This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Hamiltonicity in Cherry-quasirandom 3-graphs

Luyining Gan  and  Jie Han Department of Mathematics and Statistics, Auburn University, Auburn, AL, 36849, USA. Email: [email protected] Department of Mathematics, University of Rhode Island, Kingston, RI, 02881, USA. Email: [email protected]
Abstract.

We show that for any fixed α>0\alpha>0, cherry-quasirandom 3-graphs of positive density and sufficiently large order nn with minimum vertex degree α(n2)\alpha\binom{n}{2} have a tight Hamilton cycle. This solves a conjecture of Aigner-Horev and Levy.

JH is partially supported by Simons Collaboration Grant for Mathematicians #630884.

1. Introduction

The study of Hamilton cycles is a central topic in graph theory with a long and profound history. In recent years, researchers have worked on extending the classical theorem of Dirac on Hamilton cycles to hypergraphs and we refer to [BHS, GPW, HZ1, HZ2, RR, BMSSS1, BMSSS2, RRRSS, HZ_forbidHC, HHZ_cycle] for some recent results and to [KuOs14ICM, RR, zsurvey] for excellent surveys on this topic.

In this paper we restrict ourselves to 3-uniform hypergraphs (3-graphs), where each (hyper)edge contains exactly three vertices. For a 3-graph HH and a vertex set SV(H)S\subseteq V(H), degH(S)\deg_{H}(S) is defined to be the number of edges containing SS. The minimum codegree δ2(H)\delta_{2}(H) of HH is the minimum of degH(S)\deg_{H}(S) over all pairs SS of vertices in HH, and the minimum degree δ1(H)\delta_{1}(H) of HH is the minimum of degH(v)\deg_{H}(v) over all vertices vV(H)v\in V(H). A 33-graph CC is called a tight cycle if its vertices can be ordered cyclically such that every 3 consecutive vertices in this ordering define an edge of CC, which implies that every two consecutive edges intersect in two vertices. We say that a 33-graph contains a tight Hamilton cycle if it contains a tight cycle as a spanning subgraph. A tight path PP has a sequential order of vertices v1v2vp1vpv_{1}v_{2}\dots v_{p-1}v_{p} such that every 3 consecutive vertices form an edge, where the ends of PP are ordered pairs (v2,v1)(v_{2},v_{1}) and (vp1,vp)(v_{p-1},v_{p}).

The study of quasirandom graphs has been a fruitful area since introduced in [Chung1989, Thomason1987a, Thomason1987b], and we recommend the readers to the excellent survey [Krivelevich2006]. However, the canonical definitions for quasirandom hypergraphs (extending [Chung1989]) have been completely settled only recently [Horev2018, Towsner2017]. In this note we focus on the so-called ‘cherry-quasirandom 3-graphs’ defined as follows. An nn-vertex 3-graph HH is called (ρ,d)(\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}-dense if

eH(G1,G2):=|{(x,y,z)𝒫2(G1,G2):{x,y,z}E(H)}|d|𝒫2(G1,G2)|ρn3e_{H}(\vec{G}_{1},\vec{G}_{2}):=|\{(x,y,z)\in\mathcal{P}_{2}(\vec{G}_{1},\vec{G}_{2}):\{x,y,z\}\in E(H)\}|\geq d|\mathcal{P}_{2}(\vec{G}_{1},\vec{G}_{2})|-\rho n^{3}

for every G1,G2V(H)×V(H)\vec{G}_{1},\vec{G}_{2}\subseteq V(H)\times V(H), where

𝒫2(G1,G2):={(x,y,z)V(H)3:(x,y)G1,(y,z)G2}.\mathcal{P}_{2}(\vec{G}_{1},\vec{G}_{2}):=\{(x,y,z)\in V(H)^{3}:(x,y)\in\vec{G}_{1},(y,z)\in\vec{G}_{2}\}.

Aigner-Horev and Levy proved the following result on tight Hamiltonicity in (ρ,d)(\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}-dense 3-graphs.

Theorem 1.1.

[Horev] For every d,α(0,1]d,\alpha\in(0,1], there exist an integer n0n_{0} and a real ρ>0\rho>0 such that the following holds for all nn0n\geq n_{0}. Let HH be an nn-vertex (ρ,d)(\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}-dense 33-graph satisfying δ2(H)αn\delta_{2}(H)\geq\alpha n. Then, HH has a tight Hamilton cycle.

They also showed that for α+d>1\alpha+d>1 the (ρ,d)(\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}-denseness together with δ1(H)α(n2)\delta_{1}(H)\geq\alpha\binom{n}{2} implies tight Hamiltonicity and asked [Horev, Conjecture 1.6] if the condition α+d>1\alpha+d>1 can be dropped. In this note we verify this conjecture.

Theorem 1.2.

For every α,d(0,1]\alpha,d\in(0,1] there exist an n0n_{0} and ρ>0\rho>0 such that the following holds for all nn0n\geq n_{0}. Let HH be an nn-vertex (ρ,d)(\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}-dense 33-graph satisfying δ1(H)α(n2)\delta_{1}(H)\geq\alpha\binom{n}{2}. Then, HH has a tight Hamilton cycle.

