JH is partially supported by Simons Collaboration Grant for Mathematicians #630884.
1. Introduction
The study of Hamilton cycles is a central topic in graph theory with a long and profound history.
In recent years, researchers have worked on extending the classical theorem of Dirac on Hamilton cycles to hypergraphs
and we refer to [BHS , GPW , HZ1 , HZ2 , RR , BMSSS1 , BMSSS2 , RRRSS , HZ_forbidHC , HHZ_cycle ] for some recent results and to [KuOs14ICM , RR , zsurvey ] for excellent surveys on this topic.
In this paper we restrict ourselves to 3-uniform hypergraphs (3-graphs), where each (hyper)edge contains exactly three vertices.
For a 3-graph H H and a vertex set S ⊆ V ( H ) S\subseteq V(H) , deg H ( S ) \deg_{H}(S) is defined to be the number of edges containing S S .
The minimum codegree δ 2 ( H ) \delta_{2}(H) of H H is the minimum of deg H ( S ) \deg_{H}(S) over all pairs S S of vertices in H H , and the minimum degree δ 1 ( H ) \delta_{1}(H) of H H is the minimum of deg H ( v ) \deg_{H}(v) over all vertices v ∈ V ( H ) v\in V(H) .
A 3 3 -graph C C is called a tight cycle if its vertices can be ordered cyclically such that every 3 consecutive vertices in this ordering define an edge of C C , which implies that every two consecutive edges intersect in two vertices.
We say that a 3 3 -graph contains a tight Hamilton cycle if it contains a tight cycle as a spanning subgraph.
A tight path P P has a sequential order of vertices v 1 v 2 … v p − 1 v p v_{1}v_{2}\dots v_{p-1}v_{p} such that every 3 consecutive vertices form an edge, where the ends of P P are ordered pairs ( v 2 , v 1 ) (v_{2},v_{1}) and ( v p − 1 , v p ) (v_{p-1},v_{p}) .
The study of quasirandom graphs has been a fruitful area since introduced in [Chung1989 , Thomason1987a , Thomason1987b ] , and we recommend the readers to the excellent survey [Krivelevich2006 ] .
However, the canonical definitions for quasirandom hypergraphs (extending [Chung1989 ] ) have been completely settled only recently [Horev2018 , Towsner2017 ] .
In this note we focus on the so-called ‘cherry-quasirandom 3-graphs’ defined as follows.
An n n -vertex 3-graph H H is called ( ρ , d ) (\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ }
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} -dense if
e H ( G → 1 , G → 2 ) := | { ( x , y , z ) ∈ 𝒫 2 ( G → 1 , G → 2 ) : { x , y , z } ∈ E ( H ) } | ≥ d | 𝒫 2 ( G → 1 , G → 2 ) | − ρ n 3 e_{H}(\vec{G}_{1},\vec{G}_{2}):=|\{(x,y,z)\in\mathcal{P}_{2}(\vec{G}_{1},\vec{G}_{2}):\{x,y,z\}\in E(H)\}|\geq d|\mathcal{P}_{2}(\vec{G}_{1},\vec{G}_{2})|-\rho n^{3}
for every G → 1 , G → 2 ⊆ V ( H ) × V ( H ) \vec{G}_{1},\vec{G}_{2}\subseteq V(H)\times V(H) , where
𝒫 2 ( G → 1 , G → 2 ) := { ( x , y , z ) ∈ V ( H ) 3 : ( x , y ) ∈ G → 1 , ( y , z ) ∈ G → 2 } . \mathcal{P}_{2}(\vec{G}_{1},\vec{G}_{2}):=\{(x,y,z)\in V(H)^{3}:(x,y)\in\vec{G}_{1},(y,z)\in\vec{G}_{2}\}.
Aigner-Horev and Levy proved the following result on tight Hamiltonicity in ( ρ , d ) (\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ }
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} -dense 3-graphs.
Theorem 1.1 .
[ Horev ]
For every d , α ∈ ( 0 , 1 ] d,\alpha\in(0,1] , there exist an integer n 0 n_{0} and a real ρ > 0 \rho>0 such that the following holds for all n ≥ n 0 n\geq n_{0} .
Let H H be an n n -vertex ( ρ , d ) (\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ }
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} -dense 3 3 -graph satisfying δ 2 ( H ) ≥ α n \delta_{2}(H)\geq\alpha n . Then, H H has a tight Hamilton cycle.
They also showed that for α + d > 1 \alpha+d>1 the ( ρ , d ) (\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ }
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} -denseness together with δ 1 ( H ) ≥ α ( n 2 ) \delta_{1}(H)\geq\alpha\binom{n}{2} implies tight Hamiltonicity and asked [Horev , Conjecture 1.6] if the condition α + d > 1 \alpha+d>1 can be dropped.
In this note we verify this conjecture.
Theorem 1.2 .
For every α , d ∈ ( 0 , 1 ] \alpha,d\in(0,1] there exist an n 0 n_{0} and ρ > 0 \rho>0 such that the following holds for all n ≥ n 0 n\geq n_{0} .
Let H H be an n n -vertex ( ρ , d ) (\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ }
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} -dense 3 3 -graph satisfying δ 1 ( H ) ≥ α ( n 2 ) \delta_{1}(H)\geq\alpha\binom{n}{2} .
Then, H H has a tight Hamilton cycle.
There are weaker versions of quasirandomness for 3-graphs compared with -denseness, namely, -denseness and -denseness.
