This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Harmonics and graded Ehrhart theory

Victor Reiner School of Mathematics
University of Minnesota
Minneapolis, MN, 55455
[email protected]
 and  Brendon Rhoades Department of Mathematics
UCSD
La Jolla, CA, 92093
[email protected]
Abstract.

The Ehrhart polynomial and Ehrhart series count lattice points in integer dilations of a lattice polytope. We introduce and study a qq-deformation of the Ehrhart series, based on the notions of harmonic spaces and Macaulay’s inverse systems for coordinate rings of finite point configurations. We conjecture that this qq-Ehrhart series is a rational function, and introduce and study a bigraded algebra whose Hilbert series matches the qq-Ehrhart series. Defining this algebra requires a new result on Macaulay inverse systems for Minkowski sums of point configurations.

1. Introduction

A lattice polytope PP in n{\mathbb{R}}^{n} is the convex hull of a finite set of points in n{\mathbb{Z}}^{n}. With their deep connections to commutative algebra and toric geometry, lattice polytopes are a central object in algebraic combinatorics. Our goal is to introduce in a canonical way an extra qq-parameter into two important algebro-combinatorial objects associated to a lattice polytope PP: the Ehrhart polynomials/series and the affine semigroup ring associated to PP.

1.1. Classical Ehrhart theory and a qq-analogous conjecture

The classical story to be generalized is one of lattice point enumeration. Given a dd-dimensional lattice polytope PnP\subset{\mathbb{R}}^{n} with boundary Bd(P)\mathrm{Bd({P})} and (relative) interior int(P)=PBd(P)\mathrm{int}(P)=P\setminus\mathrm{Bd({P})}, for m0m\geq 0, one has its mm-fold dilate mP:={mp:pP}nmP:=\{mp\,:\,p\in P\}\subseteq{\mathbb{R}}^{n}, along with its interior int(mP)\mathrm{int}(mP). Define these integer point enumerators iP(m),i¯P(m)i_{P}(m),\overline{i}_{P}(m), and their generating functions EP(t),E¯P(t)\mathrm{E}_{P}(t),\overline{\mathrm{E}}_{P}(t) in [[t]]{\mathbb{Z}}[[t]]:

(1) iP(m)\displaystyle i_{P}(m) :=#(nmP) for m0,\displaystyle:=\#({\mathbb{Z}}^{n}\cap mP)\text{ for }m\geq 0, EP(t):=m=0iP(m)tm,\displaystyle\mathrm{E}_{P}(t):=\sum_{m=0}^{\infty}i_{P}(m)t^{m},
(2) i¯P(m)\displaystyle\overline{i}_{P}(m) :=#(nint(mP)) for m1,\displaystyle:=\#({\mathbb{Z}}^{n}\cap\mathrm{int}(mP))\text{ for }m\geq 1, E¯P(t):=m=1i¯P(m)tm.\displaystyle\overline{\mathrm{E}}_{P}(t):=\sum_{m=1}^{\infty}\overline{i}_{P}(m)t^{m}.

We summarize here some of the results from the original work of Ehrhart [15], as well as Macdonald [37] and Stanley [46, 48]; see also expositions and surveys in Braun [8], Beck and Robins [5], Beck and Sanyal [6], Stanley [51, Ch. 1] [53, §4.6].

Classical Ehrhart Theorem. Let PP be a dd-dimensional lattice polytope.

  • (i)

    Both iP(m)i_{P}(m) and i¯P(m)\overline{i}_{P}(m) are polynomial functions of mm of degree dd. Both generating functions EP(t)\mathrm{E}_{P}(t) and E¯P(t)\overline{\mathrm{E}}_{P}(t) are rational functions which can be written over the denominator (1t)d+1(1-t)^{d+1}, and whose numerator polynomials lie in [t]{\mathbb{Z}}[t], with numerator of degree at most dd in the case of EP(t)\mathrm{E}_{P}(t) and degree exactly d+1d+1 in the case of E¯P(t)\overline{\mathrm{E}}_{P}(t).

  • (ii)

    The integer coefficients {hi}i=0d\{h^{*}_{i}\}_{i=0}^{d} defined uniquely by

    EP(t)=i=0dhiti(1t)d+1\mathrm{E}_{P}(t)=\frac{\sum_{i=0}^{d}h^{*}_{i}t^{i}}{(1-t)^{d+1}}

    are nonnegative, with h0=1h^{*}_{0}=1 and i=0dhi=v\sum_{i=0}^{d}h^{*}_{i}=v the normalized dd-volume v:=vold(P)v:=\mathrm{vol}_{d}(P).

  • (iii)

    For PP a lattice dd-simplex with vertices 𝐯(1),,𝐯(d+1)\mathbf{v}^{(1)},\ldots,\mathbf{v}^{(d+1)}, one can interpret the {hi}i=0d\{h^{*}_{i}\}_{i=0}^{d} as

    hi=#{(x0,𝐳)Πn+1:x0=i},h^{*}_{i}=\#\{(x_{0},\mathbf{z})\in\Pi\cap{\mathbb{Z}}^{n+1}:x_{0}=i\},

    where Πn+1=1×n\Pi\subseteq{\mathbb{R}}^{n+1}={\mathbb{R}}^{1}\times{\mathbb{R}}^{n} is this semi-open parallelepiped spanned by {(1,𝐯(j))}j=1,,d+1\{(1,\mathbf{v}^{(j)})\}_{j=1,\ldots,d+1}:

    (3) Π:={j=1d+1cj(1,𝐯(j)):0ci<1}.\Pi:=\left\{\sum_{j=1}^{d+1}c_{j}\cdot(1,\mathbf{v}^{(j)}):0\leq c_{i}<1\right\}.
  • (iv)

    (Ehrhart-Macdonald reciprocity) The series EP(t),E¯P(t)\mathrm{E}_{P}(t),\overline{\mathrm{E}}_{P}(t) determine each other uniquely by

    E¯P(t)=(1)d+1EP(t1).\overline{\mathrm{E}}_{P}(t)=(-1)^{d+1}\mathrm{E}_{P}(t^{-1}).

Our goal is to introduce a natural qq-parameter into this picture111Note that Chapoton [11] introduced a different, less canonical qq-analogue, discussed in Remark 3.20 below.. Let 𝐤{\mathbf{k}} be a field and let 𝒵𝐤n\mathcal{Z}\subseteq{\mathbf{k}}^{n} be a finite locus of points in affine nn-space over 𝐤{\mathbf{k}}. The point-orbit method (also known as the orbit harmonics method) is a machine which produces from 𝒵\mathcal{Z} a graded quotient R(𝒵)R(\mathcal{Z}) of the polynomial ring S:=𝐤[x1,,xn]S:={\mathbf{k}}[x_{1},\dots,x_{n}]. Let 𝐈(𝒵)S{\mathbf{I}}(\mathcal{Z})\subseteq S be the vanishing ideal of 𝒵\mathcal{Z} given by

(4) 𝐈(𝒵):={f(𝐱)S:f(𝐳)=0 for all 𝐳𝒵}.{\mathbf{I}}(\mathcal{Z}):=\{f(\mathbf{x})\in S\,:\,f(\mathbf{z})=0\text{ for all $\mathbf{z}\in\mathcal{Z}$}\}.

Since 𝒵\mathcal{Z} is finite, by Lagrange interpolation one has an identification of the space 𝐤[𝒵]{\mathbf{k}}[\mathcal{Z}] of functions 𝒵𝐤\mathcal{Z}\rightarrow{\mathbf{k}} and the quotient ring S/𝐈(𝒵)S/{\mathbf{I}}(\mathcal{Z}). We let

(5) R(𝒵):=S/gr𝐈(𝒵)R(\mathcal{Z}):=S/{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z})

where gr𝐈(𝒵)S{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z})\subseteq S is the associated graded ideal of 𝐈(𝒵){\mathbf{I}}(\mathcal{Z}), generated by the top degree homogeneous components τ(f)\tau(f) of nonzero polynomials f𝐈(𝒵)f\in{\mathbf{I}}(\mathcal{Z}). The ideal gr𝐈(𝒵){\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}) is homogeneous, so the quotient ring R(𝒵)R(\mathcal{Z}) is graded. Geometrically, the construction S/𝐈(𝒵)R(𝒵)S/{\mathbf{I}}(\mathcal{Z})\leadsto R(\mathcal{Z}) is a flat deformation of the reduced subscheme 𝒵𝐤n\mathcal{Z}\subseteq{\mathbf{k}}^{n} deforming linearly to a zero dimensional subscheme of degree |𝒵||\mathcal{Z}| supported at the origin, as illustrated by the picture below.

\bullet\bullet\bullet\bullet\bullet\bullet\bullet

The construction 𝒵R(𝒵)\mathcal{Z}\leadsto R(\mathcal{Z}) is a canonical way to put a graded structure on the finite locus 𝒵\mathcal{Z}. One has an isomorphism of 𝐤{\mathbf{k}}-vector spaces

(6) 𝐤[𝒵]=S/𝐈(𝒵)R(𝒵).{\mathbf{k}}[\mathcal{Z}]=S/{\mathbf{I}}(\mathcal{Z})\cong R(\mathcal{Z}).

In particular, introducing a grading variable qq, one finds that the Hilbert series

Hilb(R(𝒵),q):=d=0dim𝐤R(𝒵)dqd\mathrm{Hilb}(R(\mathcal{Z}),q):=\sum_{d=0}^{\infty}\dim_{\mathbf{k}}R(\mathcal{Z})_{d}\cdot q^{d}

is a polynomial in qq with nonnegative integer coefficients giving a geometrically motivated and canonical qq-analogue of the cardinality of 𝒵\mathcal{Z}, that is,

(7) [Hilb(R(𝒵),q)]q=1=dim𝐤R(𝒵)=dim𝐤𝐤[𝒵]=#𝒵.\left[\mathrm{Hilb}(R(\mathcal{Z}),q)\right]_{q=1}=\dim_{\mathbf{k}}R(\mathcal{Z})=\dim_{\mathbf{k}}{\mathbf{k}}[\mathcal{Z}]=\#\mathcal{Z}.

Furthermore, when 𝒵\mathcal{Z} is stable under the action of a finite subgroup GGLn(𝐤)G\subseteq GL_{n}({\mathbf{k}}) (as suggested by the previous picture where G𝔖3G\cong{\mathfrak{S}}_{3} and the transpositions in 𝔖3{\mathfrak{S}}_{3} act by reflections in the three lines), the vector space isomorphism (6) is also a Brauer isomorphism of 𝐤G{\mathbf{k}}G-modules, that is, 𝐤[𝒵]{\mathbf{k}}[\mathcal{Z}] and R(𝒵)R(\mathcal{Z}) share the same composition multiplicities for all simple 𝐤G{\mathbf{k}}G-modules. In particular, when |G||G| is invertible in 𝐤×{\mathbf{k}}^{\times}, such as when 𝐤{\mathbf{k}} characteristic zero, then (6) is a 𝐤G{\mathbf{k}}G-module isomorphism.

However, the deformation S/𝐈(𝒵)R(𝒵)S/{\mathbf{I}}(\mathcal{Z})\leadsto R(\mathcal{Z}) does not have perfect memory: since R(𝒵)R(\mathcal{Z}) is not reduced for |𝒵|>1|\mathcal{Z}|>1, the rings S/𝐈(𝒵)S/{\mathbf{I}}(\mathcal{Z}) and R(𝒵)R(\mathcal{Z}) are almost never isomorphic. Despite this amnesia, we will exhibit an unexpected multiplicative structure on direct sums of point-orbit rings (or rather their associated harmonic spaces) coming from dilates of a lattice polytope.

Introduced by Kostant [33] in his study of coinvariant rings of finite reflection groups, the rings R(𝒵)R(\mathcal{Z}) have proven to be an enormously fruitful source of graded quotients of SS. The rings R(𝒵)R(\mathcal{Z}) present the cohomology of Springer fibers [21], have ties to Coxeter-Catalan theory [3], give generalized coinvariant rings with ties to Macdonald-theoretic delta operators [28, 25], give graded modules over (0-)Hecke algebras [31, 32], prove cyclic sieving results [40], and encode the Viennot shadow line construction of the Schensted correspondence [43, 35]. The rings R(𝒵)R(\mathcal{Z}) have also been used to understand [41] Donaldson-Thomas invariants of symmetric quivers when 𝒵\mathcal{Z} consists of lattice points in certain zonotopes. In all of these examples, it is crucial to choose a point locus 𝒵𝐤n\mathcal{Z}\subseteq{\mathbf{k}}^{n} with strategic organization.

Here we will take 𝐤={\mathbf{k}}={\mathbb{R}} and consider the case where 𝒵=Pn\mathcal{Z}=P\cap{\mathbb{Z}}^{n} consists of the integer points of an arbitrary lattice polytope PnP\subseteq{\mathbb{R}}^{n}, together with its dilates. Define two qq-Ehrhart series for PP, analogous to those in (1), (2)

(8) EP(t,q)\displaystyle\mathrm{E}_{P}(t,q) :=m 0iP(m;q)tm, where iP(m;q):=Hilb(R(nmP),q)\displaystyle:=\sum_{m\,\geq\,0}i_{P}(m;q)\cdot t^{m},\qquad\text{ where }i_{P}(m;q):=\mathrm{Hilb}(R({\mathbb{Z}}^{n}\cap mP),q)
(9) E¯P(t,q)\displaystyle\overline{\mathrm{E}}_{P}(t,q) :=m 1i¯P(m;q)tm, where i¯P(m;q):=Hilb(R(nint(mP)),q).\displaystyle:=\sum_{m\,\geq\,1}\bar{i}_{P}(m;q)\cdot t^{m},\qquad\text{ where }\bar{i}_{P}(m;q):=\mathrm{Hilb}(R({\mathbb{Z}}^{n}\cap\mathrm{int}(mP)),q).

Thus EP(t,q),E¯P(t,q)\mathrm{E}_{P}(t,q),\overline{\mathrm{E}}_{P}(t,q) lie in [q][[t]]{\mathbb{Z}}[q][[t]], and (7) implies they specialize to EP(t),E¯P(t)\mathrm{E}_{P}(t),\overline{\mathrm{E}}_{P}(t) when q1q\to 1. The following is our main conjecture, on the form of EP(t,q),E¯P(t,q)\mathrm{E}_{P}(t,q),\overline{\mathrm{E}}_{P}(t,q).

Conjecture 1.1.

Let PP be a dd-dimensional lattice polytope in n{\mathbb{R}}^{n}. Then both of the series (8),(9) lie in (t,q){\mathbb{Q}}(t,q), and are expressible as rational functions

EP(t,q)=NP(t,q)DP(t,q) and E¯P(t,q)=N¯P(t,q)DP(t,q),\mathrm{E}_{P}(t,q)=\frac{N_{P}(t,q)}{D_{P}(t,q)}\quad\text{ and }\quad\overline{\mathrm{E}}_{P}(t,q)=\frac{\overline{N}_{P}(t,q)}{D_{P}(t,q)},

over the same denominator of the form DP(t,q)=i=1ν(1qaitbi)D_{P}(t,q)=\prod_{i=1}^{\nu}(1-q^{a_{i}}t^{b_{i}}), necessarily with νd+1\nu\geq d+1. Furthermore, there exists such an expression with all of these properties:

  • (i)

    the numerators NP(t,q),N¯P(t,q)N_{P}(t,q),\overline{N}_{P}(t,q) lie in [t,q]{\mathbb{Z}}[t,q],

  • (ii)

    if PP is a lattice simplex, and ν=d+1\nu=d+1, then both numerators NP(t,q),N¯P(t,q)N_{P}(t,q),\overline{N}_{P}(t,q) have nonnegative coefficients as polynomials in t,qt,q.

Lastly, one has this qq-analogue of Ehrhart-Macdonald reciprocity:

  • (iii)

    the two series EP(t,q),E¯P(t,q)\mathrm{E}_{P}(t,q),\overline{\mathrm{E}}_{P}(t,q) determine each other via

    qdE¯P(t,q)=(1)d+1EP(t1,q1).q^{d}\cdot\overline{\mathrm{E}}_{P}(t,q)=(-1)^{d+1}\mathrm{E}_{P}(t^{-1},q^{-1}).
Remark 1.2.

Conjecture 1.1 requires νd+1\nu\geq d+1 since [EP(q,t)]q=1=EP(t)\left[\mathrm{E}_{P}(q,t)\right]_{q=1}=\mathrm{E}_{P}(t), and part (i) of the Classical Ehrhart Theorem implies EP(t)\mathrm{E}_{P}(t) has a pole at t=1t=1 of order d+1d+1. Similarly, letting b:=i=1νbib:=\sum_{i=1}^{\nu}b_{i} be the tt-degree of the denominator DP(t,q)D_{P}(t,q), the numerator polynomials NP(t,q)N_{P}(t,q) and N¯P(t,q)\overline{N}_{P}(t,q) would necessarily have tt-degrees at most b1b-1 and exactly bb, respectively.

Regarding the fact that Conjecture 1.1(ii) has two hypotheses, note that Example 3.8 below suggests the existence of lattice simplices PP with ν>d+1\nu>d+1.

Example. Consider a 11-dimensional lattice polytope P1P\subset{\mathbb{R}}^{1} of volume v1v\geq 1, that is, a line segment P=[a,a+v]P=[a,a+v] for some integer aa. Thus for m0m\geq 0, one has mP=[ma,m(a+v)]mP=[ma,m(a+v)] and

1mP={ma,ma+1,ma+2,,m(a+v)}.{\mathbb{Z}}^{1}\cap mP=\{ma,ma+1,ma+2,\ldots,m(a+v)\}.

Therefore one can calculate

𝐈(1mP)\displaystyle{\mathbf{I}}({\mathbb{Z}}^{1}\cap mP) =((xma)(xma1)(xmamv))S=[x],\displaystyle=(\,\,(x-ma)(x-ma-1)\cdots(x-ma-mv)\,\,)\subset S={\mathbb{R}}[x],
gr𝐈(1mP)\displaystyle{\mathrm{gr}}\,{\mathbf{I}}({\mathbb{Z}}^{1}\cap mP) =(xmv+1), so that R(1mP)=[x]/(xmv+1),\displaystyle=(x^{mv+1}),\text{ so that }R({\mathbb{Z}}^{1}\cap mP)={\mathbb{R}}[x]/(x^{mv+1}),
Hilb(R(1mP);q)\displaystyle\mathrm{Hilb}(R({\mathbb{Z}}^{1}\cap mP);q) =1+q+q2++qmv=(1qmv+1)/(1q),\displaystyle=1+q+q^{2}+\cdots+q^{mv}=(1-q^{mv+1})/(1-q),
EP(t,q)\displaystyle\mathrm{E}_{P}(t,q) =m0tm(1qmv+1)/(1q)=11qm0tm(1qmv+1)\displaystyle=\sum_{m\geq 0}t^{m}\cdot(1-q^{mv+1})/(1-q)=\frac{1}{1-q}\sum_{m\geq 0}t^{m}(1-q^{mv+1})
(10) =11q(11tq1tqv)=1+t(q+q2++qv1)(1t)(1tqv)=1+tq[v1]q(1t)(1tqv),\displaystyle=\frac{1}{1-q}\left(\frac{1}{1-t}-\frac{q}{1-tq^{v}}\right)=\frac{1+t(q+q^{2}+\cdots+q^{v-1})}{(1-t)(1-tq^{v})}=\frac{1+t\cdot q[v-1]_{q}}{(1-t)(1-tq^{v})},

where we are using here a standard qq-analogue of the positive integer mm

[m]q:=1+q+q2++qm1.[m]_{q}:=1+q+q^{2}+\cdots+q^{m-1}.

Note that iP(m)=mv+1i_{P}(m)=mv+1, and hence, as expected, one has

EP(t)=m=0(mv+1)tm=vt(1t)2+11t=1+(v1)t(1t)2=[EP(t,q)]q=1.\mathrm{E}_{P}(t)=\sum_{m=0}^{\infty}(mv+1)t^{m}=\frac{vt}{(1-t)^{2}}+\frac{1}{1-t}=\frac{1+(v-1)t}{(1-t)^{2}}=\left[\mathrm{E}_{P}(t,q)\right]_{q=1}.

Since mPmP has interior lattice points

1int(mP)={ma+1,ma+2,,m(a+v)1},{\mathbb{Z}}^{1}\cap\mathrm{int}(mP)=\{ma+1,ma+2,\ldots,m(a+v)-1\},

a similar calculation shows that

E¯P(t,q)\displaystyle\overline{\mathrm{E}}_{P}(t,q) =m1tm(1qmv1)/(1q)\displaystyle=\sum_{m\geq 1}t^{m}\cdot(1-q^{mv-1})/(1-q)
(11) =11q(t1tqv1t1tqv)=t(1+q+q2+qv2)+t2qv1(1t)(1tqv)=t[v1]q+t2qv1(1t)(1tqv),\displaystyle=\frac{1}{1-q}\left(\frac{t}{1-t}-\frac{q^{v-1}t}{1-tq^{v}}\right)=\frac{t(1+q+q^{2}\cdots+q^{v-2})+t^{2}q^{v-1}}{(1-t)(1-tq^{v})}=\frac{t[v-1]_{q}+t^{2}q^{v-1}}{(1-t)(1-tq^{v})},

with [E¯P(t,q)]q=1=(v1)t+t2(1t)2=E¯P(t)\left[\overline{\mathrm{E}}_{P}(t,q)\right]_{q=1}=\frac{(v-1)t+t^{2}}{(1-t)^{2}}=\overline{\mathrm{E}}_{P}(t), as expected. Furthermore, the line segment PP is a lattice simplex, and one can check that (10), (11) are consistent with all parts (i),(ii),(iii) of Conjecture 1.1.

1.2. The affine semigroup ring and the harmonic algebra

For lattice dd-polytopes PnP\subset{\mathbb{R}}^{n}, work of Stanley (see, e.g., [51]) explains the Classical Ehrhart Theorem by reinterpreting EP(t)\mathrm{E}_{P}(t) as the Hilbert series of a certain commutative graded algebra associated to PP, reviewed here.

One embeds PP in n+1{\mathbb{R}}^{n+1} as {1}×P1×n=n+1\{1\}\times P\subseteq{\mathbb{R}}^{1}\times{\mathbb{R}}^{n}={\mathbb{R}}^{n+1}. The cone over PP is

cone(P):=0({1}×P).\mathrm{cone}(P):={\mathbb{R}}_{\geq 0}\cdot(\{1\}\times P).

It is an affine polyhedral (d+1)(d+1)-dimensional cone in n+1{\mathbb{R}}^{n+1}, and its lattice points n+1cone(P){\mathbb{Z}}^{n+1}\cap\mathrm{cone}(P) form a semigroup under addition. The affine semigroup ring of PP over a field 𝐤{\mathbf{k}} is

(12) AP:=𝐤[n+1cone(P)].A_{P}:={\mathbf{k}}[{\mathbb{Z}}^{n+1}\cap\mathrm{cone}(P)].

The first coordinate x0x_{0} on 1×n=n+1{\mathbb{R}}^{1}\times{\mathbb{R}}^{n}={\mathbb{R}}^{n+1} endows APA_{P} with the structure of a graded algebra, having Krull dimension d+1d+1. Inside APA_{P}, one has the (homogeneous) interior ideal A¯P\overline{A}_{P}, the 𝐤{\mathbf{k}}-span of all monomials corresponding to the interior lattice points int(cone(P))n+1\mathrm{int}(\mathrm{cone}(P))\cap{\mathbb{Z}}^{n+1}. Then one has

EP(t)\displaystyle\mathrm{E}_{P}(t) =Hilb(AP,t),\displaystyle=\mathrm{Hilb}(A_{P},t),
E¯P(t)\displaystyle\overline{\mathrm{E}}_{P}(t) =Hilb(A¯P,t).\displaystyle=\mathrm{Hilb}(\overline{A}_{P},t).

Although APA_{P} is not always generated in degree one, there is always a tower of integral ring extensions

𝐤[Θ]:=𝐤[θ1,,θd+1]BPAP{\mathbf{k}}[\Theta]:={\mathbf{k}}[\theta_{1},\ldots,\theta_{d+1}]\subset B_{P}\subset A_{P}

where BPB_{P} is the subalgebra of APA_{P} generated by the monomials corresponding to the vertices of PP, and Θ:=(θ1,,θd+1)\Theta:=(\theta_{1},\ldots,\theta_{d+1}) is any choice of a linear (degree one) system of parameters for BPB_{P}; their existence is guaranteed by Noether’s Normalization Lemma [39]. Most of the assertions (i),(ii),(iii),(iv) from the Classical Ehrhart Theorem are then explained by these four facts, respectively:

  • (i)

    APA_{P} is a finitely-generated 𝐤[Θ]{\mathbf{k}}[\Theta]-module, and hence so is the ideal A¯P\overline{A}_{P}.

  • (ii)

    APA_{P} is even a free 𝐤[Θ]{\mathbf{k}}[\Theta]-module, as Hochster [30] showed APA_{P} is a Cohen-Macaulay ring.

  • (iii)

    When PP is a simplex, so that 𝐤[Θ]=BP{\mathbf{k}}[\Theta]=B_{P}, then APA_{P} has a 𝐤[Θ]{\mathbf{k}}[\Theta]-basis given by monomials corresponding to the lattice points in the semi-open parallelepiped (3).

  • (iv)

    Work of Danilov [14] and Stanley [49] independently showed that A¯P\overline{A}_{P} is isomorphic to the canonical module ΩAP\Omega A_{P} of the Cohen-Macaulay ring APA_{P}.

This might inspire one to approach Conjecture 1.1 by introducing a bigraded deformation of APA_{P}. Since AP=m0(AP)mA_{P}=\bigoplus_{m\geq 0}(A_{P})_{m} where (AP)m(A_{P})_{m} comes from the x0=mx_{0}=m slice of cone(P)\mathrm{cone}(P)

(13) cone(P)({m}×n)={m}×mP,\mathrm{cone}(P)\cap(\{m\}\times{\mathbb{R}}^{n})=\{m\}\times mP,

one might look for such a bigraded object by defining a graded multiplication on the direct sum

(14) m0R(mPn).\bigoplus_{m\geq 0}R(mP\cap{\mathbb{Z}}^{n}).

That is, one would like a way to ‘multiply’ elements fR(mPn)f\in R(mP\cap{\mathbb{Z}}^{n}) and fR(mPn)f^{\prime}\in R(m^{\prime}P\cap{\mathbb{Z}}^{n}) to produce a new element ffR((m+m)Pn)f\star f^{\prime}\in R((m+m^{\prime})P\cap{\mathbb{Z}}^{n}) in a fashion which respects the polynomial degrees of ff and ff^{\prime}. Geometrically, this corresponds to deforming the lattice points in mP×{m}cone(P)mP\times\{m\}\subseteq\mathrm{cone}(P) linearly onto the coning axis and defining a multiplication between fat point loci. The relevant picture is shown below when P=[1,1]×[1,1]P=[-1,1]\times[-1,1] is a square in 2{\mathbb{R}}^{2}.

\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet

The naïve approach of looking at the ring R(cone(P)n+1)R(\mathrm{cone}(P)\cap{\mathbb{Z}}^{n+1}) has two problems:

  • the transformation S/𝐈(𝒵)R(𝒵)S/{\mathbf{I}}(\mathcal{Z})\leadsto R(\mathcal{Z}) deforms a locus 𝒵𝐤n+1\mathcal{Z}\subseteq{\mathbf{k}}^{n+1} to the origin, but we want to deform to the coning axis, and

  • if PP is full-dimensional, then cone(P)n+1\mathrm{cone}(P)\cap{\mathbb{Z}}^{n+1} is Zariski-dense and 𝐈(cone(P)n+1)=0{\mathbf{I}}(\mathrm{cone}(P)\cap{\mathbb{Z}}^{n+1})=0. Consequently, the deformation S/𝐈(𝒵)R(𝒵)S/{\mathbf{I}}(\mathcal{Z})\leadsto R(\mathcal{Z}) for 𝒵=Pn+1\mathcal{Z}=P\cap{\mathbb{Z}}^{n+1} remembers only the affine span of PP, not PP itself.

We achieve the task of defining a multiplication on the direct sum (14) in Section 5 by replacing each summand R(mPn)R(mP\cap{\mathbb{Z}}^{n}) with its harmonic space (or Macaulay inverse system). The resulting bigraded ring P{\mathcal{H}}_{P} is the harmonic algebra attached to PP. The bigraded Hilbert series of P{\mathcal{H}}_{P} equals the qq-Ehrhart series EP(t,q)\mathrm{E}_{P}(t,q). Although not isomorphic to APA_{P} in general, we conjecture that P{\mathcal{H}}_{P} enjoys analogous algebraic properties (finite generation, Cohen-Macaulayness, identification of the canonical module) that would explain much of Conjecture 1.1.

In spite of all of these properties remaining conjectural, we are able to show that the qq-Ehrhart series EP(t,q)\mathrm{E}_{P}(t,q) and harmonic algebra P{\mathcal{H}}_{P} behave in a predictable fashion when performing three well-studied operations on lattice polytopes PP:

  • dilation by an positive integer factor dd, sending PP to dPdP,

  • Cartesian product, sending PnP\subset{\mathbb{R}}^{n} and QmQ\subset{\mathbb{R}}^{m} to P×Qn+mP\times Q\subset{\mathbb{R}}^{n+m},

  • free join, sending P,QP,Q to PQ1+n+mP*Q\subseteq{\mathbb{R}}^{1+n+m} defined by

    (15) PQ:={(t,t𝐩,(1t)𝐪): 0t1,𝐩P,𝐪Q}.P*Q:=\{(t,t\mathbf{p},(1-t)\mathbf{q})\,:\,0\leq t\leq 1,\,\mathbf{p}\in P,\,\mathbf{q}\in Q\}.

The next result is proven in Section 6, and relates the above operations to the constructions of Veronese subalgebras, Segre products and graded tensor products for harmonic algebras P,Q{\mathcal{H}}_{P},{\mathcal{H}}_{Q}.

Theorem 1.3.

Let P,QP,Q be lattice polytopes.

  • (i)

    For positive integers dd, the dilation dPdP has EdP(t,q)\mathrm{E}_{dP}(t,q) given by

    EdP(t,q)=m=0iP(dm;q)tm.\mathrm{E}_{dP}(t,q)=\sum_{m=0}^{\infty}i_{P}(dm;q)t^{m}.
  • (ii)

    The Cartesian product P×QP\times Q has EP×Q(t,q)\mathrm{E}_{P\times Q}(t,q) given by the Hadamard product of series

    EP×Q(t,q)=m=0iP(m;q)iQ(m;q)tm.\mathrm{E}_{P\times Q}(t,q)=\sum_{m=0}^{\infty}i_{P}(m;q)\cdot i_{Q}(m;q)\cdot t^{m}.
  • (iii)

    The free join PQP*Q has EPQ(t,q)\mathrm{E}_{P*Q}(t,q) given by

    EPQ(t,q)=1t1qtEP(t,q)EQ(t,q).\mathrm{E}_{P*Q}(t,q)=\frac{1-t}{1-qt}\cdot\mathrm{E}_{P}(t,q)\cdot\mathrm{E}_{Q}(t,q).

A further pleasant feature of the harmonic algebra arises when one considers Stanley’s two poset polytopes [50] associated to a finite poset: its order polytope and its chain polytope. Although these two lattice polytopes look very different, Stanley showed that they share the same Ehrhart series. It will turn out (see Section 5.6 below) that all of our conjectures hold for both of these families of polytopes, that they share the same qq-Ehrhart series, and even share the same harmonic algebras. This is in contrast to the fact that their affine semigroup rings are generally not isomorphic.

1.3. Harmonic spaces and Minkowski addition

The fact that the harmonic algebra P{\mathcal{H}}_{P} is closed under multiplication is not obvious, and rests upon a surprising new property of harmonic spaces for arbitrary finite loci 𝒵,𝒵𝐤n\mathcal{Z},\mathcal{Z}^{\prime}\subseteq{\mathbf{k}}^{n}. Define their Minkowski sum to be the finite point locus

(16) 𝒵+𝒵:={𝐳+𝐳:𝐳𝒵,𝐳𝒵}.\mathcal{Z}+\mathcal{Z}^{\prime}:=\{\mathbf{z}+\mathbf{z}^{\prime}\,:\,\mathbf{z}\in\mathcal{Z},\,\mathbf{z}^{\prime}\in\mathcal{Z}^{\prime}\}.

The point-orbit rings R(𝒵),R(𝒵),R(\mathcal{Z}),R(\mathcal{Z}^{\prime}), and R(𝒵+𝒵)R(\mathcal{Z}+\mathcal{Z}^{\prime}) are graded quotients of S=𝐤[x1,,xn]S={\mathbf{k}}[x_{1},\dots,x_{n}]. When 𝐤{\mathbf{k}} has characteristic zero, the partial differentiation action of SS on itself gives rise to a 𝐤{\mathbf{k}}-linear perfect pairing ,\langle-,-\rangle on each homogeneous component SdS_{d} of SS, and we may replace R(𝒵),R(𝒵),R(𝒵+𝒵)R(\mathcal{Z}),R(\mathcal{Z}),R(\mathcal{Z}+\mathcal{Z}^{\prime}) by their harmonic spaces

(17) V𝒵:=gr𝐈(𝒵),V𝒵:=gr𝐈(𝒵),V𝒵+𝒵:=gr𝐈(𝒵+𝒵).V_{\mathcal{Z}}:={\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z})^{\perp},\quad\quad V_{\mathcal{Z}^{\prime}}:={\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}^{\prime})^{\perp},\quad\quad V_{\mathcal{Z}+\mathcal{Z}^{\prime}}:={\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}+\mathcal{Z}^{\prime})^{\perp}.

If ISI\subseteq S is a homogeneous ideal, the harmonic space ISI^{\perp}\subseteq S is a graded subspace with the same Hilbert series as S/IS/I. Since elements of II^{\perp} are honest polynomials ff, whereas elements of S/IS/I are cosets f+If+I, working in II^{\perp} avoids coset-related issues which arise in proving, e.g., linear independence results. On the other hand, unlike the graded ring S/IS/I, the subspace II^{\perp} has the defect of not being closed under multiplication. Nevertheless, in Section 4 we prove the following.

Theorem 1.4.

For any pair of finite point loci 𝒵,𝒵\mathcal{Z},\mathcal{Z}^{\prime} in 𝐤n{\mathbf{k}}^{n} over any field 𝐤{\mathbf{k}}, one has

V𝒵V𝒵V𝒵+𝒵.V_{\mathcal{Z}}\cdot V_{\mathcal{Z}^{\prime}}\subseteq V_{\mathcal{Z}+\mathcal{Z}^{\prime}}.

This containment V𝒵V𝒵V𝒵+𝒵V_{\mathcal{Z}}\cdot V_{\mathcal{Z}^{\prime}}\subseteq V_{\mathcal{Z}+\mathcal{Z}^{\prime}} may be interpreted as saying that the rings R(𝒵)R(\mathcal{Z}) ‘remember’ the structure of Minkowski sums via multiplication of their harmonic spaces. As the deformation S/𝐈(𝒵)R(𝒵)S/{\mathbf{I}}(\mathcal{Z})\leadsto R(\mathcal{Z}) does not respect ring structure, we find Theorem 1.4 a bit unexpected222It is reminiscent of another unexpected fact, about standard monomials for 𝐈(𝒵),𝐈(𝒵),𝐈(𝒵+𝒵){\mathbf{I}}(\mathcal{Z}),{\mathbf{I}}(\mathcal{Z}^{\prime}),{\mathbf{I}}(\mathcal{Z}+\mathcal{Z}^{\prime}) with respect to a chosen monomial ordering on S=[𝐱]S={\mathbb{R}}[\mathbf{x}], observed by F. Gundlach [26]; see Remark 2.8 below..

Note Theorem 1.4 is stated for finite point loci inside 𝐤n{\mathbf{k}}^{n} where 𝐤{\mathbf{k}} is any field, not just 𝐤={\mathbf{k}}={\mathbb{R}} or a field of characteristic zero. This requires defining harmonic spaces V𝒵V_{\mathcal{Z}} over an arbitrary field 𝐤{\mathbf{k}}, which occurs already in the theory of Macaulay’s inverse systems over all fields 𝐤{\mathbf{k}} discussed, e.g., in Geramita [23], and reviewed in Section 4 below. These more general harmonic spaces V𝒵V_{\mathcal{Z}} are defined not inside a polynomial ring over 𝐤{\mathbf{k}}, but rather in the divided power algebra over 𝐤{\mathbf{k}}. When 𝐤{\mathbf{k}} has characteristic zero, these two rings are the same, and the definitions of V𝒵V_{\mathcal{Z}} coincide.

The remainder of the paper is structured as follows.

Section 2 reviews commutative algebra of associated graded ideals and rings, Gröbner bases, harmonic spaces and Macaulay’s inverse systems (first in characteristic zero, and then over all fields). It then briefly reviews some aspects of groups acting on rings and representation theory.

Section 3 defines the qq-Ehrhart series EP(t,q)\mathrm{E}_{P}(t,q), reviews Conjecture 1.1, and then examines several families of examples. It also incorporates symmetries of PP in an equivariant qq-Ehrhart series EPG(t,q)\mathrm{E}^{G}_{P}(t,q), and computes some highly symmetric examples, such as simplices and cross-polytopes.

Section 4 develops the proof of Theorem 1.4 on Minkowski sums, working over arbitrary fields.

Section 5 then uses Theorem 1.4 to define the harmonic algebra P{\mathcal{H}}_{P}, and states Conjecture 5.5, explaining its connection to Conjecture 1.1. It also studies the examples of order polytopes and chain polytopes of finite posets, mentioned earlier.

Section 6 examines the behavior of EP(t,q)\mathrm{E}_{P}(t,q) and P{\mathcal{H}}_{P} under the lattice polytope operations of dilation, Cartesian product, and joins. In particular, it proves Theorem 1.3.

Acknowledgements

The authors thank Ben Braun, Winfried Bruns, Sarah Faridi, Takayuki Hibi, Katharina Jochemko, Martina Juhnke-Kubitzke, Sophie Rehberg and Raman Sanyal for helpful conversations. They thank Ian Cavey for help in streamlining the proof of Theorem 1.4, and thank Christian Haase for pointing them to Balletti’s database [4]. They are especially grateful to Vadym Kurylenko for his computations appearing in Remark 3.6, equation (62) and ExtraData.pdf. Authors partially supported by NSF grants DMS-1745638 and DMS-2246846, respectively.

2. Background

2.1. Commutative algebra

Let 𝐤{\mathbf{k}} be a field, let n0n\geq 0, and let 𝐱=(x1,,xn)\mathbf{x}=(x_{1},\dots,x_{n}) be a list of nn variables. We write S:=𝐤[𝐱]=𝐤[x1,,xn]S:={\mathbf{k}}[\mathbf{x}]={\mathbf{k}}[x_{1},\dots,x_{n}] for the polynomial ring in x1,,xnx_{1},\dots,x_{n} over 𝐤{\mathbf{k}} with its standard grading induced by deg(xi)=1\deg(x_{i})=1 for all ii.

We will consider various graded 𝐤{\mathbf{k}}-subspaces and quotients of SS, as well as other rings. If V=i0ViV=\bigoplus_{i\geq 0}V_{i} is a graded 𝐤{\mathbf{k}}-vector space with each piece ViV_{i} finite-dimensional and qq is variable, the Hilbert series of VV is the formal power series

(18) Hilb(V,q):=i0dim𝐤(Vi)qi.\mathrm{Hilb}(V,q):=\sum_{i\geq 0}\dim_{\mathbf{k}}(V_{i})\cdot q^{i}.

More generally, if V=i,j0Vi,jV=\bigoplus_{i,j\geq 0}V_{i,j} is a bigraded vector space, the bigraded Hilbert series is

(19) Hilb(V,t,q):=i,j0dim𝐤(Vi,j)tiqj.\mathrm{Hilb}(V,t,q):=\sum_{i,j\geq 0}\dim_{\mathbf{k}}(V_{i,j})\cdot t^{i}q^{j}.

Given fSf\in S a nonzero polynomial, write τ(f)S\tau(f)\in S for the top degree homogeneous component of ff. That is, if f=fd++f1+f0f=f_{d}+\cdots+f_{1}+f_{0} with fif_{i} homogeneous of degree ii and fd0f_{d}\neq 0, we have τ(f)=fd\tau(f)=f_{d}. If ISI\subseteq S is an ideal, the associated graded ideal grIS{\mathrm{gr}}\,I\subseteq S is given by

(20) grI:=(τ(f):fI{0})S.{\mathrm{gr}}\,I:=(\tau(f)\,:\,f\in I\setminus\{0\})\subseteq S.

The ideal grIS{\mathrm{gr}}\,I\subseteq S is homogeneous by construction, so that S/grIS/{\mathrm{gr}}\,I is a graded ring. In fact, we wish to explain why it is isomorphic to the associated graded ring

(21) gr(S/I)=d=0Fd/Fd1=F0F1/F0F2/F1{\mathrm{gr}}_{\mathcal{F}}(S/I)=\bigoplus_{d=0}^{\infty}F_{d}/F_{d-1}=F_{0}\oplus F_{1}/F_{0}\oplus F_{2}/F_{1}\oplus\cdots

for the ascending filtration ={Fd}d=0,1,2,{\mathcal{F}}=\{F_{d}\}_{d=0,1,2,\ldots} on S/IS/I

(22) (𝐤=)F0F1F2S/I({\mathbf{k}}=)F_{0}\subseteq F_{1}\subseteq F_{2}\subseteq\cdots\subseteq S/I

where FdF_{d} is the image of the polynomials Sd:=S0S1SdS_{\leq d}:=S_{0}\oplus S_{1}\oplus\cdots\oplus S_{d} of degree at most dd under the surjection SS/IS\twoheadrightarrow S/I. Note that this filtration satisfies FiFjFi+jF_{i}\cdot F_{j}\subseteq F_{i+j}, so that the graded multiplication Fi/Fi1×Fj/Fj1Fi+j/Fi+j1F_{i}/F_{i-1}\times F_{j}/F_{j-1}\rightarrow F_{i+j}/F_{i+j-1} in gr(S/I){\mathrm{gr}}_{\mathcal{F}}(S/I) is well-defined.

Proposition 2.1.

Define a 𝐤{\mathbf{k}}-algebra map φ:S=𝐤[𝐱]gr(S/I)\varphi:S={\mathbf{k}}[\mathbf{x}]\longrightarrow{\mathrm{gr}}_{\mathcal{F}}(S/I) sending xix¯ix_{i}\mapsto\bar{x}_{i} in F1/F0F_{1}/F_{0}.

  • (i)

    The map φ\varphi is surjective, with kernel grI{\mathrm{gr}}\,I, inducing an {\mathbb{N}}-graded 𝐤{\mathbf{k}}-algebra isomorphism

    S/grIgr(S/I).S/{\mathrm{gr}}\,I\cong{\mathrm{gr}}_{\mathcal{F}}(S/I).
  • (ii)

    Consequently, any homogeneous polynomials {fj}jJ\{f_{j}\}_{j\in J} whose images {fj+grI}jJ\{f_{j}+{\mathrm{gr}}\,I\}_{j\in J} give a 𝐤{\mathbf{k}}-basis of S/grIS/{\mathrm{gr}}\,I will also have their images {fj+I}jJ\{f_{j}+I\}_{j\in J} giving a 𝐤{\mathbf{k}}-basis of S/IS/I.

  • (iii)

    In particular, whenever S/IS/I is Artinian, that is, dim𝐤S/I\dim_{\mathbf{k}}S/I is finite, one can view Hilb(S/grI,q)\mathrm{Hilb}(S/{\mathrm{gr}}\,I,q) as a qq-analogue of dim𝐤(S/I)\dim_{\mathbf{k}}(S/I) in this sense:

    [Hilb(S/grI,q)]q=1=dim𝐤(S/grI)=dim𝐤(S/I).\left[\mathrm{Hilb}(S/{\mathrm{gr}}\,I,q)\right]_{q=1}=\dim_{\mathbf{k}}(S/{\mathrm{gr}}\,I)=\dim_{\mathbf{k}}(S/I).
Proof.

For (i), the surjectivity of φ\varphi holds because SS is generated by x1,,xnx_{1},\ldots,x_{n}. Hence one has Sd=span𝐤{xi1xi}dS_{\leq d}=\mathrm{span}_{\mathbf{k}}\{x_{i_{1}}\cdots x_{i_{\ell}}\}_{\ell\leq d}, and therefore Fd=span𝐤{x¯i1x¯i}dF_{d}=\mathrm{span}_{\mathbf{k}}\{\bar{x}_{i_{1}}\cdots\bar{x}_{i_{\ell}}\}_{\ell\leq d}.

To show ker(φ)grI\ker(\varphi)\supseteq{\mathrm{gr}}\,I, we check τ(f)ker(φ)\tau(f)\in\ker(\varphi) for fIf\in I. If f=i=0dfif=\sum_{i=0}^{d}f_{i} and fd0f_{d}\neq 0, then

φ(τ(f))=fd(𝐱)¯i=0d1fi(𝐱)¯modI,\varphi(\tau(f))=\overline{f_{d}(\mathbf{x})}\equiv-\sum_{i=0}^{d-1}\overline{f_{i}(\mathbf{x})}\,\,\bmod{I},

so that φ(τ(f))=0\varphi(\tau(f))=0 in Fd/Fd1F_{d}/F_{d-1}.

To prove ker(φ)grI\ker(\varphi)\subseteq{\mathrm{gr}}\,I, it suffices to show every homogeneous ff in ker(φ)\ker(\varphi) lies in grI{\mathrm{gr}}\,I. If deg(f)=d\deg(f)=d, then fker(φ)f\in\ker(\varphi) implies f¯Fd1modI\bar{f}\in F_{d-1}\bmod{I}, say f=f+f′′f=f^{\prime}+f^{\prime\prime} with fSd1,f′′If^{\prime}\in S_{\leq d-1},f^{\prime\prime}\in I. But then f′′=fff^{\prime\prime}=f-f^{\prime} has τ(f′′)=f\tau(f^{\prime\prime})=f, so fgrIf\in{\mathrm{gr}}\,I.

For (ii), it suffices to check that for each m0m\geq 0, the set {fj+I:jJ,deg(fj)m}\{f_{j}+I:j\in J,\deg(f_{j})\leq m\} is a 𝐤{\mathbf{k}}-basis for Fm=im(SmSS/I)F_{m}=\mathrm{im}(S_{\leq m}\hookrightarrow S\twoheadrightarrow S/I). However, this follows by induction on mm, since our hypotheses imply that {fj+Fm1:jJ,deg(fj)=m}\{f_{j}+F_{m-1}:j\in J,\deg(f_{j})=m\} is a 𝐤{\mathbf{k}}-basis for Fm/Fm1F_{m}/F_{m-1}.

Assertion (iii) then follows immediately from (ii). ∎

We have another consequence in the case dim𝐤S/I=d<\dim_{\mathbf{k}}S/I=d<\infty: the quotient S/IS/I will be determined by the intersection Id1:=ISd1I_{\leq d-1}:=I\cap S_{\leq d-1} with the first summand in the 𝐤{\mathbf{k}}-vector space direct sum decomposition

(23) S=Sd1Sd where Sd:=m=dSm=(x1,,xn)d.S=S_{\leq d-1}\oplus S_{\geq d}\quad\text{ where }S_{\geq d}:=\bigoplus_{m=d}^{\infty}S_{m}=(x_{1},\ldots,x_{n})^{d}.
Lemma 2.2.

Assume the ideal IS=𝐤[𝐱]I\subseteq S={\mathbf{k}}[\mathbf{x}] has d:=dim𝐤S/Id:=\dim_{\mathbf{k}}S/I finite.

  • (i)

    The inclusion Sm/ImS/IS_{\leq m}/I_{\leq m}\hookrightarrow S/I is an isomorphism for all md1m\geq d-1.

  • (ii)

    The graded ring S/grIS/{\mathrm{gr}}\,I vanishes in degrees mdm\geq d, that is, (S/grI)d=0(S/{\mathrm{gr}}\,I)_{\geq d}=0.

Proof.

Recall that S/grIgr(S/I)=m=0Fm/Fm1S/{\mathrm{gr}}\,I\cong{\mathrm{gr}}_{\mathcal{F}}(S/I)=\bigoplus_{m=0}^{\infty}F_{m}/F_{m-1} for the filtration ={Fm}m=0,1,2,{\mathcal{F}}=\{F_{m}\}_{m=0,1,2,\ldots} on S/IS/I from (22), in which FmF_{m} is the image of the composite SmSS/IS_{\leq m}\hookrightarrow S\twoheadrightarrow S/I. The composite has kernel Im:=ISmI_{\leq m}:=I\cap S_{\leq m}, so Sm/ImFmS_{\leq m}/I_{\leq m}\cong F_{m}, and hence

(24) dim𝐤Sm/Im=dim𝐤Fm=dim𝐤(S/grI)m.\dim_{\mathbf{k}}S_{\leq m}/I_{\leq m}=\dim_{\mathbf{k}}F_{m}=\dim_{\mathbf{k}}(S/{\mathrm{gr}}\,I)_{\leq m}.

Note that since S/grIS/{\mathrm{gr}}\,I is a graded 𝐤{\mathbf{k}}-algebra generated in degree one, its nonzero graded components form an initial segment of degrees. Since dim𝐤S/grI=dim𝐤S/I=d\dim_{\mathbf{k}}S/{\mathrm{gr}}\,I=\dim_{\mathbf{k}}S/I=d, one concludes that dim𝐤(S/grI)m=d\dim_{\mathbf{k}}(S/{\mathrm{gr}}\,I)_{\leq m}=d for all md1m\geq d-1, and consequently, dim𝐤(S/grI)m=0\dim_{\mathbf{k}}(S/{\mathrm{gr}}\,I)_{m}=0 for all mdm\geq d, proving assertion (ii). For assertion (i), note (24) also shows that dim𝐤Sm/Im=d\dim_{\mathbf{k}}S_{\leq m}/I_{\leq m}=d for all md1m\geq d-1, and therefore the inclusion Sm/ImS/IS_{\leq m}/I_{\leq m}\hookrightarrow S/I must be an isomorphism. ∎

If ISI\subseteq S is an ideal with generating set I=(f1,,fs)I=(f_{1},\dots,f_{s}), we have (τ(f1),,τ(fs))grI(\tau(f_{1}),\dots,\tau(f_{s}))\subseteq{\mathrm{gr}}\,I, but this containment is strict in general. A finite generating set for grI{\mathrm{gr}}\,I may be computed using graded term orderings and Gröbner theory as follows; see Cox, Little, O’Shea [13] for more background.

Definition 2.3.

A total order \preceq on the monomials of SS is a term order if 1m1\preceq m for all monomials mm, and whenever m1m2m_{1}\preceq m_{2} one also has m1m3m2m3m_{1}m_{3}\preceq m_{2}m_{3} for all monomials m1,m2,m3m_{1},m_{2},m_{3}.

For \prec a term order and fS{0}f\in S\setminus\{0\}, write in(f)\mathrm{in}_{\prec}(f) for the \prec-largest monomial appearing in ff.

Example 2.4.

The lexicographical term order is defined by x1a1xnan<lexx1b1xnbnx_{1}^{a_{1}}\cdots x_{n}^{a_{n}}<_{lex}x_{1}^{b_{1}}\cdots x_{n}^{b_{n}} if there exists ii such that a1=b1,,ai1=bi1,a_{1}=b_{1},\dots,a_{i-1}=b_{i-1}, and ai<bia_{i}<b_{i}. The graded lex term order is defined by

xa<grlexxbx^{a}<_{grlex}x^{b} if degxa<degxb\deg x^{a}<\deg x^{b} or (degxa=degxb\deg x^{a}=\deg x^{b} and xa<lexxbx^{a}<_{lex}x^{b})

where a=(a1,,an),b=(b1,,bn)0na=(a_{1},\dots,a_{n}),b=(b_{1},\dots,b_{n})\in{\mathbb{Z}}_{\geq 0}^{n}.

A term order \preceq is graded if mmm\prec m^{\prime} whenever degm<degm\deg m<\deg m^{\prime}. Equivalently, \preceq is graded if and only if one has for all fS{0}f\in S\setminus\{0\} that

(25) in(f)=in(τ(f)).\mathrm{in}_{\prec}(f)=\mathrm{in}_{\prec}(\tau(f)).
Example 2.5.

Lexicographic order <lex<_{lex} is not graded for n2n\geq 2, but <grlex<_{grlex} is always graded.

Let ISI\subseteq S be an ideal and let \prec be a term order. The initial ideal of II is the monomial ideal

(26) in(I):=(in(f):fI{0})S.\mathrm{in}_{\prec}(I):=(\mathrm{in}_{\prec}(f)\,:\,f\in I\setminus\{0\})\subseteq S.
Definition 2.6.

A finite subset GIG\subseteq I is a Gröbner basis of II if in(I)=(in(g):gG)\mathrm{in}_{\prec}(I)=(\mathrm{in}_{\prec}(g)\,:\,g\in G). Equivalently, for every ff in II there exists some gg in GG with in(g)\mathrm{in}_{\prec}(g) dividing in(f)\mathrm{in}_{\prec}(f).

