This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Hamiltonian formalism for Bose excitations in a plasma with a non-Abelian interaction

Yu.A. Markov 1, 4{}^{\,1,\,4}\!\,,  M.A. Markova 1{}^{\,1}\!\,,  N.Yu. Markov 2{}^{\,2}\!\,,  D.M. Gitman 3, 4, 5{}^{\,3,\,4,\,5}\!\; e-mail:[email protected]e-mail:[email protected]e-mail:[email protected]e-mail:[email protected]
(
  • 1Matrosov Institute of System Dynamics and Control Theory, Siberian Branch, Russian Academy of Sciences, Irkutsk, 664033 Russia

  • 2Irkutsk State University, Irkutsk, 664003 Russia

  • 3Lebedev Physical Institute, Russian Academy of Sciences, Moscow, 119991 Russia

  • 4Tomsk State University, Tomsk, 634050 Russia

  • 5Institute of Physics, Sao Paulo University, Sao Paulo, 05508-090 Brazil

)
Аннотация

We have developed the Hamiltonian theory for collective longitudinally polarized colorless excitations (plasmons) in a high-temperature gluon plasma using the general formalism for constructing the wave theory in nonlinear media with dispersion, which was developed by V. E. Zakharov. In this approach, we have explicitly obtained a special canonical transformation that makes it possible to simplify the Hamiltonian of interaction of soft gluon excitations and, hence, to derive a new effective Hamiltonian. The approach developed here is used for constructing a Boltzmann-type kinetic equation describing elastic scattering of collective longitudinally polarized excitations in a gluon plasma as well as the effect of the so-called nonlinear Landau damping. We have performed detailed comparison of the effective amplitude of the plasmon–plasmon interaction, which is determined using the classical Hamilton theory, with the corresponding matrix element calculated in the framework of high-temperature quantum chromodynamics; this has enabled us to determine applicability limits for the purely classical approach described in this study.

1 Introduction

It is shown in the theory of usual electron–ion plasma that weak turbulence of the plasma can be of two types (see, for example, [1]). Weak turbulence of the first type is caused by scattering of waves by plasma particles. Weak turbulence of the second type is due to decay, fusion, and scattering of waves off one another, which occur without energy exchange between particles and waves. In a number of publications [2, 3, 4, 5, 6, 7], the kinetic equations for the simplest collective excitations (Langmuir plasmons) of the electron–ion plasma, which describe elastic scattering of plasmons off one another, were constructed and analyzed in detail.
At present, a certain interest is shown in the construction of kinetic description of the new fundamental state of matter (quark–gluon plasma that consists of asymptotically free quarks, antiquarks, and gluons; see, for example, review [8]), which is probably formed during ultrarelativistic heavy ion collisions. It is shown that in the high-temperature limit, quark–gluon plasma is successfully described by the effective perturbation theory by Braaten and Pisarski [9] reformulated in the terms of the Blaizot-Iancu kinetic equations [10]. A gluon plasma (here, we will disregard for simplicity the presence of quarks and antiquarks) can be represented as a combination of two subsystems, viz., the subsystem of hard thermal gluons and the subsystem of soft plasma excitations, which exchange energy with each other. In a high-temperature gluon plasma, as well as in the usual electron–ion plasma, two types of collective plasma excitations exist, viz., transverse-polarized and longitudinal-polarized excitations (plasmons). In the absence of external chromomagnetic and chromoelectric fields, the color matrix of the number density of collective gluon excitations is diagonal; therefore, these excitations should be treated as colorless.
In [11], a kinetic description of the nonlinear interaction of colorless and color plasmons in the hard thermal loop approximation [9, 10] was developed. This approach is based on calculation of some effective currents generating these processes. Using these currents, the matrix elements of nonlinear interaction of an arbitrary (even) number of colorless plasmons [9, 10] are determined. In this study, we propose an alternative method for kinetic description of the nonlinear plasmon dynamics, which is based on the classical Hamiltonian formalism for systems with distributed parameters and which has been systematically developed by Zakharov [5, 6, 7] and Gitman and Tyutin[12]. In our case, this approach is based on the fact that equations describing a collisionless high-temperature plasma in the hard thermal loop approximation have the Hamiltonian structure that has been determined in papers by Nair [13, 14], Blaizot и Iancu [15]. This enables us to develop (at least for weakly excited states; see Conclusions) an independent approach to the derivation of the kinetic equation for soft longitudinally polarized gluonic plasma excitations. In the Hamiltonian approach, the matrix elements of the plasmon–plasmon interaction are obtained using special canonical transformations simplifying the plasmon interaction Hamiltonian.
This article has the following structure. In Section 2, we derive the fourth-order effective Hamilton operator H^~4\widetilde{\hat{H}}_{4} describing elastic scattering of two colorless plasmons off each other. In Section 3, we introduce plasmon distribution function N𝐤lN^{l}_{\bf k} and analyze the fourth- and sixth-order correlation functions in plasmon creation and annihilation operators c^𝐤a\hat{c}^{{\dagger}\ \!\!a}_{{\bf k}} and c^𝐤a\hat{c}^{\phantom{\dagger}\!a}_{{\bf k}}. Section 4 is devoted to the derivation of the Boltzmann-type kinetic equation for soft gluon excitations with allowance for the nonlinear Landau damping effect for plasmons. Sections 5 and 6 are connected with the determination of the explicit form of three - and four-plasmon vertex functions using the hard thermal loop approximation and the approximation of the effective gluon propagator at the plasmon pole. In concluding Section 7, we outline possible ways for generalization of the Hamiltonian description to the case of a strongly excited gluon plasma.
In Appendix, we give all basic expressions for the effective gluon vertex functions and gluon propagator in the high-temperature approximation of hard thermal loops.

2 Colorless plasmon interaction Hamiltonian

Let us consider the application of the general Zakharov theory to a specific system (high-temperature gluon plasma) in the semi-classical approximation. The gauge field potentials describing the gluon field in the system are Nc×NcN_{c}\times N_{c} matrices in the color space and are defined in terms of Aμ(x)=Aμa(x)taA_{\mu}(x)=A_{\mu}^{a}(x)\,t^{a} with Nc21N^{2}_{c}-1 Hermitian generators tat^{a} of the color SU(Nc)SU(N_{c}) group in the fundamental representation111 The color index aa runs through values 1,2,,Nc211,2,\,\ldots\,,N^{2}_{c}-1, while vector index μ\mu runs through values 0,1,2,30,1,2,3. Everywhere in this article, we imply summation over repeated indices and use the system of units with =c=1\hbar=c=1.. Field strength tensor Fμν(x)=Fμνa(x)taF_{\mu\nu}(x)=F^{a}_{\mu\nu}(x)\,t^{a}, where

Fμνa(x)=μAνaνAμa+gfabcAμbAνcF^{a}_{\mu\nu}(x)=\partial^{\phantom{a}}_{\mu}A_{\nu}^{a}-\partial^{\phantom{a}}_{\nu}A_{\mu}^{a}+gf^{abc}A_{\mu}^{b}A_{\nu}^{c}

obeys the Yang–Mills equation in the A0A_{0} - gauge:

μFμν(x)ig[Aμ(x),Fμν(x)]ξ01nμnνAν(x)=jν(x),\partial_{\mu}F^{\mu\nu}(x)-ig\hskip 0.85355pt[A_{\mu}(x),F^{\mu\nu}(x)]-{\xi}_{0}^{-1}n_{\mu}n^{\nu}A_{\nu}(x)=-j^{\nu}(x),

where ξ0\xi_{0} is the gauge parameter in the given gauge. We will henceforth identify the four-vector nμn_{\mu} with global four-velocity uμu_{\mu} of the plasma. Color current jνj^{\nu} is defined conventionally:

jν(x)=gtad4ppνTr(Tafg(x,p)).j^{\nu}(x)=g\hskip 0.56917ptt^{a}\!\!\int\!d^{4}p\,p^{\nu\,}{\rm Tr}\,(T^{a}f_{g}(x,p)).

Here, x=(t,𝐱)x=(t,{\bf x}) is the space–time variable of the initial dynamical system and (Ta)bcifabc(T^{a})^{\ \!\!b\ \!\!c}\equiv-if^{\ \!\!a\ \!\!b\ \!\!c} is the color matrix in the adjoint representation. Gluon distribution function fg=fg(x,p)f_{g}=f_{g}(x,p) is an (Nc21)×(Nc21)(N_{c}^{2}-1)\times(N_{c}^{2}-1) Hermitian matrix in the colour space.
It is known that there exist two types of physical boson soft (transverse- and longitudinal-polarized) fields in an equilibrium hot quark–gluon plasma [8]. For simplicity, we confine our analysis only to processes involving longitudinally polarized plasma excitations, which are known as plasmons. These excitations are a purely collective effect of the medium, which has no analogs in the conventional quantum field theory. Let us consider the longitudinal part of the gauge field potential in the form of expansion

A^μa(x)=d𝐤(2π)3(Zl(𝐤)2ω𝐤l)1/2{ϵμla^𝐤aei𝐤𝐱+ϵμla^𝐤aei𝐤𝐱},k0=ω𝐤l,\hat{A}^{a}_{\mu}(x)=\int\!\frac{d{\bf k}}{(2\pi)^{3}}\!\left(\frac{Z^{l}({\bf k})}{2\omega^{l}_{{\bf k}}}\right)^{\!\!1/2}\!\!\left\{\epsilon^{\ \!l}_{\mu}\ \hat{a}^{\phantom{{\dagger}}\!\!a}_{{\bf k}}\ \!e^{-i\hskip 0.56917pt{\bf k}\cdot{\bf x}}+\epsilon^{*l}_{\mu}\ \hat{a}^{{\dagger}\ \!\!a}_{{\bf k}}\ \!e^{i\hskip 0.56917pt{\bf k}\cdot{\bf x}}\right\},\quad k_{0}=\omega^{l}_{{\bf k}}, (2.1)

where ϵμl=ϵμl(𝐤)\epsilon^{\ \!l}_{\mu}=\epsilon^{\ \!l}_{\mu}({\bf k}) is the polarization vector of a longitudinal plasmon; its explicit form depends on the choice of the gauge (in particular, in the A0A_{0} - gauge, this vector is defined by expression (5.6)). Factor Zl(𝐤)Z^{l}({\bf k}) is the residue of the effective gluon propagator at the plasmon pole. Coefficients a^𝐤a\hat{a}^{\phantom{{\dagger}}\!\!a}_{{\bf k}} and a^𝐤a\hat{a}^{{\dagger}\ \!\!a}_{{\bf k}} will be treated as quasiparticle creation and annihilation operators for plasmons obeying the commutation relations for Bose operators:

[a^𝐤a,a^𝐤b]=[a^𝐤a,a^𝐤b]=0,[a^𝐤a,a^𝐤b]=δab(2π)3δ(𝐤𝐤).\Bigl{[}\hat{a}^{\phantom{{\dagger}}\!a}_{{\bf k}},\,\hat{a}^{\phantom{{\dagger}}\!\!b}_{{\bf k}^{\prime}}\Bigr{]}=\Bigl{[}\hat{a}^{{\dagger}\ \!\!a}_{{\bf k}},\,\hat{a}^{{\dagger}\ \!\!b}_{{\bf k}^{\prime}}\Bigr{]}=0\ ,\ \ \ \Bigl{[}\hat{a}^{\phantom{{\dagger}}\!\!a}_{{\bf k}},\,\hat{a}^{{\dagger}\ \!\!b}_{{\bf k}^{\prime}}\Bigr{]}=\delta^{\phantom{{\dagger}}\!\!ab}\ \!\!(2\pi)^{3}\hskip 0.85355pt\delta({\bf k}-{\bf k}^{\prime}). (2.2)

Multiplasmon states are obtained by the multiple action of operator a^𝐤a\hat{a}^{{\dagger}\ \!\!a}_{{\bf k}} on vacuum state |0|\ \!0\rangle, which obeys the following condition:

a^𝐤a|0=0.\hat{a}^{a}_{{\bf k}}|\ \!0\rangle=0.

Therefore, we refer as vacuum to the ground unexcited state of the system (i.e., the state without elementary collective excitations). In operators a^𝐤a\hat{a}^{\phantom{{\dagger}}\!a}_{{\bf k}} and a^𝐤a\hat{a}^{{\dagger}\ \!\!a}_{{\bf k}}, only matrix elements corresponding to a change in the number of plasmons by unity differ from zero.
Let us write the quantum-mechanical analogue of the Hamilton equation, namely, the Heisenberg equation for operator a^𝐤a\hat{a}^{a}_{{\bf k}}:

a^𝐤at=i[H^,a^𝐤a].\frac{\partial\hskip 0.56917pt\hat{a}^{a}_{{\bf k}}}{\partial t}=i\hskip 0.85355pt\Bigl{[}\widehat{H},\hat{a}^{a}_{{\bf k}}\ \!\Bigr{]}. (2.3)

Here, H^\widehat{H} is the Hamiltonian of the plasmon system, which is a sum H^=H^0+H^int\widehat{H}=\widehat{H}_{0}+\widehat{H}_{int}, where

H^0=d𝐤(2π)3ω𝐤la^𝐤aa^𝐤a\widehat{H}_{0}=\!\int\!\frac{d{\bf k}}{(2\pi)^{3}}\ \omega^{l}_{{\bf k}}\ \!\hat{a}^{{\dagger}\ \!\!a}_{{\bf k}}\ \!\hat{a}^{\phantom{{\dagger}}\!a}_{{\bf k}}\ (2.4)

is the Hamiltonian of noninteracting plasmons and H^int\widehat{H}_{int} is interaction Hamiltonian. The dispersion relation ω𝐤l\omega^{\ \!l}_{{\bf k}} for plasmons satisfies the following dispersion equation [16]:

Reεl(ω,𝐤)=0,{\rm Re}\ \!\varepsilon^{l}(\omega,{\bf k})=0\ \!, (2.5)

where

εl(ω,𝐤)=1+3ωpl2𝐤2[1F(ω|𝐤|2)],F(x)=x2[ln|1+x1x|iπθ(1|x|)]\varepsilon^{l}(\omega,{\bf k})=1+\frac{3\hskip 0.85355pt\omega^{2}_{pl}}{{\bf k}^{\ \!2}}\left[1-F\Biggl{(}\frac{\omega}{|{\bf k}|^{2}}\Biggr{)}\right],\quad F(x)=\frac{x}{2}\left[\ln\left|\frac{1+x}{1-x}\right|-i\pi\hskip 0.85355pt\theta(1-|x|)\right]

is the longitudinal permittivity, ωpl2=g2NcT2/9\omega^{2}_{pl}=g^{2}N_{c}T^{2}/9, TT is the temperature of the system, and gg is the strong interaction constant. In the small amplitude approximation, the interaction Hamiltonian can be written as a formal integral-power series in a^𝐤a\hat{a}^{a}_{{\bf k}} and a^𝐤a\hat{a}^{{\dagger}a}_{{\bf k}}:

H^int=H^3+H^4+,\widehat{H}_{int}=\widehat{H}_{3}+\widehat{H}_{4}+\,\ldots\,\,,

where the third- and fourth-order interaction Hamiltonians have the following structure:

H^3=d𝐤d𝐤1d𝐤2(2π)9{V𝐤,𝐤1,𝐤2aa1a2a^𝐤aa^𝐤1a1a^𝐤2a2+V𝐤,𝐤1,𝐤2aa1a2a^𝐤1a1a^𝐤2a2a^𝐤a}\widehat{H}_{3}=\int\frac{d{\bf k}\,d{\bf k}_{1}\,d{\bf k}_{2}}{(2\pi)^{9}}\left\{V^{\ a\ a_{1}\ a_{2}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2}}\ \hat{a}^{{\dagger}\ \!a}_{{\bf k}}\ \hat{a}^{\phantom{{\dagger}}\!\!a_{1}}_{{\bf k}_{1}}\ \hat{a}^{\phantom{{\dagger}}\!\!a_{2}}_{{\bf k}_{2}}+V^{*a\ a_{1}\ a_{2}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2}}\ \hat{a}^{{\dagger}\ \!a_{1}}_{{\bf k}_{1}}\ \hat{a}^{{\dagger}\ \!a_{2}}_{{\bf k}_{2}}\ \hat{a}^{\phantom{{\dagger}}\!\!a}_{{\bf k}}\right\} (2.6)
×(2π)3δ(𝐤𝐤1𝐤2)\times(2\pi)^{3}\delta({\bf k}-{\bf k}_{1}-{\bf k}_{2})
+13d𝐤d𝐤1d𝐤2(2π)9{U𝐤,𝐤1,𝐤2aa1a2a^𝐤aa^𝐤1a1a^𝐤2a2+U𝐤,𝐤1,𝐤2aa1a2a^𝐤aa^𝐤1a1a^𝐤2a2}+\ \frac{1}{3}\int\frac{d{\bf k}\,d{\bf k}_{1}\,d{\bf k}_{2}}{(2\pi)^{9}}\left\{U^{\ a\ a_{1}\ a_{2}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2}}\ \hat{a}^{a}_{{\bf k}}\ \hat{a}^{a_{1}}_{{\bf k}_{1}}\ \hat{a}^{a_{2}}_{{\bf k}_{2}}+U^{*a\ a_{1}\ a_{2}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2}}\ \hat{a}^{{\dagger}\ \!a}_{{\bf k}}\ \hat{a}^{{\dagger}\ \!a_{1}}_{{\bf k}_{1}}\ \hat{a}^{{\dagger}\ \!a_{2}}_{{\bf k}_{2}}\right\}
×(2π)3δ(𝐤+𝐤1+𝐤2),\times(2\pi)^{3}\delta({\bf k}+{\bf k}_{1}+{\bf k}_{2}),
H^4=12d𝐤d𝐤1d𝐤2d𝐤3(2π)12T𝐤,𝐤1,𝐤2,𝐤3aa1a2a3a^𝐤aa^𝐤1a1a^𝐤2a2a^𝐤3a3(2π)3δ(𝐤+𝐤1𝐤2𝐤3)\widehat{H}_{4}=\frac{1}{2}\int\frac{d{\bf k}\,d{\bf k}_{1}\,d{\bf k}_{2}\,d{\bf k}_{3}}{(2\pi)^{12}}\ T^{\ a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}\ \hat{a}^{{\dagger}\ \!a}_{{\bf k}}\ \hat{a}^{{\dagger}\ \!a_{1}}_{{\bf k}_{1}}\ \hat{a}^{\phantom{{\dagger}}\!\!a_{2}}_{{\bf k}_{2}}\ \hat{a}^{\phantom{{\dagger}}\!\!a_{3}}_{{\bf k}_{3}}\ (2\pi)^{3}\delta({\bf k}+{\bf k}_{1}-{\bf k}_{2}-{\bf k}_{3}) (2.7)

and so on. Symbol ‘‘*\,’’ indicates complex conjugation. In expression (2.7), we retained only the ‘‘essential’’ contribution in Zakharov’s terminology because the resonance conditions

{𝐤+𝐤1+𝐤2+𝐤3=0ω𝐤l+ω𝐤1l+ω𝐤2l+ω𝐤3l=0,{𝐤=𝐤1+𝐤2+𝐤3ω𝐤l=ω𝐤1l+ω𝐤2l+ω𝐤3l\left\{\begin{array}[]{l}{\bf k}+{\bf k}_{1}+{\bf k}_{2}+{\bf k}_{3}=0\\[5.0pt] \omega^{l}_{{\bf k}}+\omega^{l}_{{\bf k}_{1}}+\omega^{l}_{{\bf k}_{2}}+\omega^{l}_{{\bf k}_{3}}=0\ ,\end{array}\right.\ \ \ \left\{\begin{array}[]{l}{\bf k}={\bf k}_{1}+{\bf k}_{2}+{\bf k}_{3}\\[5.0pt] \omega^{l}_{{\bf k}}=\omega^{l}_{{\bf k}_{1}}+\omega^{l}_{{\bf k}_{2}}+\omega^{l}_{{\bf k}_{3}}\end{array}\right.

have no solutions for the plasmon spectrum defined by dispersion equation (2.5).
It should be noted that such a representation of the interaction Hamiltonian in the form of formal infinite power series in the creation and annihilation operators was considered in the monograph by Schwarz [17] based on the quantum field theory for scalar fields.