An n n -vertex 3-graph H H is called ( ρ , d ) (\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} -dense if
e H ( X , Y , Z ) := | { ( x , y , z ) ∈ X × Y × Z : { x , y , z } ∈ E ( H ) } | ≥ d | X | | Y | | Z | − ρ n 3 e_{H}(X,Y,Z):=|\{(x,y,z)\in X\times Y\times Z:\{x,y,z\}\in E(H)\}|\geq d|X||Y||Z|-\rho n^{3}
for every X , Y , Z ⊆ V ( H ) X,Y,Z\subseteq V(H) ;
an n n -vertex 3-graph H H is called ( ρ , d ) (\rho,d)_{\leavevmode\hbox to8.8pt{\vbox to6.81pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-9.38104pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.96674pt}\pgfsys@curveto{1.4143pt}{-7.18564pt}{0.7811pt}{-6.55243pt}{0.0pt}{-6.55243pt}\pgfsys@curveto{-0.7811pt}{-6.55243pt}{-1.4143pt}{-7.18564pt}{-1.4143pt}{-7.96674pt}\pgfsys@curveto{-1.4143pt}{-8.74783pt}{-0.7811pt}{-9.38104pt}{0.0pt}{-9.38104pt}\pgfsys@curveto{0.7811pt}{-9.38104pt}{1.4143pt}{-8.74783pt}{1.4143pt}{-7.96674pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.96674pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.96674pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{7.38936pt}{-7.96674pt}\pgfsys@curveto{7.38936pt}{-7.18564pt}{6.75615pt}{-6.55243pt}{5.97505pt}{-6.55243pt}\pgfsys@curveto{5.19395pt}{-6.55243pt}{4.56075pt}{-7.18564pt}{4.56075pt}{-7.96674pt}\pgfsys@curveto{4.56075pt}{-8.74783pt}{5.19395pt}{-9.38104pt}{5.97505pt}{-9.38104pt}\pgfsys@curveto{6.75615pt}{-9.38104pt}{7.38936pt}{-8.74783pt}{7.38936pt}{-7.96674pt}\pgfsys@closepath\pgfsys@moveto{5.97505pt}{-7.96674pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.97505pt}{-7.96674pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.40182pt}{-3.98337pt}\pgfsys@curveto{4.40182pt}{-3.20227pt}{3.76862pt}{-2.56906pt}{2.98752pt}{-2.56906pt}\pgfsys@curveto{2.20642pt}{-2.56906pt}{1.57321pt}{-3.20227pt}{1.57321pt}{-3.98337pt}\pgfsys@curveto{1.57321pt}{-4.76447pt}{2.20642pt}{-5.39767pt}{2.98752pt}{-5.39767pt}\pgfsys@curveto{3.76862pt}{-5.39767pt}{4.40182pt}{-4.76447pt}{4.40182pt}{-3.98337pt}\pgfsys@closepath\pgfsys@moveto{2.98752pt}{-3.98337pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.98752pt}{-3.98337pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{1.61429pt}{-7.96667pt}\pgfsys@lineto{4.36072pt}{-7.96667pt}\pgfsys@stroke\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} -dense if
e H ( X , G ) := | { ( x , ( y , z ) ) ∈ X × G : { x , y , z } ∈ E ( H ) } | ≥ d | X | | G | − ρ n 3 e_{H}(X,G):=|\{(x,(y,z))\in X\times G:\{x,y,z\}\in E(H)\}|\geq d|X||G|-\rho n^{3}
for every X ⊆ V ( H ) X\subseteq V(H) and G ⊆ V ( H ) × V ( H ) G\subseteq V(H)\times V(H) .
It is known that the -denseness in Theorems 1.1 and 1.2 cannot be replaced by either of these two weaker ones – namely, degenerate choices of α \alpha and d d do not guarantee tight Hamiltonicity under these two notions of quasirandomness.
In this sense, the -denseness in these two theorems is best possible.
In contrast, for a weaker notion of Hamiltonicity, namely, the loose cycles , Lenz, Mubayi and Mycroft [Lenz2016 ] proved that degenerate choices of α \alpha and d d already force loose Hamiltonicity under -denseness.
Very recently, Araújo, Piga and Schacht [Araujo2019 ] annouced that for any α > 0 \alpha>0 and d > 1 / 4 d>1/4 , having minimum vertex degree α ( n 2 ) \alpha\binom{n}{2} and being ( ρ , d ) (\rho,d)_{\leavevmode\hbox to8.8pt{\vbox to6.81pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-9.38104pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.96674pt}\pgfsys@curveto{1.4143pt}{-7.18564pt}{0.7811pt}{-6.55243pt}{0.0pt}{-6.55243pt}\pgfsys@curveto{-0.7811pt}{-6.55243pt}{-1.4143pt}{-7.18564pt}{-1.4143pt}{-7.96674pt}\pgfsys@curveto{-1.4143pt}{-8.74783pt}{-0.7811pt}{-9.38104pt}{0.0pt}{-9.38104pt}\pgfsys@curveto{0.7811pt}{-9.38104pt}{1.4143pt}{-8.74783pt}{1.4143pt}{-7.96674pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.96674pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.96674pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{7.38936pt}{-7.96674pt}\pgfsys@curveto{7.38936pt}{-7.18564pt}{6.75615pt}{-6.55243pt}{5.97505pt}{-6.55243pt}\pgfsys@curveto{5.19395pt}{-6.55243pt}{4.56075pt}{-7.18564pt}{4.56075pt}{-7.96674pt}\pgfsys@curveto{4.56075pt}{-8.74783pt}{5.19395pt}{-9.38104pt}{5.97505pt}{-9.38104pt}\pgfsys@curveto{6.75615pt}{-9.38104pt}{7.38936pt}{-8.74783pt}{7.38936pt}{-7.96674pt}\pgfsys@closepath\pgfsys@moveto{5.97505pt}{-7.96674pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.97505pt}{-7.96674pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.40182pt}{-3.98337pt}\pgfsys@curveto{4.40182pt}{-3.20227pt}{3.76862pt}{-2.56906pt}{2.98752pt}{-2.56906pt}\pgfsys@curveto{2.20642pt}{-2.56906pt}{1.57321pt}{-3.20227pt}{1.57321pt}{-3.98337pt}\pgfsys@curveto{1.57321pt}{-4.76447pt}{2.20642pt}{-5.39767pt}{2.98752pt}{-5.39767pt}\pgfsys@curveto{3.76862pt}{-5.39767pt}{4.40182pt}{-4.76447pt}{4.40182pt}{-3.98337pt}\pgfsys@closepath\pgfsys@moveto{2.98752pt}{-3.98337pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.98752pt}{-3.98337pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{1.61429pt}{-7.96667pt}\pgfsys@lineto{4.36072pt}{-7.96667pt}\pgfsys@stroke\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} -dense guarantee tight Hamiltonicity.
1.1. Proof ideas
Let us briefly talk about our proof here.
Following other recent work on Hamilton cycles, we use the absorption method, which roughly splits the proof into the following three steps.
Let H H be an n n -vertex ( ρ , d ) (\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ }
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} -dense 3 3 -graph satisfying δ 1 ( H ) ≥ α ( n 2 ) \delta_{1}(H)\geq\alpha\binom{n}{2} .
•
Absorber lemma: every vertex v v in H H has many absorbers , namely, a constant-length tight path that can include v v as an interior vertex or leave v v out;
•
Connection lemma: every two ordered pairs of vertices can be connected by a constant-length tight path;
•
Path cover lemma: almost all vertices of the 3-graph can be covered by a constant number of vertex-disjoint tight paths.
It is straightforward to prove the path cover lemma for quasirandom 3-graphs.
The proof of Theorem 1.1 relies on the fact that all pairs of vertices have a good codegree (namely, α n \alpha n ), which, together with the cherry-denseness, allows them to employ the cascade method to establish a connection lemma.
Our main advance is to observe that as H H is -dense, almost all pairs of vertices of H H have a good codegree.
Moreover, a ‘shaving’ technique (e.g., [Han2017 , Lemma 8.8] ) shows that we can find a spanning subgraph of H H where almost all pairs have codegree d n / 3 dn/3 and other pairs have degree 0.