One can show that a Gröbner basis GG for II always generates II as an ideal. We also have the following useful 𝐤{\mathbf{k}}-basis for S/IS/I. Say that monomial mm in SS is a standard monomial of II (with respect to \prec) if min(I)m\notin\mathrm{in}_{\prec}(I). Equivalently, this means that in(g)\mathrm{in}_{\prec}(g) does not divide mm for all gGg\in G, where GG is a Gröbner basis of II with respect to \prec. Then the set

(27) {m+I:m a standard monomial of I}\ \{m+I\,:\,\text{$m$ a standard monomial of $I$}\}

is a 𝐤{\mathbf{k}}-basis of the quotient ring S/IS/I. It is uniquely determined by the term order \prec, and called the standard monomial basis of S/IS/I. The following can then be proven easily using (25).

Proposition 2.7.

Fix a graded term order \prec on SS. Then for any ideal ISI\subset S, a Gröbner basis GG for II (with respect to \prec) gives rise to a Gröbner basis with respect to \prec

τ(G):=(τ(g):gG)\tau(G):=(\tau(g)\,:\,g\in G)

for the homogeneous ideal grI{\mathrm{gr}}\,I. Consequently, τ(G)\tau(G) also generates grI{\mathrm{gr}}\,I as an ideal:

grI=(τ(g):gG){\mathrm{gr}}\,I=(\tau(g):g\in G)

Furthermore, I,grII,{\mathrm{gr}}\,I share the same set of standard monomials {\mathcal{B}} with respect to \prec, which descend to 𝐤{\mathbf{k}}-bases {m+I}m\{m+I\}_{m\in{\mathcal{B}}} and {m+grI}m\{m+{\mathrm{gr}}\,I\}_{m\in{\mathcal{B}}} for S/IS/I and S/grIS/{\mathrm{gr}}\,I, respectively.

Remark 2.8.

When I=𝐈(𝒵)I={\mathbf{I}}(\mathcal{Z}) is the vanishing ideal in S=𝐤[𝐱]S={\mathbf{k}}[\mathbf{x}] for a finite point set 𝒵𝐤n\mathcal{Z}\subseteq{\mathbf{k}}^{n}, Gundlach [26, Lem. 4] gives a very interesting alternate characterization of the \prec-standard monomials for 𝐈(𝒵){\mathbf{I}}(\mathcal{Z}). Let 𝐤[𝒵]{\mathbf{k}}[\mathcal{Z}] denote the 𝐤{\mathbf{k}}-vector space of all functions f:𝒵𝐤f:\mathcal{Z}\rightarrow{\mathbf{k}}, with pointwise addition and 𝐤{\mathbf{k}}-scaling. Endow 𝐤𝒵{\mathbf{k}}^{\mathcal{Z}} with a nondegenerate 𝐤{\mathbf{k}}-bilinear form (,):𝐤[𝒵]×𝐤[𝒵]𝐤(-,-):{\mathbf{k}}[\mathcal{Z}]\times{\mathbf{k}}[\mathcal{Z}]\rightarrow{\mathbf{k}} given by

(f1,f2):=𝐳𝒵f1(z)f2(z).(f_{1},f_{2}):=\sum_{\mathbf{z}\in\mathcal{Z}}f_{1}(z)f_{2}(z).

Let UU^{\perp} denote perp with respect to (,)(-,-) for 𝐤{\mathbf{k}}-subspaces U𝐤𝒵U\subseteq{\mathbf{k}}^{\mathcal{Z}}. Nondegeneracy of (,)(-,-) implies U1U2U1U2U_{1}\subsetneq U_{2}\Leftrightarrow U_{1}^{\perp}\supsetneq U_{2}^{\perp}. By multivariate Lagrange interpolation, the map S𝐤[𝒵]S\rightarrow{\mathbf{k}}[\mathcal{Z}] restricting polynomials f(𝐱)f(\mathbf{x}) to functions f¯\bar{f} on 𝒵\mathcal{Z} is surjective. Since its kernel is 𝐈(𝒵){\mathbf{I}}(\mathcal{Z}), it gives a 𝐤{\mathbf{k}}-vector space isomorphism S/𝐈(𝒵)𝐤[𝒵]S/{\mathbf{I}}(\mathcal{Z})\rightarrow{\mathbf{k}}[\mathcal{Z}]. This implies, that for any f𝐤[𝒵]{0}f\in{\mathbf{k}}[\mathcal{Z}]\setminus\{0\}, there must exist some monomials mm in SS for which (f,m¯)0(f,\bar{m})\neq 0. Consequently, having fixed the monomial order \prec, for each f𝐤[𝒵]{0}f\in{\mathbf{k}}[\mathcal{Z}]\setminus\{0\}, there will be a \prec-smallest such monomial associated to ff, since \prec is a well-ordering:

sm(f):=min{ monomials mS:(f,m¯)0𝐤}.\mathrm{sm}_{\prec}(f):=\min_{\prec}\{\text{ monomials }m\in S:(f,\bar{m})\neq 0\in{\mathbf{k}}\,\,\}.
Proposition 2.9.

[26, Lem.4] For any finite subset 𝒵𝐤n\mathcal{Z}\subset{\mathbf{k}}^{n}, and for any choice of monomial order \prec on S=𝐤[𝐱]S={\mathbf{k}}[\mathbf{x}], one has this equality of sets:

{-standard monomials for 𝐈(𝒵)}={sm(f):f𝐤[𝒵]{0}}.\{\prec\text{-standard monomials for }{\mathbf{I}}(\mathcal{Z})\}=\{\mathrm{sm}_{\prec}(f):f\in{\mathbf{k}}[\mathcal{Z}]\setminus\{0\}\}.
Proof.

For any monomial mm in SS one has the following:

m is -standard for 𝐈(𝒵)\displaystyle m\text{ is }\prec\text{-standard for }{\mathbf{I}}(\mathcal{Z}) g𝐈(𝒵) with in(g) dividing m\displaystyle\quad\Leftrightarrow\quad\not\exists\,\,g\in{\mathbf{I}}(\mathcal{Z})\text{ with }\mathrm{in}_{\prec}(g)\text{ dividing }m
g^𝐈(𝒵) with in(g^)=m\displaystyle\quad\Leftrightarrow\quad\not\exists\,\,\hat{g}\in{\mathbf{I}}(\mathcal{Z})\text{ with }\mathrm{in}_{\prec}(\hat{g})=m
g^𝐈(𝒵) of the form g^=m+m:mmcmm with cm𝐤\displaystyle\quad\Leftrightarrow\quad\not\exists\,\,\hat{g}\in{\mathbf{I}}(\mathcal{Z})\text{ of the form }\hat{g}=m+\sum_{m^{\prime}:m^{\prime}\prec m}c_{m^{\prime}}m^{\prime}\text{ with }c_{m^{\prime}}\in{\mathbf{k}}
m¯span𝐤{m¯:mm} inside S/𝐈(𝒵)=𝐤[𝒵].\displaystyle\quad\Leftrightarrow\quad\bar{m}\not\in\mathrm{span}_{\mathbf{k}}\{\bar{m}^{\prime}:m^{\prime}\prec m\}\text{ inside }S/{\mathbf{I}}(\mathcal{Z})={\mathbf{k}}[\mathcal{Z}].
span𝐤{m¯:mm}span𝐤({m¯}{m¯:mm})\displaystyle\quad\Leftrightarrow\quad\mathrm{span}_{\mathbf{k}}\{\bar{m}^{\prime}:m^{\prime}\prec m\}\subsetneq\mathrm{span}_{\mathbf{k}}\left(\{\bar{m}\}\cup\{\bar{m}^{\prime}:m^{\prime}\prec m\}\right)
span𝐤{m¯:mm}span𝐤({m¯}{m¯:mm})\displaystyle\quad\Leftrightarrow\quad\mathrm{span}_{\mathbf{k}}\{\bar{m}^{\prime}:m^{\prime}\prec m\}^{\perp}\supsetneq\mathrm{span}_{\mathbf{k}}\left(\{\bar{m}\}\cup\{\bar{m}^{\prime}:m^{\prime}\prec m\}\right)^{\perp}
fspan𝐤{m¯:mm}span𝐤({m¯}{m¯:mm})\displaystyle\quad\Leftrightarrow\quad\exists f\in\mathrm{span}_{\mathbf{k}}\{\bar{m}^{\prime}:m^{\prime}\prec m\}^{\perp}\setminus\mathrm{span}_{\mathbf{k}}\left(\{\bar{m}\}\cup\{\bar{m}^{\prime}:m^{\prime}\prec m\}\right)^{\perp}
f𝐤[𝒵]{0} with sm(f)=m.\displaystyle\quad\Leftrightarrow\quad\exists f\in{\mathbf{k}}[\mathcal{Z}]\setminus\{0\}\text{ with }\mathrm{sm}(f)=m.\qed

2.2. Homogeneous harmonics in characteristic zero

A good reference for much of this material is Geramita [23, §2]. Let 𝐤{\mathbf{k}} be a field of characteristic zero. We wish to set up two polynomial rings over 𝐤{\mathbf{k}}, one of which acts on the other by partial derivatives. Let 𝐤n{\mathbf{k}}^{n} and its 𝐤{\mathbf{k}}-dual (𝐤n)({\mathbf{k}}^{n})^{*} have dual ordered 𝐤{\mathbf{k}}-bases (y1,,yn)(y_{1},\ldots,y_{n}) and (x1,,xn)(x_{1},\ldots,x_{n}) with respect to the usual 𝐤{\mathbf{k}}-bilinear pairing of functionals and vectors

(28) ,:(𝐤n)×𝐤n𝐤\langle-,-\rangle:({\mathbf{k}}^{n})^{*}\times{\mathbf{k}}^{n}\rightarrow{\mathbf{k}}

so that xi,yj=δij\langle x_{i},y_{j}\rangle=\delta_{ij}. If one considers the polynomial algebras

S\displaystyle S :=𝐤[𝐱]=𝐤[x1,,xn],\displaystyle:={\mathbf{k}}[\mathbf{x}]={\mathbf{k}}[x_{1},\ldots,x_{n}],
𝔻\displaystyle\mathbb{D} :=𝐤[𝐲]=𝐤[y1,,yn]\displaystyle:={\mathbf{k}}[\mathbf{y}]={\mathbf{k}}[y_{1},\ldots,y_{n}]

then one can extend this to a 𝔻\mathbb{D}-valued pairing

(29) :S×𝔻𝔻\odot:S\times\mathbb{D}\rightarrow\mathbb{D}

by requiring that each xix_{i} act on 𝔻\mathbb{D} as a derivation. That is, xix_{i} acts as yi:𝔻𝔻\frac{\partial}{\partial y_{i}}:\mathbb{D}\rightarrow\mathbb{D}, and for polynomials f(𝐱),g(𝐲)f(\mathbf{x}),g(\mathbf{y}), one has

f(𝐱)g(𝐲):=f(y1,,yn)g(𝐲).f(\mathbf{x})\odot g(\mathbf{y}):=f\left(\frac{\partial}{\partial y_{1}},\ldots,\frac{\partial}{\partial y_{n}}\right)g(\mathbf{y}).

In this way, one obtains an SS-module structure on 𝔻\mathbb{D}. This SS-module structure on 𝔻\mathbb{D} is degree-lowering for the usual gradings on S,𝔻S,\mathbb{D} in which deg(xi)=deg(yj)=1\deg(x_{i})=\deg(y_{j})=1, in the sense that it restricts to a map :Sm×𝔻m𝔻mm.\odot:S_{m}\times\mathbb{D}_{m^{\prime}}\rightarrow\mathbb{D}_{m^{\prime}-m}. This lets one extend the pairing ,\langle-,-\rangle from (28) to a 𝐤{\mathbf{k}}-bilinear pairing ,:S×𝔻𝐤\langle-,-\rangle:S\times\mathbb{D}\rightarrow{\mathbf{k}} defined by

(30) f(𝐱),g(𝐲):=the constant term of fg\langle f(\mathbf{x}),g(\mathbf{y})\rangle:=\text{the constant term of $f\odot g$}

Employing an exponential notation for monomials 𝐱𝐚:=x1a1xnan\mathbf{x}^{\mathbf{a}}:=x_{1}^{a_{1}}\cdots x_{n}^{a_{n}} in SS, where 𝐚=(a1,,an)\mathbf{a}=(a_{1},\ldots,a_{n}) lies in {0,1,2,}n\{0,1,2,\ldots\}^{n}, and similarly for monomials 𝐲𝐛\mathbf{y}^{\mathbf{b}} in 𝔻\mathbb{D}, one can check that

𝐱𝐚𝐲𝐛={i=1nbi!(biai)!𝐲𝐛𝐚 if aibi for i=1,,n,0 otherwise.\mathbf{x}^{\mathbf{a}}\odot\mathbf{y}^{\mathbf{b}}=\begin{cases}\prod_{i=1}^{n}\frac{b_{i}!}{(b_{i}-a_{i})!}\cdot\mathbf{y}^{\mathbf{b}-\mathbf{a}}&\text{ if }a_{i}\leq b_{i}\text{ for }i=1,\ldots,n,\\ 0&\text{ otherwise.}\end{cases}

One sees that ,\langle-,-\rangle pairs orthonormally the 𝐤{\mathbf{k}}-dual bases {𝐱𝐚} and {𝐲𝐚a1!an!},\{\mathbf{x}^{\mathbf{a}}\}\text{ and }\left\{\frac{\mathbf{y}^{\mathbf{a}}}{a_{1}!\cdots a_{n}!}\right\}, and hence restricts to a perfect 𝐤{\mathbf{k}}-linear pairing on the (finite-dimensional!) spaces

,:\displaystyle\langle-,-\rangle: Sm×𝔻m𝐤\displaystyle S_{m}\times\mathbb{D}_{m}\longrightarrow{\mathbf{k}}
,:\displaystyle\langle-,-\rangle: Sm×𝔻m𝐤.\displaystyle S_{\leq m}\times\mathbb{D}_{\leq m}\longrightarrow{\mathbf{k}}.

Note that SmS_{m} and 𝔻m\mathbb{D}_{m^{\prime}} are perpendicular with respect to the pairing ,\langle-,-\rangle whenever mmm\neq m^{\prime}.

Definition 2.10.

For any homogeneous ideal IS=𝐤[𝐱]I\subseteq S={\mathbf{k}}[\mathbf{x}], the harmonic space (or Macaulay inverse system) I𝔻=𝐤[𝐲]I^{\perp}\subseteq\mathbb{D}={\mathbf{k}}[\mathbf{y}] is the graded vector space

(31) I\displaystyle I^{\perp} :={g(𝐲)𝔻:f(𝐱),g(𝐲)=0 for all fI}\displaystyle:=\{g(\mathbf{y})\in\mathbb{D}\,:\,\langle f(\mathbf{x}),g(\mathbf{y})\rangle=0\text{ for all $f\in I$}\}
(32) ={g(𝐲)𝔻:f(𝐱)g(𝐲)=0 for all fI}.\displaystyle=\{g(\mathbf{y})\in\mathbb{D}\,:\,f(\mathbf{x})\odot g(\mathbf{y})=0\text{ for all $f\in I$}\}.

The equality of the two sets on the right in (31), (32) is justified as follows. If fg=0f\odot g=0 then f,g=0\langle f,g\rangle=0, showing the set from (32) is contained in the set from (31). For the reverse inclusion, note that if f(𝐱)g(𝐲)0f(\mathbf{x})\odot g(\mathbf{y})\neq 0 for some f(𝐱)f(\mathbf{x}) in II, say f(𝐱)g(𝐲)=𝐚c𝐚𝐲𝐚f(\mathbf{x})\odot g(\mathbf{y})=\sum_{\mathbf{a}}c_{\mathbf{a}}\mathbf{y}^{\mathbf{a}} with some c𝐚0c_{\mathbf{a}}\neq 0, then the ideal II contains 𝐱𝐚f(𝐱)\mathbf{x}^{\mathbf{a}}f(\mathbf{x}) with 𝐱𝐚f(𝐱),g(𝐲)=c𝐚iai!0\langle\mathbf{x}^{\mathbf{a}}f(\mathbf{x}),g(\mathbf{y})\rangle=c_{\mathbf{a}}\prod_{i}a_{i}!\neq 0.

Note that in each degree mm, the perfect pairing ,:Sm×𝔻m𝐤\langle-,-\rangle:S_{m}\times\mathbb{D}_{m}\rightarrow{\mathbf{k}} gives a 𝐤{\mathbf{k}}-vector space isomorphism 𝔻mSm\mathbb{D}_{m}\rightarrow S_{m}^{*} sending g(𝐲),gg(\mathbf{y})\mapsto\langle-,g\rangle. This induces a 𝐤{\mathbf{k}}-vector space isomorphism

(33) Im(Sm/Im),I^{\perp}_{m}\rightarrow(S_{m}/I_{m})^{*},

showing that dim𝐤I=dim𝐤(Sm/Im)\dim_{\mathbf{k}}I^{\perp}=\dim_{\mathbf{k}}(S_{m}/I_{m})^{*}. Hence as graded 𝐤{\mathbf{k}}-vector spaces one has

(34) Hilb(I,q)=Hilb(S/I,q).\mathrm{Hilb}(I^{\perp},q)=\mathrm{Hilb}(S/I,q).

2.3. Homogeneous harmonics for all fields: divided powers

In order to define harmonic spaces over arbitrary fields, as needed in Theorem 1.4, we will need to replace 𝔻=𝐤[𝐲]\mathbb{D}={\mathbf{k}}[\mathbf{y}] with a divided power algebra over a field 𝐤{\mathbf{k}}. We therefore review divided power algebras here; a reader who is content with seeing Theorem 1.4 stated and/or proven only in characteristic zero can mostly skip this section. Useful references for this material are Eisenbud [16, A2.4] and Geramita [23, §9].

Definition 2.11.

Let 𝐤{\mathbf{k}} be any field. For n=0,1,2,n=0,1,2,\ldots, let 𝐲=(y1,,yn)\mathbf{y}=(y_{1},\dots,y_{n}) be a list of nn variables, thought of as the 𝐤{\mathbf{k}}-basis for 𝐤n{\mathbf{k}}^{n}. Then the divided power algebra of rank nn over 𝐤{\mathbf{k}} is defined as a 𝐤{\mathbf{k}}-vector space 𝔻𝐤(𝐲)\mathbb{D}_{\mathbf{k}}(\mathbf{y}) with “monomial” 𝐤{\mathbf{k}}-basis given by the symbols 𝐲(𝐚):=y1(a1)yn(an)\mathbf{y}^{(\mathbf{a})}:=y_{1}^{(a_{1})}\cdots y_{n}^{(a_{n})} for 𝐚=(a1,,an){0,1,2,}n\mathbf{a}=(a_{1},\dots,a_{n})\in\{0,1,2,\ldots\}^{n}. One can then define a multiplication on 𝔻𝐤(𝐲)\mathbb{D}_{\mathbf{k}}(\mathbf{y}) which is 𝐤{\mathbf{k}}-bilinear and determined on monomials by the rule

(35) 𝐲(𝐚)𝐲(𝐛)=(y1(a1)yn(an))(y1(b1)yn(bn)):=(a1+b1a1,b1)(an+bnan,bn)y1(a1+b1)yn(an+bn)\mathbf{y}^{(\mathbf{a})}\cdot\mathbf{y}^{(\mathbf{b})}=(y_{1}^{(a_{1})}\cdots y_{n}^{(a_{n})})\cdot(y_{1}^{(b_{1})}\cdots y_{n}^{(b_{n})}):={a_{1}+b_{1}\choose a_{1},b_{1}}\cdots{a_{n}+b_{n}\choose a_{n},b_{n}}y_{1}^{(a_{1}+b_{1})}\cdots y_{n}^{(a_{n}+b_{n})}

where the binomial coefficients (ai+biai,bi){a_{i}+b_{i}\choose a_{i},b_{i}} are regarded as elements of 𝐤{\mathbf{k}} in the natural way; some will vanish when 𝐤{\mathbf{k}} has positive characteristic. This makes 𝔻𝐤(𝐲)\mathbb{D}_{\mathbf{k}}(\mathbf{y}) an associative, commutative 𝐤{\mathbf{k}}-algebra with unit 1=y1(0)yn(0)1=y_{1}^{(0)}\cdots y_{n}^{(0)}. It has a grading 𝔻𝐤(𝐲)=m0𝔻𝐤(𝐲)m\mathbb{D}_{\mathbf{k}}(\mathbf{y})=\bigoplus_{m\geq 0}\mathbb{D}_{\mathbf{k}}(\mathbf{y})_{m} where 𝔻𝐤(𝐲)m\mathbb{D}_{\mathbf{k}}(\mathbf{y})_{m} has 𝐤{\mathbf{k}}-basis {𝐲(𝐚):a1++an=m}\{\mathbf{y}^{(\mathbf{a})}\,:\,a_{1}+\cdots+a_{n}=m\}.

Roughly speaking, the symbol yi(d)𝔻𝐤(𝐲)y_{i}^{(d)}\in\mathbb{D}_{\mathbf{k}}(\mathbf{y}) plays the role of ``yid/d!"``y_{i}^{d}/d!", even when d!=0d!=0 in 𝐤{\mathbf{k}}. When 𝐤{\mathbf{k}} has characteristic zero, the 𝐤{\mathbf{k}}-vector space isomorphism 𝔻𝐤(𝐲)𝐤[𝐲]\mathbb{D}_{\mathbf{k}}(\mathbf{y})\cong{\mathbf{k}}[\mathbf{y}] given by

𝔻𝐤(𝐲)𝐤[𝐲]𝐲(𝐚)=y1(a1)y2(a2)yn(an)y1a1y2a2ynana1!a2!an!\begin{array}[]{rcl}\mathbb{D}_{\mathbf{k}}(\mathbf{y})&\longrightarrow&{\mathbf{k}}[\mathbf{y}]\\ \mathbf{y}^{(\mathbf{a})}=y_{1}^{(a_{1})}y_{2}^{(a_{2})}\cdots y_{n}^{(a_{n})}&\longmapsto&\frac{y_{1}^{a_{1}}y_{2}^{a_{2}}\cdots y_{n}^{a_{n}}}{a_{1}!a_{2}!\cdots a_{n}!}\end{array}

is a ring isomorphism. In fact, with conventions yi(0):=1y_{i}^{(0)}:=1 and yi(1):=yiy_{i}^{(1)}:=y_{i}, the set map yiyi(d)y_{i}\mapsto y_{i}^{(d)} for i=1,2,,ni=1,2,\ldots,n extends to what is called a system of divided powers on 𝔻𝐤(𝐲)\mathbb{D}_{\mathbf{k}}(\mathbf{y}): a collection of maps for d=0,1,2,d=0,1,2,\ldots

𝔻𝐤(𝐲)m𝔻𝐤(𝐲)dmaa(d)\begin{array}[]{rcl}\mathbb{D}_{\mathbf{k}}(\mathbf{y})_{m}&\longrightarrow&\mathbb{D}_{\mathbf{k}}(\mathbf{y})_{dm}\\ a&\longmapsto&a^{(d)}\end{array}

satisfying these axioms (modeled on properties of the maps aadd!a\mapsto\frac{a^{d}}{d!} that exist whenever 𝐤{\mathbf{k}}\supseteq{\mathbb{Q}}):

(36) a(0)\displaystyle a^{(0)} =1,a(1)=z\displaystyle=1,a^{(1)}=z
(37) a(d)a(e)\displaystyle a^{(d)}a^{(e)} =(d+ed,e)a(d+e)\displaystyle=\binom{d+e}{d,e}a^{(d+e)}
(38) (a(d))(e)\displaystyle\left(a^{(d)}\right)^{(e)} =1e!(ded,d,,d)a(de)\displaystyle=\frac{1}{e!}\binom{de}{d,d,\ldots,d}a^{(de)}
(39) (ab)(d)\displaystyle(ab)^{(d)} =d!a(d)b(d)\displaystyle=d!\cdot a^{(d)}b^{(d)}
(40) (a+b)(d)\displaystyle(a+b)^{(d)} =(d1,d2):d1+d2=da(d1)b(d2)\displaystyle=\sum_{\begin{subarray}{c}(d_{1},d_{2}):\\ d_{1}+d_{2}=d\end{subarray}}a^{(d_{1})}b^{(d_{2})}

For example, the reader might wish to check that iterating (37) implies ad=(a(1))d=d!a(d)a^{d}=(a^{(1)})^{d}=d!\cdot a^{(d)}, so that one has no choice but to define a(d)=ad/d!a^{(d)}=a^{d}/d! whenever d!𝐤×d!\in{\mathbf{k}}^{\times}. Similarly, if one iterates (40), which Eisenbud [16, A2.4] calls the “beginner’s binomial theorem”, one obtains the “beginner’s multinomial theorem”:

(41) (a1++am)(d)=(d1,,dm):d1++dm=da1(d1)am(dm).(a_{1}+\cdots+a_{m})^{(d)}=\sum_{\begin{subarray}{c}(d_{1},\ldots,d_{m}):\\ d_{1}+\cdots+d_{m}=d\end{subarray}}a_{1}^{(d_{1})}\cdots a_{m}^{(d_{m})}.

It is also not hard to check that one has a graded 𝐤{\mathbf{k}}-algebra isomorphism

(42) 𝔻𝐤(𝐲)𝔻𝐤(y1)𝐤𝐤𝔻𝐤(yn).\mathbb{D}_{\mathbf{k}}(\mathbf{y})\cong\mathbb{D}_{\mathbf{k}}(y_{1})\otimes_{\mathbf{k}}\cdots\otimes_{\mathbf{k}}\mathbb{D}_{\mathbf{k}}(y_{n}).

For the sake of defining harmonics and inverse systems, let S:=𝐤[𝐱]=𝐤[x1,,xn]S:={\mathbf{k}}[\mathbf{x}]={\mathbf{k}}[x_{1},\dots,x_{n}] as before. The algebra 𝔻𝐤(𝐲)\mathbb{D}_{\mathbf{k}}(\mathbf{y}) attains a unique SS-module structure :S×𝔻𝐤(𝐲)𝔻𝐤(𝐲)\odot:S\times\mathbb{D}_{\mathbf{k}}(\mathbf{y})\rightarrow\mathbb{D}_{\mathbf{k}}(\mathbf{y}) by having xix_{i} act on 𝔻𝐤(𝐲)\mathbb{D}_{\mathbf{k}}(\mathbf{y}) as a derivation, extending the rule

(43) xiyj(k)={yi(k1) if i=j and k1,0otherwise.x_{i}\odot y_{j}^{(k)}=\begin{cases}y_{i}^{(k-1)}&\text{ if }i=j\text{ and }k\geq 1,\\ 0&\text{otherwise.}\end{cases}

This gives rise to a 𝐤{\mathbf{k}}-bilinear pairing ,:S×𝔻𝐤(𝐲)R\langle-,-\rangle:S\times\mathbb{D}_{\mathbf{k}}(\mathbf{y})\rightarrow R given by

(44) f,g:= the constant term of fg\langle f,g\rangle:=\text{ the constant term of $f\odot g$}

under which

(45) 𝐱𝐚,𝐲(𝐛)=x1a1xnan,y1(b1)yn(bn)={1if ai=bi for all i,0otherwise.\langle\mathbf{x}^{\mathbf{a}},\mathbf{y}^{(\mathbf{b})}\rangle=\langle x_{1}^{a_{1}}\cdots x_{n}^{a_{n}},y_{1}^{(b_{1})}\cdots y_{n}^{(b_{n})}\rangle=\begin{cases}1&\text{if $a_{i}=b_{i}$ for all $i$,}\\ 0&\text{otherwise.}\end{cases}

In particular, the 𝐤{\mathbf{k}}-bilinear pairing ,:S×𝔻𝐤(𝐲)𝐤\langle-,-\rangle:S\times\mathbb{D}_{\mathbf{k}}(\mathbf{y})\rightarrow{\mathbf{k}} generalizes the one from (86) when 𝐤{\mathbf{k}}\supseteq{\mathbb{Q}}. It again leads to perfect 𝐤{\mathbf{k}}-bilinear pairings on these finite-dimensional spaces:

,:\displaystyle\langle-,-\rangle: Sm×𝔻𝐤(𝐲)m𝐤\displaystyle S_{m}\times\mathbb{D}_{\mathbf{k}}(\mathbf{y})_{m}\longrightarrow{\mathbf{k}}
,:\displaystyle\langle-,-\rangle: Sm×𝔻𝐤(𝐲)m𝐤.\displaystyle S_{\leq m}\times\mathbb{D}_{\mathbf{k}}(\mathbf{y})_{\leq m}\longrightarrow{\mathbf{k}}.

This leads to the following generalization of Definition 2.10.

Definition 2.12.

For 𝐤{\mathbf{k}} any field and any homogeneous ideal IS=𝐤[𝐱]I\subseteq S={\mathbf{k}}[\mathbf{x}], the harmonic space (or Macaulay inverse system) I𝔻𝐤(𝐲)I^{\perp}\subseteq\mathbb{D}_{\mathbf{k}}(\mathbf{y}) is the graded 𝐤{\mathbf{k}}-vector space

I\displaystyle I^{\perp} :={g(𝐲)𝔻𝐤(𝐲):f(𝐱),g(𝐲)=0 for all fI}\displaystyle:=\{g(\mathbf{y})\in\mathbb{D}_{\mathbf{k}}(\mathbf{y})\,:\,\langle f(\mathbf{x}),g(\mathbf{y})\rangle=0\text{ for all $f\in I$}\}
={g(𝐲)𝔻𝐤(𝐲):f(𝐱)g(𝐲)=0 for all fI}.\displaystyle=\{g(\mathbf{y})\in\mathbb{D}_{\mathbf{k}}(\mathbf{y})\,:\,f(\mathbf{x})\odot g(\mathbf{y})=0\text{ for all $f\in I$}\}.

Note that, as before, the perfect pairing ,:Sm×𝔻𝐤(𝐲)m𝐤\langle-,-\rangle:S_{m}\times\mathbb{D}_{\mathbf{k}}(\mathbf{y})_{m}\rightarrow{\mathbf{k}} gives a 𝐤{\mathbf{k}}-linear isomorphism 𝔻𝐤(𝐲)mSm\mathbb{D}_{\mathbf{k}}(\mathbf{y})_{m}\rightarrow S_{m}^{*} sending g(𝐲),gg(\mathbf{y})\mapsto\langle-,g\rangle. As in (33), this induces a 𝐤{\mathbf{k}}-linear isomorphism

(46) Im(Sm/Im),I^{\perp}_{m}\rightarrow(S_{m}/I_{m})^{*},

showing dim𝐤I=dim𝐤(Sm/Im)\dim_{\mathbf{k}}I^{\perp}=\dim_{\mathbf{k}}(S_{m}/I_{m})^{*}. Hence one has this generalization of (34):

(47) Hilb(I,q)=Hilb(S/I,q).\mathrm{Hilb}(I^{\perp},q)=\mathrm{Hilb}(S/I,q).

2.4. Symmetry

The natural action of GLn(𝐤)GL_{n}({\mathbf{k}}) on 𝐤n{\mathbf{k}}^{n} and a given basis y1,,yny_{1},\ldots,y_{n} induces a left-action on the polynomials 𝔻=𝐤[y1,,yn]\mathbb{D}={\mathbf{k}}[y_{1},\dots,y_{n}] by linear substitutions. The contragredient action on (𝐤n)({\mathbf{k}}^{n})^{*} precomposes functionals with h1h^{-1}, that is, sending h:ffh1h:f\mapsto f\circ h^{-1}, thereby acting on x1,,xnx_{1},\ldots,x_{n}, as well as on the polynomials S=𝐤[x1,,xn]S={\mathbf{k}}[x_{1},\ldots,x_{n}]. Explicitly, if hh in GLn(𝐤)GL_{n}({\mathbf{k}}) acts in the basis y1,,yny_{1},\ldots,y_{n} via the matrix AA in 𝐤n×n{\mathbf{k}}^{n\times n}, then

h\displaystyle h :g(𝐲)g(A𝐲),\displaystyle:g(\mathbf{y})\longmapsto g(A\mathbf{y}),
h\displaystyle h :f(𝐱)f((A1)t𝐱).\displaystyle:f(\mathbf{x})\longmapsto f((A^{-1})^{t}\mathbf{x}).

Note that the pairing ,:(𝐤n)×𝐤n𝐤\langle-,-\rangle:({\mathbf{k}}^{n})^{*}\times{\mathbf{k}}^{n}\rightarrow{\mathbf{k}} between functionals and vectors in (28) satisfies a certain invariance with respect to these GLn(𝐤)GL_{n}({\mathbf{k}})-actions: for any linear functional ff in (𝐤n)({\mathbf{k}}^{n})^{*}, vector yy in 𝐤n{\mathbf{k}}^{n}, and hh in GLn(k)GL_{n}(k), one has

h(f),h(y)=(fh1)(h(y))=f(y)=f,y.\langle h(f),h(y)\rangle=(f\circ h^{-1})(h(y))=f(y)=\langle f,y\rangle.

Consequently, the pairings \odot and ,\langle-,-\rangle are similarly invariant with respect to the GLn(𝐤)GL_{n}({\mathbf{k}})-action:

(48) h(f(𝐱))h(g(𝐲))\displaystyle h(f(\mathbf{x}))\odot h(g(\mathbf{y})) =f(𝐱)g(𝐲),\displaystyle=f(\mathbf{x})\odot g(\mathbf{y}),
(49) h(f(𝐱)),h(g(𝐲))\displaystyle\langle h(f(\mathbf{x})),h(g(\mathbf{y}))\rangle =f(𝐱),g(𝐲).\displaystyle=\langle f(\mathbf{x}),g(\mathbf{y})\rangle.
Remark 2.13.

For arbitrary fields 𝐤{\mathbf{k}} when one replaces the polynomial algebra 𝔻=𝐤[𝐲]\mathbb{D}={\mathbf{k}}[\mathbf{y}] with the divided power algebra 𝔻𝐤(𝐲)\mathbb{D}_{\mathbf{k}}(\mathbf{y}), it is still true the GLn(𝐤)GL_{n}({\mathbf{k}})-action on 𝐤n=𝔻𝐤(𝐲)1{\mathbf{k}}^{n}=\mathbb{D}_{\mathbf{k}}(\mathbf{y})_{1} extends to an action via graded 𝐤{\mathbf{k}}-algebra automorphisms on all of 𝔻𝐤(𝐲)\mathbb{D}_{\mathbf{k}}(\mathbf{y}). This fact is more apparent when one constructs multiplication in 𝔻𝐤(𝐲)\mathbb{D}_{\mathbf{k}}(\mathbf{y}) as the (graded) dual of the coalgebra structure Δ:SSS\Delta:S\rightarrow S\otimes S on S=𝐤[𝐱]S={\mathbf{k}}[\mathbf{x}] in which Δ(xi)=1xi+xi1\Delta(x_{i})=1\otimes x_{i}+x_{i}\otimes 1, that is, each xS1=(𝐤n)x\in S_{1}=({\mathbf{k}}^{n})^{*} is primitive. See Akin, Buchsbaum and Weyman [2, §I.4], Eisenbud [16, A2.4], Geramita [23, §9] for more on this alternate construction of 𝔻𝐤(𝐲)\mathbb{D}_{\mathbf{k}}(\mathbf{y}).

A consequence of the GLn(𝐤)GL_{n}({\mathbf{k}})-invariance (49) is that the isomorphisms (33), (46) become GLn(𝐤)GL_{n}({\mathbf{k}})-equivariant. This shows that for each mm, one has isomorphisms Im(S/I)I^{\perp}_{m}\cong(S/I)^{*} as GLn(𝐤)GL_{n}({\mathbf{k}})-representations. The same holds for the action of any subgroup GGLn(𝐤)G\subseteq GL_{n}({\mathbf{k}}) on S,𝔻S,\mathbb{D} by restriction.

2.5. Representation theory

We will be interested in polytopes and point loci in n{\mathbb{R}}^{n} with symmetry, and wish to keep track of the representations of their symmetry groups on the various 𝐤{\mathbf{k}}-vector spaces that we construct. We review one way to do such bookkeeping, using the language of 𝐤[G]{\mathbf{k}}[G]-modules and representation rings.

Definition 2.14.

For a field 𝐤{\mathbf{k}} and finite group GG, define its representation ring Rep𝐤(G)\mathrm{Rep}_{\mathbf{k}}(G) as follows.

  • As a {\mathbb{Z}}-module, Rep𝐤(G)\mathrm{Rep}_{\mathbf{k}}(G) is the quotient of free {\mathbb{Z}}-module with {\mathbb{Z}}-basis elements [V][V] indexed by all isomorphism classes finite-dimensional 𝐤[G]{\mathbf{k}}[G]-modules VV, in which one mods out by the submodule {\mathbb{Z}}-spanned by all relations

    (50) [VV]([V]+[V]).[V\oplus V^{\prime}]-([V]+[V^{\prime}]).
  • As a {\mathbb{Z}}-algebra, its multiplication is induced by the rule

    [V][V]:=[VV].[V]\cdot[V^{\prime}]:=[V\otimes V^{\prime}].
  • The operation VVV\mapsto V^{*} of taking the contragredient 𝐤[G]{\mathbf{k}}[G]-module leads to a {\mathbb{Z}}-automorphism and involution on ():Rep𝐤(G)Rep𝐤(G)(-)^{*}:\mathrm{Rep}_{\mathbf{k}}(G)\rightarrow\mathrm{Rep}_{\mathbf{k}}(G)

    [V]:=[V].[V]^{*}:=[V^{*}].

Whenever #G\#G lies in 𝐤×{\mathbf{k}}^{\times}, Maschke’s Theorem asserts that 𝐤[G]{\mathbf{k}}[G]-modules are completely reducible, which shows that Rep𝐤(G)\mathrm{Rep}_{\mathbf{k}}(G) is a free {\mathbb{Z}}-module on the {\mathbb{Z}}-basis [V1],[V2],,[VN][V_{1}],[V_{2}],\ldots,[V_{N}] where V1,,VNV_{1},\ldots,V_{N} are the non-isomorphic simple/irreducible 𝐤[G]{\mathbf{k}}[G]-modules.

For any field 𝐤{\mathbf{k}}, the map sending [V][V] to its character ch(V):G𝐤{\mathrm{ch}}(V):G\rightarrow{\mathbf{k}} defined by

ch(V)(g):=trace(g:VV),{\mathrm{ch}}(V)(g):=\mathrm{trace}(g:V\rightarrow V),

becomes an algebra map from Rep𝐤(G)\mathrm{Rep}_{\mathbf{k}}(G) into the ring of class functions {f:G𝐤}\{f:G\rightarrow{\mathbf{k}}\}, that is, functions which are constant on GG-conjugacy classes. The ring of class functions is given pointwise addition, multiplication, and the involution fff\mapsto f^{*} defined by f(g)=f(g1)f^{*}(g)=f(g^{-1}). Whenever 𝐤{\mathbf{k}} has characteristic zero, this algebra map is injective, and in particular, two 𝐤[G]{\mathbf{k}}[G]-modules V,VV,V^{\prime} are isomorphic (that is, [V]=[V][V]=[V^{\prime}]) if and only if they have the same character ch(V)=ch(V){\mathrm{ch}}(V)={\mathrm{ch}}(V^{\prime}).

More generally, for graded 𝐤[G]{\mathbf{k}}[G]-modules V=m0VmV=\bigoplus_{m\geq 0}V_{m}, with each VmV_{m} a finite-dimensional 𝐤[G]{\mathbf{k}}[G]-module, we will track the representation with a power series in Rep𝐤(G)[[q]]\mathrm{Rep}_{\mathbf{k}}(G)[[q]]:

(51) [V]q:=m 0[Vm]qi.[V]_{q}:=\sum_{m\,\geq\,0}[V_{m}]\cdot q^{i}.

In particular, when ISI\subseteq S is a homogeneous ideal which is stable under the action of a finite subroup GG of GLn(𝐤)GL_{n}({\mathbf{k}}), both the quotient S/IS/I and the harmonic space II^{\perp} inherit the structure of graded 𝐤[G]{\mathbf{k}}[G]-modules. Then (46) implies a graded 𝐤[G]{\mathbf{k}}[G]-module isomorphism I(S/I)I^{\perp}\cong(S/I)^{*}, and hence [I]q=[S/I]q[I^{\perp}]_{q}=[S/I]^{*}_{q} in Rep𝐤(G)[[q]]\mathrm{Rep}_{\mathbf{k}}(G)[[q]].

On the other hand, we will also consider potentially inhomogeneous ideals ISI\subseteq S that are stable under the action of a finite subgroup GGLn(𝐤)G\subseteq GL_{n}({\mathbf{k}}), e.g., I=𝐈(𝒵)I={\mathbf{I}}(\mathcal{Z}) where 𝒵𝐤n\mathcal{Z}\subseteq{\mathbf{k}}^{n} is a GG-stable locus.

Proposition 2.15.

Assume #G\#G lies in 𝐤×{\mathbf{k}}^{\times}. For any ideal IS=𝐤[𝐱]I\subseteq S={\mathbf{k}}[\mathbf{x}] which is stable under a finite subgroup GG of GLn(𝐤)GL_{n}({\mathbf{k}}), if dim𝐤S/I\dim_{\mathbf{k}}S/I finite, then one has a 𝐤[G]{\mathbf{k}}[G]-module isomorphism S/IS/grIS/I\cong S/{\mathrm{gr}}\,I.

Proof.

Recall (21) gave an isomorphism S/grIgr(S/I)=d=0MFd/Fd1S/{\mathrm{gr}}\,I\cong{\mathrm{gr}}_{\mathcal{F}}(S/I)=\bigoplus_{d=0}^{M}F^{d}/F^{d-1}, where the sum on the right is finite here due to the finiteness assumption on dim𝐤S/I\dim_{\mathbf{k}}S/I. This isomorphism is easily seen to be GG-equivariant. Since the action of GG preserves degree, the filtration {\mathcal{F}} of S/IS/I is GG-stable, and its filtration factors match the 𝐤[G]{\mathbf{k}}[G]-module structures on the graded components of S/grIS/{\mathrm{gr}}\,I. Complete reducibility of 𝐤[G]{\mathbf{k}}[G]-modules then shows S/IS/grIS/I\cong S/{\mathrm{gr}}\,I. ∎

This proof also shows, for any field 𝐤{\mathbf{k}}, the 𝐤[G]{\mathbf{k}}[G]-modules S/grIS/{\mathrm{gr}}\,I and S/IS/I are Brauer-isomorphic.

3. The qq-Ehrhart series and Conjecture 1.1

Throughout this section, we take 𝐤={\mathbf{k}}={\mathbb{R}} and consider finite point loci 𝒵n\mathcal{Z}\subset{\mathbb{R}}^{n}. The locus 𝒵\mathcal{Z} has two associated ideals inside S=[𝐱]=[x1,,xn]:S={\mathbb{R}}[\mathbf{x}]={\mathbb{R}}[x_{1},\ldots,x_{n}]: the (inhomogeneous) vanishing ideal

𝐈(𝒵)={f(𝐱)S:f(𝐳)=0 for all 𝐳𝒵}{\mathbf{I}}(\mathcal{Z})=\{f(\mathbf{x})\in S\,:\,f(\mathbf{z})=0\text{ for all $\mathbf{z}\in\mathcal{Z}$}\}

and its associated graded ideal

gr𝐈(𝒵):=(τ(f):f𝐈(𝒵)).{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}):=(\tau(f):f\in{\mathbf{I}}(\mathcal{Z})).

Within the polynomial ring 𝔻=[𝐲]=[y1,,yn]\mathbb{D}={\mathbb{R}}[\mathbf{y}]={\mathbb{R}}[y_{1},\ldots,y_{n}] in the dual variables 𝐲\mathbf{y}, the harmonic space (gr𝐈(𝒵))\left({\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z})\right)^{\perp} of gr𝐈(𝒵){\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}) will play a crucial role in our work. To reduce notational clutter, we write

(52) V𝒵:=(gr𝐈(𝒵))V_{\mathcal{Z}}:=\left({\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z})\right)^{\perp}

for this harmonic space. This notation emphasizes the role of V𝒵V_{\mathcal{Z}} as a graded subspace of 𝔻\mathbb{D} which is almost never closed under multiplication. On the other hand, (34) shows that, as a graded vector space, it has the same Hilbert series (actually a polynomial here) as the quotient ring R(𝒵):=S/gr𝐈(𝒵)R(\mathcal{Z}):=S/{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}) that was defined in (5)

Hilb(V𝒵,q)=Hilb(R(𝒵),q).\mathrm{Hilb}(V_{\mathcal{Z}},q)=\mathrm{Hilb}(R(\mathcal{Z}),q).

Note Proposition 2.1(iii) shows this Hilbert series is a qq-analogue of the cardinality #𝒵\#\mathcal{Z}, that is,

[Hilb(V𝒵,q)]q=1=[Hilb(R(𝒵),q)]=dim𝐤(S/𝐈(𝒵)=#𝒵.\left[\mathrm{Hilb}(V_{\mathcal{Z}},q)\right]_{q=1}=\left[\mathrm{Hilb}(R(\mathcal{Z}),q)\right]=\dim_{\mathbf{k}}(S/{\mathbf{I}}(\mathcal{Z})=\#\mathcal{Z}.

Furthermore, when GG is a finite subgroup of GLn()GL_{n}({\mathbb{R}}) that preserves 𝒵\mathcal{Z} setwise, it acts via ring automorphisms and (graded) [G]{\mathbb{R}}[G]-modules on all of the objects under consideration:

S,𝔻,𝐈(𝒵),gr𝐈(𝒵),S/𝐈(𝒵),R(𝒵),V𝒵.S,\,\,\mathbb{D},\,\,{\mathbf{I}}(\mathcal{Z}),\,\,{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}),\,\,S/{\mathbf{I}}(\mathcal{Z}),\,\,R(\mathcal{Z}),\,\,V_{\mathcal{Z}}.

Because finite-dimensional [G]{\mathbb{R}}[G]-modules VV are all self-contragredient (VVV^{*}\cong V), one can check that (33) implies graded [G]{\mathbb{R}}[G]-module isomorphisms

(53) V𝒵R(𝒵)V_{\mathcal{Z}}\cong R(\mathcal{Z})

and then Proposition 2.15 implies a further ungraded 𝐤[G]{\mathbf{k}}[G]-module isomorphisms

(54) V𝒵R(𝒵)S/𝐈(𝒵),V_{\mathcal{Z}}\cong R(\mathcal{Z})\cong S/{\mathbf{I}}(\mathcal{Z}),

which are all three isomorphic to the [G]{\mathbb{R}}[G]-permutation module on the points 𝒵\mathcal{Z}.

3.1. Definition of qq-Ehrhart series and the conjecture

As in the introduction, a lattice polytope PnP\subset{\mathbb{R}}^{n} is the convex hull of a finite set of points in the lattice n{\mathbb{Z}}^{n}. For each integer m=0,1,2,m=0,1,2,\ldots one obtains a finite point locus nmP{\mathbb{Z}}^{n}\cap mP. For each m1m\geq 1, one has the interior point locus nint(mP){\mathbb{Z}}^{n}\cap\mathrm{int}(mP), where int(P)=PBd(P)\mathrm{int}(P)=P\setminus\mathrm{Bd({P})} is the (relative) interior where one removes the union Bd(P)\mathrm{Bd({P})} of all boundary faces of PP.

Definition 3.1.

For a lattice polytope PnP\subset{\mathbb{R}}^{n}, define two qq-Ehrhart series in [q][[t]]{\mathbb{Z}}[q][[t]]:

(55) EP(t,q)\displaystyle\mathrm{E}_{P}(t,q) :=m=0iP(m;q)tm,\displaystyle:=\sum_{m=0}^{\infty}i_{P}(m;q)\cdot t^{m},
where iP(m;q):=Hilb(VnmP,q)=Hilb(R(nmP),q),\displaystyle\text{ where }i_{P}(m;q):=\mathrm{Hilb}(V_{{\mathbb{Z}}^{n}\cap mP},q)=\mathrm{Hilb}(R({\mathbb{Z}}^{n}\cap mP),q),
(56) E¯P(t,q)\displaystyle\overline{\mathrm{E}}_{P}(t,q) :=m=1i¯P(m;q)tm\displaystyle:=\sum_{m=1}^{\infty}\bar{i}_{P}(m;q)\cdot t^{m}
 where i¯P(m;q)=Hilb(Vnint(mP),q)=Hilb(R(nint(mP)),q).\displaystyle\quad\text{ where }\bar{i}_{P}(m;q)=\mathrm{Hilb}(V_{{\mathbb{Z}}^{n}\cap\mathrm{int}(mP)},q)=\mathrm{Hilb}(R({\mathbb{Z}}^{n}\cap\mathrm{int}(mP)),q).

Note the series EP(t,q),E¯P(t,q)\mathrm{E}_{P}(t,q),\overline{\mathrm{E}}_{P}(t,q) reduce to the classical Ehrhart series EP(t),E¯P(t)\mathrm{E}_{P}(t),\overline{\mathrm{E}}_{P}(t) at q1q\to 1.

Example 3.2.

Recall the Example in the Introduction looked at the general 11-dimensional lattice polytope P=[a,a+v]1P=[a,a+v]\subset{\mathbb{R}}^{1} with a,va,v\in{\mathbb{Z}} and volume v1v\geq 1, finding that

(57) EP(t,q)\displaystyle\mathrm{E}_{P}(t,q) =1+tq[v1]q(1t)(1tqv),\displaystyle=\frac{1+tq[v-1]_{q}}{(1-t)(1-tq^{v})},
(58) E¯P(t,q)\displaystyle\overline{\mathrm{E}}_{P}(t,q) =t[v1]q+t2qv1(1t)(1tqv),\displaystyle=\frac{t[v-1]_{q}+t^{2}q^{v-1}}{(1-t)(1-tq^{v})},

where [m]q:=1+q+q2++qm1[m]_{q}:=1+q+q^{2}+\cdots+q^{m-1}.

Note that Example 3.2 shows that both EP(t,q),E¯P(t,q)\mathrm{E}_{P}(t,q),\overline{\mathrm{E}}_{P}(t,q) for lattice polytopes P1P\subset{\mathbb{R}}^{1} depend only upon a single parameter, which one could take either to be the volume vv, or the number of lattice points #1P=v+1\#{\mathbb{Z}}^{1}\cap P=v+1, or the hh^{*}-vector entry h1=v1h^{*}_{1}=v-1. This illustrates a certain affine-lattice invariance that one might expect, similar to classical Ehrhart theory. Recall that the group of affine transformations Aff(n)\mathrm{Aff}({\mathbb{R}}^{n}) of n{\mathbb{R}}^{n} is a semidirect product Aff(n)=GLn()n\mathrm{Aff}({\mathbb{R}}^{n})=GL_{n}({\mathbb{R}})\ltimes{\mathbb{R}}^{n}, where GLn()GL_{n}({\mathbb{R}}) is the subgroup fixing the origin, and n{\mathbb{R}}^{n} is the translation subgroup. This restricts to a semidirect product decomposition Aff(n)=GLn()n\mathrm{Aff}({\mathbb{Z}}^{n})=GL_{n}({\mathbb{Z}})\ltimes{\mathbb{Z}}^{n}.

Proposition 3.3.

For any gAff(n)g\in\mathrm{Aff}({\mathbb{Z}}^{n}), one has EgP(t,q)=EP(t,q)\mathrm{E}_{gP}(t,q)=\mathrm{E}_{P}(t,q) and E¯gP(t,q)=E¯P(t,q)\overline{\mathrm{E}}_{gP}(t,q)=\overline{\mathrm{E}}_{P}(t,q).

Proof.

We give the argument for EgP(t,q)\mathrm{E}_{gP}(t,q); the argument for E¯gP(t,q)\overline{\mathrm{E}}_{gP}(t,q) is similar.

Note that for each m=0,1,2,m=0,1,2,\ldots, the point locus nmgP{\mathbb{Z}}^{n}\cap m\cdot gP is an affine transformation of the locus nmP{\mathbb{Z}}^{n}\cap mP, namely by an affine transformation hh whose translation vector mvm\cdot v is scaled by mm from the translation vector vv of gg. It therefore suffices to check for finite point loci 𝒵n\mathcal{Z}\subseteq{\mathbb{R}}^{n} and for any hAff(n)h\in\mathrm{Aff}({\mathbb{R}}^{n}), that one has

(59) Hilb(R(h𝒵),q)=Hilb(R(𝒵),q).\mathrm{Hilb}(R(h\mathcal{Z}),q)=\mathrm{Hilb}(R(\mathcal{Z}),q).

Note that hAff(n)h\in\mathrm{Aff}({\mathbb{R}}^{n}) acting on 𝐱\mathbf{x} variables by h𝐱=h0𝐱+vh\mathbf{x}=h_{0}\mathbf{x}+v for some h0GLn(),vnh_{0}\in GL_{n}({\mathbb{R}}),v\in{\mathbb{R}}^{n} has

τ(h(f))(𝐱)=τ(f(h0𝐱+v))=τ(f)(h0𝐱).\tau(h(f))(\mathbf{x})=\tau(f(h_{0}\mathbf{x}+v))=\tau(f)(h_{0}\mathbf{x}).

