaternionic) Shimura variety XUX_{U}, defined over a number field EXE_{X}, with complex uniformization given by:

XU()=G()\(±)Σ×G(𝔸f)/U,X_{U}(\mathbb{C})=G(\mathbb{Q})\backslash(\mathcal{H}^{\pm})^{\Sigma}\times G(\mathbb{A}_{f})/U,

where ±\mathcal{H}^{\pm} is the upper and lower complex half-planes. This is a Shimura variety of abelian type, and by utilizing ideas from [Car83] and [PZ13], we can construct a regular integral model 𝒳U\mathcal{X}_{U} for XUX_{U} over Spec𝒪EX\operatorname{Spec}\mathcal{O}_{E_{X}}.

Let U^\widehat{\mathcal{L}_{U}} be the arithmetic Hodge bundle of 𝒳U\mathcal{X}_{U}, which consists of a line bundle U\mathcal{L}_{U} on 𝒳U\mathcal{X}_{U} and a Hermitian metric given by:

σΣdzσσΣ2Im(zσ),\left\lVert\bigwedge_{\sigma\in\Sigma}dz_{\sigma}\right\rVert\coloneqq\prod_{\sigma\in\Sigma}2\mathrm{Im}(z_{\sigma}),

where the zσz_{\sigma} are given by the complex uniformization of XUX_{U}. When UU is sufficiently small, the Hodge bundle is simply the canonical bundle U=ω𝒳U/𝒪EX\mathcal{L}_{U}=\omega_{\mathcal{X}_{U}/\mathcal{O}_{E_{X}}}. The precise definition of U^\widehat{\mathcal{L}_{U}} is given in Section 6.

Let PUXU(¯)P_{U}\subset X_{U}(\overline{\mathbb{Q}}) be a special point arising from the embedding EBE\hookrightarrow B, and let PU¯\overline{P_{U}} be the closure of this point in 𝒳U\mathcal{X}_{U}, which we will also denote by PUP_{U} by abuse of notation. The height of this point relative to U^\widehat{\mathcal{L}_{U}} is the Arakelov height:

hU^(PU)1[(PU):]deg^(U^|PU).h_{\widehat{\mathcal{L}_{U}}}(P_{U})\coloneqq\frac{1}{[\mathbb{Q}(P_{U}):\mathbb{Q}]}\widehat{\deg}(\widehat{\mathcal{L}_{U}}|_{P_{U}}).

Finally, let Φ\Phi be a full CM-type, and let h(Φ)h(\Phi) be the Faltings height of an abelian variety with complex multiplication by (𝒪E,Φ)(\mathcal{O}_{E},\Phi). Let dϕ,dϕ¯d_{\phi},d_{\overline{\phi}} and dΣdϕϕ¯d_{\Sigma}\coloneqq d_{\phi\sqcup\overline{\phi}} be certain absolute discriminants of ϕ,ϕ¯\phi,\overline{\phi}, and ϕϕ¯\phi\sqcup\overline{\phi}. These are defined in detail in Section 2.

Let 𝔡E/F\mathfrak{d}_{E/F} denote the relative discriminant of the extension E/FE/F. There is a reflex norm NF/EX:FEXN_{F/E_{X}}\colon F\to E_{X} defined by NF/EX(x)=σΣσ(x)N_{F/E_{X}}(x)=\prod_{\sigma\in\Sigma}\sigma(x). Let dE/F,Σd_{E/F,\Sigma}\in\mathbb{Z} be the positive generator of NEX/(NF/EX(𝔡E/F))N_{E_{X}/\mathbb{Q}}(N_{F/E_{X}}(\mathfrak{d}_{E/F})). Let dE/Fd_{E/F}\in\mathbb{Z} be the positive generator of NF/(𝔡E/F)N_{F/\mathbb{Q}}(\mathfrak{d}_{E/F}) and let dFd_{F} be the absolute discriminant of FF. Let dBd_{B} be the positive generator of norm from FF to \mathbb{Q} of the product of all the finite places of 𝒪F\mathcal{O}_{F} over which BB ramifies.

With these definitions in place, we can now state our main theorem.

Theorem 1.1.

Suppose that U=vUvU=\prod_{v}U_{v} is a maximal compact subgroup of G(𝔸f)G(\mathbb{A}_{f}). Then

12hU^(PU)=\displaystyle\frac{1}{2}h_{\widehat{\mathcal{L}_{U}}}(P_{U})= 12|Σ𝖼|Φϕh(Φ)|Σ𝖼|g2gΦh(Φ)\displaystyle\frac{1}{2^{\lvert{\Sigma}^{\mathsf{c}}\rvert}}\sum_{\Phi\supset\phi}h(\Phi)-\frac{\lvert{\Sigma}^{\mathsf{c}}\rvert}{g2^{g}}\sum_{\Phi}h(\Phi)
+18logdE/F,ΣdΣ1+14logdϕdϕ¯+14glogdBdΣ+|Σ|4glogdF.\displaystyle+\frac{1}{8}\log d_{E/F,\Sigma}d_{\Sigma}^{-1}+\frac{1}{4}\log d_{\phi}d_{\overline{\phi}}+\frac{1}{4g}\log d_{B}d_{\Sigma}+\frac{\lvert\Sigma\rvert}{4g}\log d_{F}.

The first summation is over all full CM-types which contain ϕ\phi, and the second summation is over all full CM-types of EE.

Additionally, if |ϕ|=1\lvert\phi\rvert=1, then EX=FE_{X}=F, and we have that dΣ=dE/F=dE/F,Σd_{\Sigma}=d_{E/F}=d_{E/F,\Sigma} and dϕ=dϕ¯=1d_{\phi}=d_{\overline{\phi}}=1. As a result, the expression for 12hU^(PU)\frac{1}{2}h_{\widehat{\mathcal{L}_{U}}}(P_{U}) simplifies, and we recover [YZ18, Thm. 1.6], where the factor of gg is due to different normalizing factors of hU^(PU)h_{\widehat{\mathcal{L}_{U}}}(P_{U}).

In the Pila–Zannier method, an essential step involves bounding the height of a CM point in terms of the discriminant of its splitting field. For general Shimura varieties, a CM point PP is associated with a partial CM-type ϕ\phi of a CM-field EE. In [PST+22], a canonical height h(ϕ)h(\phi) is introduced for such ϕ\phi, and this height h(ϕ)h(\phi) is shown to be equal to the height h(P)h(P) of the associated CM point PP, up to O(logdE)O(\log d_{E}). Then, the height h(ϕ)h(\phi) is bounded in terms of the discriminant dEd_{E}, showing that h(P)h(P) is as well. The precise definition of h(ϕ)h(\phi) can be found in Section 8. Our second main result establishes the compatibility between hU^(PU)h_{\widehat{\mathcal{L}_{U}}}(P_{U}) and h(ϕ)h(\phi).

Theorem 1.2.
h(ϕ)=12hU^(PU)+O(logdE).h(\phi)=\frac{1}{2}h_{\widehat{\mathcal{L}_{U}}}(P_{U})+O(\log d_{E}).

With the combination of Theorem 1.1 and Theorem 1.2, we obtain the following corollary. This is an ingredient used in the Pila–Zannier method, and serves as one of the results of [PST+22].

Corollary 1.3.

For all ε>0\varepsilon>0, there exists a positive constant cc depending only on [E:][E:\mathbb{Q}] such that

h(ϕ)cdEεh(\phi)\leq c\cdot d_{E}^{\varepsilon}

for all partial CM-types of EE.

Proof.

By [Tsi18, Cor. 3.3], the Faltings heights h(Φ)h(\Phi) of full CM-types are bounded subpolynomially by dEd_{E}. Each of the discriminants dE/F,Σ,dΣ,dϕ,dFd_{E/F,\Sigma},d_{\Sigma},d_{\phi},d_{F} are smaller than dEd_{E}, and dBdEd_{B}\leq d_{E} since we specified that the ramification set of EE contains the ramification set of BB. Thus, each of the logarithm terms are bounded by logdE\log d_{E}, which is also subpolynomial in dEd_{E}. ∎

This result differs from that of [PST+22] because in our case, we are able to express h(ϕ)h(\phi) in terms of CM-types of EE, whereas in [PST+22], they express h(ϕ)h(\phi) in terms of CM-types Φ\Phi^{\sharp} of CM-fields EE^{\sharp} containing EE, whose relative discriminant over EE can be bounded.

1.2. Motivation

The André–Oort conjecture states that if SS is a Shimura variety and VSV\subset S is a subvariety with a dense subset of special points, then VV itself must be a special subvariety. Definitions and properties for Shimura varieties can be found in [Mil05, Sec. 4] and for special subvarieties in [DR18, Sec. 2]. The André–Oort conjecture was originally proven by André in the case when SS is the product of two modular curves [And98] and later for arbitrary products of modular curves by Pila (see [Pil11]). Pila and Tsimerman (see [PT14]) were able to extend this strategy to prove the conjecture unconditionally for 𝒜g\mathcal{A}_{g}, the coarse moduli space of principally polarized abelian varieties of dimension gg, when g6g\leq 6. The averaged Colmez Conjecture, proven by [AGHMP18] and [YZ18], allowed Tsimerman to give an unconditional proof (see [Tsi18]) of the conjecture for 𝒜g\mathcal{A}_{g} for all gg. Moreover, following results of [BSY23], Pila, Shankar, and Tsimerman recently announced an unconditional proof of the conjecture for all Shimura varieties in [PST+22]. There is also a version of the André–Oort conjecture for mixed Shimura varieties that was reduced to the pure Shimura varieties case by Gao (see [Gao16]).

Many of the recent results on the André–Oort conjecture were proven using a strategy that was initially proposed by Zannier, by using the theory of o-minimality and a point counting theorem of Pila and Wilkie from [PW06], combined with estimates on the sizes of certain Galois orbits. This strategy was shown to be viable when Pila and Zannier used it to reprove the Manin–Mumford conjecture in [PZ08]. And it is using this Pila–Zannier strategy that the conjecture was proven for products of the modular curve (see [Pil11]), the moduli space 𝒜g\mathcal{A}_{g} (see [PT14, Tsi18]), and for all Shimura varieties (see [PST+22]). The strategy can be split up into three main ingredients.

  1. (1)

    The first ingredient is the Pila–Wilkie point counting theorem from [PW06]. It gives an upper bound subpolynomial in height on the rational points of the transcendental component of definable sets. The fundamental domains of the universal covering map of a Shimura variety are definable in an o-minimal structure. This was shown for 𝒜g\mathcal{A}_{g} by Peterzil and Starchenko (see [PS13]), and for arbitrary Shimura varieties by Klinger, Ullmo, and Yafaev (see [KUY16]). A sharpened version proven by Binyamini (see [Bin22]) was necessary for general Shimura varieties.

  2. (2)

    The second ingredient is a lower bound polynomial in height for the size of Galois orbits of special points. This is done in two steps. The first step to provide a lower bound polynomial in height for the discriminant of certain endomorphism algebras. This was done by Pila and Tsimerman (see [PT13]) for 𝒜g\mathcal{A}_{g}, and by Binyamini, Schmidt, and Yafaev (see [BSY23]) for arbitrary Shimura varieties. The second step is to provide a lower bound subpolynomial in terms of discriminant of those same algebras. Tsimerman proves this for 𝒜g\mathcal{A}_{g} (see [Tsi18]) by combining a result of Masser and Wüstholz (see [MW95]), and the averaged Colmez conjecture, which was proven independently by Andreatta, Goren, Howard, and Madapusi-Pera (see [AGHMP18]), and Yuan and Zhang (see [YZ18]). For general Shimura varieties, Binyamini, Schmidt, and Yafaev (see [BSY23]) reduce this to proving the existence of a canonical height on Shimura varieties and that the height of special points is bounded subpolynomially in terms of the discriminant of certain number fields. A proof of this result was recently announced by Pila, Shankar, and Tsimerman (see [PST+22]).

  3. (3)

    The third ingredient is the Ax–Lindemann theorem. The first two ingredients combine to show that Galois orbits of special points must lie in the algebraic part of the fundamental domain. Then, the Ax–Lindemann theorem tells us that these algebraic parts are precisely special subvarieties. This was proven for 𝒜g\mathcal{A}_{g} by Pila and Tsimerman (see [PT14]), and by Mok, Pila, and Tsimerman for all Shimura varieties (see [MPT19]).

For this article, we are interested in the contribution of [PST+22] in showing that their canonical height for CM points on Shimura varieties is bounded in terms of discriminants of their splitting fields. The first step is to systematically define a Weil height function for any arbitrary Shimura variety. Given a Shimura variety ShK(G,X)\mathrm{Sh}_{K}(G,X), take a \mathbb{Q}-representation GGL(V)G\to\operatorname{GL}(V) and lattice ΛV\Lambda\subset V. By the Riemann–Hilbert correspondence over pp-adic local fields, given by [DLLZ23], we get a filtered automorphic vector bundle with connection (dRV,Fil,)(_{\operatorname{dR}}V,\operatorname{Fil}^{\bullet},\nabla), which is defined over the reflex field of ShK(G,X)\mathrm{Sh}_{K}(G,X) and all of its pp-adic places. Then the plan is to define an adelic norm on GrdRV\operatorname{Gr}^{\bullet}_{\operatorname{dR}}V, which would give rise to an Arakelov height function on ShK(G,X)\mathrm{Sh}_{K}(G,X). At the archimedean places, this representation admits a polarization ψ:V×V\psi\colon V\times V\to\mathbb{Q} and the norm can be defined as the Hodge norm ψ(v,h(i)v)\psi(v,h(i)v). Over the finite places, the crystalline norm is used when the representation is crystalline and an alternative intrinsic norm is used at the finitely many other places. This height is compatible in the sense that if (G1,X1)(G2,X2)(G_{1},X_{1})\to(G_{2},X_{2}) is a map of Shimura datum with ρi\rho_{i} a representation of GiG_{i} compatible with this morphism, then the height of a point of ShK2(G2,X2)\mathrm{Sh}_{K_{2}}(G_{2},X_{2}) with respect to ρ2\rho_{2} is equal to the height of a point of ShK1(G1,X1)\mathrm{Sh}_{K_{1}}(G_{1},X_{1}) with respect to ρ1\rho_{1}. This height also coincides with the Faltings height for 𝒜g\mathcal{A}_{g}.

With this height defined, the next step is to bound the height of special points in terms of discriminants of certain number fields. If (T,x)(G,X)(T,x)\subset(G,X) is a Shimura sub-datum of a special point, then TT splits over a CM field E/FE/F. Given a representation ρ:GGL(V)\rho\colon G\to\operatorname{GL}(V) and restricted representation ρx:TGGL(V)\rho_{x}\colon T\to G\to\operatorname{GL}(V), we can map (T,x,ρx)(ResF/E×/F×,x,ρϕ)(T,x,\rho_{x})\to(\operatorname{Res}_{F/\mathbb{Q}}E^{\times}/F^{\times},x,\rho_{\phi}) to another Shimura datum where ϕHom(E,)\phi\subset\operatorname{Hom}(E,\mathbb{C}) is a partial CM-type and ρϕ\rho_{\phi} is a representation of ResF/E×/F×\operatorname{Res}_{F/\mathbb{Q}}E^{\times}/F^{\times} in terms of ϕ\phi. The height h(ϕ)h(\phi) is defined as the height of (ResF/E×/F×,x,ρϕ)(\operatorname{Res}_{F/\mathbb{Q}}E^{\times}/F^{\times},x,\rho_{\phi}). By the compatibility of heights, the problem is reduced to bounding the height h(ϕ)h(\phi). Given a set of disjoint CM-fields and partial CM-types {(Ei,ϕi)}i=1t\{(E_{i},\phi_{i})\}_{i=1}^{t} they are able to express a linear combination of h(ϕi)h(\phi_{i}) in terms of a linear combination of heights of full CM-types ΦS\Phi^{S} of ES=iSEiE^{S}=\prod_{i\in S}E_{i} for various subsets S{1,2,,t}S\subset\{1,2,\dots,t\}. By ranging over all subsets SS, we can express the height of an individual h(ϕi)h(\phi_{i}) as a linear combination of Faltings heights of CM-types ΦS\Phi^{S} of ESE^{S}, where SS varies over all possible subsets of {1,2,,t}\{1,2,\dots,t\}. The height of the full CM-type h(ΦS)h(\Phi^{S}) is bounded subpolynomially in terms of the discriminant dESd_{E^{S}}. Choosing EiE_{i} carefully, we can bound the relative discriminant 𝔡ES/Ei\mathfrak{d}_{E^{S}/E_{i}}, completing the proof.

Instead of expressing the height h(ϕ)h(\phi) in terms of heights of CM-types over the many ESE^{S}, we give an expression in terms of CM-types of EE only.

1.3. Idea of the Proof

The idea is similar to that of [YZ18]. We use their decomposition of Faltings heights of a CM abelian variety h(Φ)h(\Phi) into constituent parts h(Φ,τ)h(\Phi,\tau), one for each archimedean place τΦ\tau\in\Phi. The constituent parts are related to the full CM-type by the formula

h(Φ)τΦh(Φ,τ)=14[EΦ:]log(dΦdΦ¯),h(\Phi)-\sum_{\tau\in\Phi}h(\Phi,\tau)=\frac{-1}{4[E_{\Phi}:\mathbb{Q}]}\log(d_{\Phi}d_{\overline{\Phi}}),

where dΦ,dΦ¯d_{\Phi},d_{\overline{\Phi}} are discriminants associated with Φ,Φ¯\Phi,\overline{\Phi} respectively, and EΦE_{\Phi} is the reflex field of Φ\Phi. Moreover, if (Φ1,Φ2)(\Phi_{1},\Phi_{2}) are nearby CM-types of EE in that they differ only at a single place τi=Φi\(Φ1Φ2)\tau_{i}=\Phi_{i}\backslash(\Phi_{1}\cap\Phi_{2}), then [YZ18] proves that the quantity

h(Φ1,τ1)+h(Φ2,τ2)h(\Phi_{1},\tau_{1})+h(\Phi_{2},\tau_{2})

is the same across any choice of nearby CM-types.

We define the group

G′′ResF/(B××E×)/F×,G^{\prime\prime}\coloneqq\operatorname{Res}_{F/\mathbb{Q}}(B^{\times}\times E^{\times})/F^{\times},

where FF embeds diagonally as a(a,a1)a\mapsto(a,a^{-1}). We can construct a norm N:G′′ResF/𝔾mN\colon G^{\prime\prime}\to\operatorname{Res}_{F/\mathbb{Q}}\mathbb{G}_{m} and define the group

GG′′×𝔾mResF/𝔾mG^{\prime}\coloneqq G^{\prime\prime}\times_{\mathbb{G}_{m}}\operatorname{Res}_{F/\mathbb{Q}}\mathbb{G}_{m}

consisting of elements G′′G^{\prime\prime} with norm lying in ×\mathbb{Q}^{\times}. If ϕ\phi is a partial CM-type and ϕ\phi^{\prime} is a complementary partial CM-type in that ϕϕ\phi\sqcup\phi^{\prime} constitute a full CM-type, then we can construct morphisms h:×G()h^{\prime}\colon\mathbb{C}^{\times}\to G^{\prime}(\mathbb{R}) and h′′:×G′′()h^{\prime\prime}\colon\mathbb{C}^{\times}\to G^{\prime\prime}(\mathbb{R}). They give rise to Shimura datum and Shimura varieties XUX^{\prime}_{U^{\prime}} and XU′′′′X^{\prime\prime}_{U^{\prime\prime}} for compact open subgroups UG(𝔸f)U^{\prime}\subset G^{\prime}(\mathbb{A}_{f}) and U′′G′′(𝔸f)U^{\prime\prime}\subset G^{\prime\prime}(\mathbb{A}_{f}) with complex uniformizations

XU()=G()\(±)Σ×G(𝔸f)/UX^{\prime}_{U^{\prime}}(\mathbb{C})=G^{\prime}(\mathbb{Q})\backslash(\mathcal{H}^{\pm})^{\Sigma}\times G^{\prime}(\mathbb{A}_{f})/U^{\prime}

and

XU′′′′()=G′′()\(±)Σ×G′′(𝔸f)/U′′X^{\prime\prime}_{U^{\prime\prime}}(\mathbb{C})=G^{\prime\prime}(\mathbb{Q})\backslash(\mathcal{H}^{\pm})^{\Sigma}\times G^{\prime\prime}(\mathbb{A}_{f})/U^{\prime\prime}

They have canonical models defined over the same reflex field EX=EX′′E_{X^{\prime}}=E_{X^{\prime\prime}}.

The Shimura variety XUX^{\prime}_{U^{\prime}} is of PEL type and has an integral model 𝒳U\mathcal{X}^{\prime}_{U^{\prime}} by [Car83] and [PZ13]. The pair (ϕ,ϕ)(\phi,\phi^{\prime}) gives rise to a point PUXUP^{\prime}_{U^{\prime}}\in X^{\prime}_{U^{\prime}} which parametrizes an abelian variety isogenous to a product A1×A2A_{1}\times A_{2} of abelian varieties, one with complex multiplication of type ϕϕ\phi\sqcup\phi^{\prime} and the other with complex multiplication of type ϕ¯ϕ\overline{\phi}\sqcup\phi^{\prime}. After defining a suitable metric on ω𝒳U/𝒪EX\omega_{\mathcal{X}^{\prime}_{U^{\prime}}/\mathcal{O}_{E_{X^{\prime}}}}, the Kodaira–Spencer isomorphism on XUX^{\prime}_{U^{\prime}} gives us an equality of heights

hω𝒳U/𝒪EX^(PU)=τϕ(h(ϕϕ,τ)+h(ϕ¯ϕ,τ¯)).h_{\widehat{\omega_{\mathcal{X}^{\prime}_{U^{\prime}}/\mathcal{O}_{E_{X^{\prime}}}}}}(P^{\prime}_{U^{\prime}})=\sum_{\tau\in\phi}\left(h(\phi\sqcup\phi^{\prime},\tau)+h(\overline{\phi}\sqcup\phi^{\prime},\overline{\tau})\right).

Now the idea is to relate ω𝒳U/𝒪EX\omega_{\mathcal{X}_{U}/\mathcal{O}_{E_{X}}} and ω𝒳U/𝒪EX\omega_{\mathcal{X}^{\prime}_{U^{\prime}}/\mathcal{O}_{E_{X^{\prime}}}}. We do this by mapping both XUX_{U} and XUX^{\prime}_{U^{\prime}} into the third Shimura variety XU′′′′X^{\prime\prime}_{U^{\prime\prime}} so that the points PUP_{U} and PUP^{\prime}_{U^{\prime}} have the same image PU′′′′XU′′′′(¯)P^{\prime\prime}_{U^{\prime\prime}}\in X^{\prime\prime}_{U^{\prime\prime}}(\overline{\mathbb{Q}}). We represent both canonical bundles in terms of deformations of pp-divisible groups U\mathcal{H}_{U} and U\mathcal{H}^{\prime}_{U^{\prime}} over 𝒳U\mathcal{X}_{U} and 𝒳U\mathcal{X}^{\prime}_{U^{\prime}} respectively, and then relate those pp-divisible groups to a pp-divisible group U′′′′\mathcal{H}^{\prime\prime}_{U^{\prime\prime}} over 𝒳′′U′′\mathcal{X^{\prime\prime}}_{U^{\prime\prime}}. After showing all this, we get that

hU^(PU)=hω𝒳U/𝒪EX^(PU)=τϕ(h(ϕϕ,τ)+h(ϕ¯ϕ,τ¯)).h_{\widehat{\mathcal{L}_{U}}}(P_{U})=h_{\widehat{\omega_{\mathcal{X}^{\prime}_{U^{\prime}}/\mathcal{O}_{E_{X^{\prime}}}}}}(P^{\prime}_{U^{\prime}})=\sum_{\tau\in\phi}\left(h(\phi\sqcup\phi^{\prime},\tau)+h(\overline{\phi}\sqcup\phi^{\prime},\overline{\tau})\right).