These allow us to stick to these high codegree pairs and employ the cascades for connections, and actually such a result has been proven in [Horev , Lemma 3.23] .
2. Tools
In this section we prove the lemmas needed for the proof of Theorem 1.2 .
Note that by definition, if H H is an n n -vertex ( ρ , d ) (\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ }
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} -dense 3 3 -graph, then any induced subgraph of H H on α n \alpha n vertices is ( ρ / α 3 , d ) (\rho/\alpha^{3},d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ }
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} -dense and we will use this simple fact without further references.
Throughout the rest of the paper, we will refer to tight paths as just paths.
Given a 3-graph H H , let ∂ H := { ( x , y ) : deg H ( x y ) > 0 } \partial H:=\{(x,y):\deg_{H}(xy)>0\} be the shadow of H H .
For any v ∈ A v\in A , define deg H ( v , A ) := | N H ( v ) ∩ ( A 2 ) | \deg_{H}(v,A):=\big{|}N_{H}(v)\cap\binom{A}{2}\big{|} and for each pair of vertices x , y ∈ A x,y\in A , let
deg H ( x y , A ) := | N H ( x , y ) ∩ A | \deg_{H}(xy,A):=|N_{H}(x,y)\cap A| .
We use the following result proved in [Han2017 , Lemma 8.8] .
Note that its original version does not include an estimate on the loss of the number of edges which actually follows from its proof.
Lemma 2.1 .
[ Han2017 ]
Let n ≥ 6 n\geq 6 and 0 < μ , θ < 1 0<\mu,\theta<1 .
Let H H be an n n -vertex 3 3 -graph with deg H ( S ) ≥ μ ( n − 2 ) \deg_{H}(S)\geq\mu(n-2) for all but at most θ ( n 2 ) \theta\binom{n}{2} pairs S S .
Then H H contains a spanning subgraph H ′ H^{\prime} with e ( H ∖ H ′ ) ≤ 48 θ 1 / 4 ( n 3 ) e(H\setminus H^{\prime})\leq 48\theta^{1/4}\binom{n}{3} and either deg H ′ ( S ) ≥ ( μ − 8 θ 1 / 4 ) ( n − 2 ) \deg_{H^{\prime}}(S)\geq(\mu-8\theta^{1/4})(n-2) or deg H ′ ( S ) = 0 \deg_{H^{\prime}}(S)=0 .
Moreover, | ∂ H ′ | ≥ ( 1 − θ − θ 1 / 4 ) ( n 2 ) |\partial H^{\prime}|\geq(1-\theta-\theta^{1/4})\binom{n}{2} , namely, the number of S S with deg H ′ ( S ) = 0 \deg_{H^{\prime}}(S)=0 is at most ( θ + θ 1 / 4 ) ( n 2 ) (\theta+\theta^{1/4})\binom{n}{2} .
The following lemma defines a spanning subgraph of an n n -vertex 3 3 -graph H H , which will be crucial in our proof.
We note that in this lemma -denseness is sufficient.
Lemma 2.2 .
Let d > 0 d>0 and ρ ≤ d 5 / ( 3 40 2 5 ) \rho\leq d^{5}/(3^{40}2^{5}) .
Let H H be an n n -vertex ( ρ , d ) (\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ }
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} -dense 3 3 -graph.
Then there exists a spanning subgraph H ′ H^{\prime} of H H , satisfying the following properties.
(1)
For any pair S S of vertices, either deg H ′ ( S ) ≥ d n / 3 \deg_{H^{\prime}}(S)\geq dn/3 or deg H ′ ( S ) = 0 \deg_{H^{\prime}}(S)=0 .
Moreover, | ∂ H ′ | ≥ ( 1 − ρ 1 / 5 ) ( n 2 ) |\partial H^{\prime}|\geq(1-\rho^{1/5})\binom{n}{2} , namely, the number of S S with deg H ′ ( S ) = 0 \deg_{H^{\prime}}(S)=0 is at most ρ 1 / 5 ( n 2 ) \rho^{1/5}\binom{n}{2} .
(2)
H ′ H^{\prime} is ( ρ 1 / 5 , d ) (\rho^{1/5},d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ }
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} -dense.
Proof.
Let 𝒮 \mathcal{S} be the collection of pairs with deg H ( S ) < d ( n − 2 ) / 2 \deg_{H}(S)<d(n-2)/2 .
Let 𝒮 → := { ( x , y ) : x y ∈ 𝒮 } \vec{\mathcal{S}}:=\{(x,y):xy\in\mathcal{S}\} .
So | 𝒮 → | = 2 | 𝒮 | |\vec{\mathcal{S}}|=2|\mathcal{S}| .
Since H H is ( ρ , d ) (\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ }
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} -dense, we have
d ( n − 2 ) 2 ⋅ 2 | 𝒮 | ≥ e H ( 𝒮 → , V ( H ) 2 ) ≥ d | 𝒫 2 ( 𝒮 → , V ( H ) 2 ) | − ρ n 3 = 2 d | 𝒮 | n − ρ n 3 . \frac{d(n-2)}{2}\cdot 2|{\mathcal{S}}|\geq e_{H}({\vec{\mathcal{S}}},V(H)^{2})\geq d|\mathcal{P}_{2}({{\vec{\mathcal{S}}},V(H)^{2})|-\rho n^{3}=2d|\mathcal{S}}|n-\rho n^{3}.
The above inequalities imply that
| 𝒮 | ≤ ρ n 3 d ( n + 2 ) ≤ ρ n ( n − 1 ) d = 2 ρ d ( n 2 ) . |{\mathcal{S}}|\leq\frac{\rho n^{3}}{d(n+2)}\leq\frac{\rho n(n-1)}{d}=\frac{2\rho}{d}\binom{n}{2}.
Let H ′ H^{\prime} be the spanning subgraph of H H returned by Lemma 2.1 with μ = d / 2 \mu=d/2 and θ = 2 ρ / d \theta=2\rho/d .
So we have e ( H ∖ H ′ ) ≤ 48 ( 2 ρ / d ) 1 / 4 ( n 3 ) e(H\setminus H^{\prime})\leq 48({2\rho}/{d})^{1/4}\binom{n}{3} , | ∂ H ′ | ≥ ( 1 − 2 ρ / d − ( 2 ρ / d ) 1 / 4 ) ( n 2 ) ≥ ( 1 − ρ 1 / 5 ) ( n 2 ) |\partial H^{\prime}|\geq(1-2\rho/d-({2\rho}/{d})^{1/4})\binom{n}{2}\geq(1-\rho^{1/5})\binom{n}{2} and
deg H ′ ( S ) ≥ ( d / 2 − 8 ( 2 ρ / d ) 1 / 4 ) ( n − 2 ) ≥ ( d / 2 − d / 7 ) ( n − 2 ) ≥ d n / 3 . \deg_{H^{\prime}}(S)\geq(d/2-8({2\rho}/{d})^{1/4})(n-2)\geq(d/2-d/7)(n-2)\geq dn/3.