Therefore gr𝐈(h𝒵)=h0(gr𝐈(𝒵)){\mathrm{gr}}\,{\mathbf{I}}(h\mathcal{Z})=h_{0}({\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z})). Since h0GLn()h_{0}\in GL_{n}({\mathbb{R}}) acts via a graded {\mathbb{R}}-algebra automorphism on S=[𝐱]S={\mathbb{R}}[\mathbf{x}], this means it induces a graded {\mathbb{R}}-algebra isomorphism R(𝒵)R(h𝒵)R(\mathcal{Z})\cong R(h\mathcal{Z}) implying (59):

R(𝒵)=S/gr𝐈(𝒵)h0S/h0(gr𝐈(𝒵))=S/gr𝐈(h𝒵)=R(h𝒵).R(\mathcal{Z})=S/{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z})\overset{h_{0}}{\longrightarrow}S/h_{0}({\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}))=S/{\mathrm{gr}}\,{\mathbf{I}}(h\mathcal{Z})=R(h\mathcal{Z}).\qed

Before discussing more examples, recall the main conjecture from the Introduction.

Conjecture 1.1. Let PP be a dd-dimensional lattice polytope in n{\mathbb{R}}^{n}. Then both of the series (8),(9) lie in (t,q){\mathbb{Q}}(t,q), and are expressible as rational functions

EP(t,q)=NP(t,q)DP(t,q) and E¯P(t,q)=N¯P(t,q)DP(t,q),\mathrm{E}_{P}(t,q)=\frac{N_{P}(t,q)}{D_{P}(t,q)}\quad\text{ and }\quad\overline{\mathrm{E}}_{P}(t,q)=\frac{\overline{N}_{P}(t,q)}{D_{P}(t,q)},

over the same denominator of the form DP(t,q)=i=1ν(1qaitbi)D_{P}(t,q)=\prod_{i=1}^{\nu}(1-q^{a_{i}}t^{b_{i}}), necessarily with νd+1\nu\geq d+1. Furthermore, there exists such an expression with all of these properties:

  • (i)

    The numerators NP(t,q),N¯P(t,q)N_{P}(t,q),\overline{N}_{P}(t,q) lie in [t,q]{\mathbb{Z}}[t,q].

  • (ii)

    If PP is a lattice simplex, and ν=d+1\nu=d+1, then both numerators NP(t,q),N¯P(t,q)N_{P}(t,q),\overline{N}_{P}(t,q) have nonnegative coefficients as polynomials in t,qt,q.

  • (iii)

    The two series EP(t,q),E¯P(t,q)\mathrm{E}_{P}(t,q),\overline{\mathrm{E}}_{P}(t,q) determine each other via

    qdE¯P(t,q)=(1)d+1EP(t1,q1).q^{d}\cdot\overline{\mathrm{E}}_{P}(t,q)=(-1)^{d+1}\mathrm{E}_{P}(t^{-1},q^{-1}).

3.2. Examples: lattice polygons

normalizedverticeshP(t)=Aff(2)-equivalentarea of P of P1+h1t+h2t2EP(t,q)to antiblocking?1(0,0),(1,0),(0,1)11(1t)(1qt)2Yes2(0,0),(1,0),(1,2)1+t1+qt(1t)(1qt)(1q2t)Yes2(0,0),(1,0),(0,1),(1,1)1+t1+qt(1t)(1qt)(1q2t)Yes3(0,0),(1,0),(1,3)1+2t1+qt+q2t(1t)(1qt)(1q3t)Yes3(0,0),(1,0),(2,3)1+t+t2(1+qt)(1+qt+q2t2)(1t)(1q2t)(1q3t2)No3(0,0),(1,0),(0,1),(2,1)1+2t1+qtq2t2q3t2(1t)(1qt)(1q2t)2Yes\begin{array}[]{|c|c|c|c|c|}\hline\cr\text{normalized}&\text{vertices}&h_{P}^{*}(t)=&&\mathrm{Aff}({\mathbb{Z}}^{2})\text{-equivalent}\\ \text{area of }P&\text{ of }P&1+h^{*}_{1}t+h^{*}_{2}t^{2}&\mathrm{E}_{P}(t,q)&\text{to antiblocking?}\\ \hline\cr\hline\cr 1&(0,0),(1,0),(0,1)\leavevmode\hbox to20.2pt{\vbox to19.65pt{\pgfpicture\makeatletter\hbox{\hskip 5.83301pt\lower-5.55522pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.95,0.95,0.95}\pgfsys@color@gray@fill{0.95}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{8.5359pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@moveto{0.0pt}{8.53291pt}\pgfsys@lineto{8.5359pt}{8.53291pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{8.5359pt}\pgfsys@moveto{8.53291pt}{0.0pt}\pgfsys@lineto{8.53291pt}{8.5359pt}\pgfsys@moveto{8.5359pt}{8.5359pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&1&\frac{1}{(1-t)(1-qt)^{2}}&\text{Yes}\\ \hline\cr 2&(0,0),(1,0),(1,2)\leavevmode\hbox to20.2pt{\vbox to28.18pt{\pgfpicture\makeatletter\hbox{\hskip 5.83301pt\lower-5.55522pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.95,0.95,0.95}\pgfsys@color@gray@fill{0.95}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@lineto{8.5359pt}{17.07182pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@moveto{0.0pt}{8.5359pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@moveto{0.0pt}{17.06882pt}\pgfsys@lineto{8.5359pt}{17.06882pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{17.07182pt}\pgfsys@moveto{8.53291pt}{0.0pt}\pgfsys@lineto{8.53291pt}{17.07182pt}\pgfsys@moveto{8.5359pt}{17.07182pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{14.84961pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&1+t&\frac{1+qt}{(1-t)(1-qt)(1-q^{2}t)}&\text{Yes}\\ 2&(0,0),(1,0),(0,1),(1,1)\leavevmode\hbox to20.2pt{\vbox to19.65pt{\pgfpicture\makeatletter\hbox{\hskip 5.83301pt\lower-5.55522pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.95,0.95,0.95}\pgfsys@color@gray@fill{0.95}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@lineto{0.0pt}{8.5359pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@moveto{0.0pt}{8.53291pt}\pgfsys@lineto{8.5359pt}{8.53291pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{8.5359pt}\pgfsys@moveto{8.53291pt}{0.0pt}\pgfsys@lineto{8.53291pt}{8.5359pt}\pgfsys@moveto{8.5359pt}{8.5359pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&1+t&\frac{1+qt}{(1-t)(1-qt)(1-q^{2}t)}&\text{Yes}\\ \hline\cr 3&(0,0),(1,0),(1,3)\leavevmode\hbox to20.2pt{\vbox to36.72pt{\pgfpicture\makeatletter\hbox{\hskip 5.83301pt\lower-5.55522pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.95,0.95,0.95}\pgfsys@color@gray@fill{0.95}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@lineto{8.5359pt}{25.60774pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@moveto{0.0pt}{8.5359pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@moveto{0.0pt}{17.07182pt}\pgfsys@lineto{8.5359pt}{17.07182pt}\pgfsys@moveto{0.0pt}{25.60474pt}\pgfsys@lineto{8.5359pt}{25.60474pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{25.60774pt}\pgfsys@moveto{8.53291pt}{0.0pt}\pgfsys@lineto{8.53291pt}{25.60774pt}\pgfsys@moveto{8.5359pt}{25.60774pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{14.84961pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{23.38553pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&1+2t&\frac{1+qt+q^{2}t}{(1-t)(1-qt)(1-q^{3}t)}&\text{Yes}\\ 3&(0,0),(1,0),(2,3)\leavevmode\hbox to28.74pt{\vbox to36.72pt{\pgfpicture\makeatletter\hbox{\hskip 5.83301pt\lower-5.55522pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.95,0.95,0.95}\pgfsys@color@gray@fill{0.95}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@lineto{17.07182pt}{25.60774pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@moveto{0.0pt}{8.5359pt}\pgfsys@lineto{17.07182pt}{8.5359pt}\pgfsys@moveto{0.0pt}{17.07182pt}\pgfsys@lineto{17.07182pt}{17.07182pt}\pgfsys@moveto{0.0pt}{25.60474pt}\pgfsys@lineto{17.07182pt}{25.60474pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{25.60774pt}\pgfsys@moveto{8.5359pt}{0.0pt}\pgfsys@lineto{8.5359pt}{25.60774pt}\pgfsys@moveto{17.06882pt}{0.0pt}\pgfsys@lineto{17.06882pt}{25.60774pt}\pgfsys@moveto{17.07182pt}{25.60774pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.57182pt}{23.38553pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&1+t+t^{2}&\frac{(1+qt)(1+qt+q^{2}t^{2})}{(1-t)(1-q^{2}t)(1-q^{3}t^{2})}&\text{No}\\ 3&(0,0),(1,0),(0,1),(-2,1)\leavevmode\hbox to37.27pt{\vbox to19.65pt{\pgfpicture\makeatletter\hbox{\hskip 22.90483pt\lower-5.55522pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.95,0.95,0.95}\pgfsys@color@gray@fill{0.95}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@lineto{0.0pt}{8.5359pt}\pgfsys@lineto{-17.07182pt}{8.5359pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-17.07182pt}{0.0pt}\pgfsys@moveto{-17.07182pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@moveto{-17.07182pt}{8.53291pt}\pgfsys@lineto{8.5359pt}{8.53291pt}\pgfsys@moveto{-17.07182pt}{0.0pt}\pgfsys@lineto{-17.07182pt}{8.5359pt}\pgfsys@moveto{-8.5359pt}{0.0pt}\pgfsys@lineto{-8.5359pt}{8.5359pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{8.5359pt}\pgfsys@moveto{8.53291pt}{0.0pt}\pgfsys@lineto{8.53291pt}{8.5359pt}\pgfsys@moveto{8.5359pt}{8.5359pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-19.57182pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-11.0359pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&1+2t&\frac{1+qt-q^{2}t^{2}-q^{3}t^{2}}{(1-t)(1-qt)(1-q^{2}t)^{2}}&\text{Yes}\\ \hline\cr\end{array}
Figure 1. EP(t,q)\mathrm{E}_{P}(t,q) for lattice polygons PP of area at most 33, up to Aff(2)\mathrm{Aff}({\mathbb{Z}}^{2}).
normalizedverticeshP(t)=Aff(2)-equivalentarea of P of P1+h1t+h2t2EP(t,q)to antiblocking?4(0,0),(1,0),(1,4)1+3t1+t(q+q2+q3)(1t)(1qt)(1q4t)Yes4(0,0),(1,0),(3,4)(1+t)2(1+qt)2(1t)(1q2t)2No4(0,0),(2,0),(0,2)1+3t1+2qt+q2t(1t)(1q2t)2Yes4(0,0),(1,0),(0,1),(3,1)1+3t1+qt+q2tq2t2q3t2q4t2(1t)(1qt)(1q2t)(1q3t)Yes4(0,0),(1,0),(0,2),(1,2)1+3t1+qt+q2tq2t2q3t2q4t2(1t)(1qt)(1q2t)(1q3t)Yes4(0,0),(2,0),(0,1),(1,1)(1+t)2(1+qt)2(1t)(1q2t)2No4(0,0),(1,0),(1,2),(2,2)(1+t)2(1+qt)2(1t)(1q2t)2)No\begin{array}[]{|c|c|c|c|c|}\hline\cr\text{normalized}&\text{vertices}&h_{P}^{*}(t)=&&\mathrm{Aff}({\mathbb{Z}}^{2})\text{-equivalent}\\ \text{area of }P&\text{ of }P&1+h^{*}_{1}t+h^{*}_{2}t^{2}&\mathrm{E}_{P}(t,q)&\text{to antiblocking?}\\ \hline\cr\hline\cr 4&(0,0),(1,0),(1,4)\leavevmode\hbox to20.2pt{\vbox to45.25pt{\pgfpicture\makeatletter\hbox{\hskip 5.83301pt\lower-5.55522pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.95,0.95,0.95}\pgfsys@color@gray@fill{0.95}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@lineto{8.5359pt}{34.14365pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@moveto{0.0pt}{8.5359pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@moveto{0.0pt}{17.07182pt}\pgfsys@lineto{8.5359pt}{17.07182pt}\pgfsys@moveto{0.0pt}{25.60774pt}\pgfsys@lineto{8.5359pt}{25.60774pt}\pgfsys@moveto{0.0pt}{34.14066pt}\pgfsys@lineto{8.5359pt}{34.14066pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{34.14365pt}\pgfsys@moveto{8.53291pt}{0.0pt}\pgfsys@lineto{8.53291pt}{34.14365pt}\pgfsys@moveto{8.5359pt}{34.14365pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{31.92143pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{14.84961pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{23.38553pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&1+3t&\frac{1+t(q+q^{2}+q^{3})}{(1-t)(1-qt)(1-q^{4}t)}&\text{Yes}\\ 4&(0,0),(1,0),(3,4)\leavevmode\hbox to37.27pt{\vbox to45.25pt{\pgfpicture\makeatletter\hbox{\hskip 5.83301pt\lower-5.55522pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.95,0.95,0.95}\pgfsys@color@gray@fill{0.95}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@lineto{25.60774pt}{34.14365pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{25.60774pt}{0.0pt}\pgfsys@moveto{0.0pt}{8.5359pt}\pgfsys@lineto{25.60774pt}{8.5359pt}\pgfsys@moveto{0.0pt}{17.07182pt}\pgfsys@lineto{25.60774pt}{17.07182pt}\pgfsys@moveto{0.0pt}{25.60774pt}\pgfsys@lineto{25.60774pt}{25.60774pt}\pgfsys@moveto{0.0pt}{34.14066pt}\pgfsys@lineto{25.60774pt}{34.14066pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{34.14365pt}\pgfsys@moveto{8.5359pt}{0.0pt}\pgfsys@lineto{8.5359pt}{34.14365pt}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{17.07182pt}{34.14365pt}\pgfsys@moveto{25.60474pt}{0.0pt}\pgfsys@lineto{25.60474pt}{34.14365pt}\pgfsys@moveto{25.60774pt}{34.14365pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.57182pt}{14.84961pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.10774pt}{31.92143pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&(1+t)^{2}&\frac{(1+qt)^{2}}{(1-t)(1-q^{2}t)^{2}}&\text{No}\\ 4&(0,0),(2,0),(0,2)\leavevmode\hbox to28.74pt{\vbox to28.18pt{\pgfpicture\makeatletter\hbox{\hskip 5.83301pt\lower-5.55522pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.95,0.95,0.95}\pgfsys@color@gray@fill{0.95}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@lineto{0.0pt}{17.07182pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@moveto{0.0pt}{8.5359pt}\pgfsys@lineto{17.07182pt}{8.5359pt}\pgfsys@moveto{0.0pt}{17.06882pt}\pgfsys@lineto{17.07182pt}{17.06882pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{17.07182pt}\pgfsys@moveto{8.5359pt}{0.0pt}\pgfsys@lineto{8.5359pt}{17.07182pt}\pgfsys@moveto{17.06882pt}{0.0pt}\pgfsys@lineto{17.06882pt}{17.07182pt}\pgfsys@moveto{17.07182pt}{17.07182pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.57182pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{14.84961pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&1+3t&\frac{1+2qt+q^{2}t}{(1-t)(1-q^{2}t)^{2}}&\text{Yes}\\ 4&(0,0),(1,0),(0,1),(-3,1)\leavevmode\hbox to45.81pt{\vbox to19.65pt{\pgfpicture\makeatletter\hbox{\hskip 31.44075pt\lower-5.55522pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.95,0.95,0.95}\pgfsys@color@gray@fill{0.95}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@lineto{0.0pt}{8.5359pt}\pgfsys@lineto{-25.60774pt}{8.5359pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-25.60774pt}{0.0pt}\pgfsys@moveto{-25.60774pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@moveto{-25.60774pt}{8.53291pt}\pgfsys@lineto{8.5359pt}{8.53291pt}\pgfsys@moveto{-25.60774pt}{0.0pt}\pgfsys@lineto{-25.60774pt}{8.5359pt}\pgfsys@moveto{-17.07182pt}{0.0pt}\pgfsys@lineto{-17.07182pt}{8.5359pt}\pgfsys@moveto{-8.5359pt}{0.0pt}\pgfsys@lineto{-8.5359pt}{8.5359pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{8.5359pt}\pgfsys@moveto{8.53291pt}{0.0pt}\pgfsys@lineto{8.53291pt}{8.5359pt}\pgfsys@moveto{8.5359pt}{8.5359pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-11.0359pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-19.57182pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.10774pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&1+3t&\frac{1+qt+q^{2}t-q^{2}t^{2}-q^{3}t^{2}-q^{4}t^{2}}{(1-t)(1-qt)(1-q^{2}t)(1-q^{3}t)}&\text{Yes}\\ 4&(0,0),(1,0),(0,2),(1,2)\leavevmode\hbox to20.2pt{\vbox to28.18pt{\pgfpicture\makeatletter\hbox{\hskip 5.83301pt\lower-5.55522pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.95,0.95,0.95}\pgfsys@color@gray@fill{0.95}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@lineto{8.5359pt}{17.07182pt}\pgfsys@lineto{0.0pt}{17.07182pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@moveto{0.0pt}{8.5359pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@moveto{0.0pt}{17.06882pt}\pgfsys@lineto{8.5359pt}{17.06882pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{17.07182pt}\pgfsys@moveto{8.53291pt}{0.0pt}\pgfsys@lineto{8.53291pt}{17.07182pt}\pgfsys@moveto{8.5359pt}{17.07182pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{14.84961pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{14.84961pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&1+3t&\frac{1+qt+q^{2}t-q^{2}t^{2}-q^{3}t^{2}-q^{4}t^{2}}{(1-t)(1-qt)(1-q^{2}t)(1-q^{3}t)}&\text{Yes}\\ 4&(0,0),(2,0),(0,1),(1,-1)\leavevmode\hbox to28.74pt{\vbox to28.18pt{\pgfpicture\makeatletter\hbox{\hskip 5.83301pt\lower-14.09113pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.95,0.95,0.95}\pgfsys@color@gray@fill{0.95}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{8.5359pt}{-8.5359pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@lineto{0.0pt}{8.5359pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{-8.5359pt}\pgfsys@moveto{0.0pt}{-8.5359pt}\pgfsys@lineto{17.07182pt}{-8.5359pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@moveto{0.0pt}{8.53291pt}\pgfsys@lineto{17.07182pt}{8.53291pt}\pgfsys@moveto{0.0pt}{-8.5359pt}\pgfsys@lineto{0.0pt}{8.5359pt}\pgfsys@moveto{8.5359pt}{-8.5359pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@moveto{17.06882pt}{-8.5359pt}\pgfsys@lineto{17.06882pt}{8.5359pt}\pgfsys@moveto{17.07182pt}{8.5359pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.57182pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-10.75812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&(1+t)^{2}&\frac{(1+qt)^{2}}{(1-t)(1-q^{2}t)^{2}}&\text{No}\\ 4&(0,0),(1,0),(1,2),(2,2)\leavevmode\hbox to28.74pt{\vbox to28.18pt{\pgfpicture\makeatletter\hbox{\hskip 5.83301pt\lower-5.55522pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.95,0.95,0.95}\pgfsys@color@gray@fill{0.95}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@lineto{17.07182pt}{17.07182pt}\pgfsys@lineto{8.5359pt}{17.07182pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@moveto{0.0pt}{8.5359pt}\pgfsys@lineto{17.07182pt}{8.5359pt}\pgfsys@moveto{0.0pt}{17.06882pt}\pgfsys@lineto{17.07182pt}{17.06882pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{17.07182pt}\pgfsys@moveto{8.5359pt}{0.0pt}\pgfsys@lineto{8.5359pt}{17.07182pt}\pgfsys@moveto{17.06882pt}{0.0pt}\pgfsys@lineto{17.06882pt}{17.07182pt}\pgfsys@moveto{17.07182pt}{17.07182pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{14.84961pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.57182pt}{14.84961pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&(1+t)^{2}&\frac{(1+qt)^{2}}{(1-t)(1-q^{2}t)^{2})}&\text{No}\\ \hline\cr\end{array}
Figure 2. EP(t,q)\mathrm{E}_{P}(t,q) for lattice polygons PP of area 44, up to Aff(2)\mathrm{Aff}({\mathbb{Z}}^{2}).
verticeshP(t)=Aff(2)-equivalent of P1+h1t+h2t2EP(t,q)to antiblocking?(0,0),(1,0),(1,5)1+4t1+t(q+q2+q3+q4)(1t)(1qt)(1q5t)Yes(0,0),(1,0),(2,5)1+2t+2t2(1+qt)(1+t(q+q2)+t2(q3+q4))(1t)(1q2t)(1q5t2)No(0,0),(1,0),(0,1),(4,1)1+4t1+qt+q2t+q3tq2t2q3t2q4t2q5t2(1t)(1qt)(1q2t)(1q4t)Yes(0,0),(2,0),(0,1),(3,1)1+4t1+qt+2q2tq2t2q3t2q4t2q5t2(1t)(1qt)(1q3t)2Yes(0,0),(1,0),(2,3),(2,1)1+3t+t21+2qt+2q2t+2q3t2+2q4t2+q5t3(1t)(1q2t)(1q5t2)No(0,0),(1,0),(1,2),(2,2),(0,1)1+3t+t21+2qt+2q2t+2q3t2+2q4t2+q5t3(1t)(1q2t)(1q5t2)No\begin{array}[]{|c|c|c|c|}\hline\cr\text{vertices}&h_{P}^{*}(t)=&&\mathrm{Aff}({\mathbb{Z}}^{2})\text{-equivalent}\\ \text{ of }P&1+h^{*}_{1}t+h^{*}_{2}t^{2}&\mathrm{E}_{P}(t,q)&\text{to antiblocking?}\\ \hline\cr\hline\cr(0,0),(1,0),(1,5)\leavevmode\hbox to20.2pt{\vbox to53.79pt{\pgfpicture\makeatletter\hbox{\hskip 5.83301pt\lower-5.55522pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.95,0.95,0.95}\pgfsys@color@gray@fill{0.95}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@lineto{8.5359pt}{42.67957pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@moveto{0.0pt}{8.5359pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@moveto{0.0pt}{17.07182pt}\pgfsys@lineto{8.5359pt}{17.07182pt}\pgfsys@moveto{0.0pt}{25.60774pt}\pgfsys@lineto{8.5359pt}{25.60774pt}\pgfsys@moveto{0.0pt}{34.14365pt}\pgfsys@lineto{8.5359pt}{34.14365pt}\pgfsys@moveto{0.0pt}{42.67656pt}\pgfsys@lineto{8.5359pt}{42.67656pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{42.67957pt}\pgfsys@moveto{8.53291pt}{0.0pt}\pgfsys@lineto{8.53291pt}{42.67957pt}\pgfsys@moveto{8.5359pt}{42.67957pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{40.45735pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{14.84961pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{23.38553pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{31.92143pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&1+4t&\frac{1+t(q+q^{2}+q^{3}+q^{4})}{(1-t)(1-qt)(1-q^{5}t)}&\text{Yes}\\ (0,0),(1,0),(2,5)\leavevmode\hbox to28.74pt{\vbox to53.79pt{\pgfpicture\makeatletter\hbox{\hskip 5.83301pt\lower-5.55522pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.95,0.95,0.95}\pgfsys@color@gray@fill{0.95}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@lineto{17.07182pt}{42.67957pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@moveto{0.0pt}{8.5359pt}\pgfsys@lineto{17.07182pt}{8.5359pt}\pgfsys@moveto{0.0pt}{17.07182pt}\pgfsys@lineto{17.07182pt}{17.07182pt}\pgfsys@moveto{0.0pt}{25.60774pt}\pgfsys@lineto{17.07182pt}{25.60774pt}\pgfsys@moveto{0.0pt}{34.14365pt}\pgfsys@lineto{17.07182pt}{34.14365pt}\pgfsys@moveto{0.0pt}{42.67656pt}\pgfsys@lineto{17.07182pt}{42.67656pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{42.67957pt}\pgfsys@moveto{8.5359pt}{0.0pt}\pgfsys@lineto{8.5359pt}{42.67957pt}\pgfsys@moveto{17.06882pt}{0.0pt}\pgfsys@lineto{17.06882pt}{42.67957pt}\pgfsys@moveto{17.07182pt}{42.67957pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{14.84961pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.57182pt}{40.45735pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&1+2t+2t^{2}&\frac{(1+qt)(1+t(q+q^{2})+t^{2}(q^{3}+q^{4}))}{(1-t)(1-q^{2}t)(1-q^{5}t^{2})}&\text{No}\\ (0,0),(1,0),(0,1),(-4,1)\leavevmode\hbox to54.35pt{\vbox to19.65pt{\pgfpicture\makeatletter\hbox{\hskip 39.97665pt\lower-5.55522pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.95,0.95,0.95}\pgfsys@color@gray@fill{0.95}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@lineto{0.0pt}{8.5359pt}\pgfsys@lineto{-34.14365pt}{8.5359pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-34.14365pt}{0.0pt}\pgfsys@moveto{-34.14365pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@moveto{-34.14365pt}{8.53291pt}\pgfsys@lineto{8.5359pt}{8.53291pt}\pgfsys@moveto{-34.14365pt}{0.0pt}\pgfsys@lineto{-34.14365pt}{8.5359pt}\pgfsys@moveto{-25.60774pt}{0.0pt}\pgfsys@lineto{-25.60774pt}{8.5359pt}\pgfsys@moveto{-17.07182pt}{0.0pt}\pgfsys@lineto{-17.07182pt}{8.5359pt}\pgfsys@moveto{-8.5359pt}{0.0pt}\pgfsys@lineto{-8.5359pt}{8.5359pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{8.5359pt}\pgfsys@moveto{8.53291pt}{0.0pt}\pgfsys@lineto{8.53291pt}{8.5359pt}\pgfsys@moveto{8.5359pt}{8.5359pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-36.64365pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.10774pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-19.57182pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-11.0359pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&1+4t&\frac{1+qt+q^{2}t+q^{3}t-q^{2}t^{2}-q^{3}t^{2}-q^{4}t^{2}-q^{5}t^{2}}{(1-t)(1-qt)(1-q^{2}t)(1-q^{4}t)}&\text{Yes}\\ (0,0),(2,0),(0,1),(-3,1)\leavevmode\hbox to54.35pt{\vbox to19.65pt{\pgfpicture\makeatletter\hbox{\hskip 31.44075pt\lower-5.55522pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.95,0.95,0.95}\pgfsys@color@gray@fill{0.95}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@lineto{0.0pt}{8.5359pt}\pgfsys@lineto{-25.60774pt}{8.5359pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-25.60774pt}{0.0pt}\pgfsys@moveto{-25.60774pt}{0.0pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@moveto{-25.60774pt}{8.53291pt}\pgfsys@lineto{17.07182pt}{8.53291pt}\pgfsys@moveto{-25.60774pt}{0.0pt}\pgfsys@lineto{-25.60774pt}{8.5359pt}\pgfsys@moveto{-17.07182pt}{0.0pt}\pgfsys@lineto{-17.07182pt}{8.5359pt}\pgfsys@moveto{-8.5359pt}{0.0pt}\pgfsys@lineto{-8.5359pt}{8.5359pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{8.5359pt}\pgfsys@moveto{8.5359pt}{0.0pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@moveto{17.06882pt}{0.0pt}\pgfsys@lineto{17.06882pt}{8.5359pt}\pgfsys@moveto{17.07182pt}{8.5359pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.57182pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-11.0359pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-19.57182pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-28.10774pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&1+4t&\frac{1+qt+2q^{2}t-q^{2}t^{2}-q^{3}t^{2}-q^{4}t^{2}-q^{5}t^{2}}{(1-t)(1-qt)(1-q^{3}t)^{2}}&\text{Yes}\\ (0,0),(1,0),(2,3),(2,1)\leavevmode\hbox to28.74pt{\vbox to36.72pt{\pgfpicture\makeatletter\hbox{\hskip 5.83301pt\lower-5.55522pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.95,0.95,0.95}\pgfsys@color@gray@fill{0.95}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@lineto{17.07182pt}{8.5359pt}\pgfsys@lineto{17.07182pt}{25.60774pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@moveto{0.0pt}{8.5359pt}\pgfsys@lineto{17.07182pt}{8.5359pt}\pgfsys@moveto{0.0pt}{17.07182pt}\pgfsys@lineto{17.07182pt}{17.07182pt}\pgfsys@moveto{0.0pt}{25.60474pt}\pgfsys@lineto{17.07182pt}{25.60474pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{25.60774pt}\pgfsys@moveto{8.5359pt}{0.0pt}\pgfsys@lineto{8.5359pt}{25.60774pt}\pgfsys@moveto{17.06882pt}{0.0pt}\pgfsys@lineto{17.06882pt}{25.60774pt}\pgfsys@moveto{17.07182pt}{25.60774pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.57182pt}{14.84961pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.57182pt}{23.38553pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.57182pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&1+3t+t^{2}&\frac{1+2qt+2q^{2}t+2q^{3}t^{2}+2q^{4}t^{2}+q^{5}t^{3}}{(1-t)(1-q^{2}t)(1-q^{5}t^{2})}&\text{No}\\ (0,0),(1,0),(1,2),(2,2),(0,-1)\leavevmode\hbox to28.74pt{\vbox to36.72pt{\pgfpicture\makeatletter\hbox{\hskip 5.83301pt\lower-14.09113pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.95,0.95,0.95}\pgfsys@color@gray@fill{0.95}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{-8.5359pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@lineto{17.07182pt}{17.07182pt}\pgfsys@lineto{8.5359pt}{17.07182pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-8.5359pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{-8.5359pt}\pgfsys@moveto{0.0pt}{-8.5359pt}\pgfsys@lineto{17.07182pt}{-8.5359pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@moveto{0.0pt}{8.5359pt}\pgfsys@lineto{17.07182pt}{8.5359pt}\pgfsys@moveto{0.0pt}{17.06882pt}\pgfsys@lineto{17.07182pt}{17.06882pt}\pgfsys@moveto{0.0pt}{-8.5359pt}\pgfsys@lineto{0.0pt}{17.07182pt}\pgfsys@moveto{8.5359pt}{-8.5359pt}\pgfsys@lineto{8.5359pt}{17.07182pt}\pgfsys@moveto{17.06882pt}{-8.5359pt}\pgfsys@lineto{17.06882pt}{17.07182pt}\pgfsys@moveto{17.07182pt}{17.07182pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-2.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{6.31369pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{14.84961pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{14.57182pt}{14.84961pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-10.75812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\bullet$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&1+3t+t^{2}&\frac{1+2qt+2q^{2}t+2q^{3}t^{2}+2q^{4}t^{2}+q^{5}t^{3}}{(1-t)(1-q^{2}t)(1-q^{5}t^{2})}&\text{No}\\ \hline\cr\end{array}
Figure 3. EP(t,q)\mathrm{E}_{P}(t,q) for lattice polygons of area 5, up to Aff(2)\mathrm{Aff}({\mathbb{Z}}^{2}).

Having computed EP(t,q)\mathrm{E}_{P}(t,q) for all one-dimensional lattice polytopes (line segments) in the Introduction and Example 3.2, one might wish to see data for lattice polygons. Proposition 3.3 allows one to consider them only up to the action of Aff(2)\mathrm{Aff}({\mathbb{Z}}^{2}). If one bounds the normalized volume of a dd-dimensional lattice polytope PP in d{\mathbb{R}}^{d}, a well-known result of Lagarias and Ziegler [34] shows that there are only finitely many such PP up to the action of Aff(d)\mathrm{Aff}({\mathbb{Z}}^{d}). Work of Balletti [4] gives an algorithm to list them, including an online database at https://github.com/gabrieleballetti/small-lattice-polytopes listing equivalence classes of lattice polytopes up to dimension 66 of relatively small normalized volumes. In particular, it includes lattice triangles up to normalized area 10001000.

Using this data, Figures 1, 2, 3 present the qq-Ehrhart series EP(t,q)\mathrm{E}_{P}(t,q) of Aff(2)\mathrm{Aff}({\mathbb{Z}}^{2})-equivalence classes of lattice polygons PP of normalized volume at most 55. These were first guessed using Macaulay2 to compute iP(m;q):=Hilb(R(2mP),q)i_{P}(m;q):=\mathrm{Hilb}(R({\mathbb{Z}}^{2}\cap mP),q) for m=0,1,2,m=0,1,2,\ldots up to some reasonably large values of mm. The guesses were then proven correct via some extra computation in Macaulay2 that uses our results on the harmonic algebras P{\mathcal{H}}_{P} in Section 5; see Remark 5.10 below for an explanation.

Note the last column of the tables, indicating whether the polygon PP is Aff(2)\mathrm{Aff}({\mathbb{Z}}^{2})-equivalent to one in the tamer subclass of antiblocking lattice polytopes, discussed in Section 3.4.

With the kind assistance of V. Kurylenko, we also have computed guesses for EP(t,q)\mathrm{E}_{P}(t,q) for all lattice polygons PP of area 6,7,86,7,8, as well as a selection of lattice tetrahedra. These can be found tabulated in the supplementary data file ExtraData.pdf in the arXiv version of this paper.

All the data in Figures 1, 2, 3 (and ExtraData.pdf) is consistent with Conjecture 1.1. However, we close this subsection with remarks on some cautionary features.

Remark 3.4.

The specialization [EP(t,q)]q=1=EP(t)\left[\mathrm{E}_{P}(t,q)\right]_{q=1}=\mathrm{E}_{P}(t) sometimes has interesting numerator and denominator cancellations when q1q\rightarrow 1.

Remark 3.5.

Note that, for fixed dd, the classical Ehrhart series EP(t)(t)\mathrm{E}_{P}(t)\subset{\mathbb{Q}}(t) for a lattice dd-polytope can be expressed as an affine-linear function of the dd real parameters (h1,,hd)(h^{*}_{1},\ldots,h^{*}_{d}):

EP(t)=1(1t)d+1+h1t(1t)d+1++hdtd(1t)d+1.\mathrm{E}_{P}(t)=\frac{1}{(1-t)^{d+1}}+h^{*}_{1}\cdot\frac{t}{(1-t)^{d+1}}+\cdots+h^{*}_{d}\cdot\frac{t^{d}}{(1-t)^{d+1}}.

One has no such affine-linear formula for EP(t,q)\mathrm{E}_{P}(t,q), already at d=1d=1, since the formulas (57)

EP(t,q)=1+tq[v1]q(1t)(1tqv)\mathrm{E}_{P}(t,q)=\frac{1+tq[v-1]_{q}}{(1-t)(1-tq^{v})}

give affine-linearly independent functions of h1=v1h^{*}_{1}=v-1 where v=vol1(P)v=\mathrm{vol}_{1}(P). On the other hand this formula does express EP(t,q)\mathrm{E}_{P}(t,q) for d=1d=1 as a function (which is not affine-linear) of the one real parameter h1h_{1}^{*}. When d=2d=2, there can be no such function of the two parameters (h1,h2)(h_{1}^{*},h_{2}^{*}), since one can have two lattice polygons P,PP,P^{\prime} with the same classical series EP(t)=EP(t)\mathrm{E}_{P}(t)=\mathrm{E}_{P^{\prime}}(t) but different qq-Ehrhart series EP(t,q)EP(t,q)\mathrm{E}_{P}(t,q)\neq\mathrm{E}_{P^{\prime}}(t,q); this happens for two area 33 lattice polygons in Figure 1.

Remark 3.6.

Within ExtraData.pdf, one finds a guess for EP(t,q)\mathrm{E}_{P}(t,q) for a particular lattice triangle P=conv{(0,0),(1,0),(3,7)}P=\mathrm{conv}\{(0,0),(1,0),(3,7)\} that we found difficult to compute. Eventually, this guess was kindly computed for us by V. Kurylenko, using data up through tt-degree 2626:

EP(t,q)=?NP(t,q)(1t)(1q8t3)(1q21t8)\mathrm{E}_{P}(t,q)\overset{?}{=}\frac{N_{P}(t,q)}{(1-t)(1-q^{8}t^{3})(1-q^{21}t^{8})}

with a numerator polynomial NP(t,q)N_{P}(t,q) in [t,q]{\mathbb{Z}}[t,q] having nonnegative coefficients, and tt-degree 1111. We found the tt-power t8t^{8} in its denominator surprisingly large compared to other examples333This example is one reason that we revised our main Conjectures 1.1, 5.5 from arXiv version 1 of this paper..

3.3. Examples: a few Reeve tetrahedra

An important family of examples in Ehrhart theory are Reeve’s tetrahedra [5, Example 3.22], defined by

Tv=conv{(0,0,0),(1,0,0),(0,1,0),(1,1,v)} for v=1,2,.T_{v}=\mathrm{conv}\{(0,0,0),(1,0,0),(0,1,0),(1,1,v)\}\quad\text{ for }v=1,2,\ldots.

The parameter vv is their normalized volume, and they have these Ehrhart polynomial and series:

iTv(m)\displaystyle i_{T_{v}}(m) =1+(2v6)m+m2+v6m3\displaystyle=1+\left(2-\frac{v}{6}\right)m+m^{2}+\frac{v}{6}m^{3}
ETv(t)\displaystyle\mathrm{E}_{T_{v}}(t) =1+(v1)t2(1t)4.\displaystyle=\frac{1+(v-1)t^{2}}{(1-t)^{4}}.

Thus TvT_{v} has (h0,h1,h2)=(1,0,v1)(h^{*}_{0},h_{1}^{*},h_{2}^{*})=(1,0,v-1), and for v2v\geq 2, gives examples where the hh^{*}-vector has internal zeroes. This can only happen for lattice polytope PP lacking the following property.

Definition 3.7.

Say that a lattice polytope PP has the integer decomposition property (IDP) if

(60) (nP)++(nP)m times=nmP for all m1.\underbrace{({\mathbb{Z}}^{n}\cap P)+\cdots+({\mathbb{Z}}^{n}\cap P)}_{m\text{ times}}={\mathbb{Z}}^{n}\cap mP\quad\text{ for all }m\geq 1.

See Braun [8] and Cox, Haase, Hibi and Higashitani [12] for more on the IDP. All lattice polygons have the IDP. The smallest non-IDP lattice polytope is the Reeve tetrahedron T2T_{2} shown here:

\bullet\bullet\bullet\bullet

It is not IDP since (1,1,1)32P((3P)+(3P))(1,1,1)\in{\mathbb{Z}}^{3}\cap 2P\setminus(({\mathbb{Z}}^{3}\cap P)+({\mathbb{Z}}^{3}\cap P)).

We have either computations or guesses for the qq-Ehrhart series ETv(t,q)\mathrm{E}_{T_{v}}(t,q) for v=1,2,3v=1,2,3:

  • T1T_{1} is a unimodular tetrahedron, Aff(3)\mathrm{Aff}({\mathbb{Z}}^{3})-equivalent to Pyr(Δ2)\mathrm{Pyr}(\Delta^{2}) from Section 3.6 below, so

    ET1(t,q)=1(1t)(1tq)3.\mathrm{E}_{T_{1}}(t,q)=\frac{1}{(1-t)(1-tq)^{3}}.
  • For T2T_{2}, using the same methods as for Figures 1, 2, 3, one can compute

    (61) ET2(t,q)=(1+qt)(1+q2t2)(1+qt+q2t2)(1t)(1qt)(1q3t2)(1q4t3).\mathrm{E}_{T_{2}}(t,q)=\frac{(1+qt)(1+q^{2}t^{2})(1+qt+q^{2}t^{2})}{(1-t)(1-qt)(1-q^{3}t^{2})(1-q^{4}t^{3})}.
  • V. Kurylenko computed this guess for the qq-Ehrhart series for T3T_{3}, correct up to tt-degree 1616:

    (62) ET3(t,q)=?(1+qt)(1q5t4)(1+qt+2q2t2+q3t2+2q4t3+q5t4+q6t4)(1t)(1qt)(1q3t2)(1q5t3)(1q6t4).\mathrm{E}_{T_{3}}(t,q)\overset{?}{=}\frac{(1+qt)(1-q^{5}t^{4})(1+qt+2q^{2}t^{2}+q^{3}t^{2}+2q^{4}t^{3}+q^{5}t^{4}+q^{6}t^{4})}{(1-t)(1-qt)(1-q^{3}t^{2})(1-q^{5}t^{3})(1-q^{6}t^{4})}.

Note that, in this guess for ET3(t,q)\mathrm{E}_{T_{3}}(t,q), there are 55 denominator factors, but dim(T3)+1=4<5\dim(T_{3})+1=4<5. This is the first instance where this occurs for a lattice simplex444This example is another reason that we revised our Conjectures 1.1, 5.5 from arXiv version 1 of this paper., raising the following question.

Question 3.8.

For which lattice dd-simplices PP can one express

EP(q,t)=NP(t,q)i=1ν(1tbiqai)\mathrm{E}_{P}(q,t)=\frac{N_{P}(t,q)}{\prod_{i=1}^{\nu}(1-t^{b_{i}}q^{a_{i}})}

with ν=d+1\nu=d+1 denominator factors, and with NP(t,q)N_{P}(t,q) in [t,q]{\mathbb{N}}[t,q]?

  • (a)

    Does this occur for all lattice triangles?

  • (b)

    Does it occur more generally for all lattice simplices with the IDP property?

3.4. Examples: antiblocking polytopes

For certain polytopes PP introduced by Fulkerson [19, 20] in the context of combinatorial optimization, both qq-Ehrhart series EP(t,q),E¯P(t,q)\mathrm{E}_{P}(t,q),\overline{\mathrm{E}}_{P}(t,q) have a simpler description as classical weighted lattice point enumerators, avoiding harmonic spaces. This will allow us to verify Conjecture 1.1 for such polytopes.

In this section, abbreviate the nonnegative reals by 0:={z:z0}{\mathbb{R}}_{\geq 0}:=\{z\in{\mathbb{R}}:z\geq 0\}, the nonnegative orthant by 0n{\mathbb{R}}_{\geq 0}^{n}, and the nonnegative integers :={0,1,2,}{\mathbb{N}}:=\{0,1,2,\ldots\}. Define the componentwise partial order on 0n{\mathbb{R}}_{\geq 0}^{n} via 𝐳𝐳\mathbf{z}\leq\mathbf{z}^{\prime} if ziziz_{i}\leq z_{i}^{\prime} for all ii.

Definition 3.9.

Say that a convex polytope PP is antiblocking (or of antiblocking type) if P0nP\subset{\mathbb{R}}_{\geq 0}^{n}, and PP forms a (lower) order ideal in the componentwise order on 0n{\mathbb{R}}_{\geq 0}^{n}, that is, whenever 𝟎𝐳𝐳\mathbf{0}\leq\mathbf{z}\leq\mathbf{z}^{\prime} with 𝐳P\mathbf{z}^{\prime}\in P then also 𝐳P\mathbf{z}\in P.

Here is an example of an antiblocking polygon PP inside the orthant 02{\mathbb{R}}_{\geq 0}^{2}.

\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet

Intersecting antiblocking polytopes with n{\mathbb{Z}}^{n} gives rise to point loci 𝒵\mathcal{Z} with a restrictive property that vastly simplifies the ring R(𝒵)R(\mathcal{Z}) and harmonic space V𝒵V_{\mathcal{Z}}.

Definition 3.10.

Call a subset 𝒵n\mathcal{Z}\subset{\mathbb{R}}^{n} shifted if 𝒵n\mathcal{Z}\subset{\mathbb{N}}^{n} and 𝒵\mathcal{Z} forms a (lower) order ideal in the componentwise order on n{\mathbb{N}}^{n}, that is, whenever 𝟎𝐳𝐳\mathbf{0}\leq\mathbf{z}\leq\mathbf{z}^{\prime} and 𝐳𝒵\mathbf{z}^{\prime}\in\mathcal{Z} then also 𝐳𝒵\mathbf{z}\in\mathcal{Z}. Equivalently, 𝒵n\mathcal{Z}\subset{\mathbb{N}}^{n} is shifted if and only if the 𝐤{\mathbf{k}}-vector space I:=span𝐤{𝐱𝐚:𝐚n𝒵}I:=\mathrm{span}_{\mathbf{k}}\{\mathbf{x}^{\mathbf{a}}:\mathbf{a}\in{\mathbb{N}}^{n}\setminus\mathcal{Z}\} forms a monomial ideal inside S:=𝐤[𝐱]S:={\mathbf{k}}[\mathbf{x}].

Lemma 3.11.

For any finite shifted point locus 𝒵n\mathcal{Z}\subset{\mathbb{N}}^{n},

  • (i)

    the ideal gr𝐈(𝒵)S=[𝐱]{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z})\subset S={\mathbb{R}}[\mathbf{x}] is monomial, with {\mathbb{R}}-basis {𝐱𝐚:𝐚n𝒵}\{\mathbf{x}^{\mathbf{a}}:\mathbf{a}\in{\mathbb{N}}^{n}\setminus\mathcal{Z}\},

  • (ii)

    the quotient ring R(𝒵)=S/gr𝐈(𝒵)R(\mathcal{Z})=S/{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}) of S=[𝐱]S={\mathbb{R}}[\mathbf{x}] has {\mathbb{R}}-basis {𝐱¯𝐳:𝐳𝒵}\{\bar{\mathbf{x}}^{\mathbf{z}}:\mathbf{z}\in\mathcal{Z}\},

  • (iii)

    the harmonic space V𝒵SV_{\mathcal{Z}}\subseteq S has {\mathbb{R}}-basis {𝐲𝐳:𝐳𝒵}\{\mathbf{y}^{\mathbf{z}}:\mathbf{z}\in\mathcal{Z}\} inside 𝔻=[𝐲]\mathbb{D}={\mathbb{R}}[\mathbf{y}].

Proof.

Since 𝒵\mathcal{Z} is shifted, the {\mathbb{R}}-vector space I:=span{𝐱𝐚:𝐚n𝒵}I:=\mathrm{span}_{\mathbb{R}}\{\mathbf{x}^{\mathbf{a}}:\mathbf{a}\in{\mathbb{N}}^{n}\setminus\mathcal{Z}\} is a monomial ideal. Note that all assertions in the lemma would follow from showing (i), that is, I=gr𝐈(𝒵)I={\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}).

To see this, we first show the inclusion Igr𝐈(𝒵)I\subseteq{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}). Since 𝒵\mathcal{Z} is shifted, we claim that for any 𝐚n𝒵\mathbf{a}\in{\mathbb{N}}^{n}\setminus\mathcal{Z}, the polynomial

f𝐚(𝐱):=i=1nxi(xi1)(xi(ai1))f_{\mathbf{a}}(\mathbf{x}):=\prod_{i=1}^{n}x_{i}(x_{i}-1)\cdots(x_{i}-(a_{i}-1))

lies in the vanishing ideal 𝐈(𝒵){\mathbf{I}}(\mathcal{Z}) for 𝒵\mathcal{Z}. To see this claim, assume not, so there exists some point 𝐳𝒵\mathbf{z}\in\mathcal{Z} having f(𝐳)0f(\mathbf{z})\neq 0. But then for each ii one must have zi{0,1,2,,ai1}z_{i}\in{\mathbb{N}}\setminus\{0,1,2,\ldots,a_{i}-1\}, implying 𝐳𝐚\mathbf{z}\geq\mathbf{a}, and contradicting 𝐚𝒵\mathbf{a}\not\in\mathcal{Z}. Hence gr𝐈(𝒵){\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}) contains τ(f𝐚)=i=1nxiai=𝐱𝐚,\tau(f_{\mathbf{a}})=\prod_{i=1}^{n}x_{i}^{a_{i}}=\mathbf{x}^{\mathbf{a}}, showing Igr𝐈(𝒵)I\subseteq{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}).

To show the opposite inclusion Igr𝐈(𝒵)I\supseteq{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}), note that the surjection S/IS/gr𝐈(𝒵)S/I\twoheadrightarrow S/{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}) must be an isomorphism by dimension-counting, since dimS/I=#𝒵=dimS/gr𝐈(𝒵)\dim_{\mathbb{R}}S/I=\#\mathcal{Z}=\dim_{\mathbb{R}}S/{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}). ∎

If one defines the following qq-weight enumerator for finite point loci 𝒵n\mathcal{Z}\subset{\mathbb{N}}^{n}

(63) w𝒵(q):=𝐳𝒵q|𝐳| where |𝐳|:=z1++zn,w_{\mathcal{Z}}(q):=\sum_{\mathbf{z}\in\mathcal{Z}}q^{|\mathbf{z}|}\qquad\text{ where }|\mathbf{z}|:=z_{1}+\cdots+z_{n},

then the next corollary is immediate from Lemma 3.11

Corollary 3.12.

For finite shifted point loci 𝒵n\mathcal{Z}\subset{\mathbb{N}}^{n}, one has

Hilb(R(𝒵),q)=Hilb(V𝒵,q)=w𝒵(q).\mathrm{Hilb}(R(\mathcal{Z}),q)=\mathrm{Hilb}(V_{\mathcal{Z}},q)=w_{\mathcal{Z}}(q).

We next explain how antiblocking polytopes PP give rise to shifted point loci. For 0dn0\leq d\leq n, let

(𝟏d,𝟎nd):=(1,1,,1d times,0,0,,0nd times).({\mathbf{1}}_{d},\mathbf{0}_{n-d}):=(\underbrace{1,1,\ldots,1}_{d\text{ times}},\underbrace{0,0,\ldots,0}_{n-d\text{ times}}).
Proposition 3.13.

Let PP be an antiblocking dd-polytope in n{\mathbb{R}}^{n}.

  • (i)

    The finite point locus nPn{\mathbb{Z}}^{n}\cap P\subset{\mathbb{N}}^{n} is shifted, and the same holds for nmP{\mathbb{Z}}^{n}\cap mP for all mm\in{\mathbb{N}}.

  • (ii)

    There exists a re-indexing of the coordinates in n{\mathbb{R}}^{n} such that the translated set

    nint(P)(𝟏d,𝟎nd):={𝐳(𝟏d,𝟎nd):𝐳nint(P)}{\mathbb{Z}}^{n}\cap\mathrm{int}(P)-({\mathbf{1}}_{d},\mathbf{0}_{n-d}):=\{\mathbf{z}-({\mathbf{1}}_{d},\mathbf{0}_{n-d}):\mathbf{z}\in{\mathbb{Z}}^{n}\cap\mathrm{int}(P)\}

    is shifted, and the same holds for the set nint(mP)(𝟏d,𝟎nd){\mathbb{Z}}^{n}\cap\mathrm{int}(mP)-({\mathbf{1}}_{d},\mathbf{0}_{n-d}) for all mm\in{\mathbb{N}}.

Proof.

First note that whenever PP is antiblocking, then so is mPmP. Thus one only needs to check the first part of both assertions (i),(ii) for PP.

Assertion (i) for PP is straightforward from the definitions of antiblocking and shiftedness.

To prove assertion (ii) for PP, consider the support sets supp(𝐳):={i=1,2,,n:zi0}{\mathrm{supp}}(\mathbf{z}):=\{i=1,2,\ldots,n:z_{i}\neq 0\} for 𝐳P\mathbf{z}\in P. Since PP is convex and lies in 0{\mathbb{R}}_{\geq 0}, whenever 𝐳,𝐳P\mathbf{z},\mathbf{z}^{\prime}\in P, the points 𝐳′′\mathbf{z}^{\prime\prime} in the interior of the line segment between them have supp(𝐳′′)=supp(𝐳)supp(𝐳){\mathrm{supp}}(\mathbf{z}^{\prime\prime})={\mathrm{supp}}(\mathbf{z})\cup{\mathrm{supp}}(\mathbf{z}^{\prime}). Consequently, there exists 𝐳P\mathbf{z}\in P with supp(𝐳)=𝐳Psupp(𝐳).{\mathrm{supp}}(\mathbf{z})=\bigcup_{\mathbf{z}^{\prime}\in P}{\mathrm{supp}}(\mathbf{z}^{\prime}). Reindexing coordinates so that supp(𝐳)={1,2,,e}{\mathrm{supp}}(\mathbf{z})=\{1,2,\ldots,e\}, one concludes that PP contains the ee-dimensional parallelepiped of vectors componentwise between 𝟎\mathbf{0} and 𝐳\mathbf{z}, and also PP is contained in the ee-dimensional coordinate subspace e×{𝟎nd}{\mathbb{R}}^{e}\times\{\mathbf{0}_{n-d}\}. Since PP is dd-dimensional, this forces e=de=d, and the last ndn-d coordinates vanish on all points of PP.

Therefore in the rest of the proof that nint(P)(𝟏d,𝟎nd){\mathbb{Z}}^{n}\cap\mathrm{int}(P)-({\mathbf{1}}_{d},\mathbf{0}_{n-d}) is shifted, it suffices to project away the last ndn-d coordinates which all vanish on PP, and assume d=nd=n. As a full dd-dimensional antiblocking polytope PdP\subset{\mathbb{R}}^{d}, starting with any inequality description

P={𝐳d:𝐳𝟎,A𝐳𝐛}P=\{\mathbf{z}\in{\mathbb{R}}^{d}:\mathbf{z}\geq\mathbf{0},A\mathbf{z}\leq\mathbf{b}\}

where A,𝐛A,\mathbf{b} have all entries in 0{\mathbb{R}}_{\geq 0}, one can describe int(P)\mathrm{int}(P) as

int(P)={𝐳d:𝐳>𝟎,A𝐳<𝐛}.\mathrm{int}(P)=\{\mathbf{z}\in{\mathbb{R}}^{d}:\mathbf{z}>\mathbf{0},A\mathbf{z}<\mathbf{b}\}.