Coefficients V𝐤,𝐤1,𝐤2aa1a2V^{\ a\ a_{1}\ a_{2}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2}}, U𝐤,𝐤1,𝐤2aa1a2U^{\ a\ a_{1}\ a_{2}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2}} и T𝐤,𝐤1,𝐤2,𝐤3aa1a2a3T^{\ a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}} exhibit certain symmetry:

V𝐤,𝐤1,𝐤2aa1a2=V𝐤,𝐤2,𝐤1aa2a1,U𝐤,𝐤1,𝐤2aa1a2=U𝐤,𝐤2,𝐤1aa2a1=U𝐤1,𝐤2,𝐤a1a2a,V^{\ a\ a_{1}\ a_{2}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2}}=V^{\ a\ a_{2}\ a_{1}}_{{\bf k},\ {\bf k}_{2},\ {\bf k}_{1}}\ ,\ \ \ U^{\ a\ a_{1}\ a_{2}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2}}=U^{\ a\ a_{2}\ a_{1}}_{{\bf k},\ {\bf k}_{2},\ {\bf k}_{1}}=U^{\ a_{1}\ a_{2}\ a}_{{\bf k}_{1},\ {\bf k}_{2},\ {\bf k}}\,, (2.8)
T𝐤,𝐤1,𝐤2,𝐤3aa1a2a3=T𝐤1,𝐤,𝐤2,𝐤3a1aa2a3=T𝐤,𝐤1,𝐤3,𝐤2aa1a3a2=T𝐤2,𝐤3,𝐤,𝐤1a2a3aa1.T^{\ a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}=T^{\ a_{1}\ a\ a_{2}\ a_{3}}_{{\bf k}_{1},\ {\bf k},\ {\bf k}_{2},\ {\bf k}_{3}}=T^{\ a\ a_{1}\ a_{3}\ a_{2}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{3},\ {\bf k}_{2}}=T^{*a_{2}\ a_{3}\ a\ a_{1}}_{{\bf k}_{2},\ {\bf k}_{3},\ {\bf k},\ {\bf k}_{1}}.\hskip 7.11317pt (2.9)

These coefficient functions determine specific properties of the medium (high-temperature gluon plasma in our case).
Let us consider the transformation from operators a^𝐤a\hat{a}^{a}_{{\bf k}} to new operators c^𝐤a\hat{c}^{a}_{{\bf k}}:

a^𝐤a=c^𝐤a+\hat{a}^{a}_{{\bf k}}=\hat{c}^{a}_{{\bf k}}\;+ (2.10)
+d𝐤1d𝐤2(2π)6[V𝐤,𝐤1,𝐤2(1)aa1a2c^𝐤1a1c^𝐤2a2+V𝐤,𝐤1,𝐤2(2)aa1a2c^𝐤2a2c^𝐤1a1+V𝐤,𝐤1,𝐤2(3)aa1a2c^𝐤1a1c^𝐤2a2]+\!\int\frac{d{\bf k}_{1}\,d{\bf k}_{2}}{(2\pi)^{6}}\left[V^{(1)\ a\ a_{1}\ a_{2}}_{\ \ \ {\bf k},\ {\bf k}_{1},\ {\bf k}_{2}}\ \hat{c}^{a_{1}}_{{\bf k}_{1}}\ \hat{c}^{a_{2}}_{{\bf k}_{2}}+V^{(2)\ a\ a_{1}\ a_{2}}_{\ \ \ {\bf k},\ {\bf k}_{1},\ {\bf k}_{2}}\ \hat{c}^{{\dagger}\ \!a_{2}}_{{\bf k}_{2}}\ \hat{c}^{\phantom{{\dagger}}\!\!a_{1}}_{{\bf k}_{1}}+V^{(3)\ a\ a_{1}\ a_{2}}_{\ \ \ {\bf k},\ {\bf k}_{1},\ {\bf k}_{2}}\ \hat{c}^{{\dagger}\ \!a_{1}}_{{\bf k}_{1}}\ \hat{c}^{{\dagger}\ \!a_{2}}_{{\bf k}_{2}}\right]
+d𝐤1d𝐤2d𝐤3(2π)9[W𝐤,𝐤1,𝐤2,𝐤3(1)aa1a2a3c^𝐤1a1c^𝐤2a2c^𝐤3a3++W𝐤,𝐤1,𝐤2,𝐤3(4)aa1a2a3c^𝐤1a1c^𝐤2a2c^𝐤3a3]+\!\int\frac{d{\bf k}_{1}\,d{\bf k}_{2}\,d{\bf k}_{3}}{(2\pi)^{9}}\left[W^{(1)\ a\ a_{1}\ a_{2}\ a_{3}}_{\ \ \ {\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}\ \hat{c}^{a_{1}}_{{\bf k}_{1}}\ \hat{c}^{a_{2}}_{{\bf k}_{2}}\ \hat{c}^{a_{3}}_{{\bf k}_{3}}+\!\ldots\!+W^{(4)\ a\ a_{1}\ a_{2}\ a_{3}}_{\ \ \ {\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}\ \hat{c}^{{\dagger}\ \!a_{1}}_{{\bf k}_{1}}\ \hat{c}^{{\dagger}\ \!a_{2}}_{{\bf k}_{2}}\ \hat{c}^{{\dagger}\ \!a_{3}}_{{\bf k}_{3}}\right]
+.+\,\ldots\,.

The canonicity conditions for this transformation222 Variational derivatives with respect to operators c^𝐤a\hat{c}^{\phantom{{\dagger}}\!a}_{\bf k} and c^𝐤a\hat{c}^{\dagger\ \!\!a}_{\bf k} should be treated as the limits of the corresponding functional derivatives with respect to the classical additions φ𝐤a\varphi^{a}_{\bf k} and φ𝐤a\varphi^{*\ \!\!a}_{\bf k} to quantum operators c^𝐤a\hat{c}^{\phantom{{\dagger}}\!a}_{\bf k} и c^𝐤a\hat{c}^{\dagger\ \!\!a}_{\bf k} [18]: c^𝐤ac^𝐤a+φ𝐤a,c^𝐤ac^𝐤a+φ𝐤a.\hat{c}^{\phantom{{\dagger}}\!a}_{\bf k}\rightarrow\hat{c}^{\phantom{{\dagger}}\!a}_{\bf k}+\varphi^{\phantom{{\dagger}}\!a}_{\bf k},\quad\hat{c}^{\dagger\ \!\!a}_{\bf k}\rightarrow\hat{c}^{\dagger\ \!\!a}_{\bf k}+\varphi^{*\ \!\!a}_{\bf k}.

𝑑𝐤{δa^𝐤aδc^𝐤cδa^𝐤′′bδc^𝐤cδa^𝐤aδc^𝐤cδa^𝐤′′bδc^𝐤c}=0,\displaystyle\int\!d{\bf k\hskip 0.28436pt}^{\prime}\!\hskip 0.28436pt\left\{\frac{\delta\hat{a}^{\phantom{{\dagger}}\!\!a}_{{\bf k}}}{\delta\hat{c}^{\phantom{{\dagger}}\!\!c}_{{\bf k}^{\prime}}}\,\frac{\delta\hat{a}^{\phantom{{\dagger}}\!\!b}_{{\bf k}^{\prime\prime}}}{\delta\hat{c}^{\dagger\ \!\!c}_{{\bf k}^{\prime}}}\,-\,\frac{\delta\hat{a}^{\phantom{{\dagger}}\!\!a}_{{\bf k}}}{\delta\hat{c}^{\dagger\ \!\!c}_{{\bf k}^{\prime}}}\,\frac{\delta\hat{a}^{\phantom{{\dagger}}\!\!b}_{{\bf k}^{\prime\prime}}}{\delta\hat{c}^{\phantom{{\dagger}}\!\!c}_{{\bf k}^{\prime}}}\right\}=0,
𝑑𝐤{δa^𝐤aδc^𝐤cδa^𝐤′′bδc^𝐤cδa^𝐤aδc^𝐤cδa^𝐤′′bδc^𝐤c}=δabδ(𝐤𝐤′′)\displaystyle\int\!d{\bf k\hskip 0.28436pt}^{\prime}\!\hskip 0.28436pt\left\{\frac{\delta\hat{a}^{\phantom{{\dagger}}\!\!a}_{{\bf k}}}{\delta\hat{c}^{\phantom{{\dagger}}\!\!c}_{{\bf k}^{\prime}}}\,\frac{\delta\hat{a}^{\dagger\ \!\!b}_{{\bf k}^{\prime\prime}}}{\delta\hat{c}^{\dagger\ \!\!c}_{{\bf k}^{\prime}}}\,-\,\frac{\delta\hat{a}^{\phantom{{\dagger}}\!\!a}_{{\bf k}}}{\delta\hat{c}^{\dagger\ \!\!c}_{{\bf k}^{\prime}}}\,\frac{\delta\hat{a}^{\dagger\ \!\!b}_{{\bf k}^{\prime\prime}}}{\delta\hat{c}^{\phantom{{\dagger}}\!\!c}_{{\bf k}^{\prime}}}\right\}=\delta^{ab}\delta({\bf k}-{\bf k}\!\ ^{\prime\prime})

impose certain limitations on the coefficient functions of series (2.10). Functions V𝐤,𝐤1,𝐤2(1)aa1a2V^{(1)\ a\ a_{1}\ a_{2}}_{\ \ \ {\bf k},\ {\bf k}_{1},\ {\bf k}_{2}}, V𝐤,𝐤1,𝐤2(2)aa1a2V^{(2)\ a\ a_{1}\ a_{2}}_{\ \ \ {\bf k},\ {\bf k}_{1},\ {\bf k}_{2}} and V𝐤,𝐤1,𝐤2(3)aa1a2V^{(3)\ a\ a_{1}\ a_{2}}_{\ \ \ {\bf k},\ {\bf k}_{1},\ {\bf k}_{2}} must satisfy conditions

V𝐤,𝐤1,𝐤2(2)aa1a2=2V𝐤1,𝐤,𝐤2(1)a1aa2,V𝐤,𝐤1,𝐤2(3)aa1a2=V𝐤,𝐤2,𝐤1(3)aa2a1=V𝐤1,𝐤2,𝐤(3)a1a2a,V^{(2)\ a\ a_{1}\ a_{2}}_{\ \ \ {\bf k},\ {\bf k}_{1},\ {\bf k}_{2}}=-2V^{\,*(1)\ a_{1}\ a\ a_{2}}_{\ \ \ {\bf k}_{1},\ {\bf k},\ {\bf k}_{2}}\ ,\ \ \ V^{(3)\ a\ a_{1}\ a_{2}}_{\ \ \ {\bf k},\ {\bf k}_{1},\ {\bf k}_{2}}=V^{(3)\ a\ a_{2}\ a_{1}}_{\ \ \ {\bf k},\ {\bf k}_{2},\ {\bf k}_{1}}=V^{(3)\ a_{1}\ a_{2}\ a}_{\ \ \ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}}\,,

and functions W𝐤,𝐤1,𝐤2,𝐤3(i),i=1,,4W^{(i)}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}},\,i=1,\ldots,4 satisfy conditions

3W𝐤,𝐤1,𝐤2,𝐤3(1)aa1a2a3+ 4{V𝐤2,𝐤,𝐤(1)a2aaV𝐤1,𝐤3,𝐤(3)a1a3aV𝐤,𝐤2,𝐤(1)aa2aV𝐤,𝐤1,𝐤3(1)aa1a3}𝑑𝐤3\hskip 0.71114ptW^{(1)\ a\ a_{1}\ a_{2}\ a_{3}}_{\ \ \ {\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}+\,4\!\int\!\left\{V^{\,*(1)\ a_{2}\ a\ a^{\prime}}_{\ \ \ {\bf k}_{2},\ {\bf k},\ {\bf k}^{\prime}}\ V^{\,*(3)\ a_{1}\ a_{3}\ a^{\prime}}_{\ \ \ {\bf k}_{1},\ {\bf k}_{3},\ {\bf k}^{\prime}}-V^{(1)\ a\ a_{2}\ a^{\prime}}_{\ \ \ {\bf k},\ {\bf k}_{2},\ {\bf k}^{\prime}}V^{(1)\ a^{\prime}\ a_{1}\ a_{3}}_{\ \ \ {\bf k}^{\prime},\ {\bf k}_{1},\ {\bf k}_{3}}\right\}d{\bf k}
=W𝐤1,𝐤,𝐤2,𝐤3(3)a1aa2a3,=-\,W^{\,*(3)\ a_{1}\ a\ a_{2}\ a_{3}}_{\ \ \ {\bf k}_{1},\ {\bf k},\ {\bf k}_{2},\ {\bf k}_{3}},\vspace{0.1cm}
W𝐤,𝐤1,𝐤2,𝐤3(2)aa1a2a3+2{V𝐤,𝐤1,𝐤(1)aa1aV𝐤3,𝐤2,𝐤(1)a3a1a+V𝐤,𝐤,𝐤1(1)aaa1V𝐤,𝐤3,𝐤2(1)aa3a2W^{(2)\ a\ a_{1}\ a_{2}\ a_{3}}_{\ \ \ {\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}+2\!\int\!\left\{V^{(1)\ a\ a_{1}\ a^{\prime}}_{\ \ \ {\bf k},\ {\bf k}_{1},\ {\bf k}^{\prime}}\ V^{*(1)\ a_{3}\ a_{1}\ a^{\prime}}_{\ \ \ {\bf k}_{3},\ {\bf k}_{2},\ {\bf k}^{\prime}}+V^{*(1)\ a^{\prime}\ a\ a_{1}}_{\ \ \ {\bf k}^{\prime},\ {\bf k},\ {\bf k}_{1}}\ V^{(1)\ a^{\prime}\ a_{3}\ a_{2}}_{\ \ \ {\bf k}^{\prime},\ {\bf k}_{3},\ {\bf k}_{2}}\right.\hskip 28.45274pt
V𝐤1,𝐤,𝐤(1)a1aaV𝐤,𝐤3,𝐤2(1)aa3a2V𝐤,𝐤1,𝐤(3)aa1aV𝐤3,𝐤2,𝐤(3)a3a2a}d𝐤=W(2)a3a1a2a𝐤3,𝐤1,𝐤2,𝐤,\left.-V^{\,*(1)\ a_{1}\ a\ a^{\prime}}_{\ \ \ {\bf k}_{1},\ {\bf k},\ {\bf k}^{\prime}}\ V^{(1)\ a^{\prime}\ a_{3}\ a_{2}}_{\ \ \ {\bf k}^{\prime},\ {\bf k}_{3},\ {\bf k}_{2}}-V^{(3)\ a\ a_{1}\ a^{\prime}}_{\ \ \ {\bf k},\ {\bf k}_{1},\ {\bf k}^{\prime}}\ V^{\,*(3)\ a_{3}\ a_{2}\ a^{\prime}}_{\ \ \ {\bf k}_{3},\ {\bf k}_{2},\ {\bf k}^{\prime}}\right\}d{\bf k}^{\prime}=-W^{\,*(2)\ a_{3}\ a_{1}\ a_{2}\ a}_{\ \ \ {\bf k}_{3},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}},\vspace{0.15cm}
W𝐤,𝐤1,𝐤2,𝐤3(3)aa1a2a3+2{V𝐤3,𝐤1,𝐤(1)a3a1aV𝐤,𝐤2,𝐤(3)aa2a+V𝐤1,𝐤,𝐤(1)a1aaV𝐤,𝐤3,𝐤2(1)aa3a2W^{(3)\ a\ a_{1}\ a_{2}\ a_{3}}_{\ \ \ {\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}+2\!\int\!\left\{V^{(1)\ a_{3}\ a_{1}\ a^{\prime}}_{\ \ \ {\bf k}_{3},\ {\bf k}_{1},\ {\bf k}^{\prime}}\ V^{(3)\ a\ a_{2}\ a^{\prime}}_{\ \ \ {\bf k},\ {\bf k}_{2},\ {\bf k}^{\prime}}+V^{\,*(1)\ a_{1}\ a\ a^{\prime}}_{\ \ \ {\bf k}_{1},\ {\bf k},\ {\bf k}^{\prime}}\ V^{\,*(1)\ a^{\prime}\ a_{3}\ a_{2}}_{\ \ \ {\bf k}^{\prime},\ {\bf k}_{3},\ {\bf k}_{2}}\right.\hskip 19.91684pt
V𝐤1,𝐤3,𝐤(1)a1a3aV𝐤,𝐤,𝐤2(1)aaa2V𝐤,𝐤1,𝐤(1)aa1aV𝐤3,𝐤2,𝐤(3)a3a2a}d𝐤=W(3)a3a1a2a𝐤3,𝐤1,𝐤2,𝐤,\left.-\,V^{\,*(1)\ a_{1}\ a_{3}\ a^{\prime}}_{\ \ \ {\bf k}_{1},\ {\bf k}_{3},\ {\bf k}^{\prime}}\ V^{*(1)\ a^{\prime}\ a\ a_{2}}_{\ \ \ {\bf k}^{\prime},\ {\bf k},\ {\bf k}_{2}}-V^{(1)\ a\ a_{1}\ a^{\prime}}_{\ \ \ {\bf k},\ {\bf k}_{1},\ {\bf k}^{\prime}}\ V^{(3)\ a_{3}\ a_{2}\ a^{\prime}}_{\ \ \ {\bf k}_{3},\ {\bf k}_{2},\ {\bf k}^{\prime}}\right\}d{\bf k}^{\prime}=W^{(3)\ a_{3}\ a_{1}\ a_{2}\ a}_{\ \ \ {\bf k}_{3},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}},\vspace{0.15cm}
3W𝐤,𝐤1,𝐤2,𝐤3(4)aa1a2a3+ 4{V𝐤,𝐤,𝐤2(1)aaa2V𝐤3,𝐤1,𝐤(3)a3a1aV𝐤,𝐤3,𝐤1(1)aa3a1V𝐤,𝐤2,𝐤(3)aa2a}𝑑𝐤3\hskip 0.85355ptW^{(4)\ a\ a_{1}\ a_{2}\ a_{3}}_{\ \ \ {\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}+\,4\!\int\left\{V^{\,*(1)\ a^{\prime}\ a\ a_{2}}_{\ \ \ {\bf k}^{\prime},\ {\bf k},\ {\bf k}_{2}}\ V^{(3)\ a_{3}\ a_{1}\ a^{\prime}}_{\ \ \ {\bf k}_{3},\ {\bf k}_{1},\ {\bf k}^{\prime}}-V^{\,*(1)\ a^{\prime}\ a_{3}\ a_{1}}_{\ \ \ {\bf k}^{\prime},\ {\bf k}_{3},\ {\bf k}_{1}}\ V^{(3)\ a\ a_{2}\ a^{\prime}}_{\ \ \ {\bf k},\ {\bf k}_{2},\ {\bf k}^{\prime}}\right\}d{\bf k}^{\prime}
=3W𝐤3,𝐤1,𝐤2,𝐤(4)a3a1a2a.=3\hskip 0.85355ptW^{(4)\ a_{3}\ a_{1}\ a_{2}\ a}_{\ \ \ {\bf k}_{3},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}}.

Because of specific features of dispersion equation (2.5) in a hot gluon plasma, resonance conditions

{𝐤=𝐤1+𝐤2ω𝐤l=ω𝐤1l+ω𝐤2l,{𝐤+𝐤1+𝐤2=0ω𝐤l+ω𝐤1l+ω𝐤2l=0\left\{\begin{array}[]{ll}{\bf k}={\bf k}_{1}+{\bf k}_{2}\\[5.0pt] \omega^{l}_{{\bf k}}=\omega^{l}_{{\bf k}_{1}}+\omega^{l}_{{\bf k}_{2}},\end{array}\right.\quad\left\{\begin{array}[]{ll}{\bf k}+{\bf k}_{1}+{\bf k}_{2}=0\\[5.0pt] \omega^{l}_{{\bf k}}+\omega^{l}_{{\bf k}_{1}}+\omega^{l}_{{\bf k}_{2}}=0\end{array}\ \right. (2.11)

have no solutions (i.e., the longitudinal plasmon spectrum is nondecaying). In this case, canonical transformation (2.10) makes it possible to exclude ‘‘insignificant’’ Hamiltonian H^3\widehat{H}_{3} (2.6) by just setting

V𝐤,𝐤1,𝐤2(1)aa1a2=V𝐤,𝐤1,𝐤2aa1a2ω𝐤lω𝐤1lω𝐤2l(2π)3δ(𝐤𝐤1𝐤2),V^{(1)\ a\ a_{1}\ a_{2}}_{\ \ \ {\bf k},\ {\bf k}_{1},\ {\bf k}_{2}}=-\frac{V^{\ a\ a_{1}\ a_{2}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2}}}{\omega^{l}_{{\bf k}}-\omega^{l}_{{\bf k}_{1}}-\omega^{l}_{{\bf k}_{2}}}\ (2\pi)^{3}\delta({\bf k}-{\bf k}_{1}-{\bf k}_{2}),
V𝐤,𝐤1,𝐤2(3)aa1a2=U𝐤,𝐤1,𝐤2aa1a2ω𝐤l+ω𝐤1l+ω𝐤2l(2π)3δ(𝐤+𝐤1+𝐤2).V^{(3)\ a\ a_{1}\ a_{2}}_{\ \ \ {\bf k},\ {\bf k}_{1},\ {\bf k}_{2}}=-\frac{U^{*\ a\ a_{1}\ a_{2}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2}}}{\omega^{l}_{{\bf k}}+\omega^{l}_{{\bf k}_{1}}+\omega^{l}_{{\bf k}_{2}}}\ (2\pi)^{3}\delta({\bf k}+{\bf k}_{1}+{\bf k}_{2}).

This exclusion procedure leads us to following structure of fourth-order effective Hamiltonian H^~4\widetilde{\widehat{H}}_{4}:

H^~4=12d𝐤d𝐤1d𝐤2d𝐤3(2π)12T~𝐤,𝐤1,𝐤2,𝐤3aa1a2a3c^𝐤ac^𝐤1a1c^𝐤2a2c^𝐤3a3(2π)3δ(𝐤+𝐤1𝐤2𝐤3),\widetilde{\widehat{H}}_{4}=\frac{1}{2}\int\frac{d{\bf k}\,d{\bf k}_{1}\,d{\bf k}_{2}\,d{\bf k}_{3}}{(2\pi)^{12}}\,\widetilde{T}^{\ a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}\ \hat{c}^{{\dagger}\ \!\!a}_{{\bf k}}\ \hat{c}^{{\dagger}\ \!\!a_{1}}_{{\bf k}_{1}}\ \hat{c}^{\phantom{{\dagger}}\!\!a_{2}}_{{\bf k}_{2}}\ \hat{c}^{\phantom{{\dagger}}\!\!a_{3}}_{{\bf k}_{3}}(2\pi)^{3}\delta({\bf k}+{\bf k}_{1}-{\bf k}_{2}-{\bf k}_{3})\ , (2.12)

where

T~𝐤,𝐤1,𝐤2,𝐤3aa1a2a3=T𝐤,𝐤1,𝐤2,𝐤3aa1a2a3\widetilde{T}^{\ a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}=T^{\ a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}} (2.13)
2U(𝐤2+𝐤3),𝐤2,𝐤3ba2a3U(𝐤+𝐤1),𝐤,𝐤1baa1ω(𝐤+𝐤1)l+ω𝐤l+ω𝐤1l2V𝐤2+𝐤3,𝐤2,𝐤3ba2a3V𝐤+𝐤1,𝐤,𝐤1baa1ω𝐤+𝐤1lω𝐤lω𝐤1l\displaystyle-\ \!2\ \frac{U^{\ b\ a_{2}\ a_{3}}_{-({\bf k}_{2}+{\bf k}_{3}),\ {\bf k}_{2},\ {\bf k}_{3}}\ U^{*\ b\ a\ a_{1}}_{-({\bf k}+{\bf k}_{1}),\ {\bf k},\ {\bf k}_{1}}}{\omega^{l}_{-({\bf k}+{\bf k}_{1})}+\omega^{l}_{{\bf k}}+\omega^{l}_{{\bf k}_{1}}}\ -\ \!2\ \frac{V^{\ b\ a_{2}\ a_{3}}_{{\bf k}_{2}+{\bf k}_{3},\ {\bf k}_{2},\ {\bf k}_{3}}\ V^{*\ b\ a\ a_{1}}_{{\bf k}+{\bf k}_{1},\ {\bf k},\ {\bf k}_{1}}}{\omega^{l}_{{\bf k}+{\bf k}_{1}}-\omega^{l}_{{\bf k}}\omega^{l}_{{\bf k}_{1}}}
2V𝐤1,𝐤2,𝐤1𝐤2a1a2bV𝐤3,𝐤,𝐤3𝐤a3abω𝐤3𝐤l+ω𝐤lω𝐤3l2V𝐤,𝐤2,𝐤𝐤2aa2bV𝐤3,𝐤1,𝐤3𝐤1a3a1bω𝐤3𝐤1l+ω𝐤1lω𝐤3l\displaystyle-2\ \frac{V^{\ a_{1}\ a_{2}\ b}_{{\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{1}-{\bf k}_{2}}\ V^{*\ a_{3}\ a\ b}_{{\bf k}_{3},\ {\bf k},\ {\bf k}_{3}-{\bf k}}}{\omega^{l}_{{\bf k}_{3}-{\bf k}}+\omega^{l}_{{\bf k}}-\omega^{l}_{{\bf k}_{3}}}\ -\ \!2\ \!\frac{V^{\ a\ a_{2}\ b}_{{\bf k},\ {\bf k}_{2},\ {\bf k}-{\bf k}_{2}}\ V^{*\ a_{3}\ a_{1}\ b}_{{\bf k}_{3},\ {\bf k}_{1},\ {\bf k}_{3}-{\bf k}_{1}}}{\omega^{l}_{{\bf k}_{3}-{\bf k}_{1}}+\omega^{l}_{{\bf k}_{1}}-\omega^{l}_{{\bf k}_{3}}}
2V𝐤,𝐤3,𝐤𝐤3aa3bV𝐤2,𝐤1,𝐤2𝐤1a2a1bω𝐤2𝐤1l+ω𝐤1lω𝐤2l2V𝐤1,𝐤3,𝐤1𝐤3a1a3bV𝐤2,𝐤,𝐤2𝐤a2abω𝐤2𝐤l+ω𝐤lω𝐤2l.\displaystyle-2\ \!\frac{V^{\ a\ a_{3}\ b}_{{\bf k},\ {\bf k}_{3},\ {\bf k}-{\bf k}_{3}}\ V^{*\ a_{2}\ a_{1}\ b}_{{\bf k}_{2},\ {\bf k}_{1},\ {\bf k}_{2}-{\bf k}_{1}}}{\omega^{l}_{{\bf k}_{2}-{\bf k}_{1}}+\omega^{l}_{{\bf k}_{1}}-\omega^{l}_{{\bf k}_{2}}}\ -\ \!2\ \!\frac{V^{\ a_{1}\ a_{3}\ b}_{{\bf k}_{1},\ {\bf k}_{3},\ {\bf k}_{1}-{\bf k}_{3}}\ V^{*\ a_{2}\ a\ b}_{{\bf k}_{2},\ {\bf k},\ {\bf k}_{2}-{\bf k}}}{\omega^{l}_{{\bf k}_{2}-{\bf k}}+\omega^{l}_{{\bf k}}-\omega^{l}_{{\bf k}_{2}}}\ .