Thus, (1) holds.
Since H H is ( ρ , d ) (\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ }
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} -dense, for every G → 1 , G → 2 ⊆ V ( H ) × V ( H ) \vec{G}_{1},\vec{G}_{2}\subseteq V(H)\times V(H) ,
we have
e H ′ ( G → 1 , G → 2 ) \displaystyle e_{H^{\prime}}(\vec{G}_{1},\vec{G}_{2})
≥ e H ( G → 1 , G → 2 ) − e ( H ∖ H ′ ) ≥ d | 𝒫 2 ( G → 1 , G → 2 ) | − ρ n 3 − 48 ( 2 ρ / d ) 1 / 4 ( n 3 ) \displaystyle\geq e_{H}(\vec{G}_{1},\vec{G}_{2})-e(H\setminus H^{\prime})\geq d|\mathcal{P}_{2}(\vec{G}_{1},\vec{G}_{2})|-\rho n^{3}-48({2\rho}/{d})^{1/4}\binom{n}{3}
≥ d | 𝒫 2 ( G → 1 , G → 2 ) | − ( ρ + 8 ( 2 ρ / d ) 1 / 4 ) n 3 ≥ d | 𝒫 2 ( G → 1 , G → 2 ) | − ρ 1 / 5 n 3 . \displaystyle\geq d|\mathcal{P}_{2}(\vec{G}_{1},\vec{G}_{2})|-(\rho+8({2\rho}/{d})^{1/4})n^{3}\geq d|\mathcal{P}_{2}(\vec{G}_{1},\vec{G}_{2})|-\rho^{1/5}n^{3}.
Thus H ′ H^{\prime} is ( ρ 1 / 5 , d ) (\rho^{1/5},d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ }
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} -dense.
∎
Let H H be a 3 3 -graph.
For v ∈ V ( H ) v\in V(H) , a quadruple ( x , y , z , w ) ∈ V ( H ) 4 (x,y,z,w)\in V(H)^{4} is said to be a v v -absorber if
{ x , y , z } , { y , z , w } , { v , x , y } , { v , y , z } , { v , z , w } ∈ E ( H ) \{x,y,z\},\{y,z,w\},\{v,x,y\},\{v,y,z\},\{v,z,w\}\in E(H) .
We state and use [Horev , Lemma 4.2] (in a weaker form) and refine the absorbers it gives in the next lemma.
Lemma 2.3 .
[ Horev , Lemma 4.2]
For every α , d ∈ ( 0 , 1 ] \alpha,d\in(0,1] , there exist ρ > 0 \rho>0 and c > 0 c>0 such that the following holds for any sufficiently large integer n n .
Let H H be an n n -vertex ( ρ , d ) (\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ }
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} -dense 3 3 -graph satisfying δ 1 ( H ) ≥ α ( n 2 ) \delta_{1}(H)\geq\alpha\binom{n}{2} , and let v ∈ V ( H ) v\in V(H) . Then, there are at least
c n 4 cn^{4}
v v -absorbers in H H .
Lemma 2.4 .
For every α , d ∈ ( 0 , 1 ] \alpha,d\in(0,1] , there exists ρ > 0 \rho>0 such that the following holds for any sufficiently large integer n n .
Let H H be an n n -vertex ( ρ , d ) (\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ }
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} -dense 3 3 -graph satisfying δ 1 ( H ) ≥ α ( n 2 ) \delta_{1}(H)\geq\alpha\binom{n}{2} , and let H ′ H^{\prime} be a spanning subgraph of H H satisfying Lemma 2.2 (1) .
Let v ∈ V ( H ) v\in V(H) .
Then, for any W ⊆ V ( H ) W\subseteq V(H) with | W | ≤ α n / 4 |W|\leq\alpha n/4 , there exists a v v -absorber v 1 v 2 v 3 v 4 v_{1}v_{2}v_{3}v_{4} in V ( H ) ∖ W V(H)\setminus W such that deg H ′ ( v 1 v 2 ) ≥ d n / 3 \deg_{H^{\prime}}(v_{1}v_{2})\geq dn/3 and deg H ′ ( v 3 v 4 ) ≥ d n / 3 \deg_{H^{\prime}}(v_{3}v_{4})\geq dn/3 .
Proof.
Apply Lemma 2.3 with α / 2 \alpha/2 and d d , and obtain ρ ′ > 0 \rho^{\prime}>0 and c > 0 c>0 .
Let ρ = min { c 5 ( 1 − α / 4 ) 20 , ρ ′ ( 1 − α / 4 ) 3 , d 5 / ( 3 40 2 5 ) } \rho=\min\{c^{5}(1-\alpha/4)^{20},\rho^{\prime}(1-\alpha/4)^{3},d^{5}/(3^{40}2^{5})\} , H 1 := H [ ( V ( H ) ∖ W ) ∪ { v } ] H_{1}:=H[(V(H)\setminus W)\cup\{v\}] and denote its order by n 1 ( ≥ n − α n / 4 ) n_{1}(\geq n-\alpha n/4) .
Then H 1 H_{1} is ( ρ ′ , d ) (\rho^{\prime},d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ }
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} -dense and
δ 1 ( H 1 ) ≥ δ 1 ( H ) − α n 4 ( n − 1 ) ≥ α ( n 2 ) − α 2 ( n 2 ) ≥ α 2 ( n 1 2 ) . \delta_{1}(H_{1})\geq\delta_{1}(H)-\frac{\alpha n}{4}(n-1)\geq\alpha\binom{n}{2}-\frac{\alpha}{2}\binom{n}{2}\geq\frac{\alpha}{2}\binom{n_{1}}{2}.
By Lemma 2.3 , there are at least c n 1 4 cn_{1}^{4} v v -absorbers in H 1 H_{1} .
By Lemma 2.2 (1) , | ∂ H ′ | ≥ ( 1 − ρ 1 / 5 ) ( n 2 ) |\partial H^{\prime}|\geq(1-\rho^{1/5})\binom{n}{2} .
The desired v v -absorber exists because
c n 1 4 − 2 ρ 1 / 5 ( n 2 ) n 2 ≥ c ( n − α n / 4 ) 4 − ρ 1 / 5 n 3 ( n − 1 ) > 0 . ∎ cn_{1}^{4}-2\rho^{1/5}\binom{n}{2}n^{2}\geq c(n-\alpha n/4)^{4}-\rho^{1/5}n^{3}(n-1)>0.\qed
We use the following connection lemma from [Horev ] .
Lemma 2.5 .
