This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Half-space solutions with 7/2 frequency in the thin obstacle problem

Ovidiu Savin Department of Mathematics, Columbia University, New York, USA [email protected]  and  Hui Yu Department of Mathematics, National University of Singapore, Singapore [email protected]
Abstract.

For the thin obstacle problem in 3\mathbb{R}^{3}, we show that half-space solutions form an isolated family in the space of 72\frac{7}{2}-homogeneous solutions. For a general solution with one blow-up profile in this family, we establish the rate of convergence to this profile. As a consequence, we obtain regularity of the free boundary near such contact points.

O. S. is supported by NSF grant DMS-1800645.

1. Introduction

Motivated by applications in linear elasticity [Sig] and reverse osmosis [DL], the thin obstacle problem studies minimizers of the Dirichlet energy over functions that lie above a lower-dimensional obstacle. In the most basic formulation, a minimizer satisfies the following system

(1.1) {Δu0 in B1,u0 in B1{xn=0},Δu=0 in B1({u>0}{xn0}).\begin{cases}\Delta u\leq 0&\text{ in $B_{1}$,}\\ u\geq 0&\text{ in $B_{1}\cap\{x_{n}=0\}$,}\\ \Delta u=0&\text{ in $B_{1}\cap(\{u>0\}\cup\{x_{n}\neq 0\})$.}\end{cases}

Here B1B_{1} is the unit ball in the Euclidean space n\mathbb{R}^{n}. The coordinate of this space is decomposed as x=(x,xn)x=(x^{\prime},x_{n}) with xn1x^{\prime}\in\mathbb{R}^{n-1} and xn.x_{n}\in\mathbb{R}. Note that the odd part of the solution, (u(x,xn)u(x,xn))/2(u(x^{\prime},x_{n})-u(x^{\prime},-x_{n}))/2, is harmonic and vanishes along the hyperplane {xn=0}\{x_{n}=0\}. By removing it, we assume that the solution is even with respect to {xn=0}\{x_{n}=0\}.

Remark 1.1.

The thin obstacle problem enjoys several invariances. For instance, if uu is a solution, then rotations of uu around the xnx_{n}-axis also solve the problem. The same happens for positive multiples of uu. For simplicity, we identify two solutions uu and vv up to a normalization if a rotation of uu around the xnx_{n}-axis equals a positive multiple of vv.

After works by Richardson [R] and Uraltseva [U], Athanasopoulos and Caffarelli obtained the optimal regularity of the solution uu [AC], namely,

uCloc0,1(B1)Cloc1,12(B1{xn0}).u\in C^{0,1}_{loc}(B_{1})\cap C^{1,\frac{1}{2}}_{loc}(B_{1}\cap\{x_{n}\geq 0\}).

The next step is to address the regularity of the contact set Λ(u):={u=0}{xn=0}\Lambda(u):=\{u=0\}\cap\{x_{n}=0\} and the free boundary n1Λ(u).\partial_{\mathbb{R}^{n-1}}\Lambda(u). To this end, we need precise information about the solution near a contact point.

Applying Almgren’s monotonicity formula [Alm], Athanasopoulos-Caffarelli-Salsa [ACS] showed that for each qΛ(u)q\in\Lambda(u), there is a constant λq\lambda_{q}, called the frequency of the solution at qq, such that

uL2(Br(q))rn12+λq\|u\|_{L^{2}(\partial B_{r}(q))}\sim r^{\frac{n-1}{2}+\lambda_{q}}

as r0.r\to 0. Moreover, along a subsequence of r0r\to 0, the normalized solution converges to a blow-up profile at qq, that is,

(1.2) uq,r:=rn12u(r+q)uL2(Br(q))u0.u_{q,r}:=r^{\frac{n-1}{2}}\frac{u(r\cdot+q)}{\|u\|_{L^{2}(\partial B_{r}(q))}}\to u_{0}.

The limit u0u_{0} is a λq\lambda_{q}-homogeneous solution to (1.1), also known as a λq\lambda_{q}-cone.

This opened up two interesting directions of research. The first concerns the space of homogeneous solutions, and the goal is to classify admissible frequencies and cones, namely, to classify

Φ:={λ:there is a non-trivial λ-homogeneous solution to (1.1)},\Phi:=\{\lambda\in\mathbb{R}:\text{there is a non-trivial $\lambda$-homogeneous solution to \eqref{IntroTOP}}\},

and

𝒫λ:={u:u solves (1.1) with xu=λu}\mathcal{P}_{\lambda}:=\{u:\text{$u$ solves \eqref{IntroTOP} with $x\cdot\nabla u=\lambda u$}\}

for each λΦ\lambda\in\Phi. The second direction concerns the regularity of the contact set Λ(u)\Lambda(u) for a general solution. Here the central issue is to quantify the rate of convergence in (1.2), as this leads to uniqueness of the blow-up profile as well as regularity of the contact set. This often requires sorting contact points into

(1.3) Λλ(u):={qΛ(u):λq=λ}.\Lambda_{\lambda}(u):=\{q\in\Lambda(u):\lambda_{q}=\lambda\}.

1.1. Admissible frequencies and homogeneous solutions

The program along the first direction is complete when n=2n=2. See, for instance, Petrosyan-Shahgholian-Uraltseva [PSU]. In this case, it is known that

Φ={2k12:k}.\Phi=\mathbb{N}\cup\{2k-\frac{1}{2}:k\in\mathbb{N}\}.

Corresponding to integer frequencies, the homogeneous solutions are (even reflections of) polynomials. To be precise, we have

(1.4) 𝒫2k1={a(1)kRe(|x2|+ix1)2k1:a0}\mathcal{P}_{2k-1}=\{a(-1)^{k}\operatorname{Re}(|x_{2}|+ix_{1})^{2k-1}:a\geq 0\}

and

(1.5) 𝒫2k={aRe(x1+ix2)2k:a0},\mathcal{P}_{2k}=\{a\operatorname{Re}(x_{1}+ix_{2})^{2k}:a\geq 0\},

where Re()\operatorname{Re}(\cdot) denotes the real part of a complex number. In particular, all (2k1)(2k-1)-cones vanish along the line {x2=0}\{x_{2}=0\}, and 2k2k-cones are harmonic in the entire space.

On the other hand, homogeneous solutions with (2k12)(2k-\frac{1}{2}) frequencies vanish along half-lines. Up to a normalization, they satisfy

spt(Δu)=Λ(u)={x10,x2=0},\operatorname{spt}(\Delta u)=\Lambda(u)=\{x_{1}\leq 0,x_{2}=0\},

where we denote by spt()\operatorname{spt}(\cdot) the support of a measure. Up to a normalization, the (2k12)(2k-\frac{1}{2})-cone is given by

(1.6) u2k12(r,θ):=r2k12cos((2k12)θ),u_{2k-\frac{1}{2}}(r,\theta):=r^{2k-\frac{1}{2}}\cos((2k-\frac{1}{2})\theta),

where r0r\geq 0 and θ(π,π]\theta\in(-\pi,\pi] are the polar coordinates of the plane.

In general dimensions, the classification of admissible frequencies and cones remains incomplete. By extending the solutions from 2\mathbb{R}^{2}, we see that

Φ{2k12:k}.\Phi\supset\mathbb{N}\cup\{2k-\frac{1}{2}:k\in\mathbb{N}\}.

Thanks to Focardi-Spadaro [FoS1, FoS2], we know that λ{2k12:k}Λλ(u)\cup_{\lambda\in\mathbb{N}\cup\{2k-\frac{1}{2}:k\in\mathbb{N}\}}\Lambda_{\lambda}(u) makes up most of the contact points, in the sense that its complement in Λ(u)\Lambda(u) has dimension at most (n3)(n-3).

Athanasopoulos-Caffarelli-Salsa classified the lowest three frequencies [ACS], namely,

Φ{1,32}[2,+).\Phi\subset\{1,\frac{3}{2}\}\cup[2,+\infty).

Colombo-Spolaor-Velichkov [CSV] and Savin-Yu [SY1] showed the existence of a frequency gap around each integer, that is, for each mm\in\mathbb{N}, there is αm>0\alpha_{m}>0, depending only on mm and nn, such that

Φ(mαm,m+αm)={m}.\Phi\cap(m-\alpha_{m},m+\alpha_{m})=\{m\}.

For the classification of cones, most results center around frequencies in {32}\{\frac{3}{2}\}\cup\mathbb{N}. By Athanasopoulos-Caffarelli-Salsa [ACS], it is known that

𝒫3/2={Normalizations of u3/2 as in (1.6)}.\mathcal{P}_{3/2}=\{\text{Normalizations of }u_{3/2}\text{ as in \eqref{HalfIntegerSolutionIn2D}}\}.

Note that u32u_{\frac{3}{2}} is monotone along any direction in {xn=0}\{x_{n}=0\}, a fact used extensively for the classification of 32\frac{3}{2}-cones as well as free boundary regularity near points with 32\frac{3}{2} frequency.