The determined effective amplitude has a simple diagrammatic interpretation shown in Fig. 1. Black square indicates amplitude T~𝐤,𝐤1,𝐤2,𝐤3aa1a2a3\widetilde{T}^{\ a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}.

Refer to caption
Figure 1: Matrix element for the four-plasmon decay. Wavy lines denote plasmons.

The first term on the right-hand side of Fig. 1 defines the direct interaction of four plasmons, which is generated by usual four-plasmon amplitude T𝐤,𝐤1,𝐤2,𝐤3aa1a2a3T^{\ a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}. The remaining terms are connected with the interaction generated by amplitudes U𝐤,𝐤1,𝐤2aa1a2U^{\ \!a\ a_{1}\ a_{2}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2}} and и V𝐤,𝐤1,𝐤2aa1a2V^{\ \!a\ a_{1}\ a_{2}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2}} with intermediate ‘‘virtual’’ oscillations. In our case, the conditions of smallness of amplitudes imply that

|T~(4)||c| 2(𝐤ω𝐤l/𝐤).|\ \!\widetilde{T}^{(4)}||\ \!c\ \!|^{\,2}\ll\!\Bigl{(}{\bf k}\cdot\partial\omega^{l}_{\bf k}/\partial{\bf k}\Bigr{)}. (2.14)

Therefore, there exist two equivalent descriptions of the Hamilton system of colorless plasmons for the same physical processes. In the first case, we can use the original Hamiltonian

H^=H^0+H^3+H^4+,\widehat{H}=\widehat{H}_{0}+\widehat{H}_{3}+\widehat{H}_{4}+\,\ldots\,, (2.15)

where H^0,H^3\widehat{H}_{0},\widehat{H}_{3}, and H^4\widehat{H}_{4} are defined by expressions (2.4), (2.6), and (2.7), respectively; in the second case, we use Hamiltonian H^~\tilde{\widehat{H}}, obtained as a result of the nonlinear transformation of creation and annihilation Bose operators a^𝐤a\hat{a}^{\dagger\ \!\!a}_{\bf k} and a^𝐤a\hat{a}^{\phantom{{\dagger}}\!\!a}_{\bf k}:

H^~=H^~0+H^~4+,\widetilde{\widehat{H}}=\widetilde{\widehat{H}}_{0}+\widetilde{\widehat{H}}_{4}+\,\ldots\,,\hskip 19.91684pt (2.16)

where, in turn,

H^~0=d𝐤(2π)3ω𝐤lc^𝐤ac^𝐤a,\widetilde{\widehat{H}}_{0}=\!\int\!\frac{d{\bf k}}{(2\pi)^{3}}\ \omega^{l}_{{\bf k}}\ \!\hat{c}^{{\dagger}\ \!\!a}_{{\bf k}}\ \!\hat{c}^{\phantom{{\dagger}}\!a}_{{\bf k}},

and operator H^~4\widetilde{\widehat{H}}_{4} is defined by expression (2.12). The Heisenberg equations for operators a^𝐤a\hat{a}^{a}_{\bf k} and c^𝐤a\hat{c}^{a}_{\bf k} have completely the same form (2.3) with corresponding Hamiltonians (2.15) and (2.16).
In connection with this construction, it is appropriate to mention the publication [19] close to the subject matter of our study, in which a new important concept of nonlinear ff-oscillators has been introduced. In [19] the problem of quantization of a harmonic oscillator was considered, in which the boson creation and annihilation operators were transformed nonlinearly into new creation and annihilation operators determining quantum ff-oscillators. In this way, a new Hamiltonian with a quite nontrivial structure was obtained; this operator describes the same dynamics as the initial Hamiltonian, as observed in our case.
However, despite the closeness of the approaches proposed in the present study and in [19], they differ basically. In the approach considered in this section, creation and annihilation operators (a^𝐤a,a^𝐤a)(\hat{a}^{\dagger\ \!\!a}_{\bf k},\hat{a}^{\phantom{{\dagger}}\!\!a}_{\bf k}) and (c^𝐤a,c^𝐤a)(\hat{c}^{\dagger\ \!\!a}_{\bf k},\hat{c}^{\phantom{{\dagger}}\!\!a}_{\bf k}) and corresponding Hamiltonians (2.15) and (2.16) are connected by the canonical transformation that preserves the standard form of commutation relations (2.2). In the approach described in [19], the nonlinear transformations are noncanonical and, hence, the authors modified appropriately commutation relations of type (2.2) for preserving identity of the described dynamics. For this reason, it is impossible in our case to interpret nonlinear oscillations associated with boson operators just as oscillations with a specific energy dependence of the oscillation frequency as in the case of nonlinear ff-oscillators (however, this fact may sometimes take place).

3 Fourth-order correlation function

Hamiltonian (2.12) describes elastic scattering of color plasmons by one another (i.e., 222\rightarrow 2 process). The equations of motion for c^𝐤a\hat{c}^{\phantom{\dagger}\!a}_{{\bf k}} and c^𝐤b\hat{c}^{\dagger\ \!\!b}_{{\bf k}} are determined in this case by the corresponding Heisenberg equations:

c^𝐤at=i[H^~0+H^~4,c^𝐤a]=iω𝐤lc^𝐤a\frac{\partial\hat{c}^{\ \!a}_{{\bf k}}}{\partial t}=i\Bigl{[}\widetilde{\widehat{H}}_{0}+\widetilde{\widehat{H}}_{4},\,\hat{c}^{a}_{{\bf k}}\ \!\Bigr{]}=-i\hskip 0.85355pt\omega^{\ \!l}_{{\bf k}}\ \!\hat{c}^{\ \!a}_{{\bf k}}\ (3.1)
id𝐤1d𝐤2d𝐤3(2π)9T~𝐤,𝐤1,𝐤2,𝐤3aa1a2a3c^𝐤1a1c^𝐤2a2c^𝐤3a3(2π)3δ(𝐤+𝐤1𝐤2𝐤3)-\;i\!\int\frac{d{\bf k}_{1}\,d{\bf k}_{2}\,d{\bf k}_{3}}{(2\pi)^{9}}\ \widetilde{T}^{\ a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}\ \hat{c}^{{\dagger}\ \!\!a_{1}}_{{\bf k}_{1}}\ \!\hat{c}^{\phantom{{\dagger}}\!\!a_{2}}_{{\bf k}_{2}}\ \!\hat{c}^{\phantom{{\dagger}}\!\!a_{3}}_{{\bf k}_{3}}\ (2\pi)^{3}\hskip 0.85355pt\delta({\bf k}+{\bf k}_{1}-{\bf k}_{2}-{\bf k}_{3})

and

c^𝐤bt=i[H^~0+H^~4,c^𝐤b]=iω𝐤lc^𝐤b\frac{\partial\hat{c}^{{\dagger}\ \!\!b}_{{\bf k}}}{\partial t}=i\Bigl{[}\widetilde{\widehat{H}}_{0}+\widetilde{\widehat{H}}_{4},\,\hat{c}^{{\dagger}\ \!\!b}_{\bf k}\ \!\Bigr{]}=i\hskip 0.85355pt\omega^{\ \!l}_{{\bf k}}\ \hat{c}^{{\dagger}\ \!\!b}_{{\bf k}}\ (3.2)
+id𝐤1d𝐤2d𝐤3(2π)9T~𝐤,𝐤1,𝐤2,𝐤3ba1a2a3c^𝐤1a1c^𝐤2a2c^𝐤3a3(2π)3δ(𝐤+𝐤1𝐤2𝐤3).+\;i\!\int\frac{d{\bf k}_{1}\,d{\bf k}_{2}\,d{\bf k}_{3}}{(2\pi)^{9}}\ \widetilde{T}^{\,*\ \!b\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}\ \hat{c}^{\phantom{{\dagger}}\!\!a_{1}}_{{\bf k}_{1}}\ \!\hat{c}^{{\dagger}\ \!\!a_{2}}_{{\bf k}_{2}}\ \!\hat{c}^{{\dagger}\ \!\!a_{3}}_{{\bf k}_{3}}\ (2\pi)^{3}\hskip 0.85355pt\delta({\bf k}+{\bf k}_{1}-{\bf k}_{2}-{\bf k}_{3}).

These exact equations in the absence of an external color field in the system enable us to determine the kinetic equation for the number density N𝐤ablδabN𝐤lN^{ab\ \!l}_{{\bf k}\!\!}\!\equiv\delta^{ab}N^{l}_{{\bf k}} of colorless plasmons.
If the set of waves for a low level of nonlinearity of (2.14) has random phases, this set can be described statistically by introducing correlation function

c^𝐤ac^𝐤b=δab(2π)3δ(𝐤𝐤)N𝐤l.\langle\,\hat{c}^{{\dagger}\ \!\!a}_{{\bf k}}\ \!\hat{c}^{\phantom{{\dagger}}\!\!b}_{{\bf k}^{\prime}}\rangle=\delta^{ab}(2\pi)^{3}\hskip 0.85355pt\delta({\bf k}-{\bf k}^{\prime})\hskip 0.85355ptN^{l}_{{\bf k}}. (3.3)

It should be emphasized that the introduction of distribution function N𝐤lNl(𝐤,𝐱,t)N^{l}_{{\bf k}}\equiv N^{l}({\bf k},{\bf x},t) of quasiparticles (plasmons), which depends on plasmon momentum 𝐤\hbar\hskip 1.13791pt{\bf k} as well as on coordinate 𝐱{\bf x} and time tt, makes sense only in the case when the number of plasmons varies slowly in space and time. This means that the variation of the function over distances on the order of wavelength λ=2π/k\lambda=2\pi/k and in time intervals on the order of wave period T=2π/ω𝐤lT=2\pi/\omega^{l}_{\bf k} must be much smaller than function N𝐤lN^{l}_{\bf k} itself.
Proceeding from Heisenberg equations (3.1) and (3.2), we can determine the kinetic equation for plasmon number density N𝐤lN^{l}_{{\bf k}}. For this purpose, we multiply Eqs. (3.1) and (3.2) by c^𝐤b\hat{c}^{{\dagger}\ \!\!b}_{{\bf k}^{\prime}} and c^𝐤a\hat{c}^{\phantom{\dagger}\!a}_{{\bf k}}, respectively:

c^𝐤atc^𝐤b=iω𝐤lc^𝐤ac^𝐤b\frac{\partial\hskip 0.56917pt\hat{c}^{\ \!a}_{\bf k}}{\partial\hskip 0.56917ptt}\ \hat{c}^{{\dagger}\ \!\!b}_{{\bf k}^{\prime}}=-\,i\hskip 0.85355pt\omega^{\ \!l}_{{\bf k}}\ \!\hat{c}^{\phantom{\dagger}\!a}_{{\bf k}}\ \!\hat{c}^{{\dagger}\ \!\!b}_{{\bf k}^{\prime}}
id𝐤1d𝐤2d𝐤3(2π)9T~𝐤,𝐤1,𝐤2,𝐤3aa1a2a3c^𝐤bc^𝐤1a1c^𝐤2a2c^𝐤3a3(2π)3δ(𝐤+𝐤1𝐤2𝐤3),-\;i\!\int\frac{d{\bf k}_{1}\,d{\bf k}_{2}\,d{\bf k}_{3}}{(2\pi)^{9}}\ \widetilde{T}^{\ a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}\ \hat{c}^{{\dagger}\ \!\!b}_{{\bf k}}\ \hat{c}^{{\dagger}\ \!\!a_{1}}_{{\bf k}_{1}}\ \!\!\hat{c}^{\phantom{{\dagger}}\!\!a_{2}}_{{\bf k}_{2}}\ \!\hat{c}^{\phantom{{\dagger}}\!\!a_{3}}_{{\bf k}_{3}}\ (2\pi)^{3}\hskip 0.85355pt\delta({\bf k}+{\bf k}_{1}-{\bf k}_{2}-{\bf k}_{3}),
c^𝐤ac^𝐤bt=iω𝐤lc^𝐤ac^𝐤b\hat{c}^{\phantom{\dagger}\!\!a}_{{\bf k}}\ \!\frac{\partial\hskip 0.56917pt\hat{c}^{{\dagger}\ \!\!b}_{{\bf k}^{\prime}}}{\partial\hskip 0.56917ptt}=i\hskip 0.85355pt\omega^{\ \!l}_{{\bf k}}\ \!\hat{c}^{\phantom{\dagger}\!\!a}_{{\bf k}}\ \!\hat{c}^{{\dagger}\ \!\!b}_{{\bf k}^{\prime}}
+id𝐤1d𝐤2d𝐤3(2π)9T~𝐤,𝐤1,𝐤2,𝐤3ba1a2a3c^𝐤ac^𝐤1a1c^𝐤2a2c^𝐤3a3(2π)3δ(𝐤+𝐤1𝐤2𝐤3).+\;i\!\int\frac{d{\bf k}_{1}\,d{\bf k}_{2}\,d{\bf k}_{3}}{(2\pi)^{9}}\ \widetilde{T}^{\,*\!\ b\ a_{1}\ a_{2}\ a_{3}}_{{\bf k}^{\prime},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}\ \hat{c}^{\phantom{\dagger}\!a}_{{\bf k}}\ \!\hat{c}^{\ \!a_{1}}_{{\bf k}_{1}}\ \!\hat{c}^{{\dagger}\ \!\!a_{2}}_{{\bf k}_{2}}\ \!\hat{c}^{{\dagger}\ \!\!a_{3}}_{{\bf k}_{3}}\ (2\pi)^{3}\hskip 0.85355pt\delta({\bf k}^{\prime}+{\bf k}_{1}-{\bf k}_{2}-{\bf k}_{3}).

Summing these two equations and averaging them, we obtain

δab(2π)3δ(𝐤𝐤)N𝐤lt=\delta^{ab}(2\pi)^{3}\hskip 0.85355pt\delta({\bf k}-{\bf k}\!\ ^{\prime})\frac{\partial N^{l}_{{\bf k}}}{\partial t}= (3.4)
=id𝐤1d𝐤2d𝐤3(2π)9{T~𝐤,𝐤1,𝐤2,𝐤3aa1a2a3I𝐤,𝐤1,𝐤2,𝐤3ba1a2a3(2π)3δ(𝐤+𝐤1𝐤2𝐤3)=-\,i\!\int\frac{d{\bf k}_{1}\,d{\bf k}_{2}\,d{\bf k}_{3}}{(2\pi)^{9}}\ \biggl{\{}\widetilde{T}^{\ a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}\ I^{\ b\ a_{1}\ a_{2}\ a_{3}}_{{\bf k}^{\prime},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}\ \!(2\pi)^{3}\hskip 0.85355pt\delta({\bf k}+{\bf k}_{1}-{\bf k}_{2}-{\bf k}_{3})
T~𝐤,𝐤1,𝐤2,𝐤3ba1a2a3I𝐤2,𝐤3,𝐤,𝐤1a2a3aa1(2π)3δ(𝐤+𝐤1𝐤2𝐤3)},-\ \widetilde{T}^{\,*\!\ b\ a_{1}\ a_{2}\ a_{3}}_{{\bf k}^{\prime},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}\ I^{\ a_{2}\ a_{3}\ a\ a_{1}}_{{\bf k}_{2},\ {\bf k}_{3},\ {\bf k},\ {\bf k}_{1}}\ \!(2\pi)^{3}\hskip 0.85355pt\delta({\bf k}^{\prime}+{\bf k}_{1}-{\bf k}_{2}-{\bf k}_{3})\biggr{\}},

where

I𝐤,𝐤1,𝐤2,𝐤3aa1a2a3=c^𝐤ac^𝐤1a1c^𝐤2a2c^𝐤3a3I^{\ a\;a_{1}\;a_{2}\;a_{3}}_{{\bf k},\,{\bf k}_{1},\,{\bf k}_{2},\,{\bf k}_{3}}=\langle\ \!\hat{c}^{{\dagger}\ \!\!a}_{{\bf k}}\ \!\hat{c}^{{\dagger}\ \!\!a_{1}}_{{\bf k}_{1}}\ \!\hat{c}^{\phantom{{\dagger}}\!a_{2}}_{{\bf k}_{2}}\ \!\hat{c}^{\phantom{{\dagger}}\!a_{3}}_{{\bf k}_{3}}\ \!\rangle

is the four-point correlation function. Differentiating the correlation function I𝐤,𝐤1,𝐤2,𝐤3aa1a2a3I^{\ a\;a_{1}\;a_{2}\;a_{3}}_{{\bf k},\,{\bf k}_{1},\,{\bf k}_{2},\,{\bf k}_{3}} with respect to tt and considering Eqs. (3.1) and (3.2), we obtain the following equation, the right-hand side of which contains sixth-order correlation functions in operators c^𝐤a\hat{c}^{{\dagger}\ \!\!a}_{{\bf k}} and c^𝐤a\hat{c}^{\phantom{\dagger}\!a}_{{\bf k}}:

I𝐤,𝐤1,𝐤2,𝐤3aa1a2a3t=i[ω𝐤l+ω𝐤1lω𝐤2lω𝐤3l]I𝐤,𝐤1,𝐤2,𝐤3aa1a2a3+\frac{\partial I^{\ a\;a_{1}\;a_{2}\;a_{3}}_{{\bf k},\,{\bf k}_{1},\,{\bf k}_{2},\,{\bf k}_{3}}}{\partial t}=i\bigl{[}\ \!\omega^{l}_{{\bf k}}+\omega^{l}_{{\bf k}_{1}}-\omega^{l}_{{\bf k}_{2}}-\omega^{l}_{{\bf k}_{3}}\bigr{]}\ \!I^{\ a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}\ + (3.5)
+id𝐤1d𝐤2d𝐤3(2π)9T~𝐤,𝐤1,𝐤2,𝐤3aa1a2a3c^𝐤1a1c^𝐤2a2c^𝐤3a3c^𝐤1a1c^𝐤2a2c^𝐤3a3(2π)3δ(𝐤+𝐤1𝐤2𝐤3)+\,i\!\int\frac{d{\bf k}^{\prime}_{1}\,d{\bf k}^{\prime}_{2}\,d{\bf k}^{\prime}_{3}}{(2\pi)^{9}}\ \widetilde{T}^{\,*\!\ \!a\ a^{\prime}_{1}\ a^{\prime}_{2}\ a^{\prime}_{3}}_{{\bf k},\ {\bf k}^{\prime}_{1},\ {\bf k}^{\prime}_{2},\ {\bf k}^{\prime}_{3}}\ \!\langle\ \!\hat{c}^{\ \!a^{\prime}_{1}}_{{\bf k}^{\prime}_{1}}\ \!\hat{c}^{{\dagger}\ \!\!a^{\prime}_{2}}_{{\bf k}^{\prime}_{2}}\ \!\hat{c}^{{\dagger}\ \!\!a^{\prime}_{3}}_{{\bf k}^{\prime}_{3}}\ \!\hat{c}^{{\dagger}\ \!\!a_{1}}_{{\bf k}_{1}}\ \!\hat{c}^{\phantom{{\dagger}}\!\!a_{2}}_{{\bf k}_{2}}\ \!\hat{c}^{\phantom{{\dagger}}\!\!a_{3}}_{{\bf k}_{3}}\ \!\rangle(2\pi)^{3}\hskip 0.85355pt\delta({\bf k}+{\bf k}^{\prime}_{1}-{\bf k}^{\prime}_{2}-{\bf k}^{\prime}_{3})
+id𝐤1d𝐤2d𝐤3(2π)9T~𝐤1,𝐤1,𝐤2,𝐤3a1a1a2a3c^𝐤ac^𝐤1a1c^𝐤2a2c^𝐤3a3c^𝐤2a2c^𝐤3a3(2π)3δ(𝐤1+𝐤1𝐤2𝐤3)+\,i\!\int\frac{d{\bf k}^{\prime}_{1}\,d{\bf k}^{\prime}_{2}\,d{\bf k}^{\prime}_{3}}{(2\pi)^{9}}\ \widetilde{T}^{\,*\!\ \!a_{1}\ a^{\prime}_{1}\ a^{\prime}_{2}\ a^{\prime}_{3}}_{{\bf k}_{1},\ {\bf k}^{\prime}_{1},\ {\bf k}^{\prime}_{2},\ {\bf k}^{\prime}_{3}}\ \!\langle\ \!\hat{c}^{{\dagger}\ \!a}_{{\bf k}}\ \!\hat{c}^{a^{\prime}_{1}}_{{\bf k}^{\prime}_{1}}\ \!\hat{c}^{{\dagger}\ \!\!a^{\prime}_{2}}_{{\bf k}^{\prime}_{2}}\ \!\hat{c}^{{\dagger}\ \!\!a^{\prime}_{3}}_{{\bf k}^{\prime}_{3}}\ \!\hat{c}^{\phantom{{\dagger}}\!\!a_{2}}_{{\bf k}_{2}}\ \!\hat{c}^{\phantom{{\dagger}}\!\!a_{3}}_{{\bf k}_{3}}\ \!\rangle(2\pi)^{3}\hskip 0.85355pt\delta({\bf k}_{1}+{\bf k}^{\prime}_{1}-{\bf k}^{\prime}_{2}-{\bf k}^{\prime}_{3})
id𝐤1d𝐤2d𝐤3(2π)9T~𝐤2,𝐤1,𝐤2,𝐤3a2a1a2a3c^𝐤ac^𝐤1a1c^𝐤1a1c^𝐤2a2c^𝐤3a3c^𝐤3a3(2π)3δ(𝐤2+𝐤1𝐤2𝐤3)-\,i\!\int\frac{d{\bf k}^{\prime}_{1}\,d{\bf k}^{\prime}_{2}\,d{\bf k}^{\prime}_{3}}{(2\pi)^{9}}\ \widetilde{T}^{\ \!a_{2}\ a^{\prime}_{1}\ a^{\prime}_{2}\ a^{\prime}_{3}}_{{\bf k}_{2},\ {\bf k}^{\prime}_{1},\ {\bf k}^{\prime}_{2},\ {\bf k}^{\prime}_{3}}\ \!\langle\ \!\hat{c}^{{\dagger}\ \!\!a}_{{\bf k}}\ \!\hat{c}^{{\dagger}\ \!\!a_{1}}_{{\bf k}_{1}}\ \!\hat{c}^{{\dagger}\ \!\!a^{\prime}_{1}}_{{\bf k}^{\prime}_{1}}\ \!\hat{c}^{\ \!a^{\prime}_{2}}_{{\bf k}^{\prime}_{2}}\ \!\hat{c}^{\ \!a^{\prime}_{3}}_{{\bf k}^{\prime}_{3}}\ \!\hat{c}^{\phantom{{\dagger}}\!\!a_{3}}_{{\bf k}_{3}}\ \!\rangle(2\pi)^{3}\hskip 0.85355pt\delta({\bf k}_{2}+{\bf k}^{\prime}_{1}-{\bf k}^{\prime}_{2}-{\bf k}^{\prime}_{3})
id𝐤1d𝐤2d𝐤3(2π)9T~𝐤3,𝐤1,𝐤2,𝐤3a3a1a2a3c^𝐤ac^𝐤1a1c^𝐤2a2c^𝐤1a1c^𝐤2a2c^𝐤3a3(2π)3δ(𝐤3+𝐤1𝐤2𝐤3).-\,i\!\int\frac{d{\bf k}^{\prime}_{1}\,d{\bf k}^{\prime}_{2}\,d{\bf k}^{\prime}_{3}}{(2\pi)^{9}}\ \widetilde{T}^{\ \!a_{3}\ a^{\prime}_{1}\ a^{\prime}_{2}\ a^{\prime}_{3}}_{{\bf k}_{3},\ {\bf k}^{\prime}_{1},\ {\bf k}^{\prime}_{2},\ {\bf k}^{\prime}_{3}}\ \!\langle\ \!\hat{c}^{{\dagger}\ \!\!a}_{{\bf k}}\ \!\hat{c}^{{\dagger}\ \!\!a_{1}}_{{\bf k}_{1}}\ \!\hat{c}^{\ \!a_{2}}_{{\bf k}_{2}}\ \!\hat{c}^{{\dagger}\ \!\!a^{\prime}_{1}}_{{\bf k}^{\prime}_{1}}\ \!\hat{c}^{\ \!a^{\prime}_{2}}_{{\bf k}^{\prime}_{2}}\ \!\hat{c}^{\ \!a^{\prime}_{3}}_{{\bf k}^{\prime}_{3}}\ \!\rangle(2\pi)^{3}\hskip 0.85355pt\delta({\bf k}_{3}+{\bf k}^{\prime}_{1}-{\bf k}^{\prime}_{2}-{\bf k}^{\prime}_{3}).

We close this set of equations for correlation functions by expressing the formulas for sixth-order correlation functions in terms of pair correlation functions. For example, the first sixth-order correlation function on the right-hand side of Eq. (3.5) has the following structure:

c^𝐤1a1c^𝐤2a2c^𝐤3a3c^𝐤1a1c^𝐤2a2c^𝐤3a3=\langle\ \!\hat{c}^{\ \!\!a^{\prime}_{1}}_{{\bf k}^{\prime}_{1}}\ \!\hat{c}^{{\dagger}\ \!\!a^{\prime}_{2}}_{{\bf k}^{\prime}_{2}}\ \!\hat{c}^{{\dagger}\ \!\!a^{\prime}_{3}}_{{\bf k}^{\prime}_{3}}\ \!\hat{c}^{{\dagger}\ \!a_{1}}_{{\bf k}_{1}}\ \!\hat{c}^{\phantom{{\dagger}}\!\!a_{2}}_{{\bf k}_{2}}\ \!\hat{c}^{\phantom{{\dagger}}\!\!a_{3}}_{{\bf k}_{3}}\ \!\rangle= (3.6)
=3(2π)9{δa3a3δa2a2δa1a1δ(𝐤3𝐤3)δ(𝐤2𝐤2)δ(𝐤1𝐤1)N𝐤3lN𝐤2lN𝐤1l=3\hskip 0.85355pt(2\pi)^{9}\Bigl{\{}\delta^{\ \!\!a^{\phantom{\prime}}_{3}a^{\prime}_{3}}\delta^{\ \!\!a^{\phantom{\prime}}_{2}a^{\prime}_{2}}\delta^{\ \!\!a^{\phantom{\prime}}_{1}a^{\prime}_{1}}\ \!\delta({\bf k}^{\prime}_{3}-{\bf k}^{\phantom{\prime}}_{3})\delta({\bf k}^{\prime}_{2}-{\bf k}^{\phantom{\prime}}_{2})\delta({\bf k}^{\prime}_{1}-{\bf k}^{\phantom{\prime}}_{1})\ \!N^{l}_{{\bf k}_{3}}N^{l}_{{\bf k}_{2}}N^{l}_{{\bf k}_{1}}
+δa3a3δa1a2δa2a1δ(𝐤3𝐤3)δ(𝐤1𝐤2)δ(𝐤2𝐤1)N𝐤3lN𝐤1lN𝐤1l+\ \delta^{\ \!\!a^{\phantom{\prime}}_{3}a^{\prime}_{3}}\delta^{\ \!\!a_{1}a_{2}}\delta^{\ \!\!a^{\prime}_{2}a^{\prime}_{1}}\ \!\delta({\bf k}^{\prime}_{3}-{\bf k}^{\phantom{\prime}}_{3})\delta({\bf k}_{1}-{\bf k}_{2})\delta({\bf k}^{\prime}_{2}-{\bf k}^{\prime}_{1})\ \!N^{l}_{{\bf k}_{3}}N^{l}_{{\bf k}_{1}}N^{l}_{{\bf k}^{\prime}_{1}}
+δa3a1δa1a3δa2a2δ(𝐤3𝐤1)δ(𝐤1𝐤3)δ(𝐤2𝐤2)N𝐤1lN𝐤1lN𝐤2l+\ \delta^{\ \!\!a^{\prime}_{3}a^{\prime}_{1}}\delta^{\ \!\!a_{1}a_{3}}\delta^{\ \!\!a^{\prime}_{2}a^{\phantom{\prime}}_{2}}\ \!\delta({\bf k}^{\prime}_{3}-{\bf k}^{\prime}_{1})\delta({\bf k}_{1}-{\bf k}_{3})\delta({\bf k}^{\prime}_{2}-{\bf k}^{\phantom{\prime}}_{2})\ \!N^{l}_{{\bf k}^{\prime}_{1}}N^{l}_{{\bf k}_{1}}N^{l}_{{\bf k}_{2}}
+δa3a1δa1a2δa2a3δ(𝐤3𝐤1)δ(𝐤1𝐤2)δ(𝐤2𝐤3)N𝐤1lN𝐤1lN𝐤3l+\ \delta^{\ \!\!a^{\prime}_{3}a^{\prime}_{1}}\delta^{\ \!\!a_{1}a_{2}}\delta^{\ \!\!a^{\prime}_{2}a^{\phantom{\prime}}_{3}}\ \!\delta({\bf k}^{\prime}_{3}-{\bf k}^{\prime}_{1})\delta({\bf k}_{1}-{\bf k}_{2})\delta({\bf k}^{\prime}_{2}-{\bf k}^{\phantom{\prime}}_{3})\ \!N^{l}_{{\bf k}^{\prime}_{1}}N^{l}_{{\bf k}_{1}}N^{l}_{{\bf k}_{3}}
+δa3a2δa1a3δa2a1δ(𝐤3𝐤2)δ(𝐤1𝐤3)δ(𝐤2𝐤1)N𝐤2lN𝐤1lN𝐤1l+\ \delta^{\ \!\!a^{\prime}_{3}a^{\phantom{\prime}}_{2}}\delta^{\ \!\!a_{1}a_{3}}\delta^{\ \!\!a^{\prime}_{2}a^{\prime}_{1}}\ \!\delta({\bf k}^{\prime}_{3}-{\bf k}^{\phantom{\prime}}_{2})\delta({\bf k}_{1}-{\bf k}_{3})\delta({\bf k}^{\prime}_{2}-{\bf k}^{\prime}_{1})\ \!N^{l}_{{\bf k}_{2}}N^{l}_{{\bf k}_{1}}N^{l}_{{\bf k}^{\prime}_{1}}
+δa3a2δa1a1δa2a3δ(𝐤3𝐤2)δ(𝐤1𝐤1)δ(𝐤2𝐤3)N𝐤2lN𝐤1lN𝐤3l}.\hskip 12.80365pt+\ \delta^{\ \!\!a^{\prime}_{3}a^{\phantom{\prime}}_{2}}\delta^{\ \!\!a^{\prime}_{1}a^{\phantom{\prime}}_{1}}\delta^{\ \!\!a^{\prime}_{2}a^{\phantom{\prime}}_{3}}\ \!\delta({\bf k}^{\prime}_{3}-{\bf k}^{\phantom{\prime}}_{2})\delta({\bf k}^{\prime}_{1}-{\bf k}^{\phantom{\prime}}_{1})\delta({\bf k}^{\prime}_{2}-{\bf k}^{\phantom{\prime}}_{3})\ \!N^{l}_{{\bf k}_{2}}N^{l}_{{\bf k}_{1}}N^{l}_{{\bf k}_{3}}\Bigr{\}}.

In this expression, only the first and last terms make the required contribution to the required kinetic equation. Substituting these terms into the first integral on the right-hand side of Eq. (3.5) and performing summation over color indices a1,a2a^{\prime}_{1},\,a^{\prime}_{2} and a3a^{\prime}_{3} and integration over momenta 𝐤1,𝐤2{\bf k}^{\prime}_{1},\,{\bf k}^{\prime}_{2} и 𝐤3{\bf k}^{\prime}_{3}, we obtain

3i{T~𝐤,𝐤1,𝐤2,𝐤3aa1a2a3N𝐤1lN𝐤2lN𝐤3l+T~𝐤,𝐤1,𝐤2,𝐤3aa1a2a3N𝐤1lN𝐤2lN𝐤3l}(2π)3δ(𝐤+𝐤1𝐤2𝐤3)3\hskip 0.85355pti\biggl{\{}\widetilde{T}^{\,*\ \!a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}\ \!N^{l}_{{\bf k}_{1}}N^{l}_{{\bf k}_{2}}N^{l}_{{\bf k}_{3}}+\widetilde{T}^{*\ \!a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}\ \!N^{l}_{{\bf k}_{1}}N^{l}_{{\bf k}_{2}}N^{l}_{{\bf k}_{3}}\biggr{\}}\ \!(2\pi)^{3}\hskip 0.85355pt\delta({\bf k}+{\bf k}_{1}-{\bf k}_{2}-{\bf k}_{3})
=6iT~𝐤,𝐤1,𝐤2,𝐤3aa1a2a3N𝐤1lN𝐤2lN𝐤3l(2π)3δ(𝐤+𝐤1𝐤2𝐤3).=6\hskip 0.85355pti\ \!\widetilde{T}^{\,*\ \!a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}\ \!N^{l}_{{\bf k}_{1}}N^{l}_{{\bf k}_{2}}N^{l}_{{\bf k}_{3}}\ \!(2\pi)^{3}\hskip 0.85355pt\delta({\bf k}+{\bf k}_{1}-{\bf k}_{2}-{\bf k}_{3}). (3.7)

By way of example, let us consider the explicit form of the contribution that generates the second term in the decomposition of correlation function (3.6):

N𝐤lN𝐤1lδ(𝐤2𝐤1)δ(𝐤3𝐤)δa1a2iT~𝐤,𝐤,𝐤,𝐤abba3N𝐤l𝑑𝐤.N^{l}_{\bf k}N^{l}_{{\bf k}_{1}}\delta({\bf k}_{2}-{\bf k}_{1})\ \!\delta({\bf k}_{3}-{\bf k})\ \!\delta^{a_{1}a_{2}}\ \!i\!\int\!\widetilde{T}^{\,*\ \!a\ b\ b\ a_{3}}_{{\bf k},\ {\bf k}^{\prime},\ {\bf k}^{\prime},\ {\bf k}}\ \!N^{l}_{{\bf k}^{\prime}}\ \!d{\bf k}^{\prime}.

Comparing the last two expressions, we see that they have quite different structures.
Let us now consider the second six-point correlation function in expression (3.5). In this correlator, we write in explicit form only “regular” terms:

c^𝐤ac^𝐤1a1c^𝐤2a2c^𝐤3a3c^𝐤2a2c^𝐤3a3=\langle\ \!\hat{c}^{{\dagger}\ \!\!a}_{{\bf k}}\ \!\hat{c}^{a^{\prime}_{1}}_{{\bf k}^{\prime}_{1}}\ \!\hat{c}^{{\dagger}\ \!\!a^{\prime}_{2}}_{{\bf k}^{\prime}_{2}}\ \!\hat{c}^{{\dagger}\ \!\!a^{\prime}_{3}}_{{\bf k}^{\prime}_{3}}\ \!\hat{c}^{\phantom{{\dagger}}\!\!a_{2}}_{{\bf k}_{2}}\ \!\hat{c}^{\phantom{{\dagger}}\!\!a_{3}}_{{\bf k}_{3}}\ \!\rangle=
=3(2π)9{δaa1δa2a2δa3a3δ(𝐤1𝐤)δ(𝐤2𝐤2)δ(𝐤3𝐤3)N𝐤lN𝐤2lN𝐤3l+(23)+}.=3\hskip 0.85355pt(2\pi)^{9}\Bigl{\{}\delta^{\ \!\!a^{\phantom{\prime}}\!a^{\prime}_{1}}\delta^{\ \!\!a^{\phantom{\prime}}_{2}a^{\prime}_{2}}\delta^{\ \!\!a^{\phantom{\prime}}_{3}a^{\prime}_{3}}\ \!\delta({\bf k}^{\prime}_{1}-{\bf k}^{\phantom{\prime}})\delta({\bf k}^{\prime}_{2}-{\bf k}^{\phantom{\prime}}_{2})\delta({\bf k}^{\prime}_{3}-{\bf k}^{\phantom{\prime}}_{3})\ \!N^{l}_{{\bf k}}N^{l}_{{\bf k}_{2}}N^{l}_{{\bf k}_{3}}+\ (2\rightleftarrows 3)\ +\ \ldots\,\Bigr{\}}.

Substituting this expression into the second integral in (3.5), we obtain the following expression analogous to (3.7):

6iT~𝐤1,𝐤,𝐤2,𝐤3a1aa2a3N𝐤lN𝐤2lN𝐤3l(2π)3δ(𝐤+𝐤1𝐤2𝐤3).6\hskip 0.85355pti\ \!\widetilde{T}^{\,*\ \!a_{1}\ a\ a_{2}\ a_{3}}_{{\bf k}_{1},\ {\bf k},\ {\bf k}_{2},\ {\bf k}_{3}}\,N^{l}_{{\bf k}}N^{l}_{{\bf k}_{2}}N^{l}_{{\bf k}_{3}}\ \!(2\pi)^{3}\hskip 0.85355pt\delta({\bf k}+{\bf k}_{1}-{\bf k}_{2}-{\bf k}_{3}).

Similar arguments for the third and fourth correlators in expression (3.5) give the remaining two contributions:

6iT~𝐤2,𝐤3,𝐤,𝐤1a2a3aa1N𝐤lN𝐤1lN𝐤3l(2π)3δ(𝐤+𝐤1𝐤2𝐤3)-6\hskip 0.85355pti\ \!\widetilde{T}^{\ \!a_{2}\ a_{3}\ a\ a_{1}}_{{\bf k}_{2},\ {\bf k}_{3},\ {\bf k},\ {\bf k}_{1}}\,N^{l}_{{\bf k}}N^{l}_{{\bf k}_{1}}N^{l}_{{\bf k}_{3}}\ \!(2\pi)^{3}\hskip 0.85355pt\delta({\bf k}+{\bf k}_{1}-{\bf k}_{2}-{\bf k}_{3})

and

6iT~𝐤3,𝐤2,𝐤,𝐤1a3a2aa1N𝐤lN𝐤1lN𝐤2l(2π)3δ(𝐤+𝐤1𝐤2𝐤3).-6\hskip 0.85355pti\ \!\widetilde{T}^{\ \!a_{3}\ a_{2}\ a\ a_{1}}_{{\bf k}_{3},\ {\bf k}_{2},\ {\bf k},\ {\bf k}_{1}}\,N^{l}_{{\bf k}}N^{l}_{{\bf k}_{1}}N^{l}_{{\bf k}_{2}}\ \!(2\pi)^{3}\hskip 0.85355pt\delta({\bf k}+{\bf k}_{1}-{\bf k}_{2}-{\bf k}_{3}).

Considering the symmetry relations for the scattering amplitude

T~𝐤2,𝐤3,𝐤,𝐤1a2a3aa1=T~𝐤,𝐤1,𝐤2,𝐤3aa1a2a3,T~𝐤3,𝐤2,𝐤,𝐤1a3a2aa1=T~𝐤,𝐤1,𝐤2,𝐤3aa1a2a3,\widetilde{T}^{\ \!a_{2}\ a_{3}\ a\ a_{1}}_{{\bf k}_{2},\ {\bf k}_{3},\ {\bf k},\ {\bf k}_{1}}=\widetilde{T}^{*\ \!a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}},\quad\widetilde{T}^{\ \!a_{3}\ a_{2}\ a\ a_{1}}_{{\bf k}_{3},\ {\bf k}_{2},\ {\bf k},\ {\bf k}_{1}}=\widetilde{T}^{*\ \!a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}},

we obtain the following equation for the fourth-order correlation function, instead of (3.5):

I𝐤,𝐤1,𝐤2,𝐤3aa1a2a3t=i[ω𝐤l+ω𝐤1lω𝐤2lω𝐤3l]I𝐤,𝐤1,𝐤2,𝐤3aa1a2a3\frac{\partial I^{\ a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}}{\partial t}=i\bigl{[}\ \!\omega^{l}_{{\bf k}}+\omega^{l}_{{\bf k}_{1}}-\omega^{l}_{{\bf k}_{2}}-\omega^{l}_{{\bf k}_{3}}\bigr{]}\ \!I^{\ a\;a_{1}\;a_{2}\;a_{3}}_{{\bf k},\,{\bf k}_{1},\,{\bf k}_{2},\,{\bf k}_{3}} (3.8)
+ 6iT~𝐤,𝐤1,𝐤2,𝐤3aa1a2a3(N𝐤lN𝐤2lN𝐤3l+N𝐤1lN𝐤2lN𝐤3lN𝐤lN𝐤1lN𝐤3lN𝐤lN𝐤1lN𝐤2l)+\;6\hskip 1.13791pti\ \!\widetilde{T}^{\,*\ \!a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}\ \!\Bigl{(}N^{l}_{\bf k}N^{l}_{{\bf k}_{2}}N^{l}_{{\bf k}_{3}}+N^{l}_{{\bf k}_{1}}N^{l}_{{\bf k}_{2}}N^{l}_{{\bf k}_{3}}-N^{l}_{{\bf k}}N^{l}_{{\bf k}_{1}}N^{l}_{{\bf k}_{3}}-N^{l}_{{\bf k}}N^{l}_{{\bf k}_{1}}N^{l}_{{\bf k}_{2}}\Bigr{)}
×(2π)3δ(𝐤+𝐤1𝐤2𝐤3).\times\ \!(2\pi)^{3}\hskip 0.85355pt\delta({\bf k}+{\bf k}_{1}-{\bf k}_{2}-{\bf k}_{3}).