Of note is that this formula does not depend on the choice of complementary partial CM-type ϕ\phi^{\prime}, because the Shimura variety XUX_{U} was defined independently of the choice of ϕ\phi^{\prime}. We utilize this by summing over all possible complementary CM-type, which will express hU^(PU)h_{\widehat{\mathcal{L}_{U}}}(P_{U}) in terms of heights of full CM-types containing ϕ\phi as well as nearby CM-types. The sum of heights of nearby CM-types is shown to be constant in [YZ18], and equal to the averaged height of all CM-types of EE. Combining these two, we are able to express the height in terms of CM-types containing ϕ\phi and an average of all possible CM-types.

1.4. Structure of the Article

We first recall from [YZ18] the decomposition of a Faltings height in Section 2. We then describe three Shimura varieties that can be constructed from a quaternion algebra following [TX16] by describing their generic fiber in Section 3 and integral models in Section 4. We then describe some line bundles on these Shimura varieties in terms of Lie algebras of certain pp-divisible groups described in Section 5 and relate these Lie algebras, and finally define the Hodge bundle, in Section 6. Finally, we prove our theorem for the height of partial CM-types in Section 7 and compare our height with those introduced in [PST+22] in Section 8.

1.5. Acknowledgements

We wish to thank Sebastian Eterović, Ananth Shankar, and Xinyi Yuan for their helpful discussions with us.

2. CM-types and Faltings Heights

2.1. Faltings Height

We first define the Faltings height of an abelian variety. It will be defined as the degree of a metrized line bundle. Let AA be an abelian variety of dimension gg defined over a number field KK and let 𝒜\mathcal{A} be the Néron model over 𝒪K\mathcal{O}_{K} and let the identity section be s:Spec𝒪K𝒜s\colon\operatorname{Spec}\mathcal{O}_{K}\to\mathcal{A}. Let Ω𝒜/𝒪K\Omega_{\mathcal{A}/\mathcal{O}_{K}} be the sheaf of relative differentials. The Hodge bundle of AA is the vector bundle Ω(𝒜)sΩ𝒜/𝒪K\Omega(\mathcal{A})\coloneqq s^{*}\Omega_{\mathcal{A}/\mathcal{O}_{K}} over 𝒪K\mathcal{O}_{K}. This is canonically isomorphic to the pushforward πΩ𝒜/𝒪K\pi_{*}\Omega_{\mathcal{A}/\mathcal{O}_{K}}, where π:𝒜𝒪K\pi\colon\mathcal{A}\to\mathcal{O}_{K} is the structure sheaf morphism.

The Hodge bundle Ω(𝒜)\Omega(\mathcal{A}) is a vector bundle over 𝒪K\mathcal{O}_{K} of rank gg and taking the determinant ω(𝒜)Ω(𝒜)g\omega(\mathcal{A})\coloneqq\Omega(\mathcal{A})^{\wedge g} gives a line bundle over 𝒪K\mathcal{O}_{K}. To make this into a metrized line bundle, we need to define a norm for each archimedean place of KK. We have that

ω(𝒜)𝒪KKsωA/K=H0(A,ωA/K).\omega(\mathcal{A})\otimes_{\mathcal{O}_{K}}K\cong s^{*}\omega_{A/K}=H^{0}(A,\omega_{A/K}).

For each archimedean place vv of KK, we put the norm as

αv|1(2π)gAv()αα¯|12\lVert\alpha\rVert_{v}\coloneqq\left\lvert\frac{1}{(2\pi)^{g}}\int_{A_{v}(\mathbb{C})}\alpha\wedge\overline{\alpha}\right\rvert^{\frac{1}{2}}

for each αω(𝒜)𝒪KKvH0(Av,ωAv/Kv)\alpha\in\omega(\mathcal{A})\otimes_{\mathcal{O}_{K}}K_{v}\cong H^{0}(A_{v},\omega_{A_{v}/K_{v}}). In this way, we get a metrized line bundle ω(𝒜)^(ω(𝒜),v)\widehat{\omega(\mathcal{A})}\coloneqq(\omega(\mathcal{A}),\lVert\cdot\rVert_{v}).

Definition 2.1.

The Faltings height of the abelian variety A/KA/K is the Arakelov height

h(A)1[K:]deg^ω(𝒜)^=1[K:](log|ω(𝒜)/(𝒪Ks)|σ:Klogsσ),h(A)\coloneqq\frac{1}{[K:\mathbb{Q}]}\widehat{\deg}\widehat{\omega(\mathcal{A})}=\frac{1}{[K:\mathbb{Q}]}\left(\log\lvert\omega(\mathcal{A})/(\mathcal{O}_{K}\cdot s)\rvert-\sum_{\sigma\colon K\to\mathbb{C}}\log\|s\|_{\sigma}\right),

for a choice of sω(𝒜)\{0}s\in\omega(\mathcal{A})\backslash\{0\}. This is well defined and independent of the choice of ss by the product formula.

If AA has semistable reduction over KK, then the Faltings height is invariant under finite field extensions. In general, we define the stable Faltings height as the height after base change to a finite extension K/KK^{\prime}/K such that AA has semistable reduction over KK^{\prime}. Such a KK^{\prime} always exists.

2.2. CM-types

A CM-field extension is an extension E/FE/F of number fields such that F/F/\mathbb{Q} is a totally real field and E/FE/F is a quadratic totally imaginary extension. We say EE is a CM-field and FF is its totally real subfield.

A (full) CM-type is a subset ΦHom(E,)\Phi\subset\operatorname{Hom}(E,\mathbb{C}) such that ΦΦ¯=Hom(E,)\Phi\sqcup\overline{\Phi}=\operatorname{Hom}(E,\mathbb{C}), where Φ¯={σ¯:σΦ}\overline{\Phi}=\{\overline{\sigma}:\sigma\in\Phi\}. A partial CM-type is a subset ϕHom(E,)\phi\subset\operatorname{Hom}(E,\mathbb{C}) such that ϕϕ¯=\phi\cap\overline{\phi}=\varnothing. We say that ϕ\phi^{\prime} is a complementary partial CM-type to ϕ\phi if ϕϕ\phi\sqcup\phi^{\prime} is a CM-type.

We say that a complex abelian variety AA has complex multiplication of type (𝒪E,Φ)(\mathcal{O}_{E},\Phi) if there exists an embedding ι:𝒪EEnd(A)\iota\colon\mathcal{O}_{E}\to\operatorname{End}(A) and an isomorphism Lie(A)gΦE\operatorname{Lie}(A)\cong\mathbb{C}^{g}\overset{\Phi}{\cong}E\otimes_{\mathbb{Q}}\mathbb{R} of 𝒪E\mathcal{O}_{E} modules.

Let EE be a CM-field with degree [E:]=2g[E:\mathbb{Q}]=2g and let ΦHom(E,)\Phi\subset\operatorname{Hom}(E,\mathbb{C}) be a CM-type. Let AΦA_{\Phi} be an abelian variety of CM-type (𝒪E,Φ)(\mathcal{O}_{E},\Phi). Then, there is a number field KK over which AΦA_{\Phi} is defined and has a smooth projective integral model 𝒜/𝒪K\mathcal{A}/\mathcal{O}_{K}. Colmez proved the following theorem

Theorem 2.2 ([Col93, Thm 0.3]).

The Faltings height h(AΦ)h(A_{\Phi}) depends only on the CM-type (E,Φ)(E,\Phi).

We write h(Φ)h(AΦ)h(\Phi)\coloneqq h(A_{\Phi}). Colmez conjectured a formula about h(Φ)h(\Phi) in terms of logarithmic derivatives of Artin L-functions related to Φ\Phi. This conjecture has been proven when E/E/\mathbb{Q} is an abelian extension by Obus and Colmez (see [Obu13]) and when FF is a real quadratic field by Yang (see [Yan10]). An averaged version was proven in [YZ18], and independently in [AGHMP18].

Theorem 2.3 ([AGHMP18, Thm A], [YZ18, Thm 1.1]).

Suppose E/FE/F is an CM-extension and let χ:𝔸F×{±1}\chi\colon\mathbb{A}_{F}^{\times}\to\{\pm 1\} the character corresponding to this extension, and L(s,χ)L(s,\chi) the corresponding Artin L-function. Let dFd_{F} be the absolute discriminant of FF and dE/Fd_{E/F} the norm of the relative discriminent of E/FE/F. Then

12gΦh(Φ)=12L(0,χ)L(0,χ)14log(dE/FdF),\frac{1}{2^{g}}\sum_{\Phi}h(\Phi)=-\frac{1}{2}\frac{L^{\prime}(0,\chi)}{L(0,\chi)}-\frac{1}{4}\log(d_{E/F}d_{F}),

where the sum on the left runs through the set of all CM-types of EE.

2.3. Decomposition of Heights

We recall the results of [YZ18] decomposing the Faltings height of a CM-type Φ\Phi into its constituent embeddings τΦ\tau\in\Phi. To decompose the height, we first decompose the Hodge bundle into its eigenspaces.

Let AA be an abelian variety with complex multiplication of type (𝒪E,Φ)(\mathcal{O}_{E},\Phi). We define

Ω(A)τΩ(A)Eτ,\Omega(A)_{\tau}\coloneqq\Omega(A)\otimes_{E_{\tau}}\mathbb{C},

where EτE_{\tau} acts on \mathbb{C} through the projection EσHom(E,)στE\otimes_{\mathbb{Q}}\mathbb{C}\cong\prod_{\sigma\in\operatorname{Hom}(E,\mathbb{C})}\mathbb{C}_{\sigma}\to\mathbb{C}_{\tau}. This gives us a decomposition of the Hodge bundle as

Ω(A)τ:EΩ(A)ττΦΩ(A)τ.\Omega(A)\cong\bigoplus_{\tau\colon E\to\mathbb{C}}\Omega(A)_{\tau}\cong\bigoplus_{\tau\in\Phi}\Omega(A)_{\tau}.

The latter isomorphism holds because Ω(A)τ=0\Omega(A)_{\tau}=0 for τΦ\tau\not\in\Phi.

Let AtA^{t} be the dual abelian variety of AA. Then, we have canonical isomorphisms

Ω(At)=Lie(At)H1(A,𝒪A)H0,1(A)=Ω(A)¯,\Omega(A^{t})=\operatorname{Lie}(A^{t})^{\vee}\cong H^{1}(A,\mathcal{O}_{A})^{\vee}\cong H^{0,1}(A)^{\vee}=\overline{\Omega(A)}^{\vee},

so that if AA is of CM-type (𝒪E,Φ)(\mathcal{O}_{E},\Phi), then AtA^{t} is of CM-type (𝒪E,Φ¯)(\mathcal{O}_{E},\overline{\Phi}). From this isomorphism, we also get a perfect Hermitian pairing Ω(At)Ω(A)\Omega(A^{t})\otimes\Omega(A)\to\mathbb{C}.

Just as before, we can decompose

Ω(At)τΦ¯Ω(At)τ.\Omega(A^{t})\cong\bigoplus_{\tau\in\overline{\Phi}}\Omega(A^{t})_{\tau}.

The Hermitian pairing from before decomposes into a sum of orthogonal pairings Ω(A)τΩ(At)τ¯\Omega(A)_{\tau}\otimes\Omega(A^{t})_{\overline{\tau}}\to\mathbb{C}. Taking the determinant gives a Hermitian norm on the line bundle

N(A,τ)detΩ(A)τdetΩ(At)τ¯.N(A,\tau)\coloneqq\det\Omega(A)_{\tau}\otimes\det\Omega(A^{t})_{\overline{\tau}}.

We can extend N(A,τ)N(A,\tau) to an integral model of AA. If 𝒜\mathcal{A} is the Néron model over 𝒪K\mathcal{O}_{K} as before, with KK including all embeddings of E¯E\to\overline{\mathbb{Q}}, define

Ω(𝒜)τΩ(𝒜)𝒪K𝒪E,τ𝒪K\Omega(\mathcal{A})_{\tau}\coloneqq\Omega(\mathcal{A})\otimes_{\mathcal{O}_{K}\otimes\mathcal{O}_{E},\tau}\mathcal{O}_{K}

for each τ:EK\tau\colon E\to K. We define Ω(𝒜t)τ\Omega(\mathcal{A}^{t})_{\tau} analogously. For each archimedean place of KK, we use the aforementioned Hermitian norm \lVert\cdot\rVert on the generic fiber of detΩ(𝒜)τdetΩ(𝒜t)τ¯\det\Omega(\mathcal{A})_{\tau}\otimes\det\Omega(\mathcal{A}^{t})_{\overline{\tau}}, and thus we get a metrized line bundle

𝒩(𝒜,τ)^(detΩ(𝒜)τdetΩ(𝒜t)τ¯,).\widehat{\mathcal{N}(\mathcal{A},\tau)}\coloneqq(\det\Omega(\mathcal{A})_{\tau}\otimes\det\Omega(\mathcal{A}^{t})_{\overline{\tau}},\lVert\cdot\rVert).
Definition 2.4.

If AA is an abelian variety of CM-type (E,Φ)(E,\Phi) and τ:E\tau\colon E\to\mathbb{C}, then the τ\tau-part of the Faltings height of AA is

h(A,τ)12[K:]deg^𝒩(𝒜,τ)^.h(A,\tau)\coloneqq\frac{1}{2[K:\mathbb{Q}]}\widehat{\deg}\widehat{\mathcal{N}(\mathcal{A},\tau)}.

Note that if τΦ\tau\not\in\Phi, then 𝒩(𝒜,τ)=0\mathcal{N}(\mathcal{A},\tau)=0 and so the height contribution is 0 as well.

Just as with the Faltings height, this τ\tau-component is independent of the abelian variety itself. Thus, we will write h(Φ,τ)h(\Phi,\tau) for h(A,τ)h(A,\tau).

Theorem 2.5 ([YZ18, Thm 2.2]).

If AA has CM of type (𝒪E,Φ)(\mathcal{O}_{E},\Phi), the height h(A,τ)h(A,\tau) depends only on the pair (Φ,τ)(\Phi,\tau).

We call a pair of CM-types (Φ1,Φ2)(\Phi_{1},\Phi_{2}) nearby if |Φ1Φ2|=g1\lvert\Phi_{1}\cap\Phi_{2}\rvert=g-1. Let τi=Φi\(Φ1Φ2)\tau_{i}=\Phi_{i}\backslash(\Phi_{1}\cap\Phi_{2}) be the place where they differ. Then, the sum of the τi\tau_{i}-components of h(Φi)h(\Phi_{i}) is independent of the choice of nearby CM-type.

Theorem 2.6 ([YZ18, Thm. 2.7]).

The quantity h(Φ1,τ1)+h(Φ2,τ2)h(\Phi_{1},\tau_{1})+h(\Phi_{2},\tau_{2}) is independent of the choice of nearby CM-type (Φ1,Φ2)(\Phi_{1},\Phi_{2}).

Finally, we compare h(Φ)h(\Phi) with its constituents h(Φ,τ)h(\Phi,\tau).

Definition 2.7.

Let ΨHom(E,)\Psi\subset\operatorname{Hom}(E,\mathbb{C}) be any subset, not necessarily a (partial) CM-type. The reflex field EΨEGalE_{\Psi}\subset E^{\operatorname{Gal}} is the subfield of the Galois closure of EE fixed by all automorphisms that fix Ψ\Psi. The trace map TrΨ:EEΨ\operatorname{Tr}_{\Psi}\colon E\to E_{\Psi} is given by TrΨ(x)=τΨτ(x)\operatorname{Tr}_{\Psi}(x)=\sum_{\tau\in\Psi}\tau(x).

We can decompose EΨEEΨ~×EΨ𝖼~E_{\Psi}\otimes_{\mathbb{Q}}E\cong\widetilde{E_{\Psi}}\times\widetilde{E_{{\Psi}^{\mathsf{c}}}} where the trace of the action of EE on EΨ~\widetilde{E_{\Psi}} is TrΨ\operatorname{Tr}_{\Psi} and the trace of the action on EΨ𝖼~\widetilde{E_{{\Psi}^{\mathsf{c}}}} is TrΨ𝖼\operatorname{Tr}_{{\Psi}^{\mathsf{c}}}. Let 𝔡Ψ\mathfrak{d}_{\Psi} be the relative discriminant of the image of 𝒪EΨ𝒪E\mathcal{O}_{E_{\Psi}}\otimes_{\mathbb{Z}}\mathcal{O}_{E} in EΨ~\widetilde{E_{\Psi}} over 𝒪EΨ\mathcal{O}_{E_{\Psi}}, and let dΨd_{\Psi} be the positive generator of the NEΨ/(𝔡Ψ)N_{E_{\Psi}/\mathbb{Q}}(\mathfrak{d}_{\Psi}).

Theorem 2.8 ([YZ18, Thm 2.3]).
h(Φ)τΦh(Φ,τ)=14[EΦ:]log(dΦdΦ¯).h(\Phi)-\sum_{\tau\in\Phi}h(\Phi,\tau)=\frac{-1}{4[E_{\Phi}:\mathbb{Q}]}\log(d_{\Phi}d_{\overline{\Phi}}).

3. Quaternionic Shimura Varieties

We fix a totally real field F/F/\mathbb{Q} of degree gg. Let ΣHom(F,)\Sigma\subset\operatorname{Hom}(F,\mathbb{R}) be the subset of places of FF and let B/FB/F be a quaternion algebra over FF that is split at infinity precisely at Σ\Sigma, which means that

BτΣM2()τσΣσ.B\otimes_{\mathbb{Q}}\mathbb{R}\cong\prod_{\tau\in\Sigma}M_{2}(\mathbb{R})_{\tau}\oplus\prod_{\sigma\not\in\Sigma}\mathbb{H}_{\sigma}.

From this quaternion algebra, we will construct three related quaternionic Shimura varieties and relate them.

We are primarily interested in the Shimura variety XX associated with the group G=ResF/B×G=\operatorname{Res}_{F/\mathbb{Q}}B^{\times}. However, this Shimura datum does not parametrize abelian varieties and is of abelian type. We will follow the approach of [Car83] by finding a unitary Shimura datum GG^{\prime} that has the same derived group as GG, and is of PEL type which will give us a nice description of the integral models of XX^{\prime} in terms of abelian varieties. Then following [Kis10, KP18], we will give an integral model for XX by transporting the connected components of XX^{\prime}.

We start with the primary Shimura variety of study, the one associated to the group G=ResF/(B×)G=\operatorname{Res}_{F/\mathbb{Q}}(B^{\times}). Let h:×G()h\colon\mathbb{C}^{\times}\to G(\mathbb{R}) be a cocharacter defined by

h(a+bi)=(τΣ(abba)τ,σΣ1σ)τΣM2()τ×σΣσ.h(a+bi)=\left(\prod_{\tau\in\Sigma}\begin{pmatrix}a&b\\ -b&a\end{pmatrix}_{\tau},\prod_{\sigma\not\in\Sigma}1_{\sigma}\right)\in\prod_{\tau\in\Sigma}M_{2}(\mathbb{R})_{\tau}\times\prod_{\sigma\not\in\Sigma}\mathbb{H}_{\sigma}.

We can identify the G()G(\mathbb{R})-conjugacy class of hh with (±)|Σ|(\mathcal{H}^{\pm})^{\lvert\Sigma\rvert}, where ±\\mathcal{H}^{\pm}\coloneqq\mathbb{C}\backslash\mathbb{R}, by sending ghg1τΣgτ(iτ)ghg^{-1}\mapsto\prod_{\tau\in\Sigma}g_{\tau}(i_{\tau}), where gτGL2()τg_{\tau}\in\operatorname{GL}_{2}(\mathbb{R})_{\tau} is the τ\tau component of gg, and acts on ii through Möbius transformations. From the Shimura datum (G,(±)Σ)(G,(\mathcal{H}^{\pm})^{\Sigma}), we get a Shimura variety XUX_{U} for each open compact subgroup UG(𝔸f)U\subset G(\mathbb{A}_{f}) that has a complex uniformization given by

XU()=G()\(±)Σ×G(𝔸f)/U.X_{U}(\mathbb{C})=G(\mathbb{Q})\backslash(\mathcal{H}^{\pm})^{\Sigma}\times G(\mathbb{A}_{f})/U.

The reflex field EXE(G,(±)Σ)E_{X}\coloneqq E(G,(\mathcal{H}^{\pm})^{\Sigma}) of XX is the subfield of \mathbb{C} fixed by the automorphisms of \mathbb{C} that fix ΣHom(F,)\Sigma\subset\operatorname{Hom}(F,\mathbb{R}). The Shimura variety XUX_{U} has a canonical model over EXE_{X} whose complex points have the above uniformization (see [Mil90]).

Let NB/F:B×F×N_{B/F}\colon B^{\times}\to F^{\times} be the reduced norm on BB. The derived group is Gder=ker(NB/F:ResF/B×ResF/𝔾m)G^{\operatorname{der}}=\ker\left(N_{B/F}\colon\operatorname{Res}_{F/\mathbb{Q}}B^{\times}\to\operatorname{Res}_{F/\mathbb{Q}}\mathbb{G}_{m}\right), the elements of BB with norm 1F1\in F, and its adjoint group is ResF/B×/F×\operatorname{Res}_{F/\mathbb{Q}}B^{\times}/F^{\times}.

We now introduce two auxiliary Shimura data that have the same derived group and the same adjoint group as GG. Thus, their associated Shimura varieties have isomorphic connected components to XX. Let E/FE/F be a CM extension such that there is an embedding EBE\hookrightarrow B. Let

G′′ResF/(B××E×)/F×,G^{\prime\prime}\coloneqq\operatorname{Res}_{F/\mathbb{Q}}(B^{\times}\times E^{\times})/F^{\times},

where F×B××E×F^{\times}\hookrightarrow B^{\times}\times E^{\times} by a(a,a1)a\mapsto(a,a^{-1}). Let Φ:Eg\Phi\colon E\otimes_{\mathbb{Q}}\mathbb{R}\overset{\sim}{\to}\mathbb{C}^{g} be a full CM-type of EE. Split Φ\Phi into partial CM-types by

ϕ={σΦ:σ|FΣ},\phi=\{\sigma\in\Phi:\sigma|_{F}\in\Sigma\},

and

ϕ={σΦ:σ|FΣ},\phi^{\prime}=\{\sigma\in\Phi:\sigma|_{F}\not\in\Sigma\},

so that ϕ\phi and ϕ\phi^{\prime} are complementary partial CM-types. These partial CM-types give maps ϕ:EΣ\phi\colon E\to\mathbb{C}^{\Sigma} and ϕ:EΣ𝖼\phi^{\prime}\colon E\to\mathbb{C}^{{\Sigma}^{\mathsf{c}}}. Identify EE\otimes_{\mathbb{Q}}\mathbb{R} with g\mathbb{C}^{g} through the CM-type Φ\Phi. Define the cocharacter hE:×Eh_{E}\colon\mathbb{C}^{\times}\to E\otimes_{\mathbb{Q}}\mathbb{R} to be

hE(z)=(ϕ(1),ϕ(z))g.h_{E}(z)=(\phi(1),\phi^{\prime}(z))\in\mathbb{C}^{g}.

We can now define the cocharacter h′′:×G′′()h^{\prime\prime}\colon\mathbb{C}^{\times}\to G^{\prime\prime}(\mathbb{R}) as the composition of the map (h(z),hE(z))(h(z),h_{E}(z)) with the quotient by F×F^{\times}-action map. As before, the G′′()G^{\prime\prime}(\mathbb{R})-conjugacy class of h′′h^{\prime\prime} can be identified with (±)Σ(\mathcal{H}^{\pm})^{\Sigma}.

There exists a well defined norm ν:G′′ResF/𝔾m\nu\colon G^{\prime\prime}\to\operatorname{Res}_{F/\mathbb{Q}}\mathbb{G}_{m} given by mapping

(b,e)NB/F(b)NE/F(e).(b,e)\mapsto N_{B/F}(b)N_{E/F}(e).