There are weaker versions of quasirandomness for 3-graphs compared with -denseness, namely, -denseness and -denseness. An nn-vertex 3-graph HH is called (ρ,d)(\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}-dense if

eH(X,Y,Z):=|{(x,y,z)X×Y×Z:{x,y,z}E(H)}|d|X||Y||Z|ρn3e_{H}(X,Y,Z):=|\{(x,y,z)\in X\times Y\times Z:\{x,y,z\}\in E(H)\}|\geq d|X||Y||Z|-\rho n^{3}

for every X,Y,ZV(H)X,Y,Z\subseteq V(H); an nn-vertex 3-graph HH is called (ρ,d)(\rho,d)_{\leavevmode\hbox to8.8pt{\vbox to6.81pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-9.38104pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.96674pt}\pgfsys@curveto{1.4143pt}{-7.18564pt}{0.7811pt}{-6.55243pt}{0.0pt}{-6.55243pt}\pgfsys@curveto{-0.7811pt}{-6.55243pt}{-1.4143pt}{-7.18564pt}{-1.4143pt}{-7.96674pt}\pgfsys@curveto{-1.4143pt}{-8.74783pt}{-0.7811pt}{-9.38104pt}{0.0pt}{-9.38104pt}\pgfsys@curveto{0.7811pt}{-9.38104pt}{1.4143pt}{-8.74783pt}{1.4143pt}{-7.96674pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.96674pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.96674pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{7.38936pt}{-7.96674pt}\pgfsys@curveto{7.38936pt}{-7.18564pt}{6.75615pt}{-6.55243pt}{5.97505pt}{-6.55243pt}\pgfsys@curveto{5.19395pt}{-6.55243pt}{4.56075pt}{-7.18564pt}{4.56075pt}{-7.96674pt}\pgfsys@curveto{4.56075pt}{-8.74783pt}{5.19395pt}{-9.38104pt}{5.97505pt}{-9.38104pt}\pgfsys@curveto{6.75615pt}{-9.38104pt}{7.38936pt}{-8.74783pt}{7.38936pt}{-7.96674pt}\pgfsys@closepath\pgfsys@moveto{5.97505pt}{-7.96674pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.97505pt}{-7.96674pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.40182pt}{-3.98337pt}\pgfsys@curveto{4.40182pt}{-3.20227pt}{3.76862pt}{-2.56906pt}{2.98752pt}{-2.56906pt}\pgfsys@curveto{2.20642pt}{-2.56906pt}{1.57321pt}{-3.20227pt}{1.57321pt}{-3.98337pt}\pgfsys@curveto{1.57321pt}{-4.76447pt}{2.20642pt}{-5.39767pt}{2.98752pt}{-5.39767pt}\pgfsys@curveto{3.76862pt}{-5.39767pt}{4.40182pt}{-4.76447pt}{4.40182pt}{-3.98337pt}\pgfsys@closepath\pgfsys@moveto{2.98752pt}{-3.98337pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.98752pt}{-3.98337pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{1.61429pt}{-7.96667pt}\pgfsys@lineto{4.36072pt}{-7.96667pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}-dense if

eH(X,G):=|{(x,(y,z))X×G:{x,y,z}E(H)}|d|X||G|ρn3e_{H}(X,G):=|\{(x,(y,z))\in X\times G:\{x,y,z\}\in E(H)\}|\geq d|X||G|-\rho n^{3}

for every XV(H)X\subseteq V(H) and GV(H)×V(H)G\subseteq V(H)\times V(H). It is known that the -denseness in Theorems 1.1 and 1.2 cannot be replaced by either of these two weaker ones – namely, degenerate choices of α\alpha and dd do not guarantee tight Hamiltonicity under these two notions of quasirandomness. In this sense, the -denseness in these two theorems is best possible. In contrast, for a weaker notion of Hamiltonicity, namely, the loose cycles, Lenz, Mubayi and Mycroft [Lenz2016] proved that degenerate choices of α\alpha and dd already force loose Hamiltonicity under -denseness. Very recently, Araújo, Piga and Schacht [Araujo2019] annouced that for any α>0\alpha>0 and d>1/4d>1/4, having minimum vertex degree α(n2)\alpha\binom{n}{2} and being (ρ,d)(\rho,d)_{\leavevmode\hbox to8.8pt{\vbox to6.81pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-9.38104pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.96674pt}\pgfsys@curveto{1.4143pt}{-7.18564pt}{0.7811pt}{-6.55243pt}{0.0pt}{-6.55243pt}\pgfsys@curveto{-0.7811pt}{-6.55243pt}{-1.4143pt}{-7.18564pt}{-1.4143pt}{-7.96674pt}\pgfsys@curveto{-1.4143pt}{-8.74783pt}{-0.7811pt}{-9.38104pt}{0.0pt}{-9.38104pt}\pgfsys@curveto{0.7811pt}{-9.38104pt}{1.4143pt}{-8.74783pt}{1.4143pt}{-7.96674pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.96674pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.96674pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{7.38936pt}{-7.96674pt}\pgfsys@curveto{7.38936pt}{-7.18564pt}{6.75615pt}{-6.55243pt}{5.97505pt}{-6.55243pt}\pgfsys@curveto{5.19395pt}{-6.55243pt}{4.56075pt}{-7.18564pt}{4.56075pt}{-7.96674pt}\pgfsys@curveto{4.56075pt}{-8.74783pt}{5.19395pt}{-9.38104pt}{5.97505pt}{-9.38104pt}\pgfsys@curveto{6.75615pt}{-9.38104pt}{7.38936pt}{-8.74783pt}{7.38936pt}{-7.96674pt}\pgfsys@closepath\pgfsys@moveto{5.97505pt}{-7.96674pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.97505pt}{-7.96674pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.40182pt}{-3.98337pt}\pgfsys@curveto{4.40182pt}{-3.20227pt}{3.76862pt}{-2.56906pt}{2.98752pt}{-2.56906pt}\pgfsys@curveto{2.20642pt}{-2.56906pt}{1.57321pt}{-3.20227pt}{1.57321pt}{-3.98337pt}\pgfsys@curveto{1.57321pt}{-4.76447pt}{2.20642pt}{-5.39767pt}{2.98752pt}{-5.39767pt}\pgfsys@curveto{3.76862pt}{-5.39767pt}{4.40182pt}{-4.76447pt}{4.40182pt}{-3.98337pt}\pgfsys@closepath\pgfsys@moveto{2.98752pt}{-3.98337pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.98752pt}{-3.98337pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{1.61429pt}{-7.96667pt}\pgfsys@lineto{4.36072pt}{-7.96667pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}-dense guarantee tight Hamiltonicity.