4 Kinetic equation for gluon excitations

Let us now pass to the direct derivation of the kinetic equation for plasmons. The self-consistent set of equations (3.4) and (3.8) determines, in principle, the evolution of plasmon number density N𝐤lN^{l}_{\bf k}. However, we introduce one more simplification: in Eq. (3.8), we disregard the term with the time derivative as compared to the term containing the difference in the eigenfrequencies of wave packets. Instead of relation (3.8), we have

I𝐤,𝐤1,𝐤2,𝐤3aa1a2a3N𝐤lN𝐤1l(2π)6[δaa2δa1a3δ(𝐤𝐤2)δ(𝐤1𝐤3)+δaa3δa1a2δ(𝐤𝐤3)δ(𝐤1𝐤2)]I^{\ a\;a_{1}\;a_{2}\;a_{3}}_{{\bf k},\,{\bf k}_{1},\,{\bf k}_{2},\,{\bf k}_{3}}\simeq N^{l}_{{\bf k}}N^{l}_{{\bf k}_{1}}\ \!(2\pi)^{6}\hskip 0.85355pt\Bigl{[}\ \!\delta^{a\ \!\!a_{2}}\delta^{a_{1}\ \!\!a_{3}}\ \!\delta({\bf k}-{\bf k}_{2})\delta({\bf k}_{1}-{\bf k}_{3})+\delta^{a\ \!\!a_{3}}\delta^{a_{1}\ \!\!a_{2}}\ \!\delta({\bf k}-{\bf k}_{3})\delta({\bf k}_{1}-{\bf k}_{2})\Bigr{]}
6Δω+i0T~𝐤,𝐤1,𝐤2,𝐤3aa1a2a3(N𝐤lN𝐤2lN𝐤3l+N𝐤1lN𝐤2lN𝐤3lN𝐤lN𝐤1lN𝐤3lN𝐤lN𝐤1lN𝐤2l)×-\;\frac{6}{\Delta\hskip 0.56917pt\omega+i\hskip 0.85355pt0}\ \widetilde{T}^{\,*\ \!a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}\ \!\Bigl{(}N^{l}_{\bf k}N^{l}_{{\bf k}_{2}}N^{l}_{{\bf k}_{3}}+N^{l}_{{\bf k}_{1}}N^{l}_{{\bf k}_{2}}N^{l}_{{\bf k}_{3}}-N^{l}_{{\bf k}}N^{l}_{{\bf k}_{1}}N^{l}_{{\bf k}_{3}}-N^{l}_{{\bf k}}N^{l}_{{\bf k}_{1}}N^{l}_{{\bf k}_{2}}\Bigr{)}\times
×(2π)3δ(𝐤+𝐤1𝐤2𝐤3),\times\ \!(2\pi)^{3}\hskip 0.85355pt\delta({\bf k}+{\bf k}_{1}-{\bf k}_{2}-{\bf k}_{3}),

where

Δωω𝐤l+ω𝐤1lω𝐤2lω𝐤3l.\Delta\hskip 0.56917pt\omega\equiv\omega^{l}_{{\bf k}}+\omega^{l}_{{\bf k}_{1}}-\omega^{l}_{{\bf k}_{2}}-\omega^{l}_{{\bf k}_{3}}.

Here, the first term on the right-hand side, which corresponds to completely uncorrelated waves (purely Gaussian fluctuations) is the solution to the homogeneous equation for fourth-order correlation function I𝐤,𝐤1,𝐤2,𝐤3aa1a2a3I^{\ a\;a_{1}\;a_{2}\;a_{3}}_{{\bf k},\,{\bf k}_{1},\,{\bf k}_{2},\,{\bf k}_{3}}. The second term determines the deviation of the four-point correlator from the Gaussian approximation for a low nonlinearity level of interacting waves.
We substitute the first term into the right-hand side of Eq. (3.4) for N𝐤lN^{l}_{\bf k}:

i(2π)3N𝐤ld𝐤1(2π)3N𝐤1l{T~𝐤,𝐤1,𝐤,𝐤1aa1ba1δ(𝐤𝐤)+T~𝐤,𝐤1,𝐤1𝐤aa1a1bδ(𝐤𝐤)-\,i\ \!(2\pi)^{3}\hskip 0.85355ptN^{l}_{\bf k}\!\int\!\frac{d{\bf k}_{1}}{(2\pi)^{3}}\ N^{l}_{{\bf k}_{1}}\Bigl{\{}\widetilde{T}^{\ \!a\ a_{1}\ b\ a_{1}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}^{\prime},\ {\bf k}_{1}}\ \!\delta({\bf k}-{\bf k}^{\prime})\,+\,\widetilde{T}^{\ \!a\ a_{1}\ a_{1}\ b}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{1}\ \ {\bf k}^{\prime}}\ \!\delta({\bf k}-{\bf k}^{\prime})
T~𝐤,𝐤1,𝐤,𝐤1ba1aa1δ(𝐤𝐤)T~𝐤,𝐤1,𝐤1,𝐤ba1a1aδ(𝐤𝐤)}-\ \widetilde{T}^{\,*\ \!b\ a_{1}\ a\ a_{1}}_{{\bf k}^{\prime},\ {\bf k}_{1},\ {\bf k},\ {\bf k}_{1}}\ \!\delta({\bf k}^{\prime}-{\bf k})\,-\,\widetilde{T}^{\,*\ \!b\ a_{1}\ a_{1}\ a}_{{\bf k}^{\prime},\ {\bf k}_{1},\ {\bf k}_{1},\ {\bf k}}\ \!\delta({\bf k}^{\prime}-{\bf k})\Bigr{\}}
=i2(2π)3δ(𝐤𝐤)N𝐤ld𝐤1(2π)3N𝐤1l{T~𝐤,𝐤1,𝐤,𝐤1aa1ba1T~𝐤,𝐤1,𝐤,𝐤1ba1aa1}.=-\,i\ \!2\hskip 0.85355pt(2\pi)^{3}\hskip 0.85355pt\delta({\bf k}-{\bf k}^{\prime})N^{l}_{\bf k}\!\int\!\frac{d{\bf k}_{1}}{(2\pi)^{3}}\,N^{l}_{{\bf k}_{1}}\Bigl{\{}\widetilde{T}^{\ a\ a_{1}\ b\ a_{1}}_{{\bf k},\ {\bf k}_{1},\ {\bf k},\ {\bf k}_{1}}-\widetilde{T}^{\,*\ \!b\ a_{1}\ a\ a_{1}}_{{\bf k},\ {\bf k}_{1},\ {\bf k},\ {\bf k}_{1}}\Bigr{\}}. (4.1)

Further, we substitute the second term into the right-hand side of Eq. (3.4):

6id𝐤1d𝐤2d𝐤3(2π)9{T~𝐤,𝐤1,𝐤2,𝐤3aa1a2a3(1Δω+i0)T~𝐤,𝐤1,𝐤2,𝐤3ba1a2a3-\ \!6\hskip 0.99594pti\!\int\frac{d{\bf k}_{1}\,d{\bf k}_{2}\,d{\bf k}_{3}}{(2\pi)^{9}}\,\biggl{\{}\widetilde{T}^{\ \!a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}\biggl{(}\frac{1}{\Delta\hskip 0.56917pt\omega+i\hskip 0.85355pt0}\biggr{)}\ \!\widetilde{T}^{\,*\ \!b\ a_{1}\ a_{2}\ a_{3}}_{{\bf k}^{\prime},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}
×(2π)3δ(𝐤+𝐤1𝐤2𝐤3)(2π)3δ(𝐤+𝐤1𝐤2𝐤3)[N𝐤lN𝐤2lN𝐤3l+]\times\ \!(2\pi)^{3}\hskip 0.85355pt\delta({\bf k}^{\prime}+{\bf k}_{1}-{\bf k}_{2}-{\bf k}_{3})\ \!(2\pi)^{3}\hskip 0.85355pt\delta({\bf k}+{\bf k}_{1}-{\bf k}_{2}-{\bf k}_{3})\Bigl{[}\ \!N^{l}_{\bf k\,}N^{l}_{{\bf k}_{2}}N^{l}_{{\bf k}_{3}}+\ \ldots\ \Bigr{]}
T~𝐤𝟐,𝐤3,𝐤,𝐤1a2a3ba1(1Δωi0)T~𝐤𝟐,𝐤3,𝐤,𝐤1a2a3aa1-\ \widetilde{T}^{\ \!a_{2}\ a_{3}\ b\ a_{1}}_{{\bf k_{2}},\ {\bf k}_{3},\ {\bf k}^{\prime},\ {\bf k}_{1}}\biggl{(}\frac{1}{\Delta\hskip 0.56917pt\omega-i\hskip 0.85355pt0}\biggr{)}\ \!\widetilde{T}^{\,*\ \!a_{2}\ a_{3}\ a\ a_{1}}_{{\bf k_{2}},\ {\bf k}_{3},\ {\bf k},\ {\bf k}_{1}}
×(2π)3δ(𝐤+𝐤1𝐤2𝐤3)(2π)3δ(𝐤+𝐤1𝐤2𝐤3)[N𝐤lN𝐤2lN𝐤3l+]}.\times\ \!(2\pi)^{3}\hskip 0.85355pt\delta({\bf k}+{\bf k}_{1}-{\bf k}_{2}-{\bf k}_{3})\ \!(2\pi)^{3}\hskip 0.85355pt\delta({\bf k}^{\prime}+{\bf k}_{1}-{\bf k}_{2}-{\bf k}_{3})\Bigl{[}\ \!N^{l}_{\bf k\,}N^{l}_{{\bf k}_{2}}N^{l}_{{\bf k}_{3}}+\ \ldots\ \Bigr{]}\biggr{\}}.

Taking into account that

δ(𝐤+𝐤1𝐤2𝐤3)δ(𝐤+𝐤1𝐤2𝐤3)=δ(𝐤𝐤)δ(𝐤+𝐤1𝐤2𝐤3),\delta({\bf k}^{\prime}+{\bf k}_{1}-{\bf k}_{2}-{\bf k}_{3})\ \!\delta({\bf k}+{\bf k}_{1}-{\bf k}_{2}-{\bf k}_{3})=\delta({\bf k}-{\bf k}^{\prime})\ \!\delta({\bf k}+{\bf k}_{1}-{\bf k}_{2}-{\bf k}_{3}),

we can write the last expression in a more compact form:

6i(2π)3δ(𝐤𝐤)d𝐤1d𝐤2d𝐤3(2π)9(2π)3δ(𝐤+𝐤1𝐤2𝐤3)[N𝐤lN𝐤2lN𝐤3l+]-\ \!6\hskip 0.85355pti(2\pi)^{3}\hskip 0.85355pt\delta({\bf k}-{\bf k}^{\prime})\!\int\frac{d{\bf k}_{1}\,d{\bf k}_{2}\,d{\bf k}_{3}}{(2\pi)^{9}}\,(2\pi)^{3}\hskip 0.85355pt\delta({\bf k}+{\bf k}_{1}-{\bf k}_{2}-{\bf k}_{3})\Bigl{[}\,N^{l}_{\bf k\,}N^{l}_{{\bf k}_{2}}N^{l}_{{\bf k}_{3}}+\ \ldots\ \Bigr{]}
×{T~𝐤,𝐤1,𝐤2,𝐤3aa1a2a3T~𝐤,𝐤1,𝐤2,𝐤3ba1a2a3Δω+i0T~𝐤𝟐,𝐤3,𝐤,𝐤1a2a3ba1T~𝐤𝟐,𝐤3,𝐤,𝐤1a2a3aa1Δωi0}.\times\ \!\left\{\ \!\frac{\widetilde{T}^{\ \!a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}\ \!\widetilde{T}^{\,*\ \!b\ a_{1}\ a_{2}\ a_{3}}_{{\bf k}^{\prime},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}}{\Delta\hskip 0.56917pt\omega+i\hskip 0.85355pt0}\ -\ \frac{\widetilde{T}^{\ \!a_{2}\ a_{3}\ b\ a_{1}}_{{\bf k_{2}},\ {\bf k}_{3},\ {\bf k}^{\prime},\ {\bf k}_{1}}\ \!\widetilde{T}^{\,*\ \!a_{2}\ a_{3}\ a\ a_{1}}_{{\bf k_{2}},\ {\bf k}_{3},\ {\bf k},\ {\bf k}_{1}}}{\Delta\hskip 0.56917pt\omega-i\hskip 0.85355pt0}\right\}. (4.2)

Further, performing the convolution of obtained expressions (3.4), (4.1), and (4.2) with δab\delta^{ab}, considering that

1Δω+i01Δωi0=2iπδ(Δω)\frac{1}{\Delta\hskip 0.56917pt\omega+i\hskip 0.85355pt0}\ -\,\frac{1}{\Delta\hskip 0.56917pt\omega-i\hskip 0.85355pt0}=-2\hskip 0.56917pti\hskip 0.85355pt\pi\hskip 0.85355pt\delta(\Delta\hskip 0.56917pt\omega)

and cancelling out the factor (2π)3δ(𝐤𝐤)(2\pi)^{3}\hskip 0.85355pt\delta({\bf k}-{\bf k}^{\prime}), we obtain the desired kinetic equation for colorless longitudinal gluon

dN𝐤ldt=4dAN𝐤ld𝐤1(2π)3N𝐤1lIm[T~𝐤,𝐤1,𝐤,𝐤1aa1aa1]\frac{dN^{l}_{{\bf k}}}{d\hskip 0.85355ptt}\ =\frac{4}{d_{A}}\ \!N^{l}_{\bf k}\!\int\!\frac{d\hskip 0.85355pt{\bf k}_{1}}{(2\pi)^{3}}\ N^{l}_{{\bf k}_{1}}\ \!{\rm Im}\Bigl{[}\widetilde{T}^{\ a\ a_{1}\ a\ a_{1}}_{{\bf k},\ {\bf k}_{1},\ {\bf k},\ {\bf k}_{1}}\Bigr{]} (4.3)
+6dAd𝐤1d𝐤2d𝐤3(2π)9(2π)4δ(ω𝐤l+ω𝐤1lω𝐤2lω𝐤3l)δ(𝐤+𝐤1𝐤2𝐤3)+\;\frac{6}{d_{A}}\!\int\frac{d\hskip 0.85355pt{\bf k}_{1}\,d\hskip 0.85355pt{\bf k}_{2}\,d\hskip 0.85355pt{\bf k}_{3}}{(2\pi)^{9}}\,(2\pi)^{4}\hskip 0.85355pt\delta(\omega^{l}_{{\bf k}}+\omega^{l}_{{\bf k}_{1}}-\omega^{l}_{{\bf k}_{2}}-\omega^{l}_{{\bf k}_{3}})\ \!\delta({\bf k}+{\bf k}_{1}-{\bf k}_{2}-{\bf k}_{3})
×T~𝐤,𝐤1,𝐤2,𝐤3aa1a2a3T~𝐤,𝐤1,𝐤2,𝐤3aa1a2a3(N𝐤lN𝐤2lN𝐤3l+N𝐤1lN𝐤2lN𝐤3lN𝐤lN𝐤1lN𝐤3lN𝐤lN𝐤1lN𝐤2l).\times\ \!\widetilde{T}^{\ \!a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}\ \!\widetilde{T}^{\,*\ \!a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}\Bigl{(}N^{l}_{\bf k}N^{l}_{{\bf k}_{2}}N^{l}_{{\bf k}_{3}}+N^{l}_{{\bf k}_{1}}N^{l}_{{\bf k}_{2}}N^{l}_{{\bf k}_{3}}-N^{l}_{{\bf k}}N^{l}_{{\bf k}_{1}}N^{l}_{{\bf k}_{3}}-N^{l}_{{\bf k}}N^{l}_{{\bf k}_{1}}N^{l}_{{\bf k}_{2}}\Bigr{)}.

Here, dA=Nc21d_{A}=N^{2}_{c}-1. The first term on the right-hand side of Eq. (4.3) describes the so-called nonlinear Landau damping [20], the decrement of which is a linear functional of plasmon number density N𝐤lN^{l}_{\bf k}:

γ^{N𝐤l}γl(𝐤)=4dAd𝐤1(2π)3N𝐤1lIm[T~𝐤,𝐤1,𝐤,𝐤1aa1aa1].\hat{\gamma}\bigl{\{}N^{l}_{\bf k}\bigr{\}}\equiv\gamma^{l}({\bf k})=\frac{4}{d_{A}}\int\!\frac{d\hskip 0.85355pt{\bf k}_{1}}{(2\pi)^{3}}\ N^{l}_{{\bf k}_{1}}\ \!{\rm Im}\Bigl{[}\widetilde{T}^{\ a\ a_{1}\ a\ a_{1}}_{{\bf k},\ {\bf k}_{1},\ {\bf k},\ {\bf k}_{1}}\Bigr{]}.

The second term in Eq. (4.3) is associated with an elastic plasmon–plasmon scattering. We can also write Eq. (4.3) in a more visual form:

dN𝐤ldtN𝐤lt+𝐯𝐤lN𝐤l𝐱=γ^{N𝐤l}N𝐤lN𝐤lΓd[N𝐤l]+(1+N𝐤l)Γi[N𝐤l],\frac{dN_{\bf k}^{l}}{dt}\equiv\frac{\partial N_{\bf k}^{l}}{\partial t}+{\bf v}_{\bf k}^{l}\cdot\frac{\partial N_{\bf k}^{l}}{\partial{\bf x}}=-\,\hat{\gamma}\,\{N_{\bf k}^{l}\}\,N_{\bf k}^{l}-N_{\bf k}^{l}\Gamma_{\rm d}[N_{\bf k}^{l}]+(1+N_{\bf k}^{l})\Gamma_{\rm i}[N_{\bf k}^{l}]\ , (4.4)

where

𝐯𝐤l=ω𝐤l𝐤=[(Reεl(k)𝐤)(Reεl(k)ω)1]|ω=ω𝐤l{\bf v}_{\bf k}^{l}=\frac{\partial\omega_{\bf k}^{l}}{\partial{\bf k}}=-\Biggl{[}\left(\frac{\partial{\rm Re}\,\varepsilon^{l}(k)}{\partial{\bf k}}\right)\!\left(\frac{\partial{\rm Re}\,\varepsilon^{l}(k)}{\partial\omega}\right)^{\!-1}\Biggr{]}\Bigg{|}_{\omega=\omega_{\bf k}^{l}}

is the group velocity of longitudinal oscillations, and the generalized decay rate Γd\Gamma_{\rm d} and the inverse regeneration rate Γi\Gamma_{\rm i} are nonlinear functionals of the plasmon number density:

Γd[N𝐤l]=𝑑𝒯(3)w4(𝐤,𝐤1;𝐤2,𝐤3)N𝐤1l(1+N𝐤2l)(1+N𝐤3l)\Gamma_{\rm d}[N_{\bf k}^{l}]=\int\!d{\cal T}^{(3)}{\it w}_{4}({\bf k},{\bf k}_{1};{\bf k}_{2},{\bf k}_{3})N_{{\bf k}_{1}}^{l}(1+N_{{\bf k}_{2}}^{l})(1+N_{{\bf k}_{3}}^{l})

and, accordingly,

Γi[N𝐤l]=𝑑𝒯(3)w4(𝐤,𝐤1;𝐤2,𝐤3)(1+N𝐤1l)N𝐤2lN𝐤3l.\Gamma_{\rm i}[N_{\bf k}^{l}]=\int\!d{\cal T}^{(3)}{\it w}_{4}({\bf k},{\bf k}_{1};{\bf k}_{2},{\bf k}_{3})(1+N_{{\bf k}_{1}}^{l})N_{{\bf k}_{2}}^{l}N_{{\bf k}_{3}}^{l}\,.\hskip 25.6073pt

Here,

w4(𝐤,𝐤1;𝐤2,𝐤3)=6dAT~𝐤,𝐤1,𝐤2,𝐤3aa1a2a3T~𝐤,𝐤1,𝐤2,𝐤3aa1a2a3{\it w}_{4}({\bf k},{\bf k}_{1};{\bf k}_{2},{\bf k}_{3})=\frac{6}{d_{A}}\ \widetilde{T}^{\ \!a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}\ \!\widetilde{T}^{\,*\,a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}} (4.5)

is the scattering probability for an elastic collision of two colorless plasmons, and the integration measure is defined as

d𝒯(3)(2π)4δ(ω𝐤l+ω𝐤1lω𝐤2lω𝐤3l)δ(𝐤+𝐤1𝐤2𝐤3)d𝐤1d𝐤2d𝐤3(2π)9.d{\cal T}^{(3)}\equiv(2\pi)^{4}\,\delta(\omega^{l}_{{\bf k}}+\omega^{l}_{{\bf k}_{1}}-\omega^{l}_{{\bf k}_{2}}-\omega^{l}_{{\bf k}_{3}})\ \!\delta({\bf k}+{\bf k}_{1}-{\bf k}_{2}-{\bf k}_{3})\ \!\frac{d{\bf k}_{1}\,d{\bf k}_{2}\,d{\bf k}_{3}}{(2\pi)^{9}}\ .

In the limit of large occupation numbers of plasmon states (N𝐤l1N_{{\bf k}}^{l}\gg 1), the right-hand side of Boltzmann equation (4.4) is transformed into (4.3).