We use this norm to define an algebraic subgroup

GG′′×ResF/𝔾m𝔾m,G^{\prime}\coloneqq G^{\prime\prime}\times_{\operatorname{Res}_{F/\mathbb{Q}}\mathbb{G}_{m}}\mathbb{G}_{m},

which consists of elements of G′′G^{\prime\prime} whose norm lies in ×F×\mathbb{Q}^{\times}\subset F^{\times}. For our cocharacter h′′h^{\prime\prime}, its norm is ν(h′′(a+bi))=a2+b2×(F)×\nu(h^{\prime\prime}(a+bi))=a^{2}+b^{2}\in\mathbb{R}^{\times}\subset(F\otimes_{\mathbb{Q}}\mathbb{R})^{\times}. Hence h′′h^{\prime\prime} factors through a map h:×G()h^{\prime}\colon\mathbb{C}^{\times}\to G^{\prime}(\mathbb{R}). The G()G^{\prime}(\mathbb{R}) conjugacy class of hh^{\prime} can be identified with (±)|Σ|(\mathcal{H}^{\pm})^{\lvert\Sigma\rvert} as well. For open and compact subgroups UG(𝔸f)U^{\prime}\subset G^{\prime}(\mathbb{A}_{f}) and U′′G′′(𝔸f)U^{\prime\prime}\subset G^{\prime\prime}(\mathbb{A}_{f}), we get Shimura varieties XUX^{\prime}_{U^{\prime}} and XU′′′′X^{\prime\prime}_{U^{\prime\prime}} with complex uniformizations

XU()=G()\(±)Σ×G(𝔸f)/U,X^{\prime}_{U^{\prime}}(\mathbb{C})=G^{\prime}(\mathbb{Q})\backslash(\mathcal{H}^{\pm})^{\Sigma}\times G^{\prime}(\mathbb{A}_{f})/U^{\prime},

and

XU′′′′()=G′′()\(±)Σ×G′′(𝔸f)/U′′.X^{\prime\prime}_{U^{\prime\prime}}(\mathbb{C})=G^{\prime\prime}(\mathbb{Q})\backslash(\mathcal{H}^{\pm})^{\Sigma}\times G^{\prime\prime}(\mathbb{A}_{f})/U^{\prime\prime}.

The reflex fields of these Shimura varieties EXE(G,(±)Σ)E_{X^{\prime}}\coloneqq E(G^{\prime},(\mathcal{H}^{\pm})^{\Sigma}) and EX′′E(G′′,(±)Σ)E_{X^{\prime\prime}}\coloneqq E(G^{\prime\prime},(\mathcal{H}^{\pm})^{\Sigma}) are the same, and equal to the subfield of \mathbb{C} fixed by all automorphisms of \mathbb{C} fixing ϕHom(E,)\phi^{\prime}\subset\operatorname{Hom}(E,\mathbb{C}). If an automorphism of \mathbb{C} fixes ϕ\phi^{\prime}, then it fixes Σ\Sigma as well. Therefore, the reflex field EXE_{X} is a subfield of EX=EX′′E_{X^{\prime}}=E_{X^{\prime\prime}}.

We now describe the abelian varieties which XX^{\prime} parametrizes. Let V=BV=B be viewed as a \mathbb{Q}-vector space with a natural left action by EE, and choose γEB\gamma\in E\subset B so that γ¯=γ\overline{\gamma}=-\gamma. We define a similitude ψ:V×V\psi\colon V\times V\to\mathbb{Q} by

ψ(v,w)=TrF/TrB/F(γvw¯),\psi(v,w)=\operatorname{Tr}_{F/\mathbb{Q}}\operatorname{Tr}_{B/F}(\gamma v\overline{w}),

where w¯\overline{w} is the canonical involution on BB. This is a nondegenerate alternating form, and ψ(ev,w)=ψ(v,ew)\psi(ev,w)=\psi^{\prime}(v,e^{*}w) for all v,wVv,w\in V and eEe\in E, where the involution e=e¯e^{*}=\overline{e} is just complex conjugation on EE. We define a left action of (B×E)×/F×(B\times E)^{\times}/F^{\times} on VV by setting (b,e)v=evb¯(b,e)\cdot v=ev\overline{b}. In this way, we can identify GG^{\prime} with EE-linear automorphisms of VV with rational norm

G={gGLE(V):ψ(gv,gw)=ν(g)ψ(v,w) for some ν(g)𝔾m}.G^{\prime}=\{g\in\operatorname{GL}_{E}(V):\psi(gv,gw)=\nu(g)\cdot\psi(v,w)\text{ for some }\nu(g)\in\mathbb{G}_{m}\}.

The action of \mathbb{C} on VV_{\mathbb{R}} through the morphism hh^{\prime} induces a Hodge structure on VV of weight 11. We can choose γ\gamma such that ψ\psi induces a polarization satisfying ψ(v,h(i)v)0\psi(v,h^{\prime}(i)v)\geq 0 for all vVv\in V_{\mathbb{R}}, and hence (V,ψ)(V,\psi) is a symplectic (E,)(E,*)-module.

Thus, by [Mil05, Thm 8.17], the pair (G,(±)Σ)(G^{\prime},(\mathcal{H}^{\pm})^{\Sigma}) is PEL Shimura datum and XUX^{\prime}_{U^{\prime}}, for UU^{\prime} small enough, represents the functor, for any test scheme SS over EXE_{X^{\prime}}, whose SS-points are isomorphism classes of quadruples (A,ι,θ,κU)(A,\iota,\theta,\kappa U^{\prime}) where

  1. (1)

    A/SA/S is an abelian scheme of relative dimension 2g2g;

  2. (2)

    ι:EEnd(A/S)\iota\colon E\to\operatorname{End}(A/S)\otimes_{\mathbb{Z}}\mathbb{Q} is an injection such that the action of ι(E)\iota(E) on Lie(A/S)\operatorname{Lie}(A/S) has trace given by

    Tr(,Lie(A/S))=Trϕϕ()+Trϕ¯ϕ()\operatorname{Tr}(\ell,\operatorname{Lie}(A/S))=\operatorname{Tr}_{\phi\sqcup\phi^{\prime}}(\ell)+\operatorname{Tr}_{\overline{\phi}\sqcup\phi^{\prime}}(\ell)

    for all E\ell\in E, where for a CM-type (E,Φ)(E,\Phi) the trace map TrΦ:E\operatorname{Tr}_{\Phi}\colon E\to\mathbb{C} is defined as

    TrΦ(e)=σΦσ(e);\operatorname{Tr}_{\Phi}(e)=\sum_{\sigma\in\Phi}\sigma(e);
  3. (3)

    θ:AAt\theta\colon A\to A^{t} is a polarization whose Rosati involution on End(A/S)\operatorname{End}(A/S)_{\mathbb{Q}} induces the involution γγ\gamma\mapsto\gamma^{*} on EE;

  4. (4)

    and κ:H1(A,𝔸f)V𝔸f\kappa\colon H_{1}(A,\mathbb{A}_{f})\simeq V_{\mathbb{A}_{f}} is an isomorphism of 𝔸E,f\mathbb{A}_{E,f}-modules that respects the bilinear forms on both factors, up to an element in 𝔸f×\mathbb{A}_{f}^{\times}.

4. Integral Models

To construct integral models for these Shimura varieties, we first use the PEL structure of XX^{\prime} to get an integral model 𝒳\mathcal{X}^{\prime} which parametrizes abelian schemes. Then we will transfer the integral model of XX^{\prime} to construct integral models for XX and X′′X^{\prime\prime}, as done in [Kis10, KP18].

4.1. PEL Type 𝒳\mathcal{X}^{\prime}

We construct 𝒳\mathcal{X}^{\prime} following [RZ96, PZ13]. Let pp\in\mathbb{Z} be a prime number. Let 𝔭\mathfrak{p} be a prime of FF lying above pp. Set 𝒪E,𝔭=𝒪E𝒪F𝒪F,𝔭\mathcal{O}_{E,\mathfrak{p}}=\mathcal{O}_{E}\otimes_{\mathcal{O}_{F}}\mathcal{O}_{F,\mathfrak{p}}.

  • If BB is unramified at 𝔭\mathfrak{p}, then B𝔭M2(F𝔭)B_{\mathfrak{p}}\cong M_{2}(F_{\mathfrak{p}}). Choose an isomorphism such that 𝒪E,𝔭M2(𝒪F,𝔭)\mathcal{O}_{E,\mathfrak{p}}\subset M_{2}(\mathcal{O}_{F,\mathfrak{p}}) and set Λ𝔭=M2(𝒪F,𝔭)\Lambda_{\mathfrak{p}}=M_{2}(\mathcal{O}_{F,\mathfrak{p}}).

  • If BB is ramified at 𝔭\mathfrak{p}, then B𝔭B_{\mathfrak{p}} is a division algebra over F𝔭F_{\mathfrak{p}} and there is a unique choice of a maximal order 𝒪B,𝔭\mathcal{O}_{B,\mathfrak{p}}, which must contain 𝒪E,𝔭\mathcal{O}_{E,\mathfrak{p}}. We set Λ𝔭=𝒪B,𝔭\Lambda_{\mathfrak{p}}=\mathcal{O}_{B,\mathfrak{p}}.

From this choice of 𝒪E,𝔭\mathcal{O}_{E,\mathfrak{p}}-lattice Λ𝔭\Lambda_{\mathfrak{p}}, construct a chain of lattices by taking

𝔭={ω𝔮Λ𝔭Λ𝔭ω𝔮1Λ𝔭},\mathcal{L}_{\mathfrak{p}}=\{\cdots\subset\omega_{\mathfrak{q}}\Lambda_{\mathfrak{p}}\subset\Lambda_{\mathfrak{p}}\subset\omega_{\mathfrak{q}}^{-1}\Lambda_{\mathfrak{p}}\subset\cdots\},

where ω𝔮\omega_{\mathfrak{q}} is a uniformizer of E𝔮E_{\mathfrak{q}}, taken to be a uniformizer of F𝔭F_{\mathfrak{p}} if 𝔮\mathfrak{q} is unramified over 𝔭\mathfrak{p}. From these chains, we can construct a multichain p\mathcal{L}_{p} of 𝒪Ep\mathcal{O}_{E}\otimes_{\mathbb{Z}}\mathbb{Z}_{p}-lattices which consist of all lattices Λp\Lambda_{p} which can be written as

Λp=𝔭pΛ𝔭,Λ𝔭𝔭.\Lambda_{p}=\oplus_{\mathfrak{p}\mid p}\Lambda_{\mathfrak{p}},\quad\Lambda_{\mathfrak{p}}\in\mathcal{L}_{\mathfrak{p}}.

We now require that EE is ramified above all finite primes 𝔭\mathfrak{p} of FF that also ramify in BB. Let δ𝔭/pF𝔭\delta_{\mathfrak{p}/p}\in F_{\mathfrak{p}} be a generator for the different ideal 𝔡F𝔭/p\mathfrak{d}_{F_{\mathfrak{p}}/\mathbb{Q}_{p}} of F𝔭/pF_{\mathfrak{p}}/\mathbb{Q}_{p}.

Lemma 4.1.

We can choose γE×\gamma\in E^{\times} such that

  • γ=γ¯\gamma=-\overline{\gamma};

  • γδ𝔭/p1𝒪E,𝔭×\gamma\in\delta_{\mathfrak{p}/p}^{-1}\mathcal{O}_{E,\mathfrak{p}}^{\times};

  • and ψ(v,h(i)v)>0\psi(v,h^{\prime}(i)v)>0 for all vV\{0}v\in V_{\mathbb{R}}\backslash\{0\}.

Moreover, under this choice of γ\gamma, the multichain of 𝒪Ep\mathcal{O}_{E}\otimes_{\mathbb{Z}}\mathbb{Z}_{p}-lattices p\mathcal{L}_{p} is self-dual with respect to the p\mathbb{Q}_{p}-linear alternating form ψp:Vp×Vpp\psi_{p}\colon V_{p}\times V_{p}\to\mathbb{Q}_{p}.

Proof.

The anti-symmetric elements of EE are dense in the anti-symmetric elements of (Ep)(E)(E\otimes_{\mathbb{Q}}\mathbb{Q}_{p})\oplus(E\otimes_{\mathbb{Q}}\mathbb{R}) and the conditions given are all open and non-empty, meaning that we can find such a γ\gamma.

To show that p\mathcal{L}_{p} is a self-dual multichain, it suffices to look locally at each prime 𝔭\mathfrak{p} of FF. The alternating form ψp\psi_{p} is the sum over all primes 𝔭\mathfrak{p} of

ψ𝔭(v,w)=TrF𝔭/pTrB𝔭/F𝔭(γvw¯).\psi_{\mathfrak{p}}(v,w)=\operatorname{Tr}_{F_{\mathfrak{p}}/\mathbb{Q}_{p}}\operatorname{Tr}_{B_{\mathfrak{p}}/F_{\mathfrak{p}}}(\gamma v\overline{w}).

Thus, the dual of the lattice Λ𝔭\Lambda_{\mathfrak{p}} with respect to ψ𝔭\psi_{\mathfrak{p}} is

Λ𝔭={wV𝔭:ψ𝔭(v,w)pvΛ𝔭}={wV𝔭:TrB𝔭/F𝔭(γvw¯)δ𝔭/p1𝒪F,𝔭}.\Lambda_{\mathfrak{p}}^{\vee}=\{w\in V_{\mathfrak{p}}:\psi_{\mathfrak{p}}(v,w)\in\mathbb{Z}_{p}\forall v\in\Lambda_{\mathfrak{p}}\}=\{w\in V_{\mathfrak{p}}:\operatorname{Tr}_{B_{\mathfrak{p}}/F_{\mathfrak{p}}}(\gamma v\overline{w})\in\delta_{\mathfrak{p}/p}^{-1}\mathcal{O}_{F,\mathfrak{p}}\}.

It suffice to take δ=δ𝔭/p1\delta=\delta_{\mathfrak{p}/p}^{-1}. First assume that 𝔭\mathfrak{p} is unramified in BB. Under the isomorphism B𝔭M2(F𝔭)B_{\mathfrak{p}}\cong M_{2}(F_{\mathfrak{p}}), the involution on B𝔭B_{\mathfrak{p}} is given by (abcd)¯=(dbca)\overline{\begin{pmatrix}a&b\\ c&d\end{pmatrix}}=\begin{pmatrix}d&-b\\ -c&a\end{pmatrix} and the similitude is

TrB𝔭/F𝔭(δ(abcd)(abcd)¯)=δ𝔭/p1(ad+bc+ad+bc).\operatorname{Tr}_{B_{\mathfrak{p}}/F_{\mathfrak{p}}}\left(\delta\begin{pmatrix}a&b\\ c&d\end{pmatrix}\overline{\begin{pmatrix}a^{\prime}&b^{\prime}\\ c^{\prime}&d^{\prime}\end{pmatrix}}\right)=\delta_{\mathfrak{p}/p}^{-1}(ad^{\prime}+bc^{\prime}+a^{\prime}d+b^{\prime}c).

From this, we see that Λ𝔭=Λ𝔭=M2(𝒪F,𝔭)\Lambda_{\mathfrak{p}}^{\vee}=\Lambda_{\mathfrak{p}}=M_{2}(\mathcal{O}_{F,\mathfrak{p}}).

If 𝔭\mathfrak{p} is ramified in BB, we required that EE is also ramified at 𝔭\mathfrak{p}. So, we can find an element jB𝔭j\in B_{\mathfrak{p}} such that j2𝒪F,𝔭×j^{2}\in\mathcal{O}_{F,\mathfrak{p}}^{\times} and je=e¯jje=\overline{e}j for all eE𝔭e\in E_{\mathfrak{p}}. For this choice of jj, the unique maximal order can be written as 𝒪B,𝔭=𝒪E,𝔭+𝒪E,𝔭j\mathcal{O}_{B,\mathfrak{p}}=\mathcal{O}_{E,\mathfrak{p}}+\mathcal{O}_{E,\mathfrak{p}}j. For a+bjE𝔭+E𝔭j=B𝔭a+bj\in E_{\mathfrak{p}}+E_{\mathfrak{p}}j=B_{\mathfrak{p}}, the trace is TrB𝔭/F𝔭(a+bj)=TrE𝔭/F𝔭(a)\operatorname{Tr}_{B_{\mathfrak{p}}/F_{\mathfrak{p}}}(a+bj)=\operatorname{Tr}_{E_{\mathfrak{p}}/F_{\mathfrak{p}}}(a). We thus have

TrB𝔭/F𝔭(γ(a+bj)(a+bj¯))=δ𝔭/p1TrE𝔭/F𝔭(aa¯bb¯j2).\operatorname{Tr}_{B_{\mathfrak{p}}/F_{\mathfrak{p}}}\left(\gamma(a+bj)(\overline{a^{\prime}+b^{\prime}j})\right)=\delta_{\mathfrak{p}/p}^{-1}\operatorname{Tr}_{E_{\mathfrak{p}}/F_{\mathfrak{p}}}(a\overline{a^{\prime}}-b\overline{b^{\prime}}j^{2}).

From this, we get that Λ𝔭=ω𝔮1Λ𝔭𝔭\Lambda_{\mathfrak{p}}^{\vee}=\omega_{\mathfrak{q}}^{-1}\Lambda_{\mathfrak{p}}\in\mathcal{L}_{\mathfrak{p}}. ∎

Let Up=Up(0)G(p)U^{\prime}_{p}=U^{\prime}_{p}(0)\subset G^{\prime}(\mathbb{Q}_{p}) be the parahoric subgroup of elements fixing the multichain p\mathcal{L}_{p}. Let UpG(𝔸fp)U^{\prime p}\subset G^{\prime}(\mathbb{A}_{f}^{p}) and set UUpUpG(𝔸f)U^{\prime}\coloneqq U^{\prime}_{p}U^{\prime p}\subset G^{\prime}(\mathbb{A}_{f}). Choose a place vv^{\prime} of 𝒪EX\mathcal{O}_{E_{X^{\prime}}} lying above pp. From the integral data of (p,Up)(\mathcal{L}_{p},U^{\prime}_{p}), consider the functor UpUp\mathcal{F}^{\prime}_{U^{\prime}_{p}U^{\prime p}} which associates to a test scheme 𝒮\mathcal{S} over Spec𝒪EX,v\operatorname{Spec}\mathcal{O}_{E_{X^{\prime}},v^{\prime}} the set of isomorphism classes of quadruples (𝒜,ι,θ,κUp)(\mathcal{A},\iota,\theta,\kappa U^{\prime p}) where:

  1. (1)

    𝒜/𝒮\mathcal{A}/\mathcal{S} is an abelian scheme of relative dimension 2g2g up to isogeny of order prime to pp;

  2. (2)

    ι:𝒪E(p)End(𝒜/𝒮)(p)\iota\colon\mathcal{O}_{E}\otimes_{\mathbb{Z}}\mathbb{Z}_{(p)}\to\operatorname{End}(\mathcal{A}/\mathcal{S})\otimes_{\mathbb{Z}}\mathbb{Z}_{(p)} is a homomorphism satisfying the following Kottwitz condition. There is an identity of polynomial functions

    det𝒪S(ι();Lie𝒜/S)=φϕφ()φ()¯φϕφ()2;\det_{\mathcal{O}_{S}}(\iota(\ell);\operatorname{Lie}\mathcal{A}/S)=\prod_{\varphi\in\phi}\varphi(\ell)\overline{\varphi(\ell)}\prod_{\varphi^{\prime}\in\phi^{\prime}}\varphi^{\prime}(\ell)^{2};
  3. (3)

    θ:𝒜𝒜t\theta\colon\mathcal{A}\to\mathcal{A}^{t} is a principle polarization whose Rosati involution on End(𝒜/S)(p)\operatorname{End}(\mathcal{A}/S)\otimes\mathbb{Z}_{(p)} induces complex conjugation on 𝒪E,(p)\mathcal{O}_{E,(p)};

  4. (4)

    and κ:H1(𝒜,𝔸fp)V𝔸fp\kappa\colon H_{1}(\mathcal{A},\mathbb{A}_{f}^{p})\simeq V_{\mathbb{A}^{p}_{f}} is an isomorphism of skew 𝒪E,(p)𝔸fp\mathcal{O}_{E,(p)}\otimes\mathbb{A}^{p}_{f}-modules that respects the bilinear forms up to a constant in (𝔸fp)×(\mathbb{A}_{f}^{p})^{\times}.

Theorem 4.2.

If UpU^{\prime p} is sufficiently small, then the functor U\mathcal{F}^{\prime}_{U^{\prime}} is represented by a quasi-projective scheme U\mathcal{M}_{U^{\prime}} over 𝒪EX,v\mathcal{O}_{E_{X^{\prime}},v^{\prime}} whose generic fiber is XUX^{\prime}_{U^{\prime}}. Moreover, we have:

  1. (1)

    If pp is unramified in EE, the scheme U\mathcal{M}_{U^{\prime}} is smooth over 𝒪EX,v\mathcal{O}_{E_{X^{\prime}},v^{\prime}};

  2. (2)

    The pp-adic completion of U\mathcal{M}_{U^{\prime}} along the basic locus has a pp-adic uniformization by a Rapoport–Zink space

Proof.

This is the PEL moduli problem studied by [Kot92] and [RZ96]. The first case is covered by [Kot92, Sec. 5] and the second case is covered by [RZ96, Thm 6.50]. ∎

If pp is unramified in EE, we set our integral model 𝒳U\mathcal{X}_{U^{\prime}} to be U\mathcal{M}_{U^{\prime}}. If pp is ramified in EE, then U\mathcal{M}_{U^{\prime}} is not necessarily flat. We explain how to construct a flat model following [PZ13]. We first construct the corresponding local model for U\mathcal{F}^{\prime}_{U^{\prime}} following [RZ96, Def. 3.27]. Let 𝕄naive\mathbb{M}^{\mathrm{naive}} be the functor which associates to a locally Noetherian scheme 𝒮\mathcal{S} over Spec𝒪EX,v\operatorname{Spec}\mathcal{O}_{E_{X^{\prime}},v^{\prime}} the set of 𝒪E,pp𝒪S\mathcal{O}_{E,p}\otimes_{\mathbb{Z}_{p}}\mathcal{O}_{S}-submodules tΛΛpp𝒪St_{\Lambda}\subset\Lambda_{p}\otimes_{\mathbb{Z}_{p}}\mathcal{O}_{S} such that

  1. (1)

    tΛt_{\Lambda} is a finite, locally free 𝒪S\mathcal{O}_{S}-module;

  2. (2)

    For all 𝒪E,p\ell\in\mathcal{O}_{E,p}, there is an identity of polynomial functions

    det𝒪S(;tΛ)=φϕφ()φ()¯φϕφ()2;\det_{\mathcal{O}_{S}}(\ell;t_{\Lambda})=\prod_{\varphi\in\phi}\varphi(\ell)\overline{\varphi(\ell)}\prod_{\varphi^{\prime}\in\phi^{\prime}}\varphi^{\prime}(\ell)^{2};
  3. (3)

    and tΛt_{\Lambda} is totally isotropic under the nondegenerate alternating pairing

    ψp,𝒪S:(Λpp𝒪S)×(Λpp𝒪S)𝒪S.\psi_{p,\mathcal{O}_{S}}\colon(\Lambda_{p}\otimes_{\mathbb{Z}_{p}}\mathcal{O}_{S})\times(\Lambda_{p}\otimes_{\mathbb{Z}_{p}}\mathcal{O}_{S})\to\mathcal{O}_{S}.

This functor is represented by a closed subscheme of a Grassmannian. Let 𝒫/Specp\mathcal{P}/\operatorname{Spec}\mathbb{Z}_{p} be the group scheme whose SS points are Aut(p𝒪S)\operatorname{Aut}(\mathcal{L}\otimes_{\mathbb{Z}_{p}}\mathcal{O}_{S}) automorphisms of the multichain \mathcal{L} that respect the similitude ψp\psi_{p}. Then by [RZ96, 3.30], there is a smooth morphism of algebraic stacks of relative dimension dimG=5g\dim G^{\prime}=5g.