Extensions of (1.4) and (1.5) to general dimensions were obtained by Figalli-Ros-Oton-Serra [FRS] and Garofalo-Petrosyan [GP], respectively. Similar to their counterparts in 2\mathbb{R}^{2}, all (2k1)(2k-1)-cones vanish in the hyperplane {xn=0}\{x_{n}=0\}, and 2k2k-cones are harmonic in the entire space. Consequently, if we let vv denote a solution to the linearized equation around an integer-frequency cone, then either v|{xn=0}v|_{\{x_{n}=0\}} or Δv|{xn=0}\Delta v|_{\{x_{n}=0\}} has a sign. The vanishing property of (2k1)(2k-1)-cones implies that v|{xn=0}0v|_{\{x_{n}=0\}}\geq 0. The harmonicity of 2k2k-cones implies that Δv|{xn=0}0\Delta v|_{\{x_{n}=0\}}\leq 0. These are the key observations behind the regularity of contact points with integer frequencies [SY2].

1.2. Regularity of the contact set

By the classification of 32\frac{3}{2}-cones, if qΛ32(u)q\in\Lambda_{\frac{3}{2}}(u), then after a normalization, we have uq,ru32u_{q,r}\to u_{\frac{3}{2}} along a subsequence of r0r\to 0. Here we are using the notations from (1.2) and (1.6). With the monotone property of u32u_{\frac{3}{2}}, Athanasopoulos-Caffarelli-Salsa proved that the blow-up profile is independent of the subsequence of r0r\to 0, and that Λ32(u)\Lambda_{\frac{3}{2}}(u) is locally a (n2)(n-2)-dimensional C1,αC^{1,\alpha}-manifold in {xn=0}\{x_{n}=0\} [ACS]. Recently, this manifold has been shown to be smooth in [DS1] and analytic in [KPS].

For points in Λ2k(u)\Lambda_{2k}(u), uniqueness of the blow-up profile was established by Garofalo-Petrosyan [GP], who also showed that Λ2k(u)\Lambda_{2k}(u) is contained in countably many C1C^{1}-manifolds. Regularity of the covering manifolds was improved to C1,logC^{1,\log} by Colombo-Spolaor-Velichkov [CSV]. For points in Λ2k1(u)\Lambda_{2k-1}(u), uniqueness of the blow-up profile was obtained by Figalli, Ros-Oton and Serra [FRS]. Recently, a unified approach was developed to quantify the rate of convergence in (1.2) at points in Λ2k1(u)\Lambda_{2k-1}(u) and Λ2k(u)\Lambda_{2k}(u) [SY2]. In particular, we proved that Λ2k1(u)\Lambda_{2k-1}(u) is locally covered by C1,αC^{1,\alpha}-manifolds.

On a different note, Fernández-Real and Ros-Oton showed that for generic boundary data, the free boundary is smooth outside a set of dimension at most (n3)(n-3) [FeR]. In general, the free boundary is always countably (n2)(n-2)-rectifiable, a result by Focardi-Spadaro [FoS1, FoS2].

1.3. Main results

In this paper, we study contact points with 72\frac{7}{2} frequency in 3\mathbb{R}^{3}. The example u72u_{\frac{7}{2}} from (1.6) illustrates that these points can make up the entire free boundary as well as the entire line {r=0}\{r=0\}. Unfortunately, not much is known about them in terms of the classification of 72\frac{7}{2}-cones and the regularity of Λ72(u)\Lambda_{\frac{7}{2}}(u).

Unlike 32\frac{3}{2}-cones, homogeneous solutions with 72\frac{7}{2} frequency are not monotone along directions in {xn=0}\{x_{n}=0\}. On top of that, for a solution, vv, to the linearized equation around u72u_{\frac{7}{2}}, neither v|{xn=0}0v|_{\{x_{n}=0\}}\geq 0 nor Δv|{xn=0}0\Delta v|_{\{x_{n}=0\}}\leq 0 is necessarily true. Thus the observation behind the study of integer-frequency points is no longer applicable. As a result, it requires new ideas to study contact points with 72\frac{7}{2} frequency.

With the full classification of 72\frac{7}{2}-cones seemingly out of reach, we focus on the family of half-space cones. Up to a rotation in {xn=0}\{x_{n}=0\}, these are homogeneous solutions satisfying

either spt(Δu){xn10,xn=0}, or spt(Δu){xn10,xn=0}.\text{either }\operatorname{spt}(\Delta u)\subset\{x_{n-1}\leq 0,x_{n}=0\},\text{ or }\operatorname{spt}(\Delta u)\supset\{x_{n-1}\leq 0,x_{n}=0\}.

With notations from (1.6) and footnote 1, half-space 72\frac{7}{2}-cones in 3\mathbb{R}^{3} belong to, up to a normalization, the following family

(1.7) 1:={u72+a1x1u52+a2(x1215r2)u32:0a25, and a12Γ(a2)}.\mathcal{F}_{1}:=\{u_{\frac{7}{2}}+a_{1}x_{1}u_{\frac{5}{2}}+a_{2}(x_{1}^{2}-\frac{1}{5}r^{2})u_{\frac{3}{2}}:0\leq a_{2}\leq 5,\text{ and }a_{1}^{2}\leq\Gamma(a_{2})\}.

where

(1.8) Γ(a2):=min{4a2(115a2),2425a2(72310a2)}.\Gamma(a_{2}):=\min\{4a_{2}(1-\frac{1}{5}a_{2}),\hskip 5.0pt\frac{24}{25}a_{2}(\frac{7}{2}-\frac{3}{10}a_{2})\}.

The subscript in 1\mathcal{F}_{1} is to indicate that the coefficient of u72u_{\frac{7}{2}} is 11. The parameters a=(a1,a2)a=(a_{1},a_{2}) lie in the region

𝒜=E1E2,\mathcal{A}=E_{1}\cap E_{2},

where E1E_{1} and E2E_{2} are two ellipses

(1.9) E1={a125+(a25/2)225/41} and E2={a1249/5+(a235/6)2(35/6)21}.E_{1}=\{\frac{a_{1}^{2}}{5}+\frac{(a_{2}-5/2)^{2}}{25/4}\leq 1\}\text{ and }E_{2}=\{\frac{a_{1}^{2}}{49/5}+\frac{(a_{2}-35/6)^{2}}{(35/6)^{2}}\leq 1\}.

Their boundaries intersect at (0,0)(0,0) and (±152,5/4)(\pm\frac{\sqrt{15}}{2},5/4). See Figure 1.

Refer to caption
Figure 1. Range of (a1,a2)(a_{1},a_{2}) in 1\mathcal{F}_{1} is 𝒜=E1E2\mathcal{A}=E_{1}\cap E_{2}.
Remark 1.2.

Up to a normalization, this family 1\mathcal{F}_{1} contains all examples of 72\frac{7}{2}-cones currently known.

For future reference, we divide 𝒜\mathcal{A} further into three subregions

𝒜=𝒜1𝒜2𝒜3,\mathcal{A}=\mathcal{A}_{1}\cup\mathcal{A}_{2}\cup\mathcal{A}_{3},

according to the location of a=(a1,a2)a=(a_{1},a_{2}) relative to 𝒜\partial\mathcal{A}. See Figure 2.

Let μ>0\mu>0 be a small parameter222The parameter μ\mu is chosen in Sections 5. See Remark 5.1.. These subregions are defined as:

𝒜1\displaystyle\mathcal{A}_{1} :={a𝒜:a2μ,a12<Γ(a2)};\displaystyle:=\{a\in\mathcal{A}:a_{2}\geq\mu,\quad a_{1}^{2}<\Gamma(a_{2})\};
(1.10) 𝒜2\displaystyle\mathcal{A}_{2} :={a𝒜:a2μ,a12=Γ(a2)}; and\displaystyle:=\{a\in\mathcal{A}:a_{2}\geq\mu,\quad a_{1}^{2}=\Gamma(a_{2})\};\text{ and }
𝒜3\displaystyle\mathcal{A}_{3} :={a𝒜:a22μ}.\displaystyle:=\{a\in\mathcal{A}:a_{2}\leq 2\mu\}.

With an abuse of notation, we also write

(1.11) p𝒜j for j=1,2,3p\in\mathcal{A}_{j}\text{ for $j=1,2,3$}

when the coefficients of pp belong to the corresponding region.

Refer to caption
Figure 2. 𝒜=𝒜1𝒜2𝒜3\mathcal{A}=\mathcal{A}_{1}\cup\mathcal{A}_{2}\cup\mathcal{A}_{3}

We now describe the main results of this work.

Although there could be other 72\frac{7}{2}-cones, they cannot be connected to the half-space cones. This is the content of our first result.

Theorem 1.1.

Suppose that uu is a 72\frac{7}{2}-homogeneous solution to (1.1) in 3\mathbb{R}^{3} with

|up|d in B1|u-p|\leq d\text{ in }B_{1}

for some p1p\in\mathcal{F}_{1}.

There is a universal constant d0>0d_{0}>0 such that if d<d0d<d_{0}, then up to a normalization, we have

u1.u\in\mathcal{F}_{1}.

A universal constant is a constant whose value is independent of the particular solution under consideration.

The following two results address the behavior of the solution near a contact point where at least one blow-up belongs to 1\mathcal{F}_{1}. For brevity, let us denote these points by Λ72HS(u)\Lambda_{\frac{7}{2}}^{HS}(u), that is,

Λ72HS(u):={qΛ(u):Up to a normalization, one blow-up profile at q is in 1}.\Lambda_{\frac{7}{2}}^{HS}(u):=\{q\in\Lambda(u):\textit{Up to a normalization, one blow-up profile at $q$ is in $\mathcal{F}_{1}$}\}.