[ Horev , Lemma 3.23]
For every d , β ∈ ( 0 , 1 ] d,\beta\in(0,1] with β < d \beta<d , there exist an integer n 0 > 0 n_{0}>0 and a real ρ 0 > 0 \rho_{0}>0 such that the following holds for all n ≥ n 0 n\geq n_{0} and 0 < ρ < ρ 0 0<\rho<\rho_{0} . Let H H be an n n -vertex ( ρ , d ) (\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ }
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} -dense 3 3 -graph and let H ′ H^{\prime} be a spanning subgraph of H H such that for any x , y x,y of V ( H ) V(H) , either deg H ′ ( x y ) = 0 \deg_{H^{\prime}}(xy)=0 or deg H ′ ( x y ) ≥ β n \deg_{H^{\prime}}(xy)\geq\beta n . Let ( x , y ) (x,y) and ( x ′ , y ′ ) (x^{\prime},y^{\prime}) be two disjoint ordered pairs of vertices such that both x y xy and x ′ y ′ x^{\prime}y^{\prime} are in ∂ H ′ \partial H^{\prime} . Then, there exists a 10 10 -vertex path in H H connecting ( x , y ) (x,y) and ( x ′ , y ′ ) (x^{\prime},y^{\prime}) .
Now we are ready to prove our absorption lemma.
Lemma 2.6 .
For every α , d ∈ ( 0 , 1 ] \alpha,d\in(0,1] , there exists ρ > 0 \rho>0 such that the following holds for any sufficiently large integer n n .
Let H H be an n n -vertex ( ρ , d ) (\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ }
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} -dense 3 3 -graph satisfying δ 1 ( H ) ≥ α ( n 2 ) \delta_{1}(H)\geq\alpha\binom{n}{2} and let H ′ H^{\prime} be a spanning subgraph of H H satisfying Lemma 2.2 (1) .
Then for any A ⊆ V ( H ) A\subseteq V(H) with | A | ≤ d n / 66 |A|\leq dn/66 , there exists a path P P of length at most 10 | A | 10|A| such that both ends of P P are in ∂ H ′ \partial H^{\prime} , and for any A ′ ⊆ A A^{\prime}\subseteq A , there is a tight path P ′ P^{\prime} on V ( P ) ∪ A ′ V(P)\cup A^{\prime} which has the same ends as P P .
Proof.
Apply Lemma 2.4 with d d and α \alpha and obtain ρ 1 \rho_{1} . Apply Lemma 2.5 with β = d / 6 \beta=d/6 and obtain ρ 2 \rho_{2} . Let ρ = min { ρ 1 , ρ 2 / 2 , d 5 / ( 3 40 2 5 ) } \rho=\min\{\rho_{1},\rho_{2}/2,d^{5}/(3^{40}2^{5})\} .
We first choose disjoint absorbers for each v ∈ A v\in A .
Let W W be the union of A A and the absorbers that have been chosen so far.
Then, for each vertex in A A , we iteratively use Lemma 2.4 to find a v v -absorber v 1 v 2 v 3 v 4 v_{1}v_{2}v_{3}v_{4} in V ( H ) ∖ W V(H)\setminus W such that deg H ′ ( v 1 v 2 ) ≥ d n / 3 \deg_{H^{\prime}}(v_{1}v_{2})\geq dn/3 and deg H ′ ( v 3 v 4 ) ≥ d n / 3 \deg_{H^{\prime}}(v_{3}v_{4})\geq dn/3 .
Next, we iteratively connect these absorbers by Lemma 2.5 to a single tight path. At each intermediate step, let Q Q be the union of A A and all the paths that have been chosen so far and suppose we need to connect ( v 3 , v 4 ) (v_{3},v_{4}) and ( v 2 ′ , v 1 ′ ) (v^{\prime}_{2},v^{\prime}_{1}) . Define H 1 := H [ ( V ( H ) ∖ Q ) ∪ { v 3 , v 4 , v 1 ′ , v 2 ′ } ] H_{1}:=H[(V(H)\setminus Q)\cup\{v_{3},v_{4},v^{\prime}_{1},v^{\prime}_{2}\}] and H 1 ′ := H ′ [ ( V ( H ) ∖ Q ) ∪ { v 3 , v 4 , v 1 ′ , v 2 ′ } ] H^{\prime}_{1}:=H^{\prime}[(V(H)\setminus Q)\cup\{v_{3},v_{4},v^{\prime}_{1},v^{\prime}_{2}\}] .
As all the connections will be done by Lemma 2.5 , we have | V ( H 1 ) | ≥ n − | Q | ≥ n − 11 | A | ≥ 5 n / 6 |V(H_{1})|\geq n-|Q|\geq n-11|A|\geq 5n/6 , which implies that H 1 H_{1} is ( 2 ρ , d ) (2\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ }
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} -dense.
For those x , y x,y with deg H ′ ( x y ) = 0 \deg_{H^{\prime}}(xy)=0 , we have deg H 1 ′ ( x y ) = 0 \deg_{H^{\prime}_{1}}(xy)=0 ;
for those x , y x,y with deg H ′ ( x y ) ≥ d n / 3 \deg_{H^{\prime}}(xy)\geq dn/3 , we have
deg H 1 ′ ( x y ) ≥ deg H ′ ( x y ) − 11 | A | ≥ d n / 6 . \deg_{H^{\prime}_{1}}(xy)\geq\deg_{H^{\prime}}(xy)-11|A|\geq dn/6.
That is, for any x , y x,y of V ( H 1 ) V(H_{1}) , either deg H 1 ′ ( x y ) = 0 \deg_{H^{\prime}_{1}}(xy)=0 or deg H 1 ′ ( x y ) ≥ d n / 6 \deg_{H^{\prime}_{1}}(xy)\geq dn/6 . In particular, deg H 1 ′ ( v 3 v 4 ) ≥ d n / 6 \deg_{H^{\prime}_{1}}(v_{3}v_{4})\geq dn/6 and deg H 1 ′ ( v 2 ′ v 1 ′ ) ≥ d n / 6 \deg_{H^{\prime}_{1}}(v^{\prime}_{2}v^{\prime}_{1})\geq dn/6 .
By Lemma 2.5 , there exists a 10 10 -vertex path in H 1 H_{1} connecting ( v 3 , v 4 ) (v_{3},v_{4}) and ( v 2 ′ , v 1 ′ ) (v^{\prime}_{2},v^{\prime}_{1}) .
In conclusion, we obtain a path P P of length no more than 10 | A | 10|A| .
For any A ′ ⊆ A A^{\prime}\subseteq A , we can put each vertex of A ′ A^{\prime} into its absorber, which is an interior path of P P . This results a tight path P ′ P^{\prime} on V ( P ) ∪ A ′ V(P)\cup A^{\prime} which has the same ends as P P .
∎
At last, we use a path cover lemma given in [Horev ] .
In fact the -denseness is sufficient but we state it in terms of -dense to unify the statement of the lemmas.
Lemma 2.7 .