U[𝕄naive/𝒫𝒪EX,v]\mathcal{M}_{U^{\prime}}\to\left[\mathbb{M}^{\mathrm{naive}}/\mathcal{P}_{\mathcal{O}_{E_{X^{\prime}},v^{\prime}}}\right]

From this, we see that 𝕄naive\mathbb{M}^{\mathrm{naive}} controls the structure of U\mathcal{M}_{U^{\prime}}. While conjectured to be flat, it has since been shown by [Pap00] that 𝕄naive\mathbb{M}^{\mathrm{naive}} is not necessarily flat when pp is ramified in the PEL datum. To remedy this, take 𝕄loc\mathbb{M}^{\mathrm{loc}} to be the flat scheme theoretic closure of 𝕄naive𝒪EX,vEX,v\mathbb{M}^{\mathrm{naive}}\otimes_{\mathcal{O}_{E_{X^{\prime}},v^{\prime}}}E_{X^{\prime},v^{\prime}} in 𝕄naive\mathbb{M}^{\mathrm{naive}}.

Proposition 4.3 ([PZ13, Thm. 9.1]).

The scheme 𝕄loc\mathbb{M}^{\mathrm{loc}} is normal and Cohen–Macaulay with reduced special fiber. It also admits an action by 𝒫𝒪EX,v\mathcal{P}_{\mathcal{O}_{E_{X^{\prime}},v^{\prime}}} such that the natural inclusion 𝕄loc𝕄naive\mathbb{M}^{\mathrm{loc}}\to\mathbb{M}^{\mathrm{naive}} is 𝒫𝒪EX,v\mathcal{P}_{\mathcal{O}_{E_{X^{\prime}},v^{\prime}}}-equivariant.

With this flat local model, we can define a flat integral model 𝒳U\mathcal{X}^{\prime}_{U^{\prime}} for XUX^{\prime}_{U^{\prime}} by pulling back U\mathcal{M}_{U^{\prime}} to 𝕄loc\mathbb{M}^{\mathrm{loc}} to get the following cartesian diagram.

𝒳U{\mathcal{X}^{\prime}_{U^{\prime}}}U{\mathcal{M}_{U^{\prime}}}[𝕄loc/𝒫𝒪EX,v]{\left[\mathbb{M}^{\mathrm{loc}}/\mathcal{P}_{\mathcal{O}_{E_{X^{\prime}},v^{\prime}}}\right]}[𝕄naive/𝒫𝒪EX,v]{\left[\mathbb{M}^{\mathrm{naive}}/\mathcal{P}_{\mathcal{O}_{E_{X^{\prime}},v^{\prime}}}\right]}

The schemes 𝒳U\mathcal{X}^{\prime}_{U^{\prime}} and U\mathcal{M}_{U^{\prime}} have generic fiber equal to XUX^{\prime}_{U^{\prime}} and since 𝕄loc\mathbb{M}^{\mathrm{loc}} is flat, our integral model 𝒳U\mathcal{X}^{\prime}_{U^{\prime}} of XUX^{\prime}_{U^{\prime}} is flat as well.

We have defined integral models 𝒳U\mathcal{X}^{\prime}_{U^{\prime}} when U=UpUpU^{\prime}=U^{\prime}_{p}U^{\prime p} where Up=Up(0)U^{\prime}_{p}=U^{\prime}_{p}(0) is maximally parahoric and UpU^{\prime p} is sufficiently small. We want to define an integral model 𝒳U\mathcal{X}^{\prime}_{U^{\prime}} when U=pUp(0)U^{\prime}=\prod_{p}U^{\prime}_{p}(0) is maximal at all primes. We now show how to construct these integral models when UpU^{\prime p} is big.

Suppose that pp is unramified in EE so that 𝒳U\mathcal{X^{\prime}}_{U^{\prime}} is smooth. For integral m0m\geq 0, let Up(m)U_{p}(m) denote

Up(m){gG(p):gΛp=Λp,g|pmΛp/Λp1}U_{p}^{\prime}(m)\coloneqq\{g\in G^{\prime}(\mathbb{Q}_{p}):g\Lambda_{p}=\Lambda_{p},g|_{p^{-m}\Lambda_{p}/\Lambda_{p}}\equiv 1\}

the subgroup of UpU^{\prime}_{p} that acts as the identity on Λp/pmΛp\Lambda_{p}/p^{m}\Lambda_{p}. The nondegenerate alternating form ψp\psi_{p} on Λp\Lambda_{p} gives rise to a nondegenerate *-hermitian alternating form

,p,m:pmΛp/Λp×pmΛp/Λppmp/p\langle,\rangle_{p,m}\colon p^{-m}\Lambda_{p}/\Lambda_{p}\times p^{-m}\Lambda_{p}/\Lambda_{p}\to p^{-m}\mathbb{Z}_{p}/\mathbb{Z}_{p}

given by

x,yp,m=ψp(pmx,y).\langle x,y\rangle_{p,m}=\psi_{p}(p^{m}x,y).

Then for UpU^{\prime p} small enough, Mantovan (see [Man05]) defines an integral model of 𝒳Up(m)Up\mathcal{X}^{\prime}_{U^{\prime}_{p}(m)U^{\prime p}} over Spec𝒪EX,v\operatorname{Spec}\mathcal{O}_{E_{X^{\prime}},v^{\prime}} by using the notion of a full set of sections. Let Up(m)Up\mathcal{F}^{\prime}_{U^{\prime}_{p}(m)U^{\prime p}} be the functor over UpUp=Up(0)Up\mathcal{F}^{\prime}_{U^{\prime}_{p}U^{\prime p}}=\mathcal{F}^{\prime}_{U^{\prime}_{p}(0)U^{\prime p}} which associates to a locally Noetherian scheme SS over 𝒪EX,v\mathcal{O}_{E_{X^{\prime}},v^{\prime}} the set of isomorphism classes of data (𝒜,ι,θ,κ,α)(\mathcal{A},\iota,\theta,\kappa,\alpha) where (𝒜,ι,θ,κ)(\mathcal{A},\iota,\theta,\kappa) are as in the functor Up(0)Up\mathcal{F}^{\prime}_{U^{\prime}_{p}(0)U^{\prime p}} and

α:pmΛp/Λp𝒜[pm](S)\alpha\colon p^{-m}\Lambda_{p}/\Lambda_{p}\to\mathcal{A}[p^{m}](S)

is an 𝒪E,p\mathcal{O}_{E,p}-linear homomorphism such that {α(x):xpmΛ/Λ}\{\alpha(x):x\in p^{-m}\Lambda/\Lambda\} is a full set of sections of 𝒜[pm]\mathcal{A}[p^{m}] and α\alpha maps the pairing ,p,m\langle,\rangle_{p,m} to the Weil pairing on 𝒜[pm]\mathcal{A}[p^{m}], up to a scalar multiple in (/pm)×(\mathbb{Z}/p^{m}\mathbb{Z})^{\times}.

Theorem 4.4 ([Man05, Prop. 15]).

The functor Up(m)Up\mathcal{F}^{\prime}_{U^{\prime}_{p}(m)U^{\prime p}} is represented by a smooth scheme 𝒳Up(m)Up\mathcal{X}_{U^{\prime}_{p}(m)U^{\prime p}} over 𝒪EX,v\mathcal{O}_{E_{X^{\prime}},v^{\prime}}.

To make the notion of UpU^{\prime p} small enough explicit, fix a lattice ΛV\Lambda\subset V over \mathbb{Z} such that ΛpΛp\Lambda\otimes_{\mathbb{Z}}\mathbb{Z}_{p}\cong\Lambda_{p}. For NN\in\mathbb{N}, let

U(N){gG(𝔸f):g|Λ/NΛ1}.U^{\prime}(N)\coloneqq\{g\in G^{\prime}(\mathbb{A}_{f}):g|_{\Lambda/N\Lambda}\equiv 1\}.

We now remove our restriction that the moduli problem above pp is unramified.

Proposition 4.5.

If Up(m)UpU(N)U^{\prime}_{p}(m)U^{\prime p}\subset U^{\prime}(N) is a normal subgroup such that N3N\geq 3 and m=0m=0 when pp is ramified in EXE_{X^{\prime}}, then the functor Up(m)Up\mathcal{F}^{\prime}_{U^{\prime}_{p}(m)U^{\prime p}} is representable by a normal scheme with reduced special fiber. Moreover, if pp is unramified in EXE_{X^{\prime}}, then the functor Up(m)Up\mathcal{F}^{\prime}_{U^{\prime}_{p}(m)U^{\prime p}} is representable by a smooth scheme.

Proof.

Choose a normal subgroup U0pUpU^{\prime p}_{0}\subset U^{\prime p} sufficiently small so that the functor Up(m)U0p\mathcal{F}^{\prime}_{U^{\prime}_{p}(m)U^{\prime p}_{0}} is represented by the scheme 𝒳Up(m)U0p\mathcal{X}^{\prime}_{U^{\prime}_{p}(m)U^{\prime p}_{0}}. There is an action of UpU(N)pU^{\prime p}\subset U^{\prime}(N)^{p} on this scheme and it suffices to show that U(N)pU^{\prime}(N)^{p} acts freely on 𝒳Up(m)U0p\mathcal{X}^{\prime}_{U^{\prime}_{p}(m)U^{\prime p}_{0}}. A point x𝒳Up(m)U0px\in\mathcal{X}^{\prime}_{U^{\prime}_{p}(m)U^{\prime p}_{0}} corresponds to a quintuple (𝒜,ι,θ,κ,α)(\mathcal{A},\iota,\theta,\kappa,\alpha), where the full set of sections α\alpha is trivial when m=0m=0. Suppose that gU(N)pg\in U^{\prime}(N)^{p} fixes xx. We may choose our 𝒜\mathcal{A} and κ\kappa so that H1(𝒜,𝔸fp)Λ𝔸fpH_{1}(\mathcal{A},\mathbb{A}_{f}^{p})\cong\Lambda_{\mathbb{A}_{f}^{p}} and κ\kappa induces an isomorphism between the two. The element gg acts by sending (𝒜,ι,θ,κ,α)g=(𝒜,ι,θ,g1κ,α)(\mathcal{A},\iota,\theta,\kappa,\alpha)g=(\mathcal{A},\iota,\theta,g^{-1}\circ\kappa,\alpha). Thus, there exist some isomorphism ff of 𝒜\mathcal{A} and element gU0pg^{\prime}\in U^{\prime p}_{0} such that (gg)1κ=κf:H1(𝒜,𝔸fp)Λ𝔸fp(gg^{\prime})^{-1}\circ\kappa=\kappa\circ f_{*}\colon H_{1}(\mathcal{A},\mathbb{A}_{f}^{p})\to\Lambda_{\mathbb{A}_{f}^{p}}. Now since ggU(N)pgg^{\prime}\in U^{\prime}(N)^{p} acts on the identity on Λ/NΛ\Lambda/N\Lambda, we get that ff_{*} must act as the identity on 𝒜[N]\mathcal{A}[N], meaning that ff is the identity since N3N\geq 3. Thus gg=1gg^{\prime}=1 and g1κg^{-1}\circ\kappa is in the same U0pU^{\prime p}_{0} orbit as κ\kappa. ∎

We let 𝒳U\mathcal{X}^{\prime}_{U^{\prime}} be the scheme representing U\mathcal{F}^{\prime}_{U^{\prime}} whenever U=pUpU(N)U^{\prime}=\prod_{p}U^{\prime}_{p}\subset U^{\prime}(N) for N3N\geq 3. This gives us a flat and normal integral model for XUX^{\prime}_{U^{\prime}} over 𝒪EX\mathcal{O}_{E_{X^{\prime}}}.

4.2. Transferring Integral Models

Now we can use the integral model for XX^{\prime} to get integral models for XX and X′′X^{\prime\prime}, as done in [Kis10, KP18], by extending the adjoint group GadG^{\operatorname{ad}}-action on the neutral component of 𝒳\mathcal{X}^{\prime}. We briefly recall how this is done because we will use the same idea to transfer the pp-divisible group on 𝒳\mathcal{X}^{\prime} to pp-divisible groups over 𝒳\mathcal{X} and 𝒳′′\mathcal{X}^{\prime\prime}. Set Up(m)(1+pm𝒪B,p)×U_{p}(m)\coloneqq(1+p^{m}\mathcal{O}_{B,p})^{\times} and Up′′Up′′(m)(1+p(𝒪B,p×𝒪E,p))×G′′(p)U^{\prime\prime}_{p}\coloneqq U^{\prime\prime}_{p}(m)\coloneqq(1+p(\mathcal{O}_{B,p}\times\mathcal{O}_{E,p}))^{\times}\subset G^{\prime\prime}(\mathbb{Q}_{p}). Then UpUp(0)U_{p}\coloneqq U_{p}(0) and Up′′Up′′(0)U^{\prime\prime}_{p}\coloneqq U^{\prime\prime}_{p}(0) are the p\mathbb{Z}_{p}-points of parahoric subgroups over (p)\mathbb{Z}_{(p)} which fix the lattices 𝒪B,p\mathcal{O}_{B,p} and 𝒪B,p×𝒪E,p\mathcal{O}_{B,p}\times\mathcal{O}_{E,p} respectively, and over the generic fiber they are isomorphic to GG and G′′G^{\prime\prime}. Denote these models Gp,Gp′′G_{p},G^{\prime\prime}_{p} so that Gp(p)=UpG_{p}(\mathbb{Z}_{p})=U_{p} and Gp′′(p)=Up′′G^{\prime\prime}_{p}(\mathbb{Z}_{p})=U^{\prime\prime}_{p}. For S=X,X,X′′S=X,X^{\prime},X^{\prime\prime}, let US,p=Up,Up,Up′′U_{S,p}=U_{p},U^{\prime}_{p},U^{\prime\prime}_{p} and USp=Up,Up,U′′pU_{S}^{p}=U^{p},U^{\prime p},U^{\prime\prime p} and GS=G,G,G′′G_{S}=G,G^{\prime},G^{\prime\prime} and GS,p=Gp,Gp,Gp′′G_{S,p}=G_{p},G^{\prime}_{p},G^{\prime\prime}_{p} respectively. Let ZSZ_{S} be the center of GSG_{S}. For each choice of SS, take the limit over all choices of USpU_{S}^{p} to get

SUS,p=limUSpSUS,pUSp=GS()\(±)Σ×GS(𝔸f)/US,p,S_{U_{S,p}}=\varprojlim_{U_{S}^{p}}S_{U_{S,p}U_{S}^{p}}=G_{S}(\mathbb{Q})\backslash(\mathcal{H}^{\pm})^{\Sigma}\times G_{S}(\mathbb{A}_{f})/U_{S,p},

and let the entire projective limit be

S=limUS,pUSpSUS,pUSp=GS()\(±)Σ×GS(𝔸f).S=\varprojlim_{U_{S,p}U_{S}^{p}}S_{U_{S,p}U_{S}^{p}}=G_{S}(\mathbb{Q})\backslash(\mathcal{H}^{\pm})^{\Sigma}\times G_{S}(\mathbb{A}_{f}).

We recall the star product notation of [Kis10, KP18]. Suppose that a group Δ\Delta acts on a group HH and suppose that ΓH\Gamma\subset H is stable under the action of Δ\Delta. Let Δ\Delta act on itself by left conjugation, and suppose there is a group homomorphism φ:ΓΔ\varphi\colon\Gamma\to\Delta that respects Δ\Delta-action. We also impose for all γΓ\gamma\in\Gamma that the φ(γ)\varphi(\gamma)-action on HH is by left conjugation by γ\gamma. Then, the subgroup {(γ,φ(γ)1):γΓ}\{(\gamma,\varphi(\gamma)^{-1}):\gamma\in\Gamma\} is a normal subgroup of HΔH\rtimes\Delta and we let HΓΔH*_{\Gamma}\Delta denote the quotient.

Let GSad()+G_{S}^{\operatorname{ad}}(\mathbb{R})^{+} be the neutral component and let GS()+G_{S}(\mathbb{R})_{+} be the preimage of GSad()+G_{S}^{\operatorname{ad}}(\mathbb{R})^{+} under the map GS()GSad()G_{S}(\mathbb{R})\to G_{S}^{\operatorname{ad}}(\mathbb{R}). Let GS()+=GS()+GS()G_{S}(\mathbb{Q})_{+}=G_{S}(\mathbb{R})_{+}\cap G_{S}(\mathbb{Q}) and let GS,p((p))+=GS,p((p))GS()+G_{S,p}(\mathbb{Z}_{(p)})_{+}=G_{S,p}(\mathbb{Z}_{(p)})\cap G_{S}(\mathbb{Q})_{+}. Let GS,pad((p))+=GS,pad((p))GSad()+G_{S,p}^{\operatorname{ad}}(\mathbb{Z}_{(p)})^{+}=G_{S,p}^{\operatorname{ad}}(\mathbb{Z}_{(p)})\cap G_{S}^{\operatorname{ad}}(\mathbb{R})^{+}. There is a natural right action of GS(𝔸f)G_{S}(\mathbb{A}_{f}) on SS by right multiplication on the GS(𝔸f)G_{S}(\mathbb{A}_{f}) factor, under which ZS()Z_{S}(\mathbb{Q}) acts trivially. There is also a right action of GSad()+G^{\operatorname{ad}}_{S}(\mathbb{Q})^{+} on SS where γGSad()+\gamma\in G_{S}^{\operatorname{ad}}(\mathbb{Q})^{+} acts on a representative [x,g][x,g] by [x,g]γ=[γ1x,γ1gγ][x,g]\gamma=[\gamma^{-1}x,\gamma^{-1}g\gamma]. Let ZS()Z_{S}(\mathbb{Q})^{-} be the closure of ZS()Z_{S}(\mathbb{Q}) in GS(𝔸f)G_{S}(\mathbb{A}_{f}). We thus get an action of

GS(𝔸f)/ZS()GSad()+G_{S}(\mathbb{A}_{f})/Z_{S}(\mathbb{Q})^{-}\rtimes G_{S}^{\operatorname{ad}}(\mathbb{Q})^{+}

on SS. The subgroup GS()+/ZS()G_{S}(\mathbb{Q})_{+}/Z_{S}(\mathbb{Q}) embeds into to both GS(𝔸f)/ZS()G_{S}(\mathbb{A}_{f})/Z_{S}(\mathbb{Q})^{-} and GSad()+G^{\operatorname{ad}}_{S}(\mathbb{Q})^{+} and its action on SS is the same through both embeddings. Thus, we get an action of

𝒜(GS)GS(𝔸f)/ZS(Q)GS()+/ZS()GSad()+\mathscr{A}(G_{S})\coloneqq G_{S}(\mathbb{A}_{f})/Z_{S}(Q)^{-}*_{G_{S}(\mathbb{Q})_{+}/Z_{S}(\mathbb{Q})}G_{S}^{\operatorname{ad}}(\mathbb{Q})^{+}

on XX. We also define a subgroup

𝒜(GS)GS()+/ZS()GS()+/ZS()GSad()+,\mathscr{A}(G_{S})^{\circ}\coloneqq G_{S}(\mathbb{Q})_{+}^{-}/Z_{S}(\mathbb{Q})^{-}*_{G_{S}(\mathbb{Q})_{+}/Z_{S}(\mathbb{Q})}G_{S}^{\operatorname{ad}}(\mathbb{Q})^{+},

where GS()+G_{S}(\mathbb{Q})_{+}^{-} is the closure of GS()+G_{S}(\mathbb{Q})_{+} in GS(𝔸f)G_{S}(\mathbb{A}_{f}).

After taking the quotient of SS by US,p=GS,p(p)U_{S,p}=G_{S,p}(\mathbb{Z}_{p}), we get a right action of

𝒜(GS,p)=GS(𝔸fp)/ZS,p((p))GS,p((p))+/ZS,p((p))GS,pad((p))+\mathscr{A}(G_{S,p})=G_{S}(\mathbb{A}_{f}^{p})/Z_{S,p}(\mathbb{Z}_{(p)})^{-}*_{G_{S,p}(\mathbb{Z}_{(p)})_{+}/Z_{S,p}(\mathbb{Z}_{(p)})}G_{S,p}^{\operatorname{ad}}(\mathbb{Z}_{(p)})^{+}

on SUS,pS_{U_{S,p}}, where ZS,p((p))Z_{S,p}(\mathbb{Z}_{(p)})^{-} is the closure inside GS(𝔸fp)G_{S}(\mathbb{A}_{f}^{p}). We also define the subgroup

𝒜(GS,p)=GS,p((p))+/ZS,p((p))GS,p((p))+/ZS,p((p))GS,pad((p))+.\mathscr{A}(G_{S,p})^{\circ}=G_{S,p}(\mathbb{Z}_{(p)})_{+}^{-}/Z_{S,p}(\mathbb{Z}_{(p)})^{-}*_{G_{S,p}(\mathbb{Z}_{(p)})_{+}/Z_{S,p}(\mathbb{Z}_{(p)})}G_{S,p}^{\operatorname{ad}}(\mathbb{Z}_{(p)})^{+}.

Fix a geometrically connected component S+SS^{+}\subset S as the image of the product of upper half planes (+)Σ(\mathcal{H}^{+})^{\Sigma} in the complex uniformization of SS. Then take

S+=limUS,pUSpSUS,pUSp+=GSder()\(+)Σ×GSder(𝔸f),S^{+}=\varprojlim_{U_{S,p}U_{S}^{p}}S_{U_{S,p}U_{S}^{p}}^{+}=G_{S}^{\operatorname{der}}(\mathbb{Q})\backslash(\mathcal{H}^{+})^{\Sigma}\times G_{S}^{\operatorname{der}}(\mathbb{A}_{f}),

and

SUS,p+=limUSpSUS,pUSp+=GS,pder((p))\(+)Σ×GSder(𝔸fp).S_{U_{S,p}}^{+}=\varprojlim_{U_{S}^{p}}S_{U_{S,p}U_{S}^{p}}^{+}=G_{S,p}^{\operatorname{der}}(\mathbb{Z}_{(p)})^{-}\backslash(\mathcal{H}^{+})^{\Sigma}\times G_{S}^{\operatorname{der}}(\mathbb{A}_{f}^{p}).

Let ESE_{S} be the reflex field of SS and let ESpES¯E_{S}^{p}\subset\overline{E_{S}} be the maximal extension of EE that is unramified over all primes dividing pp. The connected component S+S^{+} is defined over ES¯\overline{E_{S}} and SUS,p+S_{U_{S,p}}^{+} is defined over ESpE_{S}^{p}. Let

(GS)𝒜(GS)×Gal(ES¯/ES)\mathscr{E}(G_{S})\subset\mathscr{A}(G_{S})\times\operatorname{Gal}(\overline{E_{S}}/E_{S})

be the stabilizer of S+S^{+} and let

(GS,p)𝒜(GS,p)×Gal(ESp/ES)\mathscr{E}(G_{S,p})\subset\mathscr{A}(G_{S,p})\times\operatorname{Gal}(E_{S}^{p}/E_{S})

be the stabilizer of SUS,p+S_{U_{S,p}}^{+}. Then, we have the following.

Proposition 4.6 ([Kis10, Lem. 3.3.7]).

The stabilizer (GS)\mathscr{E}(G_{S}) (resp. (GS,p)\mathscr{E}(G_{S,p})) depends only on GSderG_{S}^{\operatorname{der}} (resp. GS,pderG_{S,p}^{\operatorname{der}}) and XadX^{\operatorname{ad}}, and it is an extension of Gal(ES¯/ES)\operatorname{Gal}(\overline{E_{S}}/E_{S}) (resp. Gal(ESp/ES)\operatorname{Gal}(E_{S}^{p}/E_{S})) by 𝒜(GS)\mathscr{A}(G_{S})^{\circ} (resp. 𝒜(GS,p)\mathscr{A}(G_{S,p})^{\circ}). Moreover, there are canonical isomorphisms

𝒜(GS)𝒜(GS)(GS)𝒜(GS)×Gal(ES¯/ES)\mathscr{A}(G_{S})*_{\mathscr{A}(G_{S})^{\circ}}\mathscr{E}(G_{S})\cong\mathscr{A}(G_{S})\times\operatorname{Gal}(\overline{E_{S}}/E_{S})

and

𝒜(GS,p)𝒜(GS,p)(GS,p)𝒜(GS,p)×Gal(ESp/ES).\mathscr{A}(G_{S,p})*_{\mathscr{A}(G_{S,p})^{\circ}}\mathscr{E}(G_{S,p})\cong\mathscr{A}(G_{S,p})\times\operatorname{Gal}(E_{S}^{p}/E_{S}).