The next result quantifies the rate of convergence in (1.2) at a point in Λ72HS(u)\Lambda_{\frac{7}{2}}^{HS}(u):

Theorem 1.2.

Let uu be a solution to (1.1) in B13B_{1}\subset\mathbb{R}^{3} with 0Λ72HS(u).0\in\Lambda_{\frac{7}{2}}^{HS}(u). Then up to a normalization, we have the following two possibilities:

  1. (1)

    either

    |uu72|O(r72|log(r)|c0) in Br for all small r;|u-u_{\frac{7}{2}}|\leq O(r^{\frac{7}{2}}|\log(r)|^{-c_{0}})\text{ in $B_{r}$ for all small $r$;}
  2. (2)

    or

    |up|O(r72+c0) in Br for all small r|u-p|\leq O(r^{\frac{7}{2}+c_{0}})\text{ in $B_{r}$ for all small $r$}

    for some p1\{u72}p\in\mathcal{F}_{1}\backslash\{u_{\frac{7}{2}}\}.

The parameter c0>0c_{0}>0 is universal.

In particular, blow-up profiles at points in Λ72HS(u)\Lambda_{\frac{7}{2}}^{HS}(u) are independent of the subsequence r0r\to 0.

Theorem 1.2 also leads to a stratification result concerning Λ72HS(u)\Lambda_{\frac{7}{2}}^{HS}(u), we have

Theorem 1.3.

Let uu be a solution to (1.1) in B13B_{1}\subset\mathbb{R}^{3}. Then we have the decomposition

Λ72HS(u)B1=Σ0Σ1,\Lambda_{\frac{7}{2}}^{HS}(u)\cap B_{1}=\Sigma_{0}\cup\Sigma_{1},

where Σ0\Sigma_{0} is locally discrete, and Σ1\Sigma_{1} is locally covered by a C1,logC^{1,\log}-curve.

Remark 1.3.

Suppose 0Λ72HS(u)0\in\Lambda_{\frac{7}{2}}^{HS}(u), we actually have regularity of the entire Λ72(u)\Lambda_{\frac{7}{2}}(u) near 0 (instead of just Λ72HS(u)\Lambda_{\frac{7}{2}}^{HS}(u)). If u72u_{\frac{7}{2}} is a blow-up profile at 0, then the free boundary n1Λ(u)\partial_{\mathbb{R}^{n-1}}\Lambda(u) is C1,logC^{1,\log} at 0. If uu blows up to some p1\{u72}p\in\mathcal{F}_{1}\backslash\{u_{\frac{7}{2}}\}, then Λ72(u)Bρ(0)={0}\Lambda_{\frac{7}{2}}(u)\cap B_{\rho}(0)=\{0\} for some small ρ>0.\rho>0.

These results are proven through an improvement-of-flatness argument. Roughly, if the solution uu is approximated in B1B_{1} by a profile pp with error dd, then we need to reduce the error at a smaller scale, say in Bρ,B_{\rho}, by picking another profile pp^{\prime}. The natural candidate is

(1.12) p=p+dv,p^{\prime}=p+dv,

where vv is the solution to the linearized problem around pp.

This strategy has been successful in many free boundary problems, for instance, the Bernoulli problem [D], the obstacle problem [SY3] and the triple membrane problem [SY4]. In these problems, the solutions have a fixed homogeneity at free boundary points. This is not the case for the thin obstacle problem. Consequently, we cannot always reduce the error in our problem. When this happens, however, we can ‘improve the homogeneity’ in terms of the Weiss energy functional [W].

This is the content of the main lemma of this work:

Lemma 1.1.

There are constants, d~\tilde{d}, ρ\rho, cc small, and CC big, such that

If u𝒮(p,d,1)u\in\mathcal{S}(p,d,1) with p1p\in\mathcal{F}_{1} and d<d~d<\tilde{d}, then we have the following dichotomy:

a) either

W72(u;1)W72(u;ρ)cd2,W_{\frac{7}{2}}(u;1)-W_{\frac{7}{2}}(u;\rho)\geq cd^{2},

and

u𝒮(p,Cd,ρ);u\in\mathcal{S}(p,Cd,\rho);

b) or

u𝒮(p,12d,ρ),u\in\mathcal{S}(p^{\prime},\frac{1}{2}d,\rho),

where p1p^{\prime}\in\mathcal{F}_{1} up to a normalization, and

ppL(𝕊2)Cd.\|p^{\prime}-p\|_{L^{\infty}(\mathbb{S}^{2})}\leq Cd.

The space 𝒮(p,d,ρ)\mathcal{S}(p,d,\rho) consists of dd-approximated solutions at scale ρ\rho, and W72()W_{\frac{7}{2}}(\cdot) is the Weiss energy functional, defined in (2.6). A similar lemma was established for integer-frequency points in [SY2].

The proof of Lemma 1.1 is divided into three cases, corresponding to the three subregions of 𝒜\mathcal{A} as in Figure 2.

When p𝒜1p\in\mathcal{A}_{1}, the modification pp^{\prime} from (1.12) solves the thin obstacle problem for small dd. In this case, Lemma 1.1 follows from a standard compactness argument.

Extra care is needed when p𝒜2𝒜3p\in\mathcal{A}_{2}\cup\mathcal{A}_{3}. Here the profile pp could become degenerate at certain points. The same pp^{\prime} might violate the constraints p|{x3=0}0p^{\prime}|_{\{x_{3}=0\}}\geq 0 and Δp0\Delta p^{\prime}\leq 0.

For p𝒜2p\in\mathcal{A}_{2}, there are two possibilities. If the coefficients (a1,a2)(a_{1},a_{2}) are bounded away from (±15/2,5/4)(\pm\sqrt{15}/2,5/4), the intersection of E1\partial E_{1} and E2\partial E_{2}, then only one of the two constraints might fail. If they are very close to (±15/2,5/4)(\pm\sqrt{15}/2,5/4), both constraints can fail, but the locations of failure are well-separated from {r=0}\{r=0\}. In both cases, we replace pp^{\prime} by solving a boundary-layer problem around the place where the constraints fail. This is the same strategy adapted to study integer-frequency points [SY2].

New challenges arise when p𝒜3p\in\mathcal{A}_{3}. When pp is very close to u72u_{\frac{7}{2}}, both constraints might fail along {r=0}\{r=0\}. Indeed Lemma 1.1 needs to be modified to be a trichotomy. See Lemma 5.1. For this, we need to study an ‘inner problem’ in small spherical caps near {r=0}\{r=0\}, which reduces to the thin obstacle problem in 2\mathbb{R}^{2} with data at infinity. This is the main reason why we restrict to three dimension in this work.

Although this restriction to three dimension seems crucial, we hope similar ideas would work for half-space solutions with higher frequencies.

This paper is organized as follows: In Section 2, we collect some preliminary results. In Sections 3, we establish Lemma 1.1 when p𝒜1p\in\mathcal{A}_{1}. The same lemma is proved in Section 4 for pp near 𝒜2\mathcal{A}_{2}. In Section 5, a modified lemma is proved for profiles in 𝒜3\mathcal{A}_{3}. This is the most involved part of this paper, and requires several technical preparations that are left to the Appendices. Finally in Section 6, all these are combined to show the main results Theorem 1.1, Theorem 1.2 and Theorem 1.3.

2. Preliminaries

In this section, we gather some useful notations and results.

Unless otherwise specified, in this paper we denote by uu a solution to the thin obstacle problem (1.1) in some domain in 3\mathbb{R}^{3}. For this space, we have the standard coordinate system 3={(x1,x2,x3):xj},\mathbb{R}^{3}=\{(x_{1},x_{2},x_{3}):x_{j}\in\mathbb{R}\}, decomposed as

x=(x,x3) where x=(x1,x2).x=(x^{\prime},x_{3})\text{ where $x^{\prime}=(x_{1},x_{2})$}.

A subset of 3\mathbb{R}^{3} is decomposed as E=E+EEE=E^{+}\cup E^{\prime}\cup E^{-}, where

(2.1) E=E{x3=0}, and E±=E{±x3>0}.E^{\prime}=E\cap\{x_{3}=0\},\text{ and }E^{\pm}=E\cap\{\pm x_{3}>0\}.

With this notation, the contact set is Λ(u)={u=0}.\Lambda(u)=\{u=0\}^{\prime}.

Recall that the solution uu is assumed to be even with respect to {x3=0}.\{x_{3}=0\}. As such it may fail to be differentiable in the x3x_{3}-direction at points in Λ(u)\Lambda(u). Nevertheless, it is still differentiable from either side of the domain. In this paper, for a function wC1(B1{x30})w\in C^{1}(B_{1}\cap\{x_{3}\geq 0\}), we use x3w(x)\frac{\partial}{\partial x_{3}}w(x) to denote its one-sided derivative at xB1x\in B_{1}^{\prime}, namely,

(2.2) x3w(x)=limt0+w(x,t)w(x,0)t.\frac{\partial}{\partial x_{3}}w(x)=\lim_{t\to 0^{+}}\frac{w(x^{\prime},t)-w(x^{\prime},0)}{t}.