[ Horev , Lemma 1.13]
For every d , ζ ∈ ( 0 , 1 ] d,\zeta\in(0,1] , there exist n 0 := n 0 ( d , ζ ) n_{0}:=n_{0}(d,\zeta) , ρ 0 = ρ 0 ( d , ζ ) > 0 \rho_{0}=\rho_{0}(d,\zeta)>0 , and an integer l 0 = l 0 ( d , ζ ) l_{0}=l_{0}(d,\zeta) such that the following holds for all n ≥ n 0 n\geq n_{0} and 0 < ρ < ρ 0 0<\rho<\rho_{0} .
Let H H be an n n -vertex ( ρ , d ) (\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ }
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} -dense 3 3 -graph.
Then, all but at most ζ n \zeta n vertices of H H can be covered using at most l 0 l_{0} vertex-disjoint paths.
3. Proof of Theorem 1.2
Here is a brief sketch of the proof.
We first choose a random set A A , which will be used to deal with the leftover vertices from the almost path cover and connect all paths to a tight cycle.
Next, we apply Lemma 2.6 to find an absorbing path P 0 P_{0} for A A , and apply Lemma 2.7 to find a constant number of paths that leaves a set U U of vertices uncovered.
Using vertices in A A , we put each vertex in U U into disjoint 5-vertex paths, which can be done by applying Lemma 2.6 on H [ A ∪ U ] H[A\cup U] .
Now we connect all these paths together into a tight cycle C C , leaving only some vertices in A A outside V ( C ) V(C) .
Finally the uncovered vertices of A A will be absorbed by P 0 P_{0} (as P 0 P_{0} is an interior path of C C ) and we obtain a tight Hamilton cycle of H H .
Now we start our proof.
Given α , d ∈ ( 0 , 1 ] \alpha,d\in(0,1] ,
let σ = min { 1 132 , d 33 } \sigma=\min\{\frac{1}{132},\frac{d}{33}\} and ζ = min { α σ 72 , d σ 4320 } \zeta=\min\{\frac{\alpha\sigma}{72},\frac{d\sigma}{4320}\} .
Apply Lemma 2.4 with α / 18 \alpha/18 in place of α \alpha , d / 6 d/6 in place of d d and obtain ρ 1 \rho_{1} .
Apply Lemma 2.5 with d d and β = d / 20 \beta=d/20 and obtain ρ 2 \rho_{2} .
Apply Lemma 2.6 with α , d \alpha,d and obtain ρ 3 \rho_{3} .
Apply Lemma 2.7 with d , ζ d,\zeta and obtain ρ 4 \rho_{4} and l 0 l_{0} .
Let ρ = min { ρ 1 σ 10 / 2 10 , ρ 2 σ 3 / 27 , ρ 3 , ρ 4 5 / 32 , d 5 / ( 3 40 2 5 ) } \rho=\min\{\rho_{1}\sigma^{10}/2^{10},\rho_{2}\sigma^{3}/27,\rho_{3},\rho_{4}^{5}/32,d^{5}/(3^{40}2^{5})\} and n 0 n_{0} be sufficiently large.
Let n ≥ n 0 n\geq n_{0} and H H be an n n -vertex ( ρ , d ) (\rho,d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ }
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} -dense 3 3 -graph.
Let H ′ H^{\prime} be the spanning subgraph of H H given by Lemma 2.2 satisfying (1) and (2) .
Choose a random set A A . First, we pick a random set A A by including every vertex of H H independently with probability σ \sigma . Then, we have 𝔼 ( | A | ) = σ n \mathbb{E}(|A|)=\sigma n .
Chernoff’s inequality (see [Janson , Corollary 2.3] ) and the above expectation yield that
ℙ ( | A | > 2 σ n ) = o ( 1 ) , ℙ ( | A | < σ n / 2 ) = o ( 1 ) . \mathbb{P}(|A|>2\sigma n)=o(1),\ \ \mathbb{P}(|A|<\sigma n/2)=o(1).
Moreover, by Janson’s inequality (see [JLR , Theorem 2.14] ), for any v , x , y ∈ V ( H ) v,x,y\in V(H) , we have
ℙ ( deg H ( v , A ) < deg H ( v ) σ 2 / 2 ) ≤ 1 / n 3 , and \mathbb{P}(\deg_{H}(v,A)<\deg_{H}(v)\sigma^{2}/2)\leq 1/{n^{3}},\text{ and}
ℙ ( deg H ′ ( x y , A ) < deg H ′ ( x y ) σ / 2 ) ≤ 1 / n 3 . \mathbb{P}(\deg_{H^{\prime}}({xy,A})<\deg_{H^{\prime}}(xy)\sigma/2)\leq 1/{n^{3}}.
In summary, by the union bound, there exists a choice of A A such that
(i)
σ n / 2 ≤ | A | ≤ 2 σ n \sigma n/2\leq|A|\leq 2\sigma n ,
(ii)
deg H ( v , A ) ≥ deg H ( v ) σ 2 / 2 ≥ α σ 2 2 ( n 2 ) \deg_{H}(v,A)\geq\deg_{H}(v)\sigma^{2}/2\geq\frac{\alpha\sigma^{2}}{2}\binom{n}{2} for every v ∈ V ( H ) v\in V(H) , and
(iii)
either deg H ′ ( x y , A ) ≥ deg H ′ ( x y ) σ / 2 ≥ σ d n / 6 \deg_{H^{\prime}}({xy,A})\geq\deg_{H^{\prime}}(xy)\sigma/2\geq{\sigma dn}/6 or deg H ′ ( x y ) = 0 \deg_{H^{\prime}}({xy})=0 for every x , y ∈ V ( H ) x,y\in V(H) .
Pick an absorbing path and an almost path cover.
By Lemma 2.6 , there exists a path P 0 P_{0} of length no more than 10 | A | 10|A| such that both ends ( a 0 , b 0 ) (a_{0},b_{0}) and ( c 0 , d 0 ) (c_{0},d_{0}) of P 0 P_{0} are in ∂ H ′ \partial H^{\prime} , and for any A ′ ⊆ A A^{\prime}\subseteq A , there is a tight path P 0 ′ P^{\prime}_{0} on V ( P 0 ) ∪ A ′ V(P_{0})\cup A^{\prime} which has the same ends as P 0 P_{0} .
Define H ′′ := H ′ [ V ( H ) ∖ ( V ( P 0 ) ∪ A ) ] H^{\prime\prime}:=H^{\prime}[V(H)\setminus(V(P_{0})\cup A)] .
Since | V ( H ′′ ) | ≥ n − | V ( P 0 ) ∪ A | ≥ n − 11 | A | ≥ 5 n / 6 |V(H^{\prime\prime})|\geq n-|V(P_{0})\cup A|\geq n-11|A|\geq 5n/6 , H ′′ H^{\prime\prime} is ( 2 ρ 1 / 5 , d ) (2\rho^{1/5},d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ }
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} -dense.