Then the points of dint(P){\mathbb{Z}}^{d}\cap\mathrm{int}(P) have this description:

dint(P)={𝐳d:𝐳𝟏d,A𝐳<𝐛}.{\mathbb{Z}}^{d}\cap\mathrm{int}(P)=\{\mathbf{z}\in{\mathbb{Z}}^{d}:\mathbf{z}\geq{\mathbf{1}}_{d},A\mathbf{z}<\mathbf{b}\}.

Hence the points of dint(P)𝟏d{\mathbb{Z}}^{d}\cap\mathrm{int}(P)-{\mathbf{1}}_{d} have this description, which defines a shifted subset of n{\mathbb{N}}^{n}:

dint(P)𝟏d={𝐳d:𝐳𝟎d,A𝐳<𝐛A𝟏d}.{\mathbb{Z}}^{d}\cap\mathrm{int}(P)-{\mathbf{1}}_{d}=\{\mathbf{z}\in{\mathbb{Z}}^{d}:\mathbf{z}\geq\mathbf{0}_{d},A\mathbf{z}<\mathbf{b}-A{\mathbf{1}}_{d}\}.\qed

Proposition 3.13 lets us re-cast the qq-Ehrhart series for an antiblocking polytope in terms of the following simpler and more classical weight enumerators, involving w𝒵(q)w_{\mathcal{Z}}(q) from (63).

Definition 3.14.

For any lattice polytope PmP\subset{\mathbb{R}}^{m}, define two qq-weight enumerator series

WP(t,q):=m=0wnmP(q)tm, and W¯P(t,q):=m=0wnint(mP)(q)tm.W_{P}(t,q):=\sum_{m=0}^{\infty}w_{{\mathbb{Z}}^{n}\cap mP}(q)\cdot t^{m},\quad\text{ and }\quad\overline{W}_{P}(t,q):=\sum_{m=0}^{\infty}w_{{\mathbb{Z}}^{n}\cap\mathrm{int}(mP)}(q)\cdot t^{m}.

Combining Proposition 3.13, Corollary 3.12, and Proposition 3.3 yields this consequence.

Corollary 3.15.

For any dd-dimensional lattice polytope PnP\subset{\mathbb{R}}^{n} which is antiblocking, one has

(64) EP(t,q)\displaystyle\mathrm{E}_{P}(t,q) =WP(t,q),\displaystyle=W_{P}(t,q),
(65) qdE¯P(t,q)\displaystyle q^{d}\cdot\overline{\mathrm{E}}_{P}(t,q) =W¯P(t,q).\displaystyle=\overline{W}_{P}(t,q).

Classical results now apply to the weight enumerators WP(t,q),W¯P(t,q)W_{P}(t,q),\overline{W}_{P}(t,q), showing that they have rational expressions with predictable properties, for any lattice polytopes PP.

Proposition 3.16.

Let PnP\subset{\mathbb{R}}^{n} be any dd-dimensional lattice polytope, with vertices 𝐯(1),𝐯(2),,𝐯(ν)\mathbf{v}^{(1)},\mathbf{v}^{(2)},\ldots,\mathbf{v}^{(\nu)}.

  • (i)

    Both WP(t,q),W¯P(t,q)W_{P}(t,q),\overline{W}_{P}(t,q) have rational expressions with the same denominator

    WP(t,q)=NP(t,q)i=1ν(1tq|𝐯(i)|) and W¯P(t,q)=N¯P(t,q)i=1ν(1tq|𝐯(i)|)W_{P}(t,q)=\frac{N_{P}(t,q)}{\prod_{i=1}^{\nu}(1-tq^{|\mathbf{v}^{(i)}|})}\quad\text{ and }\quad\overline{W}_{P}(t,q)=\frac{\overline{N}_{P}(t,q)}{\prod_{i=1}^{\nu}(1-tq^{|\mathbf{v}^{(i)}|})}

    and numerators NP(t,q),N¯P(t,q)[t,q]]N_{P}(t,q),\overline{N}_{P}(t,q)\in{\mathbb{Z}}[t,q]].

  • (ii)

    For a lattice dd-simplex PP with vertices {𝐯(i)}i=1,2,,d+1\{\mathbf{v}^{(i)}\}_{i=1,2,\ldots,d+1}, one has these numerators in [t,q]{\mathbb{N}}[t,q]

    NP(t,q)=𝐳n+1Πtzn+1qz1++zn and N¯P(t,q)=𝐳n+1Πopptzn+1qz1++zn,N_{P}(t,q)=\sum_{\mathbf{z}\in{\mathbb{Z}}^{n+1}\cap\Pi}t^{z_{n+1}}q^{z_{1}+\cdots+z_{n}}\quad\text{ and }\quad\overline{N}_{P}(t,q)=\sum_{\mathbf{z}\in{\mathbb{Z}}^{n+1}\cap\Pi^{\mathrm{opp}}}t^{z_{n+1}}q^{z_{1}+\cdots+z_{n}},

    where Π\Pi is the semi-open parallelepiped from (3), and Πopp\Pi^{\mathrm{opp}} its “opposite”, defined by

    Π:={j=1d+1cj(1,𝐯(j)):0ci<1} and Πopp:={j=1d+1cj(1,𝐯(j)):0<ci1}.\Pi:=\left\{\sum_{j=1}^{d+1}c_{j}\cdot(1,\mathbf{v}^{(j)}):0\leq c_{i}<1\right\}\quad\text{ and }\quad\Pi^{\mathrm{opp}}:=\left\{\sum_{j=1}^{d+1}c_{j}\cdot(1,\mathbf{v}^{(j)}):0<c_{i}\leq 1\right\}.
  • (iii)

    The two series WP(t,q),W¯P(t,q)W_{P}(t,q),\overline{W}_{P}(t,q) determine each other via

    W¯P(t,q)=(1)d+1WP(t1,q1).\overline{W}_{P}(t,q)=(-1)^{d+1}W_{P}(t^{-1},q^{-1}).
Proof.

These are all bivariate specializations of results of Stanley on multivariable lattice point enumerators for rational polyhedral cones, implicit in [45], and more explicit in [53, §4.5]. One must apply them to cone(P)n+1\mathrm{cone}(P)\subset{\mathbb{R}}^{n+1} which is defined to be the (d+1)(d+1)-dimensional cone nonnegatively spanned by the vectors {(1,𝐯(j))}j=1,,ν\{(1,\mathbf{v}^{(j)})\}_{j=1,\ldots,\nu}. In variable set 𝐱=(x0,x1,,xn)\mathbf{x}=(x_{0},x_{1},\ldots,x_{n}), Stanley considers

Econe(P)(𝐱):=𝐳cone(P)𝐱𝐳 and E¯cone(P)(𝐱):=𝐳int(cone(P))𝐱𝐳.E_{\mathrm{cone}(P)}(\mathbf{x}):=\sum_{\mathbf{z}\in\mathrm{cone}(P)}\mathbf{x}^{\mathbf{z}}\quad\text{ and }\quad\overline{E}_{\mathrm{cone}(P)}(\mathbf{x}):=\sum_{\mathbf{z}\in\mathrm{int}(\mathrm{cone}(P))}\mathbf{x}^{\mathbf{z}}.

He proves [53, Thm. 4.5.11] that one has rational expressions of the form

(66) Econe(P)(𝐱)=NP(𝐱)i=1ν(1𝐱𝐯(i)) and E¯cone(P)(𝐱)=N¯P(𝐱)i=1ν(1𝐱𝐯(i))E_{\mathrm{cone}(P)}(\mathbf{x})=\frac{N_{P}(\mathbf{x})}{\prod_{i=1}^{\nu}(1-\mathbf{x}^{\mathbf{v}^{(i)}})}\quad\text{ and }\quad\overline{E}_{\mathrm{cone}(P)}(\mathbf{x})=\frac{\overline{N}_{P}(\mathbf{x})}{\prod_{i=1}^{\nu}(1-\mathbf{x}^{\mathbf{v}^{(i)}})}

for some polynomials NP(𝐱),N¯P(𝐱)N_{P}(\mathbf{x}),\overline{N}_{P}(\mathbf{x}) in [𝐱]{\mathbb{Z}}[\mathbf{x}]. He also proves [53, Cor. 4.5.8] that a dd-simplex PP has

(67) NP(𝐱)=𝐳n+1Π𝐱𝐳 and N¯P(𝐱)=𝐳n+1Πopp𝐱𝐳.N_{P}(\mathbf{x})=\sum_{\mathbf{z}\in{\mathbb{Z}}^{n+1}\cap\Pi}\mathbf{x}^{\mathbf{z}}\quad\text{ and }\quad\overline{N}_{P}(\mathbf{x})=\sum_{\mathbf{z}\in{\mathbb{Z}}^{n+1}\cap\Pi^{\mathrm{opp}}}\mathbf{x}^{\mathbf{z}}.

And he shows in [53, Thm. 4.5.14] (often called Stanley’s Reciprocity Theorem) that

(68) EP(x01,x11,,xn1)=(1)d+1E¯P(x0,x1,,xn).E_{P}(x_{0}^{-1},x_{1}^{-1},\ldots,x_{n}^{-1})=(-1)^{d+1}\overline{E}_{P}(x_{0},x_{1},\ldots,x_{n}).

Assertions (i),(ii),(iii) are the specializations at x0=t,x1==xn=qx_{0}=t,x_{1}=\cdots=x_{n}=q of (66),(67),(68). ∎

Corollary 3.17.

Conjecture 1.1 holds for all lattice polytopes PP which are antiblocking.

Proof.

Combining Corollary 3.15 and Proposition 3.16 shows that an antiblocking polytope PP with vertices {𝐯(1),,𝐯(ν)}\{\mathbf{v}^{(1)},\ldots,\mathbf{v}^{(\nu)}\} satisfies Conjecture 1.1 with denominator DP(t,q)=i=1ν(1tq|𝐯(i)|)D_{P}(t,q)=\prod_{i=1}^{\nu}(1-tq^{|\mathbf{v}^{(i)}|}). ∎

Remark 3.18.

See Section 5.6 below for a discussion of an interesting family of antiblocking polytopes mentioned in the Introduction: the chain polytope C𝒫C_{\mathcal{P}} associated to a finite poset 𝒫{\mathcal{P}}. It will be shown there that C𝒫C_{\mathcal{P}} shares the same qq-Ehrhart series as the order polytope O𝒫O_{\mathcal{P}} associated to 𝒫{\mathcal{P}}, generalizing a result of Stanley [50] on their classical Ehrhart series.

Remark 3.19.

Not all lattice polytopes PP are equivalent via Aff(d)\mathrm{Aff}({\mathbb{Z}}^{d}) to antiblocking polytopes. In particular, sometimes gr𝐈(dP){\mathrm{gr}}\,{\mathbf{I}}({\mathbb{Z}}^{d}\cap P) is not a monomial ideal in [𝐱]{\mathbb{R}}[\mathbf{x}], and VdP[𝐲]V_{{\mathbb{Z}}^{d}\cap P}\subset{\mathbb{R}}[\mathbf{y}] has no monomial {\mathbb{R}}-basis. For example, the lattice triangle PP shown here with vertices {(0,0),(2,1),(1,2)}\{(0,0),(2,1),(1,2)\}

\bullet\bullet\bullet\bullet

is equivalent to the second triangle of area 33 in Figure 1, with vertices {(0,0),(1,0),(2,3)}\{(0,0),(1,0),(2,3)\}. It has

EP(t)\displaystyle\mathrm{E}_{P}(t) =1+t+t2(1t)3,\displaystyle=\frac{1+t+t^{2}}{(1-t)^{3}},
EP(t,q)\displaystyle\mathrm{E}_{P}(t,q) =(1+qt)(1+qt+q2t2)(1t)(1q2t)(1q3t2).\displaystyle=\frac{(1+qt)(1+qt+q^{2}t^{2})}{(1-t)(1-q^{2}t)(1-q^{3}t^{2})}.

Via hand calculation or using Macaulay2, one can check that

(69) gr𝐈(2P)=(x12x22,  2x1x2x22,x23)[x1,x2]{\mathrm{gr}}\,{\mathbf{I}}({\mathbb{Z}}^{2}\cap P)=(\,\,x_{1}^{2}-x_{2}^{2},\,\,2x_{1}x_{2}-x_{2}^{2},\,\,x_{2}^{3}\,\,)\subseteq{\mathbb{R}}[x_{1},x_{2}]

and this ideal cannot be generated by monomials. Again hand calculation or Macaulay2 shows that

V𝒵=span{1,y1,y2,y12+y1y2+y22}V_{\mathcal{Z}}=\mathrm{span}_{\mathbb{R}}\{1,\,\,y_{1},y_{2},\,\,y_{1}^{2}+y_{1}y_{2}+y_{2}^{2}\}

which has no {\mathbb{R}}-basis of monomials.

Remark 3.20.

The qq-weight enumerators in Definition 3.14 bear some resemblance to work of Chapoton [11]. He introduced qq-analogues of EP(t)\mathrm{E}_{P}(t) that first require a choice a {\mathbb{Z}}-linear functional λ:\lambda:{\mathbb{Z}}\rightarrow{\mathbb{Z}} which is nonconstant along edges of PP and has λ(𝐳(i))0\lambda(\mathbf{z}^{(i)})\geq 0 for all vertices of PP. Having made such a choice, he defined

Wλ(P,q):=𝐳nPqλ(𝐳) and EhrP,λ(t,q):=m0tmWλ(mP,q).\displaystyle W_{\lambda}(P,q):=\sum_{\mathbf{z}\in{\mathbb{Z}}^{n}\cap P}q^{\lambda(\mathbf{z})}\quad\text{ and }\quad\mathrm{Ehr}_{P,\lambda}(t,q):=\sum_{m\geq 0}t^{m}W_{\lambda}(mP,q).

Therefore Corollary 3.15 shows that if a lattice polytope PP is antiblocking, and happens to have that the functional λ(𝐳):=|𝐳|=z1++zn\lambda(\mathbf{z}):=|\mathbf{z}|=z_{1}+\cdots+z_{n} is nonconstant along its edges, then EhrP,λ(t,q)=EP(t,q)\mathrm{Ehr}_{P,\lambda}(t,q)=\mathrm{E}_{P}(t,q). This qq-analogue is also considered by Adeyemo and Szendrői [1], who calculate it for standard simplices, cross-polytopes and cubes.

3.5. Definition of the equivariant qq-Ehrhart series

We next incorporate symmetries of subgroups of GLn()GL_{n}({\mathbb{Z}}) acting on a lattice polytope. Such groups are often called crystallographic groups.

Definition 3.21.

Let PP be a lattice polytope in n{\mathbb{R}}^{n} which is stable under the action of a finite crystallographic group GGLn()G\subset GL_{n}({\mathbb{Z}}). Define the equivariant qq-Ehrhart series

EPG(t,q):=m=0[VnmP]qtm(=m=0[R(nmP)]qtm)\mathrm{E}^{G}_{P}(t,q):=\sum_{m=0}^{\infty}[V_{{\mathbb{Z}}^{n}\cap mP}]_{q}\cdot t^{m}\qquad\left(=\sum_{m=0}^{\infty}[R({\mathbb{Z}}^{n}\cap mP)]_{q}\cdot t^{m}\right)

where recall [U]q=d0[Ud]qd[U]_{q}=\sum_{d\geq 0}[U_{d}]q^{d} is the class in Rep(G)[[q]]\mathrm{Rep}_{\mathbb{Z}}(G)[[q]] of any graded 𝐤[G]{\mathbf{k}}[G]-module U=d0UdU=\oplus_{d\geq 0}U_{d}. Hence EPG(t,q)\mathrm{E}^{G}_{P}(t,q) lies in the power series ring Rep(G)[[t,q]]\mathrm{Rep}_{\mathbb{Z}}(G)[[t,q]], and even lies in its subring Rep(G)[q][[t]]\mathrm{Rep}_{\mathbb{Z}}(G)[q][[t]].

When q1q\to 1, this series EPG(t,q)\mathrm{E}^{G}_{P}(t,q) specializes to Stapledon’s equivariant Ehrhart series [54] involving the ungraded characters of VmPnV_{mP\cap{\mathbb{Z}}^{n}}, or equivalently the permutation [G]{\mathbb{R}}[G]-modules nmP{\mathbb{Z}}^{n}\cap mP.

Example 3.22.

We return to Example 3.2, where PP is a lattice polytope P1P\subset{\mathbb{R}}^{1}, but now assume it is stable under the action of a nontrivial crystallographic group GG. This implies P=[b,b]P=[-b,b] for some b0b\geq 0 and G=GL1()={±1}G=GL_{1}({\mathbb{Z}})=\{\pm 1\}. One can identify the representation ring

Rep(G)[ϵ]/(ϵ21)=span{1,ϵ},\mathrm{Rep}_{\mathbb{R}}(G)\cong{\mathbb{Z}}[\epsilon]/(\epsilon^{2}-1)=\mathrm{span}_{\mathbb{Z}}\{1,\epsilon\},

where 1,ϵ1,\epsilon denote the isomorphism classes of the one-dimension trivial and nontrivial [G]{\mathbb{R}}[G]-modules, respectively. A calculation using 1mP={mb,mb+1,,mb1,mb}{\mathbb{Z}}^{1}\cap mP=\{-mb,-mb+1,\ldots,mb-1,mb\}, similar to the one in the Introduction, shows that

𝐈(1mP)=(i=mb+mb(xi)),gr𝐈(1mP)=(x2mb+1)S=[x]{\mathbf{I}}({\mathbb{Z}}^{1}\cap mP)=\left(\prod_{i=-mb}^{+mb}(x-i)\right),\quad{\mathrm{gr}}\,{\mathbf{I}}({\mathbb{Z}}^{1}\cap mP)=(x^{2mb+1})\subset S={\mathbb{R}}[x]

and consequently, one has

R(1mP)=S/(x2bm+1)\displaystyle R({\mathbb{Z}}^{1}\cap mP)=S/(x^{2bm+1}) =span{1,x¯,x¯2,,x¯2bm},\displaystyle=\mathrm{span}_{\mathbb{R}}\{1,\bar{x},\bar{x}^{2},\dots,\bar{x}^{2bm}\},
V1mP=ker((y)2bm+1:𝔻𝔻)\displaystyle V_{{\mathbb{Z}}^{1}\cap mP}=\ker\left(\left(\frac{\partial}{\partial y}\right)^{2bm+1}:\mathbb{D}\rightarrow\mathbb{D}\right) =span{1,y,y2,,y2bm}𝔻=[y].\displaystyle=\mathrm{span}_{\mathbb{R}}\{1,y,y^{2},\ldots,y^{2bm}\}\subset\mathbb{D}={\mathbb{R}}[y].

Since G={±1}G=\{\pm 1\} negates the variables x,yx,y in S,𝔻S,\mathbb{D}, one concludes (with some algebra) that

(70) EPG(t,q)\displaystyle\mathrm{E}^{G}_{P}(t,q) =m=0(1+q2+q4++q2mb)tm+m=0(q+q3+q5++q2mb1)ϵtm\displaystyle=\sum_{m=0}^{\infty}(1+q^{2}+q^{4}+\cdots+q^{2mb})t^{m}+\sum_{m=0}^{\infty}(q+q^{3}+q^{5}+\cdots+q^{2mb-1})\cdot\epsilon t^{m}
(71) =11q2[11tq21tq2b+qϵ(11t11tq2b)]=1+t(q2[b1]q2+q[b]q2ϵ)(1t)(1tq2b)\displaystyle=\frac{1}{1-q^{2}}\left[\frac{1}{1-t}-\frac{q^{2}}{1-tq^{2b}}+q\epsilon\left(\frac{1}{1-t}-\frac{1}{1-tq^{2b}}\right)\right]=\frac{1+t\left(q^{2}[b-1]_{q^{2}}+q[b]_{q^{2}}\epsilon\right)}{(1-t)(1-tq^{2b})}

This expression (71) specializes to the non-equvariant series EP(t,q)\mathrm{E}_{P}(t,q) by applying the ring homomorphism Rep(G)\mathrm{Rep}_{\mathbb{R}}(G)\rightarrow{\mathbb{Z}} that sets ϵ=1\epsilon=1, giving an answer consistent with (57) at v=vol1(P)=2bv=\mathrm{vol}_{1}(P)=2b:

EP(t,q)=[EPG(t,q)]ϵ=1=1+t(q2[b1]q2+q[b]q2)(1t)(1tq2b)=1+tq[2b1]q(1t)(1tq2b).\mathrm{E}_{P}(t,q)=\left[\mathrm{E}^{G}_{P}(t,q)\right]_{\epsilon=1}=\frac{1+t\left(q^{2}[b-1]_{q^{2}}+q[b]_{q^{2}}\right)}{(1-t)(1-tq^{2b})}=\frac{1+tq[2b-1]_{q}}{(1-t)(1-tq^{2b})}.

On the other hand, setting q=1q=1 in (71) should also give Stapledon’s equivariant Ehrhart series EPG(t)\mathrm{E}^{G}_{P}(t), which we calculate directly here. The GG-orbit structure permuting

1mP={mb,,1,0,+1,,mb}={0}i=1mb{±i}{\mathbb{Z}}^{1}\cap mP=\{-mb,\ldots,-1,0,+1,\ldots,mb\}=\{0\}\sqcup\bigsqcup_{i=1}^{mb}\{\pm i\}

has one fixed point orbit {0}\{0\} with class 11 in Rep[G]\mathrm{Rep}_{\mathbb{R}}[G] and mbmb free orbits {±i}i=1,2,,mb\{\pm i\}_{i=1,2,\ldots,mb}, each with class 1+ϵ1+\epsilon in Rep[G]\mathrm{Rep}_{\mathbb{R}}[G]. Hence one calculates that

EPG(t):=m=0[1mP]tm=m=0(1+(1+ϵ)mb))tm=11t+(1+ϵ)bt(1t)2=1+t((b1)+bϵ)(1t)2,\mathrm{E}^{G}_{P}(t):=\sum_{m=0}^{\infty}[{\mathbb{Z}}^{1}\cap mP]t^{m}=\sum_{m=0}^{\infty}\left(1+(1+\epsilon)mb)\right)t^{m}=\frac{1}{1-t}+\frac{(1+\epsilon)bt}{(1-t)^{2}}=\frac{1+t((b-1)+b\epsilon)}{(1-t)^{2}},

which agrees with the expression for EPG(t,q)\mathrm{E}^{G}_{P}(t,q) in (71) at q=1q=1.

3.6. Examples: standard simplices

We compute the equivariant qq-Ehrhart series for two families of simplices that carry an action of the symmetric group 𝔖n{\mathfrak{S}}_{n} on nn letters, permuting the standard basis vectors 𝐞1,,𝐞n\mathbf{e}_{1},\dots,\mathbf{e}_{n} in n{\mathbb{R}}^{n}.

Definition 3.23.

The standard (n1)(n-1)-simplex in n{\mathbb{R}}^{n} is

Δn1:=conv{𝐞1,,𝐞n},\Delta^{n-1}:=\mathrm{conv}\{\mathbf{e}_{1},\dots,\mathbf{e}_{n}\},

lying inside the affine subspace of n{\mathbb{R}}^{n} where x1++xn=1x_{1}+\cdots+x_{n}=1. There is also a full nn-dimensional simplex in n{\mathbb{R}}^{n} which is the pyramid Pyr(Δn1)\mathrm{Pyr}(\Delta^{n-1}) having Δn1\Delta^{n-1} as its base, and apex at the origin 𝟎\mathbf{0}:

Pyr(Δn1):=conv{𝟎,𝐞1,,𝐞n}.\mathrm{Pyr}(\Delta^{n-1}):=\mathrm{conv}\{\mathbf{0},\mathbf{e}_{1},\dots,\mathbf{e}_{n}\}.

We compute the equivariant qq-Ehrhart series of Δn1,Pyr(Δn1)\Delta^{n-1},\mathrm{Pyr}(\Delta^{n-1}). For this, it helps to have two facts. The first is an easy lemma on power series F(q)=i0aiqiR[[q]]F(q)=\sum_{i\geq 0}a_{i}q^{i}\in R[[q]] for commutative rings RR, and their truncations to qmq^{\leq m}, defined as these polynomial partial sums in R[q]R[q]:

truncqmF(q):=i=0maiqi.\mathrm{trunc}_{\leq q^{m}}F(q):=\sum_{i=0}^{m}a_{i}q^{i}.
Lemma 3.24.

For any F(q)F(q) in R[[q]]R[[q]], one has m=0tmtruncqmF(q)=F(tq)1t\sum_{m=0}^{\infty}t^{m}\cdot\mathrm{trunc}_{\leq q^{m}}F(q)=\frac{F(tq)}{1-t} in R[[t,q]]R[[t,q]].

The second fact is a formula due to Lusztig and Stanley [47, Prop. 4.11] for the 𝔖n{\mathfrak{S}}_{n}-equivariant Hilbert series of the polynomial ring S=[𝐱]S={\mathbb{R}}[\mathbf{x}]. Recall that the simple [𝔖n]{\mathbb{R}}[{\mathfrak{S}}_{n}]-modules {𝕊λ}\{{\mathbb{S}}^{\lambda}\} are indexed by number partitions λ\lambda of nn (written λn\lambda\vdash n), so that Rep(𝔖n)\mathrm{Rep}_{\mathbb{R}}({\mathfrak{S}}_{n}) has {\mathbb{Z}}-basis {[𝕊λ]:λn}\{[{\mathbb{S}}^{\lambda}]:\lambda\vdash n\}.

Theorem 3.25.

(Lusztig, Stanley) The graded [𝔖n]{\mathbb{R}}[{\mathfrak{S}}_{n}]-module S=[𝐱]S={\mathbb{R}}[\mathbf{x}] has this class in Rep(𝔖n)[[q]]\mathrm{Rep}_{\mathbb{R}}({\mathfrak{S}}_{n})[[q]]:

[S]q:=d=0qd[Sd]=1(1q)(1q2)(1qn)λnfλ(q)[𝕊λ][S]_{q}:=\sum_{d=0}^{\infty}q^{d}[S_{d}]=\frac{1}{(1-q)(1-q^{2})\cdots(1-q^{n})}\sum_{\lambda\vdash n}f^{\lambda}(q)\cdot[{\mathbb{S}}^{\lambda}]

with fλ(q)f^{\lambda}(q) the 𝔖n{\mathfrak{S}}_{n} fake-degree polynomial, having these sum, product expressions [52, Cor. 7.21.5]

(72) fλ(q)=Tqmaj(T)=qb(λ)[n]!qxλ[h(x)]qf^{\lambda}(q)=\sum_{T}q^{\mathrm{maj}(T)}=q^{b(\lambda)}\frac{[n]!_{q}}{\prod_{x\in\lambda}[h(x)]_{q}}

whose notations are explained below.

Here TT in the summation in (72) runs over all standard Young tableaux of shape λ\lambda, and maj(T)\mathrm{maj}(T) is the sum of all entries ii in TT for which i+1i+1 appears weakly southwest of ii (using English notation for tableaux). The qq-factorial is [n]!q:=[n]q[n1]q[2]q[1]q[n]!_{q}:=[n]_{q}[n-1]_{q}\cdots[2]_{q}[1]_{q}. For a partition λ\lambda with \ell parts, we have b(λ):=i=1(i1)λib(\lambda):=\sum_{i=1}^{\ell}(i-1)\lambda_{i}. For a box xx in row (i,j)(i,j) of the Ferrers diagram of λ\lambda (written xλx\in\lambda in the product), the hooklength is h(x):=λi+λj(i+j)+1h(x):=\lambda_{i}+\lambda_{j}^{\prime}-(i+j)+1, with λ\lambda^{\prime} the conjugate partition to λ\lambda.

We first compute the equivariant qq-Ehrhart series for the nn-simplex Pyr(Δn1)n\mathrm{Pyr}(\Delta^{n-1})\subset{\mathbb{R}}^{n}.

Proposition 3.26.

For the nn-simplex P:=Pyr(Δn1)=conv{𝟎,𝐞1,,𝐞n}nP:=\mathrm{Pyr}(\Delta^{n-1})=\mathrm{conv}\{\mathbf{0},\mathbf{e}_{1},\ldots,\mathbf{e}_{n}\}\subset{\mathbb{R}}^{n}, one has

(73) EP𝔖n(t,q)\displaystyle\mathrm{E}_{P}^{{\mathfrak{S}}_{n}}(t,q) =1(1t)i=1n(1tiqi)λnfλ(tq)[𝕊λ],\displaystyle=\frac{1}{(1-t)\cdot\prod_{i=1}^{n}(1-t^{i}q^{i})}\sum_{\lambda\vdash n}f^{\lambda}(tq)\cdot[{\mathbb{S}}^{\lambda}],
(74) EP(t,q)\displaystyle\mathrm{E}_{P}(t,q) =1(1t)(1tq)n.\displaystyle=\frac{1}{(1-t)(1-tq)^{n}}.
Proof.

We start with (73). Note PP and all of its dilates mPmP are antiblocking, with mPmP defined by the inequalities 𝐱0\mathbf{x}\geq 0 and x1++xnmx_{1}+\cdots+x_{n}\leq m. Hence Lemma 3.11 shows that

R(nmP)=S/Sm+1.R({\mathbb{Z}}^{n}\cap mP)=S/S_{\geq m+1}.

Thus the graded [𝔖n]{\mathbb{R}}[{\mathfrak{S}}_{n}]-module R(nmP)R({\mathbb{Z}}^{n}\cap mP) is the same as the permutation module on the monomials of degree at most mm in S=[𝐱]S={\mathbb{R}}[\mathbf{x}]. Therefore in Rep(𝔖n)[[q]]\mathrm{Rep}_{\mathbb{R}}({\mathfrak{S}}_{n})[[q]] one has

[R(nmP)]q=truncqm[S]q.[R({\mathbb{Z}}^{n}\cap mP)]_{q}=\mathrm{trunc}_{q^{\leq m}}[S]_{q}.

Applying Lemma 3.24 then gives the equality marked (*) here

EP𝔖n(t,q)\displaystyle\mathrm{E}^{{\mathfrak{S}}_{n}}_{P}(t,q) :=m=0[R(nmP)]qtm\displaystyle:=\sum_{m=0}^{\infty}[R({\mathbb{Z}}^{n}\cap mP)]_{q}\cdot t^{m}
(75) =()11t[S]qtq=1(1t)i=1m(1tiqi)λnfλ(tq)[𝕊λ],\displaystyle\overset{(*)}{=}\frac{1}{1-t}\cdot[S]_{q\mapsto tq}=\frac{1}{(1-t)\cdot\prod_{i=1}^{m}(1-t^{i}q^{i})}\sum_{\lambda\vdash n}f^{\lambda}(tq)\cdot[{\mathbb{S}}^{\lambda}],

with the last equality substituting qtqq\mapsto tq in the formula from Theorem 3.25. This proves (73).

Although one could deduce (74) from (73), a perhaps simpler path repeats the same argument but replacing [S]q[S]_{q} with the known non-equivariant Hilbert series Hilb(S,q)=1/(1q)n\mathrm{Hilb}(S,q)=1/(1-q)^{n}. ∎

Now it is easier to deal with the equivariant series for the (n1)(n-1)-simplex Δn1n\Delta^{n-1}\subset{\mathbb{R}}^{n}.

Proposition 3.27.

For P:=Δn1=conv{𝐞1,,𝐞n}nP:=\Delta^{n-1}=\mathrm{conv}\{\mathbf{e}_{1},\ldots,\mathbf{e}_{n}\}\subset{\mathbb{R}}^{n}, one has

(76) EP𝔖n(t,q)\displaystyle\mathrm{E}_{P}^{{\mathfrak{S}}_{n}}(t,q) =(1tq)EPyr(P)𝔖n(t,q)=1(1t)i=2n(1tiqi)λnfλ(tq)[𝕊λ]\displaystyle=(1-tq)\cdot\mathrm{E}_{\mathrm{Pyr}(P)}^{{\mathfrak{S}}_{n}}(t,q)=\frac{1}{(1-t)\cdot\prod_{i=2}^{n}(1-t^{i}q^{i})}\sum_{\lambda\vdash n}f^{\lambda}(tq)\cdot[{\mathbb{S}}^{\lambda}]
(77) EP(t,q)\displaystyle\mathrm{E}_{P}(t,q) =(1tq)EPyr(P)(t,q)=1(1t)(1tq)n1.\displaystyle=(1-tq)\cdot\mathrm{E}_{\mathrm{Pyr}(P)}(t,q)=\frac{1}{(1-t)(1-tq)^{n-1}}.
Proof.

We start by identifying gr𝐈(nmP){\mathrm{gr}}\,{\mathbf{I}}({\mathbb{Z}}^{n}\cap mP). Since nmPnmPyr(P){\mathbb{Z}}^{n}\cap mP\subset{\mathbb{Z}}^{n}\cap m\mathrm{Pyr}(P), one has

𝐈(nmP)\displaystyle{\mathbf{I}}({\mathbb{Z}}^{n}\cap mP) 𝐈(nmPyr(P)),\displaystyle\supset{\mathbf{I}}({\mathbb{Z}}^{n}\cap m\mathrm{Pyr}(P)),
gr𝐈(nmP)\displaystyle{\mathrm{gr}}\,{\mathbf{I}}({\mathbb{Z}}^{n}\cap mP) gr𝐈(nmPyr(P))=Sm+1.\displaystyle\supset{\mathrm{gr}}\,{\mathbf{I}}({\mathbb{Z}}^{n}\cap m\mathrm{Pyr}(P))=S_{\geq m+1}.

On the other hand, since mPmP lies in the affine hyperplane x1++xn=mx_{1}+\cdots+x_{n}=m within n{\mathbb{R}}^{n}, one also has x1++xnm𝐈(nmP)x_{1}+\cdots+x_{n}-m\in{\mathbf{I}}({\mathbb{Z}}^{n}\cap mP) and e1:=x1++xngr𝐈(nmP)e_{1}:=x_{1}+\cdots+x_{n}\in{\mathrm{gr}}\,{\mathbf{I}}({\mathbb{Z}}^{n}\cap mP). Consequently,

gr𝐈(nmP)(e1)+Sm+1,{\mathrm{gr}}\,{\mathbf{I}}({\mathbb{Z}}^{n}\cap mP)\supseteq(e_{1})+S_{\geq m+1},

and we claim that this inclusion is actually an equality. To see this, note that the surjection

S/((e1)+Sm+1)S/gr𝐈(nmP)=R(nmP)S/\left((e_{1})+S_{\geq m+1}\right)\twoheadrightarrow S/{\mathrm{gr}}\,{\mathbf{I}}({\mathbb{Z}}^{n}\cap mP)=R({\mathbb{Z}}^{n}\cap mP)

is an isomorphism via dimension-counting: since mPmP is the dilation of a standard (n1)(n-1)-simplex,

dimR(nmP)=#nmP=(m+n1m),\dim_{\mathbb{R}}R({\mathbb{Z}}^{n}\cap mP)=\#{\mathbb{Z}}^{n}\cap mP=\binom{m+n-1}{m},

and if one abbreviates the quotient ring S¯:=S/(e1)[x1,,xn1]\overline{S}:=S/(e_{1})\cong{\mathbb{R}}[x_{1},\ldots,x_{n-1}], then

dimS/((e1)+Sm+1))=dimS¯/S¯m+1=(m+n1m).\dim_{\mathbb{R}}S/\left((e_{1})+S_{\geq m+1})\right)=\dim_{\mathbb{R}}\overline{S}/\overline{S}_{\geq m+1}=\binom{m+n-1}{m}.

From this one concludes that in Rep(𝔖n)[q]\mathrm{Rep}_{\mathbb{R}}({\mathfrak{S}}_{n})[q] one has

[R(nmP)]q=truncqm[S¯]q[R({\mathbb{Z}}^{n}\cap mP)]_{q}=\mathrm{trunc}_{\leq q^{m}}[\overline{S}]_{q}

and hence, applying Lemma 3.24, one has

EP𝔖n(t,q):=m=0[R(nmP)]qtm=11t[S¯]qtq.\mathrm{E}^{{\mathfrak{S}}_{n}}_{P}(t,q):=\sum_{m=0}^{\infty}[R({\mathbb{Z}}^{n}\cap mP)]_{q}t^{m}=\frac{1}{1-t}\cdot[\overline{S}]_{q\mapsto tq}.

On the other hand, we claim that [S¯]q=(1q)[S]q.[\overline{S}]_{q}=(1-q)\cdot[S]_{q}. This holds because e1=x1++xne_{1}=x_{1}+\cdots+x_{n} is an 𝔖{\mathfrak{S}}-invariant nonzero divisor in SS, so that multiplying by e1e_{1} on SS gives rise to an exact sequence of graded [𝔖n]{\mathbb{R}}[{\mathfrak{S}}_{n}]-modules 0S(1)SS¯00\rightarrow S(-1)\rightarrow S\rightarrow\overline{S}\rightarrow 0. Comparing this with (75) then proves (76).

The proof of (77) is again a parallel, but easier computation. ∎

Remark 3.28.

We note here some notationally convenient reformulations of these results, for readers familiar with the ring of symmetric functions Λ=n=0Λn\Lambda=\bigoplus_{n=0}^{\infty}\Lambda_{n} and the Frobenius characteristic isomorphism ΛnRep(𝔖n);\Lambda_{n}\cong\mathrm{Rep}_{\mathbb{R}}({\mathfrak{S}}_{n}); see [38, 44, 52] for more background. One note of caution: multiplication in Rep(𝔖n)\mathrm{Rep}_{\mathbb{R}}({\mathfrak{S}}_{n}) corresponds to the internal or Kronecker product on Λn\Lambda_{n}, not the external or induction product corresponding to the multiplication Λn1×Λn2Λn1+n2\Lambda_{n_{1}}\times\Lambda_{n_{2}}\rightarrow\Lambda_{n_{1}+n_{2}}.

This Frobenius characteristic isomorphism maps the Schur function sλ[𝕊λ]s_{\lambda}\mapsto[{\mathbb{S}}^{\lambda}], and the complete homogeneous symmetric function hn[1]h_{n}\mapsto[1]. Using the plethystic notation, explained in Bergeron [7, Ch. 3], Haglund [27], Loehr and Remmel [36], one can show (see [7, eqn. (7.7)]) that the class [S]q[S]_{q} of the graded [𝔖n]{\mathbb{R}}[{\mathfrak{S}}_{n}]-module SS corresponds to this element of Λn[[q]]\Lambda_{n}[[q]]:

[S]qhn[X+qX+q2X+]=hn[X1q].[S]_{q}\mapsto h_{n}[X+qX+q^{2}X+\cdots]=h_{n}\left[\frac{X}{1-q}\right].

The Lusztig-Stanley Theorem 3.25 expanding this plethysm in Schur functions is discussed in Haglund [27, (1.89)]. Consequently, one can recast Propositions 3.27 and 3.26 plethystically:

EPyrn𝔖n(t,q)=11thn[X1tq]andEΔn1𝔖n(t,q)=1tq1thn[X1tq].\mathrm{E}_{\mathrm{Pyr}^{n}}^{{\mathfrak{S}}_{n}}(t,q)=\frac{1}{1-t}\cdot h_{n}\left[\frac{X}{1-tq}\right]\quad\text{and}\quad\mathrm{E}_{\Delta^{n-1}}^{{\mathfrak{S}}_{n}}(t,q)=\frac{1-tq}{1-t}\cdot h_{n}\left[\frac{X}{1-tq}\right].
Remark 3.29.

The relation EP(t,q)=(1tq)EPyr(P)(t,q)\mathrm{E}_{P}(t,q)=(1-tq)\cdot\mathrm{E}_{\mathrm{Pyr}(P)}(t,q) for P=Δn1P=\Delta^{n-1} that appeared in Propositions 3.26, 3.27 anticipates the behavior of EP(t,q)\mathrm{E}_{P}(t,q) under the pyramid operation PPyr(P)P\mapsto\mathrm{Pyr}(P), and more generally under free joins PQP*Q of lattice polytopes, as described in Theorem 1.3(iii). Pyramids are the special case Pyr(P)=PQ\mathrm{Pyr}(P)=P*Q where QQ is the one-point polytope of dimension zero.

3.7. Examples: cross-polytopes

The cross-polytope or hyperoctahedron nn\lozenge^{n}\subseteq{\mathbb{R}}^{n} is defined by

n:=conv{±𝐞1,,±𝐞n}.\lozenge^{n}:=\mathrm{conv}\{\pm\mathbf{e}_{1},\dots,\pm\mathbf{e}_{n}\}.

Its symmetries are the hyperoctahedral group BnB_{n} of all signed permutation matrices, acting by permuting and negating coordinates in n{\mathbb{R}}^{n}. We first analyze the non-equivariant qq-Ehrhart series for n\lozenge_{n}, and then incorporate the group action.

Proposition 3.30.

The qq-Ehrhart series of the cross-polytope n\lozenge^{n} is given by

(78) En(t,q)=11t(1+qt1q2t)n.E_{\lozenge^{n}}(t,q)=\frac{1}{1-t}\left(\frac{1+qt}{1-q^{2}t}\right)^{n}.
Proof.

Let P:=nP:=\lozenge^{n}. Then for each m0m\geq 0, the lattice points of the dilate mPmP are given by

(79) nmP={𝐳n:|z1|++|zn|m}.{\mathbb{Z}}^{n}\cap mP=\{\mathbf{z}\in{\mathbb{Z}}^{n}\,:\,|z_{1}|+\cdots+|z_{n}|\leq m\}.

We wish to identify the ideal gr𝐈(nmP)S{\mathrm{gr}}\,{\mathbf{I}}({\mathbb{Z}}^{n}\cap m\cdot P)\subset S. For this, it helps to note that every monomial in S=[𝐱]S={\mathbb{R}}[\mathbf{x}] can be expressed uniquely in the form that separates even and odd powers of variables

(80) 𝐱2𝐚𝐱B=x12a1xn2anjBxj\mathbf{x}^{2\mathbf{a}}\cdot\mathbf{x}_{B}=x_{1}^{2a_{1}}\cdots x_{n}^{2a_{n}}\,\,\cdot\,\,\prod_{j\in B}x_{j}

for some pair (𝐚,B)(\mathbf{a},B) with 𝐚n\mathbf{a}\in{\mathbb{N}}^{n} and B[n]B\subseteq[n]. We then have the following claim.

Claim: gr𝐈(nmP){\mathrm{gr}}\,{\mathbf{I}}({\mathbb{Z}}^{n}\cap m\cdot P) is the monomial ideal I:=span{𝐱2𝐚𝐱B:|𝐚|+#B>m}.I:=\mathrm{span}_{\mathbb{R}}\{\mathbf{x}^{2\mathbf{a}}\cdot\mathbf{x}_{B}:|\mathbf{a}|+\#B>m\}.

To verify the Claim, we first show that for any such monomial 𝐱2𝐚𝐱B\mathbf{x}^{2\mathbf{a}}\cdot\mathbf{x}_{B} in II, so |𝐚|+#B>m|\mathbf{a}|+\#B>m, if one defines the set A:=supp(𝐚)={j:aj1}A:={\mathrm{supp}}(\mathbf{a})=\{j:a_{j}\geq 1\}, then 𝐱2𝐚𝐱B\mathbf{x}^{2\mathbf{a}}\cdot\mathbf{x}_{B} is divisible by

τ(f)=jABxj2aj1jBxj2aj+1\tau(f)=\prod_{j\in A\setminus B}x_{j}^{2a_{j}-1}\prod_{j\in B}x_{j}^{2a_{j}+1}

where ff is the following polynomial in 𝐈(nmP){\mathbf{I}}({\mathbb{Z}}^{n}\cap mP):

f(𝐱):=jABij=(aj1)+(aj1)(xjij)jBij=aj+aj(xjij).f(\mathbf{x}):=\prod_{j\in A\setminus B}\,\,\prod_{i_{j}=-(a_{j}-1)}^{+(a_{j}-1)}(x_{j}-i_{j})\cdot\prod_{j\in B}\,\,\prod_{i_{j}=-a_{j}}^{+a_{j}}(x_{j}-i_{j}).

To see ff has the appropriate vanishing to lie in 𝐈(nmP){\mathbf{I}}({\mathbb{Z}}^{n}\cap mP), note that for any 𝐳n\mathbf{z}\in{\mathbb{Z}}^{n} where f(𝐳)0f(\mathbf{z})\neq 0, each coordinate zjz_{j} with jABj\in A\setminus B must lie in [(aj1),+(aj1)]{\mathbb{Z}}\setminus[-(a_{j}-1),+(a_{j}-1)], and hence have |zj|aj|z_{j}|\geq a_{j}; similarly, each coordinate zjz_{j} with jBj\in B must lie in [aj,+aj]{\mathbb{Z}}\setminus[-a_{j},+a_{j}], and hence have |zj|aj+1|z_{j}|\geq a_{j}+1 But this shows that 𝐳nmP\mathbf{z}\not\in{\mathbb{Z}}^{n}\cap mP, since

|𝐳|=j=1n|zi|jABaj+jB(aj+1)=|𝐚|+#B>m.|\mathbf{z}|=\sum_{j=1}^{n}|z_{i}|\geq\sum_{j\in A\setminus B}a_{j}+\sum_{j\in B}(a_{j}+1)=|\mathbf{a}|+\#B>m.

On the other hand, nmP{\mathbb{Z}}^{n}\cap mP has a bijection to the complementary set of monomials

nmP={𝐳n:i=1n|zi|m}{𝐱2𝐚𝐱B:|𝐚|+#Bm},{\mathbb{Z}}^{n}\cap mP=\{\mathbf{z}\in{\mathbb{Z}}^{n}:\sum_{i=1}^{n}|z_{i}|\leq m\}\quad\longleftrightarrow\quad\{\mathbf{x}^{2\mathbf{a}}\cdot\mathbf{x}_{B}:|\mathbf{a}|+\#B\leq m\},

sending 𝐳𝐱2𝐚𝐱B\mathbf{z}\longmapsto\mathbf{x}^{2\mathbf{a}}\cdot\mathbf{x}_{B} with B:={j:zj<0}B:=\{j:z_{j}<0\} and

aj:={zj if zj0,|zj|1 if zj<0.a_{j}:=\begin{cases}z_{j}&\text{ if }z_{j}\geq 0,\\ |z_{j}|-1&\text{ if }z_{j}<0.\end{cases}

The inverse bijection sends 𝐱2𝐚𝐱B𝐳\mathbf{x}^{2\mathbf{a}}\cdot\mathbf{x}_{B}\longmapsto\mathbf{z} defined by zj:=ajz_{j}:=a_{j} for jBj\not\in B and zj=(aj+1)z_{j}=-(a_{j}+1) for jBj\in B. This shows the inclusion gr𝐈(nmP)I{\mathrm{gr}}\,{\mathbf{I}}({\mathbb{Z}}^{n}\cap mP)\supseteq I is an equality, since the surjection

R(nmP)=S/gr𝐈(nmP)S/IR({\mathbb{Z}}^{n}\cap mP)=S/{\mathrm{gr}}\,{\mathbf{I}}({\mathbb{Z}}^{n}\cap m\cdot P)\twoheadrightarrow S/I

must be an isomorphism via dimension-counting.

To calculate EP(t,q)\mathrm{E}_{P}(t,q), it helps to recast the unique expressions in (80) as a graded {\mathbb{R}}-vector space isomorphism. Define the polynomial subalgebra [𝐱2]=[x12,,xn2]{\mathbb{R}}[\mathbf{x}^{2}]={\mathbb{R}}[x_{1}^{2},\ldots,x_{n}^{2}] within S=[𝐱]S={\mathbb{R}}[\mathbf{x}], and introduce the {\mathbb{R}}-linear subspace USU\subset S which is spanned by the squarefree monomials, that is, U:=span{𝐱B:B[n]}U:=\mathrm{span}_{\mathbb{R}}\{\mathbf{x}_{B}:B\subseteq[n]\}. One then has the following graded {\mathbb{R}}-vector space isomorphism:

(81) [𝐱2]US𝐱2𝐚𝐱B𝐱2𝐚𝐱B.\begin{array}[]{rcl}{\mathbb{R}}[\mathbf{x}^{2}]\,\,\otimes_{\mathbb{R}}\,\,U&\longrightarrow&S\\ \mathbf{x}^{2\mathbf{a}}\otimes\mathbf{x}_{B}&\longmapsto&\mathbf{x}^{2\mathbf{a}}\cdot\mathbf{x}_{B}.\end{array}

Endow the tensor product on the left with a bigrading or 2{\mathbb{N}}^{2}-grading in which

deg2(𝐱2𝐚𝐱B)=(|𝐚|,#B).\deg_{{\mathbb{N}}^{2}}(\mathbf{x}^{2\mathbf{a}}\otimes\mathbf{x}_{B})=(|\mathbf{a}|,\#B).

Then the bigraded Hilbert series in variables (q1,q2)(q_{1},q_{2}) that tracks 𝐱2𝐚𝐱B\mathbf{x}^{2\mathbf{a}}\otimes\mathbf{x}_{B} via q1|𝐚|q2#Bq_{1}^{|\mathbf{a}|}q_{2}^{\#B} is

Hilb2([𝐱2]U,q1,q2)=(1+q21q1)n.\mathrm{Hilb}_{{\mathbb{N}}^{2}}({\mathbb{R}}[\mathbf{x}^{2}]\otimes_{\mathbb{R}}U,q_{1},q_{2})=\left(\frac{1+q_{2}}{1-q_{1}}\right)^{n}.

To recover the usual {\mathbb{N}}-grading, tracking 𝐱2𝐚𝐱B\mathbf{x}^{2\mathbf{a}}\otimes\mathbf{x}_{B} via q2|𝐚|+#Bq^{2|\mathbf{a}|+\#B}, one must set q1=q2q_{1}=q^{2} and q2=qq_{2}=q.

On the other hand, our analysis above shows that the map (81), followed by the quotient map SS/IR(nmP)S\twoheadrightarrow S/I\cong R({\mathbb{Z}}^{n}\cap mP), induces a graded {\mathbb{R}}-vector space isomorphism

(82) ([𝐱2]U)q1aq2b witha+bmR(nmP).\left({\mathbb{R}}[\mathbf{x}^{2}]\,\,\otimes_{\mathbb{R}}\,\,U\right)_{\begin{subarray}{c}\leq q_{1}^{a}q_{2}^{b}\text{ with}\\ a+b\leq m\end{subarray}}\longrightarrow R({\mathbb{Z}}^{n}\cap mP).

Consequently, using Lemma 3.24 at the equality labeled (*) below, one has

EP(t,q):=m=0tmHilb(R(nmP),q)\displaystyle\mathrm{E}_{P}(t,q):=\sum_{m=0}^{\infty}t^{m}\cdot\mathrm{Hilb}(R({\mathbb{Z}}^{n}\cap mP),q) =[m=0tmtruncq1aq2b witha+bmHilb([𝐱2]U,q1,q2)]q1q2q2q\displaystyle=\left[\sum_{m=0}^{\infty}t^{m}\cdot\mathrm{trunc}_{\begin{subarray}{c}\leq q_{1}^{a}q_{2}^{b}\text{ with}\\ a+b\leq m\end{subarray}}\mathrm{Hilb}({\mathbb{R}}[\mathbf{x}^{2}]\otimes_{\mathbb{R}}U,q_{1},q_{2})\right]_{\begin{subarray}{c}q_{1}\mapsto q^{2}\\ q_{2}\mapsto q\end{subarray}}
=()[11t(1+tq21tq1)n]q1q2q2q=11t(1+tq1tq2)n.\displaystyle\overset{(*)}{=}\left[\frac{1}{1-t}\left(\frac{1+tq_{2}}{1-tq_{1}}\right)^{n}\right]_{\begin{subarray}{c}q_{1}\mapsto q^{2}\\ q_{2}\mapsto q\end{subarray}}=\frac{1}{1-t}\left(\frac{1+tq}{1-tq^{2}}\right)^{n}.\qed

To enhance Proposition 3.30 to a BnB_{n}-equivariant calculation, one must recall the parametrization of simple [Bn]{\mathbb{R}}[B_{n}]-modules, e.g., from Geissinger and Kinch [22], Macdonald [38, Ch. 1, App. B]. The simple [Bn]{\mathbb{R}}[B_{n}]-modules {𝕊(λ+,λ)}(λ+,λ)\{{\mathbb{S}}^{(\lambda^{+},\lambda^{-})}\}_{(\lambda^{+},\lambda^{-})} are indexed by ordered pairs of partitions

(λ+,λ) where |λ+|=n+,|λ|=n with n++n=n.(\lambda^{+},\lambda^{-})\text{ where }|\lambda^{+}|=n_{+},\,\,|\lambda|=n_{-}\text{ with }n_{+}+n_{-}=n.