In general, if Ω\Omega is a domain in 3\mathbb{R}^{3}, we denote by ν\nu the inner unit normal along Ω\partial\Omega. For wC1(Ω¯)w\in C^{1}(\overline{\Omega}) and xΩx\in\partial\Omega, we denote by wν(x)w_{\nu}(x) the one-sided normal derivative at x0x_{0} with respect to Ω\Omega, that is,

(2.3) wν(x)=limt0+w(x+tν)w(x)t.w_{\nu}(x)=\lim_{t\to 0^{+}}\frac{w(x+t\nu)-w(x)}{t}.

To utilize the rotational symmetry of the problem, we introduce the rotation operator with respect to the xnx_{n}-axis . For τ(π,π)\tau\in(-\pi,\pi), this operator Uτ\operatorname{U}_{\tau} acts on points, sets, and functions in the following manner:

Uτ(x)=(x1cos(τ)x2sin(τ),x1sin(τ)+x2cos(τ),x3),\displaystyle\operatorname{U}_{\tau}(x)=(x_{1}\cos(\tau)-x_{2}\sin(\tau),x_{1}\sin(\tau)+x_{2}\cos(\tau),x_{3}),
(2.4) Uτ(E)={x:UτxE},\displaystyle\operatorname{U}_{\tau}(E)=\{x:\operatorname{U}_{-\tau}x\in E\},
Uτ(f)(x)=f(Uτx).\displaystyle\operatorname{U}_{\tau}(f)(x)=f(\operatorname{U}_{-\tau}x).

The problem is also scaling invariant. For ρ>0\rho>0 and qΛ72(u)q\in\Lambda_{\frac{7}{2}}(u), defined as in (1.3), the the rescaled function

(2.5) u(q,ρ)(x):=u(q+ρx)/ρ72u_{(q,\rho)}(x):=u(q+\rho x)/\rho^{\frac{7}{2}}

solves the problem in a rescaled domain with 0Λ72(u(q,ρ)).0\in\Lambda_{\frac{7}{2}}(u_{(q,\rho)}). When q=0q=0, we simplify the notation by

u(ρ):=u(0,ρ).u_{(\rho)}:=u_{(0,\rho)}.

2.1. Weiss monotonicity formula and consequences

The Weiss monotonicity formula was used by Weiss to treat the obstacle problem [W], and was adapted to the thin obstacle problem by Garofalo-Petrosyan [GP]. Its decay is used in this paper to quantify an ‘improvement of homogeneity’ between scales.

Since we are concerned with contact points with 72\frac{7}{2} frequency in 3\mathbb{R}^{3}, we include here only the 72\frac{7}{2}-Weiss energy functional in 3d3d

(2.6) W72(u;ρ)=1ρ8Bρ|u|272ρ9Bρu2.W_{\frac{7}{2}}(u;\rho)=\frac{1}{\rho^{8}}\int_{B_{\rho}}|\nabla u|^{2}-\frac{7}{2\rho^{9}}\int_{\partial B_{\rho}}u^{2}.

We collect some of its properties in the following lemma. For its proof, see Theorem 1.4.1 and Theorem 1.5.4 in [GP].

Lemma 2.1.

Suppose that uu solves the thin obstacle problem in B13B_{1}\subset\mathbb{R}^{3}. Then for ρ(0,1)\rho\in(0,1), we have

(2.7) ddρW72(u;ρ)=2ρB1(u(ρ)ν72u(ρ))2.\frac{d}{d\rho}W_{\frac{7}{2}}(u;\rho)=\frac{2}{\rho}\int_{\partial B_{1}}(\nabla u_{(\rho)}\cdot\nu-\frac{7}{2}u_{(\rho)})^{2}.

In particular, ρW72(u;ρ)\rho\mapsto W_{\frac{7}{2}}(u;\rho) is non-decreasing.

If 0Λ72(u)0\in\Lambda_{\frac{7}{2}}(u), then limρ0W72(u;ρ)=0.\lim_{\rho\to 0}W_{\frac{7}{2}}(u;\rho)=0.

The rescaling u(ρ)u_{(\rho)} is defined as in (2.5).

Under the same assumptions as in Lemma 2.1, we can integrate (2.7) and apply Hölder’s inequality to get

(2.8) B1|u(ρ1)u(ρ2)|(log(ρ1/ρ2))12[W72(u;ρ1)W72(u;ρ2)]12\int_{\partial B_{1}}|u_{(\rho_{1})}-u_{(\rho_{2})}|\leq(\log(\rho_{1}/\rho_{2}))^{\frac{1}{2}}[W_{\frac{7}{2}}(u;\rho_{1})-W_{\frac{7}{2}}(u;\rho_{2})]^{\frac{1}{2}}

for 0<ρ2<ρ1<1.0<\rho_{2}<\rho_{1}<1.

2.2. Harmonic functions in slit domains and half-space cones

Motivated by thin free boundary problems, harmonic functions in slit domains were studied in great detail by De Silva-Savin [DS1, DS2]. In this work, we only need certain basic elements when the slit is flat.

Let (r,θ)(r,\theta) denote the polar coordinate for the (x2,x3)(x_{2},x_{3})-domain with r0r\geq 0 and θ(π,π]\theta\in(-\pi,\pi]. The slit is defined as

(2.9) 𝒮:={θ=π}={x20,x3=0}.\mathcal{S}:=\{\theta=\pi\}=\{x_{2}\leq 0,x_{3}=0\}.

For a subset of 3\mathbb{R}^{3}, we decompose it relative to the slit as E=E^E~,E=\widehat{E}\cup\widetilde{E}, where

(2.10) E^=E\𝒮, and E~=E𝒮.\widehat{E}=E\backslash\mathcal{S},\text{ and }\widetilde{E}=E\cap\mathcal{S}.

Given a domain Ω3\Omega\subset\mathbb{R}^{3}, a harmonic function in the slit domain Ω^\widehat{\Omega} is a continuous function that is even with respect to {x3=0}\{x_{3}=0\} and satisfies

(2.11) {Δv=0 in Ω^,v=0 in Ω~.\begin{cases}\Delta v=0&\text{ in $\widehat{\Omega}$,}\\ v=0&\text{ in $\widetilde{\Omega}$.}\end{cases}

As is the case for regular domains, homogeneous solutions play an important role. Given a non-negative integer mm, let’s define the following space

(2.12) m+12:={v:v is a harmonic function in 3^,xv=(m+12)v}.\mathcal{H}_{m+\frac{1}{2}}:=\{v:v\text{ is a harmonic function in }\widehat{\mathbb{R}^{3}},\quad x\cdot\nabla v=(m+\frac{1}{2})v\}.

Functions in m+12\mathcal{H}_{m+\frac{1}{2}} satisfy

(2.13) {(Δ𝕊2+λm+12)v=0 in 𝕊2^,v=0 in 𝕊2~,\begin{cases}(\Delta_{\mathbb{S}^{2}}+\lambda_{m+\frac{1}{2}})v=0&\text{ in $\widehat{\mathbb{S}^{2}}$,}\\ v=0&\text{ in $\widetilde{\mathbb{S}^{2}},$}\end{cases}

where

(2.14) Δ𝕊2 is the spherical Laplacian, and λm+12=(m+12)(m+32).\Delta_{\mathbb{S}^{2}}\text{ is the spherical Laplacian, and }\lambda_{m+\frac{1}{2}}=(m+\frac{1}{2})(m+\frac{3}{2}).

These functions are the basic building blocks for general solutions to (2.11). For instance, we have the following theorem from [DS1]:

Theorem 2.1 (Theorem 4.5 from [DS1]).

Let vv be a solution to (2.11) with Ω=B1\Omega=B_{1} and vL(B1)1\|v\|_{L^{\infty}(B_{1})}\leq 1.

Given m0m\geq 0, we can find vk+12k+12v_{k+\frac{1}{2}}\in\mathcal{H}_{k+\frac{1}{2}} for k=0,1,,mk=0,1,\dots,m, such that

vk+12L(B1)C\|v_{k+\frac{1}{2}}\|_{L^{\infty}(B_{1})}\leq C

and

|vk=0mvk|(x)C|x|m+1u12 for xB12.|v-\sum_{k=0}^{m}v_{k}|(x)\leq C|x|^{m+1}u_{\frac{1}{2}}\text{ for $x\in B_{\frac{1}{2}}$.}

Here u12u_{\frac{1}{2}} is defined as in (1.6), and CC depends only on mm.

The functions from (1.6) are homogeneous harmonic functions in 3^.\widehat{\mathbb{R}^{3}}. The following proposition states that, in some sense, these functions generate all homogeneous harmonic functions. Its elementary proof is left to the reader.

Proposition 2.1.

If vm+12v\in\mathcal{H}_{m+\frac{1}{2}}, then we have the following expansion

v=a0um+12+p1(x1,r)um12++pk(x1,r)um+12k++pm(x1,r)u12,v=a_{0}u_{m+\frac{1}{2}}+p_{1}(x_{1},r)u_{m-\frac{1}{2}}+\dots+p_{k}(x_{1},r)u_{m+\frac{1}{2}-k}+\dots+p_{m}(x_{1},r)u_{\frac{1}{2}},

where a0a_{0}\in\mathbb{R}, and pkp_{k} is a kk-homogeneous polynomial in (x1,r)(x_{1},r).

The following orthogonality follows from standard argument:

Proposition 2.2.

Suppose mnm\neq n are two non-negative integers, then we have the following:

a) If pp and qq are polynomials of (x1,r),(x_{1},r), then

𝕊2pum+12qun+12=0.\int_{\mathbb{S}^{2}}pu_{m+\frac{1}{2}}\cdot qu_{n+\frac{1}{2}}=0.