5 Explicit form of the function T𝐤,𝐤1,𝐤2,𝐤3aa1a2a3T^{\;a\;a_{1}\;a_{2}\;a_{3}}_{{\bf k},\,{\bf k}_{1},\,{\bf k}_{2},\,{\bf k}_{3}}

It remains for us to determine the explicit form of vertex functions T𝐤,𝐤1,𝐤2,𝐤3aa1a2a3T^{\ a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}, U𝐤,𝐤1,𝐤2aa1a2U^{\ \!a\ a_{1}\ a_{2}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2}}, and V𝐤,𝐤1,𝐤2aa1a2V^{\ \!a\ a_{1}\ a_{2}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2}} that appear in effective amplitude (2.13). In this section, we determine the form of function T𝐤,𝐤1,𝐤2,𝐤3aa1a2a3T^{\ a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}} in the hard thermal loop (HTL) approximation [8]. In [11], the probability of elastic scattering of two plasmons was determined in the HTL approximation:

w4(𝐤,𝐤1;𝐤2,𝐤3)=3Maa1a2a3(𝐤,𝐤1,𝐤2,𝐤3)Maa1a2a3(𝐤,𝐤1,𝐤2,𝐤3).{\it w}_{4}({\bf k},{\bf k}_{1};{\bf k}_{2},{\bf k}_{3})\!=\!3\hskip 0.85355pt{\rm M}^{\,a\,a_{1}\,a_{2}\,a_{3}}({\bf k},{\bf k}_{1},-{\bf k}_{2},-{\bf k}_{3})\hskip 0.85355pt{\rm M}^{\hskip 0.56917pt*\ \!a\,a_{1}\,a_{2}\,a_{3}}({\bf k},{\bf k}_{1},-{\bf k}_{2},-{\bf k}_{3}). (5.1)

Here, the matrix element of the four-plasmon decay has the following structure:

Maa1a2a3(𝐤,𝐤1,𝐤2,𝐤3)=g2(Zl(𝐤)2ω𝐤l)1/2(u~μ(k)u¯2(k)){\rm M}^{\,a\,a_{1}\,a_{2}\,a_{3}}({\bf k},{\bf k}_{1},-{\bf k}_{2},-{\bf k}_{3})=g^{2}\!\left(\frac{{\rm Z}_{l}({\bf k})}{2\omega_{\bf k}^{l}}\right)^{\!1/2}\!\!\left(\frac{\tilde{u}^{\mu}(k)}{\sqrt{\bar{u}^{2}(k)}}\right)\hskip 28.45274pt (5.2)
×i=13(Zl(𝐤i)2ω𝐤il)1/2(u~μi(ki)u¯2(ki))Γ~μμ1μ2μ3aa1a2a3(k,k1,k2,k3)|onshell\hskip 28.45274pt\times\,\prod_{i=1}^{3}\left(\frac{{\rm Z}_{l}({\bf k}_{i})}{2\omega_{{\bf k}_{i}}^{l}}\right)^{\!1/2}\!\!\left(\frac{\tilde{u}^{\mu_{i}}(k_{i})}{\sqrt{\bar{u}^{2}(k_{i})}}\right)\,^{\ast}\widetilde{\Gamma}^{\,a\,a_{1}\,a_{2}\,a_{3}}_{\,\mu\,\mu_{1}\,\mu_{2}\,\mu_{3}}(k,k_{1},-k_{2},-k_{3})\Big{|}_{\rm on-shell}

and, in turn, the effective amplitude Γ~μμ1μ2μ3aa1a2a3(k,k1,k2,k3)\!\,{}^{\ast}\widetilde{\Gamma}^{\,a\,a_{1}\,a_{2}\,a_{3}}_{\,\mu\,\mu_{1}\,\mu_{2}\,\mu_{3}}(k,k_{1},-k_{2},-k_{3}) is defined as

Γ~μμ1μ2μ3aa1a2a3(k,k1,k2,k3)=faa1bfba2a3Γ~μμ1μ2μ3(k,k1,k2,k3)\,{}^{\ast}\widetilde{\Gamma}^{\,a\,a_{1}\,a_{2}\,a_{3}}_{\,\mu\,\mu_{1}\,\mu_{2}\,\mu_{3}}(k,k_{1},-k_{2},-k_{3})=-f^{\ \!\!a\ \!\!a_{1}\ \!\!b}f^{\ \!\!b\ \!\!a_{2}\ \!\!a_{3}}\,{}^{\ast}\widetilde{\Gamma}_{\,\mu\,\mu_{1}\,\mu_{2}\,\mu_{3}}(k,k_{1},-k_{2},-k_{3}) (5.3)
faa2bfba1a3Γ~μμ2μ1μ3(k,k2,k1,k3),-\,f^{\ \!\!a\ \!\!a_{2}\ \!\!b}f^{\ \!\!b\ \!\!a_{1}\ \!\!a_{3}}\,{}^{\ast}\widetilde{\Gamma}_{\,\mu\,\mu_{2}\,\mu_{1}\,\mu_{3}}(k,-k_{2},k_{1},-k_{3}),

where fabcf^{\,a\,b\,c} are antisymmetric structural constants of the color Lie algebra 𝔰𝔲(Nc)\mathfrak{su}(N_{c}). Color factors in this expression are multiplied by the purely kinetic coefficients, viz., effective subamplitudes defined as

Γ~μμ1μ2μ3(k,k1,k2,k3)Γμμ1μ2μ3(k,k1,k2,k3)\,{}^{\ast}\widetilde{\Gamma}_{\,\mu\,\mu_{1}\,\mu_{2}\,\mu_{3}}(k,k_{1},-k_{2},-k_{3})\equiv\,^{\ast}{\Gamma}_{\,\mu\,\mu_{1}\,\mu_{2}\,\mu_{3}}(k,k_{1},-k_{2},-k_{3}) (5.4)
Γμμ1ν(k,k1,kk1)𝒟~νν(k2+k3)Γνμ2μ3(k2+k3,k2,k3)-\,^{\ast}\Gamma_{\,\mu\,\mu_{1}\,\nu}(k,k_{1},-k-k_{1})\,^{\ast}\widetilde{\cal D}^{\,\nu\nu^{\prime}}(k_{2}+k_{3})\,^{\ast}\Gamma_{\,\nu^{\prime}\,\mu_{2}\,\mu_{3}}(k_{2}+k_{3},-k_{2},-k_{3})
Γμμ3ν(k,k3,k+k3)𝒟~νν(k2k1)Γνμ2μ1(k2k1,k2,k1).-\,^{\ast}\Gamma_{\,\mu\,\mu_{3}\,\nu}(k,-k_{3},-k+k_{3})\,^{\ast}\widetilde{\cal D}^{\,\nu\nu^{\prime}}(k_{2}-k_{1})\,^{\ast}\Gamma_{\,\nu^{\prime}\,\mu_{2}\,\mu_{1}}(k_{2}-k_{1},-k_{2},k_{1}).\hskip 11.38092pt

The form of vertex functions Γμμ1μ2μ3(k,k1,k2,k3)\!\,{}^{\ast}{\Gamma}_{\,\mu\,\mu_{1}\,\mu_{2}\,\mu_{3}}(k,k_{1},k_{2},k_{3}) and Γμμ1μ2(k,k1,k2)\!\,{}^{\ast}\Gamma_{\,\mu\,\mu_{1}\,\mu_{2}}(k,k_{1},k_{2}), (A.1) – (A.7), as well as of gluon propagator 𝒟~νμ(k)\,{}^{\ast}\!\tilde{\cal D}^{\nu\mu}(k), is given in Appendix in the HTL approximation, (A.8) – (A.10). Two four-vectors

u~μ(k)=k2(ku)(kμuμ(ku))иu¯μ(k)=k2uμkμ(ku)\tilde{u}_{\mu}(k)=\frac{k^{2}}{(k\cdot u)}\ \!\Bigl{(}k_{\mu}-u_{\mu}(k\cdot u)\Bigr{)}\quad\mbox{и}\quad\bar{u}_{\mu}(k)=k^{2}u_{\mu}-k_{\mu}(k\cdot u) (5.5)

are the projectors onto the longitudinal direction of wavevector 𝐤{\bf k}, written in the Lorentz-invariant form in the Hamilton and Lorentz gauge, respectively. Here, uμu^{\mu} is the four-velocity of the medium, which is uμ=(1,0,0,0)u^{\mu}=(1,0,0,0) in the rest system. Finally, four-vectors of form

(Zl(𝐤)2ω𝐤l)1/2u~μ(k)u¯2(k)|onshell12ω𝐤lϵμl(𝐤)\left(\frac{{\rm Z}_{l}({\bf k})}{2\omega_{\bf k}^{l}}\right)^{\!1/2}\!\!\!\left.\frac{\tilde{u}_{\mu}(k)}{\sqrt{\bar{u}^{2}(k)}}\ \!\right|_{\rm on-shell}\!\equiv\,\frac{1}{\sqrt{2\omega^{l}_{\bf k}}}\ \epsilon^{l}_{\mu}({\bf k}) (5.6)

on the right-hand side of Eq. (5.2) are conventional wavefunctions of a longitudinal physical gluon in the A0A_{0} - gauge, where factor Zl(𝐤)\sqrt{{\rm Z}_{l}({\bf k})} ensures renormalization of the gluon wavefunction due to thermal effects. Factor 3 on the right-hand side of expression (5.1) accounts for three possible four-plasmon decay channels, which change the plasmon number density:

g+g1g2+g3,g+g2g1+g3,g+g3g1+g2.{\rm g}^{\ast}+{\rm g}_{1}^{\ast}\rightleftharpoons{\rm g}_{2}^{\ast}+{\rm g}_{3}^{\ast},\quad{\rm g}^{\ast}+{\rm g}_{2}^{\ast}\rightleftharpoons{\rm g}_{1}^{\ast}+{\rm g}_{3}^{\ast},\quad{\rm g}^{\ast}+{\rm g}_{3}^{\ast}\rightleftharpoons{\rm g}_{1}^{\ast}+{\rm g}_{2}^{\ast}.

Comparing two expressions (4.5) and (5.1) for the plasmon–plasmon scattering probability, we see that effective amplitude T~𝐤,𝐤1,𝐤2,𝐤3aa1a2a3\widetilde{T}^{\,a\ a_{1}\ a_{2}\ a_{3}}_{\,{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}} defined by expression (2.13) should be identified (to within a numerical factor) with matrix element Maa1a2a3(𝐤,𝐤1,𝐤2,𝐤3){\rm M}^{\,a\,a_{1}\,a_{2}\,a_{3}}({\bf k},{\bf k}_{1},-{\bf k}_{2},-{\bf k}_{3}), calculated using the high-temperature quantum field theory; i.e.,

T~𝐤,𝐤1,𝐤2,𝐤3aa1a2a3=(dA2)1/2Maa1a2a3(𝐤,𝐤1,𝐤2,𝐤3).\widetilde{T}^{\ a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}=\biggl{(}\frac{d_{A}}{2}\biggr{)}^{\!1/2\!}{\rm M}^{\,a\,a_{1}\,a_{2}\,a_{3}}({\bf k},{\bf k}_{1},-{\bf k}_{2},-{\bf k}_{3}). (5.7)

From expressions for effective amplitudes (2.13) and (5.2), (5.3), we can immediately obtain the explicit form of amplitude T𝐤,𝐤1,𝐤2,𝐤3aa1a2a3T^{\ \!a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}, which appears as the coefficient function in the definition of fourth-order Hamiltonian H^4\widehat{H}_{4} (2.7):

T𝐤,𝐤1,𝐤2,𝐤3aa1a2a3=(dA2)1/2g2(ϵμl(𝐤)2ω𝐤l)i=13(ϵμil(𝐤i)2ω𝐤il)×T^{\ \!a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}=-\biggl{(}\frac{d_{A}}{2}\biggr{)}^{\!\!1/2\!}g^{2}\Biggl{(}\frac{\epsilon^{l}_{\mu}({\bf k})}{\sqrt{2\omega^{l}_{\bf k}}}\Biggr{)}\prod_{i=1}^{3}\ \!\Biggl{(}\frac{\epsilon^{l}_{\mu_{i}}({\bf k}_{i})}{\sqrt{2\omega^{l}_{{\bf k}_{i}}}}\Biggr{)}\ \!\times
×[faa1bfba2a3Γμμ1μ2μ3(k,k1,k2,k3)+faa2bfba1a3Γμμ2μ1μ3(k,k2,k1,k3)]|onshell.\times\Bigl{[}f^{\ \!\!a\ \!\!a\ \!\!_{1}b}f^{\ \!\!b\ \!\!a_{2}\ \!\!a_{3}}\,{}^{\ast}{\Gamma}^{\,\mu\,\mu_{1}\,\mu_{2}\,\mu_{3}}(k,k_{1},\!-k_{2},\!-k_{3})+\!\,f^{\ \!\!a\ \!\!a_{2}\ \!\!b}f^{\ \!\!b\ \!\!a_{1}\ \!\!a_{3}}\,{}^{\ast}{\Gamma}^{\,\mu\,\mu_{2}\,\mu_{1}\,\mu_{3}}(k,\!-k_{2},k_{1},\!-k_{3})\Bigr{]}\!\Big{|}_{\rm on\!-shell}\!. (5.8)

Here, we have taken into account the relationship (5.6) of the longitudinal projector with the polarization vector. The explicit form of effective four-gluon vertex Γμνλσ(k,k1,k2,k3)\,{}^{\ast}\Gamma^{\hskip 0.56917pt\mu\hskip 0.56917pt\nu\hskip 0.56917pt\lambda\hskip 0.56917pt\sigma}(k,k_{1},k_{2},k_{3}) on the right-hand side of expression (5.8) is defined by formulas (A.5) – (A.7).

6 Explicit form of functions U𝐤,𝐤1,𝐤2aa1a2U^{\ \!a\,a_{1}\,a_{2}}_{{\bf k},\,{\bf k}_{1},\,{\bf k}_{2}} and V𝐤,𝐤1,𝐤2aa1a2V^{\ \!a\,a_{1}\,a_{2}}_{{\bf k},\,{\bf k}_{1},\,{\bf k}_{2}}

Let us now determine the explicit form of coefficient functions U𝐤,𝐤1,𝐤2aa1a2U^{\ \!a\ a_{1}\ a_{2}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2}} and V𝐤,𝐤1,𝐤2aa1a2V^{\ \!a\ a_{1}\ a_{2}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2}} in the integrands of third-order Hamiltonian H^3\widehat{H}_{3} (2.6). In contrast to the previous case, however, here we have a more complicated situation. Considering relations (2.13) and (5.2) – (5.4), we obtain from formula (5.7) the following initial expression for analysis:

U(𝐤2+𝐤3),𝐤2,𝐤3ba2a3U(𝐤+𝐤1),𝐤,𝐤1baa1ω(𝐤+𝐤1)l+ω𝐤l+ω𝐤1l+V𝐤2+𝐤3,𝐤2,𝐤3ba2a3V𝐤+𝐤1,𝐤,𝐤1baa1ω𝐤+𝐤1lω𝐤lω𝐤1l\displaystyle\frac{U^{\ b\ a_{2}\ a_{3}}_{-({\bf k}_{2}+{\bf k}_{3}),\ {\bf k}_{2},\ {\bf k}_{3}}\ U^{*\ b\ a\ a_{1}}_{-({\bf k}+{\bf k}_{1}),\ {\bf k},\ {\bf k}_{1}}}{\omega^{l}_{-({\bf k}+{\bf k}_{1})\!}+\omega^{l}_{{\bf k}}+\omega^{l}_{{\bf k}_{1}}}\ +\ \frac{V^{\ b\ a_{2}\ a_{3}}_{{\bf k}_{2}+{\bf k}_{3},\ {\bf k}_{2},\ {\bf k}_{3}}\ V^{*\ b\ a\ a_{1}}_{{\bf k}+{\bf k}_{1},\ {\bf k},\ {\bf k}_{1}}}{\omega^{l}_{{\bf k}+{\bf k}_{1}\!}-\omega^{l}_{{\bf k}}-\omega^{l}_{{\bf k}_{1}}}
+V𝐤1,𝐤2,𝐤1𝐤2a1a2bV𝐤3,𝐤,𝐤3𝐤a3abω𝐤3𝐤l+ω𝐤lω𝐤3l+V𝐤,𝐤2,𝐤𝐤2aa2bV𝐤3,𝐤1,𝐤3𝐤1a3a1bω𝐤3𝐤1l+ω𝐤1lω𝐤3l\displaystyle+\ \!\frac{V^{\ a_{1}\ a_{2}\ b}_{{\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{1}-{\bf k}_{2}}\ V^{*\ a_{3}\ a\ b}_{{\bf k}_{3},\ {\bf k},\ {\bf k}_{3}-{\bf k}}}{\omega^{l}_{{\bf k}_{3}-{\bf k}\!}+\omega^{l}_{{\bf k}}-\omega^{l}_{{\bf k}_{3}}}\ +\ \frac{V^{\ a\ a_{2}\ b}_{{\bf k},\ {\bf k}_{2},\ {\bf k}-{\bf k}_{2}}\ V^{*\ a_{3}\ a_{1}\ b}_{{\bf k}_{3},\ {\bf k}_{1},\ {\bf k}_{3}-{\bf k}_{1}}}{\omega^{l}_{{\bf k}_{3}-{\bf k}_{1}\!}+\omega^{l}_{{\bf k}_{1}}-\omega^{l}_{{\bf k}_{3}}}
+V𝐤,𝐤3,𝐤𝐤3aa3bV𝐤2,𝐤1,𝐤2𝐤1a2a1bω𝐤2𝐤1l+ω𝐤1lω𝐤2l+V𝐤1,𝐤3,𝐤1𝐤3a1a3bV𝐤2,𝐤,𝐤2𝐤a2abω𝐤2𝐤l+ω𝐤lω𝐤2l\displaystyle+\ \!\frac{V^{\ a\ a_{3}\ b}_{{\bf k},\ {\bf k}_{3},\ {\bf k}-{\bf k}_{3}}\ V^{*\ a_{2}\ a_{1}\ b}_{{\bf k}_{2},\ {\bf k}_{1},\ {\bf k}_{2}-{\bf k}_{1}}}{\omega^{l}_{{\bf k}_{2}-{\bf k}_{1}\!}+\omega^{l}_{{\bf k}_{1}}-\omega^{l}_{{\bf k}_{2}}}\ +\ \frac{V^{\ a_{1}\ a_{3}\ b}_{{\bf k}_{1},\ {\bf k}_{3},\ {\bf k}_{1}-{\bf k}_{3}}\ V^{*\ a_{2}\ a\ b}_{{\bf k}_{2},\ {\bf k},\ {\bf k}_{2}-{\bf k}}}{\omega^{l}_{{\bf k}_{2}-{\bf k}\!}+\omega^{l}_{{\bf k}}-\omega^{l}_{{\bf k}_{2}}}
=12(dA2)1/2g2(ϵμl(k)2ω𝐤l)i=13(ϵμil(ki)2ω𝐤il)×=\frac{1}{2}\,\biggl{(}\frac{d_{A}}{2}\biggr{)}^{\!\!1/2\!}g^{2}\Biggl{(}\frac{\epsilon^{l}_{\mu}(k)}{\sqrt{2\omega^{l}_{\bf k}}}\Biggr{)}\prod_{i=1}^{3}\ \!\Biggl{(}\frac{\epsilon^{l}_{\mu_{i}}(k_{i})}{\sqrt{2\omega^{l}_{{\bf k}_{i}}}}\Biggr{)}\ \!\times (6.1)
[faa1bfba2a3(Γμμ1ν(k,k1,kk1)𝒟~νν(k2+k3)Γνμ2μ3(k2+k3,k2,k3)\Bigl{[}\,f^{\ \!\!a\ \!\!a_{1}\ \!\!b}f^{\ \!\!b\ \!\!a_{2}\ \!\!a_{3}}\Bigl{(}\!\,^{\ast}\Gamma^{\mu\mu_{1}\nu}(k,k_{1},-k-k_{1})\,^{\ast}\widetilde{\cal D}_{\nu\nu^{\prime}}(k_{2}+k_{3})\,^{\ast}\Gamma^{\nu^{\prime}\mu_{2}\mu_{3}}(k_{2}+k_{3},-k_{2},-k_{3})
+Γμμ3ν(k,k3,k+k3)𝒟~νν(k2k1)Γνμ2μ1(k2k1,k2,k1))+\,\,^{\ast}\Gamma^{\mu\mu_{3}\nu}(k,-k_{3},-k+k_{3})\,^{\ast}\widetilde{\cal D}_{\nu\nu^{\prime}}(k_{2}-k_{1})\,^{\ast}\Gamma^{\nu^{\prime}\mu_{2}\mu_{1}}(k_{2}-k_{1},-k_{2},k_{1})\Bigr{)}
+faa2bfba1a3(Γμμ1ν(k,k2,k+k2)𝒟~νν(k1+k3)Γνμ2μ3(k1+k3,k1,k3)+\,f^{\ \!\!a\ \!\!a_{2}\ \!\!{b}}f^{\ \!\!b\ \!\!a_{1}\ \!\!a_{3}}\Bigl{(}\!\,^{\ast}\Gamma^{\mu\mu_{1}\nu}(k,-k_{2},-k+k_{2})\,^{\ast}\widetilde{\cal D}_{\nu\nu^{\prime}}(-k_{1}+k_{3})\,^{\ast}\Gamma^{\nu^{\prime}\mu_{2}\mu_{3}}(-k_{1}+k_{3},k_{1},-k_{3})
+Γμμ3ν(k,k3,k+k3)𝒟~νν(k1+k2)Γνμ2μ1(k1+k2,k1,k2))]|onshell.+\;^{\ast}\Gamma^{\mu\mu_{3}\nu}(k,-k_{3},-k+k_{3})\,^{\ast}\widetilde{\cal D}_{\nu\nu^{\prime}}(-k_{1}+k_{2})\,^{\ast}\Gamma^{\nu^{\prime}\mu_{2}\mu_{1}}(-k_{1}+k_{2},k_{1},-k_{2})\Bigr{)}\Bigr{]}\Big{|}_{\rm on-shell}.

At the first step, we must ‘‘untangle’’ the color structure of this expression. For this, we set for three-point amplitudes UU and VV:

U𝐤,𝐤1,𝐤2aa1a2=faa1a2U𝐤,𝐤1,𝐤2,V𝐤,𝐤1,𝐤2aa1a2=faa1a2V𝐤,𝐤1,𝐤2.U^{\ \!a\ a_{1}\ a_{2}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2}}=f^{\ \!\!a\ \!\!a_{1}\ \!\!a_{2}\,}U_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2}},\qquad V^{\ \!a\ a_{1}\ a_{2}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2}}=f^{\ \!\!a\ \!\!a_{1}\ \!\!a_{2}\,}V_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2}}.