One can construct 𝕊(λ+,λ){\mathbb{S}}^{(\lambda^{+},\lambda^{-})} using the simple [𝔖n]{\mathbb{R}}[{\mathfrak{S}}_{n}]-modules {𝕊μ}μn\{{\mathbb{S}}^{\mu}\}_{\mu\vdash n} as follows. Introduce

  • the operation of induction

    (U+,U)(U+U)Bn+×BnBn,(U_{+},U_{-})\longmapsto\left(U_{+}\otimes U_{-}\right)\uparrow_{B_{n_{+}}\times B_{n_{-}}}^{B_{n}},

    for any pairs U+,UU_{+},U_{-} of [Bn+],[Bn]{\mathbb{R}}[B_{n_{+}}],{\mathbb{R}}[B_{n_{-}}]-modules,

  • the operation of inflation VVV\longmapsto V\Uparrow of [𝔖n]{\mathbb{R}}[{\mathfrak{S}}_{n}]-modules VV to [Bn]{\mathbb{R}}[B_{n}]-modules, by precomposing with the group quotient map π:Bn𝔖n\pi:B_{n}\longrightarrow{\mathfrak{S}}_{n} that ignores the ±\pm signs, and

  • the one-dimensional character χ±:Bn{±1}\chi_{\pm}:B_{n}\rightarrow\{\pm 1\} sending a signed permutation matrix ww to the product of its ±1\pm 1 signs, that is, χ±(w):=det(w)/det(π(w))\chi_{\pm}(w):=\det(w)/\det(\pi(w)).

Then starting with the simple [𝔖n]{\mathbb{R}}[{\mathfrak{S}}_{n}]-modules {𝕊μ}\{{\mathbb{S}}^{\mu}\}, one builds the [Bn]{\mathbb{R}}[B_{n}]-module 𝕊(λ+,λ){\mathbb{S}}^{(\lambda^{+},\lambda^{-})} as follows:

𝕊(λ+,λ):=(𝕊λ+χ±(𝕊λ))Bn+×BnBn.{\mathbb{S}}^{(\lambda^{+},\lambda^{-})}:=\left(\quad{\mathbb{S}}^{\lambda^{+}}\Uparrow\qquad\otimes\qquad\chi_{\pm}\otimes({\mathbb{S}}^{\lambda^{-}}\Uparrow)\quad\right)\big{\uparrow}_{B_{n_{+}}\times B_{n_{-}}}^{B_{n}}.
Proposition 3.31.

For the cross-polytope P:=nnP:=\lozenge^{n}\subset{\mathbb{R}}^{n}, one has in Rep[Bn][q][[t]]\mathrm{Rep}_{\mathbb{R}}[B_{n}][q][[t]]

EPBn(t,q)=1(1t)i=1n(1tiq2i)(λnfλ(tq2)[𝕊(λ,)])(i=0n(tq)i[𝕊((ni),(i))])\mathrm{E}_{P}^{B_{n}}(t,q)=\frac{1}{(1-t)\cdot\prod_{i=1}^{n}(1-t^{i}q^{2i})}\left(\sum_{\lambda\vdash n}f^{\lambda}(tq^{2})\cdot[{\mathbb{S}}^{(\lambda,\varnothing)}]\right)\left(\sum_{i=0}^{n}(tq)^{i}\cdot[{\mathbb{S}}^{((n-i),(i))}]\right)
Proof.

The group BnB_{n} acts on S=[𝐱]S={\mathbb{R}}[\mathbf{x}] by permuting and negating the variables x1,,xnx_{1},\ldots,x_{n}. As the isomorphism (82) is also an isomorphism of graded [Bn]{\mathbb{R}}[B_{n}]-modules, the key is to calculate the class

[[𝐱2]U]q1,q2=[[𝐱2]]q1[U]q2\left[{\mathbb{R}}[\mathbf{x}^{2}]\otimes_{\mathbb{R}}U\right]_{q_{1},q_{2}}=\left[{\mathbb{R}}[\mathbf{x}^{2}]\right]_{q_{1}}\cdot\left[U\right]_{q_{2}}

within the representation ring Rep[Bn][[q1,q2]]\mathrm{Rep}_{\mathbb{R}}[B_{n}][[q_{1},q_{2}]] of 2{\mathbb{N}}^{2}-graded [Bn]{\mathbb{R}}[B_{n}]-modules.

For the right tensor factor U=span{𝐱B:B[n]}SU=\mathrm{span}_{\mathbb{R}}\{\mathbf{x}_{B}:B\subseteq[n]\}\subset S, we claim that its ithi^{th}-graded component UiU_{i} carries the simple [Bn]{\mathbb{R}}[B_{n}]-module 𝕊((ni),(i)){\mathbb{S}}^{((n-i),(i))}. This is because it is a direct sum of the (ni)\binom{n}{i} lines which are the BnB_{n}-images of the line L:=x1x2xiL:={\mathbb{R}}\cdot x_{1}x_{2}\cdots x_{i}. This line LL is stabilized setwise by the subgroup Bni×BiB_{n-i}\times B_{i}, where the BniB_{n-i} factor acts trivially and the BiB_{i} factor acts via χ±\chi_{\pm}. Hence

[U]q2=i=0nq2i[𝕊((ni),(i))].[U]_{q_{2}}=\sum_{i=0}^{n}q_{2}^{i}\cdot[{\mathbb{S}}^{((n-i),(i))}].

To analyze [𝐱2]{\mathbb{R}}[\mathbf{x}^{2}] as a 𝔖[Bn]{\mathbb{R}}{\mathfrak{S}}[B_{n}]-module, note that since all variables xix_{i} appear squared as xi2x_{i}^{2}, the sign changes in BnB_{n} have no effect; BnB_{n} acts via inflation through the surjection π:Bn𝔖n\pi:B_{n}\rightarrow{\mathfrak{S}}_{n}. Consequently, one can obtain the class of the graded [Bn]{\mathbb{R}}[B_{n}]-module [𝐱2]{\mathbb{R}}[\mathbf{x}^{2}] from that of the graded [𝔖n]{\mathbb{R}}[{\mathfrak{S}}_{n}]-module S=[𝐱]S={\mathbb{R}}[\mathbf{x}] given in Theorem 3.25, simply by applying the inflation map

[𝕊λ][𝕊λ]=[𝕊(λ,)].[{\mathbb{S}}^{\lambda}]\mapsto[{\mathbb{S}}^{\lambda}\Uparrow]=[{\mathbb{S}}^{(\lambda,\varnothing)}].

The upshot is that

[[𝐱2]U]q1,q2=[[𝐱2]]q1[U]q2=(λnfλ(q1)[𝕊(λ,)]i=1n(1q1i))(i=0nq2i[𝕊((ni),(i))]).\left[{\mathbb{R}}[\mathbf{x}^{2}]\otimes_{\mathbb{R}}U\right]_{q_{1},q_{2}}=\left[{\mathbb{R}}[\mathbf{x}^{2}]\right]_{q_{1}}\cdot\left[U\right]_{q_{2}}=\left(\frac{\sum_{\lambda\vdash n}f^{\lambda}(q_{1})\cdot[{\mathbb{S}}^{(\lambda,\varnothing)}]}{\prod_{i=1}^{n}(1-q_{1}^{i})}\right)\cdot\left(\sum_{i=0}^{n}q_{2}^{i}\cdot[{\mathbb{S}}^{((n-i),(i))}]\right).

Finally, as in the proof of Proposition 3.30, EPBn(t,q)\mathrm{E}^{B_{n}}_{P}(t,q) is obtained from [[𝐱2]U]q1,q2\left[{\mathbb{R}}[\mathbf{x}^{2}]\otimes_{\mathbb{R}}U\right]_{q_{1},q_{2}} upon multiplying by 11t\frac{1}{1-t} and replacing q1tq2q_{1}\mapsto tq^{2} and q2tqq_{2}\mapsto tq. ∎

4. Minkowski closure and the proof of Theorem 1.4

Recall from the Introduction that we hope to approach Conjecture 1.1 through the new harmonic algebra P{\mathcal{H}}_{P} of a lattice polytope defined in Section 5 below. The existence of this algebra structure relies on Theorem 1.4, asserting that for finite point loci 𝒵,𝒵𝐤n\mathcal{Z},\mathcal{Z}^{\prime}\subset{\mathbf{k}}^{n} (such as 𝒵=nmP\mathcal{Z}={\mathbb{Z}}^{n}\cap mP and 𝒵=nmPn\mathcal{Z}^{\prime}={\mathbb{Z}}^{n}\cap m^{\prime}P\subset{\mathbb{R}}^{n}), their harmonic spaces always satisfy

V𝒵V𝒵V𝒵+𝒵.V_{\mathcal{Z}}\cdot V_{\mathcal{Z}^{\prime}}\subseteq V_{\mathcal{Z}+\mathcal{Z}^{\prime}}.

The goal of this section is to prove this result. The first two subsections collect some preparatory material. This includes broadening the notion of the perp II^{\perp} or Macaulay inverse system to allow not only homogeneous ideals IS=𝐤[𝐱]I\subset S={\mathbf{k}}[\mathbf{x}], but arbitrary ideals.

4.1. Vanishing ideals for finite point loci

For 𝒵𝐤n\mathcal{Z}\subset{\mathbf{k}}^{n} with 𝐤{\mathbf{k}} a field, the vanishing ideal is

I(𝒵):={f(𝐱)𝐤[𝐱]:f(𝐳)=0 for all 𝐳𝒵}.I(\mathcal{Z}):=\{f(\mathbf{x})\in{\mathbf{k}}[\mathbf{x}]:f(\mathbf{z})=0\text{ for all }\mathbf{z}\in\mathcal{Z}\}.

It is convenient to have a concrete generating set for I(𝒵)I(\mathcal{Z}) for 𝒵\mathcal{Z} finite, even if it has redundant generators. The following proposition is well-known, but perhaps hard to find in the literature.

Lemma 4.1.

For any field 𝐤{\mathbf{k}} and finite subset 𝒵𝐤n\mathcal{Z}\subset{\mathbf{k}}^{n}, its vanishing ideal has these descriptions:

(83) I(𝒵)\displaystyle I(\mathcal{Z}) =𝐳𝒵(x1z1,,xnzn)\displaystyle=\bigcap_{\mathbf{z}\in\mathcal{Z}}(x_{1}-z_{1},\ldots,x_{n}-z_{n})
(84) =𝐳𝒵(x1z1,,xnzn)\displaystyle=\prod_{\mathbf{z}\in\mathcal{Z}}(x_{1}-z_{1},\ldots,x_{n}-z_{n})
(85) =(𝐳𝒵(xp(𝐳)zp(𝐳)): all functions p:𝒵[n])\displaystyle=\left(\prod_{\mathbf{z}\in\mathcal{Z}}(x_{p(\mathbf{z})}-z_{p(\mathbf{z})}):\text{ all functions }p:\mathcal{Z}\rightarrow[n]\right)
Proof.

When #𝒵=1\#\mathcal{Z}=1 so that 𝒵={𝐳}\mathcal{Z}=\{\mathbf{z}\}, the assertions all hold, and I({𝐳})I(\{\mathbf{z}\}) is the maximal ideal (x1z1,,xnzn)(x_{1}-z_{1},\ldots,x_{n}-z_{n}). From this, (83) follows by definition.

Equality (84) then follows by induction on #𝒵\#\mathcal{Z}, once we check that the two ideals I=I({𝐳})I=I(\{\mathbf{z}\}) and I=I(𝒵{𝐳})I^{\prime}=I(\mathcal{Z}\setminus\{\mathbf{z}\}) are coprime in the sense that 1I+I1\in I+I^{\prime}: this implies the inclusion IIIII\cap I^{\prime}\supseteq I\cdot I^{\prime} becomes an equality. Coprimeness of I,II,I^{\prime} follows from multivariate Lagrange interpolation (see e.g. [31, top of p. 13]) which provides the existence of a polynomial f(𝐱)f(\mathbf{x}) that has f(𝐳)=1f(\mathbf{z})=1 and f(𝐳)=0f(\mathbf{z}^{\prime})=0 for all 𝐳𝒵{𝐳}\mathbf{z}^{\prime}\in\mathcal{Z}\setminus\{\mathbf{z}\}, so f(𝐱)If(\mathbf{x})\in I^{\prime}: in the quotient ring 𝐤[𝐱]/I𝐤{\mathbf{k}}[\mathbf{x}]/I\cong{\mathbf{k}}, one has 1f(𝐱)modI1\equiv f(\mathbf{x})\bmod I, and hence 1I+I1\in I+I^{\prime}.

The equality (85) also follows by induction on #𝒵\#\mathcal{Z}, since the product III\cdot I^{\prime} of two ideals generated as I=(fp)p=1,2,,I=(fq)q=1,2,I=(f_{p})_{p=1,2,\ldots},I^{\prime}=(f^{\prime}_{q})_{q=1,2,\ldots} can be generated as II=(fpfq)p,q=1,2,I\cdot I^{\prime}=(f_{p}f^{\prime}_{q})_{p,q=1,2,\ldots}. ∎

4.2. Harmonic spaces for inhomogeneous ideals: completions and exponentials

It will be much easier to identify the harmonic spaces 𝐈(𝒵){\mathbf{I}}(\mathcal{Z})^{\perp} of the inhomogeneous ideals 𝐈(𝒵)S=[𝐱]{\mathbf{I}}(\mathcal{Z})\subset S={\mathbb{R}}[\mathbf{x}], rather than their homogeneous deformations gr𝐈(𝒵){\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}). However, the harmonic spaces II^{\perp} for inhomogeneous ideals I𝐤[𝐱]I\subset{\mathbf{k}}[\mathbf{x}] naturally live in the power series completion [[𝐲]]{\mathbb{R}}[[\mathbf{y}]] of [𝐲]{\mathbb{R}}[\mathbf{y}], or more generally, a completion 𝔻^𝐤(𝐲)\hat{\mathbb{D}}_{\mathbf{k}}(\mathbf{y}) of the divided power algebra 𝔻𝐤(𝐲)\mathbb{D}_{\mathbf{k}}(\mathbf{y}). Within these completions, the harmonic spaces 𝐈(𝒵){\mathbf{I}}(\mathcal{Z})^{\perp} will turn out to have a simple basis of “exponentials” indexed by 𝐳𝒵\mathbf{z}\in\mathcal{Z}; see Lemma 4.6 below.

Recall the set-up from Sections 2.2, 2.3 for harmonic spaces of homogeneous ideals in S=𝐤[𝐱]S={\mathbf{k}}[\mathbf{x}]. For 𝐤{\mathbf{k}} a characteristic zero field, consider the polynomial algebra

𝔻:=𝐤[𝐲]=𝐤[y1,,yn] with 𝐤-basis {𝐲𝐚:𝐚n}.\mathbb{D}:={\mathbf{k}}[\mathbf{y}]={\mathbf{k}}[y_{1},\ldots,y_{n}]\text{ with }{\mathbf{k}}\text{-basis }\{\mathbf{y}^{\mathbf{a}}:\mathbf{a}\in{\mathbb{N}}^{n}\}.

More generally, over any field 𝐤{\mathbf{k}} or any commutative ring with 11, consider the divided power algebra

𝔻:=𝔻𝐤(𝐲) with 𝐤-basis {𝐲(𝐚)=y1(a1)yn(an):𝐚n}, where 𝐲(𝐚)𝐲(𝐛)=i=1n(ai+biai)𝐲(𝐚+𝐛).\mathbb{D}:=\mathbb{D}_{\mathbf{k}}(\mathbf{y})\text{ with }{\mathbf{k}}\text{-basis }\{\mathbf{y}^{(\mathbf{a})}=y_{1}^{(a_{1})}\cdots y_{n}^{(a_{n})}:\mathbf{a}\in{\mathbb{N}}^{n}\},\,\,\text{ where }\mathbf{y}^{(\mathbf{a})}\mathbf{y}^{(\mathbf{b})}=\prod_{i=1}^{n}\binom{a_{i}+b_{i}}{a_{i}}\mathbf{y}^{(\mathbf{a}+\mathbf{b})}.

making the identification y1(a1)yn(an):=𝐲𝐚a1!an!y_{1}^{(a_{1})}\cdots y_{n}^{(a_{n})}:=\frac{\mathbf{y}^{\mathbf{a}}}{a_{1}!\cdots a_{n}!} whenever 𝐤{\mathbf{k}} has characteristic zero. One has an SS-module structure on 𝔻\mathbb{D} given by :S×𝔻𝔻\odot:S\times\mathbb{D}\rightarrow\mathbb{D} where xix_{i} acts on 𝔻\mathbb{D} as the derivation yi\frac{\partial}{\partial y_{i}} (so that xiyj=δijx_{i}\odot y_{j}=\delta_{ij}), with these formulas in the characteristic zero and arbitrary ring cases:

𝐱𝐚𝐲𝐛\displaystyle\mathbf{x}^{\mathbf{a}}\odot\mathbf{y}^{\mathbf{b}} ={i=1nbi!(biai)!𝐲𝐛𝐚 if aibi for i=1,,n,0 otherwise.\displaystyle=\begin{cases}\prod_{i=1}^{n}\frac{b_{i}!}{(b_{i}-a_{i})!}\cdot\mathbf{y}^{\mathbf{b}-\mathbf{a}}&\text{ if }a_{i}\leq b_{i}\text{ for }i=1,\ldots,n,\\ 0&\text{ otherwise.}\end{cases}
𝐱𝐚𝐲(𝐛)\displaystyle\mathbf{x}^{\mathbf{a}}\odot\mathbf{y}^{(\mathbf{b})} ={𝐲(𝐛𝐚) if aibi for i=1,,n,0 otherwise.\displaystyle=\begin{cases}\mathbf{y}^{(\mathbf{b}-\mathbf{a})}&\text{ if }a_{i}\leq b_{i}\text{ for }i=1,\ldots,n,\\ 0&\text{ otherwise.}\end{cases}

This leads to a 𝐤{\mathbf{k}}-bilinear pairing ,:S×𝔻𝐤\langle-,-\rangle:S\times\mathbb{D}\rightarrow{\mathbf{k}} defined by

(86) f(𝐱),g(𝐲):=the constant term of fg.\langle f(\mathbf{x}),g(\mathbf{y})\rangle:=\text{the constant term of $f\odot g$}.

This ,\langle-,-\rangle pairs the 𝐤{\mathbf{k}}-bases {𝐱𝐚}𝐚n and {𝐲(𝐚)}𝐚n\{\mathbf{x}^{\mathbf{a}}\}_{\mathbf{a}\in{\mathbb{N}}^{n}}\text{ and }\left\{\mathbf{y}^{(\mathbf{a})}\right\}_{\mathbf{a}\in{\mathbb{N}}^{n}} as 𝐱𝐚,𝐲(𝐛)=δ𝐚,𝐛\langle\mathbf{x}^{\mathbf{a}},\mathbf{y}^{(\mathbf{b})}\rangle=\delta_{\mathbf{a},\mathbf{b}}, giving a perfect pairing in each degree, identifying 𝔻dSd\mathbb{D}_{d}\cong S_{d}^{*} and 𝔻dSd\mathbb{D}_{\leq d}\cong S_{\leq d}^{*}, for all d0d\geq 0. In other words, S,𝔻S,\mathbb{D} are what are sometimes called graded (or restricted) 𝐤{\mathbf{k}}-duals.

When working with inhomogeneous ideals IS=𝐤[𝐱]I\subseteq S={\mathbf{k}}[\mathbf{x}], we will include 𝔻\mathbb{D} in a larger ring 𝔻^=lim𝔻m\hat{\mathbb{D}}=\varprojlim\mathbb{D}_{\leq m} which is the inverse limit of the projections 𝔻/𝔻m𝔻/𝔻m1\mathbb{D}/\mathbb{D}_{\geq m}\twoheadrightarrow\mathbb{D}/\mathbb{D}_{\geq m-1}. In other words, 𝔻^={𝐚nc𝐚𝐲(𝐚):c𝐚𝐤}\hat{\mathbb{D}}=\{\sum_{\mathbf{a}\in{\mathbb{N}}^{n}}c_{\mathbf{a}}\mathbf{y}^{(\mathbf{a})}:c_{\mathbf{a}}\in{\mathbf{k}}\} with multiplication defined 𝐤{\mathbf{k}}-linearly extending the rule in (35). We can therefore extend the \odot pairing and SS-module structure to 𝔻^\hat{\mathbb{D}} to :S×𝔻^𝔻^\odot:S\times\hat{\mathbb{D}}\rightarrow\hat{\mathbb{D}} via fg:=(f)(g),f\odot g:=\partial(f)(g), and extend the 𝐤{\mathbf{k}}-bilinear pairing

(87) ,:S×𝔻^𝐤\langle-,-\rangle:S\times\hat{\mathbb{D}}\rightarrow{\mathbf{k}}

via the same formula in which f,g\langle f,g\rangle is the constant term of fgf\odot g. This pairing ,\langle-,-\rangle identifies 𝔻^\hat{\mathbb{D}} isomorphically with the (unrestricted) 𝐤{\mathbf{k}}-linear dual space:

S:=Hom𝐤(S,𝐤)𝔻^φ𝐚nφ(𝐱𝐚)y(𝐚)..\begin{array}[]{rcl}S^{*}:=\mathrm{Hom}_{\mathbf{k}}(S,{\mathbf{k}})&\longrightarrow&\hat{\mathbb{D}}\\ \varphi&\longmapsto&\displaystyle\sum_{\mathbf{a}\in{\mathbb{N}}^{n}}\varphi(\mathbf{x}^{\mathbf{a}})\cdot y^{(\mathbf{a})}.\end{array}.

As a consequence, for any subspace WSW\subset S, its annihilator or perp space

W:={g(𝐲)𝔻^:f(𝐱),g(𝐲)=0 for all f(𝐱)W}W^{\perp}:=\{g(\mathbf{y})\in\hat{\mathbb{D}}:\langle f(\mathbf{x}),g(\mathbf{y})\rangle=0\text{ for all }f(\mathbf{x})\in W\}

has a 𝐤{\mathbf{k}}-linear isomorphism

W(S/W):=Hom𝐤(S/W,𝐤)g(𝐲),g(𝐲)\begin{array}[]{rcl}W^{\perp}&\longrightarrow&(S/W)^{*}:=\mathrm{Hom}_{\mathbf{k}}(S/W,{\mathbf{k}})\\ g(\mathbf{y})&\longmapsto&\langle-,g(\mathbf{y})\rangle\end{array}

In particular, when 𝐤{\mathbf{k}} is a field and S/WS/W is finite-dimensional, then so is WW^{\perp}, since W(S/W)W^{\perp}\cong(S/W)^{*}.

Definition 4.2.

For any field 𝐤{\mathbf{k}}, and for any (possibly inhomogeneous) ideal IS=𝐤[𝐱]I\subseteq S={\mathbf{k}}[\mathbf{x}], define its harmonic space as I𝔻^=𝔻^𝐤(𝐲)(=𝐤[[𝐲]] if 𝐤)I^{\perp}\subseteq\hat{\mathbb{D}}=\hat{\mathbb{D}}_{\mathbf{k}}(\mathbf{y})(={\mathbf{k}}[[\mathbf{y}]]\text{ if }{\mathbf{k}}\supseteq{\mathbb{Q}}).

The preceding discussion shows that, for 𝐤{\mathbf{k}} a field and whenever dim𝐤S/I\dim_{\mathbf{k}}S/I is finite, one has

(88) dim𝐤I=dim𝐤(S/I)=dim𝐤S/I.\dim_{\mathbf{k}}I^{\perp}=\dim_{\mathbf{k}}(S/I)^{*}=\dim_{\mathbf{k}}S/I.

The associated graded ideal grIS{\mathrm{gr}}\,I\subseteq S has harmonic space (grI)𝔻({\mathrm{gr}}\,I)^{\perp}\subseteq\mathbb{D}. Before turning our attention to ideals coming from point loci, we give a general relationship between the harmonic spaces II^{\perp} and (grI)({\mathrm{gr}}\,I)^{\perp} whenever S/IS/I is Artinian.

Given a nonzero element f𝔻^f\in\hat{\mathbb{D}}, let β(f)𝔻\beta(f)\in\mathbb{D} be the bottom degree homogeneous component of ff. That is, if f=idfif=\sum_{i\geq d}f_{i} with fif_{i} homogeneous of degree ii and fd0f_{d}\neq 0, we have β(f)=fd\beta(f)=f_{d}. Also define β(0)=0\beta(0)=0. The map β:𝔻^𝔻\beta:\hat{\mathbb{D}}\to\mathbb{D} is not 𝐤{\mathbf{k}}-linear; if f1=1+yf_{1}=1+y and f2=1f_{2}=-1 one has β(f1+f2)=y\beta(f_{1}+f_{2})=y whereas β(f1)+β(f2)=11=0\beta(f_{1})+\beta(f_{2})=1-1=0.

Proposition 4.3.

Let W𝔻^W\subseteq\hat{\mathbb{D}} be any 𝐤{\mathbf{k}}-linear subspace of 𝔻^\hat{\mathbb{D}}. The subspace of 𝔻\mathbb{D} generated by its image β(W)\beta(W) under β\beta is a 𝐤{\mathbf{k}}-linear subspace of 𝔻\mathbb{D} of the same dimension as WW.

Proof.

Let 𝔻^d𝔻^\hat{\mathbb{D}}_{\geq d}\subseteq\hat{\mathbb{D}} be the 𝐤{\mathbf{k}}-subspace consisting of series of the form gd+gd+1+g_{d}+g_{d+1}+\cdots where gig_{i} is homogeneous of degree ii. We have a descending filtration on 𝔻\mathbb{D}

𝔻^=𝔻^0𝔻^1𝔻^2\hat{\mathbb{D}}=\hat{\mathbb{D}}_{\geq 0}\supset\hat{\mathbb{D}}_{\geq 1}\supset\hat{\mathbb{D}}_{\geq 2}\supset\cdots

with d=0𝔻^d={0}\bigcap_{d=0}^{\infty}\hat{\mathbb{D}}_{\geq d}=\{0\}. This induces a similar filtration

W=W0W1W2W=W_{\geq 0}\supset W_{\geq 1}\supset W_{\geq 2}\supset\cdots

in which Wd:=W𝔻^dW_{\geq d}:=W\cap\hat{\mathbb{D}}_{\geq d} where d=0Wd={0}\bigcap_{d=0}^{\infty}W_{d}=\{0\}. One therefore has

(89) dim𝐤W=d= 0dim𝐤(Wd/Wd+1).\dim_{\mathbf{k}}W=\sum_{d\,=\,0}^{\infty}\dim_{\mathbf{k}}(W_{\geq d}/W_{\geq d+1}).

Let 𝔻d:=𝔻^d𝔻\mathbb{D}_{\geq d}:=\hat{\mathbb{D}}_{\geq d}\cap\mathbb{D} and consider the composite map βd:𝔻^d𝔻d\beta_{\geq d}:\hat{\mathbb{D}}_{\geq d}\to\mathbb{D}_{d}

(90) βd:𝔻^d𝛽𝔻d𝔻d/𝔻d+1=𝔻d\beta_{\geq d}:\hat{\mathbb{D}}_{\geq d}\xrightarrow{\,\beta\,}\mathbb{D}_{\geq d}\twoheadrightarrow\mathbb{D}_{\geq d}/\mathbb{D}_{\geq d+1}=\mathbb{D}_{d}

where the map 𝔻d𝔻d/𝔻d+1\mathbb{D}_{\geq d}\twoheadrightarrow\mathbb{D}_{\geq d}/\mathbb{D}_{\geq d+1} is the canonical projection. Despite the fact that β:𝔻^𝔻\beta:\hat{\mathbb{D}}\to\mathbb{D} is not 𝐤{\mathbf{k}}-linear, it is not hard to see that βd:𝔻^d𝔻d\beta_{\geq d}:\hat{\mathbb{D}}_{\geq d}\to\mathbb{D}_{d} is 𝐤{\mathbf{k}}-linear and satisfies βd(𝔻^d)=0\beta_{\geq d}(\hat{\mathbb{D}}_{\geq d})=0.

Write U𝔻U\subseteq\mathbb{D} for the subspace generated by β(W)\beta(W). Then UU is graded, and its degree dd graded piece UdU_{d} equals βd(Wd)\beta_{\geq d}(W_{\geq d}). Since βd(𝔻^d+1)=0\beta_{\geq d}(\hat{\mathbb{D}}_{\geq d+1})=0, the linear map βd:Wd𝔻d\beta_{\geq d}:W_{\geq d}\to\mathbb{D}_{d} induces a linear map Wd/Wd+1𝔻dW_{\geq d}/W_{\geq d+1}\to\mathbb{D}_{d}, and it is not hard to see that this latter map is bijective. Consequently, we have a linear isomorphism Wd/Wd+1UdW_{\geq d}/W_{\geq d+1}\cong U_{d} and

(91) dim𝐤W=d= 0dim𝐤(Wd/Wd+1)=d= 0dim𝐤Ud=dim𝐤U.\dim_{\mathbf{k}}W=\sum_{d\,=\,0}^{\infty}\dim_{\mathbf{k}}(W_{\geq d}/W_{\geq d+1})=\sum_{d\,=\,0}^{\infty}\dim_{\mathbf{k}}U_{d}=\dim_{\mathbf{k}}U.\qed

Given g=gd+gd+1+𝔻^g=g_{d}+g_{d+1}+\cdots\in\hat{\mathbb{D}} with gig_{i} homogeneous of degree ii and gd0g_{d}\neq 0, define the valuation ν(g):=d\nu(g):=d. Also define ν(0):=0\nu(0):=0. The relationship between the set map β\beta and harmonic spaces may be stated as follows.

Corollary 4.4.

Let ISI\subseteq S be any ideal (not necessarily homogeneous) such that S/IS/I is a finite-dimensional 𝐤{\mathbf{k}}-vector space, so that I𝔻^I^{\perp}\subseteq\hat{\mathbb{D}}. Then (grI)𝔻({\mathrm{gr}}\,I)^{\perp}\subseteq\mathbb{D} is the 𝐤{\mathbf{k}}-linear subspace of 𝔻\mathbb{D} spanned by β(I)\beta(I^{\perp}).

Proof.

Let U𝔻U\subseteq\mathbb{D} be the subspace spanned by β(I)\beta(I^{\perp}). We have

dim𝐤S/I=dim𝐤S/grI=dim𝐤(grI).\dim_{\mathbf{k}}S/I=\dim_{\mathbf{k}}S/{\mathrm{gr}}\,I=\dim_{\mathbf{k}}({\mathrm{gr}}\,I)^{\perp}.

Equation (88) and Proposition 4.3 guarantee that UU shares this common dimension. It is therefore enough to establish β(I)(grI)\beta(I^{\perp})\subseteq({\mathrm{gr}}\,I)^{\perp}. Indeed, let fIf\in I and gIg\in I^{\perp}. We need to show that τ(f)β(g)=0\tau(f)\odot\beta(g)=0. However, the element τ(f)β(g)𝔻\tau(f)\odot\beta(g)\in\mathbb{D} is the degree ν(g)deg(f)\nu(g)-\deg(f) homogeneous component of fg𝔻^f\odot g\in\hat{\mathbb{D}}. Since fg=0f\odot g=0, we conclude that τ(f)β(g)=0\tau(f)\odot\beta(g)=0. ∎

We apply Corollary 4.4 to ideals of the form 𝐈(𝒵){\mathbf{I}}(\mathcal{Z}) for finite loci 𝒵𝐤n\mathcal{Z}\subseteq{\mathbf{k}}^{n}. The harmonic spaces 𝐈(𝒵)𝔻^{\mathbf{I}}(\mathcal{Z})^{\perp}\subseteq\hat{\mathbb{D}} of these ideals have simple 𝐤{\mathbf{k}}-bases.

Definition 4.5.

For any field 𝐤{\mathbf{k}}, given 𝐳𝐤n\mathbf{z}\in{\mathbf{k}}^{n}, define the exponential in the completion 𝔻^\hat{\mathbb{D}}

exp(𝐳𝐲):=d=0(z1y1+znyn)(d)=d=0𝐝=(d1,,dn):idi=d𝐳𝐝𝐲(𝐝),\exp(\mathbf{z}\cdot\mathbf{y}):=\sum_{d=0}^{\infty}(z_{1}y_{1}+\cdots z_{n}y_{n})^{(d)}=\sum_{d=0}^{\infty}\quad\sum_{\begin{subarray}{c}\mathbf{d}=(d_{1},\ldots,d_{n}):\\ \sum_{i}d_{i}=d\end{subarray}}\mathbf{z}^{\mathbf{d}}\mathbf{y}^{(\mathbf{d})},

where the right equality above used (41). It can be rewritten more familiarly when 𝐤{\mathbf{k}}\supseteq{\mathbb{Q}} as

exp(𝐳𝐲):=d=0(z1y1+znyn)dd!=d=0𝐝=(d1,,dn):idi=d𝐳𝐝𝐲𝐝d1!dn!.\exp(\mathbf{z}\cdot\mathbf{y}):=\sum_{d=0}^{\infty}\frac{(z_{1}y_{1}+\cdots z_{n}y_{n})^{d}}{d!}\\ =\sum_{d=0}^{\infty}\quad\sum_{\begin{subarray}{c}\mathbf{d}=(d_{1},\ldots,d_{n}):\\ \sum_{i}d_{i}=d\end{subarray}}\mathbf{z}^{\mathbf{d}}\frac{\mathbf{y}^{\mathbf{d}}}{d_{1}!\cdots d_{n}!}.

It is not hard to check that one has

(92) exp(𝐳𝐲)=exp(z1y1(1))exp(znyn(1))\exp(\mathbf{z}\cdot\mathbf{y})=\exp(z_{1}\cdot y^{(1)}_{1})\cdots\exp(z_{n}\cdot y^{(1)}_{n})

where for z𝐤z\in{\mathbf{k}} and y𝔻^1y\in\hat{\mathbb{D}}_{1}, one has

exp(zy(1)):=d=0zdy(d)(=exp(zy)=d=0zdydd! if 𝐤.).\exp(z\cdot y^{(1)}):=\sum_{d=0}^{\infty}z^{d}y^{(d)}\left(=\exp(z\cdot y)=\sum_{d=0}^{\infty}z^{d}\frac{y^{d}}{d!}\text{ if }{\mathbf{k}}\supseteq{\mathbb{Q}}.\right).
Lemma 4.6.

For 𝐤{\mathbf{k}} a field and 𝒵𝐤n\mathcal{Z}\subset{\mathbf{k}}^{n} a finite subset, the harmonic space 𝐈(𝒵)𝔻^{\mathbf{I}}(\mathcal{Z})^{\perp}\subseteq\hat{\mathbb{D}} has 𝐤{\mathbf{k}}-basis

{exp(𝐳𝐲):𝐳𝒵}.\{\exp(\mathbf{z}\cdot\mathbf{y})\,:\,\mathbf{z}\in\mathcal{Z}\}.
Proof.

Note that (88) shows that the set in the lemma has the correct size

#𝒵=dim𝐤S/𝐈(𝒵)=dim𝐤𝐈(𝒵).\#\mathcal{Z}=\dim_{\mathbf{k}}S/{\mathbf{I}}(\mathcal{Z})=\dim_{\mathbf{k}}{\mathbf{I}}(\mathcal{Z})^{\perp}.

Hence it suffices to check that its elements lie in 𝐈(𝒵){\mathbf{I}}(\mathcal{Z})^{\perp}, and are 𝐤{\mathbf{k}}-linearly independent.

To check that exp(𝐳𝐲)𝐈(𝒵)\exp(\mathbf{z}\cdot\mathbf{y})\in{\mathbf{I}}(\mathcal{Z})^{\perp} for each 𝐳=(z1,,zn)𝒵\mathbf{z}=(z_{1},\ldots,z_{n})\in\mathcal{Z}, by Lemma 4.1 it suffices to check that for any p:𝒵[n]p:\mathcal{Z}\rightarrow[n] one has fp(𝐱)exp(𝐳𝐲)=0f_{p}(\mathbf{x})\odot\exp(\mathbf{z}\cdot\mathbf{y})=0 where

fp(𝐱)=𝐳𝒵(xp(𝐳)𝐳p(𝐳))=(𝐳𝒵{𝐳}(xp(𝐳)zp(𝐳)))(xp(𝐳)zp(𝐳)).f_{p}(\mathbf{x})=\prod_{\mathbf{z}^{\prime}\,\in\,\mathcal{Z}}(x_{p(\mathbf{z}^{\prime})}-\mathbf{z}^{\prime}_{p(\mathbf{z}^{\prime})})\\ =\left(\prod_{\mathbf{z}^{\prime}\,\in\,\mathcal{Z}\setminus\{\mathbf{z}\}}(x_{p(\mathbf{z}^{\prime})}-z^{\prime}_{p(\mathbf{z})})\right)\cdot(x_{p(\mathbf{z})}-z_{p(\mathbf{z})}).

Thus it suffices to check (xp(𝐳)zp(𝐳))exp(𝐳𝐲)=0(x_{p(\mathbf{z})}-z_{p(\mathbf{z})})\odot\exp(\mathbf{z}\cdot\mathbf{y})=0. Letting i:=p(𝐳)i:=p(\mathbf{z}), one has

(xp(𝐳)zp(𝐳))exp(𝐳𝐲)\displaystyle(x_{p(\mathbf{z})}-z_{p(\mathbf{z})})\odot\exp(\mathbf{z}\cdot\mathbf{y}) =(xizi)(exp(z1y1(1))exp(znyn(1)))\displaystyle=(x_{i}-z_{i})\odot\left(\exp(z_{1}y^{(1)}_{1})\cdots\exp(z_{n}y^{(1)}_{n})\right)
=(exp(z1y1(1))exp(ziyi(1))^exp(znyn(1)))(xizi)exp(ziy1(i)).\displaystyle=\left(\exp(z_{1}y^{(1)}_{1})\cdots\widehat{\exp(z_{i}y^{(1)}_{i})}\cdots\exp(z_{n}y^{(1)}_{n})\right)\cdot(x_{i}-z_{i})\odot\exp(z_{i}y^{(i)}_{1}).

Thus in the end it suffices to check (xiz)exp(zyi(1))=0(x_{i}-z)\odot\exp(zy^{(1)}_{i})=0 for z𝐤z\in{\mathbf{k}}, which is not hard:

xiexp(zyi(1))=d=0xi(zdyi(d))=d=1zdyi(d1)=zd=1zd1yi(d1)=zexp(zyi(1)).x_{i}\odot\exp(zy^{(1)}_{i})=\sum_{d=0}^{\infty}x_{i}\odot\left(z^{d}y^{(d)}_{i}\right)=\sum_{d=1}^{\infty}z^{d}y^{(d-1)}_{i}=z\sum_{d=1}^{\infty}z^{d-1}y^{(d-1)}_{i}=z\exp(zy^{(1)}_{i}).

We next check that {exp(𝐳𝐲):𝐳𝒵}\{\exp(\mathbf{z}\cdot\mathbf{y}):\mathbf{z}\in\mathcal{Z}\} are 𝐤{\mathbf{k}}-linearly independent within 𝔻^\hat{\mathbb{D}}. We first deal with the n=1n=1 case. When n=1n=1, if we let N:=#𝒵N:=\#\mathcal{Z}, so that 𝒵={z1,,zN}𝐤\mathcal{Z}=\{z_{1},\ldots,z_{N}\}\subset{\mathbf{k}}, we note that inside 𝔻^=𝔻^𝐤(y)\hat{\mathbb{D}}=\hat{\mathbb{D}}_{\mathbf{k}}(y), one has

exp(z1y)\displaystyle\exp(z_{1}\cdot y) =1+z1y(1)+z12y(2)++z1N1y(N1)+\displaystyle=1+z_{1}y^{(1)}+z_{1}^{2}y^{(2)}+\cdots+z_{1}^{N-1}y^{(N-1)}+\cdots
exp(z2y)\displaystyle\exp(z_{2}\cdot y) =1+z2y(1)+z22y(2)++z2N1y(N1)+\displaystyle=1+z_{2}y^{(1)}+z_{2}^{2}y^{(2)}+\cdots+z_{2}^{N-1}y^{(N-1)}+\cdots
\displaystyle\vdots\qquad
exp(zNy)\displaystyle\exp(z_{N}\cdot y) =1+zNy(1)+zN2y(2)++zNN1y(N1)+\displaystyle=1+z_{N}y^{(1)}+z_{N}^{2}y^{(2)}+\cdots+z_{N}^{N-1}y^{(N-1)}+\cdots

These exponentials are 𝐤{\mathbf{k}}-linearly independent because {1,y(1),y(2),,y(N1)}\{1,y^{(1)},y^{(2)},\ldots,y^{(N-1)}\} are 𝐤{\mathbf{k}}-linearly independent and the Vandermonde matrix (zij1)i,j=1,2,,N(z_{i}^{j-1})_{i,j=1,2,\ldots,N} is invertible.

When n2n\geq 2, it is helpful to note that the factorization (92) lets one identify exp(𝐳𝐱)\exp(\mathbf{z}\cdot\mathbf{x}) with the element exp(z1y1(1))exp(znyn(1))\exp(z_{1}y^{(1)}_{1})\otimes\cdots\otimes\exp(z_{n}y^{(1)}_{n}) lying within the proper555Even in characteristic zero, one has 𝐤[[y1]]𝐤[[yn]]𝐤[𝐲]]{\mathbf{k}}[[y_{1}]]\otimes\cdots\otimes{\mathbf{k}}[[y_{n}]]\subsetneq{\mathbf{k}}[\mathbf{y}]], without forming a completed tensor product. subspace

𝔻^𝐤(y1)𝔻^𝐤(yn)𝔻^𝐤(𝐲).\hat{\mathbb{D}}_{\mathbf{k}}(y_{1})\otimes\cdots\otimes\hat{\mathbb{D}}_{\mathbf{k}}(y_{n})\subsetneq\hat{\mathbb{D}}_{{\mathbf{k}}}(\mathbf{y}).

Letting pi:𝐤n𝐤p_{i}:{\mathbf{k}}^{n}\twoheadrightarrow{\mathbf{k}} for i=1,2,,ni=1,2,\ldots,n denote the coordinate projections, the n=1n=1 case proven above shows each subset {exp(ziyi(1))}zpi(𝒵)𝔻^𝐤(yi)\{\exp(z_{i}y^{(1)}_{i})\}_{z\in p_{i}(\mathcal{Z})}\subset\hat{\mathbb{D}}_{\mathbf{k}}(y_{i}) is 𝐤{\mathbf{k}}-linearly independent. Therefore the set

(93) {exp(z1y1(1))exp(znyn(1)):𝐳=(z1,,zn)p1(𝒵)××pn(𝒵)}\{\exp(z_{1}y^{(1)}_{1})\otimes\cdots\otimes\exp(z_{n}y^{(1)}_{n}):\mathbf{z}=(z_{1},\ldots,z_{n})\in p_{1}(\mathcal{Z})\times\cdots\times p_{n}(\mathcal{Z})\}

is 𝐤{\mathbf{k}}-linearly independent inside 𝔻^𝐤(y1)𝔻^𝐤(yn)\hat{\mathbb{D}}_{\mathbf{k}}(y_{1})\otimes\cdots\otimes\hat{\mathbb{D}}_{\mathbf{k}}(y_{n}). Since the set in (93) contains

{exp(z1y1(1))exp(znyn(1)):𝐳=(z1,,zn)𝒵}\{\exp(z_{1}y^{(1)}_{1})\otimes\cdots\otimes\exp(z_{n}y^{(1)}_{n}):\mathbf{z}=(z_{1},\ldots,z_{n})\in\mathcal{Z}\}

as a subset, the latter must therefore also be 𝐤{\mathbf{k}}-linearly independent subset, as desired. ∎

Recall the familiar formula

(94) exp(𝐳𝐲)exp(𝐳𝐲)=exp((𝐳+𝐳)𝐲)\exp(\mathbf{z}\cdot\mathbf{y})\cdot\exp(\mathbf{z}^{\prime}\cdot\mathbf{y})=\exp((\mathbf{z}+\mathbf{z}^{\prime})\cdot\mathbf{y})

which holds in the power series ring 𝔻^=𝐤[[𝐲]]\hat{\mathbb{D}}={\mathbf{k}}[[\mathbf{y}]]; it is an easy exercise using (40) to check that it remains valid in 𝔻^=𝔻^𝐤(𝐲)\hat{\mathbb{D}}=\hat{\mathbb{D}}_{\mathbf{k}}(\mathbf{y}) for any field 𝐤{\mathbf{k}}. Combining (94) with Lemma 4.6 immediately gives the following easier and more precise inhomogeneous ideal version of Theorem 1.4.

Proposition 4.7.

For any field 𝐤{\mathbf{k}} and finite subsets 𝒵,𝒵𝐤n\mathcal{Z},\mathcal{Z}^{\prime}\subseteq{\mathbf{k}}^{n}, one has inside 𝔻^\hat{\mathbb{D}} that

(95) 𝐈(𝒵)𝐈(𝒵)=𝐈(𝒵+𝒵).{\mathbf{I}}(\mathcal{Z})^{\perp}\cdot{\mathbf{I}}(\mathcal{Z}^{\prime})^{\perp}={\mathbf{I}}(\mathcal{Z}+\mathcal{Z}^{\prime})^{\perp}.

We have all of the tools necessary to prove the Minkowski Closure Theorem. Let us recall its statement.

Theorem  1.4 For any pair of finite point loci 𝒵,𝒵\mathcal{Z},\mathcal{Z}^{\prime} in 𝐤n{\mathbf{k}}^{n} over any field 𝐤{\mathbf{k}}, one has

V𝒵V𝒵V𝒵+𝒵.V_{\mathcal{Z}}\cdot V_{\mathcal{Z}^{\prime}}\subseteq V_{\mathcal{Z}+\mathcal{Z}^{\prime}}.
Proof.

Recall that V𝒵=(gr𝐈(𝒵))V_{\mathcal{Z}}=({\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}))^{\perp} and similarly for V𝒵V_{\mathcal{Z}^{\prime}} and V𝒵+𝒵V_{\mathcal{Z}+\mathcal{Z}^{\prime}}. Let gV𝒵g\in V_{\mathcal{Z}} and gV𝒵g^{\prime}\in V_{\mathcal{Z}} be homogeneous elements. We show that ggV𝒵+𝒵g\cdot g^{\prime}\in V_{\mathcal{Z}+\mathcal{Z}^{\prime}} as follows.

By Corollary 4.4 and the fact that g,gg,g^{\prime} are homogeneous, there exist elements g^𝐈(𝒵)\hat{g}\in{\mathbf{I}}(\mathcal{Z})^{\perp} and g^𝐈(𝒵)\hat{g}^{\prime}\in{\mathbf{I}}(\mathcal{Z}^{\prime})^{\perp} so that β(g^)=g\beta(\hat{g})=g and β(g^)=g\beta(\hat{g}^{\prime})=g^{\prime}. Proposition 4.7 implies that g^g^𝐈(𝒵+𝒵)\hat{g}\cdot\hat{g}^{\prime}\in{\mathbf{I}}(\mathcal{Z}+\mathcal{Z}^{\prime})^{\perp}. We have

(96) gg=β(g^)β(g^)=β(g^g^)V𝒵+𝒵g\cdot g^{\prime}=\beta(\hat{g})\cdot\beta(\hat{g}^{\prime})=\beta(\hat{g}\cdot\hat{g}^{\prime})\in V_{\mathcal{Z}+\mathcal{Z}^{\prime}}

where the membership β(g^g^)V𝒵+𝒵\beta(\hat{g}\cdot\hat{g}^{\prime})\in V_{\mathcal{Z}+\mathcal{Z}^{\prime}} follows from Corollary 4.4. ∎

We conclude this subsection with a few remarks. The first are some interesting examples of Theorem 1.4, including two small examples with point loci in 2{\mathbb{R}}^{2}. Another example discusses the relation between Theorem 1.4 for point loci in 𝐤1{\mathbf{k}}^{1}, and the additive combinatorics of sumsets and the Cauchy-Davenport Theorem. In the next subsection, we give another proof of Theorem 1.4 which connects to deformation geometry and remark on a similar-sounding result of F. Gundlach.

Example 4.8.

One can easily have a proper inclusion V𝒵V𝒵V𝒵+𝒵V_{\mathcal{Z}}\cdot V_{\mathcal{Z}^{\prime}}\subsetneq V_{\mathcal{Z}+\mathcal{Z}^{\prime}}. E.g., inside 2{\mathbb{R}}^{2} take

𝒵\displaystyle\mathcal{Z} ={(0,0),(1,0),(0,1)},\displaystyle=\{(0,0),(1,0),(0,1)\},
𝒵\displaystyle\mathcal{Z}^{\prime} ={(0,0),(1,0),(1,1)},\displaystyle=\{(0,0),(1,0),(1,1)\},
𝒵+𝒵\displaystyle\mathcal{Z}+\mathcal{Z}^{\prime} ={(0,0),(1,0),(0,1),(1,1),(2,0),(2,1),(1,2)}.\displaystyle=\{(0,0),(1,0),(0,1),(1,1),(2,0),(2,1),(1,2)\}.

Although 𝒵𝒵\mathcal{Z}\neq\mathcal{Z}^{\prime}, the two loci 𝒵,𝒵\mathcal{Z},\mathcal{Z}^{\prime} are equivalent under Aff(2)\mathrm{Aff}({\mathbb{Z}}^{2}), with

gr𝐈(𝒵)=gr𝐈(𝒵)\displaystyle{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z})={\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}^{\prime}) =(x12,x1x2,x22)[x1,x2],\displaystyle=(x_{1}^{2},x_{1}x_{2},x_{2}^{2})\subseteq{\mathbb{R}}[x_{1},x_{2}],
V𝒵=V𝒵\displaystyle V_{\mathcal{Z}}=V_{\mathcal{Z}^{\prime}} =span{1,y1,y2}𝔻(y1,y2)=[y1,y2],\displaystyle=\mathrm{span}_{\mathbb{R}}\{1,y_{1},y_{2}\}\subset\mathbb{D}_{\mathbb{R}}(y_{1},y_{2})={\mathbb{R}}[y_{1},y_{2}],
V𝒵V𝒵\displaystyle V_{\mathcal{Z}}\cdot V_{\mathcal{Z}^{\prime}} =span{1,y1,y2,y12,y1y2,y22}.\displaystyle=\mathrm{span}_{\mathbb{R}}\{1,y_{1},y_{2},y_{1}^{2},y_{1}y_{2},y_{2}^{2}\}.

On the other hand, V𝒵+𝒵V_{\mathcal{Z}+\mathcal{Z}^{\prime}} has dimension 7=#(𝒵+𝒵)7=\#(\mathcal{Z}+\mathcal{Z}^{\prime}), and one can compute that

gr𝐈(𝒵+𝒵)\displaystyle{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}+\mathcal{Z}^{\prime}) =(x13,x23,x1x22),\displaystyle=(x_{1}^{3},x_{2}^{3},x_{1}x_{2}^{2}),
V𝒵+𝒵\displaystyle V_{\mathcal{Z}+\mathcal{Z}^{\prime}} =span{1,y1,y2,y12,y1y2,y22,y12y2}\displaystyle=\mathrm{span}_{\mathbb{R}}\{1,y_{1},y_{2},y_{1}^{2},y_{1}y_{2},y_{2}^{2},\,\,{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}y_{1}^{2}y_{2}}\}

so that V𝒵+𝒵V_{\mathcal{Z}+\mathcal{Z}^{\prime}} properly contains the 66-dimensional space V𝒵V𝒵V_{\mathcal{Z}}\cdot V_{\mathcal{Z}^{\prime}} in this case.

Example 4.9.

A somewhat nontrivial instance of Theorem 1.4 occurs when

𝒵=𝒵={(0,0),(1,1),(2,1),(1,2)}=2P,\mathcal{Z}=\mathcal{Z}^{\prime}=\{(0,0),(1,1),(2,1),(1,2)\}={\mathbb{Z}}^{2}\cap P,

where PP is the lattice triangle discussed in Remark 3.19. Here one can check that

𝒵+𝒵={(0,0),(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(4,2),(3,3),(2,4)}=22P,\mathcal{Z}+\mathcal{Z}^{\prime}=\{(0,0),(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(4,2),(3,3),(2,4)\}={\mathbb{Z}}^{2}\cap 2P,

as shown below:

\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet

Remark 3.19 already mentioned one can calculate by hand or Macaulay2 that

V𝒵(=V𝒵)=span{1,y1,y2,y12+y1y2+y22}.V_{\mathcal{Z}}(=V_{\mathcal{Z}^{\prime}})=\mathrm{span}_{\mathbb{R}}\{1,\quad y_{1},y_{2},\quad y_{1}^{2}+y_{1}y_{2}+y_{2}^{2}\}.

with spacing to indicate segregation of {\mathbb{R}}-basis elements by degree. Similarly one can calculate that

V𝒵+𝒵=span{1,y1,y2,y12,y1y2,y22,y13,y12y2+y1y22,y23,y14+2y13y2+3y12y22+2y1y23+y24}.V_{\mathcal{Z}+\mathcal{Z}^{\prime}}=\mathrm{span}_{\mathbb{R}}\{1,\quad y_{1},y_{2},\quad y_{1}^{2},y_{1}y_{2},y_{2}^{2},\quad y_{1}^{3},y_{1}^{2}y_{2}+y_{1}y_{2}^{2},y_{2}^{3},\quad y_{1}^{4}+2y_{1}^{3}y_{2}+3y_{1}^{2}y_{2}^{2}+2y_{1}y_{2}^{3}+y_{2}^{4}\}.