2) If vm+12v\in\mathcal{H}_{m+\frac{1}{2}} and wn+12w\in\mathcal{H}_{n+\frac{1}{2}}, then

𝕊2vw=0.\int_{\mathbb{S}^{2}}v\cdot w=0.

In this work, we are most interested in the space of harmonic functions with 72\frac{7}{2} homogeneity, namely, 72\mathcal{H}_{\frac{7}{2}}. Following Proposition 2.1, we see that this space is spanned by the following four functions:

(2.15) u72=r72cos(72θ),v52:=x1u52,v32:=(x12r2/5)u32, and v12:=(x13x1r2)u12.u_{\frac{7}{2}}=r^{\frac{7}{2}}\cos(\frac{7}{2}\theta),\quad v_{\frac{5}{2}}:=x_{1}u_{\frac{5}{2}},\quad v_{\frac{3}{2}}:=(x_{1}^{2}-r^{2}/5)u_{\frac{3}{2}},\text{ and }v_{\frac{1}{2}}:=(x_{1}^{3}-x_{1}r^{2})u_{\frac{1}{2}}.

The same space is also spanned by u72u_{\frac{7}{2}} and its first three rotational derivatives. Using the notation from (2), they are

(2.16) u72,w52:=ddτ|τ=0Uτ(u72),w32:=ddτ|τ=0Uτ(w52), and w12:=ddτ|τ=0Uτ(w32).u_{\frac{7}{2}},\quad w_{\frac{5}{2}}:=\frac{d}{d\tau}|_{\tau=0}\operatorname{U}_{\tau}(u_{\frac{7}{2}}),\quad w_{\frac{3}{2}}:=\frac{d}{d\tau}|_{\tau=0}\operatorname{U}_{\tau}(w_{\frac{5}{2}}),\text{ and }w_{\frac{1}{2}}:=\frac{d}{d\tau}|_{\tau=0}\operatorname{U}_{\tau}(w_{\frac{3}{2}}).
Remark 2.1.

These two bases are related by

w52=72v52,w32=354v3274u72, and w12=1058v121338v52.w_{\frac{5}{2}}=\frac{7}{2}v_{\frac{5}{2}},\hskip 5.0ptw_{\frac{3}{2}}=\frac{35}{4}v_{\frac{3}{2}}-\frac{7}{4}u_{\frac{7}{2}},\text{ and }w_{\frac{1}{2}}=\frac{105}{8}v_{\frac{1}{2}}-\frac{133}{8}v_{\frac{5}{2}}.

With these preparations, we classify half-space solutions to the thin obstacle problem in 3\mathbb{R}^{3} that are 72\frac{7}{2}-homogeneous:

Proposition 2.3.

Suppose that uu is a nontrivial 72\frac{7}{2}-homogeneous solution to (1.1) in 3\mathbb{R}^{3}. The followings are equivalent:

  1. (1)

    spt(Δu)𝒮\operatorname{spt}(\Delta u)\subset\mathcal{S};

  2. (2)

    spt(Δu)𝒮\operatorname{spt}(\Delta u)\supset\mathcal{S};

  3. (3)

    u1u\in\mathcal{F}_{1} up to a normalization.

Recall the definition of 1\mathcal{F}_{1} from (1.7). See also Remark 1.1 for the notion of normalization.

Proof.

By definition of 1\mathcal{F}_{1}, statement (3) implies the other two. Here we show that statement (1) implies statement (3). A similar argument gives the implication (2)\implies(3).

By Green’s formula and homogeneity of the functions involved, we have

B1u72ΔuuΔu72=72𝕊2u72uuu72=0.\int_{B_{1}}u_{\frac{7}{2}}\Delta u-u\Delta u_{\frac{7}{2}}=\frac{7}{2}\int_{\mathbb{S}^{2}}u_{\frac{7}{2}}u-uu_{\frac{7}{2}}=0.

By statement (1), u72=0u_{\frac{7}{2}}=0 on spt(Δu)\operatorname{spt}(\Delta u), thus B1uΔu72=0.\int_{B_{1}}u\Delta u_{\frac{7}{2}}=0.

Since u0u\geq 0 on 𝒮=spt(Δu72)\mathcal{S}=\operatorname{spt}(\Delta u_{\frac{7}{2}}), this implies u=0 on 𝒮.u=0\text{ on $\mathcal{S}$.} With statement (1), we see that uu is a 72\frac{7}{2}-homogeneous harmonic function in 3^\widehat{\mathbb{R}^{3}}. Consequently, it is a linear combination of functions from (2.15), that is,

u=a0u72+a1v52+a2v32+a3v12u=a_{0}u_{\frac{7}{2}}+a_{1}v_{\frac{5}{2}}+a_{2}v_{\frac{3}{2}}+a_{3}v_{\frac{1}{2}}

for aj.a_{j}\in\mathbb{R}. Such a function satisfies the constraints u|{x3=0}0u|_{\{x_{3}=0\}}\geq 0 and Δu|{x3=0}0\Delta u|_{\{x_{3}=0\}}\leq 0 if and only if a0>0a_{0}>0 and u/a01.u/a_{0}\in\mathcal{F}_{1}.

For our purpose, we also need homogeneous harmonic functions in slit domains with singularities. In 2\mathbb{R}^{2}, typical examples are given by

(2.17) un+12(r,θ):=rn+12cos((n12)θ) for n.u_{-n+\frac{1}{2}}(r,\theta):=r^{-n+\frac{1}{2}}\cos((n-\frac{1}{2})\theta)\text{ for }n\in\mathbb{N}.

Each un+12u_{-n+\frac{1}{2}} is (n+12)(-n+\frac{1}{2})-homogeneous and harmonic in 2^.\widehat{\mathbb{R}^{2}}.

In 3\mathbb{R}^{3}, we will need the following two functions

(2.18) v12:=(x146x12r2r4)u12, and v32:=(x15+10x13r215x1r4)u32.v_{-\frac{1}{2}}:=(x_{1}^{4}-6x_{1}^{2}r^{2}-r^{4})\cdot u_{-\frac{1}{2}},\text{ and }v_{-\frac{3}{2}}:=(x_{1}^{5}+10x_{1}^{3}r^{2}-15x_{1}r^{4})\cdot u_{-\frac{3}{2}}.

Both are 72\frac{7}{2}-homogeneous functions in 3\mathbb{R}^{3} and harmonic in 3^\widehat{\mathbb{R}^{3}}. Near the poles 𝕊2{r=0}\mathbb{S}^{2}\cap\{r=0\}, they have a singularity of order 12-\frac{1}{2} and 32-\frac{3}{2} respectively.

Correspondingly, we have

(2.19) w12:=ddτ|τ=0Uτ(w12), and w32:=ddτ|τ=0Uτ(w12),w_{-\frac{1}{2}}:=\frac{d}{d\tau}|_{\tau=0}\operatorname{U}_{\tau}(w_{\frac{1}{2}}),\text{ and }w_{-\frac{3}{2}}:=\frac{d}{d\tau}|_{\tau=0}\operatorname{U}_{\tau}(w_{-\frac{1}{2}}),

which are also 72\frac{7}{2}-homogeneous and harmonic in ^3\widehat{\mathbb{R}}^{3}.

2.3. A double-sequence lemma

We conclude this section with a lemma dealing with two numerical sequences. It is a slight modification of Lemma 5.1 from [SY2].

Lemma 2.2.

Let (wn)(w_{n}) and (en)(e_{n}) be two sequences of real numbers between 0 and 11. Suppose that for some constants, AA big, aa small and γ(0,1]\gamma\in(0,1], we have

wn+1Aen1+γnw_{n+1}\leq Ae_{n}^{1+\gamma}\quad\forall n\in\mathbb{N}

and the following dichotomy:

  • either wn+1wnaen2w_{n+1}\leq w_{n}-ae_{n}^{2} and en+1=Aene_{n+1}=Ae_{n};

  • or wn+1wnw_{n+1}\leq w_{n} and en+1=12ene_{n+1}=\frac{1}{2}e_{n}.

Then we have

(2.20) enCe11+γ2e_{n}\leq Ce_{1}^{\frac{1+\gamma}{2}}

for all n,n\in\mathbb{N}, and

en<+.\sum e_{n}<+\infty.

Moreover, we have

(2.21) nNenC(wN+eN2)12 if γ=1;\sum_{n\geq N}e_{n}\leq C(w_{N}+e_{N}^{2})^{\frac{1}{2}}\text{ if $\gamma=1$;}

and

(2.22) n2NenC2γ1γN if γ(0,1).\sum_{n\geq 2^{N}}e_{n}\leq C2^{\frac{-\gamma}{1-\gamma}N}\text{ if $\gamma\in(0,1)$.}

Here c(0,1)c\in(0,1) and CC are constants depending only on AA, aa and γ.\gamma.

Proof.

The only modification from Lemma 5.1 in [SY2] is the right-hand side of (2.21). To see this, let αn:=wn+μen2.\alpha_{n}:=w_{n}+\mu e_{n}^{2}. For μ>0\mu>0 small, it was shown in [SY2] that αn(1c)αn1\alpha_{n}\leq(1-c)\alpha_{n-1}, which gives

nNαn1/2CαN1/2.\sum_{n\geq N}\alpha_{n}^{1/2}\leq C\alpha_{N}^{1/2}.