1.1. Proof ideas

Let us briefly talk about our proof here. Following other recent work on Hamilton cycles, we use the absorption method, which roughly splits the proof into the following three steps. Let HH be an nn-vertex (ρ,d)(\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}-dense 33-graph satisfying δ1(H)α(n2)\delta_{1}(H)\geq\alpha\binom{n}{2}.

  • Absorber lemma: every vertex vv in HH has many absorbers, namely, a constant-length tight path that can include vv as an interior vertex or leave vv out;

  • Connection lemma: every two ordered pairs of vertices can be connected by a constant-length tight path;

  • Path cover lemma: almost all vertices of the 3-graph can be covered by a constant number of vertex-disjoint tight paths.

It is straightforward to prove the path cover lemma for quasirandom 3-graphs. The proof of Theorem 1.1 relies on the fact that all pairs of vertices have a good codegree (namely, αn\alpha n), which, together with the cherry-denseness, allows them to employ the cascade method to establish a connection lemma. Our main advance is to observe that as HH is -dense, almost all pairs of vertices of HH have a good codegree. Moreover, a ‘shaving’ technique (e.g., [Han2017, Lemma 8.8]) shows that we can find a spanning subgraph of HH where almost all pairs have codegree dn/3dn/3 and other pairs have degree 0. These allow us to stick to these high codegree pairs and employ the cascades for connections, and actually such a result has been proven in [Horev, Lemma 3.23].

2. Tools

In this section we prove the lemmas needed for the proof of Theorem 1.2. Note that by definition, if HH is an nn-vertex (ρ,d)(\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}-dense 33-graph, then any induced subgraph of HH on αn\alpha n vertices is (ρ/α3,d)(\rho/\alpha^{3},d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}-dense and we will use this simple fact without further references.

Throughout the rest of the paper, we will refer to tight paths as just paths. Given a 3-graph HH, let H:={(x,y):degH(xy)>0}\partial H:=\{(x,y):\deg_{H}(xy)>0\} be the shadow of HH. For any vAv\in A, define degH(v,A):=|NH(v)(A2)|\deg_{H}(v,A):=\big{|}N_{H}(v)\cap\binom{A}{2}\big{|} and for each pair of vertices x,yAx,y\in A, let degH(xy,A):=|NH(x,y)A|\deg_{H}(xy,A):=|N_{H}(x,y)\cap A|.

We use the following result proved in [Han2017, Lemma 8.8]. Note that its original version does not include an estimate on the loss of the number of edges which actually follows from its proof.

Lemma 2.1.

[Han2017] Let n6n\geq 6 and 0<μ,θ<10<\mu,\theta<1. Let HH be an nn-vertex 33-graph with degH(S)μ(n2)\deg_{H}(S)\geq\mu(n-2) for all but at most θ(n2)\theta\binom{n}{2} pairs SS. Then HH contains a spanning subgraph HH^{\prime} with e(HH)48θ1/4(n3)e(H\setminus H^{\prime})\leq 48\theta^{1/4}\binom{n}{3} and either degH(S)(μ8θ1/4)(n2)\deg_{H^{\prime}}(S)\geq(\mu-8\theta^{1/4})(n-2) or degH(S)=0\deg_{H^{\prime}}(S)=0. Moreover, |H|(1θθ1/4)(n2)|\partial H^{\prime}|\geq(1-\theta-\theta^{1/4})\binom{n}{2}, namely, the number of SS with degH(S)=0\deg_{H^{\prime}}(S)=0 is at most (θ+θ1/4)(n2)(\theta+\theta^{1/4})\binom{n}{2}.

The following lemma defines a spanning subgraph of an nn-vertex 33-graph HH, which will be crucial in our proof. We note that in this lemma -denseness is sufficient.

Lemma 2.2.

Let d>0d>0 and ρd5/(34025)\rho\leq d^{5}/(3^{40}2^{5}). Let HH be an nn-vertex (ρ,d)(\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}-dense 33-graph. Then there exists a spanning subgraph HH^{\prime} of HH, satisfying the following properties.

  1. (1)

    For any pair SS of vertices, either degH(S)dn/3\deg_{H^{\prime}}(S)\geq dn/3 or degH(S)=0\deg_{H^{\prime}}(S)=0. Moreover, |H|(1ρ1/5)(n2)|\partial H^{\prime}|\geq(1-\rho^{1/5})\binom{n}{2}, namely, the number of SS with degH(S)=0\deg_{H^{\prime}}(S)=0 is at most ρ1/5(n2)\rho^{1/5}\binom{n}{2}.