It can be checked that multiplying any two basis elements of V𝒵V_{\mathcal{Z}} and V𝒵V_{\mathcal{Z}^{\prime}} results in an element of V𝒵+𝒵V_{\mathcal{Z}+\mathcal{Z}^{\prime}}. In this example, one has equality V𝒵V𝒵=V𝒵+𝒵V_{\mathcal{Z}}\cdot V_{\mathcal{Z}^{\prime}}=V_{\mathcal{Z}+\mathcal{Z}^{\prime}}.

Example 4.10.

Let us see what Theorem 1.4 says in a 11-dimensional space 𝐤1{\mathbf{k}}^{1}, about the cardinalities r=#𝒵,r=#𝒵r=\#\mathcal{Z},r^{\prime}=\#\mathcal{Z}^{\prime} of two finite loci 𝒵,𝒵\mathcal{Z},\mathcal{Z}^{\prime}, versus the cardinality r′′r^{\prime\prime} of their sumset 𝒵+𝒵\mathcal{Z}+\mathcal{Z}^{\prime}. As in the Example from the Introduction, one can easily check for finite 𝒵𝐤1\mathcal{Z}\subset{\mathbf{k}}^{1} that one has

𝐈(𝒵)\displaystyle{\mathbf{I}}(\mathcal{Z}) =(z𝒵(xz))S=𝐤[x],gr𝐈(𝒵)=(xr)S=𝐤[x],\displaystyle=\left(\prod_{z\in\mathcal{Z}}(x-z)\right)\subset S={\mathbf{k}}[x],\quad{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z})=(x^{r})\subset S={\mathbf{k}}[x],
V𝒵\displaystyle V_{\mathcal{Z}} =span𝐤{1,y(1),y(2),,y(r1)}𝔻=𝔻𝐤(y).\displaystyle=\mathrm{span}_{\mathbf{k}}\{1,y^{(1)},y^{(2)},\ldots,y^{(r-1)}\}\subset\mathbb{D}=\mathbb{D}_{\mathbf{k}}(y).

From this one can calculate

V𝒵V𝒵\displaystyle V_{\mathcal{Z}}\cdot V_{\mathcal{Z}^{\prime}} =span𝐤{1,y(1),y(2),,y(r1)}span𝐤{1,y(1),y(2),,y(r1)}\displaystyle=\mathrm{span}_{\mathbf{k}}\{1,y^{(1)},y^{(2)},\ldots,y^{(r-1)}\}\cdot\mathrm{span}_{\mathbf{k}}\{1,y^{(1)},y^{(2)},\ldots,y^{(r^{\prime}-1)}\}
=span𝐤{y(k)y(k)=(k+kk,k)y(k+k):0kr1 and 0kr1}.\displaystyle=\mathrm{span}_{\mathbf{k}}\left\{y^{(k)}\cdot y^{(k^{\prime})}=\binom{k+k^{\prime}}{k,k^{\prime}}y^{(k+k^{\prime})}:0\leq k\leq r-1\text{ and }0\leq k^{\prime}\leq r^{\prime}-1\right\}.

Consequently, the assertion V𝒵V𝒵V𝒵+𝒵V_{\mathcal{Z}}\cdot V_{\mathcal{Z}^{\prime}}\subseteq V_{\mathcal{Z}+\mathcal{Z}^{\prime}} from Theorem 1.4 holds if and only if

r′′1\displaystyle r^{\prime\prime}-1 max{k+k:  0kr1 and 0kr1 with (k+kk,k)𝐤×}, or equivalently,\displaystyle\geq\max\left\{k+k^{\prime}:\exists\,\,0\leq k\leq r-1\text{ and }0\leq k^{\prime}\leq r^{\prime}-1\text{ with }\binom{k+k^{\prime}}{k,k^{\prime}}\in{\mathbf{k}}^{\times}\right\},\text{ or equivalently,}
r′′\displaystyle r^{\prime\prime} min{n:(u+v)n=k+k=n(nk,k)ukvk lies in the ideal (ur,vr)𝐤[u,v]} call this function β𝐤(r,r).\displaystyle\geq\underbrace{\min\left\{n:(u+v)^{n}=\sum_{k+k^{\prime}=n}\binom{n}{k,k^{\prime}}u^{k}v^{k^{\prime}}\text{ lies in the ideal }(u^{r},v^{r^{\prime}})\subset{\mathbf{k}}[u,v]\right\}}_{\text{ call this function }\beta_{\mathbf{k}}(r,r^{\prime})}.

In other words, Theorem 1.4 says that for 𝒵,𝒵𝐤1\mathcal{Z},\mathcal{Z}^{\prime}\subset{\mathbf{k}}^{1}, one has

(97) #(𝒵+𝒵)β𝐤(#𝒵,#𝒵).\#(\mathcal{Z}+\mathcal{Z}^{\prime})\geq\beta_{\mathbf{k}}(\#\mathcal{Z},\#\mathcal{Z}^{\prime}).

When 𝐤{\mathbf{k}} has characteristic zero, one has β𝐤(r,r)=r+r1\beta_{\mathbf{k}}(r,r^{\prime})=r+r^{\prime}-1, and the sumset lower bound (97) is not hard to show directly; it is also easily seen to be sharp. When 𝐤=𝔽pd{\mathbf{k}}={\mathbb{F}}_{p^{d}} is a finite field, this lower bound is a result of Eliahou and Kervaire [17, Thm. 2.1], generalizing both the case d=1d=1 for 𝐤=𝔽p{\mathbf{k}}={\mathbb{F}}_{p} known as the Cauchy-Davenport Theorem, as well as the case p=2p=2 for 𝐤=𝔽2d{\mathbf{k}}={\mathbb{F}}_{2^{d}} due to work of Yuzvinsky [55] on quadratic forms. Eliahou and Kervaire show [18, Thm. 2.2] that this lower bound (97) is also sharp for 𝐤=𝔽pd{\mathbf{k}}={\mathbb{F}}_{p^{d}}. Interestingly, their proof method for (97) uses associated graded ideals grI{\mathrm{gr}}\,I and is close in spirit to our results.

4.3. An alternative proof of Theorem 1.4

The proof of Theorem 1.4 given above was concise, but does not directly relate to the point-orbit geometry of linearly deforming a locus 𝒵𝐤n\mathcal{Z}\subseteq{\mathbf{k}}^{n} to the origin. We describe a method for proving Theorem 1.4 which makes this geometry apparent by introducing a parameter ϵ\epsilon to situate the locus 𝒵\mathcal{Z} in a flat family over 𝔸𝐤1=Spec(𝐤[ϵ]){\mathbb{A}}^{1}_{\mathbf{k}}=\mathrm{Spec}({\mathbf{k}}[\epsilon]) as follows.

Let R=𝐤[ϵ]R={\mathbf{k}}[\epsilon] be the univariate polynomial ring over 𝐤{\mathbf{k}} and consider the divided power algebra 𝔻:=𝔻R(𝐲)\mathbb{D}:=\mathbb{D}_{R}(\mathbf{y}) with coefficients in RR and its completion 𝔻^:=𝔻^R(𝐲)\hat{\mathbb{D}}:=\hat{\mathbb{D}}_{R}(\mathbf{y}). If S:=R[𝐱]S:=R[\mathbf{x}], we have an SS-module structure :S×𝔻^𝔻^\odot:S\times\hat{\mathbb{D}}\to\hat{\mathbb{D}} and an RR-bilinear pairing ,:S×𝔻^R\langle-,-\rangle:S\times\hat{\mathbb{D}}\to R as before in which f(𝐱),g(𝐲)\langle f(\mathbf{x}),g(\mathbf{y})\rangle extracts the constant term of fgf\odot g. For 𝒵Rn\mathcal{Z}\subseteq R^{n}, we again define the vanishing ideal in S=R[𝐱]S=R[\mathbf{x}], and its annihilator/perp RR-submodule of 𝔻^\hat{\mathbb{D}}:

𝐈R(𝒵)\displaystyle{\mathbf{I}}_{R}(\mathcal{Z}) :={f(𝐱)S=R[𝐱]:f(𝐳)=0 for all 𝐳𝒵}R[𝐱],\displaystyle:=\{f(\mathbf{x})\in S=R[\mathbf{x}]\,:\,f(\mathbf{z})=0\text{ for all $\mathbf{z}\in\mathcal{Z}$}\}\subseteq R[\mathbf{x}],
𝐈R(𝒵)\displaystyle{\mathbf{I}}_{R}(\mathcal{Z})^{\perp} :={g𝔻^=𝔻^R(𝐲):f,g=0 for all f𝐈R(𝒵)}𝔻^,\displaystyle:=\{g\in\hat{\mathbb{D}}=\hat{\mathbb{D}}_{R}(\mathbf{y})\,:\,\langle f,g\rangle=0\text{ for all $f\in{\mathbf{I}}_{R}(\mathcal{Z})$}\}\subseteq\hat{\mathbb{D}},

Here we emphasize the dependence on the ring RR via the subscript in the notation.

Now consider for 𝐤{\mathbf{k}} a field and finite locus 𝒵𝐤n\mathcal{Z}\subseteq{\mathbf{k}}^{n}, the “rescaled locus” ϵ𝒵Rn\epsilon\mathcal{Z}\subseteq R^{n} for R=𝐤[ϵ]R={\mathbf{k}}[\epsilon], along with its vanishing ideal and annihilator/perp RR-module

ϵ𝒵:={ϵ𝐳:𝐳𝒵}Rn,𝐈R(ϵ𝒵)R[𝐱],𝐈R(ϵ𝒵)𝔻^R(𝐲).\displaystyle\epsilon\mathcal{Z}:=\{\epsilon\mathbf{z}\,:\,\mathbf{z}\in\mathcal{Z}\}\subseteq R^{n},\quad{\mathbf{I}}_{R}(\epsilon\mathcal{Z})\subset R[\mathbf{x}],\quad{\mathbf{I}}_{R}(\epsilon\mathcal{Z})^{\perp}\subset\hat{\mathbb{D}}_{R}(\mathbf{y}).

Although the ideal 𝐈R(ϵ𝒵){\mathbf{I}}_{R}(\epsilon\mathcal{Z}) annihilates exp(ϵ𝐳𝐲)\exp(\epsilon\mathbf{z}\cdot\mathbf{y}) under the \odot-action for 𝐳𝒵\mathbf{z}\in\mathcal{Z}, the RR-module 𝐈R(ϵ𝒵){\mathbf{I}}_{R}(\epsilon\mathcal{Z})^{\perp} contains elements which are not in the RR-span of {exp(ϵ𝐳𝐲):𝐳𝒵}\{\exp(\epsilon\mathbf{z}\cdot\mathbf{y})\,:\,\mathbf{z}\in\mathcal{Z}\}. In contrast with Lemma 4.6, to obtain the full RR-module 𝐈R(ϵ𝒵){\mathbf{I}}_{R}(\epsilon\mathcal{Z})^{\perp} we must saturate with respect to ϵ\epsilon as follows.

Lemma 4.11.

The above RR-submodule 𝐈R(ϵ𝒵)𝔻^R(𝐲){\mathbf{I}}_{{R}}(\epsilon\mathcal{Z})^{\perp}\subseteq\hat{\mathbb{D}}_{R}(\mathbf{y}) has this description:

𝐈R(ϵ𝒵)={f𝔻^R(𝐲):ϵMfspanR{exp(ϵ𝐳𝐲):𝐳𝒵} for some M0}.{\mathbf{I}}_{R}(\epsilon\mathcal{Z})^{\perp}=\{f\in\hat{\mathbb{D}}_{R}(\mathbf{y})\,:\,\epsilon^{M}\cdot f\in\mathrm{span}_{R}\{\exp(\epsilon\mathbf{z}\cdot\mathbf{y})\,:\,\mathbf{z}\in\mathcal{Z}\}\text{ for some $M\geq 0$}\}.
Proof.

(Sketch) Naming the right side in the lemma as W𝒵W_{\mathcal{Z}}, the inclusion 𝐈R(ϵ𝒵)W𝒵{\mathbf{I}}_{{R}}(\epsilon\mathcal{Z})^{\perp}\supseteq W_{\mathcal{Z}} is not hard, and follows similarly to the proof of Lemma 4.6. To show 𝐈R(ϵ𝒵)W𝒵{\mathbf{I}}_{{R}}(\epsilon\mathcal{Z})^{\perp}\subseteq W_{\mathcal{Z}}, one strengthens the saturation property of W𝒵W_{\mathcal{Z}}, to show this

Claim: If 0h(ϵ)R=𝐤[ϵ]0\neq h(\epsilon)\in R={\mathbf{k}}[\epsilon] and f𝔻^R(𝐲)f\in\hat{\mathbb{D}}_{R}(\mathbf{y}) have h(ϵ)fW𝒵h(\epsilon)\cdot f\in W_{\mathcal{Z}}, then fW𝒵f\in W_{\mathcal{Z}}.

By replacing 𝐤{\mathbf{k}} with its algebraic closure, it is enough to establish this claim when 𝐤{\mathbf{k}} is algebraically closed. To do this, start with a relation of the form

(98) ϵMh(ϵ)f=𝐳𝒵c𝐳(ϵ)exp(ϵ𝐳𝐲)\epsilon^{M}\cdot h(\epsilon)\cdot f=\sum_{\mathbf{z}\in\mathcal{Z}}c_{\mathbf{z}}(\epsilon)\cdot\exp(\epsilon\mathbf{z}\cdot\mathbf{y})

for some c𝐳(ϵ)𝐤[ϵ]c_{\mathbf{z}}(\epsilon)\in{\mathbf{k}}[\epsilon]. If α𝐤×\alpha\in{\mathbf{k}}^{\times} is a nonzero root of h(ϵ)h(\epsilon), substituting ϵα\epsilon\to\alpha and using the 𝐤{\mathbf{k}}-linear independence of {exp(α𝐳𝐲):𝐳𝒵}\{\exp(\alpha\mathbf{z}\cdot\mathbf{y})\,:\,\mathbf{z}\in\mathcal{Z}\} we get c𝐳(α)=0c_{\mathbf{z}}(\alpha)=0 for all 𝐳𝒵\mathbf{z}\in\mathcal{Z}, so we may cancel a factor of (ϵα)(\epsilon-\alpha) from both sides of (98). We reduce to the case where h(ϵ)=ϵrh(\epsilon)=\epsilon^{r} for some rr and the claim follows easily.

Given the claim, one extends scalars in 𝔻^R(𝐲)\hat{\mathbb{D}}_{R}(\mathbf{y}) to 𝔻^𝐤(ϵ)(𝐲)\hat{\mathbb{D}}_{{\mathbf{k}}(\epsilon)}(\mathbf{y}) where 𝐤(ϵ){\mathbf{k}}(\epsilon) is the fraction field of R=𝐤[ϵ]R={\mathbf{k}}[\epsilon]. Lemma 4.6 applies to give the 𝐤(ϵ){\mathbf{k}}(\epsilon)-basis {exp(ϵ𝐳𝐲):𝐳𝒵}\{\exp(\epsilon\mathbf{z}\cdot\mathbf{y})\,:\,\mathbf{z}\in\mathcal{Z}\} of 𝐈𝐤(ϵ)(ϵ𝒵){\mathbf{I}}_{{\mathbf{k}}(\epsilon)}(\epsilon\mathcal{Z})^{\perp}. The inclusion 𝐈R(ϵ𝒵)W𝒵{\mathbf{I}}_{R}(\epsilon\mathcal{Z})^{\perp}\subseteq W_{\mathcal{Z}} (and hence Lemma 4.11) is deduced from the containment 𝐈R(ϵ𝒵)𝐈𝐤(ϵ)(ϵ𝒵){\mathbf{I}}_{R}(\epsilon\mathcal{Z})^{\perp}\subseteq{\mathbf{I}}_{{\mathbf{k}}(\epsilon)}(\epsilon\mathcal{Z})^{\perp}, clearing denominators, and applying the claim. ∎

Note that in 𝔻^R(𝐲)\hat{\mathbb{D}}_{R}(\mathbf{y}), one still has

exp(ϵ𝐳𝐲)exp(ϵ𝐳𝐲)=exp(ϵ(𝐳+𝐳)𝐲),\exp(\epsilon\mathbf{z}\cdot\mathbf{y})\cdot\exp(\epsilon\mathbf{z}\cdot\mathbf{y})=\exp(\epsilon(\mathbf{z}+\mathbf{z}^{\prime})\cdot\mathbf{y}),

and hence Lemma 4.11 immediately implies the following analogue of Proposition 4.7.

Corollary 4.12.

For any two finite loci 𝒵,𝒵𝐤n\mathcal{Z},\mathcal{Z}^{\prime}\subseteq{\mathbf{k}}^{n}, as RR-submodules of 𝔻^R(𝐲)\hat{\mathbb{D}}_{R}(\mathbf{y}) one has

(99) 𝐈R(ϵ𝒵)𝐈R(ϵ𝒵)𝐈R(ϵ(𝒵+𝒵)).{\mathbf{I}}_{R}(\epsilon\mathcal{Z})^{\perp}\cdot{\mathbf{I}}_{R}(\epsilon\mathcal{Z}^{\prime})^{\perp}\subseteq{\mathbf{I}}_{R}(\epsilon(\mathcal{Z}+\mathcal{Z}^{\prime})).

We remark that one can produce small examples with n=1n=1 showing both that the ϵ\epsilon-saturation in the statement of Lemma 4.11 is necessary, and in contrast to Proposition 4.7, that the inclusion in Corollary 4.12 can be proper.

Lemma 4.13.

Let e:𝔻^R(𝐲)𝔻^𝐤(𝐲)e:\hat{\mathbb{D}}_{R}(\mathbf{y})\rightarrow\hat{\mathbb{D}}_{\mathbf{k}}(\mathbf{y}) be the map which evaluates ϵ0\epsilon\to 0. For any finite locus 𝒵𝐤n\mathcal{Z}\subseteq{\mathbf{k}}^{n}, the map ee restricts to a surjection e:𝐈R(ϵ𝒵)gr𝐈𝐤(𝒵)e:{\mathbf{I}}_{R}(\epsilon\mathcal{Z})^{\perp}\twoheadrightarrow{\mathrm{gr}}\,{\mathbf{I}}_{\mathbf{k}}(\mathcal{Z})^{\perp}.

Proof.

(Sketch) One checks that ee indeed maps 𝔻^R(𝐲)\hat{\mathbb{D}}_{R}(\mathbf{y}) into 𝔻^𝐤(𝐲)\hat{\mathbb{D}}_{\mathbf{k}}(\mathbf{y}). Row reduction over the field 𝐤{\mathbf{k}} shows that the 𝐤{\mathbf{k}}-span of {exp(ϵ𝐳𝐲)}𝐳𝒵\{\exp(\epsilon\mathbf{z}\cdot\mathbf{y})\}_{\mathbf{z}\in\mathcal{Z}} contains #𝒵\#\mathcal{Z} elements {f𝐳}𝐳𝒵\{f_{\mathbf{z}}\}_{\mathbf{z}\in\mathcal{Z}} with the following property:

each f𝐳=ϵM𝐳g𝐳f_{\mathbf{z}}=\epsilon^{M_{\mathbf{z}}}g_{\mathbf{z}} for some nonnegative power M𝐳M_{\mathbf{z}} of ϵ\epsilon times another element g𝐳g_{\mathbf{z}} (so g𝐳g_{\mathbf{z}} also lies in 𝐈R(ϵ𝒵){\mathbf{I}}_{R}(\epsilon\mathcal{Z})^{\perp} by Lemma 4.11) and the ee-images {e(g𝐳)}𝐳𝒵\{e(g_{\mathbf{z}})\}_{\mathbf{z}\in\mathcal{Z}} are 𝐤{\mathbf{k}}-linearly independent in 𝔻^𝐤(𝐲)\hat{\mathbb{D}}_{\mathbf{k}}(\mathbf{y}).

Since the space gr𝐈𝐤(𝒵){\mathrm{gr}}\,{\mathbf{I}}_{\mathbf{k}}(\mathcal{Z})^{\perp} has 𝐤{\mathbf{k}}-dimension #𝒵\#\mathcal{Z}, this shows that ee surjects. ∎

Lemma 4.13 is closely related to Corollary 4.4. Indeed, the images e(g𝐳)e(g_{\mathbf{z}}) appearing in the above proof are nothing but the bottom degree components β(g𝐳)\beta(g_{\mathbf{z}}) of the g𝐳g_{\mathbf{z}}.

Second proof of Theorem 1.4.

Given g,gg,g^{\prime} in V𝒵,V𝒵V_{\mathcal{Z}},V_{\mathcal{Z}}^{\prime}, one wishes to show that ggg\cdot g^{\prime} lies in V𝒵+𝒵V_{\mathcal{Z}+\mathcal{Z}^{\prime}}. Lift them both using Lemma 4.13 to gϵ,gϵg_{\epsilon},g^{\prime}_{\epsilon} in 𝐈R(ϵ𝒵),𝐈R(ϵ𝒵){\mathbf{I}}_{R}(\epsilon\mathcal{Z})^{\perp},{\mathbf{I}}_{R}(\epsilon\mathcal{Z}^{\prime})^{\perp} with e(gϵ)=g,e(gϵ)=ge(g_{\epsilon})=g,e(g^{\prime}_{\epsilon})=g^{\prime}. Then Corollary 4.12 implies that gϵgϵg_{\epsilon}\cdot g^{\prime}_{\epsilon} lies in 𝐈R(ϵ(𝒵+𝒵)){\mathbf{I}}_{R}(\epsilon(\mathcal{Z}+\mathcal{Z}^{\prime}))^{\perp}. Finally, gg=e(gϵ)e(gϵ)=e(gϵgϵ)g\cdot g^{\prime}=e(g_{\epsilon})\cdot e(g_{\epsilon}^{\prime})=e(g_{\epsilon}\cdot g^{\prime}_{\epsilon}) lies in V𝒵+𝒵V_{\mathcal{Z}+\mathcal{Z}^{\prime}}, due to Lemma 4.13 once more. ∎

The geometric interpretation of this second proof is as follows. As mentioned in the Introduction, one can view S/𝐈(𝒵)R(𝒵)S/{\mathbf{I}}(\mathcal{Z})\leadsto R(\mathcal{Z}) as a flat deformation of the reduced subscheme 𝒵𝐤n\mathcal{Z}\subseteq{\mathbf{k}}^{n} deforming linearly to a zero dimensional subscheme of degree #𝒵\#\mathcal{Z} supported at the origin.

\bulletc𝒵c\mathcal{Z}\bullet\bullet\bullet\bullet\bullet0\bulletcc𝔸𝐤1=Spec(𝐤[ϵ])\mathbb{A}_{\mathbf{k}}^{1}=\mathrm{Spec}({\mathbf{k}}[\epsilon])

The extension of scalars from 𝐤{\mathbf{k}} to R=𝐤[ϵ]R={\mathbf{k}}[\epsilon] in the second proof corresponds to viewing ϵ𝒵𝔸𝐤n×𝔸𝐤1\epsilon\mathcal{Z}\subseteq{\mathbb{A}}^{n}_{\mathbf{k}}\times{\mathbb{A}}^{1}_{{\mathbf{k}}} as a flat family over 𝔸𝐤1=Spec(𝐤[ϵ]){\mathbb{A}}^{1}_{{\mathbf{k}}}=\mathrm{Spec}({\mathbf{k}}[\epsilon]) via ϵ𝒵=Spec(𝐤[ϵ][𝐱]/𝐈𝐤[ϵ](ϵ𝒵))\epsilon\mathcal{Z}=\mathrm{Spec}({\mathbf{k}}[\epsilon][\mathbf{x}]/{\mathbf{I}}_{{\mathbf{k}}[\epsilon]}(\epsilon\mathcal{Z})), with generic fibers over ϵ=c𝐤×\epsilon=c\in{\mathbf{k}}^{\times} and special fiber over ϵ=0\epsilon=0. Taking the limit ϵ0\epsilon\to 0 corresponds to applying the map ee or (equivalently) the functor ()𝐤[ϵ]𝐤[ϵ]/(ϵ)(-)\otimes_{{\mathbf{k}}[\epsilon]}{\mathbf{k}}[\epsilon]/(\epsilon), focusing on the special fiber. Passage to the fraction field 𝐤(ϵ){\mathbf{k}}(\epsilon), as in the proof of Lemma 4.11, corresponds to applying ()𝐤[ϵ]𝐤(ϵ)(-)\otimes_{{\mathbf{k}}[\epsilon]}{\mathbf{k}}(\epsilon), which geometrically is localization over the general point (0)Spec(𝐤[ϵ])(0)\in\mathrm{Spec}({\mathbf{k}}[\epsilon]). The containment of harmonic spaces 𝐈𝐤[ϵ](𝒵)𝐈𝐤[ϵ](𝒵)𝐈𝐤[ϵ](𝒵+𝒵){\mathbf{I}}_{{\mathbf{k}}[\epsilon]}(\mathcal{Z})^{\perp}\cdot{\mathbf{I}}_{{\mathbf{k}}[\epsilon]}(\mathcal{Z}^{\prime})^{\perp}\subseteq{\mathbf{I}}_{{\mathbf{k}}[\epsilon]}(\mathcal{Z}+\mathcal{Z}^{\prime})^{\perp} in Corollary 4.12 (in contrast to the equality in Proposition 4.7) philosophically holds because the flat family ϵ𝒵\epsilon\mathcal{Z} sees behavior over its special fiber ϵ0\epsilon\to 0 which its general fiber ϵ1\epsilon\to 1 does not.

Remark 4.14.

Theorem 1.4 has a resemblance to another interesting observation of Gundlach [26]. Suppose 𝐤{\mathbf{k}} has characteristic 0. For any finite point set 𝒵𝐤n\mathcal{Z}\subseteq{\mathbf{k}}^{n}, and any choice of monomial ordering \prec on S=𝐤[𝐱]S={\mathbf{k}}[\mathbf{x}], his result quoted as Proposition 2.9 earlier shows the set 𝒮𝒵{\mathcal{S}}^{\prec}_{\mathcal{Z}} of all \prec-standard monomials for 𝐈(𝒵){\mathbf{I}}(\mathcal{Z}) has the following alternate description: 𝒮𝒵={sm(f):f𝐤𝒵{0}}.{\mathcal{S}}^{\prec}_{\mathcal{Z}}=\{\mathrm{sm}_{\prec}(f):f\in{\mathbf{k}}^{\mathcal{Z}}\setminus\{0\}\}. He then uses this to fairly quickly prove the following fact [26, eqn. (5)] : for any two finite point sets 𝒵,𝒵𝐤n\mathcal{Z},\mathcal{Z}^{\prime}\subseteq{\mathbf{k}}^{n}, one has

(100) 𝒮𝒵𝒮𝒵𝒮𝒵+𝒵.{\mathcal{S}}^{\prec}_{\mathcal{Z}}\cdot{\mathcal{S}}^{\prec}_{\mathcal{Z}^{\prime}}\subseteq{\mathcal{S}}^{\prec}_{\mathcal{Z}+\mathcal{Z}^{\prime}}.

It is not clear how closely this is related to the similar-sounding Theorem 1.4.

Remark 4.15.

An earlier version of this paper [42, p. 36-41] gives yet another proof of Theorem 1.4. Extending scalars if necessary, one assumes that 𝐤{\mathbf{k}} is a metric topological field and considers degree-truncating surjections 𝔻^𝔻<N,SS<N\hat{\mathbb{D}}\twoheadrightarrow\mathbb{D}_{<N},S\twoheadrightarrow S_{<N} to finite-dimensional subspaces for NN sufficiently large. Theorem 1.4 is deduced from a convergence statement [42, Lem. 4.17] within Grassmannians of subspaces of these finite-dimensional vector spaces.

5. Harmonic algebras

Our motivation for Theorem 1.4 was to define here the harmonic algebra P{\mathcal{H}}_{P} as an approach toward our main Conjecture 1.1 generalizing the Classical Ehrhart Theorem. Before defining P{\mathcal{H}}_{P}, we explain why a less algebraic approach to Conjecture 1.1 seems elusive.

5.1. The missing valuative property

Recall from the Introduction that the Classical Ehrhart Theorem asserts several properties for the Ehrhart series EP(t):=m=0iP(m)tm\mathrm{E}_{P}(t):=\sum_{m=0}^{\infty}i_{P}(m)t^{m} of a dd-dimensional lattice polytope PP in n{\mathbb{R}}^{n}, where iP(m):=#(mPn)i_{P}(m):=\#(mP\cap{\mathbb{Z}}^{n}). Specifically, one has its rationality EP(t)=i=0dhiti/(1t)d+1\mathrm{E}_{P}(t)=\sum_{i=0}^{d}h^{*}_{i}t^{i}/(1-t)^{d+1} with a precise denominator, the nonnegativity of the numerator coefficients {hi}\{h_{i}^{*}\}, the combinatorial interpretation of the {hi}\{h^{*}_{i}\} in terms of the semi-open parallelepiped (3) when PP is a simplex, and the reciprocity relating EP(t1)\mathrm{E}_{P}(t^{-1}) to E¯P(t)\overline{\mathrm{E}}_{P}(t).

These properties were originally given elementary proofs that avoid any commutative algebra, via the following strategy: one first proves the result for lattice simplices (and semi-open simplices), and then generalizes to arbitrary lattice polytopes employing triangulations (and sometimes shellings of a triangulation) of PP. The key tool in such proofs is the following valuative property that comes directly from the definitions of iP(m)i_{P}(m) and EP(t)\mathrm{E}_{P}(t): when P,QP,Q are lattice polytopes and their intersection PQP\cap Q is a proper face of both P,QP,Q, then

(101) iPQ(m)\displaystyle i_{P\cup Q}(m) =iP(m)+iQ(m)iPQ(m)\displaystyle=i_{P}(m)+i_{Q}(m)-i_{P\cap Q}(m)
(102) EPQ(t)\displaystyle\mathrm{E}_{P\cup Q}(t) =EP(t)+EQ(t)EPQ(t).\displaystyle=\mathrm{E}_{P}(t)+\mathrm{E}_{Q}(t)-\mathrm{E}_{P\cap Q}(t).

One might therefore hope to prove the analogous Conjecture 1.1 on

iP(m;q)\displaystyle i_{P}(m;q) :=Hilb(R(nmP),q)=Hilb(VnmP,q), and\displaystyle:=\mathrm{Hilb}(R({\mathbb{Z}}^{n}\cap mP),q)=\mathrm{Hilb}(V_{{\mathbb{Z}}^{n}\cap mP},q),\text{ and }
EP(t,q)\displaystyle\mathrm{E}_{P}(t,q) :=m=0iP(m;q)tm,\displaystyle:=\sum_{m=0}^{\infty}i_{P}(m;q)t^{m},

via similar valuative techniques. The following simple example illustrates some difficulty in identifying an analogous valuative property.

Example 5.1.

Let a,b1a,b\geq 1 be coprime positive integers, and let P,Q2P,Q\subseteq{\mathbb{R}}^{2} be the lattice triangles

P:=conv{(0,0),(0,b),(a,0)| and Q:=conv{(0,b),(a,0),(a,b)}.P:=\mathrm{conv}\{(0,0),(0,b),(a,0)|\quad\text{ and }\quad Q:=\mathrm{conv}\{(0,b),(a,0),(a,b)\}.

Their union is the lattice rectangle PQ=[0,a]×[0,b]P\cup Q=[0,a]\times[0,b], and their intersection is the line segment PQ=conv{(0,b),(a,0)}P\cap Q=\mathrm{conv}\{(0,b),(a,0)\}. The figure below depicts the case a=5,b=4a=5,b=4.

\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet

Since P,QP,Q are equivalent under Aff(2)\mathrm{Aff}({\mathbb{Z}}^{2}), and since PP and PQP\cup Q are both antiblocking polytopes, one can apply Corollary 3.15 to compute that

(103) iP(m;q)=iQ(m;q)\displaystyle i_{P}(m;q)=i_{Q}(m;q) =𝐳=(z1,z2) in 2mPqz1+z2=(z1,z2)0:bz1+az2mabqz1+z2\displaystyle=\sum_{\begin{subarray}{c}\mathbf{z}=(z_{1},z_{2})\\ \text{ in }{\mathbb{Z}}^{2}\cap mP\end{subarray}}q^{z_{1}+z_{2}}=\sum_{\begin{subarray}{c}(z_{1},z_{2})\in{\mathbb{Z}}_{\geq 0}:\\ bz_{1}+az_{2}\,\leq\,mab\end{subarray}}q^{z_{1}+z_{2}}
(104) iPQ(m;q)\displaystyle i_{P\cup Q}(m;q) =𝐳=(z1,z2) in 2m(PQ)qz1+z2=[ma]q[mb]q\displaystyle=\sum_{\begin{subarray}{c}\mathbf{z}=(z_{1},z_{2})\\ \text{ in }{\mathbb{Z}}^{2}\cap m(P\cup Q)\end{subarray}}q^{z_{1}+z_{2}}=[ma]_{q}\cdot[mb]_{q}

Since a,ba,b are coprime, the set PQ2={(0,b),(a,0)}P\cap Q\cap{\mathbb{Z}}^{2}=\{(0,b),(a,0)\} consists of only two lattice points, and its dilate 2m(PQ){\mathbb{Z}}^{2}\cap m(P\cap Q) consists of m+1m+1 collinear lattice points, so that

(105) iPQ(m;q)=1+q+q2++qm=[m+1]q.i_{P\cap Q}(m;q)=1+q+q^{2}+\cdots+q^{m}=[m+1]_{q}.

It is not clear if there is a qq-analogue of the valuative property (101) that applies here to relate (103),(104),(105). This subtlety is not surprising– for general finite loci 𝒵,𝒵𝐤n\mathcal{Z},\mathcal{Z}^{\prime}\subseteq{\mathbf{k}}^{n}, it is difficult to predict the structure of gr𝐈(𝒵𝒵){\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}\cup\mathcal{Z}^{\prime}) from that of gr𝐈(𝒵),gr𝐈(𝒵){\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}),{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}^{\prime}) and gr𝐈(𝒵𝒵){\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}\cap\mathcal{Z}).

5.2. The harmonic algebra P{\mathcal{H}}_{P} and a conjecture

As explained in the Introduction, work of Stanley (see, e.g., [51]) provided an alternative proof for the assertions in the Classical Ehrhart Theorem, avoiding valuative techniques, and substituting commutative algebra. For a dd-dimensional lattice polytope PnP\subset{\mathbb{R}}^{n}, he considered the affine semigroup ring APA_{P} inside the Laurent polynomial ring 𝐤[y0,y1±1,,yn±1]{\mathbf{k}}[y_{0},y_{1}^{\pm 1},\ldots,y_{n}^{\pm 1}] and its interior ideal A¯P\overline{A}_{P}, defined as follows:

AP\displaystyle A_{P} :=𝐤[n+1cone(P)]:=span𝐤{y0m𝐲𝐳:𝐳mP},\displaystyle:={\mathbf{k}}[{\mathbb{Z}}^{n+1}\cap\mathrm{cone}(P)]:=\mathrm{span}_{\mathbf{k}}\{y_{0}^{m}\mathbf{y}^{\mathbf{z}}:\mathbf{z}\in mP\},
A¯P\displaystyle\overline{A}_{P} :=𝐤[n+1int(cone(P)]):=span𝐤{y0m𝐲𝐳:𝐳int(mP)},\displaystyle:={\mathbf{k}}[{\mathbb{Z}}^{n+1}\cap\mathrm{int}(\mathrm{cone}(P)]):=\mathrm{span}_{\mathbf{k}}\{y_{0}^{m}\mathbf{y}^{\mathbf{z}}:\mathbf{z}\in\mathrm{int}(mP)\},

This ring APA_{P} is the affine semigroup ring associated to the polyhedral (d+1)(d+1)-dimensional cone

cone(P):=0({1}×P)n+1,\mathrm{cone}(P):={\mathbb{R}}_{\geq 0}\cdot(\{1\}\times P)\subset{\mathbb{R}}^{n+1},

whose lattice points in n+1{\mathbb{Z}}^{n+1} form a semigroup under addition. The distinguished zeroth coordinate on n+1=1×n{\mathbb{R}}^{n+1}={\mathbb{R}}^{1}\times{\mathbb{R}}^{n} endows APA_{P} with the structure of an {\mathbb{N}}-graded algebra of Krull dimension d+1d+1, and one can re-interpret

(106) EP(t)\displaystyle\mathrm{E}_{P}(t) =Hilb(AP,t),\displaystyle=\mathrm{Hilb}(A_{P},t),
(107) E¯P(t)\displaystyle\overline{\mathrm{E}}_{P}(t) =Hilb(A¯P,t).\displaystyle=\mathrm{Hilb}(\overline{A}_{P},t).

As mentioned in the Introduction, Stanley explained the

  • rationality of EP(t)\mathrm{E}_{P}(t) via APA_{P} being a finitely generated 𝐤{\mathbf{k}}-algebra, shown by Gordan [24],

  • denominator (1t)d+1(1-t)^{d+1} of EP(t)\mathrm{E}_{P}(t) via Noether’s Normalization Lemma [39],

  • nonnegativity of the {hi}\{h_{i}^{*}\} via Cohen-Macaulayness of APA_{P}, a result of Hochster [30], and

  • reciprocity via A¯PΩAP\overline{A}_{P}\cong\Omega A_{P}, the canonical module of APA_{P}, work of Danilov [14], Stanley [49].

Motivated by this, we would like to eventually prove the qq-analogous assertions of Conjecture 1.1, via the following commutative algebra.

Definition 5.2.

Let PP be a lattice polytope in n{\mathbb{R}}^{n}, and introduce the polynomial ring

[y0,𝐲]:=[y0,y1,,yn]([y0]𝔻[𝐲]).{\mathbb{R}}[y_{0},\mathbf{y}]:={\mathbb{R}}[y_{0},y_{1},\ldots,y_{n}]\quad\left(\cong{\mathbb{R}}[y_{0}]\otimes_{\mathbb{R}}\mathbb{D}_{\mathbb{R}}[\mathbf{y}]\right).

We will consider [y0,𝐲]{\mathbb{R}}[y_{0},\mathbf{y}] as a bigraded or 2{\mathbb{N}}^{2}-graded {\mathbb{R}}-algebra in which

deg(y0)=(1,0),deg(y1)==deg(yn)=(0,1),\deg(y_{0})=(1,0),\quad\deg(y_{1})=\cdots=\deg(y_{n})=(0,1),

with Hilbert series in t,qt,q tracking a monomial y0my1z1ynzny_{0}^{m}y_{1}^{z_{1}}\cdots y_{n}^{z_{n}} by tmqz1++znt^{m}q^{z_{1}+\cdots+z_{n}}. Occasionally we will specialize this to a single {\mathbb{N}}-grading by sending q1q\mapsto 1. Then define the harmonic algebra P{\mathcal{H}}_{P} and its interior ideal ¯P\overline{{\mathcal{H}}}_{P} as the following two 2{\mathbb{N}}^{2}-homogeneous {\mathbb{R}}-linear subspaces of [y0,𝐲]{\mathbb{R}}[y_{0},\mathbf{y}]:

(108) P\displaystyle{\mathcal{H}}_{P} :=m=0y0mVnmP,\displaystyle:=\bigoplus_{m=0}^{\infty}{\mathbb{R}}\cdot y_{0}^{m}\otimes_{\mathbb{R}}V_{{\mathbb{Z}}^{n}\cap mP},
(109) ¯P\displaystyle\overline{{\mathcal{H}}}_{P} :=m=0y0mVnint(mP).\displaystyle:=\bigoplus_{m=0}^{\infty}{\mathbb{R}}\cdot y_{0}^{m}\otimes_{\mathbb{R}}V_{{\mathbb{Z}}^{n}\cap\mathrm{int}(mP)}.

We first justify the terms “algebra”, “ideal” in the definition, starting with an easy observation.

Lemma 5.3.

For nested finite subsets 𝒵𝒵𝐤n\mathcal{Z}\subseteq\mathcal{Z}^{\prime}\subseteq{\mathbf{k}}^{n} over any field 𝐤{\mathbf{k}}, one has V𝒵V𝒵V_{\mathcal{Z}}\subseteq V_{\mathcal{Z}^{\prime}}.

Proof.

𝒵𝒵\mathcal{Z}\subseteq\mathcal{Z}^{\prime} implies the opposite inclusion 𝐈(𝒵)𝐈(𝒵){\mathbf{I}}(\mathcal{Z})\supseteq{\mathbf{I}}(\mathcal{Z}^{\prime}) within S=[𝐱]S={\mathbb{R}}[\mathbf{x}]. This then implies gr𝐈(𝒵)gr𝐈(𝒵){\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z})\supseteq{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}^{\prime}). Taking perps in 𝔻𝐤(𝐲)\mathbb{D}_{\mathbf{k}}(\mathbf{y}) reverses inclusion: V𝒵=gr𝐈(𝒵)gr𝐈(𝒵)=V𝒵V_{\mathcal{Z}}={\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z})^{\perp}\subseteq{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}^{\prime})^{\perp}=V_{\mathcal{Z}^{\prime}}. ∎

Proposition 5.4.

Within the ring [y0,𝐲]{\mathbb{R}}[y_{0},\mathbf{y}], the {\mathbb{R}}-linear subspace P{\mathcal{H}}_{P} is an 2{\mathbb{N}}^{2}-graded {\mathbb{R}}-subalgebra, and ¯P\overline{{\mathcal{H}}}_{P} is an 2{\mathbb{N}}^{2}-graded ideal of P{\mathcal{H}}_{P}, with

(110) EP(t,q)\displaystyle\mathrm{E}_{P}(t,q) =Hilb(P,t,q),\displaystyle=\mathrm{Hilb}({\mathcal{H}}_{P},t,q),
(111) E¯P(t,q)\displaystyle\overline{\mathrm{E}}_{P}(t,q) =Hilb(¯P,t,q).\displaystyle=\mathrm{Hilb}(\overline{{\mathcal{H}}}_{P},t,q).

Furthermore, any finite subgroup GG of GLn()GL_{n}({\mathbb{Z}}) preserving PP acts by 2{\mathbb{N}}^{2}-graded automorphisms on P{\mathcal{H}}_{P}. Thus in the representation ring Rep(G)[[t,q]]\mathrm{Rep}(G)[[t,q]] of 2{\mathbb{N}}^{2}-graded G{\mathbb{R}}G-modules, one has

EPG(t,q)=m,j0[(P)m,j]tmqj\mathrm{E}^{G}_{P}(t,q)=\sum_{m,j\geq 0}[({\mathcal{H}}_{P})_{m,j}]\cdot t^{m}q^{j}
Proof.

For the first algebra assertion about P{\mathcal{H}}_{P}, given m,m0m,m^{\prime}\geq 0, one must check that

(y0mVnmP)(y0mVnmP)y0m+mVn(m+m)P.\left({\mathbb{R}}\cdot y_{0}^{m}\otimes_{\mathbb{R}}V_{{\mathbb{Z}}^{n}\cap mP}\right)\cdot\left({\mathbb{R}}\cdot y_{0}^{m^{\prime}}\otimes_{\mathbb{R}}V_{{\mathbb{Z}}^{n}\cap m^{\prime}P}\right)\subseteq{\mathbb{R}}\cdot y_{0}^{m+m^{\prime}}\otimes_{\mathbb{R}}V_{{\mathbb{Z}}^{n}\cap(m+m^{\prime})P}.

However, note that one can use Theorem 1.4 to deduce the first inclusion here

VnmPVnmPV(nmP)+(nmP)Vn(m+m)P.V_{{\mathbb{Z}}^{n}\cap mP}\cdot V_{{\mathbb{Z}}^{n}\cap m^{\prime}P}\quad\subseteq\quad V_{({\mathbb{Z}}^{n}\cap mP)+({\mathbb{Z}}^{n}\cap m^{\prime}P)}\quad\subseteq\quad V_{{\mathbb{Z}}^{n}\cap(m+m^{\prime})P}.

The second inclusion follows from Proposition 5.3 together with this inclusion

(112) (nmP)+(nmP)n(m+m)P,({\mathbb{Z}}^{n}\cap mP)+({\mathbb{Z}}^{n}\cap m^{\prime}P)\,\,\subseteq\,\,{\mathbb{Z}}^{n}\cap(m+m^{\prime})P,

derived from mP+mP=(m+m)PmP+m^{\prime}P=(m+m^{\prime})P. The ideal assertion for ¯P\overline{{\mathcal{H}}}_{P} is similar, replacing the last fact with mP+int(mP)=int((m+m)P)mP+\mathrm{int}(m^{\prime}P)=\mathrm{int}((m+m^{\prime})P). The remaining assertions follow from the definitions. ∎

We conjecture the following properties for the harmonic algebra P{\mathcal{H}}_{P}, analogous to those known for the affine semigroup ring APA_{P}, which would explain most of Conjecture 1.1.

Conjecture 5.5.

For any lattice polytope PP, the harmonic algebra P{\mathcal{H}}_{P} is

  • (i)

    a Noetherian (finitely generated) {\mathbb{R}}-subalgebra of [y0,𝐲]{\mathbb{R}}[y_{0},\mathbf{y}],

  • (ii)

    a Cohen-Macaulay algebra, and

  • (iii)

    its canonical module ΩP\Omega{\mathcal{H}}_{P} is isomorphic to the ideal ¯P\overline{{\mathcal{H}}}_{P}, up to a shift in 2{\mathbb{N}}^{2}-grading.

5.3. Relation of Conjecture 5.5 to Conjecture 1.1

We explain here the implications of the algebraic Conjecture 5.5 on P{\mathcal{H}}_{P} for the enumerative Conjecture 1.1 on its Hilbert series EP(t,q)\mathrm{E}_{P}(t,q).

Note that when we specialize the 2{\mathbb{N}}^{2}-grading of the harmonic algebra P{\mathcal{H}}_{P} to the {\mathbb{N}}-grading, by setting q=1q=1, its Hilbert series EP(t,q)\mathrm{E}_{P}(t,q) becomes the Ehrhart series EP(t)\mathrm{E}_{P}(t), matching that of the affine semigroup ring APA_{P}:

(113) [Hilb(P,t,q)]q=1=[EP(t,q)]q=1=EP(t)=Hilb(AP,t),\left[\mathrm{Hilb}({\mathcal{H}}_{P},t,q)\right]_{q=1}=\left[\mathrm{E}_{P}(t,q)\right]_{q=1}=\mathrm{E}_{P}(t)=\mathrm{Hilb}(A_{P},t),

where the first equality uses (110) and the last is (106). Consequently, if Conjecture 5.5(i) holds, so P{\mathcal{H}}_{P} is a finitely generated algebra, we know P{\mathcal{H}}_{P} has Krull dimension d+1d+1, the same that of APA_{P}.

Also, one could then choose a finite set of 2{\mathbb{N}}^{2}-homogeneous algebra generators, e.g., by taking the set of all 2{\mathbb{N}}^{2}-homogeneous components from any finite list of algebra generators. Assume one has chosen such a list of 2{\mathbb{N}}^{2}-homogeneous algebra generators for P{\mathcal{H}}_{P}, or even just some {θ1,,θν}\{\theta_{1},\ldots,\theta_{\nu}\} satisfying the weaker condition that they generate a subalgebra BPB\subseteq{\mathcal{H}}_{P} over which P{\mathcal{H}}_{P} is a finite extension. Name their 2{\mathbb{N}}^{2}-degrees deg(θi)=(bi,ai)\deg(\theta_{i})=(b_{i},a_{i}) for i=1,2,,νi=1,2,\ldots,\nu, and create an 2{\mathbb{N}}^{2}-graded polynomial ring S:=[X1,,Xν]S:={\mathbb{R}}[X_{1},\ldots,X_{\nu}] with variables having deg(Xi):=(bi,ai)\deg(X_{i}):=(b_{i},a_{i}). Then the map SPS\rightarrow{\mathcal{H}}_{P} sending XiθiX_{i}\mapsto\theta_{i} makes P{\mathcal{H}}_{P} a finitely generated 2{\mathbb{N}}^{2}-graded SS-module. Hilbert’s Syzygy Theorem therefore predicts the existence of a finite 2{\mathbb{N}}^{2}-graded free SS-resolution of P{\mathcal{H}}_{P}

(114) 0PF0F1F2Fν0.0\leftarrow{\mathcal{H}}_{P}\leftarrow F_{0}\leftarrow F_{1}\leftarrow F_{2}\leftarrow\cdots\leftarrow F_{\nu}\leftarrow 0.

Here each free SS-module FjF_{j} in the resolution has the form

Fj=(b,a)2S((b,a))βj,(b,a),F_{j}=\bigoplus_{(b,a)\in{\mathbb{N}}^{2}}S(-(b,a))^{\beta_{j,(b,a)}},

for some 2{\mathbb{N}}^{2}-graded Betti numbers βj,(b,a)\beta_{j,(b,a)}, meaning FjF_{j} has exactly βj,(b,a)\beta_{j,(b,a)} of its SS-basis elements of 2{\mathbb{N}}^{2}-degree (b,a)(b,a). Taking the 2{\mathbb{N}}^{2}-graded Euler characteristic of the resolution (114) implies

EP(t,q)=Hilb(P,t,q)\displaystyle\mathrm{E}_{P}(t,q)=\mathrm{Hilb}({\mathcal{H}}_{P},t,q) =j=0ν(1)jHilb(S((b,a))βj,(b,a),t,q)\displaystyle=\sum_{j=0}^{\nu}(-1)^{j}\mathrm{Hilb}(S(-(b,a))^{\beta_{j,(b,a)}},t,q)
=Hilb(S,t,q)j=0ν(1)j(b,a)2βj,(b,a)qbta\displaystyle=\mathrm{Hilb}(S,t,q)\cdot\sum_{j=0}^{\nu}(-1)^{j}\sum_{(b,a)\in{\mathbb{N}}^{2}}\beta_{j,(b,a)}q^{b}t^{a}
=j=0ν(1)j(b,a)2βj,(b,a)qbtai=1ν(1qaitbi).\displaystyle=\frac{\sum_{j=0}^{\nu}(-1)^{j}\sum_{(b,a)\in{\mathbb{N}}^{2}}\beta_{j,(b,a)}q^{b}t^{a}}{\prod_{i=1}^{\nu}(1-q^{a_{i}}t^{b_{i}})}.

which shows the first rationality assertion in Conjecture 1.1 on EP(t,q)\mathrm{E}_{P}(t,q), and also Conjecture 1.1(i). This argument also works for the rationality assertion on E¯P(t,q)\overline{\mathrm{E}}_{P}(t,q): the ideal ¯P\overline{{\mathcal{H}}}_{P} in P{\mathcal{H}}_{P} would be finitely generated, due to Noetherian-ness of P{\mathcal{H}}_{P}, and hence also a finitely generated SS-module.

The Cohen-Macaulayness assertion Conjecture 5.5(ii) would imply an important special case of Conjecture 1.1(ii), as follows. Since P{\mathcal{H}}_{P} has Krull dimension d+1d+1, when one picks {θ1,,θν}\{\theta_{1},\ldots,\theta_{\nu}\} as in the previous paragraph to generate a subalgebra BPB\subseteq{\mathcal{H}}_{P} having P{\mathcal{H}}_{P} as a finite extension, necessarily νd+1\nu\geq d+1. Suppose PP is a simplex, and that ν=d+1\nu=d+1, meaning P{\mathcal{H}}_{P} contains an 2{\mathbb{N}}^{2}-homogeneous system of parameters666Noether’s Normalization Lemma shows {\mathbb{N}}-graded Noetherian {\mathbb{R}}-algebras always contain an {\mathbb{N}}-homogeneous system of parameters. But some 2{\mathbb{N}}^{2}-graded Noetherian {\mathbb{R}}-algebras have no 2{\mathbb{N}}^{2}-homogeneous system of parameters. E.g., inside [t,x,y]{\mathbb{R}}[t,x,y] with 2{\mathbb{N}}^{2}-grading where deg(t)=(1,0)\deg(t)=(1,0) and deg(x)=(0,1)=deg(y)\deg(x)=(0,1)=\deg(y), the 2{\mathbb{N}}^{2}-graded subalgebra R=[t,tx,ty2,txy2]R={\mathbb{R}}[t,tx,ty^{2},txy^{2}] of Krull dimension 33 has no 2{\mathbb{N}}^{2}-homogeneous system of parameters {θ1,θ2,θ3}\{\theta_{1},\theta_{2},\theta_{3}\}, and it has Hilb(R,t,q)=1t2q3(1t)(1tq)(1tq2)(1tq3).\mathrm{Hilb}(R,t,q)=\frac{1-t^{2}q^{3}}{(1-t)(1-tq)(1-tq^{2})(1-tq^{3})}. . Then the previous paragraph shows that the hypothesis of Conjecture 1.1(ii) holds, and we claim that Conjecture 5.5(ii) yields the conclusion of Conjecture 1.1(ii) for the numerator NP(t,q)N_{P}(t,q) of EP(t,q)\mathrm{E}_{P}(t,q): Cohen-Macaulayness implies P{\mathcal{H}}_{P} is a free SS-module, so that the resolution (114) stops at F0F_{0}, and

EP(t,q)=Hilb(F0,t,q)=(b,a)2β0,(b,a)qbtai=1ν(1qaitbi).\mathrm{E}_{P}(t,q)=\mathrm{Hilb}(F_{0},t,q)=\frac{\sum_{(b,a)\in{\mathbb{N}}^{2}}\beta_{0,(b,a)}q^{b}t^{a}}{\prod_{i=1}^{\nu}(1-q^{a_{i}}t^{b_{i}})}.