From here, we simply note that enαn1/2e_{n}\leq\alpha_{n}^{1/2}. ∎

3. Dichotomy for p𝒜1p\in\mathcal{A}_{1}

In this section, we prove Lemma 1.1 when p𝒜1p\in\mathcal{A}_{1}. See (1.3), (1.11) and Figure 2.

Starting with such a profile pp, the natural modification p=p+dvp^{\prime}=p+dv from (1.12) solves the thin obstacle problem if dd is small. Consequently, the improvement-of-flatness result follows by a classical argument.

Nevertheless, we include the argument here. Readers less familiar with the subject might take this section as a roadmap for the strategy. Contrasting this section with the next two, we hope to illustrate the challenges that arise in each different case.

3.1. Well-approximated solutions

Throughout this section, we consider profiles p=a0u72+a1v52+a2v32p=a_{0}u_{\frac{7}{2}}+a_{1}v_{\frac{5}{2}}+a_{2}v_{\frac{3}{2}} with

a0[1/2,2], and (a1/a0,a2/a0)𝒜1,a_{0}\in[1/2,2],\text{ and }(a_{1}/a_{0},a_{2}/a_{0})\in\mathcal{A}_{1},

that is, for a small parameter μ>0,\mu>0,

(3.1) 1/2a02,μa2/a05, and (a1/a0)2<Γ(a2/a0).1/2\leq a_{0}\leq 2,\quad\mu\leq a_{2}/a_{0}\leq 5,\text{ and }(a_{1}/a_{0})^{2}<\Gamma(a_{2}/a_{0}).

Recall the basis {u72,v52,v32,v12}\{u_{\frac{7}{2}},v_{\frac{5}{2}},v_{\frac{3}{2}},v_{\frac{1}{2}}\} from (2.15), and the function Γ\Gamma from (1.8).

To simplify our discussions, let us denote

(3.2) μp:=Γ(a2/a0)(a1/a0)2.\mu_{p}:=\Gamma(a_{2}/a_{0})-(a_{1}/a_{0})^{2}.

The space of well-approximated solutions is defined as

Definition 3.1.

Suppose that the coefficients of pp satisfy (3.1).

For d,ρ(0,1]d,\rho\in(0,1], we say that uu is a solution dd-approximated by pp at scale ρ\rho if uu solves the thin obstacle problem (1.1) in BρB_{\rho}, and

|up|dρ72 in Bρ.|u-p|\leq d\rho^{\frac{7}{2}}\text{ in $B_{\rho}$.}

In this case, we write

u𝒮(p,d,ρ).u\in\mathcal{S}(p,d,\rho).

Being well-approximated implies the localization of the contact set:

Lemma 3.1.

Suppose that u𝒮(p,d,1)u\in\mathcal{S}(p,d,1) with dd small.

We have

Δu=0 in B1^{r>Cd27}, and u=0 in B78~{r>Cd215},\Delta u=0\text{ in }\widehat{B_{1}}\cap\{r>Cd^{\frac{2}{7}}\},\text{ and }\quad u=0\text{ in }\widetilde{B_{\frac{7}{8}}}\cap\{r>Cd^{\frac{2}{15}}\},

where CC depends only on μ\mu and μp\mu_{p} from (3.2).

Recall the notations for slit domains from (2.10), and that (r,θ)(r,\theta) denotes the polar coordinate of the (x2,x3)(x_{2},x_{3})-plane.

Proof.

Using (3.1) and direct computations, we have

pcμ,μpr72 in {θ=0}.p\geq c_{\mu,\mu_{p}}r^{\frac{7}{2}}\text{ in }\{\theta=0\}.

With updu\geq p-d in B1B_{1}, it follows u>0u>0 in {θ=0,r>Cd27}B1.\{\theta=0,r>Cd^{\frac{2}{7}}\}\cap B_{1}. This gives the first conclusion.

To see the second conclusion, we note that

(3.3) x3pcμ,μpr52 in {θ=π}.\frac{\partial}{\partial x_{3}}p\leq-c_{\mu,\mu_{p}}r^{\frac{5}{2}}\text{ in }\{\theta=\pi\}.

Recall our convention from (2.2).

Now for some large AA to be chosen, let x0B7/8~{r>Ad215}x_{0}\in\widetilde{B_{7/8}}\cap\{r>Ad^{\frac{2}{15}}\}, and Ω:={|xx0|<d23,|x3|<d23}.\Omega:=\{|x^{\prime}-x_{0}|<d^{\frac{2}{3}},|x_{3}|<d^{\frac{2}{3}}\}.

With (3.3) and the C1,12C^{1,\frac{1}{2}}-regularity of pp, we have

x3p12cμ,μpA52d13 in Ω+\frac{\partial}{\partial x_{3}}p\leq-\frac{1}{2}c_{\mu,\mu_{p}}A^{\frac{5}{2}}d^{\frac{1}{3}}\text{ in }\Omega^{+}

if AA is large, depending only on μ\mu and μp\mu_{p}.

Define the barrier φ(x,x3)=(|xx0|22x32)/d13,\varphi(x^{\prime},x_{3})=(|x^{\prime}-x_{0}|^{2}-2x_{3}^{2})/d^{\frac{1}{3}}, then φ\varphi is a solution to the thin obstacle problem. Inside Ω+\Omega^{+}, we have

φp\displaystyle\varphi-p |xx0|2/d132x32/d13+12cμ,μpA52d13x3\displaystyle\geq|x^{\prime}-x_{0}|^{2}/d^{\frac{1}{3}}-2x_{3}^{2}/d^{\frac{1}{3}}+\frac{1}{2}c_{\mu,\mu_{p}}A^{\frac{5}{2}}d^{\frac{1}{3}}\cdot x_{3}
|xx0|2/d13+14cμ,μpA52d13x3\displaystyle\geq|x^{\prime}-x_{0}|^{2}/d^{\frac{1}{3}}+\frac{1}{4}c_{\mu,\mu_{p}}A^{\frac{5}{2}}d^{\frac{1}{3}}\cdot x_{3}

for AA large. It follows from even symmetry that

φp+d along Ω\varphi\geq p+d\text{ along }\partial\Omega

for AA large.

Together with up+du\leq p+d in B1B_{1}, this implies uφu\leq\varphi in Ω\Omega. The second conclusion follows. ∎

Since the profile pp solves the thin obstacle problem, by the maximum principle and Cacciopolli’s estimate, we have the following:

Lemma 3.2.

Suppose that uu solves (1.1) in B1B_{1}. Then

upL(B1/2)+upH1(B1/2)CupL1(B1)\|u-p\|_{L^{\infty}(B_{1/2})}+\|u-p\|_{H^{1}(B_{1/2})}\leq C\|u-p\|_{L^{1}(B_{1})}

for a universal constant CC.

Recall the Weiss energy functional from (2.6). This energy is controlled for well-approximated solutions:

Lemma 3.3.

Suppose that u𝒮(p,d,1),u\in\mathcal{S}(p,d,1), then

W72(u;3/4)Cd2W_{\frac{7}{2}}(u;3/4)\leq Cd^{2}

for a universal constant CC.

Proof.

Homogeneity of pp implies

W72(p;1)\displaystyle W_{\frac{7}{2}}(p;1) =B1|p|272B1p2\displaystyle=\int_{B_{1}}|\nabla p|^{2}-\frac{7}{2}\int_{\partial B_{1}}p^{2}
(3.4) =B1pΔpB1(ppν+72p2)\displaystyle=\int_{B_{1}}-p\Delta p-\int_{\partial B_{1}}(pp_{\nu}+\frac{7}{2}p^{2})
=B1pΔp=0.\displaystyle=\int_{B_{1}}-p\Delta p=0.

Recall from (2.3) that pνp_{\nu} denotes the inner normal derivative along B1\partial B_{1}. For the last equality, we used the fact that pp is harmonic in 3^\widehat{\mathbb{R}^{3}}.

The rest of the proof is identical to the case for integer-frequency points. See Lemma 2.7 in [SY2]. ∎

3.2. The dichotomy

With these preparations, we state the main lemma of this section:

Lemma 3.4.

Suppose that u𝒮(p,d,1)u\in\mathcal{S}(p,d,1) with pp satisfying (3.1).

There is small δ~>0\tilde{\delta}>0, depending only on μ\mu and μp\mu_{p}, such that if d<δ~d<\tilde{\delta}, then we have the following dichotomy:

  1. (1)

    either

    W72(u;1)W72(u;ρ0)c02d2W_{\frac{7}{2}}(u;1)-W_{\frac{7}{2}}(u;\rho_{0})\geq c_{0}^{2}d^{2}

    and

    u𝒮(p,Cd,ρ0);u\in\mathcal{S}(p,Cd,\rho_{0});
  2. (2)

    or

    u𝒮(p,12d,ρ0)u\in\mathcal{S}(p^{\prime},\frac{1}{2}d,\rho_{0})

    for some

    p=Uτ[a0u72+a1v52+a2v32]p^{\prime}=\operatorname{U}_{\tau}[a_{0}^{\prime}u_{\frac{7}{2}}+a_{1}^{\prime}v_{\frac{5}{2}}+a_{2}^{\prime}v_{\frac{3}{2}}]

    with |τ|+|ajaj|Cd|\tau|+\sum|a_{j}^{\prime}-a_{j}|\leq Cd.