  2. (2)

    HH^{\prime} is (ρ1/5,d)(\rho^{1/5},d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}-dense.

Proof.

Let 𝒮\mathcal{S} be the collection of pairs with degH(S)<d(n2)/2\deg_{H}(S)<d(n-2)/2. Let 𝒮:={(x,y):xy𝒮}\vec{\mathcal{S}}:=\{(x,y):xy\in\mathcal{S}\}. So |𝒮|=2|𝒮||\vec{\mathcal{S}}|=2|\mathcal{S}|. Since HH is (ρ,d)(\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}-dense, we have

d(n2)22|𝒮|eH(𝒮,V(H)2)d|𝒫2(𝒮,V(H)2)|ρn3=2d|𝒮|nρn3.\frac{d(n-2)}{2}\cdot 2|{\mathcal{S}}|\geq e_{H}({\vec{\mathcal{S}}},V(H)^{2})\geq d|\mathcal{P}_{2}({{\vec{\mathcal{S}}},V(H)^{2})|-\rho n^{3}=2d|\mathcal{S}}|n-\rho n^{3}.

The above inequalities imply that

|𝒮|ρn3d(n+2)ρn(n1)d=2ρd(n2).|{\mathcal{S}}|\leq\frac{\rho n^{3}}{d(n+2)}\leq\frac{\rho n(n-1)}{d}=\frac{2\rho}{d}\binom{n}{2}.

Let HH^{\prime} be the spanning subgraph of HH returned by Lemma 2.1 with μ=d/2\mu=d/2 and θ=2ρ/d\theta=2\rho/d. So we have e(HH)48(2ρ/d)1/4(n3)e(H\setminus H^{\prime})\leq 48({2\rho}/{d})^{1/4}\binom{n}{3}, |H|(12ρ/d(2ρ/d)1/4)(n2)(1ρ1/5)(n2)|\partial H^{\prime}|\geq(1-2\rho/d-({2\rho}/{d})^{1/4})\binom{n}{2}\geq(1-\rho^{1/5})\binom{n}{2} and

degH(S)(d/28(2ρ/d)1/4)(n2)(d/2d/7)(n2)dn/3.\deg_{H^{\prime}}(S)\geq(d/2-8({2\rho}/{d})^{1/4})(n-2)\geq(d/2-d/7)(n-2)\geq dn/3.

Thus, (1) holds.

Since HH is (ρ,d)(\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}-dense, for every G1,G2V(H)×V(H)\vec{G}_{1},\vec{G}_{2}\subseteq V(H)\times V(H), we have

eH(G1,G2)\displaystyle e_{H^{\prime}}(\vec{G}_{1},\vec{G}_{2}) eH(G1,G2)e(HH)d|𝒫2(G1,G2)|ρn348(2ρ/d)1/4(n3)\displaystyle\geq e_{H}(\vec{G}_{1},\vec{G}_{2})-e(H\setminus H^{\prime})\geq d|\mathcal{P}_{2}(\vec{G}_{1},\vec{G}_{2})|-\rho n^{3}-48({2\rho}/{d})^{1/4}\binom{n}{3}
d|𝒫2(G1,G2)|(ρ+8(2ρ/d)1/4)n3d|𝒫2(G1,G2)|ρ1/5n3.\displaystyle\geq d|\mathcal{P}_{2}(\vec{G}_{1},\vec{G}_{2})|-(\rho+8({2\rho}/{d})^{1/4})n^{3}\geq d|\mathcal{P}_{2}(\vec{G}_{1},\vec{G}_{2})|-\rho^{1/5}n^{3}.

Thus HH^{\prime} is (ρ1/5,d)(\rho^{1/5},d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}-dense. ∎

Let HH be a 33-graph. For vV(H)v\in V(H), a quadruple (x,y,z,w)V(H)4(x,y,z,w)\in V(H)^{4} is said to be a vv-absorber if {x,y,z},{y,z,w},{v,x,y},{v,y,z},{v,z,w}E(H)\{x,y,z\},\{y,z,w\},\{v,x,y\},\{v,y,z\},\{v,z,w\}\in E(H). We state and use [Horev, Lemma 4.2] (in a weaker form) and refine the absorbers it gives in the next lemma.

Lemma 2.3.

[Horev, Lemma 4.2] For every α,d(0,1]\alpha,d\in(0,1], there exist ρ>0\rho>0 and c>0c>0 such that the following holds for any sufficiently large integer nn. Let HH be an nn-vertex (ρ,d)(\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}-dense 33-graph satisfying δ1(H)α(n2)\delta_{1}(H)\geq\alpha\binom{n}{2}, and let vV(H)v\in V(H). Then, there are at least cn4cn^{4} vv-absorbers in HH.

Lemma 2.4.

For every α,d(0,1]\alpha,d\in(0,1], there exists ρ>0\rho>0 such that the following holds for any sufficiently large integer nn. Let HH be an nn-vertex (ρ,d)(\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}-dense 33-graph satisfying δ1(H)α(n2)\delta_{1}(H)\geq\alpha\binom{n}{2}, and let HH^{\prime} be a spanning subgraph of HH satisfying Lemma 2.2 (1). Let vV(H)v\in V(H). Then, for any WV(H)W\subseteq V(H) with |W|αn/4|W|\leq\alpha n/4, there exists a vv-absorber v1v2v3v4v_{1}v_{2}v_{3}v_{4} in V(H)WV(H)\setminus W such that degH(v1v2)dn/3\deg_{H^{\prime}}(v_{1}v_{2})\geq dn/3 and degH(v3v4)dn/3\deg_{H^{\prime}}(v_{3}v_{4})\geq dn/3.