Such a representation is unambiguous. In view of complete antisymmetry of the structure constants faa1a2f^{\ \!\!a\ \!\!a_{1}\ \!\!a_{2}} in permutation of color indices, properties (2.8) immediately imply

V𝐤,𝐤1,𝐤2=V𝐤,𝐤2,𝐤1,U𝐤,𝐤1,𝐤2=U𝐤,𝐤2,𝐤1=U𝐤1,𝐤2,𝐤.V_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2}}=-\ \!V_{{\bf k},\ {\bf k}_{2},\ {\bf k}_{1}}\ ,\quad U_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2}}=-\ \!U_{{\bf k},\ {\bf k}_{2},\ {\bf k}_{1}}=U_{{\bf k}_{1},\ {\bf k}_{2},\ {\bf k}}\,. (6.2)

Further, using the identity

fa1a2bfba3a=faa2bfba1a3+faa1bfba2a3,f^{\ \!\!a_{1}\ \!\!a_{2}\ \!\!b}f^{\ \!\!b\ \!\!a_{3}\ \!\!a}=-f^{\ \!\!a\ \!\!a_{2}\ \!\!b}f^{\ \!\!b\ \!\!a_{1}\ \!\!a_{3}}+f^{\ \!\!a\ \!\!a_{1}\ \!\!b}f^{\ \!\!b\ \!\!a_{2}\ \!\!a_{3}},

for antisymmetric structure constants, we can reduce the left-hand side of relation (6.1) to form

faa1bfba2a3[U(𝐤2+𝐤3),𝐤2,𝐤3U(𝐤+𝐤1),𝐤,𝐤1ω(𝐤+𝐤1)l+ω𝐤l+ω𝐤1l+V𝐤2+𝐤3,𝐤2,𝐤3V𝐤+𝐤1,𝐤,𝐤1ω𝐤+𝐤1llω𝐤lω𝐤1lf^{\ \!\!a\ \!\!a_{1}\ \!\!b}f^{\ \!\!b\ \!\!a_{2}\ \!\!a_{3}}\Biggl{[}\ \frac{U^{\phantom{*}}_{-({\bf k}_{2}+{\bf k}_{3}),\ {\bf k}_{2},\ {\bf k}_{3}}\ U^{*}_{-({\bf k}+{\bf k}_{1}),\ {\bf k},\ {\bf k}_{1}}}{\omega^{l}_{-({\bf k}+{\bf k}_{1})}+\omega^{l}_{{\bf k}}+\omega^{l}_{{\bf k}_{1}}}\ +\ \frac{V^{\phantom{*}}_{{\bf k}_{2}+{\bf k}_{3},\ {\bf k}_{2},\ {\bf k}_{3}}\ V^{*}_{{\bf k}+{\bf k}_{1},\ {\bf k},\ {\bf k}_{1}}}{\omega^{l}_{{\bf k}+{\bf k}^{l}_{1}}-\omega^{l}_{{\bf k}}-\omega^{l}_{{\bf k}_{1}}}
+V𝐤1,𝐤2,𝐤1𝐤2V𝐤3,𝐤,𝐤3𝐤ω𝐤3𝐤+ω𝐤ω𝐤3+V𝐤,𝐤3,𝐤𝐤3V𝐤2,𝐤1,𝐤2𝐤1ω𝐤2𝐤1+ω𝐤1ω𝐤2]\hskip 128.0374pt+\ \!\frac{V^{\phantom{*}}_{{\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{1}-{\bf k}_{2}}\ V^{*}_{{\bf k}_{3},\ {\bf k},\ {\bf k}_{3}-{\bf k}}}{\omega_{{\bf k}_{3}-{\bf k}}+\omega_{{\bf k}}-\omega_{{\bf k}_{3}}}\ +\ \!\frac{V^{\phantom{*}}_{{\bf k},\ {\bf k}_{3},\ {\bf k}-{\bf k}_{3}}\ V^{*}_{{\bf k}_{2},\ {\bf k}_{1},\ {\bf k}_{2}-{\bf k}_{1}}}{\omega_{{\bf k}_{2}-{\bf k}_{1}}+\omega_{{\bf k}_{1}}-\omega_{{\bf k}_{2}}}\ \Biggr{]}
faa2bfba1a3[V𝐤1,𝐤2,𝐤1𝐤2V𝐤3,𝐤,𝐤3𝐤ω𝐤3𝐤+ω𝐤ω𝐤3+V𝐤,𝐤2,𝐤𝐤2V𝐤3,𝐤1,𝐤3𝐤1ω𝐤3𝐤1+ω𝐤1ω𝐤3-f^{\ \!\!a\ \!\!a_{2}\ \!\!b}f^{\ \!\!b\ \!\!a_{1}\ \!\!a_{3}}\Biggl{[}\ \!\frac{V^{\phantom{*}}_{{\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{1}-{\bf k}_{2}}\ V^{*}_{{\bf k}_{3},\ {\bf k},\ {\bf k}_{3}-{\bf k}}}{\omega_{{\bf k}_{3}-{\bf k}}+\omega_{{\bf k}}-\omega_{{\bf k}_{3}}}\ +\ \frac{V^{\phantom{*}}_{{\bf k},\ {\bf k}_{2},\ {\bf k}-{\bf k}_{2}}\ V^{*}_{{\bf k}_{3},\ {\bf k}_{1},\ {\bf k}_{3}-{\bf k}_{1}}}{\omega_{{\bf k}_{3}-{\bf k}_{1}}+\omega_{{\bf k}_{1}}-\omega_{{\bf k}_{3}}}\hskip 39.83368pt
+V𝐤,𝐤3,𝐤𝐤3V𝐤2,𝐤1,𝐤2𝐤1ω𝐤2𝐤1+ω𝐤1ω𝐤2+V𝐤1,𝐤3,𝐤1𝐤3V𝐤2,𝐤,𝐤2𝐤ω𝐤2𝐤+ω𝐤ω𝐤2].\hskip 128.0374pt+\ \frac{V^{\phantom{*}}_{{\bf k},\ {\bf k}_{3},\ {\bf k}-{\bf k}_{3}}\ V^{*}_{{\bf k}_{2},\ {\bf k}_{1},\ {\bf k}_{2}-{\bf k}_{1}}}{\omega_{{\bf k}_{2}-{\bf k}_{1}}+\omega_{{\bf k}_{1}}-\omega_{{\bf k}_{2}}}\ +\ \frac{V^{\phantom{*}}_{{\bf k}_{1},\ {\bf k}_{3},\ {\bf k}_{1}-{\bf k}_{3}}\ V^{*}_{{\bf k}_{2},\ {\bf k},\ {\bf k}_{2}-{\bf k}}}{\omega_{{\bf k}_{2}-{\bf k}}+\omega_{{\bf k}}-\omega_{{\bf k}_{2}}}\ \Biggr{]}.

Comparing the coefficients following products faa1bfba2a3f^{\ \!\!a\ \!\!a_{1}\ \!\!b}f^{\ \!\!b\ \!\!a_{2}\ \!\!a_{3}} and faa2bfba1a3f^{\ \!\!a\ \!\!a_{2}\ \!\!b}f^{\ \!\!b\ \!\!a_{1}\ \!\!a_{3}} in the above expression and the right-hand side of relation (6.1), we obtain

U(𝐤2+𝐤3),𝐤2,𝐤3U(𝐤+𝐤1),𝐤,𝐤1ω(𝐤+𝐤1)+ω𝐤+ω𝐤1+V𝐤2+𝐤3,𝐤2,𝐤3V𝐤+𝐤1,𝐤,𝐤1ω𝐤+𝐤1ω𝐤ω𝐤1\frac{U^{\phantom{*}}_{-({\bf k}_{2}+{\bf k}_{3}),\ {\bf k}_{2},\ {\bf k}_{3}}\ U^{*}_{-({\bf k}+{\bf k}_{1}),\ {\bf k},\ {\bf k}_{1}}}{\omega_{-({\bf k}+{\bf k}_{1})}+\omega_{{\bf k}}+\omega_{{\bf k}_{1}}}\ +\ \frac{V^{\phantom{*}}_{{\bf k}_{2}+{\bf k}_{3},\ {\bf k}_{2},\ {\bf k}_{3}}\ V^{*}_{{\bf k}+{\bf k}_{1},\ {\bf k},\ {\bf k}_{1}}}{\omega_{{\bf k}+{\bf k}_{1}}-\omega_{{\bf k}}-\omega_{{\bf k}_{1}}}
+V𝐤1,𝐤2,𝐤1𝐤2V𝐤3,𝐤,𝐤3𝐤ω(𝐤2𝐤1)+ω𝐤2ω𝐤1+V𝐤,𝐤3,𝐤𝐤3V𝐤2,𝐤1,𝐤2𝐤1ω𝐤2𝐤1+ω𝐤1ω𝐤2\hskip 14.22636pt+\ \frac{V^{\phantom{*}}_{{\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{1}-{\bf k}_{2}}\ V^{*}_{{\bf k}_{3},\ {\bf k},\ {\bf k}_{3}-{\bf k}}}{\omega_{-({\bf k}_{2}-{\bf k}_{1})}+\omega_{{\bf k}_{2}}-\omega_{{\bf k}_{1}}}\ +\ \!\frac{V^{\phantom{*}}_{{\bf k},\ {\bf k}_{3},\ {\bf k}-{\bf k}_{3}}\ V^{*}_{{\bf k}_{2},\ {\bf k}_{1},\ {\bf k}_{2}-{\bf k}_{1}}}{\omega_{{\bf k}_{2}-{\bf k}_{1}}+\omega_{{\bf k}_{1}}-\omega_{{\bf k}_{2}}}\hskip 34.14322pt
=12(dA2)1/2g2(ϵμl(𝐤)2ω𝐤l)i=13(ϵμil(𝐤i)2ω𝐤il)×=\frac{1}{2}\,\biggl{(}\frac{d_{A}}{2}\biggr{)}^{\!\!1/2\!}g^{2}\Biggl{(}\frac{\epsilon^{l}_{\mu}({\bf k})}{\sqrt{2\omega^{l}_{\bf k}}}\Biggr{)}\prod_{i=1}^{3}\ \!\Biggl{(}\frac{\epsilon^{l}_{\mu_{i}}({\bf k}_{i})}{\sqrt{2\omega^{l}_{{\bf k}_{i}}}}\Biggr{)}\ \!\times
×[Γμμ1ν(k,k1,kk1)𝒟~νν(k+k1)Γνμ2μ3(k2+k3,k2,k3)\times\Bigl{[}\,^{\ast}\Gamma^{\mu\mu_{1}\nu}(k,k_{1},-k-k_{1})\,^{\ast}\widetilde{\cal D}_{\nu\nu^{\prime}}(k+k_{1})\,^{\ast}\Gamma^{\nu^{\prime}\mu_{2}\mu_{3}}(k_{2}+k_{3},-k_{2},-k_{3})\hskip 42.67912pt
+Γμμ3ν(k,k3,k+k3)𝒟~νν(k2k1)Γνμ2μ1(k2k1,k2,k1)]|onshell+\,\,^{\ast}\Gamma^{\mu\mu_{3}\nu}(k,-k_{3},-k+k_{3})\,^{\ast}\widetilde{\cal D}_{\nu\nu^{\prime}}(k_{2}-k_{1})\,^{\ast}\Gamma^{\nu^{\prime}\mu_{2}\mu_{1}}(k_{2}-k_{1},-k_{2},k_{1})\Bigr{]}\Bigr{|}_{\rm\,on-shell}

plus the analogous relation for the second coefficient function. Finally, the structure of this relation clearly shows that in fact we have here two independent relations: first,

U(𝐤2+𝐤3),𝐤2,𝐤3U(𝐤+𝐤1),𝐤,𝐤1ω𝐤+𝐤1l+ω𝐤l+ω𝐤1l+V𝐤2+𝐤3,𝐤2,𝐤3V𝐤+𝐤1,𝐤,𝐤1ω𝐤+𝐤1lω𝐤lω𝐤1l\frac{U^{\phantom{*}}_{-({\bf k}_{2}+{\bf k}_{3}),\ {\bf k}_{2},\ {\bf k}_{3}}\ U^{*}_{-({\bf k}+{\bf k}_{1}),\ {\bf k},\ {\bf k}_{1}}}{\omega^{l}_{{\bf k}+{\bf k}_{1}}+\omega^{l}_{{\bf k}}+\omega^{l}_{{\bf k}_{1}}}\ +\ \frac{V^{\phantom{*}}_{{\bf k}_{2}+{\bf k}_{3},\ {\bf k}_{2},\ {\bf k}_{3}}\ V^{*}_{{\bf k}+{\bf k}_{1},\ {\bf k},\ {\bf k}_{1}}}{\omega^{l}_{{\bf k}+{\bf k}_{1}}-\omega^{l}_{{\bf k}}-\omega^{l}_{{\bf k}_{1}}} (6.3)
=12(dA2)1/2g2(ϵμl(𝐤)2ω𝐤l)i=13(ϵμil(𝐤i)2ω𝐤il)=\frac{1}{2}\,\biggl{(}\frac{d_{A}}{2}\biggr{)}^{\!\!1/2\!}g^{2}\Biggl{(}\frac{\epsilon^{l}_{\mu}({\bf k})}{\sqrt{2\omega^{l}_{\bf k}}}\Biggr{)}\prod_{i=1}^{3}\ \!\Biggl{(}\frac{\epsilon^{l}_{\mu_{i}}({\bf k}_{i})}{\sqrt{2\omega^{l}_{{\bf k}_{i}}}}\Biggr{)}
×[Γμμ1ν(k,k1,kk1)𝒟~νν(k+k1)Γνμ2μ3(k2+k3,k2,k3)]|onshell\times\Bigl{[}\,^{\ast}\Gamma^{\mu\mu_{1}\nu}(k,k_{1},-k-k_{1})\,^{\ast}\widetilde{\cal D}_{\nu\nu^{\prime}}(k+k_{1})\,^{\ast}\Gamma^{\nu^{\prime}\mu_{2}\mu_{3}}(k_{2}+k_{3},-k_{2},-k_{3})\Bigr{]}\Bigr{|}_{\rm\,on-shell}

and second,

V𝐤1,𝐤2,𝐤1𝐤2V𝐤3,𝐤,𝐤3𝐤ω𝐤2𝐤1l+ω𝐤2lω𝐤1l+V𝐤,𝐤3,𝐤𝐤3V𝐤2,𝐤1,𝐤2𝐤1ω𝐤2𝐤1l+ω𝐤1lω𝐤2l=\frac{V^{\phantom{*}}_{{\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{1}-{\bf k}_{2}}\ V^{*}_{{\bf k}_{3},\ {\bf k},\ {\bf k}_{3}-{\bf k}}}{\omega^{l}_{{\bf k}_{2}-{\bf k}_{1}}+\omega^{l}_{{\bf k}_{2}}-\omega^{l}_{{\bf k}_{1}}}\ +\ \!\frac{V^{\phantom{*}}_{{\bf k},\ {\bf k}_{3},\ {\bf k}-{\bf k}_{3}}\ V^{*}_{{\bf k}_{2},\ {\bf k}_{1},\ {\bf k}_{2}-{\bf k}_{1}}}{\omega^{l}_{{\bf k}_{2}-{\bf k}_{1}}+\omega^{l}_{{\bf k}_{1}}-\omega^{l}_{{\bf k}_{2}}}\ =\hskip 34.14322pt (6.4)
=12(dA2)1/2g2(ϵμl(𝐤)2ω𝐤l)i=13(ϵμil(𝐤i)2ω𝐤il)=\frac{1}{2}\,\biggl{(}\frac{d_{A}}{2}\biggr{)}^{\!\!1/2\!}g^{2}\Biggl{(}\frac{\epsilon^{l}_{\mu}({\bf k})}{\sqrt{2\omega^{l}_{\bf k}}}\Biggr{)}\prod_{i=1}^{3}\ \!\Biggl{(}\frac{\epsilon^{l}_{\mu_{i}}({\bf k}_{i})}{\sqrt{2\omega^{l}_{{\bf k}_{i}}}}\Biggr{)}
×[Γμμ3ν(k,k3,k+k3)𝒟~νν(k2k1)Γνμ2μ1(k2k1,k2,k1)]|onshell.\times\Bigl{[}\,^{\ast}\Gamma^{\mu\mu_{3}\nu}(k,-k_{3},-k+k_{3})\,^{\ast}\widetilde{\cal D}_{\nu\nu^{\prime}}(k_{2}-k_{1})\,^{\ast}\Gamma^{\nu^{\prime}\mu_{2}\mu_{1}}(k_{2}-k_{1},-k_{2},k_{1})\Bigr{]}\Bigr{|}_{\rm\,on-shell}.

On the left-hand sides of expressions (6.3) and (6.4), we have taken into account the evenness of the dispersion relation (i.e., ω𝐤l=ω𝐤l\omega^{l}_{-{\bf k}}=\omega^{l}_{{\bf k}}).
Further, at the second step in effective gluon propagators 𝒟~νν\,{}^{\ast}\widetilde{\cal D}_{\nu\nu^{\prime}}, on the right-hand sides of relations (6.3) and (6.4) we retain only the terms with longitudinal projector Q~νν\widetilde{Q}_{\nu\nu^{\prime}}. For example, for first propagator 𝒟~νν(k+k1)\,{}^{\ast}\widetilde{\cal D}_{\nu\nu^{\prime}}(k+k_{1}), we perform substitution

𝒟~νν(k+k1)Q~νν(k+k1)Δl(k+k1),\,{}^{\ast}\!\widetilde{\cal D}_{\nu\nu^{\prime}}(k+k_{1})\Rightarrow-\,\widetilde{Q}_{\nu\nu^{\prime}}(k+k_{1})\,^{\ast}\!\Delta^{l}(k+k_{1}),

where the right-hand side, on account of relations (A.10) and (A.9), is given by explicit expression

u~ν(k+k1)u~ν(k+k1)u¯2(k+k1)1(k+k1)2Πl(k+k1),-\,\frac{\tilde{u}_{\nu}(k+k_{1})\,\tilde{u}_{\nu^{\prime}}(k+k_{1})}{\bar{u}^{2}(k+k_{1})}\ \frac{1}{(k+k_{1})^{2}-\Pi^{l}(k+k_{1})}, (6.5)

analogous operations are performed for second propagator 𝒟~νν(k2k1)\,{}^{\ast}\widetilde{\cal D}_{\nu\nu^{\prime}}(k_{2}-k_{1}). Near pole ωω𝐤l\omega\sim\omega^{l}_{\bf k}, longitudinal scalar propagator Δl(k)=Δl(ω,𝐤)\,{}^{\ast}\!\Delta^{l}(k)=\,^{\ast}\!\Delta^{l}(\omega,\,{\bf k}) behaves as (see, for example, [21])

Δl(ω,𝐤)=1ω2𝐤2Πl(ω,𝐤)Zl(𝐤)ω2(ω𝐤l)2=(Zl(𝐤)2ω𝐤l)[1ωω𝐤l1ω+ω𝐤l].\,{}^{\ast}\!\Delta^{l}(\omega,\,{\bf k})=\frac{1}{\omega^{2}-{\bf k}^{2}-\Pi^{l}(\omega,\,{\bf k})}\simeq\frac{{\rm Z}_{l}({\bf k})}{\omega^{2}-(\omega^{l}_{\bf k})^{2}}=\biggl{(}\frac{{\rm Z}_{l}({\bf k})}{2\hskip 0.85355pt\omega^{l}_{\bf k}}\biggr{)}\biggl{[}\,\frac{1}{\omega-\omega^{l}_{\bf k}}-\frac{1}{\omega+\omega^{l}_{\bf k}}\,\biggr{]}.

Using this approximation, we obtain, in particular, the following expressions for the first propagator:

Δl(k+k1)(Zl(𝐤+𝐤1)2ω𝐤+𝐤1l)[1ω𝐤+𝐤1lω𝐤lω𝐤1l+1ω𝐤+𝐤1l+ω𝐤l+ω𝐤1l]{}^{\ast}\!\Delta^{l}(k+k_{1})\simeq-\,\biggl{(}\frac{{\rm Z}_{l}({\bf k}+{\bf k}_{1})}{2\ \!\omega^{l}_{{\bf k}+{\bf k}_{1}}}\biggr{)}\biggl{[}\,\frac{1}{\omega^{l}_{{\bf k}+{\bf k}_{1}}\!-\omega^{l}_{{\bf k}}-\omega^{l}_{{\bf k}_{1}}}+\frac{1}{\omega^{l}_{{\bf k}+{\bf k}_{1}}\!+\omega^{l}_{{\bf k}}+\omega^{l}_{{\bf k}_{1}}}\,\biggr{]}\hskip 9.95863pt (6.6)

and for the second propagator

Δl(k2k1)(Zl(𝐤2𝐤1)2ω𝐤2𝐤1l)[1ω𝐤2𝐤1l+ω𝐤2lω𝐤1l+1ω𝐤2𝐤1l+ω𝐤1lω𝐤2l].{}^{\ast}\!\Delta^{l}(k_{2}-k_{1})\simeq-\,\biggl{(}\frac{{\rm Z}_{l}({\bf k}_{2}-{\bf k}_{1})}{2\ \!\omega^{l}_{{\bf k}_{2}-{\bf k}_{1}}}\biggr{)}\biggl{[}\,\frac{1}{\omega^{l}_{{\bf k}_{2}-{\bf k}_{1}}\!+\omega^{l}_{{\bf k}_{2}}-\omega^{l}_{{\bf k}_{1}}}+\frac{1}{\omega^{l}_{{\bf k}_{2}-{\bf k}_{1}}\!+\omega^{l}_{{\bf k}_{1}}-\omega^{l}_{{\bf k}_{2}}}\,\biggr{]}. (6.7)

Considering expressions (6.3) – (6.7) given above, we can write the desired three-plasmon vertex functions in the form

V𝐤,𝐤1,𝐤2=g(dA8)1/4(ϵμl(𝐤)2ω𝐤l)(ϵμ1l(𝐤1)2ω𝐤1l)(ϵμ2l(𝐤2)2ω𝐤2l)Γμμ1μ2(k,k1,k2)|onshellV_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2}}=g\,\biggl{(}\frac{d_{A}}{8}\biggr{)}^{\!\!1/4\!}\Biggl{(}\frac{\epsilon^{l}_{\mu}({\bf k})}{\sqrt{2\omega^{l}_{{\bf k}_{\phantom{1}}}}}\Biggr{)}\!\Biggl{(}\frac{\epsilon^{l}_{\mu_{1}}({\bf k}_{1})}{\sqrt{2\omega^{l}_{{\bf k}_{1}}}}\Biggr{)}\!\Biggl{(}\frac{\epsilon^{l}_{\mu_{2}}({\bf k}_{2})}{\sqrt{2\omega^{l}_{{\bf k}_{2}}}}\Biggr{)}\!\,^{\ast}\Gamma^{\mu\mu_{1}\mu_{2}}(k,-k_{1},-k_{2})\Bigr{|}_{\rm\,on-shell}\hskip 8.5359pt (6.8)

and

U𝐤,𝐤1,𝐤2=g(dA8)1/4(ϵμl(𝐤)2ω𝐤l)(ϵμ1l(𝐤1)2ω𝐤1l)(ϵμ2l(𝐤2)2ω𝐤2l)Γμμ1μ2(k,k1,k2)|onshell.U_{{\bf k},\ \!{\bf k}_{1},\ \!{\bf k}_{2}}=g\,\biggl{(}\frac{d_{A}}{8}\biggr{)}^{\!\!1/4\!}\Biggl{(}\frac{\epsilon^{l}_{\mu}({\bf k})}{\sqrt{2\omega^{l}_{{\bf k}_{\phantom{1}}}}}\Biggr{)}\!\Biggl{(}\frac{\epsilon^{l}_{\mu_{1}}({\bf k}_{1})}{\sqrt{2\omega^{l}_{{\bf k}_{1}}}}\Biggr{)}\!\Biggl{(}\frac{\epsilon^{l}_{\mu_{2}}({\bf k}_{2})}{\sqrt{2\omega^{l}_{{\bf k}_{2}}}}\Biggr{)}\!\,^{\ast}\Gamma^{\mu\mu_{1}\mu_{2}}(-k,-k_{1},-k_{2})\Bigr{|}_{\rm\,on-shell}. (6.9)