By Lemma 2.7 , all but at most ζ n \zeta n vertices of H ′′ H^{\prime\prime} can be covered using l ≤ l 0 l\leq l_{0} vertex-disjoint paths P 1 , P 2 , … , P l P_{1},P_{2},\dots,P_{l} .
Let U U be the set of uncovered vertices of H ′′ H^{\prime\prime} .
Let ( a i , b i ) (a_{i},b_{i}) and ( c i , d i ) (c_{i},d_{i}) be the ends of P i P_{i} for i ∈ [ l ] i\in[l] .
Put vertices of U U into short paths. Define A ∗ := A ∪ U ∪ { a i , b i , c i , d i } 0 ≤ i ≤ l A^{*}:=A\cup U\cup\{a_{i},b_{i},c_{i},d_{i}\}_{0\leq i\leq l} .
Then, we have
| A ∗ | = | A | + | U | + | { a i , b i , c i , d i } 0 ≤ i ≤ l | ≤ 2 σ n + ζ n + 4 ( l + 1 ) ≤ 3 σ n . |A^{*}|=|A|+|U|+|\{a_{i},b_{i},c_{i},d_{i}\}_{0\leq i\leq l}|\leq 2\sigma n+\zeta n+4(l+1)\leq 3\sigma n.
Since the induced subgraph H [ A ∗ ] H[A^{*}] has at least | A | ≥ σ n / 2 |A|\geq\sigma n/2 vertices, H [ A ∗ ] H[A^{*}] is ( 8 ρ / σ 3 , d ) (8\rho/\sigma^{3},d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ }
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} -dense.
By (ii) , for every v ∈ A ∗ v\in A^{*} , we have
deg H [ A ∗ ] ( v ) ≥ deg H ( v , A ) ≥ α σ 2 2 ( n 2 ) ≥ α 18 ( | A ∗ | 2 ) . \deg_{H[A^{*}]}(v)\geq\deg_{H}(v,A)\geq\frac{\alpha\sigma^{2}}{2}\binom{n}{2}\geq\frac{\alpha}{18}\binom{|A^{*}|}{2}.
Let H ′ [ A ∗ ] H^{\prime}[A^{*}] be the spanning subgraph of H [ A ∗ ] H[A^{*}] . For x , y ∈ A ∗ x,y\in A^{*} , by (iii) , we have either
deg H ′ [ A ∗ ] ( x y ) ≥ deg H ′ ( x y , A ) ≥ σ d n / 6 ≥ d 18 | A ∗ | , \deg_{H^{\prime}[A^{*}]}(xy)\geq\deg_{H^{\prime}}(xy,A)\geq{\sigma dn}/6\geq\frac{d}{18}{|A^{*}|},
or deg H ′ ( x y ) = 0 \deg_{H^{\prime}}({xy})=0 .
Moreover, the number of x y xy with deg H ′ ( x y ) = 0 \deg_{H^{\prime}}({xy})=0 is at most
ρ 1 / 5 ( n 2 ) ≤ ρ 1 / 5 ( 2 | A ∗ | / σ 2 ) ≤ 4 ρ 1 / 5 σ 2 ( | A ∗ | 2 ) , \rho^{1/5}\binom{n}{2}\leq\rho^{1/5}\binom{2|A^{*}|/\sigma}{2}\leq\frac{4\rho^{1/5}}{\sigma^{2}}\binom{|A^{*}|}{2},
as σ n / 2 ≤ | A ∗ | \sigma n/2\leq|A^{*}| .
We apply Lemma 2.4 on H [ A ∗ ] H[A^{*}] with α / 18 \alpha/18 in place of α \alpha , d / 6 d/6 in place of d d , and H ′ [ A ∗ ] H^{\prime}[A^{*}] playing the role of H ′ H^{\prime} , and conclude that for any W ⊆ A ∗ W\subseteq A^{*} with | W | ≤ α | A ∗ | / 72 |W|\leq\alpha|A^{*}|/72 and any v ∈ U v\in U , there exists a v v -absorber v 1 v 2 v 3 v 4 v_{1}v_{2}v_{3}v_{4} in A ∗ ∖ W A^{*}\setminus W such that deg H ′ [ A ∗ ] ( v 1 v 2 ) ≥ d | A ∗ | / 18 \deg_{H^{\prime}[A^{*}]}(v_{1}v_{2})\geq d|A^{*}|/18 and deg H ′ [ A ∗ ] ( v 3 v 4 ) ≥ d | A ∗ | / 18 \deg_{H^{\prime}[A^{*}]}(v_{3}v_{4})\geq d|A^{*}|/18 .
We greedily choose disjoint paths Q v = v 1 v 2 v v 3 v 4 Q_{v}=v_{1}v_{2}vv_{3}v_{4} for each v ∈ U v\in U (clearly, a v v -absorber gives such a path) such that deg H ′ [ A ∗ ] ( v 1 v 2 ) ≥ d | A ∗ | / 18 \deg_{H^{\prime}[A^{*}]}(v_{1}v_{2})\geq d|A^{*}|/18 and deg H ′ [ A ∗ ] ( v 3 v 4 ) ≥ d | A ∗ | / 18 \deg_{H^{\prime}[A^{*}]}(v_{3}v_{4})\geq d|A^{*}|/18 .
Let W W be the union of U ∪ { a i , b i , c i , d i } 0 ≤ i ≤ l U\cup\{a_{i},b_{i},c_{i},d_{i}\}_{0\leq i\leq l} and the paths that have been chosen so far.
Note that | W | ≤ | U | + 4 ( l + 1 ) ≤ ζ n + 4 l + 4 ≤ α | A ∗ | / 72 |W|\leq|U|+4(l+1)\leq\zeta n+4l+4\leq\alpha|A^{*}|/72 .
Then, for every vertex v ∈ U v\in U , we can use the property above to find a v v -absorber v 1 v 2 v 3 v 4 v_{1}v_{2}v_{3}v_{4} in A ∗ ∖ W = A ∖ W A^{*}\setminus W=A\setminus W such that deg H ′ [ A ∗ ] ( v 1 v 2 ) ≥ d | A ∗ | / 18 \deg_{H^{\prime}[A^{*}]}(v_{1}v_{2})\geq d|A^{*}|/18 and deg H ′ [ A ∗ ] ( v 3 v 4 ) ≥ d | A ∗ | / 18 \deg_{H^{\prime}[A^{*}]}(v_{3}v_{4})\geq d|A^{*}|/18 .
Connect the paths and finish the absorption.
Next, we iteratively connect these paths P 0 , P 1 , … , P l P_{0},P_{1},\dots,P_{l} , and { Q v : v ∈ U } \{Q_{v}:v\in U\} to a tight cycle.
At each intermediate step, let Q Q be the vertex set of the union of all the paths that have been chosen so far and suppose we need to connect two ends ( z 1 , z 2 ) (z_{1},z_{2}) and ( w 1 , w 2 ) (w_{1},w_{2}) .