Proof.

Apply Lemma 2.3 with α/2\alpha/2 and dd, and obtain ρ>0\rho^{\prime}>0 and c>0c>0. Let ρ=min{c5(1α/4)20,ρ(1α/4)3,d5/(34025)}\rho=\min\{c^{5}(1-\alpha/4)^{20},\rho^{\prime}(1-\alpha/4)^{3},d^{5}/(3^{40}2^{5})\}, H1:=H[(V(H)W){v}]H_{1}:=H[(V(H)\setminus W)\cup\{v\}] and denote its order by n1(nαn/4)n_{1}(\geq n-\alpha n/4). Then H1H_{1} is (ρ,d)(\rho^{\prime},d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}-dense and

δ1(H1)δ1(H)αn4(n1)α(n2)α2(n2)α2(n12).\delta_{1}(H_{1})\geq\delta_{1}(H)-\frac{\alpha n}{4}(n-1)\geq\alpha\binom{n}{2}-\frac{\alpha}{2}\binom{n}{2}\geq\frac{\alpha}{2}\binom{n_{1}}{2}.

By Lemma 2.3, there are at least cn14cn_{1}^{4} vv-absorbers in H1H_{1}. By Lemma 2.2 (1), |H|(1ρ1/5)(n2)|\partial H^{\prime}|\geq(1-\rho^{1/5})\binom{n}{2}. The desired vv-absorber exists because

cn142ρ1/5(n2)n2c(nαn/4)4ρ1/5n3(n1)>0.cn_{1}^{4}-2\rho^{1/5}\binom{n}{2}n^{2}\geq c(n-\alpha n/4)^{4}-\rho^{1/5}n^{3}(n-1)>0.\qed

We use the following connection lemma from [Horev].

Lemma 2.5.

[Horev, Lemma 3.23] For every d,β(0,1]d,\beta\in(0,1] with β<d\beta<d, there exist an integer n0>0n_{0}>0 and a real ρ0>0\rho_{0}>0 such that the following holds for all nn0n\geq n_{0} and 0<ρ<ρ00<\rho<\rho_{0}. Let HH be an nn-vertex (ρ,d)(\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}-dense 33-graph and let HH^{\prime} be a spanning subgraph of HH such that for any x,yx,y of V(H)V(H), either degH(xy)=0\deg_{H^{\prime}}(xy)=0 or degH(xy)βn\deg_{H^{\prime}}(xy)\geq\beta n. Let (x,y)(x,y) and (x,y)(x^{\prime},y^{\prime}) be two disjoint ordered pairs of vertices such that both xyxy and xyx^{\prime}y^{\prime} are in H\partial H^{\prime}. Then, there exists a 1010-vertex path in HH connecting (x,y)(x,y) and (x,y)(x^{\prime},y^{\prime}).

Now we are ready to prove our absorption lemma.

Lemma 2.6.

For every α,d(0,1]\alpha,d\in(0,1], there exists ρ>0\rho>0 such that the following holds for any sufficiently large integer nn. Let HH be an nn-vertex (ρ,d)(\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}-dense 33-graph satisfying δ1(H)α(n2)\delta_{1}(H)\geq\alpha\binom{n}{2} and let HH^{\prime} be a spanning subgraph of HH satisfying Lemma 2.2 (1). Then for any AV(H)A\subseteq V(H) with |A|dn/66|A|\leq dn/66, there exists a path PP of length at most 10|A|10|A| such that both ends of PP are in H\partial H^{\prime}, and for any AAA^{\prime}\subseteq A, there is a tight path PP^{\prime} on V(P)AV(P)\cup A^{\prime} which has the same ends as PP.

Proof.

Apply Lemma 2.4 with dd and α\alpha and obtain ρ1\rho_{1}. Apply Lemma 2.5 with β=d/6\beta=d/6 and obtain ρ2\rho_{2}. Let ρ=min{ρ1,ρ2/2,d5/(34025)}\rho=\min\{\rho_{1},\rho_{2}/2,d^{5}/(3^{40}2^{5})\}. We first choose disjoint absorbers for each vAv\in A. Let WW be the union of AA and the absorbers that have been chosen so far. Then, for each vertex in AA, we iteratively use Lemma 2.4 to find a vv-absorber v1v2v3v4v_{1}v_{2}v_{3}v_{4} in V(H)WV(H)\setminus W such that degH(v1v2)dn/3\deg_{H^{\prime}}(v_{1}v_{2})\geq dn/3 and degH(v3v4)dn/3\deg_{H^{\prime}}(v_{3}v_{4})\geq dn/3.