It should be noted that vertex functions (6.8) and (6.9) describe essentially different processes. By way of example, we consider the process described by the second diagram in Fig 1 (ss channel). In fact, it includes two scattering subprocesses. In the approximation considered here, the first subprocess can be described as follows (Fig. 2):

Refer to caption
Figure 2: Subprocesses of four-plasmon elastic scattering, which are determined by processes of three-plasmon decays and merging in the ss channel.

two plasmons with frequencies ω𝐤l\omega^{l}_{\bf k} and ω𝐤1l\omega^{l}_{{\bf k}_{1}} and wavevectors 𝐤{\bf k} and 𝐤1{\bf k}_{1} merge at vertex 1 into a single plasmon with frequency ω𝐤+𝐤1l\omega^{l}_{{\bf k}+{\bf k}_{1}} and wavevector 𝐤+𝐤1{\bf k}+{\bf k}_{1}, which subsequently splits at vertex 2 into two plasmons with frequencies ω𝐤2l\omega^{l}_{{\bf k}_{2}} and ω𝐤3l\omega^{l}_{{\bf k}_{3}}, and wavevectors 𝐤2{\bf k}_{2} and 𝐤3{\bf k}_{3} (Fig. 2(a)). In the classical Hamilton description, function 1/(ω𝐤+𝐤1lω𝐤lω𝐤1l)1/(\omega^{l}_{{\bf k}+{\bf k}_{1}}\!-\omega^{l}_{{\bf k}}-\omega^{l}_{{\bf k}_{1}}) plays the role of a propagator of an intermediate ‘‘virtual’’ state of collective longitudinal excitations, and the interaction at vertices 1 and 2 is defined in this case by function V𝐤,𝐤1,𝐤2V_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2}} (6.8).
The second subprocess is determined as follows (Fig. 2(b)): at vertex 2, a three-plasmon decay occurs – two plasmons with frequencies ω𝐤2l\omega^{l}_{{\bf k}_{2}} and ω𝐤3l\omega^{l}_{{\bf k}_{3}} and wavevectors 𝐤2{\bf k}_{2} and 𝐤3{\bf k}_{3} pass to the system, while the third plasmon with frequency ω𝐤2+𝐤3l\omega^{l}_{{\bf k}_{2}+{\bf k}_{3}} and wavevector 𝐤2+𝐤3{\bf k}_{2}+{\bf k}_{3} at vertex 1 merges with two plasmons with frequencies ω𝐤l\omega^{l}_{\bf k} and ω𝐤1l\omega^{l}_{{\bf k}_{1}} and wavevectors 𝐤{\bf k} and 𝐤1{\bf k}_{1}, which arrive from the system. In this case, function 1/(ω𝐤+𝐤1l+ω𝐤l+ω𝐤1l)1/(\omega^{l}_{{\bf k}+{\bf k}_{1}}\!+\omega^{l}_{{\bf k}}+\omega^{l}_{{\bf k}_{1}}) plays the role of a propagator. The interaction at vertices 1 and 2 is determined by function U𝐤,𝐤1,𝐤2U_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2}} (6.9).

7 Conclusion

In this study, we have taken the first step in constructing the classical Hamiltonian formalism for describing processes of nonlinear interaction of soft gluon excitations in the Yang–Mills high-temperature field theory. We have constructed canonical transformation (2.10) in explicit form, which makes it possible to exclude third-order interaction Hamiltonian H^3\widehat{H}_{3} (2.6) and to define in this way new effective interaction Hamiltonian H^~4\widetilde{\widehat{H}}_{4} (2.12) with gauge-invariant scattering amplitude T~𝐤,𝐤1,𝐤2,𝐤3aa1a2a3\widetilde{T}^{\ a\ a_{1}\ a_{2}\ a_{3}}_{{\bf k},\ {\bf k}_{1},\ {\bf k}_{2},\ {\bf k}_{3}}. This interaction Hamiltonian determines a specific physical process, viz., elastic scattering of two colorless plasmons off each other. This scattering process dominates when the gauge field amplitude has order [11]

|Aμ(x)|gTand, accordinglyN𝐤l1g,|A_{\mu}(x)|\sim\sqrt{g}T\,\;\mbox{and, accordingly}\;N_{\bf k}^{l}\,\sim\,\displaystyle\frac{1}{g}\ \!,

which in fact corresponds to the level of thermal fluctuations in a hot gluon plasma. For this value of the gauge field amplitude at g1g\ll 1, plasmon number density N𝐤lN_{\bf k}^{l} is high, and the application of the purely classical description is justified. Moreover, the use of the linearized Boltzmann equation instead of the exact equation (4.4) is justified for colorless plasmons because the Planck distribution, relative to which the deviation δN𝐤l\delta N_{\bf k}^{l} of the plasmon number density is measured, is of order

Neql(𝐤)Tω𝐤l1g.N_{\rm eq}^{l}({\bf k})\sim\displaystyle\frac{T}{\omega_{\bf k}^{l}}\sim\displaystyle\frac{1}{g}\ \!.

In this case, we can state that the theory of plasmon–plasmon interaction for small amplitudes of soft excitations is linear, and the nonlinear effects associated with nonequilibrium fluctuations δN𝐤l\delta N_{\bf k}^{l} of the plasmon number density can be treated as a perturbations.
The situation changes qualitatively when the system is strongly excited, which can occur in collisions of ultrarelativistic heavy ions in experiments with the Large Hadron Collider. For high intensities of excitations in a gluon plasma, it is necessary to consider next terms in the expansion of H^int\widehat{H}_{int}. Since nonlinear excitation processes involving an odd number of plasmons are forbidden, we can in principle to get rid of all ‘‘odd’’ interaction Hamiltonians H^2n+1,n=1,2,\widehat{H}_{2n+1},\ n=1,2,\ldots\, by defining appropriately canonical transformations. In the limiting case of strong excitations, when

|Aμ(x)|Tand, accordingly,N𝐤l1g2,|A_{\mu}(x)|\sim T\,\;\mbox{and, accordingly,}\;N_{\bf k}^{l}\,\sim\,\displaystyle\frac{1}{g^{2}\,},

these canonical transformations contain an infinite number of terms of any order in creation operators c^𝐤a\hat{c}^{{\dagger}\ \!\!a}_{{\bf k}} and annihilation ones c^𝐤a\hat{c}^{\ \!a}_{{\bf k}}. In turn, this necessitates the inclusion of all higher-order plasmon elastic scattering processes (33, 44,3\rightarrow 3,\,4\rightarrow 4,\,\ldots\,) on the right-hand side of kinetic equation (4.4) since all these processes are of the same order in interaction constant gg. Clearly, the procedure of linearization of the kinetic equation for plasmon number density N𝐤lN_{\bf k}^{l} becomes inapplicable in the given case, and we arrive here at the truly nonlinear theory of interaction of soft gluon excitations in a plasma with a non-Abelian type of interaction.
Thus, a nontrivial problem of constructing the explicit form of canonical transformations arises. These nonlinear canonical transformations must convert the original interaction Hamiltonian to a new effective form:

H^intH^~int=H^~4+H^~6++H^~2n+2+.\widehat{H}_{int}\longrightarrow\widetilde{\widehat{H}}_{int}=\widetilde{\widehat{H}}_{4}+\widetilde{\widehat{H}}_{6}+\,\ldots\,+\widetilde{\widehat{H}}_{2n+2}+\,\ldots\,.

However, the direct approach to determining the explicit form of required canonical transformations, which was used in this study, becomes ineffective in the attempt at the exclusion of even the next odd Hamiltonian H^5\widehat{H}_{5} because of extremely cumbersome calculations. For strongly excited states, when we are dealing with an infinite number of terms, a more adequate qualitatively new apparatus is required in the given situation (e.g., the introduction of a set of nonlocal canonical variables, which depend on an additional 3 D unit vector as proposed in [22]. Another approach involves the use of relation

Aμa(k)=Aμ(0)a(k)+𝒟~μν(k){J~(2)aν(A(0),A(0))+J~(3)aν(A(0),A(0),A(0))+},A^{a}_{\mu}(k)=A^{(0)a}_{\mu}(k)+\,^{\ast}\tilde{\cal D}_{\mu\nu}(k)\bigl{\{}\tilde{J}^{(2)a\nu}(A^{(0)},A^{(0)})+\tilde{J}^{(3)a\nu}(A^{(0)},A^{(0)},A^{(0)})\,+\,\ldots\,\bigr{\}}, (7.1)

where Aμa(k)A^{\phantom{(0)}\!\!\!\!\!\!\!a}_{\mu}(k) and Aμ(0)a(k)A^{(0)a}_{\mu}(k) are the interacting and free gauge fields of the system, and the functions J~μ(n)a(A(0),A(0),)\tilde{J}^{(n)a}_{\mu}(A^{(0)},A^{(0)},\,\ldots) are certain effective currents that are nonlinear functionals of the free field and are defined recurrently in the hard thermal loop approximation [11]. The coefficient functions in J~μ(n)a\tilde{J}^{(n)a}_{\mu} are effective amplitudes of type (5.3). As the interacting field, we must take expression (2.1), while as the free field, we must take the expression of form

A^μ(0)a(x)=d𝐤(2π)3(Zl(𝐤)2ω𝐤l)1/2{ϵμlc^𝐤aei𝐤𝐱+ϵμc^𝐤aei𝐤𝐱}\hat{A}^{(0)a}_{\mu}(x)=\!\int\!\frac{d{\bf k}}{(2\pi)^{3}}\!\left(\frac{Z^{l}({\bf k})}{2\omega^{l}_{{\bf k}}}\right)^{\!1/2}\!\!\left\{\epsilon^{\ \!l}_{\mu}\ \!\hat{c}^{\ \!a}_{{\bf k}}\ \!e^{-i\hskip 0.56917pt{\bf k}\cdot{\bf x}}\,+\,\epsilon^{*\ \!}_{\mu}\ \!\hat{c}^{{\dagger}\ \!\!a}_{{\bf k}}\ \!e^{i\hskip 0.56917pt{\bf k}\cdot{\bf x}}\right\}

with operators c^𝐤a\hat{c}^{\ \!a}_{{\bf k}} and c^𝐤a\hat{c}^{{\dagger}\ \!a}_{{\bf k}} that appear on the right hand side of canonical transformations (2.10). Relation (7.1) in fact contains the required canonical transformation to any desired degree of accuracy if we use the appropriate approximations for propagators of type (6.6), (6.7) and vertex functions (6.8), (6.9), (5.8), etc. Relation (7.1) allows us to give a completely new interpretation of canonical transformations: transformations (2.10) determine a transition from noninteracting field Aμ(0)a(k)A^{(0)a}_{\mu}(k) to interacting field Aμa(k)A^{\phantom{(0)}\!\!\!\!\!\!\!a}_{\mu}(k), which takes into account all interaction effects in the medium. Analysis of this relationship requires separate consideration.

Acknowledgments

The research of D.M.G. and Yu.A.M. was supported by the Program for Improving Competitiveness of National Research Tomsk State University among the Leading World Scientific and Educational Centers. The work of D.M.G. was also supported in part by the Russian Foundation for Basic Research (project no. 18-02-00149), San Paolo Research Foundation (FAPESP, project no. 2016/03319-6), and the National Science Council (CNPq).

Appendix A Effective vertices and gluon propagator

In this Appendix, we consider the explicit form of vertex functions and gluon propagator in the high-temperature hard thermal loop (HTL) approximation [8, 9].
Effective three-gluon vertex

Γμνρ(k,k1,k2)Γμνρ(k,k1,k2)+δΓμνρ(k,k1,k2)\,{}^{\ast}\Gamma^{\mu\nu\rho}(k,k_{1},k_{2})\equiv\Gamma^{\mu\nu\rho}(k,k_{1},k_{2})+\delta\Gamma^{\mu\nu\rho}(k,k_{1},k_{2}) (A.1)

is the sum of bare three-gluon vertex

Γμνρ(k,k1,k2)=gμν(kk1)ρ+gνρ(k1k2)μ+gμρ(k2k)ν\Gamma^{\mu\nu\rho}(k,k_{1},k_{2})=g^{\mu\nu}(k-k_{1})^{\rho}+g^{\nu\rho}(k_{1}-k_{2})^{\mu}+g^{\mu\rho}(k_{2}-k)^{\nu} (A.2)

and the corresponding HTL correction

δΓμνρ(k,k1,k2)=3ωpl2dΩ4πvμvνvρvk+iϵ(ω2vk2iϵω1vk1iϵ),\delta\Gamma^{\mu\nu\rho}(k,k_{1},k_{2})=3\hskip 0.99594pt\omega^{2}_{\rm pl}\!\int\!\frac{d\hskip 0.99594pt\Omega}{4\pi}\,\frac{v^{\mu}v^{\nu}v^{\rho}}{v\cdot k+i\hskip 0.71114pt\epsilon}\,\Biggl{(}\frac{\omega_{2}}{v\cdot k_{2}-i\epsilon}-\frac{\omega_{1}}{v\cdot k_{1}-i\epsilon}\Biggr{)}, (A.3)

where vμ=(1,𝐯)v^{\mu}=(1,{\bf{\bf v}}), k+k1+k2=0k+k_{1}+k_{2}=0 and dΩd\hskip 0.99594pt\Omega is a differential solid angle. We consider below useful properties of the three-gluon HTL resummed vertex function for complex conjugation and permutation of momenta:

(Γμμ1μ2(k1k2,k1,k2))=Γμμ1μ2(k1+k2,k1,k2)\left(\!\,{}^{\ast}\Gamma_{\mu\mu_{1}\mu_{2}}(-k_{1}-k_{2},k_{1},k_{2})\right)^{\ast}=-\,^{\ast}\Gamma_{\mu\mu_{1}\mu_{2}}(k_{1}+k_{2},-k_{1},-k_{2}) (A.4)
=Γμμ1μ2(k1+k2,k2,k1).=\!\,^{\ast}\Gamma_{\mu\mu_{1}\mu_{2}}(k_{1}+k_{2},-k_{2},-k_{1}).

Further, the effective four-gluon vertex

Γμνλσ(k,k1,k2,k3)Γμνλσ(k,k1,k2,k3)+δΓμνλσ(k,k1,k2,k3){}^{\ast}\Gamma^{\mu\nu\lambda\sigma}(k,k_{1},k_{2},k_{3})\equiv\Gamma^{\mu\nu\lambda\sigma}(k,k_{1},k_{2},k_{3})+\delta\Gamma^{\mu\nu\lambda\sigma}(k,k_{1},k_{2},k_{3}) (A.5)

is the sum of bare four-gluon vertex

Γμνλσ=2gμνgλσgμσgνλgμλgσν\Gamma^{\mu\nu\lambda\sigma}=2\hskip 0.85355ptg^{\mu\nu}g^{\lambda\sigma}-g^{\mu\sigma}g^{\nu\lambda}-g^{\mu\lambda}g^{\sigma\nu} (A.6)

and the corresponding HTL correction

δΓμνλσ(k,k1,k2,k3)=3ωpl2dΩ4πvμvνvλvσvk+iϵ\delta\Gamma^{\mu\nu\lambda\sigma}(k,k_{1},k_{2},k_{3})=3\hskip 0.99594pt\omega^{2}_{\rm pl}\!\int\!\frac{d\hskip 0.99594pt\Omega}{4\pi}\,\frac{v^{\mu}v^{\nu}v^{\lambda}v^{\sigma}}{v\cdot k+i\hskip 0.71114pt\epsilon} (A.7)
×[1v(k+k1)+iϵ(ω2vk2iϵω3vk3iϵ)1v(k+k3)+iϵ(ω1vk1iϵω2vk2iϵ)].\times\Biggl{[}\,\frac{1}{v\cdot(k+k_{1})+i\epsilon}\,\Biggl{(}\frac{\omega_{2}}{v\cdot k_{2}-i\epsilon}-\frac{\omega_{3}}{v\cdot k_{3}-i\epsilon}\Biggr{)}-\frac{1}{v\cdot(k+k_{3})+i\epsilon}\,\Biggl{(}\frac{\omega_{1}}{v\cdot k_{1}-i\epsilon}-\frac{\omega_{2}}{v\cdot k_{2}-i\epsilon}\Biggr{)}\Biggr{]}.

Finally, the expression

𝒟~μν(k)=Pμν(k)Δt(k)Q~μν(k)Δl(k)ξ0k2(ku)2Dμν(k){}^{\ast}\widetilde{\cal D}_{\mu\nu}(k)=-P_{\mu\nu}(k)\,^{\ast}\!\Delta^{t}(k)-\widetilde{Q}_{\mu\nu}(k)\,^{\ast}\!\Delta^{l}(k)-\xi_{0}\ \!\frac{k^{2}}{(k\cdot u)^{2}}\ \!D_{\mu\nu}(k) (A.8)

is a gluon (retarded) propagator in the A0A_{0} - gauge, which is modified by effects of the medium. Here, ‘‘scalar’’ transverse and longitudinal propagators have form

Δt(k)=1k2Πt(k),Δl(k)=1k2Πl(k),\,{}^{\ast}\!\Delta^{t}(k)=\frac{1}{k^{2}-\Pi^{t}(k)},\qquad\quad\;\,^{\ast}\!\Delta^{l}(k)=\frac{1}{k^{2}-\Pi^{l}(k)}, (A.9)

where

Πt(k)=12Πμν(k)Pμν(k),Πl(k)=Πμν(k)Q~μν(k).\Pi^{\hskip 0.71114ptt}(k)=\frac{1}{2}\Pi^{\mu\nu}(k)P_{\mu\nu}(k),\qquad\Pi^{\hskip 0.71114ptl}(k)=\Pi^{\mu\nu}(k)\widetilde{Q}_{\mu\nu}(k).\hskip 5.69046pt

The polarization tensor Πμν(k)\Pi_{\mu\nu}(k) in the HTL approximation has form

Πμν(k)=3ωpl2(uμuνωdΩ4πvμvνvk+iϵ)\Pi^{\mu\nu}(k)=3\hskip 0.99594pt\omega_{\rm pl}^{2}\left(u^{\mu}u^{\nu}-\omega\!\int\!\frac{d\hskip 0.99594pt\Omega}{4\pi}\,\frac{v^{\mu}v^{\nu}}{v\cdot k+i\epsilon}\right)

and the longitudinal and transverse projectors are defined by the expressions

Q~μν(k)=u~μ(k)u~ν(k)u¯2(k),\widetilde{Q}_{\mu\nu}(k)=\frac{\tilde{u}_{\mu}(k)\tilde{u}_{\nu}(k)}{\bar{u}^{2}(k)}\,, (A.10)
Pμν(k)=gμνuμuνQ~μν(k)(ku)2k2,P_{\mu\nu}(k)=g_{\mu\nu}-u_{\mu}u_{\nu}-\widetilde{Q}_{\mu\nu}(k)\,\frac{(k\cdot u)^{2}}{k^{2}}\,,

respectively, where Lorentz-covariant four-vector u~μ(k)\tilde{u}_{\mu}(k) is defined by the formula (5.5).

References

  • [1] B. B. Kadomtsev, in Problems of Plasma Theory, Ed. by M. A. Leontovich (Atomizdat, Moscow, 1964), No. 4, p. 188 [in Russian].
  • [2] L. Kovrizhnykh, Sov. Phys. JETP 22, 168 (1965).
  • [3] V. E. Zakharov, Sov. Phys. JETP 24, 455 (1966).
  • [4] V. A. Liperovskii and V. N. Tsytovich, Radiophys. Quant. Electronics 12, 655 (1969).
  • [5] V. E. Zakharov, S. L. Musher, A. M. Rubenchik, Phys. Rep. 129, 285 (1985).
  • [6] V. E. Zakharov, Radiophys. Quant. Electronics 17, 326 (1974).
  • [7] A. M. Balk and V. E. Zakharov, in Integrability and Kinetic Equations for Solitons, Ed. by V. G. Bar’yakhtar, V. E. Zakharov, and V. M. Chernousenko (Nauk. Dumka, Kiev, 1990), p. 417 [in Russian].
  • [8] J.-P. Blaizot and E. Iancu, Phys. Rep. 359, 355 (2002).
  • [9] E. Braaten and R. D. Pisarski, Nucl. Phys. B 337, 569 (1990).
  • [10] J.-P. Blaizot and E. Iancu, Nucl. Phys. B 417, 608 (1994).
  • [11] Yu. A. Markov, M. A. Markova, Ann. Phys. 302, 172 (2002).
  • [12] D. M. Guitman and I. V. Tyutin, Quantization of Fields with Constraints (Nauka, Moscow, 1986; Springer, Berlin, Heidelberg, 1990).
  • [13] V. P. Nair, Phys. Rev. D 48, 3432 (1993).
  • [14] V. P. Nair, Phys. Rev. D 50, 4201 (1994).
  • [15] J.-P. Blaizot and E. Iancu, Nucl. Phys. B 434, 662 (1995).
  • [16] O. K. Kalashnikov and V. V. Klimov, Sov. J. Nucl. Phys. 31, 699 (1980).
  • [17] A. S. Schwarz, The Mathematical Foundations of Quantum Field Theory (Atomizdat, Moscow, 1975) [in Russian].
  • [18] N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields (Nauka, Moscow, 1976; Wiley, New York, 1980).
  • [19] V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, Physica Scripta 55, 528 (1997).
  • [20] A. I. Akhiezer, I. A. Akhiezer, R. V. Polovin, et al., Plasma Electrodynamics: Linear Theory (Nauka, Moscow, 1974; Elsevier, Amsterdam, 2017).
  • [21] H. A. Weldon, Phys. Rev. D 58, 105002 (1998).
  • [22] D. Metaxas and V. P. Nair, Int. J. Mod. Phys. A 16, 1249 (2001).