There is a right action of (GS)\mathscr{E}(G_{S}) on 𝒜(GS)×S+\mathscr{A}(G_{S})\times S^{+} given by right conjugation via the map (GS)𝒜(GS)×Gal(ES¯/ES)𝒜(GS)\mathscr{E}(G_{S})\to\mathscr{A}(G_{S})\times\operatorname{Gal}(\overline{E_{S}}/E_{S})\to\mathscr{A}(G_{S}) on the first factor and right multiplication on the second factor. There is also an action of 𝒜(GS)\mathscr{A}(G_{S}) on 𝒜(GS)×S+\mathscr{A}(G_{S})\times S^{+} defined by right multiplication on the first factor and ignoring the second factor. Thus, there is an action of 𝒜(GS)𝒜(GS)(GS)𝒜(GS)×Gal(ES¯/ES)\mathscr{A}(G_{S})*_{\mathscr{A}(G_{S})^{\circ}}\mathscr{E}(G_{S})\cong\mathscr{A}(G_{S})\times\operatorname{Gal}(\overline{E_{S}}/E_{S}) on [𝒜(GS)×S+]/𝒜(GS)[\mathscr{A}(G_{S})\times S^{+}]/\mathscr{A}(G_{S})^{\circ}. Similarly, we can define an action of 𝒜(GS,p)𝒜(GS,p)(GS,p)𝒜(GS,p)×Gal(ESp/ES)\mathscr{A}(G_{S,p})*_{\mathscr{A}(G_{S,p})^{\circ}}\mathscr{E}(G_{S,p})\cong\mathscr{A}(G_{S,p})\times\operatorname{Gal}(E_{S}^{p}/E_{S}) on [𝒜(GS,p)×SUS,p+]/𝒜(GS,p)[\mathscr{A}(G_{S,p})\times S_{U_{S,p}}^{+}]/\mathscr{A}(G_{S,p})^{\circ}.

Proposition 4.7 ([Kis10, Prop 3.3.10]).

For S,S{X,X,X′′}S,S^{\prime}\in\{X,X^{\prime},X^{\prime\prime}\}, there is an isomorphism of ESpE_{S}^{p} schemes

SUS,p[𝒜(GS,p)×SUS,p+]/𝒜(GS,p)S^{\prime}_{U_{S^{\prime},p}}\cong[\mathscr{A}(G_{S^{\prime},p})\times S_{U_{S,p}}^{+}]/\mathscr{A}(G_{S,p})^{\circ}

that respects Gal(ESp/ES)\operatorname{Gal}(E_{S^{\prime}}^{p}/E_{S^{\prime}}) action, where the Galois group acts on the right via the isomorphism 𝒜(GS,p)𝒜(GS,p)(GS,p)𝒜(GS,p)×Gal(ESp/ES)\mathscr{A}(G_{S^{\prime},p})*_{\mathscr{A}(G_{S^{\prime},p})^{\circ}}\mathscr{E}(G_{S^{\prime},p})\cong\mathscr{A}(G_{S^{\prime},p})\times\operatorname{Gal}(E_{S^{\prime}}^{p}/E_{S^{\prime}}).

Here, we have that 𝒜(GS,p)\mathscr{A}(G_{S,p})^{\circ} acts on 𝒜(GS,p)\mathscr{A}(G_{S^{\prime},p}) via 𝒜(GS,p)𝒜(GS,p)𝒜(GS,p)\mathscr{A}(G_{S,p})^{\circ}\cong\mathscr{A}(G_{S^{\prime},p})^{\circ}\to\mathscr{A}(G_{S^{\prime},p}). If there is an integral model 𝒮US,p\mathcal{S}_{U_{S,p}} for SS such that the action of GadG^{\operatorname{ad}} extends to it, then this isomorphism gives us a way to transfer it to all other SS^{\prime} by simply defining

𝒮US,p[𝒜(GS,p)×𝒮US,p+]/𝒜(GS,p)\mathcal{S^{\prime}}_{U_{S^{\prime},p}}\coloneqq[\mathscr{A}(G_{S^{\prime},p})\times\mathcal{S}_{U_{S,p}}^{+}]/\mathscr{A}(G_{S,p})^{\circ}

as 𝒪ESp\mathcal{O}_{E_{S^{\prime}}^{p}}-schemes, and then using Galois descent to descend an 𝒪ES\mathcal{O}_{E_{S^{\prime}}}-scheme.

Theorem 4.8.

Let vpv\mid p be a prime of EXE_{X} and v′′pv^{\prime\prime}\mid p be a prime of EX′′E_{X^{\prime\prime}}. If UpG(𝔸fp)U^{p}\subset G(\mathbb{A}_{f}^{p}) and U′′pG′′(𝔸fp)U^{\prime\prime p}\subset G^{\prime\prime}(\mathbb{A}_{f}^{p}) are such that UpUpU(N)U_{p}U^{p}\subset U(N) and Up′′U′′pU′′(N)U^{\prime\prime}_{p}U^{\prime\prime p}\subset U^{\prime\prime}(N) for some N3N\geq 3, then there is a projective system of integral models 𝒳UpUp\mathcal{X}_{U_{p}U^{p}} (resp. 𝒳Up′′U′′p′′\mathcal{X}^{\prime\prime}_{U^{\prime\prime}_{p}U^{\prime\prime p}}) of XUpUpX_{U_{p}U^{p}} (resp. XUp′′U′′p′′X^{\prime\prime}_{U^{\prime\prime}_{p}U^{\prime\prime p}}) over 𝒪EX,v\mathcal{O}_{E_{X},v} (resp. 𝒪EX′′,v′′\mathcal{O}_{E_{X^{\prime\prime}},v^{\prime\prime}}) such that:

  1. (1)

    If pp is not ramified in FF nor BB, the scheme 𝒳U\mathcal{X}_{U} (resp. 𝒳U′′′′\mathcal{X}^{\prime\prime}_{U^{\prime\prime}}) is smooth over 𝒪EX,v\mathcal{O}_{E_{X},v} (resp. 𝒪EX′′,v′′\mathcal{O}_{E_{X^{\prime\prime}},v^{\prime\prime}});

  2. (2)

    The schemes 𝒳U\mathcal{X}_{U} and 𝒳U′′′′\mathcal{X}^{\prime\prime}_{U^{\prime\prime}} are normal, flat, and their non-smooth locus has codimension at least 22;

  3. (3)

    The pp-adic completion of 𝒳U\mathcal{X}_{U} (resp. 𝒳U′′′′\mathcal{X}^{\prime\prime}_{U^{\prime\prime}}) has a pp-adic uniformization by a Rapoport–Zink space.

Proof.

When EX,vE_{X^{\prime},v^{\prime}} is unramified over p\mathbb{Q}_{p}, then the group GG^{\prime} has a hyperspecial local model over 𝒪EX,v\mathcal{O}_{E_{X^{\prime}},v^{\prime}}. By [Kis10, Lem. 3.4.5], the extension property implies that the action of 𝒜(G)\mathscr{A}(G^{\prime}) extends to the integral model 𝒳Up\mathcal{X}^{\prime}_{U^{\prime}_{p}}. Let 𝒳U+\mathcal{X^{\prime}}_{U^{\prime}}^{+} be the closure of XU+{X^{\prime}}_{U^{\prime}}^{+} in 𝒳U\mathcal{X}^{\prime}_{U^{\prime}} and let

𝒳Up+limUp𝒳UpUp+.\mathcal{X^{\prime}}_{U^{\prime}_{p}}^{+}\coloneqq\varprojlim_{U^{\prime p}}\mathcal{X^{\prime}}_{U^{\prime}_{p}{U^{\prime}}^{p}}^{+}.

We then define

𝒳Up[𝒜(Gp)×𝒳Up+]/𝒜(Gp)\mathcal{X}_{U_{p}}\coloneqq[\mathscr{A}(G_{p})\times\mathcal{X^{\prime}}_{U^{\prime}_{p}}^{+}]/\mathscr{A}(G^{\prime}_{p})^{\circ}

and

𝒳′′Up′′[𝒜(Gp′′)×𝒳Up+]/𝒜(Gp).\mathcal{X^{\prime\prime}}_{U^{\prime\prime}_{p}}\coloneqq[\mathscr{A}(G^{\prime\prime}_{p})\times\mathcal{X^{\prime}}_{U^{\prime}_{p}}^{+}]/\mathscr{A}(G^{\prime}_{p})^{\circ}.

The action of (Gp)\mathscr{E}(G^{\prime}_{p}) on XUp+{X^{\prime}}_{U^{\prime}_{p}}^{+} extends to 𝒳Up+\mathcal{X^{\prime}}_{U^{\prime}_{p}}^{+} and hence we get an action of

𝒜(Gp)𝒜(Gp)(Gp)𝒜(Gp)×Gal(EXp/EX)\mathscr{A}(G_{p})*_{\mathscr{A}(G^{\prime}_{p})^{\circ}}\mathscr{E}(G^{\prime}_{p})\cong\mathscr{A}(G_{p})\times\operatorname{Gal}(E^{p}_{X}/E_{X})

on 𝒳Up\mathcal{X}_{U_{p}} (resp. 𝒜(Gp′′)×Gal(EX′′p/EX′′)\mathscr{A}(G^{\prime\prime}_{p})\times\operatorname{Gal}(E^{p}_{X^{\prime\prime}}/E_{X^{\prime\prime}}) on 𝒳Up′′′′\mathcal{X}^{\prime\prime}_{U_{p}^{\prime\prime}}). Thus, we can use the Galois action to descend this scheme to an integral model for XUpX_{U_{p}} (resp. XUp′′′′X^{\prime\prime}_{U^{\prime\prime}_{p}}) defined over 𝒪EX,v\mathcal{O}_{E_{X},v} (resp. 𝒪EX′′,v′′\mathcal{O}_{E_{X^{\prime\prime}},v^{\prime\prime}}). When pp is not ramified in FF nor BB, then the integral model 𝒳Up\mathcal{X}^{\prime}_{U^{\prime}_{p}} corresponds to unramified PEL datum and is smooth.

If pp is ramified in EXE_{X^{\prime}}, then GpG^{\prime}_{p} is no longer hyperspecial and there is no extension property. However, the action of (Gp)\mathscr{E}(G^{\prime}_{p}) still extends to 𝒳Up+\mathcal{X^{\prime}}_{U^{\prime}_{p}}^{+} by [KP18, Cor. 4.6.15].

The local rings of 𝒳\mathcal{X} and 𝒳′′\mathcal{X}^{\prime\prime} are étale locally isomorphic to the local rings of 𝒳\mathcal{X}^{\prime} and 𝕄loc\mathbb{M}^{\mathrm{loc}}. Thus, the second and third statement follow from the corresponding statements holding for 𝒳Up\mathcal{X}^{\prime}_{U^{\prime}_{p}} and 𝕄loc\mathbb{M}^{\mathrm{loc}}. ∎

By gluing these models together, we have an integral model 𝒳U\mathcal{X}_{U} over Spec𝒪EX\operatorname{Spec}\mathcal{O}_{E_{X}} for whenever U=pUpU(N)U=\prod_{p}U_{p}\subset U(N) for N3N\geq 3 and Up=Up(0)U_{p}=U_{p}(0) is maximal whenever pp is ramified in EXE_{X}. We now extend the integral model for 𝒳U\mathcal{X}_{U} when U=pUpU=\prod_{p}U_{p} is maximal at all primes. Take a prime pp that is not ramified in EXE_{X} such that U(p)=Up(1)UpU(p)=U_{p}(1)U^{p} is maximal at all primes away from pp. Then define

𝒳U𝒳U(p)/(U/U(p))\mathcal{X}_{U}\coloneqq\mathcal{X}_{U(p)}/(U/U(p))

as the quotient stack. Since the 𝒳UpUp\mathcal{X}_{U_{p}U^{p}} form a projective system, the definition of 𝒳U\mathcal{X}_{U} does not depend on the choice of prime pp. We note that 𝒳U\mathcal{X}_{U} is a Deligne-Mumford stack and so it has an étale cover by schemes. So, all of our proofs can and will be reduced to the case of schemes via étale descent.

5. pp-Divisible Groups

When U=UpUpU(N)U^{\prime}=U^{\prime}_{p}U^{\prime p}\subset U^{\prime}(N), the functor U\mathcal{F}^{\prime}_{U^{\prime}} is represented by 𝒳U\mathcal{X}^{\prime}_{U^{\prime}} and so we get a universal abelian scheme 𝒜U𝒳U\mathcal{A}^{\prime}_{U^{\prime}}\to\mathcal{X}^{\prime}_{U^{\prime}} lying over it. We use the ideas of [Kis10, KP18] to transport the pp-divisible group U𝒜U[p]\mathcal{H}^{\prime}_{U^{\prime}}\coloneqq\mathcal{A}^{\prime}_{U^{\prime}}[p^{\infty}] to pp-divisible groups over 𝒳U\mathcal{X}_{U} and 𝒳U′′′′\mathcal{X}^{\prime\prime}_{U^{\prime\prime}}. In order to do so, we first give a description of U\mathcal{H}^{\prime}_{U^{\prime}} over XU+X^{\prime+}_{U^{\prime}}, and then describe an action of (G)\mathscr{E}(G^{\prime}) on it.

Recall that 𝒜(G)\mathscr{A}(G^{\prime})^{\circ} depends only on the derived group Gder=ResF/B1G^{\prime\operatorname{der}}=\operatorname{Res}_{F/\mathbb{Q}}B^{1}, elements of norm 11\in\mathbb{Q}. The center is Z(Gder)=ResF/F1Z(G^{\prime\operatorname{der}})=\operatorname{Res}_{F/\mathbb{Q}}F^{1}, elements of FF of norm 11. By Shapiro’s lemma, the adjoint map G()Gad()G^{\prime}(\mathbb{Q})\to G^{\prime\operatorname{ad}}(\mathbb{Q}) is surjective and so we can write

𝒜(G)=B1/F1.\mathscr{A}(G^{\prime})^{\circ}=B^{1}/F^{1}.

We can also determine 𝒜(GS)\mathscr{A}(G_{S}) for S=X,X,X′′S=X,X^{\prime},X^{\prime\prime}. We have that Gad((p))+=𝒪B,(p)×,+/𝒪F,(p)×,+G^{\operatorname{ad}}(\mathbb{Z}_{(p)})^{+}=\mathcal{O}_{B,(p)}^{\times,+}/\mathcal{O}_{F,(p)}^{\times,+}, where the ++ superscript denotes the elements with norm that is totally positive in FF. We also have that G′′ad((p))+=(𝒪B,(p)×,+×𝒪F,(p)×,+𝒪E,(p)×,+)/𝒪E,(p)×,+𝒪B,(p)×,+/𝒪F,(p)×,+G^{\prime\prime\operatorname{ad}}(\mathbb{Z}_{(p)})^{+}=(\mathcal{O}_{B,(p)}^{\times,+}\times_{\mathcal{O}_{F,(p)}^{\times,+}}\mathcal{O}_{E,(p)}^{\times,+})/\mathcal{O}_{E,(p)}^{\times,+}\cong\mathcal{O}_{B,(p)}^{\times,+}/\mathcal{O}_{F,(p)}^{\times,+} because the norm of all elements of E×E^{\times} are totally positive in FF. Thus, it follows that

𝒜(G)=G(𝔸f)/Z()G()+/Z()Gad()+=(B𝔸f)×/𝒪F×,,\mathscr{A}(G)=G(\mathbb{A}_{f})/Z(\mathbb{Q})^{-}*_{G(\mathbb{Q})_{+}/Z(\mathbb{Q})}G^{\operatorname{ad}}(\mathbb{Q})^{+}=(B\otimes_{\mathbb{Q}}\mathbb{A}_{f})^{\times}/\mathcal{O}_{F}^{\times,-},

and

𝒜(Gp)=G(𝔸fp)/Z((p))G((p))+/Z((p))Gad((p))+=(Bp)×/𝒪F,(p)×,,\mathscr{A}(G_{p})=G(\mathbb{A}_{f}^{p})/Z(\mathbb{Z}_{(p)})^{-}*_{G(\mathbb{Z}_{(p)})_{+}/Z(\mathbb{Z}_{(p)})}G^{\operatorname{ad}}(\mathbb{Z}_{(p)})^{+}=(B^{p})^{\times}/\mathcal{O}_{F,(p)}^{\times,-},

where BpB𝔸fpB^{p}\coloneqq B\otimes_{\mathbb{Q}}\mathbb{A}_{f}^{p}. Similarly, it follows that 𝒜(G′′)=G′′(𝔸F)/𝒪E×,\mathscr{A}(G^{\prime\prime})=G^{\prime\prime}(\mathbb{A}_{F})/\mathcal{O}_{E}^{\times,-} and 𝒜(Gp′′)=G′′(𝔸fp)/𝒪E,(p)×,\mathscr{A}(G^{\prime\prime}_{p})=G^{\prime\prime}(\mathbb{A}_{f}^{p})/\mathcal{O}_{E,(p)}^{\times,-}. Shapiro’s lemma does not apply to GG^{\prime}, but we can write

𝒜(G)=G(𝔸f)B×,+/E×,\mathscr{A}(G^{\prime})=G^{\prime}(\mathbb{A}_{f})B^{\times,+}/E^{\times,-}

and

𝒜(Gp)=G(𝔸fp)G′′((p))+/𝒪E,(p)×,.\mathscr{A}(G^{\prime}_{p})=G^{\prime}(\mathbb{A}_{f}^{p})G^{\prime\prime}(\mathbb{Z}_{(p)})_{+}/\mathcal{O}_{E,(p)}^{\times,-}.

Moreover, we have

𝒜(Gp)𝒜(Gpder)𝒪B,(p)1/𝒪F,(p)1\mathscr{A}(G^{\prime}_{p})^{\circ}\cong\mathscr{A}(G^{\operatorname{der}}_{p})^{\circ}\cong\mathcal{O}_{B,(p)}^{1}/\mathcal{O}_{F,(p)}^{1}

Over X+X^{\prime+}, the pp-divisible group \mathcal{H}^{\prime} can be described as

H|X+=Bp/𝒪B,p×X+=Bp/𝒪B,p×B1\[(+)Σ×(B𝔸f)1].H^{\prime}|_{X^{\prime+}}=B_{p}/\mathcal{O}_{B,p}\times X^{\prime+}=B_{p}/\mathcal{O}_{B,p}\times B^{1}\backslash[(\mathcal{H}^{+})^{\Sigma}\times(B\otimes_{\mathbb{Q}}\mathbb{A}_{f})^{1}].

To descend down to XUp+X^{\prime+}_{U^{\prime}_{p}}, we quotient by the action of Gpder(p)=𝒪B,p1G^{\prime\operatorname{der}}_{p}(\mathbb{Z}_{p})=\mathcal{O}_{B,p}^{1} to get

HUp+H|XUp+=[Bp/𝒪B,p×X+]/𝒪B,p1,H^{\prime+}_{U^{\prime}_{p}}\coloneqq H^{\prime}|_{X^{\prime+}_{U^{\prime}_{p}}}=[B_{p}/\mathcal{O}_{B,p}\times X^{\prime+}]/\mathcal{O}_{B,p}^{1},

where Up=Gpder(p)=𝒪B,p1U^{\prime}_{p}=G^{\prime\operatorname{der}}_{p}(\mathbb{Z}_{p})=\mathcal{O}_{B,p}^{1} acts on Bp/𝒪B,pB_{p}/\mathcal{O}_{B,p} by right multiplication.

We can now describe HH^{\prime} over all of XX^{\prime}. Under the isomorphism of EX¯\overline{E_{X^{\prime}}}-schemes

X[𝒜(G)×X+]/𝒜(G)=[𝒜(G)×X+]/B1,X^{\prime}\cong[\mathscr{A}(G^{\prime})\times X^{\prime+}]/\mathscr{A}(G^{\prime})^{\circ}=[\mathscr{A}(G^{\prime})\times X^{\prime+}]/B^{1},

the pp-divisible group can be written as

H|XBp/𝒪B,p×[𝒜(G)×X+]/B1.H^{\prime}|_{X^{\prime}}\cong B_{p}/\mathcal{O}_{B,p}\times[\mathscr{A}(G^{\prime})\times X^{\prime+}]/B^{1}.

After dividing by Gp(p)G^{\prime}_{p}(\mathbb{Z}_{p}), we get

HUp|XUp[𝒜(Gp)×[Bp/𝒪B,p×X+]/𝒪B,p1]/𝒪B,(p)1[𝒜(Gp)×HUp+]/𝒪B,(p)1,H^{\prime}_{U^{\prime}_{p}}|_{X^{\prime}_{U^{\prime}_{p}}}\cong[\mathscr{A}(G^{\prime}_{p})\times[B_{p}/\mathcal{O}_{B,p}\times X^{\prime+}]/\mathcal{O}_{B,p}^{1}]/\mathcal{O}_{B,(p)}^{1}\cong[\mathscr{A}(G^{\prime}_{p})\times H^{\prime+}_{U^{\prime}_{p}}]/\mathcal{O}^{1}_{B,(p)},

where 𝒜(Gp)=𝒪B,(p)1/𝒪F,(p)1(B𝔸fp)×/(F𝔸fp)×\mathscr{A}(G^{\prime}_{p})^{\circ}=\mathcal{O}_{B,(p)}^{1}/\mathcal{O}_{F,(p)}^{1}\subset(B\otimes_{\mathbb{Q}}\mathbb{A}_{f}^{p})^{\times}/(F\otimes_{\mathbb{Q}}\mathbb{A}_{f}^{p})^{\times} acts trivially on Bp/𝒪B,pB_{p}/\mathcal{O}_{B,p}. In this way, we can also define pp-divisible groups HUp,HUp′′′′H_{U_{p}},H^{\prime\prime}_{U^{\prime\prime}_{p}} over XUp,XUp′′′′X_{U_{p}},X^{\prime\prime}_{U^{\prime\prime}_{p}} respectively as

HUp|XUp(𝒜(Gp)×[Bp/𝒪B,p×X+]/𝒪B,p1)/𝒜(Gp)H_{U_{p}}|_{X_{U_{p}}}\coloneqq\left(\mathscr{A}(G_{p})\times[B_{p}/\mathcal{O}_{B,p}\times X^{\prime+}]/\mathcal{O}_{B,p}^{1}\right)/\mathscr{A}(G^{\prime}_{p})^{\circ}
(Bp,×/𝒪F,(p)××HUp+)/𝒪B,(p)1,\cong\left(B^{p,\times}/\mathcal{O}_{F,(p)}^{\times}\times H^{\prime+}_{U^{\prime}_{p}}\right)/\mathcal{O}_{B,(p)}^{1},

and

HUp′′′′|XUp′′′′(𝒜(Gp′′)×[Bp/𝒪B,p×X+]/𝒪B,p1)/𝒜(Gp)H^{\prime\prime}_{U^{\prime\prime}_{p}}|_{X^{\prime\prime}_{U^{\prime\prime}_{p}}}\coloneqq\left(\mathscr{A}(G^{\prime\prime}_{p})\times[B_{p}/\mathcal{O}_{B,p}\times X^{\prime+}]/\mathcal{O}_{B,p}^{1}\right)/\mathscr{A}(G^{\prime}_{p})^{\circ}
(G′′(𝔸fp)/𝒪E,(p)××HUp+)/𝒪B,(p)1,\cong\left(G^{\prime\prime}(\mathbb{A}_{f}^{p})/\mathcal{O}_{E,(p)}^{\times}\times H^{\prime+}_{U^{\prime}_{p}}\right)/\mathcal{O}_{B,(p)}^{1},
Theorem 5.1.