Next, we iteratively connect these absorbers by Lemma 2.5 to a single tight path. At each intermediate step, let QQ be the union of AA and all the paths that have been chosen so far and suppose we need to connect (v3,v4)(v_{3},v_{4}) and (v2,v1)(v^{\prime}_{2},v^{\prime}_{1}). Define H1:=H[(V(H)Q){v3,v4,v1,v2}]H_{1}:=H[(V(H)\setminus Q)\cup\{v_{3},v_{4},v^{\prime}_{1},v^{\prime}_{2}\}] and H1:=H[(V(H)Q){v3,v4,v1,v2}]H^{\prime}_{1}:=H^{\prime}[(V(H)\setminus Q)\cup\{v_{3},v_{4},v^{\prime}_{1},v^{\prime}_{2}\}]. As all the connections will be done by Lemma 2.5, we have |V(H1)|n|Q|n11|A|5n/6|V(H_{1})|\geq n-|Q|\geq n-11|A|\geq 5n/6, which implies that H1H_{1} is (2ρ,d)(2\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}-dense. For those x,yx,y with degH(xy)=0\deg_{H^{\prime}}(xy)=0, we have degH1(xy)=0\deg_{H^{\prime}_{1}}(xy)=0; for those x,yx,y with degH(xy)dn/3\deg_{H^{\prime}}(xy)\geq dn/3, we have

degH1(xy)degH(xy)11|A|dn/6.\deg_{H^{\prime}_{1}}(xy)\geq\deg_{H^{\prime}}(xy)-11|A|\geq dn/6.

That is, for any x,yx,y of V(H1)V(H_{1}), either degH1(xy)=0\deg_{H^{\prime}_{1}}(xy)=0 or degH1(xy)dn/6\deg_{H^{\prime}_{1}}(xy)\geq dn/6. In particular, degH1(v3v4)dn/6\deg_{H^{\prime}_{1}}(v_{3}v_{4})\geq dn/6 and degH1(v2v1)dn/6\deg_{H^{\prime}_{1}}(v^{\prime}_{2}v^{\prime}_{1})\geq dn/6. By Lemma 2.5, there exists a 1010-vertex path in H1H_{1} connecting (v3,v4)(v_{3},v_{4}) and (v2,v1)(v^{\prime}_{2},v^{\prime}_{1}). In conclusion, we obtain a path PP of length no more than 10|A|10|A|. For any AAA^{\prime}\subseteq A, we can put each vertex of AA^{\prime} into its absorber, which is an interior path of PP. This results a tight path PP^{\prime} on V(P)AV(P)\cup A^{\prime} which has the same ends as PP. ∎

At last, we use a path cover lemma given in [Horev]. In fact the -denseness is sufficient but we state it in terms of -dense to unify the statement of the lemmas.

Lemma 2.7.

[Horev, Lemma 1.13] For every d,ζ(0,1]d,\zeta\in(0,1], there exist n0:=n0(d,ζ)n_{0}:=n_{0}(d,\zeta), ρ0=ρ0(d,ζ)>0\rho_{0}=\rho_{0}(d,\zeta)>0, and an integer l0=l0(d,ζ)l_{0}=l_{0}(d,\zeta) such that the following holds for all nn0n\geq n_{0} and 0<ρ<ρ00<\rho<\rho_{0}. Let HH be an nn-vertex (ρ,d)(\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}-dense 33-graph. Then, all but at most ζn\zeta n vertices of HH can be covered using at most l0l_{0} vertex-disjoint paths.

3. Proof of Theorem 1.2

Here is a brief sketch of the proof. We first choose a random set AA, which will be used to deal with the leftover vertices from the almost path cover and connect all paths to a tight cycle. Next, we apply Lemma 2.6 to find an absorbing path P0P_{0} for AA, and apply Lemma 2.7 to find a constant number of paths that leaves a set UU of vertices uncovered. Using vertices in AA, we put each vertex in UU into disjoint 5-vertex paths, which can be done by applying Lemma 2.6 on H[AU]H[A\cup U]. Now we connect all these paths together into a tight cycle CC, leaving only some vertices in AA outside V(C)V(C). Finally the uncovered vertices of AA will be absorbed by P0P_{0} (as P0P_{0} is an interior path of CC) and we obtain a tight Hamilton cycle of HH.

Now we start our proof. Given α,d(0,1]\alpha,d\in(0,1], let σ=min{1132,d33}\sigma=\min\{\frac{1}{132},\frac{d}{33}\} and ζ=min{ασ72,dσ4320}\zeta=\min\{\frac{\alpha\sigma}{72},\frac{d\sigma}{4320}\}. Apply Lemma 2.4 with α/18\alpha/18 in place of α\alpha, d/6d/6 in place of dd and obtain ρ1\rho_{1}. Apply Lemma 2.5 with dd and β=d/20\beta=d/20 and obtain ρ2\rho_{2}. Apply Lemma 2.6 with α,d\alpha,d and obtain ρ3\rho_{3}. Apply Lemma 2.7 with d,ζd,\zeta and obtain ρ4\rho_{4} and l0l_{0}. Let ρ=min{ρ1σ10/210,ρ2σ3/27,ρ3,ρ45/32,d5/(34025)}\rho=\min\{\rho_{1}\sigma^{10}/2^{10},\rho_{2}\sigma^{3}/27,\rho_{3},\rho_{4}^{5}/32,d^{5}/(3^{40}2^{5})\} and n0n_{0} be sufficiently large. Let nn0n\geq n_{0} and HH be an nn-vertex (ρ,d)(\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}-dense 33-graph. Let HH^{\prime} be the spanning subgraph of HH given by Lemma 2.2 satisfying (1) and (2).

Choose a random set AA. First, we pick a random set AA by including every vertex of HH independently with probability σ\sigma. Then, we have 𝔼(|A|)=σn\mathbb{E}(|A|)=\sigma n. Chernoff’s inequality (see [Janson, Corollary 2.3]) and the above expectation yield that

(|A|>2σn)=o(1),(|A|<σn/2)=o(1).\mathbb{P}(|A|>2\sigma n)=o(1),\ \ \mathbb{P}(|A|<\sigma n/2)=o(1).