In other words, NP(t,q)=(b,a)2β0,(b,a)qbtaN_{P}(t,q)=\sum_{(b,a)\in{\mathbb{N}}^{2}}\beta_{0,(b,a)}q^{b}t^{a}. A similar argument applies to the numerator N¯P(t,q)\overline{N}_{P}(t,q) of E¯P(t,q)\overline{\mathrm{E}}_{P}(t,q) in this case, assuming that Conjecture 5.5(iii) holds: this would imply that ¯P\overline{{\mathcal{H}}}_{P} is isomorphic to the Cohen-Macaulay module ΩP\Omega{\mathcal{H}}_{P}, and hence is also a free SS-module.

Lastly, Conjecture 5.5(iii) could imply the qq-reciprocity assertion Conjecture 1.1(iii), if the shift in 2{\mathbb{N}}^{2}-grading for the isomorphism ΩP¯P\Omega{\mathcal{H}}_{P}\cong\overline{{\mathcal{H}}}_{P} works out correctly: one knows that the canonical module ΩP\Omega{\mathcal{H}}_{P} for an 2{\mathbb{N}}^{2}-graded Cohen-Macaulay ring P{\mathcal{H}}_{P} of Krull dimension d+1d+1 satisfies

Hilb(ΩP,t,q)=(1)d+1qBtAHilb(P,t1,q1)\mathrm{Hilb}(\Omega{\mathcal{H}}_{P},t,q)=(-1)^{d+1}q^{B}t^{A}\cdot\mathrm{Hilb}({\mathcal{H}}_{P},t^{-1},q^{-1})

for some choice of 2{\mathbb{N}}^{2}-degree (B,A)(B,A); see Stanley [51, §I.12, p.49].

5.4. The singly-graded rings P{\mathcal{H}}_{P} and APA_{P} are generally not isomorphic

In light of the fact (113) that APA_{P} and P{\mathcal{H}}_{P} have the same singly-graded Hilbert series, one might wonder whether they are isomorphic as {\mathbb{N}}-graded algebras. This fails already for small lattice polygons, e.g., this triangle P=conv{(0,0),(1,2),(3,1)}P=\mathrm{conv}\{(0,0),(1,2),(3,1)\}, for which a portion of 3cone(P){\mathbb{Z}}^{3}\cap\mathrm{cone}(P) is shown below:

\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet

To see that AP≇PA_{P}\not\cong{\mathcal{H}}_{P} as {\mathbb{N}}-graded algebras, one can check that

(115) (AP)1(AP)1\displaystyle(A_{P})_{1}\cdot(A_{P})_{1} =(AP)2, but\displaystyle=(A_{P})_{2},\text{ but }
(116) (P)1(P)1\displaystyle({\mathcal{H}}_{P})_{1}\cdot({\mathcal{H}}_{P})_{1} (P)2.\displaystyle\subsetneq({\mathcal{H}}_{P})_{2}.

Checking (115) means showing (2P)+(2P)=(22P),({\mathbb{Z}}^{2}\cap P)+({\mathbb{Z}}^{2}\cap P)=({\mathbb{Z}}^{2}\cap 2P), which can be done directly. Meanwhile, the proper inclusion (116) follows from examining the first few terms of EP(t,q)\mathrm{E}_{P}(t,q):

EP(t,q)=1+(1+2q+2q2)t+(1+2q+3q2+4q3+3q4+q5)t2+o(t2)\mathrm{E}_{P}(t,q)=1+(1+2q+2q^{2})t+(1+2q+3q^{2}+4q^{3}+3q^{4}+q^{5})t^{2}+o(t^{2})

One sees (P)1(P)1({\mathcal{H}}_{P})_{1}\cdot({\mathcal{H}}_{P})_{1} has as its highest nonvanishing qq-degree q2q2=q4q^{2}\cdot q^{2}=q^{4}, but for (P)2({\mathcal{H}}_{P})_{2} it is q5q^{5}. This example seems related to the deformation S/𝐈(𝒵)S/gr𝐈(𝒵)S/{\mathbf{I}}(\mathcal{Z})\leadsto S/{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}) forgetting algebra structure.

Remark 5.6.

In contrast to the above example, it may be interesting to note that there is a very similar-sounding algebra to P{\mathcal{H}}_{P} which actually is isomorphic to APA_{P}. Recall from Section 4.2 that for the inhomogeneous ideal 𝐈(𝒵){\mathbf{I}}(\mathcal{Z}) one can still define a perp space 𝐈(𝒵){\mathbf{I}}(\mathcal{Z})^{\perp} inside the power series completion 𝔻^=𝔻^[𝐲][[y1,,yn]]\hat{\mathbb{D}}=\hat{\mathbb{D}}_{\mathbb{R}}[\mathbf{y}]\cong{\mathbb{R}}[[y_{1},\ldots,y_{n}]]. The space 𝐈(𝒵){\mathbf{I}}(\mathcal{Z})^{\perp} has {\mathbb{R}}-basis given in Lemma 4.6 by {exp(𝐳𝐲)}𝐳𝒵\{\exp(\mathbf{z}\cdot\mathbf{y})\}_{\mathbf{z}\in\mathcal{Z}}, and (94) asserts that these basis elements multiply via the usual rule

exp(𝐳𝐲)exp(𝐳𝐲)=exp((𝐳+𝐳)𝐲).\exp(\mathbf{z}\cdot\mathbf{y})\cdot\exp(\mathbf{z}^{\prime}\cdot\mathbf{y})=\exp((\mathbf{z}+\mathbf{z}^{\prime})\cdot\mathbf{y}).

If one then considers the ring [y0][[y1,,yn]]{\mathbb{R}}[y_{0}][[y_{1},\ldots,y_{n}]] as {\mathbb{N}}-graded by deg(y0m)=1\deg(y_{0}^{m})=1 and deg(yi)=0\deg(y_{i})=0 for i=1,2,,ni=1,2,\dots,n, one can compile the spaces 𝐈(nmP){\mathbf{I}}({\mathbb{Z}}^{n}\cap mP)^{\perp} for m0m\geq 0 to define an {\mathbb{N}}-graded subalgebra

^P:=m=0y0m𝐈(nmP) inside [y0][[y1,,yn]].\hat{{\mathcal{H}}}_{P}:=\bigoplus_{m=0}^{\infty}{\mathbb{R}}\cdot y_{0}^{m}\otimes{\mathbf{I}}({\mathbb{Z}}^{n}\cap mP)^{\perp}\quad\text{ inside }{\mathbb{R}}[y_{0}][[y_{1},\ldots,y_{n}]].

Since APA_{P} has {\mathbb{R}}-basis {y0m𝐲𝐳:𝐳nmP}\{y_{0}^{m}\mathbf{y}^{\mathbf{z}}:\mathbf{z}\in{\mathbb{Z}}^{n}\cap mP\}, with y0m𝐲𝐳y0m𝐲𝐳=y0m+m𝐲𝐳+𝐳y_{0}^{m}\mathbf{y}^{\mathbf{z}}\cdot y_{0}^{m^{\prime}}\mathbf{y}^{\mathbf{z}^{\prime}}=y_{0}^{m+m^{\prime}}\mathbf{y}^{\mathbf{z}+\mathbf{z}^{\prime}}, the map

AP^Py0m𝐲𝐳y0mexp(𝐳𝐲)\begin{array}[]{rcl}A_{P}&\longrightarrow&\hat{{\mathcal{H}}}_{P}\\ y_{0}^{m}\mathbf{y}^{\mathbf{z}}&\longmapsto&y_{0}^{m}\otimes\exp(\mathbf{z}\cdot\mathbf{y})\end{array}

is an {\mathbb{N}}-graded {\mathbb{R}}-algebra isomorphism.

5.5. Example: antiblocking polytopes revisited

In spite of the example in Section 5.4, there is a subfamily of lattice polytopes PP for which one has not only an {\mathbb{N}}-graded, but even an 2{\mathbb{N}}^{2}-graded algebra isomorphism PAP{\mathcal{H}}_{P}\cong A_{P}, and Conjecture 5.5 holds: the antiblocking polytopes of Section 3.4.

In order to discuss this, we first note that for a lattice polytope PnP\subset{\mathbb{R}}^{n}, the affine semigroup ring APA_{P} has a finer ×n{\mathbb{N}}\times{\mathbb{Z}}^{n}-grading. This is because it is a homogeneous subalgebra of [y0,y1±1,,yn±1]{\mathbb{R}}[y_{0},y_{1}^{\pm 1},\ldots,y_{n}^{\pm 1}] with respect to the ×n{\mathbb{N}}\times{\mathbb{Z}}^{n}-multigrading in which deg(yi)=(0,,0,1,0,,0)\deg(y_{i})=(0,\ldots,0,1,0,\ldots,0) is the ithi^{th} standard basis vector. One can then specialize this to a 2{\mathbb{N}}^{2}-grading via deg(y0)=(1,0)\deg(y_{0})=(1,0) and deg(yi)=(0,1)\deg(y_{i})=(0,1) for i=1,2,,ni=1,2,\ldots,n. In other words, this 2{\mathbb{N}}^{2}-grading has deg(y0my1z1ynzn)=(m,z1++zn)\deg(y_{0}^{m}y_{1}^{z_{1}}\cdots y_{n}^{z_{n}})=(m,z_{1}+\cdots+z_{n}), tracked by the Hilbert series monomial tmqz1++znt^{m}q^{z_{1}+\cdots+z_{n}}.

Proposition 5.7.

For any antiblocking lattice polytope PnP\subseteq{\mathbb{R}}^{n} one has an 2{\mathbb{N}}^{2}-graded {\mathbb{R}}-algebra isomorphism APPA_{P}\longrightarrow{\mathcal{H}}_{P} defined by the bijection on {\mathbb{R}}-bases y0m𝐲𝐳y0m𝐲𝐳y_{0}^{m}\mathbf{y}^{\mathbf{z}}\longmapsto y_{0}^{m}\otimes\mathbf{y}^{\mathbf{z}} for 𝐳nmP\mathbf{z}\in{\mathbb{Z}}^{n}\cap mP. That is, identifying [y0]𝔻(𝐲)[y0,𝐲]{\mathbb{R}}[y_{0}]\otimes_{\mathbb{R}}\mathbb{D}_{\mathbb{R}}(\mathbf{y})\cong{\mathbb{R}}[y_{0},\mathbf{y}], one has equality AP=PA_{P}={\mathcal{H}}_{P} of the two subalgebras.

Consequently, Conjecture 5.5 holds for antiblocking polytopes.

Proof.

The identification AP=PA_{P}={\mathcal{H}}_{P} follows from Lemma 3.11(iii). Then Conjecture 5.5 follows from the previously mentioned results of Gordan, of Hochster and of Danilov and Stanley, showing that APA_{P} is finitely-generated, Cohen-Macaulay, and with canonical module ΩAPA¯P\Omega A_{P}\cong\overline{A}_{P}, respectively. ∎

5.6. Example: Chain and order polytopes

Let (𝒫,)({\mathcal{P}},\prec) be a finite poset. Stanley [50] associated two polytopes in the positive orthant of 𝒫{\mathbb{R}}^{\mathcal{P}} to the poset 𝒫{\mathcal{P}} as follows. The chain polytope C𝒫C_{\mathcal{P}} consists of functions f:𝒫f:{\mathcal{P}}\to{\mathbb{R}} satisfying

0f(p1)++f(pr)10\leq f(p_{1})+\cdots+f(p_{r})\leq 1 for each chain p1prp_{1}\prec\cdots\prec p_{r} in 𝒫{\mathcal{P}}.

The order polytope O𝒫O_{\mathcal{P}} consists of functions g:𝒫g:{\mathcal{P}}\to{\mathbb{R}} satisfying

{g(p)0for all p𝒫,g(p)g(p)whenever pp.\begin{cases}g(p)\geq 0&\text{for all $p\in{\mathcal{P}}$,}\\ g(p)\leq g(p^{\prime})&\text{whenever $p\prec p^{\prime}$.}\end{cases}

The chain polytope C𝒫C_{\mathcal{P}} is antiblocking, so the previous example applies to describe C𝒫{\mathcal{H}}_{C_{\mathcal{P}}} and proves that Conjecture 5.5 holds. Although the order polytope O𝒫O_{\mathcal{P}} is almost never antiblocking, we will show that Conjecture 5.5 holds for this family of polytopes, as well.

For any m0m\geq 0, Stanley introduced a piecewise-linear map

(117) φ:mO𝒫mC𝒫\varphi:mO_{\mathcal{P}}\to mC_{\mathcal{P}}

given by the formula

(118) φg(p)=g(p)maxppg(p)\varphi g(p)=g(p)-\max_{p^{\prime}\prec p}g(p^{\prime})

where the maximum is taken over elements p𝒫p^{\prime}\in{\mathcal{P}} covered by pp. If pp is a minimal element of 𝒫{\mathcal{P}}, this maximum is interpreted to be 0. Stanley proved that φ\varphi is bijective, and restricts to a bijection

(119) mO𝒫𝒫mC𝒫𝒫.mO_{{\mathcal{P}}}\cap{\mathbb{Z}}^{{\mathcal{P}}}\xrightarrow{\,\,\sim\,\,}mC_{\mathcal{P}}\cap{\mathbb{Z}}^{{\mathcal{P}}}.

Consequently, iO𝒫(m)=iC𝒫(m)i_{O_{\mathcal{P}}}(m)=i_{C_{\mathcal{P}}}(m), and EO𝒫(t)=EC𝒫(t)\mathrm{E}_{O_{\mathcal{P}}}(t)=\mathrm{E}_{C_{\mathcal{P}}}(t). Observe that the map φ\varphi is only piecewise-linear; indeed, the chain and order polytopes are not in general affine-equivalent. Nevertheless, we have the following result.

Theorem 5.8.

For finite posets 𝒫{\mathcal{P}}, inside [y0,𝐲]{\mathbb{R}}[y_{0},\mathbf{y}], one has equality C𝒫=O𝒫{\mathcal{H}}_{C_{\mathcal{P}}}={\mathcal{H}}_{O_{\mathcal{P}}} of the harmonic algebras of its chain and order polytopes, as well as equality ¯C𝒫=¯O𝒫\overline{{\mathcal{H}}}_{C_{\mathcal{P}}}=\overline{{\mathcal{H}}}_{O_{\mathcal{P}}} for their interior ideals.

Proof.

To prove C𝒫=O𝒫{\mathcal{H}}_{C_{\mathcal{P}}}={\mathcal{H}}_{O_{\mathcal{P}}} it suffices to establish for each m0m\geq 0, the equality of ideals

gr𝐈(mO𝒫𝒫)=gr𝐈(mC𝒫𝒫){\mathrm{gr}}\,{\mathbf{I}}(mO_{{\mathcal{P}}}\cap{\mathbb{Z}}^{{\mathcal{P}}})={\mathrm{gr}}\,{\mathbf{I}}(mC_{\mathcal{P}}\cap{\mathbb{Z}}^{{\mathcal{P}}})

inside the polynomial ring [𝐱]{\mathbb{R}}[\mathbf{x}] where 𝐱={xp:p𝒫}\mathbf{x}=\{x_{p}\,:\,p\in{\mathcal{P}}\}. In fact, it suffices to show an inclusion,

(120) gr𝐈(mC𝒫𝒫)gr𝐈(mO𝒫𝒫),{\mathrm{gr}}\,{\mathbf{I}}(mC_{\mathcal{P}}\cap{\mathbb{Z}}^{{\mathcal{P}}})\subseteq{\mathrm{gr}}\,{\mathbf{I}}(mO_{\mathcal{P}}\cap{\mathbb{Z}}^{{\mathcal{P}}}),

since then the equality

#(mO𝒫𝒫)=iO𝒫(m)=iC𝒫(m)=#(mC𝒫𝒫)\#(mO_{{\mathcal{P}}}\cap{\mathbb{Z}}^{{\mathcal{P}}})=i_{O_{\mathcal{P}}}(m)=i_{C_{\mathcal{P}}}(m)=\#(mC_{\mathcal{P}}\cap{\mathbb{Z}}^{{\mathcal{P}}})

would show the surjection R(mC𝒫𝒫)R(mO𝒫𝒫)R(mC_{\mathcal{P}}\cap{\mathbb{Z}}^{{\mathcal{P}}})\twoheadrightarrow R(mO_{\mathcal{P}}\cap{\mathbb{Z}}^{{\mathcal{P}}}) is bijective, via dimension-counting.

For any f:𝒫0f:{\mathcal{P}}\to{\mathbb{Z}}_{\geq 0}, let 𝐱f:=p𝒫xpf(p)\mathbf{x}^{f}:=\prod_{p\in{\mathcal{P}}}x_{p}^{f(p)} in [𝐱]{\mathbb{R}}[\mathbf{x}]. Since C𝒫C_{\mathcal{P}} is antiblocking, we have

gr𝐈(mC𝒫𝒫)=span{𝐱f:f:𝒫0 is not a lattice point in mC𝒫}.{\mathrm{gr}}\,{\mathbf{I}}(mC_{\mathcal{P}}\cap{\mathbb{Z}}^{{\mathcal{P}}})=\mathrm{span}_{\mathbb{R}}\{\mathbf{x}^{f}\,:\,f:{\mathcal{P}}\to{\mathbb{Z}}_{\geq 0}\text{ is not a lattice point in $mC_{\mathcal{P}}$}\}.

The desired inclusion (120) is then implied by the following claim.

Claim: Suppose that f:P0f:P\to{\mathbb{Z}}_{\geq 0} is not a lattice point of mC𝒫mC_{\mathcal{P}}. Then there exists an element g𝐈(mO𝒫𝒫)g\in{\mathbf{I}}(mO_{{\mathcal{P}}}\cap{\mathbb{Z}}^{\mathcal{P}}) such that 𝐱f=τ(g)\mathbf{x}^{f}=\tau(g).

To prove the Claim, first observe that

mO𝒫𝒫={f:𝒫{0,1,,m}:ppf(p)f(p)}.mO_{\mathcal{P}}\cap{\mathbb{Z}}^{\mathcal{P}}=\{f:{\mathcal{P}}\to\{0,1,\dots,m\}\,:\,p\preceq p^{\prime}\,\Rightarrow\,f(p)\leq f(p^{\prime})\}.

The required element g𝐈(mO𝒫𝒫)g\in{\mathbf{I}}(mO_{{\mathcal{P}}}\cap{\mathbb{Z}}^{\mathcal{P}}) may be constructed explicitly. Since fmC𝒫f\notin mC_{\mathcal{P}}, there is a chain p1prp_{1}\prec\cdots\prec p_{r} in 𝒫{\mathcal{P}} such that f(p1)++f(pr)>mf(p_{1})+\cdots+f(p_{r})>m. Consider the polynomial

g(𝐱)\displaystyle g(\mathbf{x}) =xp1(xp11)(xp1(f(p1)1))\displaystyle=x_{p_{1}}(x_{p_{1}}-1)\cdots(x_{p_{1}}-(f(p_{1})-1))
(xp2f(p1))(xp2(f(p1)+1))(xp2(f(p1)+f(p2)1))\displaystyle\quad\cdot(x_{p_{2}}-f(p_{1}))(x_{p_{2}}-(f(p_{1})+1))\cdots(x_{p_{2}}-(f(p_{1})+f(p_{2})-1))
(xp2(f(p1)+f(p2)))(xp2(f(p1)+f(p2)+1))(xp2(f(p1)+f(p2)+f(p3)1))\displaystyle\quad\cdot(x_{p_{2}}-(f(p_{1})+f(p_{2})))(x_{p_{2}}-(f(p_{1})+f(p_{2})+1))\cdots(x_{p_{2}}-(f(p_{1})+f(p_{2})+f(p_{3})-1))
\displaystyle\qquad\qquad\qquad\vdots
(xpri=1r1f(pi))(xpri=1r1f(pi)1))(xpri=1rf(pi))\displaystyle\quad\cdot\left(x_{p_{r}}-\sum_{i=1}^{r-1}f(p_{i})\right)\left(x_{p_{r}}-\sum_{i=1}^{r-1}f(p_{i})-1)\right)\cdots\left(x_{p_{r}}-\sum_{i=1}^{r}f(p_{i})\right)
pp1,,prxpf(p)\displaystyle\quad\cdot\prod_{p\,\neq\,p_{1},\dots,p_{r}}x_{p}^{f(p)}

One can readily check that τ(g)=pp1,,prxpf(p)i=1rxprf(pr)=𝐱f.\tau(g)=\prod_{p\,\neq\,p_{1},\dots,p_{r}}x_{p}^{f(p)}\cdot\prod_{i=1}^{r}x_{p_{r}}^{f(p_{r})}=\mathbf{x}^{f}. It remains to show that g(𝐱)=0g(\mathbf{x})=0 for all 𝐱\mathbf{x} in 𝒫mO𝒫{\mathbb{Z}}^{\mathcal{P}}\cap mO_{\mathcal{P}}. To see this, assume for the sake of contradication that 𝐱\mathbf{x} lies in 𝒫mO𝒫{\mathbb{Z}}^{\mathcal{P}}\cap mO_{\mathcal{P}} but g(𝐱)0g(\mathbf{x})\neq 0. Adopting the convention that xp0:=0x_{p_{0}}:=0, one can show by induction on ii that xpif(p1)+f(p2)++f(pi)x_{p_{i}}\geq f(p_{1})+f(p_{2})+\cdots+f(p_{i}) for each i=0,1,2,,ri=0,1,2,\ldots,r, as follows. The base case i=0i=0 follows from x0=0x_{0}=0. In the inductive step, note that pi1pip_{i-1}\prec p_{i} and 𝐱O𝒫\mathbf{x}\in O_{\mathcal{P}} implies that

(121) xpixpi1f(p1)+f(p2)++f(pi1).x_{p_{i}}\geq x_{p_{i-1}}\geq f(p_{1})+f(p_{2})+\cdots+f(p_{i-1}).

On the other hand, the fact that g(𝐱)0g(\mathbf{x})\neq 0 implies that

(122) xpi{j=1i1f(pj),  1+j=1i1f(pj),  2+j=1i1f(pj),,f(pi)1+j=1i1f(pj)}.x_{p_{i}}\not\in\left\{\sum_{j=1}^{i-1}f(p_{j})\,\,,\,\,1+\sum_{j=1}^{i-1}f(p_{j})\,\,,\,\,2+\sum_{j=1}^{i-1}f(p_{j})\,\,,\,\,\cdots\,\,,\,\,f(p_{i})-1+\sum_{j=1}^{i-1}f(p_{j})\right\}.

But then since 𝐱\mathbf{x} lies in 𝒫{\mathbb{Z}}^{\mathcal{P}}, together (121), (122) imply xpif(p1)+f(p2)++f(pi)x_{p_{i}}\geq f(p_{1})+f(p_{2})+\cdots+f(p_{i}), completing the inductive step. However, one then reaches the contradiction xpri=1rf(pi)>mx_{p_{r}}\geq\sum_{i=1}^{r}f(p_{i})>m.

The proof that ¯C𝒫=¯O𝒫\overline{{\mathcal{H}}}_{C_{\mathcal{P}}}=\overline{{\mathcal{H}}}_{O_{\mathcal{P}}} is similar. It again suffices to prove for m1m\geq 1 the inclusions

(123) gr𝐈(int(mC𝒫)𝒫)gr𝐈(int(mO𝒫)𝒫),{\mathrm{gr}}\,{\mathbf{I}}(\mathrm{int}(mC_{\mathcal{P}})\cap{\mathbb{Z}}^{\mathcal{P}})\subseteq{\mathrm{gr}}\,{\mathbf{I}}(\mathrm{int}(mO_{\mathcal{P}})\cap{\mathbb{Z}}^{\mathcal{P}}),

since they would then be equalities via dimension-count: as C𝒫,O𝒫C_{\mathcal{P}},O_{\mathcal{P}} have the same classical Ehrhart series, then Ehrhart-Macdonald Reciprocity implies #(int(mC𝒫)𝒫)=#(int(mO𝒫)𝒫)\#(\mathrm{int}(mC_{\mathcal{P}})\cap{\mathbb{Z}}^{\mathcal{P}})=\#(\mathrm{int}(mO_{\mathcal{P}})\cap{\mathbb{Z}}^{\mathcal{P}}).

To argue (123), note that since C𝒫C_{\mathcal{P}} is antiblocking, the ideal gr𝐈(int(mC𝒫)𝒫){\mathrm{gr}}\,{\mathbf{I}}(\mathrm{int}(mC_{\mathcal{P}})\cap{\mathbb{Z}}^{\mathcal{P}}) is spanned over {\mathbb{R}} by monomials 𝐱f\mathbf{x}^{f} where f:𝒫0f:{\mathcal{P}}\to{\mathbb{Z}}_{\geq 0} satisfies N:=f(p1)++f(pr)>m2N:=f(p_{1})+\cdots+f(p_{r})>m-2 for some chain p1prp_{1}\prec\cdots\prec p_{r} in 𝒫{\mathcal{P}}. If 𝐱f\mathbf{x}^{f} is such a monomial, consider the polynomial

g(𝐱)\displaystyle g(\mathbf{x}) =(xp11)(xp12)(xp1f(p1))\displaystyle=(x_{p_{1}}-1)(x_{p_{1}}-2)\cdots(x_{p_{1}}-f(p_{1}))
(xp1(f(p1)+1))(xp1(f(p1)+2))(xp1(f(p1)+f(p2)))\displaystyle\quad\cdot(x_{p_{1}}-(f(p_{1})+1))(x_{p_{1}}-(f(p_{1})+2))\cdots(x_{p_{1}}-(f(p_{1})+f(p_{2})))
(xp1(f(p1)+f(p2)+1))(xp1(f(p1)+f(p2)+2))(xp1(f(p1)+f(p2)+f(p3)))\displaystyle\quad\cdot(x_{p_{1}}-(f(p_{1})+f(p_{2})+1))(x_{p_{1}}-(f(p_{1})+f(p_{2})+2))\cdots(x_{p_{1}}-(f(p_{1})+f(p_{2})+f(p_{3})))
\displaystyle\qquad\qquad\quad\vdots
(xpr(i=1r1f(pi)+1))(xpr(i=1r1f(pi)+2))(xpri=1rf(pi))\displaystyle\quad\cdot\left(x_{p_{r}}-\left(\sum_{i=1}^{r-1}f(p_{i})+1\right)\right)\left(x_{p_{r}}-\left(\sum_{i=1}^{r-1}f(p_{i})+2\right)\right)\cdots\left(x_{p_{r}}-\sum_{i=1}^{r}f(p_{i})\right)
pp1,,prxpf(p)\displaystyle\quad\cdot\prod_{p\,\neq\,p_{1},\dots,p_{r}}x_{p}^{f(p)}

which one can readily check has τ(g)=𝐱f\tau(g)=\mathbf{x}^{f}. Using the description

int(mO𝒫)𝒫={f:𝒫{1,,m1}:ppf(p)<f(p)}\mathrm{int}(mO_{\mathcal{P}})\cap{\mathbb{Z}}^{\mathcal{P}}=\{f:{\mathcal{P}}\to\{1,\dots,m-1\}\,:\,p\prec p^{\prime}\,\Rightarrow\,f(p)<f(p^{\prime})\}

one similarly checks g(𝐱)g(\mathbf{x}) vanishes on int(mO𝒫)𝒫\mathrm{int}(mO_{\mathcal{P}})\cap{\mathbb{Z}}^{\mathcal{P}}: any 𝐱\mathbf{x} in int(mO𝒫)𝒫\mathrm{int}(mO_{\mathcal{P}})\cap{\mathbb{Z}}^{\mathcal{P}} with g(𝐱)0g(\mathbf{x})\neq 0 would have xpi1+j=1if(pj)x_{p_{i}}\geq 1+\sum_{j=1}^{i}f(p_{j}) for i=1,,ri=1,\ldots,r, and xpr1+j=1rf(pj)>m1x_{p_{r}}\geq 1+\sum_{j=1}^{r}f(p_{j})>m-1 is a contradiction. ∎

In contrast to Theorem 5.8, for most posets 𝒫{\mathcal{P}} the affine semigroup rings of C𝒫C_{\mathcal{P}} and O𝒫O_{\mathcal{P}} are not isomorphic. Indeed, if P,QP,Q are lattice polytopes, even in the category of ungraded algebras it follows from [10, Chap. 5] that APAQA_{P}\cong A_{Q} if and only if PP is unimodularly equivalent to QQ. Hibi and Li proved [29] that for a poset 𝒫{\mathcal{P}}, the chain polytope C𝒫C_{\mathcal{P}} and the order polytope O𝒫O_{\mathcal{P}} are unimodularly equivalent if and only if 𝒫{\mathcal{P}} does not contain the 5-element ‘X-shape’ shown below as a subposet. Theorem 5.8 therefore gives an infinite family of lattice polytopes with isomorphic harmonic algebras but nonisomorphic semigroup rings.

\bullet\bullet\bullet\bullet\bullet
Remark 5.9.

We note that it is easy to compute EC𝒫(t,q)=EO𝒫(t,q)\mathrm{E}_{C_{\mathcal{P}}}(t,q)=\mathrm{E}_{O_{\mathcal{P}}}(t,q) for the two “extreme” posets 𝒫{\mathcal{P}} on nn elements: chains and antichains. When 𝒫{\mathcal{P}} is the chain 1<2<<n1<2<\cdots<n on {1,2,,n}\{1,2,\ldots,n\}, by definition, C𝒫C_{\mathcal{P}} is the simplex Pyr(Δn1)\mathrm{Pyr}(\Delta^{n-1}) considered in Section 3.6. Therefore one has

EC𝒫(t,q)=EO𝒫(t,q)=EPyr(Δn1)(t,q)=1(1t)(1tq)n.\mathrm{E}_{C_{\mathcal{P}}}(t,q)=\mathrm{E}_{O_{\mathcal{P}}}(t,q)=\mathrm{E}_{\mathrm{Pyr}(\Delta^{n-1})}(t,q)=\frac{1}{(1-t)(1-tq)^{n}}.

When 𝒫{\mathcal{P}} is an antichain on nn elements, by definition O𝒫=C𝒫=[0,1]nO_{\mathcal{P}}=C_{\mathcal{P}}=[0,1]^{n}, the nn-dimensional cube. Using the fact that these are antiblocking polytopes, from Corollary 3.15 one can conclude that

iC𝒫(m;q)=iO𝒫(m;q)=i[0,1]n(m;q)=𝐳{0,1,,m}nqz1++zn=([m+1]q)n.i_{C_{\mathcal{P}}}(m;q)=i_{O_{\mathcal{P}}}(m;q)=i_{[0,1]^{n}}(m;q)=\sum_{\mathbf{z}\in\{0,1,\ldots,m\}^{n}}q^{z_{1}+\cdots+z_{n}}=([m+1]_{q})^{n}.

This then implies that

EC𝒫(t,q)=EO𝒫(t,q)=E[0,1]n(t,q)\displaystyle\mathrm{E}_{C_{\mathcal{P}}}(t,q)=\mathrm{E}_{O_{\mathcal{P}}}(t,q)=\mathrm{E}_{[0,1]^{n}}(t,q) =m=0tm([m+1]q)n\displaystyle=\sum_{m=0}^{\infty}t^{m}([m+1]_{q})^{n}
(124) =w𝔖ntdes(w)qmaj(w)(1t)(1tq)(1tq2)(1tqn),\displaystyle=\frac{\sum_{w\in{\mathfrak{S}}_{n}}t^{\mathrm{des}(w)}q^{\mathrm{maj}(w)}}{(1-t)(1-tq)(1-tq^{2})...(1-tq^{n})},

where the descent number des(w)\mathrm{des}(w) and major index maj(w)\mathrm{maj}(w) are defined by

des(w)\displaystyle\mathrm{des}(w) =#{i:w(i)>w(i+1)},\displaystyle=\#\{i:w(i)>w(i+1)\},
maj(w)\displaystyle\mathrm{maj}(w) =i:w(i)>w(i+1)i.\displaystyle=\sum_{i:w(i)>w(i+1)}i.

The last equality in (124) is a famous result of Carlitz, sometimes also credited to MacMahon; see the historical discussion surrounding Theorem 1.1 in Braun and Olsen [9].

5.7. Case study: an interesting triangle

For lattice polytopes PP that are not antiblocking, the analysis of P{\mathcal{H}}_{P} can be significantly more complicated. We return to study the lattice triangle P:=conv{𝟎,(1,2),(2,1)}2P:=\mathrm{conv}\{\mathbf{0},(1,2),(2,1)\}\subset{\mathbb{R}}^{2} from Remark 3.19, Example 4.9, with P,2P,3PP,2P,3P shown below:

\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet

This triangle PP is not antiblocking, and is Aff(2)\mathrm{Aff}({\mathbb{Z}}^{2})-equivalent to the second lattice triangle of area 33 in Figure 1, with these Ehrhart and qq-Ehrhart series

EP(t)\displaystyle\mathrm{E}_{P}(t) =1+t+t2(1t)3=1+4t+10t2+19t3+\displaystyle=\frac{1+t+t^{2}}{(1-t)^{3}}=1+4t+10t^{2}+19t^{3}+\cdots
EP(t,q)\displaystyle\mathrm{E}_{P}(t,q) =(1+qt)(1+qt+q2t2)(1t)(1q2t)(1q3t2)\displaystyle=\frac{(1+qt)(1+qt+q^{2}t^{2})}{(1-t)(1-q^{2}t)(1-q^{3}t^{2})}
=1+(1+2q+q2)t+(1+2q+3q2+3q3+q4)t2+(1+2q+3q2+4q3+54+3q5+q6)t3+\displaystyle=1+(1+2q+q^{2})t+(1+2q+3q^{2}+3q^{3}+q^{4})t^{2}+(1+2q+3q^{2}+4q^{3}+5^{4}+3q^{5}+q^{6})t^{3}+\cdots

We explain below how one can use the harmonic algebra p{\mathcal{H}}_{p} to prove the above calculation of EP(t,q)\mathrm{E}_{P}(t,q) is correct. Before doing so, we note two interesting features of EP(t,q)\mathrm{E}_{P}(t,q).

First, note [EP(t,q)]q=1=EP(t)[\mathrm{E}_{P}(t,q)]_{q=1}=\mathrm{E}_{P}(t) requires canceling a numerator/denominator factor at q=1q=1.

Second, note that the bidegrees t,q2t,q3t2t,q^{2}t,q^{3}t^{2} appearing in the denominator factors of EP(t,q)\mathrm{E}_{P}(t,q) are all different, even though the triangle PP has a GL(2)GL({\mathbb{Z}}^{2})-symmetry that swaps the two vertices (2,1),(1,2)(2,1),(1,2). Thus even in the special case where both Conjecture 5.5(ii) and Conjecture 1.1(ii) hold and PP is a lattice triangle with ν=d+1=3\nu=d+1=3, one should not expect some simple and natural bijection between the three vertices of PP and the 2{\mathbb{N}}^{2}-graded system of parameters {θ1,θ2,θ3}\{\theta_{1},\theta_{2},\theta_{3}\}.

Expecting that Conjecure 5.5 might hold, and examining EP(t,q)\mathrm{E}_{P}(t,q), shown color-coded here,

(125) EP(t,q)=1+2qt+2q2t2+q3t3(1t)(1q2t)(1q3t2).\mathrm{E}_{P}(t,q)=\frac{{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}1+2qt+2q^{2}t^{2}+q^{3}t^{3}}}{(1-{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}t})(1-{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}q^{2}t})(1-{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{q^{3}t^{2}}})}.

one might expect from the denominator that the harmonic algebra P{\mathcal{H}}_{P} contains a homogeneous system of parameters θ1,θ2,θ3\theta_{1},\theta_{2},\theta_{3} of 2{\mathbb{N}}^{2}-degrees (0,1),(1,2),(2,3)(0,1),(1,2),(2,3). From the numerator one might expect to find six [θ1,θ2,θ3]{\mathbb{R}}[\theta_{1},\theta_{2},\theta_{3}]-basis elements whose 2{\mathbb{N}}^{2}-degrees match 1+2qt+2q2t2+q3t3.1+2qt+2q^{2}t^{2}+q^{3}t^{3}. Using Macaulay2, one can compute {\mathbb{N}}-graded {\mathbb{R}}-bases for the harmonic spaces V2mPV_{{\mathbb{Z}}^{2}\cap mP} with m=0,1,2,3m=0,1,2,3, and hence 2{\mathbb{N}}^{2}-graded {\mathbb{R}}-bases for (P)0,(P)1,(P)2,(P)3({\mathcal{H}}_{P})_{0},({\mathcal{H}}_{P})_{1},({\mathcal{H}}_{P})_{2},({\mathcal{H}}_{P})_{3}. We then rewrote these bases to make the action of G=/2G={\mathbb{Z}}/2{\mathbb{Z}} apparent in each graded piece, and identified candidates for θ1,θ2,θ3\theta_{1},\theta_{2},\theta_{3} and the six [θ1,θ2,θ3]{\mathbb{R}}[\theta_{1},\theta_{2},\theta_{3}]-basis elements, color-coded in this table:

(P)01(P)1θ1=y0y1θ2=y0y0y2y0(y12+y1y2+y22)(P)2y02y02y1y02y12y02y13y02(y14+2y13y2y02y2y02y1y2θ3=y02(y12y2+y1y22)+3y12y22+2y1y23y02y22y02y23+y24)(P)3y03y03y1y03y12y03y13y03y14y03(y15+y14y2+y13y22),y03(y16+3y15y2y03y2y03y1y2y03(y12y2+y1y22)y03y13y2y03(y25+y1y24+y12y23)+6y14y22+7y13y23+6y12y24y03y22y03(y12y2y1y22)y03y\tiny\begin{array}[]{|c||c|c|c|c|c|c|c|}\hline\cr({\mathcal{H}}_{P})_{0}&{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}1}&&&&&&\\ \hline\cr({\mathcal{H}}_{P})_{1}&{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\theta_{1}=}&{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}y_{0}y_{1}}&{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\theta_{2}=}&&&&\\ &{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}y_{0}}&{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}y_{0}y_{2}}&{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}y_{0}(y_{1}^{2}+y_{1}y_{2}+y_{2}^{2})}&&&&\\ \hline\cr({\mathcal{H}}_{P})_{2}&y_{0}^{2}&y_{0}^{2}y_{1}&{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}y_{0}^{2}y_{1}^{2}}&y_{0}^{2}y_{1}^{3}&y_{0}^{2}(y_{1}^{4}+2y_{1}^{3}y_{2}&&\\ &&y_{0}^{2}y_{2}&y_{0}^{2}y_{1}y_{2}&{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\theta_{3}=y_{0}^{2}(y_{1}^{2}y_{2}+y_{1}y_{2}^{2})}&+3y_{1}^{2}y_{2}^{2}+2y_{1}y_{2}^{3}&&\\ &&&{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}y_{0}^{2}y_{2}^{2}}&y_{0}^{2}y_{2}^{3}&+y_{2}^{4})&&\\ \hline\cr({\mathcal{H}}_{P})_{3}&y_{0}^{3}&y_{0}^{3}y_{1}&y_{0}^{3}y_{1}^{2}&y_{0}^{3}y_{1}^{3}&y_{0}^{3}y_{1}^{4}&y_{0}^{3}(y_{1}^{5}+y_{1}^{4}y_{2}+y_{1}^{3}y_{2}^{2}),&y_{0}^{3}(y_{1}^{6}+3y_{1}^{5}y_{2}\\ &&y_{0}^{3}y_{2}&y_{0}^{3}y_{1}y_{2}&y_{0}^{3}(y_{1}^{2}y_{2}+y_{1}y_{2}^{2})&y_{0}^{3}y_{1}^{3}y_{2}&y_{0}^{3}(y_{2}^{5}+y_{1}y_{2}^{4}+y_{1}^{2}y_{2}^{3})&+6y_{1}^{4}y_{2}^{2}+7y_{1}^{3}y_{2}^{3}+6y_{1}^{2}y_{2}^{4}\\ &&&y_{0}^{3}y_{2}^{2}&{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}y_{0}^{3}(y_{1}^{2}y_{2}-y_{1}y_{2}^{2})}&y_{0}^{3}y_{1}^{2}y_{2}^{2}&y_{0}^{3}(y_{1}^{4}y_{2}+2y_{1}^{3}y_{2}^{2}&+3y_{1}y_{2}^{5}+y_{2}^{6})\\ &&&&y_{0}^{3}y_{2}^{3}&y_{0}^{3}y_{1}y_{2}^{3}&+2y_{1}^{2}y_{2}^{3}+y_{1}y_{2}^{4})&\\ &&&&&y_{0}^{3}y_{2}^{4}&&\\ \hline\cr\end{array}

With these candidates, one can use Macaulay2 to verify (125) as follows. One can check that θ1,θ2,θ3\theta_{1},\theta_{2},\theta_{3}, which have {\mathbb{N}}-degrees 1,1,21,1,2, do generate a subalgebra BB of P[y0,y1,y2]{\mathcal{H}}_{P}\subset{\mathbb{R}}[y_{0},y_{1},y_{2}] having {\mathbb{N}}-graded Hilbert series 1(1t)2(1t2)\frac{1}{(1-t)^{2}(1-t^{2})}. Thus θ1,θ2,θ3\theta_{1},\theta_{2},\theta_{3} are algebraically independent. And then one can check that together with the six elements colored brown in the table, they generate a subalgebra of P{\mathcal{H}}_{P} having {\mathbb{N}}-graded Hilbert series 1+t+t2(1t)3=1+2t+2t2+t3(1t)2(1t2)\frac{1+t+t^{2}}{(1-t)^{3}}=\frac{1+2t+2t^{2}+t^{3}}{(1-t)^{2}(1-t^{2})}. Since this matches Hilb(P,t)=EP(t)\mathrm{Hilb}({\mathcal{H}}_{P},t)=\mathrm{E}_{P}(t), these nine red and brown elements must generate all of P{\mathcal{H}}_{P}. Furthermore, this shows that the six brown elements must be free BB-basis elements for P{\mathcal{H}}_{P}, so it is Cohen-Macaulay, as predicted in Conjecture 5.5(ii).

Remark 5.10.

Note that this algorithm computed EP(t,q)=Hilb(P,t,q)\mathrm{E}_{P}(t,q)=\mathrm{Hilb}({\mathcal{H}}_{P},t,q) without finding generators for the ideals gr𝐈(mPn){\mathrm{gr}}\,{\mathbf{I}}(mP\cap{\mathbb{Z}}^{n}) for all m0m\geq 0. We began with the guess (125) for EP(t,q)\mathrm{E}_{P}(t,q) that came from computing the Hilbert series of VmPn=gr𝐈(mPn)V_{mP\cap{\mathbb{Z}}^{n}}={\mathrm{gr}}\,{\mathbf{I}}(mP\cap{\mathbb{Z}}^{n})^{\perp} for small values of mm. The answer suggested that we might find generators for P{\mathcal{H}}_{P} whose bidegrees (bi,ai)(b_{i},a_{i}) all had bi3b_{i}\leq 3. And indeed, after computing {\mathbb{R}}-bases for VmPnV_{mP\cap{\mathbb{Z}}^{n}} for m=1,2,3m=1,2,3, we were then able to prove that they generate P{\mathcal{H}}_{P}. Such an algorithm is not guaranteed to terminate in all cases, but was successfully used to verify all of the EP(t,q)\mathrm{E}_{P}(t,q) in Figures 1, 2, 3.

Lastly, we use the above description of P{\mathcal{H}}_{P} to compute the equivariant qq-Ehrhart series EGP(t,q)\mathrm{E}^{G}_{P}(t,q) in Rep(G)[q][[t]]\mathrm{Rep}_{\mathbb{R}}(G)[q][[t]] for the action of the group GG of order two that swaps y1,y2y_{1},y_{2}. As in Example 3.22, the representation ring Rep(G)[ϵ]/(ϵ21)=span{1,ϵ},\mathrm{Rep}_{\mathbb{R}}(G)\cong{\mathbb{Z}}[\epsilon]/(\epsilon^{2}-1)=\mathrm{span}_{\mathbb{Z}}\{1,\epsilon\}, where 1,ϵ1,\epsilon denote the isomorphism classes of the one-dimension trivial and nontrivial [G]{\mathbb{R}}[G]-modules, respectively. Examining the color-coded elements in the above table, one sees that they were chosen so that the red θi\theta_{i} for i=1,2,3i=1,2,3 are all GG-fixed, while the brown basis elements are either GG-fixed (carrying the representation 11), or GG-negated (carrying the representation ϵ\epsilon), or swapped as a pair (carrying the regular representation 1+ϵ1+\epsilon). Consequently, one has

(126) EPG(t,q)=cht,q(P)=1+(1+ϵ)qt+(1+ϵ)q2t2+ϵq3t3(1t)(1q2t)(1q3t2).\mathrm{E}_{P}^{G}(t,q)={\mathrm{ch}}_{t,q}({\mathcal{H}}_{P})=\frac{{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}1+(1+\epsilon)qt+(1+\epsilon)q^{2}t^{2}+\epsilon q^{3}t^{3}}}{(1-{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}t})(1-{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}q^{2}t})(1-{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{q^{3}t^{2}}})}.

5.8. Some cautionary remarks

We give here a few further cautionary remarks regarding the definition of P{\mathcal{H}}_{P} and Conjecture 5.5.

Remark 5.11.

One might be tempted to define the harmonic algebra differently, in a more general context. Starting with any finite subset 𝒵𝐤n\mathcal{Z}\subseteq{\mathbf{k}}^{n}, over any field 𝐤{\mathbf{k}}, one could introduce an 2{\mathbb{N}}^{2}-graded 𝐤{\mathbf{k}}-subalgebra of the ring 𝐤[y0]𝐤𝔻𝐤(𝐲){\mathbf{k}}[y_{0}]\otimes_{\mathbf{k}}\mathbb{D}_{\mathbf{k}}(\mathbf{y}) defined by

(127) 𝒵:=m=0𝐤y0m𝐤V𝒵++𝒵m times{\mathcal{H}}_{\mathcal{Z}}:=\bigoplus_{m=0}^{\infty}{\mathbf{k}}\cdot y_{0}^{m}\otimes_{\mathbf{k}}V_{\underbrace{\mathcal{Z}+\cdots+\mathcal{Z}}_{m\text{ times}}}

Here we adopt the convention that the 0-fold Minkowski sum of 𝒵\mathcal{Z} with itself is {𝟎}\{\mathbf{0}\}, so that 1=y00𝐤𝐲𝟎(𝒵)01=y_{0}^{0}\otimes_{\mathbf{k}}\mathbf{y}^{\mathbf{0}}\in({\mathcal{H}}_{\mathcal{Z}})_{0}. Theorem 1.4 shows that this does define a 𝐤{\mathbf{k}}-subalgebra of 𝐤[y0]𝐤𝔻𝐤(𝐲){\mathbf{k}}[y_{0}]\otimes_{\mathbf{k}}\mathbb{D}_{\mathbf{k}}(\mathbf{y}). However, there are two issues with this definition (127) for 𝒵{\mathcal{H}}_{\mathcal{Z}}, even when 𝐤={\mathbf{k}}={\mathbb{R}}.

The first issue is that when one takes 𝒵=nP\mathcal{Z}={\mathbb{Z}}^{n}\cap P for a lattice polytope PnP\subset{\mathbb{R}}^{n}, the above algebra 𝒵{\mathcal{H}}_{\mathcal{Z}} can be a proper subalgebra of the harmonic algebra P{\mathcal{H}}_{P}. This is because the inclusion

(nP)++(nP)m timesnmP\underbrace{({\mathbb{Z}}^{n}\cap P)+\cdots+({\mathbb{Z}}^{n}\cap P)}_{m\text{ times}}\subseteq{\mathbb{Z}}^{n}\cap mP

can be strict, namely for lattice polytopes PP failing to have the integer decomposition property (IDP) discussed in Defintion 3.7. Although not every dd-dimensional lattice polytope PP has the IDP, a result of Cox, Haase, Hibi and Higashitani [12] shows that its dilation dPdP always has the IDP; see [12]. It follows that the affine semigroup ring APA_{P} is always generated by elements of {\mathbb{N}}-degree at most d=dim(P)d=\dim(P). However, the interesting lattice triangle PP discussed in Section 5.7 required an algebra generator for its harmonic algebra P{\mathcal{H}}_{P} of {\mathbb{N}}-degree 3>2=d3>2=d, showing that sometimes we must go to higher degrees than dd to generate P{\mathcal{H}}_{P}.

A second issue with the above definition (127) for 𝒵{\mathcal{H}}_{\mathcal{Z}} is that it is not always finitely generated as an algebra, even when 𝐤={\mathbf{k}}={\mathbb{R}} and n=1n=1. For example, let 𝒵={0,2,3}1\mathcal{Z}=\{0,2,3\}\subset{\mathbb{R}}^{1}. It is not hard to check that the mm-fold Minkowski sum 𝒵++𝒵={0,2,3,4,,3m1,3m}\mathcal{Z}+\cdots+\mathcal{Z}=\{0,2,3,4,\ldots,3m-1,3m\} for all m1m\geq 1. This means that, after identifying 𝔻(𝐲)\mathbb{D}_{\mathbb{R}}(\mathbf{y}) with [y1]{\mathbb{R}}[y_{1}], one has V𝒵++𝒵m times=span{1,y1,y12,,y13m1}V_{\underbrace{\mathcal{Z}+\cdots+\mathcal{Z}}_{m\text{ times}}}=\mathrm{span}_{\mathbb{R}}\{1,y_{1},y_{1}^{2},\ldots,y_{1}^{3m-1}\}, and

(128) 𝒵=span{1}span{y0my1j:m0 and 0j3m1}.{\mathcal{H}}_{\mathcal{Z}}=\mathrm{span}_{\mathbb{R}}\{1\}\oplus\mathrm{span}_{\mathbb{R}}\{y_{0}^{m}y_{1}^{j}\,:\,m\geq 0\text{ and }0\leq j\leq 3m-1\}.

Therefore 𝒵[y0,y1]{\mathcal{H}}_{\mathcal{Z}}\subset{\mathbb{R}}[y_{0},y_{1}] is the semigroup ring for the additive subsemigroup of 2{\mathbb{N}}^{2} that may be visualized as follows, with a dot at coordinates (m,j)(m,j) representing y0my1jy_{0}^{m}y_{1}^{j} in 𝒵{\mathcal{H}}_{\mathcal{Z}}:

\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\cdots

This illustrates the lack of finite generation: minimal monomial {\mathbb{R}}-algebra generators for 𝒵{\mathcal{H}}_{\mathcal{Z}} are

{y0y12,y0y13,y02y15,y03y18,y04y111,}={y0y12}{y0my13m1}m=2,3,4,.\{y_{0}y_{1}^{2},\,\,\,\,y_{0}y_{1}^{3},\,\,y_{0}^{2}y_{1}^{5},\,\,y_{0}^{3}y_{1}^{8},\,\,y_{0}^{4}y_{1}^{11},\,\,\ldots\}=\{y_{0}y_{1}^{2}\}\cup\,\,\{y_{0}^{m}y_{1}^{3m-1}\}_{m=2,3,4,\ldots}.

This does not violate Conjecture 5.5(i), since 𝒵≇P{\mathcal{H}}_{\mathcal{Z}}\not\cong{\mathcal{H}}_{P} for any lattice polytope PP. But proving Conjecture 5.5 must involve extra features of harmonic spaces of lattice points inside polytopes.

Remark 5.12.

One can regard PPP\leadsto{\mathcal{H}}_{P} as a functor :𝒞𝒟{\mathcal{H}}:\mathcal{C}\rightarrow\mathcal{D}, where 𝒟\mathcal{D} is the category of 2{\mathbb{N}}^{2}-graded {\mathbb{R}}-algebras. Here 𝒞\mathcal{C} is a category of lattice polytopes PnP\subset{\mathbb{R}}^{n} whose morphisms PPP\to P^{\prime} are {\mathbb{Z}}-linear maps φ:nn\varphi:{\mathbb{Z}}^{n}\to{\mathbb{Z}}^{n^{\prime}} with f(P)Pf(P)\subseteq P^{\prime}. The fact that this induces an {\mathbb{R}}-algebra map PP{\mathcal{H}}_{P}\to{\mathcal{H}}_{P^{\prime}} stems from the fact that the point configurations 𝒵:=nmP\mathcal{Z}:={\mathbb{Z}}^{n}\cap mP and 𝒵:=nmP\mathcal{Z}^{\prime}:={\mathbb{Z}}^{n^{\prime}}\cap mP^{\prime} have f(𝒵)𝒵f(\mathcal{Z})\subseteq\mathcal{Z}^{\prime}. This implies that the map φ:[x1,,xn][x1,,xn]\varphi^{\sharp}:{\mathbb{R}}[x_{1},\ldots,x_{n^{\prime}}]\rightarrow{\mathbb{R}}[x_{1},\ldots,x_{n}] that precomposes ffφf\mapsto f\circ\varphi will have φ(𝐈(𝒵))𝐈(𝒵)\varphi^{\sharp}({\mathbf{I}}(\mathcal{Z}^{\prime}))\subseteq{\mathbf{I}}(\mathcal{Z}), and hence φ(gr𝐈(𝒵))gr𝐈(𝒵)\varphi^{\sharp}({\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}^{\prime}))\subseteq{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}). Therefore the adjoint map φ:nn\varphi:{\mathbb{R}}^{n}\rightarrow{\mathbb{R}}^{n^{\prime}}, when extended to a ring map [y1,,yn][y1,,yn]{\mathbb{R}}[y_{1},\ldots,y_{n}]\rightarrow{\mathbb{R}}[y_{1},\ldots,y_{n^{\prime}}] satisfies

φ(V𝒵)=φ(gr𝐈(𝒵))gr𝐈(𝒵)=φ(V𝒵).\varphi(V_{\mathcal{Z}})=\varphi({\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z})^{\perp})\subseteq{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}^{\prime})^{\perp}=\varphi(V_{\mathcal{Z}^{\prime}}).