Whenever UU(N)U\subset U(N) (resp. U′′U′′(N)U^{\prime\prime}\subset U^{\prime\prime}(N)) for N3N\geq 3, there exists a pp-divisible group U\mathcal{H}_{U} over 𝒳U\mathcal{X}_{U} with an 𝒪E,p\mathcal{O}_{E,p}-action (resp. U′′′′\mathcal{H}^{\prime\prime}_{U^{\prime\prime}} over 𝒳U′′′′\mathcal{X}^{\prime\prime}_{U^{\prime\prime}}) such that the formal completion 𝒳U^\widehat{\mathcal{X}_{U}} (resp. 𝒳U′′′′^\widehat{\mathcal{X}^{\prime\prime}_{U^{\prime\prime}}}) along its special fiber over kEX,v¯\overline{k_{E_{X},v}} (resp. kEX′′,v′′¯\overline{k_{E_{X^{\prime\prime}},v^{\prime\prime}}}) is the universal deformation space of kEX,v¯\mathcal{H}_{\overline{k_{E_{X},v}}} (resp. kEX′′,v′′¯\mathcal{H}_{\overline{k_{E_{X^{\prime\prime}},v^{\prime\prime}}}}).

Proof.

We have already translated the pp-divisible group Up\mathcal{H}^{\prime}_{U^{\prime}_{p}} to pp-divisible groups over the generic fiber XUpX_{U_{p}} and XUp′′′′X^{\prime\prime}_{U^{\prime\prime}_{p}}. Over 𝒳Up\mathcal{X}^{\prime}_{U^{\prime}_{p}}, we have an integral model for Up\mathcal{H}^{\prime}_{U^{\prime}_{p}} by taking the pp^{\infty}-torsion of the universal abelain scheme 𝒜Up𝒳Up\mathcal{A}^{\prime}_{U^{\prime}_{p}}\to\mathcal{X}^{\prime}_{U^{\prime}_{p}}. We can restrict it to the connected component to get

Up+Up|𝒳Up+.\mathcal{H}^{\prime+}_{U^{\prime}_{p}}\coloneqq\mathcal{H}^{\prime}_{U^{\prime}_{p}}|_{\mathcal{X}^{\prime+}_{U^{\prime}_{p}}}.

Set

Up(𝒜(Gp)×Up+)/𝒜(Gp),\mathcal{H}_{U_{p}}\coloneqq\left(\mathscr{A}(G_{p})\times\mathcal{H}^{\prime+}_{U^{\prime}_{p}}\right)/\mathscr{A}(G^{\prime}_{p})^{\circ},

and

′′Up′′(𝒜(Gp′′)×Up+)/𝒜(Gp).\mathcal{H^{\prime\prime}}_{U^{\prime\prime}_{p}}\coloneqq\left(\mathscr{A}(G^{\prime\prime}_{p})\times\mathcal{H}^{\prime+}_{U^{\prime}_{p}}\right)/\mathscr{A}(G^{\prime}_{p})^{\circ}.

The action of (Gpder)\mathscr{E}(G^{\operatorname{der}}_{p}) on 𝒳Up+\mathcal{X}^{\prime+}_{U^{\prime}_{p}} extends to an action on Up+\mathcal{H}^{\prime+}_{U^{\prime}_{p}} by acting trivially on Bp/𝒪B,pB_{p}/\mathcal{O}_{B,p} and thus there is an action of 𝒜(Gp)×Gal(EXp/EX)\mathscr{A}(G_{p})\times\operatorname{Gal}(E_{X}^{p}/E_{X}) on Up\mathcal{H}_{U_{p}} that is compatible with the structure morphism Up𝒳Up\mathcal{H}_{U_{p}}\to\mathcal{X}_{U_{p}}. Hence, we can descend Up\mathcal{H}_{U_{p}} and Up′′′′\mathcal{H}^{\prime\prime}_{U^{\prime\prime}_{p}} down to pp-divisible groups defined over 𝒪EX,v\mathcal{O}_{E_{X},v} and 𝒪EX′′,v′′\mathcal{O}_{E_{X^{\prime\prime}},v^{\prime\prime}} respectively, whose generic fibers can be identified with HUpH_{U_{p}} and HUp′′′′H^{\prime\prime}_{U^{\prime\prime}_{p}} in a way respecting the structure morphisms down to XUpX_{U_{p}} and XUp′′′′X^{\prime\prime}_{U^{\prime\prime}_{p}}. For finite level, we can simply take UpUp=Up/Up\mathcal{H}_{U_{p}U^{p}}=\mathcal{H}_{U_{p}}/U^{p} where UpU^{p} acts below on 𝒳Up\mathcal{X}_{U_{p}} and acts trivially on the fibers of Up𝒳Up\mathcal{H}_{U_{p}}\to\mathcal{X}_{U_{p}}.

The statements about universal deformation spaces and 𝒪F,(p)\mathcal{O}_{F,(p)}-action follow from the corresponding statements for U+\mathcal{H}^{\prime+}_{U^{\prime}} over 𝒳U+\mathcal{X}^{\prime+}_{U^{\prime}}. These follow from 𝒳U\mathcal{X}^{\prime}_{U^{\prime}} representing the functor of isomorphism classes of abelian schemes whose pp^{\infty}-torsion is U\mathcal{H}^{\prime}_{U^{\prime}}. ∎

6. Kodaira-Spencer Map

In order to calculate the height of a partial CM point, we will take the height of a special point of 𝒳U\mathcal{X}_{U} with respect to metrized Hodge bundle U^\widehat{\mathcal{L}_{U}} on 𝒳U\mathcal{X}_{U}, which we will introduce. Afterwards, we will relate this Hodge bundle with the Lie groups of the pp-divisible group U\mathcal{H}_{U} over 𝒳U\mathcal{X}_{U}.

Following [YZZ13], we define the system of Hodge bundles {U}U\{\mathcal{L}_{U}\}_{U} as the canonical bundle

Uω𝒳U/𝒪EX.\mathcal{L}_{U}\coloneqq\omega_{\mathcal{X}_{U}/\mathcal{O}_{E_{X}}}.

Since 𝒳U\mathcal{X}_{U} is normal, the singularities of 𝒳U\mathcal{X}_{U} have codimension at least 22 and so the sheaf U\mathcal{L}_{U} is indeed a line bundle. The benefit of using the canonical bundle is that the system {U}U\{\mathcal{L}_{U}\}_{U} is compatible with pullbacks along the canonical maps 𝒳U1𝒳U2\mathcal{X}_{U_{1}}\to\mathcal{X}_{U_{2}} with U1U2U_{1}\subset U_{2}. We call U\mathcal{L}_{U} the Hodge bundle of 𝒳U\mathcal{X}_{U}. At the infinite places, the metric is given by the Petersson metric

σΣdzσ=σΣIm(2zσ).\left\lVert\bigwedge_{\sigma\in\Sigma}dz_{\sigma}\right\rVert=\prod_{\sigma\in\Sigma}\mathrm{Im}(2z_{\sigma}).

We now relate this line bundle with our pp-divisible group via a Kodaira-Spencer type map. Suppose K/EXK/E_{X} is a finite extension that contains the normal closure of EE and let S=Spec𝒪KpS=\operatorname{Spec}\mathcal{O}_{K}\otimes_{\mathbb{Z}}\mathbb{Z}_{p}. Base change 𝒳U\mathcal{X}_{U} and U\mathcal{H}_{U} to SS and set Ω(S)Lie(S)\Omega(\mathcal{H}_{S})\coloneqq\operatorname{Lie}(\mathcal{H}_{S})^{\vee} and Ω(St)Lie(St)\Omega(\mathcal{H}^{t}_{S})\coloneqq\operatorname{Lie}(\mathcal{H}^{t}_{S})^{\vee}. Let 𝔻(S)\mathbb{D}(\mathcal{H}_{S}) and 𝔻(St)\mathbb{D}(\mathcal{H}_{S}^{t}) be the covariant Dieudonné crystals attached to the pp-divisible groups. Then [Mes72, Chap. IV] gives us a short exact sequence

0Lie(St)𝔻(S)Lie(S)00\to\operatorname{Lie}(\mathcal{H}_{S}^{t})^{\vee}\to\mathbb{D}(\mathcal{H}_{S})\to\operatorname{Lie}(\mathcal{H}_{S})\to 0

of 𝒪S𝒪E\mathcal{O}_{S}\otimes\mathcal{O}_{E} modules. Applying the Gauss–Manin connection \nabla on 𝔻(S)\mathbb{D}(\mathcal{H}_{S}) gives the chain of maps

Ω(St)𝔻(S)𝔻(S)Ω𝒳S/S1Ω(S)Ω𝒳S/S1,\Omega(\mathcal{H}_{S}^{t})\to\mathbb{D}(\mathcal{H}_{S})\overset{\nabla}{\to}\mathbb{D}(\mathcal{H}_{S})\otimes\Omega_{\mathcal{X}_{S}/S}^{1}\to\Omega(\mathcal{H}_{S})^{\vee}\otimes\Omega_{\mathcal{X}_{S}/S}^{1},

which gives a map

Ω𝒳S/S1,Hom(Ω(St),Ω(S)).\Omega_{\mathcal{X}_{S}/S}^{1,\vee}\to\operatorname{Hom}(\Omega(\mathcal{H}_{S}^{t}),\Omega(\mathcal{H}_{S})^{\vee}).

Both Ω(S)\Omega(\mathcal{H}_{S})^{\vee} and Ω(St)\Omega(\mathcal{H}^{t}_{S})^{\vee} have an action by 𝒪E\mathcal{O}_{E} whose determinant is the product of the reflex norms of ϕϕ\phi\sqcup\phi^{\prime} and ϕ¯ϕ\overline{\phi}\sqcup\phi^{\prime}. We can thus decompose the line bundles over SS as

Ω(S)τHom(E,)Ω(S)τ,\Omega(\mathcal{H}_{S})^{\vee}\to\bigoplus_{\tau\in\operatorname{Hom}(E,\mathbb{C})}\Omega(\mathcal{H}_{S})^{\vee}_{\tau},

where Ω(S)τΩ(S)𝒪S𝒪E,τ𝒪S\Omega(\mathcal{H}_{S})_{\tau}^{\vee}\coloneqq\Omega(\mathcal{H}_{S})^{\vee}\otimes_{\mathcal{O}_{S}\otimes\mathcal{O}_{E},\tau}\mathcal{O}_{S} and 𝒪E\mathcal{O}_{E} acts on 𝒪S\mathcal{O}_{S} through fixing an inclusion of EX¯\overline{E_{X}}\to\mathbb{C}. Set ω(S)τdetΩ(S)τ\omega(\mathcal{H}_{S})_{\tau}\coloneqq\det\Omega(\mathcal{H}_{S})_{\tau}. We define Ω(St)τ\Omega(\mathcal{H}_{S}^{t})_{\tau} and ω(St)τ\omega(\mathcal{H}_{S}^{t})_{\tau} similarly. Thus, we get a map

Ω𝒳S/S1,Hom(Ω(St),Ω(S))(τ,τ)Hom(E,)2Ω(St)τΩ(S)τ\Omega_{\mathcal{X}_{S}/S}^{1,\vee}\to\operatorname{Hom}(\Omega(\mathcal{H}_{S}^{t}),\Omega(\mathcal{H}_{S})^{\vee})\to\bigoplus_{(\tau,\tau^{\prime})\in\operatorname{Hom}(E,\mathbb{C})^{2}}\Omega(\mathcal{H}_{S}^{t})_{\tau}^{\vee}\otimes\Omega(\mathcal{H}_{S})^{\vee}_{\tau^{\prime}}

The rank of Ω(S)τ\Omega(\mathcal{H}_{S})_{\tau} is 11 if τϕ\tau\in\phi, 22 if τϕ\tau\in\phi^{\prime}, and 0 if τϕ¯\tau\in\overline{\phi^{\prime}}. The rank of Ω(St)τ\Omega(\mathcal{H}_{S}^{t})_{\tau} is 2dimΩ(S)τ2-\dim\Omega(\mathcal{H}_{S})_{\tau}. So, by projecting, we get the map of vector bundles of equal rank

Ω𝒳S/S1,τϕω(St)τω(S)τ.\Omega_{\mathcal{X}_{S}/S}^{1,\vee}\to\bigoplus_{\tau\in\phi}\omega(\mathcal{H}_{S}^{t})_{\tau}^{\vee}\otimes\omega(\mathcal{H}_{S})_{\tau}^{\vee}.

Taking the determinant of this map and repeating the map for ϕ¯\overline{\phi} gives the map

ω𝒳S/S2τϕ𝒩(S,τ)𝒩(S,τ¯),\omega_{\mathcal{X}_{S}/S}^{-2}\to\bigotimes_{\tau\in\phi}\mathcal{N}(\mathcal{H}_{S},\tau)^{\vee}\otimes\mathcal{N}(\mathcal{H}_{S},\overline{\tau})^{\vee},

where 𝒩(S,τ)ω(S)τω(St)τ¯\mathcal{N}(\mathcal{H}_{S},\tau)\cong\omega(\mathcal{H}_{S})_{\tau}\otimes\omega(\mathcal{H}_{S}^{t})_{\overline{\tau}}.

Note that EX=Eϕϕ¯E_{X}=E_{\phi\sqcup\overline{\phi}} is the reflex field of the set ϕϕ¯\phi\sqcup\overline{\phi}. So, we can descend this map to a map over Spec𝒪EX,p\operatorname{Spec}\mathcal{O}_{E_{X},p}. This is our Kodaira-Spencer map.

Let ΣEHom(E,)\Sigma_{E}\subset\operatorname{Hom}(E,\mathbb{C}) be the places that lie above a place of FF in Σ\Sigma. Recall from Definition 2.7 the relative discriminant 𝔡Σ𝔡ΣE\mathfrak{d}_{\Sigma}\coloneqq\mathfrak{d}_{\Sigma_{E}}. Let 𝔡Σ,p𝔡Σp\mathfrak{d}_{\Sigma,p}\coloneqq\mathfrak{d}_{\Sigma}\otimes\mathbb{Z}_{p} be the pp-part of this ideal. View 𝔡Σ,p\mathfrak{d}_{\Sigma,p} as a divisor of SS. Moreover, let 𝔡B,p\mathfrak{d}_{B,p} be the divisor corresponding to the ramification of BB above pp.

Theorem 6.1.

For any choice of partial CM-type ϕ\phi lying above Σ\Sigma, we have

ω𝒳S/S2(𝔡Σ,p𝔡B,p)1τϕ𝒩(S,τ)𝒩(S,τ¯).\omega_{\mathcal{X}_{S}/S}^{2}(\mathfrak{d}_{\Sigma,p}\mathfrak{d}_{B,p})^{-1}\cong\bigotimes_{\tau\in\phi}\mathcal{N}(\mathcal{H}_{S},\tau)\otimes\mathcal{N}(\mathcal{H}_{S},\overline{\tau}).
Proof.

We have the short exact sequence

0Lie(St)𝔻(S)Lie(S)00\to\operatorname{Lie}(\mathcal{H}_{S}^{t})^{\vee}\to\mathbb{D}(\mathcal{H}_{S})\to\operatorname{Lie}(\mathcal{H}_{S})\to 0

of 𝒪S𝒪E\mathcal{O}_{S}\otimes\mathcal{O}_{E} modules. Moreover, we have a pairing

𝔻(S)×𝔻(St)S\mathbb{D}(\mathcal{H}_{S})\times\mathbb{D}(\mathcal{H}_{S}^{t})\to S

that is well defined up to an element of S×S^{\times}. Fix a choice. The formal completion of 𝒳S/S\mathcal{X}_{S}/S along its special fiber over k(S)¯\overline{k(S)} is the universal deformation space of S\mathcal{H}_{S}. Thus, [Mes72] gives us that the tangent bundle Ω𝒳S/S1,\Omega^{1,\vee}_{\mathcal{X}_{S}/S} corresponds to choosing a lift of Lie(St)\operatorname{Lie}(\mathcal{H}_{S}^{t})^{\vee} and Lie(S)\operatorname{Lie}(\mathcal{H}_{S}) in 𝔻(S)S\mathbb{D}(\mathcal{H}_{S})_{S^{\prime}}, where S=Spec𝒪S[ε]/(ε2)S^{\prime}=\operatorname{Spec}\mathcal{O}_{S}[\varepsilon]/(\varepsilon^{2}), that respects the pairing from ψS\psi_{S} and 𝒪S𝒪E\mathcal{O}_{S}\otimes\mathcal{O}_{E} action.

For each τHom(E,)\tau\in\operatorname{Hom}(E,\mathbb{C}), we can take the τ\tau-component of the short exact sequence to get

0Ω(St)τ𝔻(S)τΩ(S)τ0.0\to\Omega(\mathcal{H}_{S}^{t})_{\tau}\to\mathbb{D}(\mathcal{H}_{S})_{\tau}\to\Omega(\mathcal{H}_{S})_{\tau}^{\vee}\to 0.

For τ\tau lying above Σc\Sigma^{c}, either Ω(St)τ\Omega(\mathcal{H}_{S}^{t})_{\tau} or Ω(S)τ\Omega(\mathcal{H}_{S})_{\tau} is 0 meaning that there is only one choice for a lift of Ω(St)τ\Omega(\mathcal{H}_{S}^{t})_{\tau} and Ω(S)τ\Omega(\mathcal{H}_{S})_{\tau}. For τ\tau lying above Σ\Sigma, both are of rank 11. The pairing ψS\psi_{S^{\prime}} decomposes into an orthogonal sum of pairings

𝔻(S)S,τ×𝔻(St)S,τ¯S.\mathbb{D}(\mathcal{H}_{S})_{S^{\prime},\tau}\times\mathbb{D}(\mathcal{H}_{S}^{t})_{S^{\prime},\overline{\tau}}\to S^{\prime}.

Thus, choosing a lift of Ω(S)τ\Omega(\mathcal{H}_{S})_{\tau} determines the choice for Ω(S)τ¯\Omega(\mathcal{H}_{S})_{\overline{\tau}} under the canonical isomorphism 𝔻(St)𝔻(S)\mathbb{D}(\mathcal{H}_{S}^{t})\cong\mathbb{D}(\mathcal{H}_{S})^{\vee}. The Hodge filtration gives us that the choice of lift of Ω(St)τ\Omega(\mathcal{H}_{S}^{t})_{\tau} is a torsor of Hom(Ω(St)τ,Ω(S)τ)\operatorname{Hom}(\Omega(\mathcal{H}_{S}^{t})_{\tau},\Omega(\mathcal{H}_{S})_{\tau}^{\vee}) giving us that the map

Ω𝒳S/S1,Hom(Ω(St),Ω(S))τϕHom(Ω(St)τ,Ω(S)τ)\Omega_{\mathcal{X}_{S}/S}^{1,\vee}\to\operatorname{Hom}(\Omega(\mathcal{H}_{S}^{t}),\Omega(\mathcal{H}_{S})^{\vee})\to\bigoplus_{\tau\in\phi}\operatorname{Hom}(\Omega(\mathcal{H}_{S}^{t})_{\tau},\Omega(\mathcal{H}_{S})_{\tau}^{\vee})

has finite cokernel. Taking determinants and repeating the process with ϕ¯\overline{\phi} instead of ϕ\phi, we get

ω𝒳S/S2τϕω(St)τω(S)τω(St)τ¯ω(S)τ¯.\omega_{\mathcal{X}_{S}/S}^{-2}\to\bigotimes_{\tau\in\phi}\omega(\mathcal{H}_{S}^{t})^{\vee}_{\tau}\otimes\omega(\mathcal{H}_{S})_{\tau}^{\vee}\otimes\omega(\mathcal{H}_{S}^{t})^{\vee}_{\overline{\tau}}\otimes\omega(\mathcal{H}_{S})_{\overline{\tau}}^{\vee}.

The cokernel of this map classifies the failure of when choosing a lift of Ω(S)τ\Omega(\mathcal{H}_{S})_{\tau} for each τ\tau does not arise from choosing a lift of Ω(S)\Omega(\mathcal{H}_{S}), and when choosing a lift of Ω(S)τ\Omega(\mathcal{H}_{S})_{\tau} does not result in a lift of Ω(S)τ¯\Omega(\mathcal{H}_{S})_{\overline{\tau}} due to when the pairing ψS\psi_{S^{\prime}} is not perfect.

Let π𝒪S\pi\in\mathcal{O}_{S} be a generator for 𝒪S\mathcal{O}_{S} over 𝒪EX,p\mathcal{O}_{E_{X},p}. For a subset ΨHom(E,)\Psi\subset\operatorname{Hom}(E,\mathbb{C}), let

fΨ(t)=τΨ(tτ(π)).f_{\Psi}(t)=\prod_{\tau\in\Psi}(t-\tau(\pi)).

We see that fϕϕ¯(t)𝒪EX,p[t]f_{\phi\cup\overline{\phi}}(t)\in\mathcal{O}_{E_{X},p}[t] because it is invariant under any automorphism that fixes the underlying places of FF under ϕ\phi. Then, we see that the image of 𝒪EX,p𝒪E\mathcal{O}_{E_{X},p}\otimes_{\mathbb{Z}}\mathcal{O}_{E} in Eϕϕ¯,p~\widetilde{E_{\phi\sqcup\overline{\phi},p}} is simply 𝒪EX,p[t]/fϕϕ¯(t)\mathcal{O}_{E_{X},p}[t]/f_{\phi\sqcup\overline{\phi}}(t), and so 𝔡ϕϕ¯,p𝒪EX,p\mathfrak{d}_{\phi\sqcup\overline{\phi},p}\subset\mathcal{O}_{E_{X},p} is the ideal generated by the discriminant of fϕϕ¯f_{\phi\sqcup\overline{\phi}},

By [YZ18, Cor. 2.5], we have that

Ω(S)𝒪S[t]fϕϕ(t)fϕ¯ϕ(t),Ω(St)𝒪S[t]fϕ¯ϕ¯(t)fϕϕ¯(t).\Omega(\mathcal{H}_{S})\cong\frac{\mathcal{O}_{S}[t]}{f_{\phi\sqcup\phi^{\prime}}(t)f_{\overline{\phi}\sqcup\phi^{\prime}}(t)},\qquad\Omega(\mathcal{H}_{S}^{t})\cong\frac{\mathcal{O}_{S}[t]}{f_{\overline{\phi}\sqcup\overline{\phi^{\prime}}}(t)f_{\phi\sqcup\overline{\phi^{\prime}}}(t)}.

Each element of ω𝒳S/S\omega_{\mathcal{X}_{S}/S}^{\vee} corresponds to an element of Ω(St)Ω(S)\Omega(\mathcal{H}_{S}^{t})^{\vee}\otimes\Omega(\mathcal{H}_{S})^{\vee}. So, the image in τϕω(St)τω(S)τ\bigotimes_{\tau\in\phi}\omega(\mathcal{H}_{S}^{t})^{\vee}_{\tau}\otimes\omega(\mathcal{H}_{S})_{\tau}^{\vee} is the determinant of the image of Ω(St)Ω(S)\Omega(\mathcal{H}_{S}^{t})\otimes\Omega(\mathcal{H}_{S}) in

τϕϕ¯Ω(St)τΩ(S)ττϕϕ¯𝒪S[t]/(tτ(π))𝒪S[t]/(tτ(π))\prod_{\tau\in\phi\cup\overline{\phi}}\Omega(\mathcal{H}_{S}^{t})_{\tau}\otimes\Omega(\mathcal{H}_{S})_{\tau}\cong\prod_{\tau\in\phi\sqcup\overline{\phi}}\mathcal{O}_{S}[t]/(t-\tau(\pi))\otimes\mathcal{O}_{S}[t]/(t-\tau(\pi))

under the map t(t,t,,t)t\mapsto(t,t,\dots,t). We deal with Ω(S)\Omega(\mathcal{H}_{S}) and Ω(St)\Omega(\mathcal{H}_{S}^{t}) separately. A basis for Ω(S)\Omega(\mathcal{H}_{S}) is given by 1,t,,t2|ϕ|11,t,\dots,t^{2\lvert\phi\rvert-1}, so the lattice formed by the image of Ω(S)\Omega(\mathcal{H}_{S}) in τϕϕ¯Ω(S)ττϕϕ¯𝒪S,τ\prod_{\tau\in\phi\sqcup\overline{\phi}}\Omega(\mathcal{H}_{S})_{\tau}\cong\prod_{\tau\in\phi\sqcup\overline{\phi}}\mathcal{O}_{S,\tau} is generated by {(τ(π)i)τϕϕ¯}0i<2|ϕ|\{(\tau(\pi)^{i})_{\tau\in\phi\cup\overline{\phi}}\}_{0\leq i<2\lvert\phi\rvert}. To calculate the index of this lattice relative to the maximal lattice, we take the determinant of a 2|ϕ|×2|ϕ|2\lvert\phi\rvert\times 2\lvert\phi\rvert matrix whose ijij-th element is τi(π)j\tau_{i}(\pi)^{j}. The ideal generated by the determinant of this Vandermonde matrix is

(1i<j2|ϕ||τj(π)τi(π)|)=𝔡Σ,p1/2.\left(\prod_{1\leq i<j\leq 2\lvert\phi\rvert}\lvert\tau_{j}(\pi)-\tau_{i}(\pi)\rvert\right)=\mathfrak{d}_{\Sigma,p}^{1/2}.