Because we will connect these paths by Lemma 2.5 , we have
| A ∗ ∩ Q | ≤ 5 ζ n + 4 l + 4 + 6 ( ζ n + l + 1 ) ≤ 12 ζ n ≤ 24 ( ζ / σ ) | A ∗ | ≤ | A ∗ | / 10 . |A^{*}\cap Q|\leq 5\zeta n+4l+4+6(\zeta n+l+1)\leq 12\zeta n\leq 24(\zeta/\sigma)|A^{*}|\leq|A^{*}|/10.
Define H 1 := H [ ( A ∗ ∖ Q ) ∪ { z 1 , z 2 , w 1 , w 2 } ] H_{1}:=H[(A^{*}\setminus Q)\cup\{z_{1},z_{2},w_{1},w_{2}\}] and H 1 ′ := H ′ [ ( A ∗ ∖ Q ) ∪ { z 1 , z 2 , w 1 , w 2 } ] H^{\prime}_{1}:=H^{\prime}[(A^{*}\setminus Q)\cup\{z_{1},z_{2},w_{1},w_{2}\}] .
Since
| V ( H 1 ) | ≥ | A ∗ | − | A ∗ ∩ Q | ≥ ( 9 / 10 ) | A ∗ | ≥ 9 σ n / 20 > σ n / 3 , |V(H_{1})|\geq|A^{*}|-|A^{*}\cap Q|\geq(9/10)|A^{*}|\geq 9\sigma n/20>\sigma n/3,
H 1 H_{1} is ( 27 ρ / σ 3 , d ) (27\rho/\sigma^{3},d)_{\leavevmode\hbox to8.38pt{\vbox to6.53pt{\pgfpicture\makeatletter\hbox{\hskip 1.4143pt\lower-8.8123pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{1.4143pt}{-7.398pt}\pgfsys@curveto{1.4143pt}{-6.6169pt}{0.7811pt}{-5.98369pt}{0.0pt}{-5.98369pt}\pgfsys@curveto{-0.7811pt}{-5.98369pt}{-1.4143pt}{-6.6169pt}{-1.4143pt}{-7.398pt}\pgfsys@curveto{-1.4143pt}{-8.1791pt}{-0.7811pt}{-8.8123pt}{0.0pt}{-8.8123pt}\pgfsys@curveto{0.7811pt}{-8.8123pt}{1.4143pt}{-8.1791pt}{1.4143pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{6.9628pt}{-7.398pt}\pgfsys@curveto{6.9628pt}{-6.6169pt}{6.32959pt}{-5.98369pt}{5.5485pt}{-5.98369pt}\pgfsys@curveto{4.7674pt}{-5.98369pt}{4.13419pt}{-6.6169pt}{4.13419pt}{-7.398pt}\pgfsys@curveto{4.13419pt}{-8.1791pt}{4.7674pt}{-8.8123pt}{5.5485pt}{-8.8123pt}\pgfsys@curveto{6.32959pt}{-8.8123pt}{6.9628pt}{-8.1791pt}{6.9628pt}{-7.398pt}\pgfsys@closepath\pgfsys@moveto{5.5485pt}{-7.398pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.5485pt}{-7.398pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{4.18855pt}{-3.69899pt}\pgfsys@curveto{4.18855pt}{-2.9179pt}{3.55534pt}{-2.28468pt}{2.77425pt}{-2.28468pt}\pgfsys@curveto{1.99315pt}{-2.28468pt}{1.35994pt}{-2.9179pt}{1.35994pt}{-3.69899pt}\pgfsys@curveto{1.35994pt}{-4.48009pt}{1.99315pt}{-5.1133pt}{2.77425pt}{-5.1133pt}\pgfsys@curveto{3.55534pt}{-5.1133pt}{4.18855pt}{-4.48009pt}{4.18855pt}{-3.69899pt}\pgfsys@closepath\pgfsys@moveto{2.77425pt}{-3.69899pt}\pgfsys@fill\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.77425pt}{-3.69899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{}
}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{0.96869pt}{-6.10684pt}\pgfsys@lineto{1.80577pt}{-4.99063pt}\pgfsys@stroke\pgfsys@invoke{ }
{{}}{}{{}}
{{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.74297pt}{-4.99062pt}\pgfsys@lineto{4.58008pt}{-6.10677pt}\pgfsys@stroke\pgfsys@invoke{ }
\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}} -dense.
Recall that for x , y ∈ A ∗ x,y\in A^{*} , either deg H ′ [ A ∗ ] ( x y ) ≥ d 18 | A ∗ | \deg_{H^{\prime}[A^{*}]}(xy)\geq\frac{d}{18}{|A^{*}|} or deg H ′ ( x y ) = 0 \deg_{H^{\prime}}({xy})=0 .
For those x , y x,y with deg H ′ ( x y ) = 0 \deg_{H^{\prime}}(xy)=0 , we have deg H 1 ′ ( x y ) = 0 \deg_{H^{\prime}_{1}}(xy)=0 ; otherwise,
deg H 1 ′ ( x y ) ≥ deg H ′ [ A ∗ ] ( x y ) − | A ∗ ∩ Q | ≥ d 18 | A ∗ | − 24 ( ζ / σ ) | A ∗ | ≥ d 20 | A ∗ | . \deg_{H^{\prime}_{1}}(xy)\geq\deg_{H^{\prime}[A^{*}]}(xy)-|A^{*}\cap Q|\geq\frac{d}{18}{|A^{*}|}-24(\zeta/\sigma)|A^{*}|\geq\frac{d}{20}{|A^{*}|}.
That is, for any x , y x,y of A ∗ A^{*} , either deg H 1 ′ ( x y ) = 0 \deg_{H^{\prime}_{1}}(xy)=0 or deg H 1 ′ ( x y ) ≥ d | A ∗ | / 20 \deg_{H^{\prime}_{1}}(xy)\geq d|A^{*}|/20 .
In particular, deg H 1 ′ ( z 1 z 2 ) ≥ d | A ∗ | / 20 \deg_{H^{\prime}_{1}}(z_{1}z_{2})\geq d|A^{*}|/20 and deg H 1 ′ ( w 1 w 2 ) ≥ d | A ∗ | / 20 \deg_{H^{\prime}_{1}}(w_{1}w_{2})\geq d|A^{*}|/20 .
By Lemma 2.5 , there exists a 10 10 -vertex path in H 1 H_{1} connecting ( z 1 , z 2 ) (z_{1},z_{2}) and ( w 1 , w 2 ) (w_{1},w_{2}) .
In conclusion, we obtain a tight cycle that covers all vertices in V ( H ) ∖ A V(H)\setminus A .
As the uncovered vertices are all in A A and can be absorbed by P 0 P_{0} , we obtain a Hamilton cycle and the proof is completed.