If one instead considers :PP{\mathcal{H}}:P\leadsto{\mathcal{H}}_{P} as a functor into the category of {\mathbb{N}}-graded {\mathbb{R}}-algebras, one can compare it to the similar such functor A:PAPA:P\leadsto A_{P}. These two functors (){\mathcal{H}}_{(-)} and A()A_{(-)} are not isomorphic; see the example in Section 5.4. The authors do not know if they are equivalent.

Remark 5.13.

One might hope to find some canonical {\mathbb{R}}-linear basis for P{\mathcal{H}}_{P}. Although the authors are unaware of such a basis which is 2{\mathbb{N}}^{2}-homogeneous, there is at least a canonical {\mathbb{N}}-homogeneous {\mathbb{R}}-basis, coming from such {\mathbb{R}}-bases for harmonic spaces V𝒵V_{\mathcal{Z}} of finite subsets 𝒵n\mathcal{Z}\subset{\mathbb{R}}^{n}.

To describe these, assume 𝐤{\mathbf{k}} is a field of characteristic zero, and identify 𝐤n{\mathbf{k}}^{n} and its basis y1,,yny_{1},\ldots,y_{n} with (𝐤n)({\mathbf{k}}^{n})^{*} and its basis x1,,xnx_{1},\ldots,x_{n}. Then mapping ynxny_{n}\longmapsto x_{n} gives the middle isomorphism here

𝔻:=𝔻𝐤(𝐲)=𝐤[y1,,yn]𝐤[x1,,xn]=:S.\mathbb{D}:=\mathbb{D}_{\mathbf{k}}(\mathbf{y})={\mathbf{k}}[y_{1},\ldots,y_{n}]\cong{\mathbf{k}}[x_{1},\ldots,x_{n}]=:S.

This lets one view the subspace V𝒵:=gr𝐈(𝒵)𝔻V_{\mathcal{Z}}:={\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z})^{\perp}\subset\mathbb{D} as a subspace of S=𝐤[𝐱]S={\mathbf{k}}[\mathbf{x}].

Proposition 5.14.

For 𝐤{\mathbf{k}} a field of characteristic zero, and any finite point set 𝒵𝐤n\mathcal{Z}\subset{\mathbf{k}}^{n}, there is a unique basis {g𝐳(𝐱):𝐳𝒵}\{g_{\mathbf{z}}(\mathbf{x})\,:\,\mathbf{z}\in\mathcal{Z}\} of the harmonic space V𝒵V_{\mathcal{Z}} such that g𝐳(𝐳)=δ𝐳,𝐳g_{\mathbf{z}}(\mathbf{z}^{\prime})=\delta_{\mathbf{z},\mathbf{z}^{\prime}} for all 𝐳𝒵\mathbf{z}^{\prime}\in\mathcal{Z}.

Proof.

Since V𝒵:=gr𝐈(𝒵)V_{\mathcal{Z}}:={\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z})^{\perp}, one has a 𝐤{\mathbf{k}}-vector space direct sum decomposition S=V𝒵gr𝐈(𝒵)S=V_{\mathcal{Z}}\oplus{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}). Consequently, the composite map V𝒵SS/gr𝐈(𝒵)V_{\mathcal{Z}}\hookrightarrow S\twoheadrightarrow S/{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}) is a 𝐤{\mathbf{k}}-vector space isomorphism. Thus any set of homogeneous polynomials that give a 𝐤{\mathbf{k}}-basis for the (graded) subspace V𝒵SV_{\mathcal{Z}}\subset S will descend to a 𝐤{\mathbf{k}}-basis of S/gr𝐈(𝒵)S/{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}). Proposition 2.1(ii) implies that the same set of polynomials will also descend to a basis of S/𝐈(𝒵)S/{\mathbf{I}}(\mathcal{Z}). Hence this composite is also a 𝐤{\mathbf{k}}-vector space isomorphism:

(129) V𝒵SS/𝐈(𝒵).V_{\mathcal{Z}}\hookrightarrow S\twoheadrightarrow S/{\mathbf{I}}(\mathcal{Z}).

Now multivariate Lagrange interpolation identifies

(130) S/𝐈(𝒵){ all functions g:𝒵𝐤},S/{\mathbf{I}}(\mathcal{Z})\cong\{\text{ all functions }g:\mathcal{Z}\to{\mathbf{k}}\,\,\},

and the space on the right has a unique 𝐤{\mathbf{k}}-basis of {g𝐳}𝐳\{g_{\mathbf{z}}\}_{\mathbf{z}\in{\mathbb{Z}}} defined by g𝐳(𝐳)=δ𝐳,𝐳g_{\mathbf{z}}(\mathbf{z}^{\prime})=\delta_{\mathbf{z},\mathbf{z}^{\prime}}. The assertion then follows from combining this with (129) and (130). ∎

Note that Proposition 5.14 provides 𝐤{\mathbf{k}}-bases {g𝐳(𝐱):𝐳𝒵}\{g_{\mathbf{z}}(\mathbf{x}):\mathbf{z}\in\mathcal{Z}\} that are generally inhomogeneous. Nevertheless, given a lattice polytope PP, and taking 𝐤={\mathbf{k}}={\mathbb{R}}, one can assemble all of these distinguished {\mathbb{R}}-bases for VnmPV_{{\mathbb{Z}}^{n}\cap mP} into an {\mathbb{N}}-graded {\mathbb{R}}-basis {y0mg𝐳(𝐲):𝐳nmP}\{y_{0}^{m}g_{\mathbf{z}}(\mathbf{y}):\mathbf{z}\in{\mathbb{Z}}^{n}\cap mP\} for P{\mathcal{H}}_{P}. Note that, even though this {\mathbb{R}}-basis for P{\mathcal{H}}_{P} is in bijection with an {\mathbb{R}}-basis for the semigroup ring APA_{P}, the bijection does not respect multiplication. This is to be expected, since the example discussed in Section 5.4 shows that these two rings are not isomorphic as {\mathbb{N}}-graded {\mathbb{R}}-algebras.

6. Dilations, products, and joins: proof of Theorem 1.3

Recall from the Introduction these three basic operations on polytopes:

  • dilation by an positive integer factor dd, sending PP to dPdP,

  • Cartesian product, sending PnP\subset{\mathbb{R}}^{n} and QmQ\subset{\mathbb{R}}^{m} to P×Qn+mP\times Q\subset{\mathbb{R}}^{n+m},

  • free join, sending P,QP,Q to PQ1+n+mP*Q\subseteq{\mathbb{R}}^{1+n+m} defined by

    PQ\displaystyle P*Q :={(t,t𝐩,(1t)𝐪): 0t1,𝐩P,𝐪Q}\displaystyle:=\{(t,t\mathbf{p},(1-t)\mathbf{q})\,:\,0\leq t\leq 1,\,\mathbf{p}\in P,\,\mathbf{q}\in Q\}
    =conv({1}×P×𝟎m{0}×𝟎n×Q)\displaystyle=\mathrm{conv}\left(\quad\{1\}\times P\times\mathbf{0}_{m}\quad\sqcup\quad\{0\}\times\mathbf{0}_{n}\times Q\quad\right)

We wish to understand how these operations interact with qq-Ehrhart series EP(t,q)\mathrm{E}_{P}(t,q). In the process we will see how they interact with harmonic algebras P{\mathcal{H}}_{P}, by relating them to the commutative algebra constructions for {\mathbb{N}}-graded algebras of Veronese subalgebras, Segre products and graded tensor products; When applying these constructions to the 2{\mathbb{N}}^{2}-graded algebra P{\mathcal{H}}_{P}, we will always use the grading specialization deg(y0m𝐲𝐳)=m\deg(y_{0}^{m}\mathbf{y}^{\mathbf{z}})=m to regard it as an {\mathbb{N}}-graded algebra. The analysis will also prove Theorem 1.3, whose statement we recall here.

Theorem 1.3. Let P,QP,Q be lattice polytopes.

  • (i)

    For positive integers dd, the dilation dPdP has EdP(t,q)\mathrm{E}_{dP}(t,q) given by

    EdP(t,q)=m=0iP(dm;q)tm.\mathrm{E}_{dP}(t,q)=\sum_{m=0}^{\infty}i_{P}(dm;q)t^{m}.
  • (ii)

    The Cartesian product P×QP\times Q has EP×Q(t,q)\mathrm{E}_{P\times Q}(t,q) given by the Hadamard product

    EP×Q(t,q)=m=0iP(m;q)iQ(m;q)tm.\mathrm{E}_{P\times Q}(t,q)=\sum_{m=0}^{\infty}i_{P}(m;q)\cdot i_{Q}(m;q)\cdot t^{m}.
  • (iii)

    The free join PQP*Q has EPQ(t,q)\mathrm{E}_{P*Q}(t,q) given by

    EPQ(t,q)=1t1qtEP(t,q)EQ(t,q).\mathrm{E}_{P*Q}(t,q)=\frac{1-t}{1-qt}\cdot\mathrm{E}_{P}(t,q)\cdot\mathrm{E}_{Q}(t,q).

We deal with each of the three parts of this theorem in the next three subsections.

6.1. Dilations and the Veronese construction

The first and simplest of these is given by dilation PdPP\mapsto dP. If A=m0AmA=\bigoplus_{m\geq 0}A_{m} is a graded algebra, the dthd^{th} Veronese subalgebra is

(131) Verd(A):=m 0Adm.\mathrm{Ver}_{d}(A):=\bigoplus_{m\,\geq\,0}A_{dm}.

Then Theorem 1.3(i) along with the following result are immediate from the definitions.

Proposition 6.1.

For a lattice polytope PP and any d0d\geq 0 one has dPVerd(P){\mathcal{H}}_{dP}\cong\mathrm{Ver}_{d}({\mathcal{H}}_{P}).

6.2. Cartesian products and the Segre construction

The Cartesian product P×QP\times Q of lattice polytopes is again a lattice polytope. Since m(P×Q)=mP×mQm(P\times Q)=mP\times mQ, it is easily seen that

iP×Q(m)=iP(m)iQ(m).i_{P\times Q}(m)=i_{P}(m)\cdot i_{Q}(m).

There is a similarly easy relation for their harmonic algebras, which comes from a general lemma on the behavior of orbit harmonic rings R(𝒵)=S/gr𝐈(𝒵)R(\mathcal{Z})=S/{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}) and harmonic spaces V𝒵V_{\mathcal{Z}} when one has a Cartesian product of point loci.

Lemma 6.2.

For a field 𝐤{\mathbf{k}} and finite subsets 𝒵𝐤n,𝒵𝐤n\mathcal{Z}\subseteq{\mathbf{k}}^{n},\mathcal{Z}^{\prime}\subseteq{\mathbf{k}}^{n^{\prime}}, one has graded isomorphisms

R(𝒵×𝒵)\displaystyle R(\mathcal{Z}\times\mathcal{Z}^{\prime}) R(𝒵)𝐤R(𝒵),\displaystyle\cong R(\mathcal{Z})\otimes_{\mathbf{k}}R(\mathcal{Z}^{\prime}),
V𝒵×𝒵\displaystyle V_{\mathcal{Z}\times\mathcal{Z}^{\prime}} V𝒵𝐤V𝒵.\displaystyle\cong V_{\mathcal{Z}}\otimes_{\mathbf{k}}V_{\mathcal{Z}^{\prime}}.
Proof.

Write Sn,SnS_{n},S_{n^{\prime}} for the polynomial rings 𝐤[x1,,xn],𝐤[x1,,xn]{\mathbf{k}}[x_{1},\dots,x_{n}],{\mathbf{k}}[x_{1},\dots,x_{n^{\prime}}] which contain 𝐈(𝒵),𝐈(𝒵){\mathbf{I}}(\mathcal{Z}),{\mathbf{I}}(\mathcal{Z}^{\prime}), so that 𝐈(𝒵×𝒵){\mathbf{I}}(\mathcal{Z}\times\mathcal{Z}^{\prime}) will be an ideal in SnSnS_{n}\otimes S_{n^{\prime}}. We claim one has the following equality of ideals

(132) I:=gr𝐈(𝒵×𝒵)=gr𝐈(𝒵)Sn+Sngr𝐈(𝒵)=:J,I:={\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}\times\mathcal{Z}^{\prime})\quad=\quad{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z})\otimes S_{n^{\prime}}+S_{n}\otimes{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z})=:J,

from which the remaining assertions will follow. To see this claim, first check the containment IJI\supseteq J: for f𝐈(𝒵)f\in{\mathbf{I}}(\mathcal{Z}) and f𝐈(𝒵)f^{\prime}\in{\mathbf{I}}(\mathcal{Z}^{\prime}), one has both f1f\otimes 1 and 1f1\otimes f^{\prime} lying in 𝐈(𝒵×𝒵){\mathbf{I}}(\mathcal{Z}\times\mathcal{Z}^{\prime}), and if f,f0f,f^{\prime}\neq 0, their top degree components τ(f1)=τ(f)1\tau(f\otimes 1)=\tau(f)\otimes 1 and τ(1f)=1τ(f)\tau(1\otimes f^{\prime})=1\otimes\tau(f^{\prime}) both lie in II. On the other hand, the inclusion IJI\supseteq J must be an equality because the surjection

(SnSn)/J=(SnSn)/I(S_{n}\otimes S_{n^{\prime}})/J=\,\,\twoheadrightarrow\,\,(S_{n}\otimes S_{n^{\prime}})/I

is an isomorphism via dimension-counting:

dim𝐤(SnSn)/Jdim𝐤Sn/gr𝐈(𝒵)dim𝐤Sn/gr𝐈(𝒵)=#(𝒵×𝒵)=dim𝐤(SnSn)/I.\dim_{\mathbf{k}}(S_{n}\otimes S_{n^{\prime}})/J\leq\dim_{\mathbf{k}}S_{n}/{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z})\cdot\dim_{\mathbf{k}}S_{n^{\prime}}/{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}^{\prime})=\#(\mathcal{Z}\times\mathcal{Z}^{\prime})=\dim_{\mathbf{k}}(S_{n}\otimes S_{n^{\prime}})/I.\qed

For {\mathbb{N}}-graded 𝐤{\mathbf{k}}-algebras A,BA,B, their Segre product Segre(A,B)\mathrm{Segre}(A,B) is the graded algebra

(133) Segre(A,B)=m=0Am𝐤BmSegre(A,B)m\mathrm{Segre}(A,B)=\bigoplus_{m=0}^{\infty}\,\,\underbrace{A_{m}\otimes_{\mathbf{k}}B_{m}}_{\mathrm{Segre}(A,B)_{m}}
Proposition 6.3.

For any lattice polytopes PP and QQ, one has P×QSegre(P,Q).{\mathcal{H}}_{P\times Q}\cong\mathrm{Segre}({\mathcal{H}}_{P},{\mathcal{H}}_{Q}).

Proof.

This comes via Lemma 6.2 and the definitions, as nm(P×Q)=(nmP)×(nmQ){\mathbb{Z}}^{n}\cap m(P\times Q)=({\mathbb{Z}}^{n}\cap mP)\times({\mathbb{Z}}^{n}\cap mQ)

6.3. Joins

Recall that for polytopes P,Qn,nP,Q\subseteq{\mathbb{R}}^{n},{\mathbb{R}}^{n^{\prime}}, their (free) join PQ1+n+nP*Q\subseteq{\mathbb{R}}^{1+n+n^{\prime}} is

PQ:={(t,t𝐩,(1t)𝐪): 0t1,𝐩P,𝐪Q}=conv({1}×P×𝟎n{0}×𝟎n×Q)\displaystyle P*Q:=\{(t,t\mathbf{p},(1-t)\mathbf{q})\,:\,0\leq t\leq 1,\,\mathbf{p}\in P,\,\mathbf{q}\in Q\}=\mathrm{conv}\left(\,\,\{1\}\times P\times\mathbf{0}_{n^{\prime}}\quad\sqcup\quad\{0\}\times\mathbf{0}_{n}\times Q\,\,\right)

If PP and QQ are lattice polytopes, the join PQP*Q is again a lattice polytope. The effect of join on harmonic algebras is more complicated than dilation and Cartesian product. We will eventually see, in Theorem 6.6 below, that it is almost, but not quite, the {\mathbb{N}}-graded tensor product

AB=m=0i+j=mAiBj(AB)m.A\otimes B=\bigoplus_{m=0}^{\infty}\,\,\underbrace{\bigoplus_{i+j\,=\,m}A_{i}\otimes B_{j}}_{(A\otimes B)_{m}}.

We first recall some facts on joins of lattice polytopes P,QP,Q in n,n{\mathbb{R}}^{n},{\mathbb{R}}^{n^{\prime}}. Let x0x_{0} denote the extra first coordinate in the ambient space 1×n×n=1+n+n{\mathbb{R}}^{1}\times{\mathbb{R}}^{n}\times{\mathbb{R}}^{n^{\prime}}={\mathbb{R}}^{1+n+n^{\prime}} for the join PQP*Q. Slicing by the hyperplanes x0=rx_{0}=r gives a disjoint decomposition of the dilates m(PQ)m(P*Q) for m0m\geq 0:

(134) 1+n+nm(PQ)=(r,r):r+r=m{r}×(nrP)×(nrQ).{\mathbb{Z}}^{1+n+n^{\prime}}\cap m(P*Q)=\bigsqcup_{\begin{subarray}{c}(r,r^{\prime}):\\ r+r^{\prime}=m\end{subarray}}\{r\}\times({\mathbb{Z}}^{n}\cap rP)\times({\mathbb{Z}}^{n^{\prime}}\cap r^{\prime}Q).

We illustrate (134) for m(PQ)m(P*Q) with m=1,2,3m=1,2,3, when P=[0,1]1P=[0,1]\subset{\mathbb{R}}^{1} and Q=[0,2]1Q=[0,2]\subset{\mathbb{R}}^{1}:

\bullet\bullet\bullet\bullet\bullet      \bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet      \bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet

This decomposition (134) implies a well-known fact (see, e.g., Beck and Robins [5, Exer. 3.33]):

(135) iPQ(m)=(r,r):r+r=miP(r)iQ(r)i_{P*Q}(m)=\sum_{\begin{subarray}{c}(r,r^{\prime}):\\ r+r^{\prime}=m\end{subarray}}i_{P}(r)\cdot i_{Q}(r^{\prime})

This fact (135) is easily seen to be equivalent to the following simple relation of Ehrhart series:

(136) EPQ(t)=EP(t)EQ(t).\mathrm{E}_{P*Q}(t)=\mathrm{E}_{P}(t)\cdot\mathrm{E}_{Q}(t).

Recalling that EP(t,q)=Hilb(P,t,q)\mathrm{E}_{P}(t,q)=\mathrm{Hilb}({\mathcal{H}}_{P},t,q), the next result is the qq-analogue of (136).

Theorem 6.4.

For lattice polytopes P,QP,Q, one has the following relation among the 2{\mathbb{N}}^{2}-graded Hilbert series for the harmonic algebras P,Q,PQ{\mathcal{H}}_{P},{\mathcal{H}}_{Q},{\mathcal{H}}_{P*Q}:

EPQ(t,q)=1t1qtEP(t,q)EQ(t,q).\mathrm{E}_{P*Q}(t,q)=\frac{1-t}{1-qt}\cdot\mathrm{E}_{P}(t,q)\cdot\mathrm{E}_{Q}(t,q).

As mentioned in Remark 3.29, if we take QQ to be a single point, Theorem 6.4 says that the qq-Ehrhart series of the pyramid Pyr(P):=P{pt}\mathrm{Pyr}(P):=P*\{\mathrm{pt}\} is EPyr(P)(t,q)=(1qt)EP(t,q)\mathrm{E}_{\mathrm{Pyr}(P)}(t,q)=(1-qt)\cdot\mathrm{E}_{P}(t,q).

Proof.

Letting 𝒵m:=1+n+nm(PQ)1+n+n\mathcal{Z}_{m}:={\mathbb{Z}}^{1+n+n^{\prime}}\cap m(P*Q)\subset{\mathbb{R}}^{1+n+n^{\prime}}, we start by describing the ideal

gr𝐈(𝒵m)[x0][x1,,xn][x1,,xn].{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}_{m})\,\,\subset\,\,{\mathbb{R}}[x_{0}]\otimes{\mathbb{R}}[x_{1},\ldots,x_{n}]\otimes{\mathbb{R}}[x_{1},\ldots,x_{n^{\prime}}].

The product structure in each term of (134) leads to some natural elements of 𝐈(𝒵m){\mathbf{I}}(\mathcal{Z}_{m}) and gr𝐈(𝒵m){\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}_{m}). First translate P,QP,Q, without loss of generality, so that 𝟎nP\mathbf{0}_{n}\in P and 𝟎nQ\mathbf{0}_{n^{\prime}}\in Q, implying nestings

(137) P2P3P and Q2Q3Q.P\subseteq 2P\subseteq 3P\subseteq\cdots\text{ and }Q\subseteq 2Q\subseteq 3Q\subseteq\cdots.

Suppose ,0\ell,\ell^{\prime}\geq 0 have +m\ell+\ell^{\prime}\leq m, and one is given f𝐈(nP)f\in{\mathbf{I}}({\mathbb{Z}}^{n}\cap\ell P) and f𝐈(nQ)f^{\prime}\in{\mathbf{I}}({\mathbb{Z}}^{n^{\prime}}\cap\ell^{\prime}Q). Then we claim that the nestings (137) imply that the polynomial

(138) f^:=r=+1m(+1)(x0r)ff\hat{f}:=\prod_{r\,=\,\ell+1}^{m-(\ell^{\prime}+1)}(x_{0}-r)\otimes f\otimes f^{\prime}

vanishes on 𝒵\mathcal{Z}_{\ell}. To see this, note that a typical point of (r,𝐳,𝐳)(r,\mathbf{z},\mathbf{z}^{\prime}) of 𝒵\mathcal{Z}_{\ell} will either

  • have +1rm(+1)\ell+1\leq r\leq m-(\ell^{\prime}+1) so f^\hat{f} vanishes due to one of its factors x0rx_{0}-r,

  • or else have rr\leq\ell, and then f^\hat{f} vanishes due to the factor ff, since 𝐳rPP\mathbf{z}\in rP\subseteq\ell P,

  • or else have mrm-r\leq\ell^{\prime}, and then f^\hat{f} vanishes due to the factor ff^{\prime}, since 𝐳(mr)PP\mathbf{z}^{\prime}\in(m-r)P\subseteq\ell^{\prime}P

Thus f^\hat{f} lies in 𝐈(𝒵m){\mathbf{I}}(\mathcal{Z}_{m}), implying that gr𝐈(𝒵m){\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}_{m}) contains its top degree homogeneous component

(139) τ(f^)=x0mτ(f)τ(f).\tau(\hat{f})=x_{0}^{m-\ell-\ell^{\prime}}\otimes\tau(f)\otimes\tau(f^{\prime}).

Note also that x0(x01)(x0m)x_{0}(x_{0}-1)\cdots(x_{0}-m) vanishes on 𝒵m\mathcal{Z}_{m}. Hence gr𝐈(𝒵m){\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}_{m}) contains this ideal:

(140) Jm:=(x0m+111)+((x0m)+mgr𝐈(nP)gr𝐈(nQ)).J_{m}:=(x_{0}^{m+1}\otimes 1\otimes 1)+\left((x_{0}^{m-\ell-\ell^{\prime}})\otimes\sum_{\ell+\ell^{\prime}\,\leq\,m}{\mathrm{gr}}\,{\mathbf{I}}({\mathbb{Z}}^{n}\cap\ell P)\otimes{\mathrm{gr}}\,{\mathbf{I}}({\mathbb{Z}}^{n^{\prime}}\cap\ell^{\prime}Q)\right).

We wish to show that, in fact, this containment Jmgr𝐈(𝒵m)J_{m}\subseteq{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}_{m}) is an equality. To this end, we calculate the perp space JmJ_{m}^{\perp} within [y0][y1,,yn][y1,,yn]{\mathbb{R}}[y_{0}]\otimes{\mathbb{R}}[y_{1},\ldots,y_{n}]\otimes{\mathbb{R}}[y_{1},\ldots,y_{n^{\prime}}] for the ideal JmJ_{m}. Abbreviate

(141) VP:=gr𝐈(nP)andVQ:=gr𝐈(nP).V^{P}_{\ell}:={\mathrm{gr}}\,{\mathbf{I}}({\mathbb{Z}}^{n}\cap\ell P)^{\perp}\quad\text{and}\quad V^{Q}_{\ell^{\prime}}:={\mathrm{gr}}\,{\mathbf{I}}({\mathbb{Z}}^{n^{\prime}}\cap\ell^{\prime}P)^{\perp}.

By Lemma 5.3 we have

(142) 1=VP0VP1VPand1=VQ0VQ1VQ.{\mathbb{R}}\cdot 1=V^{P}_{0}\subseteq V^{P}_{1}\subseteq\cdots\subseteq V^{P}_{\ell}\quad\text{and}\quad{\mathbb{R}}\cdot 1=V^{Q}_{0}\subseteq V^{Q}_{1}\subseteq\cdots\subseteq V^{Q}_{\ell}.

The following space VmV_{m} of polynomials is annihilated by JmJ_{m} under the \odot-action, so lies in JmJ_{m}^{\perp}:

(143) Vm:=s= 0m(+=sy0msVPVQ).V_{m}:=\bigoplus_{s\,=\,0}^{m}\left(\sum_{\ell+\ell^{\prime}\,=\,s}{\mathbb{R}}\cdot y_{0}^{m-s}\otimes V_{\ell}^{P}\otimes V_{\ell^{\prime}}^{Q}\right).

By (148) in Lemma 6.5 below, VmV_{m} has the following dimension:

dimVm=s= 0mdim(+=sVPVQ)\displaystyle\dim_{\mathbb{R}}V_{m}=\sum_{s\,=\,0}^{m}\dim\left(\sum_{\ell+\ell^{\prime}\,=\,s}V_{\ell}^{P}\otimes V_{\ell^{\prime}}^{Q}\right) =r+r=mdim(VrP)dim(VrQ)\displaystyle=\sum_{r+r^{\prime}\,=\,m}\dim(V_{r}^{P})\cdot\dim(V_{r^{\prime}}^{Q})
=r+r=miP(r)iQ(r)=iPQ(m)=#𝒵m.\displaystyle=\sum_{r+r^{\prime}\,=\,m}i_{P}(r)\cdot i_{Q}(r^{\prime})=i_{P*Q}(m)=\#\mathcal{Z}_{m}.

Therefor these inequalities

#𝒵m=dimVmdimJm=dimS/JmdimS/grI(𝒵m)=#𝒵m\#\mathcal{Z}_{m}=\dim_{\mathbb{R}}V_{m}\leq\dim_{\mathbb{R}}J_{m}^{\perp}=\dim_{\mathbb{R}}S/J_{m}\leq\dim_{\mathbb{R}}S/{\mathrm{gr}}\,I(\mathcal{Z}_{m})=\#\mathcal{Z}_{m}

must all be equalities, implying

(144) gr𝐈(𝒵m)\displaystyle{\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}_{m}) =Jm,\displaystyle=J_{m},
(145) V𝒵m=gr𝐈(𝒵m)\displaystyle V_{\mathcal{Z}_{m}}={\mathrm{gr}}\,{\mathbf{I}}(\mathcal{Z}_{m})^{\perp} =Jm=Vm.\displaystyle=J_{m}^{\perp}=V_{m}.

This now allows us to compute Hilb(V𝒵m,q)\mathrm{Hilb}(V_{\mathcal{Z}_{m}},q), using (143), as

(146) Hilb(V𝒵m,q)=Hilb(Vm,q)=s=0mqmsHilb(+=sVPVQ,q).\mathrm{Hilb}(V_{\mathcal{Z}_{m}},q)=\mathrm{Hilb}(V_{m},q)=\sum_{s=0}^{m}q^{m-s}\mathrm{Hilb}\left(\sum_{\ell+\ell^{\prime}=s}V_{\ell}^{P}\otimes V_{\ell^{\prime}}^{Q},q\right).

On the other hand, direct calculation shows that the coefficient of tmt^{m} in 1t1qtEP(t,q)EQ(t,q)\frac{1-t}{1-qt}\mathrm{E}_{P}(t,q)\cdot\mathrm{E}_{Q}(t,q) is

s=0mqms+=sHilb(VPVQ,q)s=0m1qm1s+=sHilb(VPVQ,q).\sum_{s=0}^{m}q^{m-s}\sum_{\ell+\ell^{\prime}=s}\mathrm{Hilb}(V_{\ell}^{P}\otimes V_{\ell^{\prime}}^{Q},q)-\sum_{s=0}^{m-1}q^{m-1-s}\sum_{\ell+\ell^{\prime}=s}\mathrm{Hilb}(V_{\ell}^{P}\otimes V_{\ell^{\prime}}^{Q},q).

This last expression coincides, by (147) in Lemma 6.5 below, with (146). In other words,

1t1qtEP(t,q)EQ(t,q)=m=0tmHilb(V𝒵m,q)=Hilb(PQ,t,q)=EPQ(t,q).\frac{1-t}{1-qt}\mathrm{E}_{P}(t,q)\cdot\mathrm{E}_{Q}(t,q)=\sum_{m=0}^{\infty}t^{m}\cdot\mathrm{Hilb}(V_{\mathcal{Z}_{m}},q)=\mathrm{Hilb}({\mathcal{H}}_{P*Q},t,q)=\mathrm{E}_{P*Q}(t,q).\qed

The previous proof used the following technical lemma, on Hilbert series arising from graded tensor products VVV\otimes V^{\prime} of spaces V,VV,V^{\prime} equipped with homogeneous filtrations.

Lemma 6.5.

Let V,VV,V^{\prime} be graded vector spaces, each with nested sequences of homogeneous subspaces

0V1V2V and 0V1V2V0\subseteq V_{1}\subseteq V_{2}\subseteq\cdots\subseteq V\text{ and }\quad 0\subseteq V^{\prime}_{1}\subseteq V^{\prime}_{2}\subseteq\cdots\subseteq V^{\prime}

Then one has the following Hilbert series identity for each nn:

(147) k=0nqnkHilb(a+b=kVaVb,q)=k=0nqnka+b=kHilb(VaVb,q)k=0n1qnk1a+b=kHilb(VaVb,q).\sum_{k=0}^{n}q^{n-k}\cdot\mathrm{Hilb}\left(\sum_{a+b\,=\,k}V_{a}\otimes V^{\prime}_{b},q\right)=\\ \sum_{k=0}^{n}q^{n-k}\sum_{a+b\,=\,k}\mathrm{Hilb}(V_{a}\otimes V^{\prime}_{b},q)-\sum_{k=0}^{n-1}q^{n-k-1}\sum_{a+b\,=\,k}\mathrm{Hilb}(V_{a}\otimes V^{\prime}_{b},q).

In particular, setting q=1q=1, one has

(148) k=0ndim(a+b=kVaVb)=c+d=ndim(Vc)dim(Vd).\sum_{k=0}^{n}\dim\left(\sum_{a+b\,=\,k}V_{a}\otimes V^{\prime}_{b}\right)=\sum_{c+d\,=\,n}\dim(V_{c})\cdot\dim(V_{d}).
Proof.

Since the spaces VaV_{a} and VbV^{\prime}_{b} nest, the sum a+b=kVaVb\sum_{a+b\,=\,k}V_{a}\otimes V^{\prime}_{b} of subspaces of VVV\otimes V^{\prime} is not a direct sum. However, after abbreviating

hab:=Hilb(Va/Va1,q)Hilb(Vb/Vb1,q)=Hilb(Va/Va1Vb/Vb1,q),h_{ab}:=\mathrm{Hilb}(V_{a}/V_{a-1},q)\cdot\mathrm{Hilb}(V^{\prime}_{b}/V^{\prime}_{b-1},q)=\mathrm{Hilb}(V_{a}/V_{a-1}\otimes V^{\prime}_{b}/V^{\prime}_{b-1},q),

the left side of the lemma can be rewritten

(149) k=0nqnka+bkhab,\sum_{k=0}^{n}q^{n-k}\cdot\sum_{a+b\leq k}h_{ab},

whose coefficient of habh_{ab} is

k=a+bnqnk=1+q+q2++qn(a+b)=[n^]q\sum_{k=a+b}^{n}q^{n-k}=1+q+q^{2}+\cdots+q^{n-(a+b)}=[\hat{n}]_{q}

abbreviating n^:=n(a+b)+1\hat{n}:=n-(a+b)+1. Meanwhile, the right side of the lemma can be rewritten

(150) k=0nqnka+b=ka:0aab:0bbhabk= 0n1qn1ka+b=ka:0aab:0bbhab.\sum_{k=0}^{n}q^{n-k}\sum_{a^{\prime}+b^{\prime}\,=\,k}\,\,\sum_{\begin{subarray}{c}a:0\leq a\leq a^{\prime}\\ b:0\leq b\leq b^{\prime}\end{subarray}}h_{ab}\quad-\quad\sum_{k\,=\,0}^{n-1}q^{n-1-k}\sum_{a^{\prime}+b^{\prime}\,=\,k}\,\,\sum_{\begin{subarray}{c}a:0\leq a\leq a^{\prime}\\ b:0\leq b\leq b^{\prime}\end{subarray}}h_{ab}.

Hence the coefficient of habh_{ab} on the right side of the lemma is

(a,b):aabba+bnqn(a+b)(a,b):aabba+bn1qn1(a+b)\displaystyle\sum_{\begin{subarray}{c}(a^{\prime},b^{\prime}):\\ a^{\prime}\geq a\\ b^{\prime}\geq b\\ a^{\prime}+b^{\prime}\leq n\end{subarray}}q^{n-(a^{\prime}+b^{\prime})}\,\,-\,\,\sum_{\begin{subarray}{c}(a^{\prime},b^{\prime}):\\ a^{\prime}\geq a\\ b^{\prime}\geq b\\ a^{\prime}+b^{\prime}\leq n-1\end{subarray}}q^{n-1-(a^{\prime}+b^{\prime})}
=n^q0+(n^1)q1+(n^2)q2++2qn^2+qn^1\displaystyle=\hat{n}q^{0}+(\hat{n}-1)q^{1}+(\hat{n}-2)q^{2}+\cdots+2q^{\hat{n}-2}+q^{\hat{n}-1}
((n^1)q0+(n^2)q1+(n^3)q2++2qn^3+qn^2)\displaystyle\qquad-\left((\hat{n}-1)q^{0}+(\hat{n}-2)q^{1}+(\hat{n}-3)q^{2}+\cdots+2q^{\hat{n}-3}+q^{\hat{n}-2}\right)
=q0+q1++qn^2+qn^1=[n^]q\displaystyle=q^{0}+q^{1}+\cdots+q^{\hat{n}-2}+q^{\hat{n}-1}=[\hat{n}]_{q}\qed

We are ready to relate the harmonic algebras PQ,P,{\mathcal{H}}_{P*Q},{\mathcal{H}}_{P}, and Q{\mathcal{H}}_{Q}, starting with the following suggestive rewriting of Theorem 6.4:

(151) (1qt)Hilb(PQ,t,q)=(1t)Hilb(PQ,t,q).\displaystyle(1-qt)\cdot\mathrm{Hilb}({\mathcal{H}}_{P*Q},t,q)=(1-t)\cdot\mathrm{Hilb}({\mathcal{H}}_{P}\otimes{\mathcal{H}}_{Q},t,q).

To interpret this identity, it helps to name the “auxiliary” variables in PQ,P,Q{\mathcal{H}}_{P*Q},{\mathcal{H}}_{P},{\mathcal{H}}_{Q} as yPQ,yP,yQy_{P*Q},y_{P},y_{Q}, and to abbreviate the other variable sets 𝐲n:=(y1,,yn)\mathbf{y}_{n}:=(y_{1},\ldots,y_{n}), 𝐲n:=(y1,,yn)\mathbf{y}_{n^{\prime}}:=(y_{1},\ldots,y_{n^{\prime}}). This means that the rings PQ,PQ{\mathcal{H}}_{P*Q},{\mathcal{H}}_{P}\otimes{\mathcal{H}}_{Q}, are {\mathbb{R}}-subalgebras of the following ambient polynomial algebras

PQ\displaystyle{\mathcal{H}}_{P*Q} [yPQ][y0][𝐲n][𝐲n]\displaystyle\subset{\mathbb{R}}[y_{P*Q}]\otimes{\mathbb{R}}[y_{0}]\otimes{\mathbb{R}}[\mathbf{y}_{n}]\otimes{\mathbb{R}}[\mathbf{y}_{n^{\prime}}]
PQ\displaystyle{\mathcal{H}}_{P}\otimes{\mathcal{H}}_{Q} [yP,𝐲n][yQ,𝐲n].\displaystyle\subset{\mathbb{R}}[y_{P},\mathbf{y}_{n}]\otimes{\mathbb{R}}[y_{Q},\mathbf{y}_{n^{\prime}}].

Their 2{\mathbb{N}}^{2}-gradings have deg(yP)=deg(yQ)=deg(yPQ)=(1,0)\deg(y_{P})=\deg(y_{Q})=\deg(y_{P*Q})=(1,0), and all other variables have deg(y0)=deg(yi)=(0,1)\deg(y_{0})=\deg(y_{i})=(0,1). Since the ambient polynomial algebras are integral domains, so are the harmonic algebras inside them. Hence one concludes that

  • yPQy0(:=yPQy011)y_{P*Q}\cdot y_{0}\,\,(:=y_{P*Q}\otimes y_{0}\otimes 1\otimes 1) is a nonzero divisor inside PQ{\mathcal{H}}_{P*Q}, with 2{\mathbb{N}}^{2}-degree (1,1)(1,1), and

  • yP11yQy_{P}\otimes 1-1\otimes y_{Q} is a nonzero divisor inside PQ{\mathcal{H}}_{P}\otimes{\mathcal{H}}_{Q}, with 2{\mathbb{N}}^{2}-degree (1,0)(1,0).

In a 2{\mathbb{N}}^{2}-graded algebra AA with a homogeneous nonzerodivisor θ\theta of degree (a,b)(a,b), the exact sequence

0A((a,b))θAA/(θ)00\rightarrow A(-(a,b))\overset{\cdot\theta}{\longrightarrow}A\rightarrow A/(\theta)\rightarrow 0

shows that one has the Hilbert series relation

Hilb(A/(θ),t,q)=(1taqb)Hilb(A,t,q).\mathrm{Hilb}(A/(\theta),t,q)=(1-t^{a}q^{b})\cdot\mathrm{Hilb}(A,t,q).

Thus the left and right sides of (151) can reinterpreted as Hilberts series for these quotient rings:

(1qt)Hilb(PQ,t,q)\displaystyle(1-qt)\cdot\mathrm{Hilb}({\mathcal{H}}_{P*Q},t,q) =Hilb(PQ/(yPQy0),t,q),\displaystyle=\mathrm{Hilb}(\,\,{\mathcal{H}}_{P*Q}/(y_{P*Q}\cdot y_{0})\,\,,t,q),
(1t)Hilb(PQ,t,q)\displaystyle(1-t)\cdot\mathrm{Hilb}({\mathcal{H}}_{P}\otimes{\mathcal{H}}_{Q},t,q) =Hilb((PQ)/(yP11yQ),t,q).\displaystyle=\mathrm{Hilb}(\,\,({\mathcal{H}}_{P}\otimes{\mathcal{H}}_{Q})/(y_{P}\otimes 1-1\otimes y_{Q})\,\,,t,q).

In this way, the following result is an algebraic strengthening of Theorem 6.4.

Theorem 6.6.

For any lattice polytopes PP and QQ, one has an 2{\mathbb{N}}^{2}-graded algebra isomorphism

(PQ)/(yP11yQ)PQ/(yPQy0)({\mathcal{H}}_{P}\otimes{\mathcal{H}}_{Q})/(y_{P}\otimes 1-1\otimes y_{Q})\quad\cong\quad{\mathcal{H}}_{P*Q}/(y_{P*Q}\cdot y_{0})
Proof.

In light of the preceding discussion on Hilbert series, it suffices by dimension-counting to exhibit an 2{\mathbb{N}}^{2}-graded {\mathbb{R}}-algebra surjection from the left side to the right side in the theorem.

Consider the {\mathbb{R}}-linear map φ\varphi defined via

[yP,𝐲n][yQ,𝐲n][yPQ][y0][𝐲n][𝐲n]yPg(𝐲n)yQg(𝐲n)yPQ+1g(𝐲n)g(𝐲n).\begin{array}[]{rcl}{\mathbb{R}}[y_{P},\mathbf{y}_{n}]\otimes{\mathbb{R}}[y_{Q},\mathbf{y}_{n^{\prime}}]&\longrightarrow&{\mathbb{R}}[y_{P*Q}]\otimes{\mathbb{R}}[y_{0}]\otimes{\mathbb{R}}[\mathbf{y}_{n}]\otimes{\mathbb{R}}[\mathbf{y}_{n^{\prime}}]\\ y_{P}^{\ell}\cdot g(\mathbf{y}_{n})\otimes y_{Q}^{\ell^{\prime}}\cdot g^{\prime}(\mathbf{y}_{n^{\prime}})&\longmapsto&y_{P*Q}^{\ell+\ell^{\prime}}\otimes 1\otimes g(\mathbf{y}_{n})\otimes g^{\prime}(\mathbf{y}_{n^{\prime}}).\end{array}

One can readily check that φ\varphi

  • is actually a map of 2{\mathbb{N}}^{2}-graded {\mathbb{R}}-algebras,

  • that it restricts to a map PQPQ{\mathcal{H}}_{P}\otimes{\mathcal{H}}_{Q}\rightarrow{\mathcal{H}}_{P*Q}, using (143), (145), and

  • that yP11yQy_{P}\otimes 1-1\otimes y_{Q} lies in its kernel.

Consequently, φ\varphi descends to a map on the quotient

(152) φ:(PQ)/(yP11yQ)PQ.\varphi:({\mathcal{H}}_{P}\otimes{\mathcal{H}}_{Q})/(y_{P}\otimes 1-1\otimes y_{Q})\longrightarrow{\mathcal{H}}_{P*Q}.

This map is not surjective. However, after post-composing it with the canonical projection map π:PQPQ/(yPQy0)\pi:{\mathcal{H}}_{P*Q}\twoheadrightarrow{\mathcal{H}}_{P*Q}/(y_{P*Q}\,y_{0}), then we claim that

(153) πφ:(PQ)/(yP11yQ)PQ/(yPQy0)\pi\circ\varphi:({\mathcal{H}}_{P}\otimes{\mathcal{H}}_{Q})/(y_{P}\otimes 1-1\otimes y_{Q})\longrightarrow{\mathcal{H}}_{P*Q}/(y_{P*Q}\,y_{0})

actually is the surjection that we seek. To see this, note that the image of φ\varphi within PQ{\mathcal{H}}_{P*Q} is

m=0+=myPQmy00VPVQ.\bigoplus_{m=0}^{\infty}\,\,\sum_{\ell+\ell^{\prime}\,=\,m}{\mathbb{R}}\cdot y_{P*Q}^{m}\cdot y_{0}^{0}\otimes V_{\ell}^{P}\otimes V_{\ell^{\prime}}^{Q}.

On the other hand, (143) shows the remaining part of PQ{\mathcal{H}}_{P*Q} not lying in this image has the form

m=1s=0m1(+=syPQmy0msVPVQ),\bigoplus_{m=1}^{\infty}\,\,\bigoplus_{s=0}^{m-1}\left(\sum_{\ell+\ell^{\prime}\,=\,s}{\mathbb{R}}\cdot y_{P*Q}^{m}\cdot y_{0}^{m-s}\otimes V_{\ell}^{P}\otimes V_{\ell^{\prime}}^{Q}\right),

which is contained in the ideal (yPQy0)(y_{P*Q}\,y_{0}) and therefore vanishes in the quotient PQ/(yPQy0){\mathcal{H}}_{P*Q}/(y_{P*Q}\,y_{0}). ∎

References

  • [1] P. Adeyemo and B. Szendrői. Refined Ehrhart series and bigraded rings. Studia Sci. Math. Hungar., 60(2-3):97–108, 2023.
  • [2] K. Akin, D. A. Buchsbaum, and J. Weyman. Schur functors and Schur complexes. Adv. in Math., 44(3):207–278, 1982.
  • [3] D. Armstrong, V. Reiner, and B. Rhoades. Parking spaces. Advances in Mathematics, 269:647–706, 2015.
  • [4] G. Balletti. Enumeration of lattice polytopes by their volume. Discrete Comput. Geom., 65(4):1087–1122, 2021.
  • [5] M. Beck and S. Robins. Computing the continuous discretely. Integer-point enumeration in polyhedra. With illustrations by David Austin. Undergraduate Texts Math. New York, NY: Springer, 2nd edition edition, 2015.
  • [6] M. Beck and R. Sanyal. Combinatorial reciprocity theorems, volume 195 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2018. An invitation to enumerative geometric combinatorics.
  • [7] F. Bergeron. Algebraic combinatorics and coinvariant spaces. CMS Treatises in Mathematics. Canadian Mathematical Society, Ottawa, ON; A K Peters, Ltd., Wellesley, MA, 2009.
  • [8] B. Braun. Unimodality problems in Ehrhart theory. In Recent trends in combinatorics, volume 159 of IMA Vol. Math. Appl., pages 687–711. Springer, [Cham], 2016.
  • [9] B. Braun and M. Olsen. Euler-Mahonian statistics and descent bases for semigroup algebras. European J. Combin., 69:237–254, 2018.
  • [10] W. Bruns and J. Gubeladze. Polytopes, rings, and K-theory. Springer Science & Business Media, 2009.
  • [11] F. Chapoton. qq-analogues of Ehrhart polynomials. Proc. Edinb. Math. Soc. (2), 59(2):339–358, 2016.
  • [12] D. A. Cox, C. Haase, T. Hibi, and A. Higashitani. Integer decomposition property of dilated polytopes. Electron. J. Combin., 21(4), 2012. #P4.28.
  • [13] D. A. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra. Undergraduate Texts Math. Cham: Springer, 4th revised ed. edition, 2015.
  • [14] V. I. Danilov. The geometry of toric varieties. Uspekhi Mat. Nauk, 33(2(200)):85–134, 247, 1978.
  • [15] E. Ehrhart. Sur les polyèdres rationnels homothétiques à n dimensions. CR Acad. Sci. Paris, 254:616, 1962.
  • [16] D. Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. With a view toward algebraic geometry.
  • [17] S. Eliahou and M. Kervaire. Sumsets in vector spaces over finite fields. Journal of Number Theory, 71(1):12–39, 1998.
  • [18] S. Eliahou and M. Kervaire. Sumsets in vector spaces over finite fields. J. Number Theory, 71(1):12–39, 1998.
  • [19] D. R. Fulkerson. Blocking and anti-blocking pairs of polyhedra. Math. Programming, 1:168–194, 1971.
  • [20] D. R. Fulkerson. Anti-blocking polyhedra. J. Combinatorial Theory Ser. B, 12:50–71, 1972.
  • [21] A. M. Garsia and C. Procesi. On certain graded Sn{S}_{n}-modules and the qq-Kostka polynomials. Advances in Mathematics, 94(1):82–138, 1992.
  • [22] L. Geissinger and D. Kinch. Representations of the hyperoctahedral groups. J. Algebra, 53(1):1–20, 1978.
  • [23] A. V. Geramita. Inverse systems of fat points: Waring’s problem, secant varieties of Veronese varieties and parameter spaces for Gorenstein ideals. In The Curves Seminar at Queen’s, Vol. X (Kingston, ON, 1995), volume 102 of Queen’s Papers in Pure and Appl. Math., pages 2–114. Queen’s Univ., Kingston, ON, 1996.
  • [24] P. Gordan. Ueber die Auflösung linearer Gleichungen mit reellen Coefficienten. Math. Ann., 6(1):23–28, 1873.
  • [25] S. Griffin. Ordered set partitions, Garsia-Procesi modules, and rank varieties. Transactions of the American Mathematical Society, 374(4):2609–2660, 2021.
  • [26] F. Gundlach. Polynomials vanishing at lattice points in a convex set, 2021.
  • [27] J. Haglund. The qq,tt-Catalan numbers and the space of diagonal harmonics, volume 41 of University Lecture Series. American Mathematical Society, Providence, RI, 2008. With an appendix on the combinatorics of Macdonald polynomials.
  • [28] J. Haglund, B. Rhoades, and M. Shimozono. Ordered set partitions, generalized coinvariant algebras, and the Delta Conjecture. Advances in Mathematics, 329:851–915, 2018.
  • [29] T. Hibi and N. Li. Unimodular equivalence of order and chain polytopes. Mathematica Scandinavica, pages 5–12, 2016.
  • [30] M. Hochster. Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes. Ann. of Math. (2), 96:318–337, 1972.
  • [31] J. Huang and B. Rhoades. Ordered set partitions and the 0-Hecke algebra. Algebraic Combinatorics, 1(1):47–80, 2018.
  • [32] J. Huang, B. Rhoades, and T. Scrimshaw. Hall-Littlewood polynomials and a Hecke action on ordered set partitions. Proceedings of the American Mathematical Society, 147(5):1839–1850, 2019.
  • [33] B. Kostant. Lie group representations on polynomial rings. Amer. J. Math., 85:327–404, 1963.
  • [34] J. C. Lagarias and G. M. Ziegler. Bounds for lattice polytopes containing a fixed number of interior points in a sublattice. Canad. J. Math., 43(5):1022–1035, 1991.
  • [35] M. J. Liu. Viennot shadows and graded module structure in colored permutation groups. arXiv preprint arXiv:2401.07850, 2024.
  • [36] N. A. Loehr and J. B. Remmel. A computational and combinatorial exposé of plethystic calculus. J. Algebraic Combin., 33(2):163–198, 2011.
  • [37] I. G. Macdonald. Polynomials Associated with Finite Cell-Complexes. Journal of the London Mathematical Society, 2(1):181–192, 1971.
  • [38] I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford Classic Texts in the Physical Sciences. The Clarendon Press, Oxford University Press, New York, second edition, 2015. With contribution by A. V. Zelevinsky and a foreword by Richard Stanley, Reprint of the 2008 paperback edition [ MR1354144].
  • [39] E. Noether. Der endlichkeitsatz der invarianten endlicher linearer gruppen der charakteristik p. pages 28–35, 1926.
  • [40] J. Oh and B. Rhoades. Cyclic sieving and orbit harmonics. Mathematische Zeitschrift, 300(1):639–660, 2022.
  • [41] M. Reineke, B. Rhoades, and V. Tewari. Zonotopal algebras, orbit harmonics, and Donaldson–Thomas invariants of symmetric quivers. International Mathematics Research Notices, 2023(23):20169–20210, 2023.
  • [42] V. Reiner and B. Rhoades. Harmonics and graded Ehrhart theory. arXiv preprint arXiv:2407.06511v2, 2024. Version 2.
  • [43] B. Rhoades. Increasing subsequences, matrix loci, and Viennot shadows. arXiv preprint arXiv:2306.08718, 2023.
  • [44] B. E. Sagan. The symmetric group, volume 203 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 2001. Representations, combinatorial algorithms, and symmetric functions.
  • [45] R. P. Stanley. Combinatorial reciprocity theorems. Advances in Math., 14:194–253, 1974.
  • [46] R. P. Stanley. Combinatorial reciprocity theorems. In Combinatorics: Proceedings of the NATO Advanced Study Institute held at Nijenrode Castle, Breukelen, The Netherlands 8–20 July 1974, pages 307–318. Springer, 1975.
  • [47] R. P. Stanley. Invariants of finite groups and their applications to combinatorics. Bull. Amer. Math. Soc. (N.S.), 1(3):475–511, 1979.
  • [48] R. P. Stanley. Decompositions of rational convex polytopes. Ann. Discrete Math, 6(6):333–342, 1980.
  • [49] R. P. Stanley. Linear Diophantine equations and local cohomology. Invent. Math., 68(2):175–193, 1982.
  • [50] R. P. Stanley. Two poset polytopes. Discrete & Computational Geometry, 1(1):9–23, 1986.
  • [51] R. P. Stanley. Combinatorics and commutative algebra, volume 41 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, second edition, 1996.
  • [52] R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin.
  • [53] R. P. Stanley. Enumerative combinatorics. Volume 1, volume 49 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 2012.
  • [54] A. Stapledon. Equivariant Ehrhart theory. Adv. Math., 226(4):3622–3654, 2011.
  • [55] S. Yuzvinsky. Orthogonal pairings of Euclidean spaces. Michigan Math. J., 28(2):131–145, 1981.