Doing the same for Ω(St)\Omega(\mathcal{H}_{S}^{t}) nets an additional factor of 𝔡Σ,p1/2\mathfrak{d}_{\Sigma,p}^{1/2}.

Finally, when BB is ramified, the pairing 𝔻(S)S×𝔻(St)SS\mathbb{D}(\mathcal{H}_{S})_{S^{\prime}}\times\mathbb{D}(\mathcal{H}_{S}^{t})_{S^{\prime}}\to S^{\prime} is not perfect but rather Λ=1ω𝔮Λ\Lambda^{\vee}=\frac{1}{\omega_{\mathfrak{q}}}\Lambda, meaning our choice in Ω(S)\Omega(\mathcal{H}_{S}) must lie in ω𝔮Ω(S)\omega_{\mathfrak{q}}\Omega(\mathcal{H}_{S}), giving an additional factor of (ω𝔮)=𝔡B,p1/2(\omega_{\mathfrak{q}})=\mathfrak{d}_{B,p}^{1/2} since 𝔭\mathfrak{p} was specified to be ramified wherever BB was. Doing the same for St\mathcal{H}_{S}^{t} nets us another factor of 𝔡B,p1/2\mathfrak{d}_{B,p}^{1/2}. ∎

7. Special Points

To calculate heights of special points of 𝒳U\mathcal{X}_{U}, we relate the height to heights on 𝒳U\mathcal{X}^{\prime}_{U^{\prime}}, which represent Faltings heights, through 𝒳U′′′′\mathcal{X}^{\prime\prime}_{U^{\prime\prime}}. Let (E,ϕ)(E,\phi) be a partial CM-type with FEF\subset E the totally real subfield of index 22 and let Σ=ϕ|FHom(F,)\Sigma=\phi|_{F}\subset\operatorname{Hom}(F,\mathbb{R}). Let BB be a quaternion algebra over FF such that BB is ramified at infinity at ΣHom(F,)\Sigma\subset\operatorname{Hom}(F,\mathbb{R}) and whose finite ramification set is a subset of the primes for which EE is ramified. Then we can embed EBE\to B because E𝔭E_{\mathfrak{p}} embeds into B𝔭B_{\mathfrak{p}} at every place 𝔭\mathfrak{p} of FF. Let {𝒳U}U\{\mathcal{X}_{U}\}_{U} be the tower of Shimura varieties associated to this particular quaternion algebra BB. The embedding EBE\to B gives us an embedding of TEResE/𝔾mGT_{E}\coloneqq\operatorname{Res}_{E/\mathbb{Q}}\mathbb{G}_{m}\to G and hence we get a set of CM points of XUX_{U} which are parametrized, under the complex uniformization, by points (z,t)(±)Σ×G(𝔸f)(z,t)\in(\mathcal{H}^{\pm})^{\Sigma}\times G(\mathbb{A}_{f}) where zz is determined by the cocharacter hσ:EτBσh_{\sigma}\colon\mathbb{C}\cong E_{\tau}\to B_{\sigma} for each τϕ\tau\in\phi and σ:F\sigma\colon F\to\mathbb{R} lying below it, and tTE(𝔸f)G(𝔸f)t\in T_{E}(\mathbb{A}_{f})\subset G(\mathbb{A}_{f}). Fix one of these CM points P𝒳U(¯)P\in\mathcal{X}_{U}(\overline{\mathbb{Q}}).

Pick a complementary partial CM-type ϕ\phi^{\prime} to ϕ\phi. We can construct the tower XUX^{\prime}_{U^{\prime}} which represents the functor U\mathcal{F}^{\prime}_{U^{\prime}} as before. For any choice of element t[(TE×TE)G](𝔸f)t^{\prime}\in[(T_{E}\times T_{E})\cap G^{\prime}](\mathbb{A}_{f}), the cocharacter formed from z(±)Σz\in(\mathcal{H}^{\pm})^{\Sigma} and hEh_{E} is a point P=[(z,hE),t]XU(¯)P^{\prime}=[(z,h_{E}),t^{\prime}]\in X^{\prime}_{U^{\prime}}(\overline{\mathbb{Q}}), which represents an abelian variety AA^{\prime} with multiplication by 𝒪E\mathcal{O}_{E}. From the determinant condition of U\mathcal{F}^{\prime}_{U^{\prime}}, we have that AA^{\prime} is isogenous to a product of abelian varieties A1×A2A_{1}\times A_{2}, one with CM by EE of type ϕϕ\phi\sqcup\phi^{\prime} and the other of CM-type ϕ¯ϕ\overline{\phi}\sqcup\phi^{\prime}.

We now compare the points PP and PP^{\prime} by embedding both XUX_{U} and XUX^{\prime}_{U^{\prime}} into XU′′′′X^{\prime\prime}_{U^{\prime\prime}}. Recall that G′′=ResF/[(B××E×)/F×]G^{\prime\prime}=\operatorname{Res}_{F/\mathbb{Q}}[(B^{\times}\times E^{\times})/F^{\times}] where F×B××E×F^{\times}\subset B^{\times}\times E^{\times} by a(a,a1)a\mapsto(a,a^{-1}). This gives rise to the Shimura variety XU′′′′X^{\prime\prime}_{U^{\prime\prime}}. The embedding GG′′G^{\prime}\to G^{\prime\prime} gives an embedding XUXU′′′′X^{\prime}_{U^{\prime}}\to X^{\prime\prime}_{U^{\prime\prime}}. To relate XUX_{U} and XU′′′′X^{\prime\prime}_{U^{\prime\prime}}, we take the group ResF/(B××E×)\operatorname{Res}_{F/\mathbb{Q}}(B^{\times}\times E^{\times}) and the quotient map ResF/(B××E×)G′′\operatorname{Res}_{F/\mathbb{Q}}(B^{\times}\times E^{\times})\to G^{\prime\prime}. The group gives rise to a Shimura variety XU×YJX_{U}\times Y_{J}, where YJY_{J} is the zero-dimensional Shimura variety associated with the datum of the torus TET_{E} and morphism hEh_{E} as in the definition of G′′G^{\prime\prime}, and JTE(𝔸f)J\subset T_{E}(\mathbb{A}_{f}) an open compact subgroup. This quotient map of Shimura datum gives rise to a surjective morphism

XU×YJXU′′′′X_{U}\times Y_{J}\to X^{\prime\prime}_{U^{\prime\prime}}

of Shimura varieties, where U′′=UJG′′(𝔸f)U^{\prime\prime}=U\cdot J\subset G^{\prime\prime}(\mathbb{A}_{f}). Thus, we have the following morphisms of algebraic groups

GG×TEG′′GG\leftarrow G\times T_{E}\to G^{\prime\prime}\leftarrow G^{\prime}

which gives rise to the chain of morphisms of Shimura varieties

XUXU×YJXU′′′′XU.X_{U}\leftarrow X_{U}\times Y_{J}\to X^{\prime\prime}_{U^{\prime\prime}}\leftarrow X^{\prime}_{U^{\prime}}.

However, given a point yYJy\in Y_{J}, we are able to construct a section XUXU×YJXU′′′′X_{U}\to X_{U}\times Y_{J}\to X^{\prime\prime}_{U^{\prime\prime}}.

Proposition 7.1.

Suppose PXUP\in X_{U} is a CM point corresponding to the embedding EBE\hookrightarrow B. We can choose yYJy\in Y_{J} and PXUP^{\prime}\in X^{\prime}_{U^{\prime}} such that PXUP\in X_{U} and PXUP^{\prime}\in X^{\prime}_{U^{\prime}} have the same image P′′P^{\prime\prime} in XU′′′′X^{\prime\prime}_{U^{\prime\prime}}.

Proof.

For a given PXUP\in X_{U}, we can choose a representative [z,t](±)Σ×G(𝔸f)[z,t]\in(\mathcal{H}^{\pm})^{\Sigma}\times G(\mathbb{A}_{f}) under the complex uniformization. If we let t=(t,t1)t^{\prime}=(t,t^{-1}), then t(TE×TEG)(𝔸f)t^{\prime}\in(T_{E}\times T_{E}\cap G^{\prime})(\mathbb{A}_{f}) because ν(t)=1𝔾m\nu(t^{\prime})=1\in\mathbb{G}_{m}. Letting yYJy\in Y_{J} be the point corresponding to the choice of t1TE(𝔸f)t^{-1}\in T_{E}(\mathbb{A}_{f}) makes it so (P,y)XU×YJ(P,y)\in X_{U}\times Y_{J} and P=[z×hE,t]XUP^{\prime}=[z\times h_{E},t^{\prime}]\in X^{\prime}_{U^{\prime}} have the same image in XU′′′′X^{\prime\prime}_{U^{\prime\prime}}. ∎

All of the geometric points of YJY_{J} are defined over EXE_{X^{\prime}}, so the integral model 𝒳U\mathcal{X}_{U} for XUX_{U} gives rise to an integral model 𝒳U×𝒴J\mathcal{X}_{U}\times\mathcal{Y}_{J} for XU×YJX_{U}\times Y_{J}. We have a pp-divisible group U′′′′\mathcal{H}^{\prime\prime}_{U^{\prime\prime}} defined over 𝒳U′′′′\mathcal{X}^{\prime\prime}_{U^{\prime\prime}}. We also define a pp-divisible group II over YJY_{J} by setting

IJ(Ep/𝒪E,p×Y)/J.I_{J}\coloneqq(E_{p}/\mathcal{O}_{E,p}\times Y)/J.

Let K/EXK/E_{X^{\prime}} be a finite extension. Suppose that we have points xXU(K)x\in X_{U}(K) and yYJ(K)y\in Y_{J}(K). These give rise to a point x′′XU′′′′(K)x^{\prime\prime}\in X^{\prime\prime}_{U^{\prime\prime}}(K). By [YZ18, Prop 5.2], we can extend IJI_{J} to a pp-divisible group y\mathcal{I}_{y} over the closure of the point yy in 𝒴J\mathcal{Y}_{J}.

Proposition 7.2 ([YZ18, Prop 5.3]).

There are canonical isomorphisms

Lie(x′′′′)Lie(x)𝒪E,p𝒪KLie(yt),Lie(x′′′′t)Lie(xt)𝒪E,p𝒪KLie(yt).\operatorname{Lie}(\mathcal{H}^{\prime\prime}_{x^{\prime\prime}})\cong\operatorname{Lie}(\mathcal{H}_{x})\otimes_{\mathcal{O}_{E,p}\otimes\mathcal{O}_{K}}\operatorname{Lie}(\mathcal{I}^{t}_{y})^{\vee},\quad\operatorname{Lie}(\mathcal{H}^{\prime\prime t}_{x^{\prime\prime}})\cong\operatorname{Lie}(\mathcal{H}^{t}_{x})\otimes_{\mathcal{O}_{E,p}\otimes\mathcal{O}_{K}}\operatorname{Lie}(\mathcal{I}^{t}_{y}).

Define 𝒩′′(x′′′′,τ)ω(x′′′′)τω(x′′′′)τ¯\mathcal{N}^{\prime\prime}(\mathcal{H}^{\prime\prime}_{x^{\prime\prime}},\tau)\coloneqq\omega(\mathcal{H}^{\prime\prime}_{x^{\prime\prime}})_{\tau}\otimes\omega(\mathcal{H}^{\prime\prime}_{x^{\prime\prime}})_{\overline{\tau}}. Then the previous proposition immediately gets us that

𝒩′′(x′′′′,τ)𝒩(x,τ).\mathcal{N}^{\prime\prime}(\mathcal{H}^{\prime\prime}_{x^{\prime\prime}},\tau)\cong\mathcal{N}(\mathcal{H}_{x},\tau).

Since the point PP and PP^{\prime} coincide in 𝒳U′′′′\mathcal{X}^{\prime\prime}_{U^{\prime\prime}}, the pp-divisible group P\mathcal{H}_{P} coincides with the pp-infinity torsion of the abelian scheme 𝒜P\mathcal{A}^{\prime}_{P^{\prime}} over P𝒳UP^{\prime}\in\mathcal{X}^{\prime}_{U^{\prime}}. Thus, we can use the same norm from the Hermitian pairing

:W(AP,τ)W(APt,τ¯)\lVert\cdot\rVert\colon W(A^{\prime}_{P^{\prime}},\tau)\otimes W(A^{\prime t}_{P^{\prime}},\overline{\tau})\to\mathbb{C}

to give

𝒩(P,τ)^(ω(P)τω(Pt)τ¯,)\widehat{\mathcal{N}(\mathcal{H}_{P},\tau)}\coloneqq\left(\omega(\mathcal{H}_{P})_{\tau}\otimes\omega(\mathcal{H}_{P}^{t})_{\overline{\tau}},\lVert\cdot\rVert\right)

into a metrized line bundle.

Theorem 7.3.

The Kodaira–Spencer isomorphism in Theorem 6.1 respects the norms at infinity at PP and hence extends to an isomorphism of metrized line bundles

P^2(𝔡Σ,p𝔡B,p)1τϕ𝒩(P,τ)^𝒩(P,τ¯^).\widehat{\mathcal{L}_{P}}^{2}(\mathfrak{d}_{\Sigma,p}\mathfrak{d}_{B,p})^{-1}\cong\bigotimes_{\tau\in\phi}\widehat{\mathcal{N}(\mathcal{H}_{P},\tau)}\otimes\widehat{\mathcal{N}(\mathcal{H}_{P},\overline{\tau}}).
Proof.

At the places at infinity, the Dieudonné module 𝔻(P)\mathbb{D}(\mathcal{H}_{P}) is naturally isomorphic to the first de Rham homology of APAPA_{P}\coloneqq A^{\prime}_{P^{\prime}}. Thus, the Kodaira–Spencer morphism comes from the Hodge filtration

0Ω(APt)H1dR(AP)Ω(AP)0.0\to\Omega(A^{t}_{P})\to H_{1}^{\operatorname{dR}}(A_{P})\to\Omega(A_{P})\to 0.

For each τ:E\tau\colon E\to\mathbb{C}, we can look at the τ\tau-component of the filtration

0Ω(APt)τH1dR(AP)τΩ(AP)τ00\to\Omega(A^{t}_{P})_{\tau}\to H_{1}^{\operatorname{dR}}(A_{P})_{\tau}\to\Omega(A_{P})_{\tau}\to 0

For τ:E\tau\colon E\to\mathbb{C} lying above Σc\Sigma^{c}, there is no contribution from either line bundle so we can restrict ourselves to considering the τ\tau lying above Σ\Sigma, and specifically for τϕ\tau\in\phi. For these τ\tau, we have

Ω(APt)τH1dR(AP)τH1dR(AP)τΩXU,P1Ω(AP)ΩXU,P1.\Omega(A^{t}_{P})_{\tau}\to H_{1}^{\operatorname{dR}}(A_{P})_{\tau}\overset{\nabla}{\to}H_{1}^{\operatorname{dR}}(A_{P})_{\tau}\otimes\Omega^{1}_{X_{U},P}\to\Omega(A_{P})^{\vee}\otimes\Omega^{1}_{X_{U},P}.

Explicitly, we have that H1dR(AP)τVτBE,τH_{1}^{\operatorname{dR}}(A_{P})_{\tau}\cong V_{\tau}\cong B\otimes_{E,\tau}\mathbb{C}. We can choose an isomorphism BE,τB\otimes_{E,\tau}\mathbb{C}\cong\mathbb{C}\oplus\mathbb{C} so that h(i)τM2()h(i)_{\tau}\subset M_{2}(\mathbb{R}) acts on VτV_{\tau} via right transpose action h(i)(z1,z2)=(z1,z2)h(i)¯h(i)\cdot(z_{1},z_{2})=(z_{1},z_{2})\overline{h(i)}. Then in terms of the complex uniformization, an element z=x+iyτ±z=x+iy\in\mathbb{H}_{\tau}^{\pm} in the complex half planes corresponds to a conjugate of h(i)h(i) and Ω(APt)τVτ0,1\Omega(A^{t}_{P})_{\tau}\cong V^{0,-1}_{\tau} is the subset of 2\mathbb{C}^{2} for which h(i)h(i) acts as i-i. Computation shows that Ω(APt)τ(z,1)2\Omega(A^{t}_{P})_{\tau}\cong\mathbb{C}(z,1)\subset\mathbb{C}^{2}. Moreover, we have that Lie(A/P)=V1,0(z¯,1)2\operatorname{Lie}(A/P)=V^{-1,0}\cong\mathbb{C}(\overline{z},1)\subset\mathbb{C}^{2}. Thus, explicitly, the map above gives

Ω(APt)τ{\Omega(A^{t}_{P})_{\tau}}H1dR(AP)τ{H_{1}^{\operatorname{dR}}(A_{P})_{\tau}}H1dR(AP)τΩXU,P1{H_{1}^{\operatorname{dR}}(A_{P})_{\tau}\otimes\Omega^{1}_{X_{U},P}}Ω(AP)ΩXU,P1{\Omega(A_{P})^{\vee}\otimes\Omega^{1}_{X_{U},P}}(z,1){(z,1)}(z,1){(z,1)}(1,0)dz=(z,1)(z¯,1)2iydz{(1,0)\otimes dz=\frac{(z,1)-(\overline{z},1)}{2iy}\otimes dz}(z¯,1)2iydz.{\frac{-(\overline{z},1)}{2iy}\otimes dz.}\scriptstyle{\nabla}

Thus at infinity, the isomorphism ωXU,Pτϕω(APt)τω(AP)τ\omega_{X_{U},P}\to\bigotimes_{\tau\in\phi}\omega(A^{t}_{P})_{\tau}\otimes\omega(A_{P})_{\tau} gives

τϕdzτϕ2iyτ(zτ,1)(zτ¯,1),\bigwedge_{\tau\in\phi}dz\mapsto\bigotimes_{\tau\in\phi}2iy_{\tau}\frac{(z_{\tau},1)}{(\overline{z_{\tau}},1)},

and taking norms gives τϕ2yτ\prod_{\tau\in\phi}2y_{\tau} on both sides. ∎

Theorem 7.4.

Let dBd_{B} be a positive generator of NF/𝔡BN_{F/\mathbb{Q}}\mathfrak{d}_{B} and let dΣ=dϕϕ¯d_{\Sigma}=d_{\phi\sqcup\overline{\phi}}. We have that

hLU^(PU)=τϕ(h(ϕϕ,τ)+h(ϕ¯ϕ,τ¯))+12glogdBdΣ.h_{\widehat{L_{U}}}(P_{U})=\sum_{\tau\in\phi}\left(h(\phi\sqcup\phi^{\prime},\tau)+h(\overline{\phi}\sqcup\phi^{\prime},\overline{\tau})\right)+\frac{1}{2g}\log d_{B}d_{\Sigma}.
Proof.

By Theorem 6.1, we get that

2hU^(PU)=τϕh𝒩(τ)^(PU)+h𝒩(τ¯)^(PU)+12glogdBdΣ,2h_{\widehat{\mathcal{L}_{U}}}(P_{U})=\sum_{\tau\in\phi}h_{\widehat{\mathcal{N}(\tau)}}(P_{U})+h_{\widehat{\mathcal{N}(\overline{\tau})}}(P_{U})+\frac{1}{2g}\log d_{B}d_{\Sigma},

with the extra factor of gg coming from the fact that we defined the height over \mathbb{Q}, which is [F:][F:\mathbb{Q}] times larger than the usual height defined over FF. By the previous proposition, we have that

h𝒩(τ)^(PU)=h𝒩′′(τ)^(PU′′′′).h_{\widehat{\mathcal{N}(\tau)}}(P_{U})=h_{\widehat{\mathcal{N}^{\prime\prime}(\tau)}}(P^{\prime\prime}_{U^{\prime\prime}}).

Then by our choice of yYJy\in Y_{J} and PXUP^{\prime}\in X^{\prime}_{U^{\prime}}, the point PU′′′′P^{\prime\prime}_{U^{\prime\prime}} is the image of PXUP^{\prime}\in X^{\prime}_{U^{\prime}} which represents an abelian variety that is isogenous to a product of CM abelian varieties, one of CM-type ϕϕ\phi\sqcup\phi^{\prime} and the other of CM-type ϕ¯ϕ\overline{\phi}\sqcup\phi^{\prime}. Thus, we get that

h𝒩′′(τ)^(PU′′′′)=h𝒩(τ)^(PU)=h(ϕϕ,τ)+h(ϕ¯ϕ,τ¯).h_{\widehat{\mathcal{N}^{\prime\prime}(\tau)}}(P^{\prime\prime}_{U^{\prime\prime}})=h_{\widehat{\mathcal{N}^{\prime}(\tau)}}(P^{\prime}_{U^{\prime}})=h(\phi\sqcup\phi^{\prime},\tau)+h(\overline{\phi}\sqcup\phi^{\prime},\overline{\tau}).

This result does not depend on the choice of complementary CM-type ϕ\phi^{\prime} and so summing over all such complementary CM-types nets us the following.

Theorem 7.5.

Suppose that U=vUvU=\prod_{v}U_{v} is a maximal compact subgroup of G(𝔸f)G(\mathbb{A}_{f}). Then

12hU^(PU)=\displaystyle\frac{1}{2}h_{\widehat{\mathcal{L}_{U}}}(P_{U})= 12|Σ𝖼|Φϕh(Φ)|Σ𝖼|g2gΦh(Φ)\displaystyle\frac{1}{2^{\lvert{\Sigma}^{\mathsf{c}}\rvert}}\sum_{\Phi\supset\phi}h(\Phi)-\frac{\lvert{\Sigma}^{\mathsf{c}}\rvert}{g2^{g}}\sum_{\Phi}h(\Phi)
+18logdE/F,ΣdΣ1+14logdϕdϕ¯+14glogdBdΣ+|Σ|4glogdF,\displaystyle+\frac{1}{8}\log d_{E/F,\Sigma}d_{\Sigma}^{-1}+\frac{1}{4}\log d_{\phi}d_{\overline{\phi}}+\frac{1}{4g}\log d_{B}d_{\Sigma}+\frac{\lvert\Sigma\rvert}{4g}\log d_{F},

where the first summation is over all full CM-types which contain ϕ\phi, and the second summation over all full CM-types of EE.

Proof.