Moreover, by Janson’s inequality (see [JLR, Theorem 2.14]), for any v,x,yV(H)v,x,y\in V(H), we have

(degH(v,A)<degH(v)σ2/2)1/n3, and\mathbb{P}(\deg_{H}(v,A)<\deg_{H}(v)\sigma^{2}/2)\leq 1/{n^{3}},\text{ and}
(degH(xy,A)<degH(xy)σ/2)1/n3.\mathbb{P}(\deg_{H^{\prime}}({xy,A})<\deg_{H^{\prime}}(xy)\sigma/2)\leq 1/{n^{3}}.

In summary, by the union bound, there exists a choice of AA such that

  1. (i)

    σn/2|A|2σn\sigma n/2\leq|A|\leq 2\sigma n,

  2. (ii)

    degH(v,A)degH(v)σ2/2ασ22(n2)\deg_{H}(v,A)\geq\deg_{H}(v)\sigma^{2}/2\geq\frac{\alpha\sigma^{2}}{2}\binom{n}{2} for every vV(H)v\in V(H), and

  3. (iii)

    either degH(xy,A)degH(xy)σ/2σdn/6\deg_{H^{\prime}}({xy,A})\geq\deg_{H^{\prime}}(xy)\sigma/2\geq{\sigma dn}/6 or degH(xy)=0\deg_{H^{\prime}}({xy})=0 for every x,yV(H)x,y\in V(H).

Pick an absorbing path and an almost path cover. By Lemma 2.6, there exists a path P0P_{0} of length no more than 10|A|10|A| such that both ends (a0,b0)(a_{0},b_{0}) and (c0,d0)(c_{0},d_{0}) of P0P_{0} are in H\partial H^{\prime}, and for any AAA^{\prime}\subseteq A, there is a tight path P0P^{\prime}_{0} on V(P0)AV(P_{0})\cup A^{\prime} which has the same ends as P0P_{0}.

Define H′′:=H[V(H)(V(P0)A)]H^{\prime\prime}:=H^{\prime}[V(H)\setminus(V(P_{0})\cup A)]. Since |V(H′′)|n|V(P0)A|n11|A|5n/6|V(H^{\prime\prime})|\geq n-|V(P_{0})\cup A|\geq n-11|A|\geq 5n/6, H′′H^{\prime\prime} is (2ρ1/5,d)(2\rho^{1/5},d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}-dense. By Lemma 2.7, all but at most ζn\zeta n vertices of H′′H^{\prime\prime} can be covered using ll0l\leq l_{0} vertex-disjoint paths P1,P2,,PlP_{1},P_{2},\dots,P_{l}. Let UU be the set of uncovered vertices of H′′H^{\prime\prime}. Let (ai,bi)(a_{i},b_{i}) and (ci,di)(c_{i},d_{i}) be the ends of PiP_{i} for i[l]i\in[l].

Put vertices of UU into short paths. Define A:=AU{ai,bi,ci,di}0ilA^{*}:=A\cup U\cup\{a_{i},b_{i},c_{i},d_{i}\}_{0\leq i\leq l}. Then, we have

|A|=|A|+|U|+|{ai,bi,ci,di}0il|2σn+ζn+4(l+1)3σn.|A^{*}|=|A|+|U|+|\{a_{i},b_{i},c_{i},d_{i}\}_{0\leq i\leq l}|\leq 2\sigma n+\zeta n+4(l+1)\leq 3\sigma n.

Since the induced subgraph H[A]H[A^{*}] has at least |A|σn/2|A|\geq\sigma n/2 vertices, H[A]H[A^{*}] is (8ρ/σ3,d)(8\rho/\sigma^{3},d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}-dense. By (ii), for every vAv\in A^{*}, we have

degH[A](v)degH(v,A)ασ22(n2)α18(|A|2).\deg_{H[A^{*}]}(v)\geq\deg_{H}(v,A)\geq\frac{\alpha\sigma^{2}}{2}\binom{n}{2}\geq\frac{\alpha}{18}\binom{|A^{*}|}{2}.

Let H[A]H^{\prime}[A^{*}] be the spanning subgraph of H[A]H[A^{*}]. For x,yAx,y\in A^{*}, by (iii), we have either

degH[A](xy)degH(xy,A)σdn/6d18|A|,\deg_{H^{\prime}[A^{*}]}(xy)\geq\deg_{H^{\prime}}(xy,A)\geq{\sigma dn}/6\geq\frac{d}{18}{|A^{*}|},

or degH(xy)=0\deg_{H^{\prime}}({xy})=0. Moreover, the number of xyxy with degH(xy)=0\deg_{H^{\prime}}({xy})=0 is at most

ρ1/5(n2)ρ1/5(2|A|/σ2)4ρ1/5σ2(|A|2),\rho^{1/5}\binom{n}{2}\leq\rho^{1/5}\binom{2|A^{*}|/\sigma}{2}\leq\frac{4\rho^{1/5}}{\sigma^{2}}\binom{|A^{*}|}{2},

as σn/2|A|\sigma n/2\leq|A^{*}|. We apply Lemma 2.4 on H[A]H[A^{*}] with α/18\alpha/18 in place of α\alpha, d/6d/6 in place of dd, and H[A]H^{\prime}[A^{*}] playing the role of HH^{\prime}, and conclude that for any WAW\subseteq A^{*} with |W|α|A|/72|W|\leq\alpha|A^{*}|/72 and any vUv\in U, there exists a vv-absorber v1v2v3v4v_{1}v_{2}v_{3}v_{4} in AWA^{*}\setminus W such that degH[A](v1v2)d|A|/18\deg_{H^{\prime}[A^{*}]}(v_{1}v_{2})\geq d|A^{*}|/18 and degH[A](v3v4)d|A|/18\deg_{H^{\prime}[A^{*}]}(v_{3}v_{4})\geq d|A^{*}|/18.