The constants c0c_{0}, ρ0\rho_{0} and CC depend only on μ\mu.

Recall the rotation operator U\operatorname{U} from (2), and the basis {u72,v52,v32,v12}\{u_{\frac{7}{2}},v_{\frac{5}{2}},v_{\frac{3}{2}},v_{\frac{1}{2}}\} from (2.15).

Proof.

Let c0c_{0} and ρ0\rho_{0} be small constants to be chosen.

Note that for any u𝒮(p,d,1)u\in\mathcal{S}(p,d,1), we always have u𝒮(p,ρ072d,ρ0)u\in\mathcal{S}(p,\rho_{0}^{-\frac{7}{2}}d,\rho_{0}).

Suppose, on the contrary, that the conclusion is false. Then we find a sequence (un,pn,dn)(u_{n},p_{n},d_{n}) satisfying

lim infμpn>0\liminf\mu_{p_{n}}>0

and

un𝒮(pn,dn,1) with dn0,u_{n}\in\mathcal{S}(p_{n},d_{n},1)\text{ with }d_{n}\to 0,

but

(3.5) W72(un;1)W72(un;ρ0)c02dn2 for all n,W_{\frac{7}{2}}(u_{n};1)-W_{\frac{7}{2}}(u_{n};\rho_{0})\leq c_{0}^{2}d_{n}^{2}\text{ for all }n,

and

(3.6) un𝒮(p,12dn,ρ0)u_{n}\not\in\mathcal{S}(p^{\prime},\frac{1}{2}d_{n},\rho_{0})

for any pp^{\prime} satisfying the properties as in alternative (2) from the lemma.

Step 1: Compactness.

Define u^n=unpndn\hat{u}_{n}=\frac{u_{n}-p_{n}}{d_{n}}. Then |u^n|1|\hat{u}_{n}|\leq 1 in B1B_{1}.

With Lemma 3.1, we have

Δu^n=0 in B1^{r>Cdn27}, and u^n=0 in B7/8~{r>Cdn215}.\Delta\hat{u}_{n}=0\text{ in }\widehat{B_{1}}\cap\{r>Cd_{n}^{\frac{2}{7}}\},\text{ and }\hat{u}_{n}=0\text{ in }\widetilde{B_{7/8}}\cap\{r>Cd_{n}^{\frac{2}{15}}\}.

As a result, up to a subsequence, the functions u^n\hat{u}_{n} converge locally uniformly in B7/8\{r=0}B_{7/8}\backslash\{r=0\} to some u^\hat{u}_{\infty}. The limit u^\hat{u}_{\infty} is a harmonic function in the slit domain B7/8^\widehat{B_{7/8}}, defined as in (2.11). Since the set {r=0}\{r=0\} has zero capacity, we have

(3.7) u^nu^L2(B7/8)=o(1) as n.\|\hat{u}_{n}-\hat{u}_{\infty}\|_{L^{2}(B_{7/8})}=o(1)\text{ as }n\to\infty.

With Theorem 2.1, for k=0,1,2,3k=0,1,2,3, we find hk+12h_{k+\frac{1}{2}}, a (k+12)(k+\frac{1}{2})-homogeneous harmonic function in 3^\widehat{\mathbb{R}^{3}}, such that

(3.8) |u^(h12+h32+h52+h72)|(x)C|x|92 for xB7/8.|\hat{u}_{\infty}-(h_{\frac{1}{2}}+h_{\frac{3}{2}}+h_{\frac{5}{2}}+h_{\frac{7}{2}})|(x)\leq C|x|^{\frac{9}{2}}\text{ for }x\in B_{7/8}.

Moreover, each hk+12L(B1)\|h_{k+\frac{1}{2}}\|_{L^{\infty}(B_{1})} is universally bounded.

In the remaining of this proof, we omit the subscripts in un,pnu_{n},p_{n}, u^n\hat{u}_{n} and dnd_{n}.

Step 2: Almost homogeneity.

With (3.7), we find ρ[ρ0,4ρ0]\rho\in[\rho_{0},4\rho_{0}] such that

u^u^L2(Bρ)+u^u^L2(B2ρ)=o(1).\|\hat{u}-\hat{u}_{\infty}\|_{L^{2}(\partial B_{\rho})}+\|\hat{u}-\hat{u}_{\infty}\|_{L^{2}(\partial B_{2\rho})}=o(1).

Combined with (3.8), this implies

u^(h12+h32+h52+h72)L2(Bρ)+u^(h12+h32+h52+h72)L2(B2ρ)Cρ112+o(1).\|\hat{u}-(h_{\frac{1}{2}}+h_{\frac{3}{2}}+h_{\frac{5}{2}}+h_{\frac{7}{2}})\|_{L^{2}(\partial B_{\rho})}+\|\hat{u}-(h_{\frac{1}{2}}+h_{\frac{3}{2}}+h_{\frac{5}{2}}+h_{\frac{7}{2}})\|_{L^{2}(\partial B_{2\rho})}\leq C\rho^{\frac{11}{2}}+o(1).

As a result, we have

[u^(h12+h32+h52+h72)](12)[u^(h12+h32+h52+h72)]L2(Bρ)Cρ112+o(1),\|[\hat{u}-(h_{\frac{1}{2}}+h_{\frac{3}{2}}+h_{\frac{5}{2}}+h_{\frac{7}{2}})]_{(\frac{1}{2})}-[\hat{u}-(h_{\frac{1}{2}}+h_{\frac{3}{2}}+h_{\frac{5}{2}}+h_{\frac{7}{2}})]\|_{L^{2}(\partial B_{\rho})}\leq C\rho^{\frac{11}{2}}+o(1),

where f(12)f_{(\frac{1}{2})} denotes the rescaling of the function ff as in (2.5). With the homogeneity of pp and hk+12h_{k+\frac{1}{2}}, this gives

(3.9) 1d[u(12)u](7h12+3h32+h52)L2(Bρ)Cρ112+o(1).\|\frac{1}{d}[u_{(\frac{1}{2})}-u]-(7h_{\frac{1}{2}}+3h_{\frac{3}{2}}+h_{\frac{5}{2}})\|_{L^{2}(\partial B_{\rho})}\leq C\rho^{\frac{11}{2}}+o(1).

Meanwhile, applying (2.8) together with (3.5), we have

B1|u(ρ)u(2ρ)|\displaystyle\int_{\partial B_{1}}|u_{(\rho)}-u_{(2\rho)}| log(2)W72(u;2ρ)W72(u;ρ)\displaystyle\leq\sqrt{\log(2)}\sqrt{W_{\frac{7}{2}}(u;2\rho)-W_{\frac{7}{2}}(u;\rho)}
CW72(u;1)W72(u;ρ0)\displaystyle\leq C\sqrt{W_{\frac{7}{2}}(u;1)-W_{\frac{7}{2}}(u;\rho_{0})}
Cc0d\displaystyle\leq Cc_{0}d

for a universal constant CC. Note that we used our choice of ρ[ρ0,4ρ0]\rho\in[\rho_{0},4\rho_{0}].

This implies, by the maximum principle, that |u(ρ)u(2ρ)|Cc0d|u_{(\rho)}-u_{(2\rho)}|\leq Cc_{0}d in B1/2B_{1/2}. As a result,

u(12)uL2(Bρ)Cρ92u(ρ)u(2ρ)L2(B12)Cc0dρ92.\|u_{(\frac{1}{2})}-u\|_{L^{2}(\partial B_{\rho})}\leq C\rho^{\frac{9}{2}}\|u_{(\rho)}-u_{(2\rho)}\|_{L^{2}(\partial B_{\frac{1}{2}})}\leq Cc_{0}d\rho^{\frac{9}{2}}.

Together with (3.9), this gives

7h12+3h32+h52L2(Bρ)C(ρ112+c0ρ92+o(1)).\|7h_{\frac{1}{2}}+3h_{\frac{3}{2}}+h_{\frac{5}{2}}\|_{L^{2}(\partial B_{\rho})}\leq C(\rho^{\frac{11}{2}}+c_{0}\rho^{\frac{9}{2}}+o(1)).

Using Proposition 2.2 and homogeneity of the functions involved, we have

h12L(B1)\displaystyle\|h_{\frac{1}{2}}\|_{L^{\infty}(B_{1})} C(ρ4+c0ρ3+o(1)),\displaystyle\leq C(\rho^{4}+c_{0}\rho^{3}+o(1)),
h32L(B1)\displaystyle\|h_{\frac{3}{2}}\|_{L^{\infty}(B_{1})} C(ρ3+c0ρ2+o(1)),\displaystyle\leq C(\rho^{3}+c_{0}\rho^{2}+o(1)),
h52L(B1)\displaystyle\|h_{\frac{5}{2}}\|_{L^{\infty}(B_{1})} C(ρ2+c0ρ+o(1)).\displaystyle\leq C(\rho^{2}+c_{0}\rho+o(1)).

With (3.7) and (3.8), we have

u^h72L1(B2ρ0)C(ρ0+c0)ρ0132+o(1),\|\hat{u}-h_{\frac{7}{2}}\|_{L^{1}(B_{2\rho_{0}})}\leq C(\rho_{0}+c_{0})\rho_{0}^{\frac{13}{2}}+o(1),

since ρ[ρ0,4ρ0].\rho\in[\rho_{0},4\rho_{0}].