We note h(Φ)=h(Φ¯)h(\Phi)=h(\overline{\Phi}) and h(Φ,τ)=h(Φ¯,τ¯)h(\Phi,\tau)=h(\overline{\Phi},\overline{\tau}). So we can write

(*) hU^(PU)12glogdBdΣ=τϕϕh(ϕϕ,τ)+τϕϕ¯h(ϕϕ¯,τ)τϕ(h(ϕϕ,τ)+h(ϕϕ¯,τ¯)).\begin{split}h_{\widehat{\mathcal{L}_{U}}}(P_{U})-\frac{1}{2g}\log d_{B}d_{\Sigma}=&\sum_{\tau\in\phi\sqcup\phi^{\prime}}h(\phi\sqcup\phi^{\prime},\tau)+\sum_{\tau\in\phi\sqcup\overline{\phi^{\prime}}}h(\phi\sqcup\overline{\phi^{\prime}},\tau)\\ &-\sum_{\tau\in\phi^{\prime}}\left(h(\phi\sqcup\phi^{\prime},\tau)+h(\phi\sqcup\overline{\phi^{\prime}},\overline{\tau})\right).\end{split}

Let (Φ1,Φ2)(\Phi_{1},\Phi_{2}) be a nearby pair of full CM-types meaning that |Φ1Φ2|=g1\lvert\Phi_{1}\cap\Phi_{2}\rvert=g-1 and let τi=Φi\(Φ1Φ2)\tau_{i}=\Phi_{i}\backslash(\Phi_{1}\cap\Phi_{2}). Then Theorem 2.6 tells us the quantity h(Φ1,τ1)+h(Φ2,τ2)h(\Phi_{1},\tau_{1})+h(\Phi_{2},\tau_{2}) is independent of the choice of nearby pair, so we will denote it by hnbh_{\mathrm{nb}}. By [YZ18, Cor. 2.6], we have that

Φh(Φ)=g2g1hnb2g2logdF.\sum_{\Phi}h(\Phi)=g2^{g-1}h_{\mathrm{nb}}-2^{g-2}\log d_{F}.

Now we sum equation (*7) over all complementary types ϕ\phi^{\prime} to get

2|Σ𝖼|hU^(PU)2|Σ𝖼|2glogdBdΣ=2ΦϕτΦh(Φ,τ)|Σ𝖼|2|Σ𝖼|hnb.2^{\lvert{\Sigma}^{\mathsf{c}}\rvert}h_{\widehat{\mathcal{L}_{U}}}(P_{U})-\frac{2^{\lvert{\Sigma}^{\mathsf{c}}\rvert}}{2g}\log d_{B}d_{\Sigma}=2\sum_{\Phi\supset\phi}\sum_{\tau\in\Phi}h(\Phi,\tau)-\lvert{\Sigma}^{\mathsf{c}}\rvert 2^{\lvert{\Sigma}^{\mathsf{c}}\rvert}h_{\mathrm{nb}}.

We now use Theorem 2.5 to represent the inner summation as τΦh(Φ,τ)\sum_{\tau\in\Phi}h(\Phi,\tau). Doing so gives

12hU^(PU)=\displaystyle\frac{1}{2}h_{\widehat{\mathcal{L}_{U}}}(P_{U})= 12|Σ𝖼|Φϕh(Φ)|Σ𝖼|g2gΦh(Φ)\displaystyle\frac{1}{2^{\lvert{\Sigma}^{\mathsf{c}}\rvert}}\sum_{\Phi\supset\phi}h(\Phi)-\frac{\lvert{\Sigma}^{\mathsf{c}}\rvert}{g2^{g}}\sum_{\Phi}h(\Phi)
+12|Σ𝖼|Φϕ14[EΦ:]log(dΦdΦ¯)+14glogdBdΣ|Σ𝖼|4glogdF.\displaystyle+\frac{1}{2^{\lvert{\Sigma}^{\mathsf{c}}\rvert}}\sum_{\Phi\supset\phi}\frac{1}{4[E_{\Phi}:\mathbb{Q}]}\log(d_{\Phi}d_{\overline{\Phi}})+\frac{1}{4g}\log d_{B}d_{\Sigma}-\frac{\lvert{\Sigma}^{\mathsf{c}}\rvert}{4g}\log d_{F}.

Base changing up to E=EGalE^{\prime}=E^{\operatorname{Gal}}, we can simplify the first sum of logarithms as

12|Σ𝖼|4[E:]Φϕlog(dΦdΦ¯)=p<σ:Ep¯12|Σ𝖼|4[E:]Φϕlog|dΦ,pdΦ¯,p|σ.\frac{1}{2^{\lvert{\Sigma}^{\mathsf{c}}\rvert}\cdot 4[E^{\prime}:\mathbb{Q}]}\sum_{\Phi\supset\phi}\log(d_{\Phi}d_{\overline{\Phi}})=\sum_{p<\infty}\sum_{\sigma\colon E^{\prime}\to\overline{\mathbb{Q}_{p}}}\frac{1}{2^{\lvert{\Sigma}^{\mathsf{c}}\rvert}\cdot 4[E^{\prime}:\mathbb{Q}]}\sum_{\Phi\supset\phi}\log\lvert d_{\Phi,p}d_{\overline{\Phi},p}\rvert_{\sigma}.

For each τ:Ep¯\tau\colon E^{\prime}\to\overline{\mathbb{Q}_{p}}, let π\pi be a generator of 𝒪E,p\mathcal{O}_{E,p} over p\mathbb{Z}_{p}. Let

fΦ(t)=τΦ(tτ(π))𝒪EΦ,p[t].f_{\Phi}(t)=\prod_{\tau\in\Phi}(t-\tau(\pi))\in\mathcal{O}_{E_{\Phi},p}[t].

The image of 𝒪EΦ×𝒪E,p\mathcal{O}_{E_{\Phi}}\times_{\mathbb{Z}}\mathcal{O}_{E,p} in EΦ,p~\widetilde{E_{\Phi,p}} is 𝒪EΦ,p[t]/fΦ(t)\mathcal{O}_{E_{\Phi},p}[t]/f_{\Phi}(t). This means dΦ,pd_{\Phi,p} is the discriminant fΦ(t)f_{\Phi}(t), or

dΦ,p=(τ,τ)(τ(π)τ(π))2,d_{\Phi,p}=\prod_{(\tau,\tau^{\prime})}(\tau(\pi)-\tau^{\prime}(\pi))^{2},

where the product is taken over all unordered pairs of distinct ττΦ\tau\neq\tau^{\prime}\in\Phi. We can write the summation over all Φϕ\Phi\supset\phi as the sum of log|τ(π)τ(π)|σ\log\lvert\tau(\pi)-\tau^{\prime}(\pi)\rvert_{\sigma} over all pairs (τ,τ)(\tau,\tau^{\prime}), and then subtract the pairs when τ=τ¯\tau=\overline{\tau^{\prime}} and when τϕ\tau\in\phi and τϕ¯\tau^{\prime}\in\overline{\phi}, or vice versa. Thus, we can simplify the sum as

Φϕlog|dΦ,pdΦ¯,p|σ=\displaystyle\sum_{\Phi\supset\phi}\log\lvert d_{\Phi,p}d_{\overline{\Phi},p}\rvert_{\sigma}= log|(τ,τ)Hom(E,p¯)(τ(π)τ(π))2τΦ(τ(π)τ¯(π))2|σ2|Σ𝖼|1\displaystyle\log\left\lvert\frac{\displaystyle\prod_{(\tau,\tau^{\prime})\in\operatorname{Hom}(E,\overline{\mathbb{Q}_{p}})}(\tau(\pi)-\tau^{\prime}(\pi))^{2}}{\displaystyle\prod_{\tau\in\Phi}(\tau(\pi)-\overline{\tau}(\pi))^{2}}\right\rvert_{\sigma}^{2^{\lvert{\Sigma}^{\mathsf{c}}\rvert-1}}
+log|τϕ(τ(π)τ¯(π))2(τ,τ)ϕϕ¯(τ(π)τ(π))2|σ2|Σ𝖼|1\displaystyle+\log\left\lvert\frac{\displaystyle\prod_{\tau\in\phi}(\tau(\pi)-\overline{\tau}(\pi))^{2}}{\displaystyle\prod_{(\tau,\tau^{\prime})\in\phi\sqcup\overline{\phi}}(\tau(\pi)-\tau^{\prime}(\pi))^{2}}\right\rvert_{\sigma}^{2^{\lvert{\Sigma}^{\mathsf{c}}\rvert-1}}
+log|(τ,τ)ϕ(τ(π)τ(π))2(τ¯(π)τ¯(π))2|σ2|Σ𝖼|.\displaystyle+\log\left\lvert\displaystyle\prod_{(\tau,\tau^{\prime})\in\phi}(\tau(\pi)-\tau^{\prime}(\pi))^{2}(\overline{\tau}(\pi)-\overline{\tau^{\prime}}(\pi))^{2}\right\rvert_{\sigma}^{2^{\lvert{\Sigma}^{\mathsf{c}}\rvert}}.

We can simplify the first term as log|dE,pdE/F,p|σ=log|dF,p|σ2\log\left\lvert\frac{d_{E},p}{d_{E/F,p}}\right\rvert_{\sigma}=\log\lvert d_{F,p}\rvert_{\sigma}^{2}. The second term can be written as log|NF/EXdE/FdΣ|σ=log|dE/F,ΣΣ|σ\log\left\lvert\frac{N_{F/E_{X}}d_{E/F}}{d_{\Sigma}}\right\rvert_{\sigma}=\log\left\lvert\frac{d_{E/F,\Sigma}}{\Sigma}\right\rvert_{\sigma}. Finally, the last term is log|dϕ,pdϕ¯,p|σ\log|d_{\phi,p}d_{\overline{\phi},p}|_{\sigma}.

Plugging this back in gives

12hU^(PU)=\displaystyle\frac{1}{2}h_{\widehat{\mathcal{L}_{U}}}(P_{U})= 12|Σ𝖼|Φϕh(Φ)|Σ𝖼|g2gΦh(Φ)\displaystyle\frac{1}{2^{\lvert{\Sigma}^{\mathsf{c}}\rvert}}\sum_{\Phi\supset\phi}h(\Phi)-\frac{\lvert{\Sigma}^{\mathsf{c}}\rvert}{g2^{g}}\sum_{\Phi}h(\Phi)
+18logdE/F,ΣdΣ1+14logdϕdϕ¯+14glogdB+|Σ|4glogdF.\displaystyle+\frac{1}{8}\log d_{E/F,\Sigma}d_{\Sigma}^{-1}+\frac{1}{4}\log d_{\phi}d_{\overline{\phi}}+\frac{1}{4g}\log d_{B}+\frac{\lvert\Sigma\rvert}{4g}\log d_{F}.

8. André–Oort for Shimura Varieties

A definition of the height of a partial CM-type was given by [PST+22]. We show that their definition of the partial CM-type is compatible with our quaternionic height. We first recall their definition of the modified height on special points, specialized to the case of a partial CM-type. Let E/FE/F be a CM extension, with [F:]=g[F:\mathbb{Q}]=g, and set REResF/E×/F×R_{E}\coloneqq\operatorname{Res}_{F/\mathbb{Q}}E^{\times}/F^{\times}. Let ϕHom(E,)\phi\subset\operatorname{Hom}(E,\mathbb{C}) be a partial CM-type and ϕ\phi^{\prime} be a complementary partial CM-type. Use them to identify EϕϕgE\otimes_{\mathbb{Q}}\mathbb{R}\overset{\phi\sqcup\phi^{\prime}}{\cong}\mathbb{C}^{g}. Then we have that

RE,σϕϕσ/,R_{E,\mathbb{R}}\cong\prod_{\sigma\in\phi\sqcup\phi^{\prime}}\mathbb{C}_{\sigma}/\mathbb{R},

and we take our homomorphism hϕ:×RE,h_{\phi}\colon\mathbb{C}^{\times}\to R_{E,\mathbb{R}} as

hϕ(z)(σϕzσ,σϕ1σ).h_{\phi}(z)\coloneqq\left(\prod_{\sigma\in\phi}z_{\sigma},\prod_{\sigma\in\phi^{\prime}}1_{\sigma}\right).

The Shimura datum (RE,hϕ)(R_{E},h_{\phi}) and compact open subgroup KRE(𝔸f)K\subset R_{E}(\mathbb{A}_{f}) give rise to a 0-dimensional Shimura variety TKT_{K} whose complex points are

TK()RE()\RE(𝔸f)/K.T_{K}(\mathbb{C})\cong R_{E}(\mathbb{Q})\backslash R_{E}(\mathbb{A}_{f})/K.

It has a canonical model over a number field ETE_{T}. We identify

RE()σϕϕσ.R_{E}(\mathbb{C})\cong\prod_{\sigma\in\phi\sqcup\phi^{\prime}}\mathbb{C}_{\sigma}.

Let χ:RE()\chi\colon R_{E}(\mathbb{C})\to\mathbb{C} be the character given by

χ(σΦzσ)σϕzz¯.\chi\left(\prod_{\sigma\in\Phi}z_{\sigma}\right)\coloneqq\prod_{\sigma\in\phi}\frac{z}{\overline{z}}.

Let VV be the smallest \mathbb{Q}-representation of RER_{E} whose complexification contains χ\chi. Let FilaV\operatorname{Fil}^{a}V be the smallest piece of the Hodge filtration and assume that it is one-dimensional and RER_{E} acts on it via χ\chi. Let ΛV\Lambda\subset V be a maximal lattice and now take K=pKpRE(𝔸f)K=\prod_{p}K_{p}\subset R_{E}(\mathbb{A}_{f}) to be the stabilizer of Λ\Lambda. Let ψ\psi be a polarization on VV that takes integral values on Λ\Lambda.

The representation VV of RER_{E} gives rise to a vector bundle 𝒱K\mathcal{V}_{K} over TKT_{K} and filtration on it. By [DLLZ23], over every non-archimedean place vv of 𝒪ET\mathcal{O}_{E_{T}} lying over a prime pp\in\mathbb{Z}, our data (Λ,V,Fil)(\Lambda,V,\operatorname{Fil}) can be functorially identified with data (pΛ,pV,pFil)(_{p}\Lambda,_{p}V,_{p}\operatorname{Fil}) of a filtered vector bundle over TET,v,KT_{E_{T,v},K}, the Shimura variety extended over local fields.

To each place vv of 𝒪ET\mathcal{O}_{E_{T}}, we define a norm on FilaΛ\operatorname{Fil}^{a}\Lambda as:

  • If vv\mid\infty, then the norm is the Hodge norm given by the polarization qq;

  • If vpv\mid p is a non-archimedean place such that

    • TT is unramified at p,

    • KvK_{v} is maximal, and

    • padimV+2p\geq a\dim V+2,

    then use the crystalline norm on Vp{}_{p}V;

  • For all other places vv, use the intrinsic norm on Λp{}_{p}\Lambda.

Now the height of ϕ\phi can be defined as

h(ϕ)vlogsv,h(\phi)\coloneqq\sum_{v}-log\|s\|_{v},

where ss is any element of 𝒱K\mathcal{V}_{K} and the sum is over all places of 𝒪ET\mathcal{O}_{E_{T}}.

The height depends on the choice of lattice Λ\Lambda and polarization qq, but only up to dEd_{E}, the discriminant of EE.

Theorem 8.1 ([PST+22, Lem. 9.4, Thm. 9.5, 9.6]).

The height h(ϕ)h(\phi) is defined up to O(logdE)O(\log d_{E}).

Theorem 8.2.
2h(ϕ)=hU^(PU)+O(logdE).2h(\phi)=h_{\widehat{\mathcal{L}_{U}}}(P_{U})+O(\log d_{E}).
Proof.

Consider the representation of EE on V=BV=B through left multiplication. Our point PUP_{U} corresponds to an action whose trace is Trϕϕ+Trϕ¯ϕ\operatorname{Tr}_{\phi\sqcup\phi^{\prime}}+\operatorname{Tr}_{\overline{\phi}\sqcup\phi^{\prime}}. When we take the Shimura variety associated with the adjoint group GadG^{\operatorname{ad}}, then this representation gives a representation of RER_{E} on V/FV/F whose trace is given by the trace of zτzτ¯\frac{z_{\tau}}{z_{\overline{\tau}}}, meaning that we get 2χ2\chi. Thus, we get a representation of RER_{E} whose complexification contains 2χ2\chi. Thus, we are reduced to showing that the choice of lattices at each finite place are the same. However, since our equality is only up to O(dE)O(d_{E}), it suffices to consider primes where B,EB,E are unramified and the local norm used in the definition of h(ϕ)h(\phi) is given by the crystalline norm.

Let S=𝒪EXp,pS=\mathcal{O}_{E_{X}^{\prime p},p} again be the maximal unramified extension of 𝒪EX,p\mathcal{O}_{E_{X}^{\prime},p}. To show that the lattices coincide, it suffices to check the two lattices at each SS point of XUX_{U}. Under the mapping XUXU×YJXU′′′′X_{U}\to X_{U}\times Y_{J}\to X^{\prime\prime}_{U^{\prime\prime}}, the point PUP_{U} corresponds to an abelian variety 𝒜\mathcal{A} with complex multiplication of type ϕϕ+ϕ¯ϕ\phi\sqcup\phi^{\prime}+\overline{\phi}\sqcup\phi^{\prime}. By [PST+22, Sec. 9.3], the lattice given by the crystalline norm is the same as the lattice from integral de Rham cohomology. So the lattice at that point is

Ω(𝒜)SΩ(𝒜[p])SΩ(S′′).\Omega(\mathcal{A})\otimes S\cong\Omega(\mathcal{A}[p^{\infty}])\otimes S\cong\Omega(\mathcal{H}^{\prime\prime}_{S}).

However, by Proposition 7.2, this is the same as Ω(S)\Omega(\mathcal{H}_{S}). Moreover, the pairing is perfect here meaning that we get the same lattice on Ω(𝒜t)SΩ(S′′t)\Omega(\mathcal{A}^{t})\otimes S\cong\Omega(\mathcal{H}^{\prime\prime t}_{S}). Thus, twice h(ϕ)h(\phi) corresponds to taking the height relative to the lattice Ω(𝒜)Ω(𝒜t)\Omega(\mathcal{A})\otimes\Omega(\mathcal{A}^{t}) which is Ω(S)Ω(St)\Omega(\mathcal{H}_{S})\otimes\Omega(\mathcal{H}_{S}^{t}) which by Theorem 6.1 is just U\mathcal{L}_{U}, as required. ∎

References

  • [AGHMP18] Fabrizio Andreatta, Eyal Z. Goren, Benjamin Howard, and Keerthi Madapusi Pera. Faltings heights of abelian varieties with complex multiplication. Ann. of Math. (2), 187(2):391–531, 2018.
  • [And98] Yves André. Finitude des couples d’invariants modulaires singuliers sur une courbe algébrique plane non modulaire. J. Reine Angew. Math., 505:203–208, 1998.
  • [Bin22] Gal Binyamini. Point counting for foliations over number fields. Forum Math. Pi, 10:Paper No. e6, 39, 2022.
  • [BSY23] Gal Binyamini, Harry Schmidt, and Andrei Yafaev. Lower bounds for Galois orbits of special points on Shimura varieties: a point-counting approach. Math. Ann., 385(1-2):961–973, 2023.
  • [Car83] Henri Carayol. Sur la mauvaise réduction des courbes de Shimura. C. R. Acad. Sci. Paris Sér. I Math., 296(13):557–560, 1983.
  • [Col93] Pierre Colmez. Périodes des variétés abéliennes à multiplication complexe. Ann. of Math. (2), 138(3):625–683, 1993.
  • [DLLZ23] Hansheng Diao, Kai-Wen Lan, Ruochuan Liu, and Xinwen Zhu. Logarithmic Riemann–Hilbert correspondences for rigid varieties. J. Amer. Math. Soc., 36(2):483–562, 2023.
  • [DR18] Christopher Daw and Jinbo Ren. Applications of the hyperbolic Ax–Schanuel conjecture. Compos. Math., 154(9):1843–1888, 2018.
  • [Gao16] Ziyang Gao. About the mixed André–Oort conjecture: reduction to a lower bound for the pure case. C. R. Math. Acad. Sci. Paris, 354(7):659–663, 2016.
  • [Kis10] Mark Kisin. Integral models for Shimura varieties of abelian type. J. Amer. Math. Soc., 23(4):967–1012, 2010.
  • [Kot92] Robert E. Kottwitz. Points on some Shimura varieties over finite fields. J. Amer. Math. Soc., 5(2):373–444, 1992.
  • [KP18] M. Kisin and G. Pappas. Integral models of Shimura varieties with parahoric level structure. Publ. Math. Inst. Hautes Études Sci., 128:121–218, 2018.
  • [KUY16] B. Klingler, E. Ullmo, and A. Yafaev. The hyperbolic Ax–Lindemann–Weierstrass conjecture. Publ. Math. Inst. Hautes Études Sci., 123:333–360, 2016.
  • [Man05] Elena Mantovan. On the cohomology of certain PEL-type Shimura varieties. Duke Math. J., 129(3):573–610, 2005.
  • [Mes72] William Messing. The crystals associated to Barsotti–Tate groups: with applications to abelian schemes. Springer-Verlag, Berlin-New York,,, 1972.
  • [Mil90] J. S. Milne. Canonical models of (mixed) Shimura varieties and automorphic vector bundles. In Automorphic forms, Shimura varieties, and LL-functions, Vol. I (Ann Arbor, MI, 1988), volume 10 of Perspect. Math., pages 283–414. Academic Press, Boston, MA, 1990.
  • [Mil05] J. S. Milne. Introduction to Shimura varieties. In Harmonic analysis, the trace formula, and Shimura varieties, volume 4 of Clay Math. Proc., pages 265–378. Amer. Math. Soc., Providence, RI, 2005.
  • [MPT19] Ngaiming Mok, Jonathan Pila, and Jacob Tsimerman. Ax–Schanuel for Shimura varieties. Ann. of Math. (2), 189(3):945–978, 2019.
  • [MW95] D. W. Masser and G. Wüstholz. Factorization estimates for abelian varieties. Inst. Hautes Études Sci. Publ. Math., (81):5–24, 1995.
  • [Obu13] Andrew Obus. On Colmez’s product formula for periods of CM-abelian varieties. Math. Ann., 356(2):401–418, 2013.
  • [Pap00] Georgios Pappas. On the arithmetic moduli schemes of PEL Shimura varieties. J. Algebraic Geom., 9(3):577–605, 2000.
  • [Pil11] Jonathan Pila. O-minimality and the André–Oort conjecture for n\mathbb{C}^{n}. Ann. of Math. (2), 173(3):1779–1840, 2011.
  • [PS13] Ya’acov Peterzil and Sergei Starchenko. Definability of restricted theta functions and families of abelian varieties. Duke Math. J., 162(4):731–765, 2013.
  • [PST+22] Jonathan Pila, Ananth N. Shankar, Jacob Tsimerman, Hélène Esnault, and Michael Groechenig. Canonical heights on shimura varieties and the andré–oort conjecture, 2022.
  • [PT13] Jonathan Pila and Jacob Tsimerman. The André-Oort conjecture for the moduli space of abelian surfaces. Compos. Math., 149(2):204–216, 2013.
  • [PT14] Jonathan Pila and Jacob Tsimerman. Ax–Lindemann for 𝒜g\mathscr{A}_{g}. Ann. of Math. (2), 179(2):659–681, 2014.
  • [PW06] J. Pila and A. J. Wilkie. The rational points of a definable set. Duke Math. J., 133(3):591–616, 2006.
  • [PZ08] Jonathan Pila and Umberto Zannier. Rational points in periodic analytic sets and the Manin–Mumford conjecture. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 19(2):149–162, 2008.
  • [PZ13] G. Pappas and X. Zhu. Local models of Shimura varieties and a conjecture of Kottwitz. Invent. Math., 194(1):147–254, 2013.
  • [RZ96] M. Rapoport and Th. Zink. Period spaces for pp-divisible groups, volume 141 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1996.
  • [Tsi18] Jacob Tsimerman. The André-Oort conjecture for 𝒜g\mathcal{A}_{g}. Ann. of Math. (2), 187(2):379–390, 2018.
  • [TX16] Yichao Tian and Liang Xiao. On Goren–Oort stratification for quaternionic Shimura varieties. Compos. Math., 152(10):2134–2220, 2016.
  • [Yan10] Tonghai Yang. The Chowla–Selberg formula and the Colmez conjecture. Canad. J. Math., 62(2):456–472, 2010.
  • [YZ18] Xinyi Yuan and Shou-Wu Zhang. On the averaged Colmez conjecture. Ann. of Math. (2), 187(2):533–638, 2018.
  • [YZZ13] Xinyi Yuan, Shou-Wu Zhang, and Wei Zhang. The Gross–Zagier formula on Shimura curves, volume 184 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2013.