We greedily choose disjoint paths Qv=v1v2vv3v4Q_{v}=v_{1}v_{2}vv_{3}v_{4} for each vUv\in U (clearly, a vv-absorber gives such a path) such that degH[A](v1v2)d|A|/18\deg_{H^{\prime}[A^{*}]}(v_{1}v_{2})\geq d|A^{*}|/18 and degH[A](v3v4)d|A|/18\deg_{H^{\prime}[A^{*}]}(v_{3}v_{4})\geq d|A^{*}|/18. Let WW be the union of U{ai,bi,ci,di}0ilU\cup\{a_{i},b_{i},c_{i},d_{i}\}_{0\leq i\leq l} and the paths that have been chosen so far. Note that |W||U|+4(l+1)ζn+4l+4α|A|/72|W|\leq|U|+4(l+1)\leq\zeta n+4l+4\leq\alpha|A^{*}|/72. Then, for every vertex vUv\in U, we can use the property above to find a vv-absorber v1v2v3v4v_{1}v_{2}v_{3}v_{4} in AW=AWA^{*}\setminus W=A\setminus W such that degH[A](v1v2)d|A|/18\deg_{H^{\prime}[A^{*}]}(v_{1}v_{2})\geq d|A^{*}|/18 and degH[A](v3v4)d|A|/18\deg_{H^{\prime}[A^{*}]}(v_{3}v_{4})\geq d|A^{*}|/18.

Connect the paths and finish the absorption. Next, we iteratively connect these paths P0,P1,,PlP_{0},P_{1},\dots,P_{l}, and {Qv:vU}\{Q_{v}:v\in U\} to a tight cycle. At each intermediate step, let QQ be the vertex set of the union of all the paths that have been chosen so far and suppose we need to connect two ends (z1,z2)(z_{1},z_{2}) and (w1,w2)(w_{1},w_{2}). Because we will connect these paths by Lemma 2.5, we have

|AQ|5ζn+4l+4+6(ζn+l+1)12ζn24(ζ/σ)|A||A|/10.|A^{*}\cap Q|\leq 5\zeta n+4l+4+6(\zeta n+l+1)\leq 12\zeta n\leq 24(\zeta/\sigma)|A^{*}|\leq|A^{*}|/10.

Define H1:=H[(AQ){z1,z2,w1,w2}]H_{1}:=H[(A^{*}\setminus Q)\cup\{z_{1},z_{2},w_{1},w_{2}\}] and H1:=H[(AQ){z1,z2,w1,w2}]H^{\prime}_{1}:=H^{\prime}[(A^{*}\setminus Q)\cup\{z_{1},z_{2},w_{1},w_{2}\}]. Since

|V(H1)||A||AQ|(9/10)|A|9σn/20>σn/3,|V(H_{1})|\geq|A^{*}|-|A^{*}\cap Q|\geq(9/10)|A^{*}|\geq 9\sigma n/20>\sigma n/3,

H1H_{1} is (27ρ/σ3,d)(27\rho/\sigma^{3},d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}-dense. Recall that for x,yAx,y\in A^{*}, either degH[A](xy)d18|A|\deg_{H^{\prime}[A^{*}]}(xy)\geq\frac{d}{18}{|A^{*}|} or degH(xy)=0\deg_{H^{\prime}}({xy})=0. For those x,yx,y with degH(xy)=0\deg_{H^{\prime}}(xy)=0, we have degH1(xy)=0\deg_{H^{\prime}_{1}}(xy)=0; otherwise,

degH1(xy)degH[A](xy)|AQ|d18|A|24(ζ/σ)|A|d20|A|.\deg_{H^{\prime}_{1}}(xy)\geq\deg_{H^{\prime}[A^{*}]}(xy)-|A^{*}\cap Q|\geq\frac{d}{18}{|A^{*}|}-24(\zeta/\sigma)|A^{*}|\geq\frac{d}{20}{|A^{*}|}.

That is, for any x,yx,y of AA^{*}, either degH1(xy)=0\deg_{H^{\prime}_{1}}(xy)=0 or degH1(xy)d|A|/20\deg_{H^{\prime}_{1}}(xy)\geq d|A^{*}|/20. In particular, degH1(z1z2)d|A|/20\deg_{H^{\prime}_{1}}(z_{1}z_{2})\geq d|A^{*}|/20 and degH1(w1w2)d|A|/20\deg_{H^{\prime}_{1}}(w_{1}w_{2})\geq d|A^{*}|/20. By Lemma 2.5, there exists a 1010-vertex path in H1H_{1} connecting (z1,z2)(z_{1},z_{2}) and (w1,w2)(w_{1},w_{2}). In conclusion, we obtain a tight cycle that covers all vertices in V(H)AV(H)\setminus A. As the uncovered vertices are all in AA and can be absorbed by P0P_{0}, we obtain a Hamilton cycle and the proof is completed.

References