Step 3: Improvement of flatness.

The last estimate from the previous step gives

u(p+dh72)L1(B2ρ0)Cd[(ρ0+c0)ρ0132+o(1)].\|u-(p+dh_{\frac{7}{2}})\|_{L^{1}(B_{2\rho_{0}})}\leq Cd[(\rho_{0}+c_{0})\rho^{\frac{13}{2}}_{0}+o(1)].

We temporarily switch to the basis {u72,w52,w32,w12}\{u_{\frac{7}{2}},w_{\frac{5}{2}},w_{\frac{3}{2}},w_{\frac{1}{2}}\} from (2.16). Suppose, in this basis, we have

p=b0u72+b1w52+b2w32, and h72=α0u72+α1w52+α2w32+α3w12.p=b_{0}u_{\frac{7}{2}}+b_{1}w_{\frac{5}{2}}+b_{2}w_{\frac{3}{2}},\text{ and }h_{\frac{7}{2}}=\alpha_{0}u_{\frac{7}{2}}+\alpha_{1}w_{\frac{5}{2}}+\alpha_{2}w_{\frac{3}{2}}+\alpha_{3}w_{\frac{1}{2}}.

Thus

p+dh72=(b0+dα0)u72+(b1+dα1)w52+(b2+dα2)w32+dα3w12.p+dh_{\frac{7}{2}}=(b_{0}+d\alpha_{0})u_{\frac{7}{2}}+(b_{1}+d\alpha_{1})w_{\frac{5}{2}}+(b_{2}+d\alpha_{2})w_{\frac{3}{2}}+d\alpha_{3}w_{\frac{1}{2}}.

Using Remark 2.1 and (3.1), we have lower bounds:

(3.10) b0+dα012Cd, and b2+dα2235μCd.b_{0}+d\alpha_{0}\geq\frac{1}{2}-Cd,\text{ and }b_{2}+d\alpha_{2}\geq\frac{2}{35}\mu-Cd.

Now we let (β1,β2,τ)(\beta_{1},\beta_{2},\tau) be the solution to the following system

{β1+(b0+dα0)τ=b1+dα1β2+β1τ+12(b0+dα0)τ2=b2+dα2β2τ+12β1τ2+16(b0+dα0)τ3=dα3\begin{cases}&\beta_{1}+(b_{0}+d\alpha_{0})\tau=b_{1}+d\alpha_{1}\\ &\beta_{2}+\beta_{1}\tau+\frac{1}{2}(b_{0}+d\alpha_{0})\tau^{2}=b_{2}+d\alpha_{2}\\ &\beta_{2}\tau+\frac{1}{2}\beta_{1}\tau^{2}+\frac{1}{6}(b_{0}+d\alpha_{0})\tau^{3}=d\alpha_{3}\end{cases}

Using (3.10), it is elementary that this system has a solution when dd is small. Moreover, we have

(3.11) |τ|+|β1(b1+α1d)|+|β2(b2+α2d)|C|α3db2+dα2|Cd.|\tau|+|\beta_{1}-(b_{1}+\alpha_{1}d)|+|\beta_{2}-(b_{2}+\alpha_{2}d)|\leq C|\frac{\alpha_{3}d}{b_{2}+d\alpha_{2}}|\leq Cd.

Using Taylor’s Theorem and the integrability of ddτUτ(w12)\frac{d}{d\tau}\operatorname{U}_{\tau}(w_{\frac{1}{2}}), we have

(p+dh72)[(b0+α0d)u72+β1w52+β2w32](Uτ)L1(𝕊2)Cd2\|(p+dh_{\frac{7}{2}})-[(b_{0}+\alpha_{0}d)u_{\frac{7}{2}}+\beta_{1}w_{\frac{5}{2}}+\beta_{2}w_{\frac{3}{2}}](\operatorname{U}_{\tau}\cdot)\|_{L^{1}(\mathbb{S}^{2})}\leq Cd^{2}

for CC depending on μ\mu. Switching back to the basis {u72,v52,v32,v12}\{u_{\frac{7}{2}},v_{\frac{5}{2}},v_{\frac{3}{2}},v_{\frac{1}{2}}\}, we have

(p+dh72)Uτ[a0u72+a1v52+a2v32]L1(𝕊2)Cd2,\|(p+dh_{\frac{7}{2}})-\operatorname{U}_{-\tau}[a_{0}^{\prime}u_{\frac{7}{2}}+a_{1}^{\prime}v_{\frac{5}{2}}+a_{2}^{\prime}v_{\frac{3}{2}}]\|_{L^{1}(\mathbb{S}^{2})}\leq Cd^{2},

with |ajaj|Cd|a_{j}^{\prime}-a_{j}|\leq Cd by (3.11). By homogeneity, we have

(p+dh72)Uτ[a0u72+a1v52+a2v32]L1(B2ρ0)Cd2ρ0132.\|(p+dh_{\frac{7}{2}})-\operatorname{U}_{-\tau}[a_{0}^{\prime}u_{\frac{7}{2}}+a_{1}^{\prime}v_{\frac{5}{2}}+a_{2}^{\prime}v_{\frac{3}{2}}]\|_{L^{1}(B_{2\rho_{0}})}\leq Cd^{2}\rho_{0}^{\frac{13}{2}}.

Combining this with the first estimate in this step, we have

uUτ[a0u72+a1v52+a2v32]L1(B2ρ0)Cdρ0132[ρ0+c0+o(1)].\|u-\operatorname{U}_{-\tau}[a_{0}^{\prime}u_{\frac{7}{2}}+a_{1}^{\prime}v_{\frac{5}{2}}+a_{2}^{\prime}v_{\frac{3}{2}}]\|_{L^{1}(B_{2\rho_{0}})}\leq Cd\rho_{0}^{\frac{13}{2}}[\rho_{0}+c_{0}+o(1)].

Since pp lies in the interior of 𝒜\mathcal{A} and |ajaj|Cd|a_{j}^{\prime}-a_{j}|\leq Cd, we see that a0u72+a1v52+a2v32a_{0}^{\prime}u_{\frac{7}{2}}+a_{1}^{\prime}v_{\frac{5}{2}}+a_{2}^{\prime}v_{\frac{3}{2}} solves the thin obstacle problem when dd is small, depending on μp\mu_{p} from (3.2). As a result, we can apply Lemma 3.2 to get

uUτ[a0u72+a1v52+a2v32]L(Bρ0)Cdρ072[ρ0+c0+o(1)].\|u-\operatorname{U}_{-\tau}[a_{0}^{\prime}u_{\frac{7}{2}}+a_{1}^{\prime}v_{\frac{5}{2}}+a_{2}^{\prime}v_{\frac{3}{2}}]\|_{L^{\infty}(B_{\rho_{0}})}\leq Cd\rho_{0}^{\frac{7}{2}}[\rho_{0}+c_{0}+o(1)].

Consequently, if we choose ρ0\rho_{0} and c0c_{0} small, depending only on μ\mu, such that C(ρ0+c0)<14C(\rho_{0}+c_{0})<\frac{1}{4}, then

uUτ[a0u72+a1v52+a2v32]L(Bρ0)dρ072(14+Co(1))<12dρ072\|u-\operatorname{U}_{-\tau}[a_{0}^{\prime}u_{\frac{7}{2}}+a_{1}^{\prime}v_{\frac{5}{2}}+a_{2}^{\prime}v_{\frac{3}{2}}]\|_{L^{\infty}(B_{\rho_{0}})}\leq d\rho_{0}^{\frac{7}{2}}(\frac{1}{4}+Co(1))<\frac{1}{2}d\rho_{0}^{\frac{7}{2}}

eventually. This contradicts (3.6). ∎

4. Dichotomy for pp near 𝒜2\mathcal{A}_{2}

In this section, we focus on profiles near 𝒜2\mathcal{A}_{2} from (1.3).

To illustrate the ideas, let’s take p=u72+a1v52+a2v32𝒜2p=u_{\frac{7}{2}}+a_{1}v_{\frac{5}{2}}+a_{2}v_{\frac{3}{2}}\in\mathcal{A}_{2} with

μa25 and a12=Γ(a2)\mu\leq a_{2}\leq 5\text{ and }a_{1}^{2}=\Gamma(a_{2})

for a small parameter μ>0\mu>0, to be chosen in Section 5. See Remark 5.1. The function Γ\Gamma was defined in (1.8). Recall also the basis {u72,v52,v32,v12}\{u_{\frac{7}{2}},v_{\frac{5}{2}},v_{\frac{3}{2}},v_{\frac{1}{2}}\} from (2.15) for the space 72\mathcal{H}_{\frac{7}{2}} from (2.12).

We further assume

a10.a_{1}\geq 0.

The other case is symmetric.

Although pp solves the thin obstacle problem, the two constraints p|{x3=0}0p|_{\{x_{3}=0\}}\geq 0 and Δp|{x3=0}0\Delta p|_{\{x_{3}=0\}}\leq 0 become degenerate as

  1. (1)

    When a254a_{2}\leq\frac{5}{4},

    Δp=0 along Rp+;\Delta p=0\text{ along $R^{+}_{p}$};
  2. (2)

    When a254a_{2}\geq\frac{5}{4},

    p=0 along Rp,p=0\text{ along $R^{-}_{p}$},

where

(4.1) Rp+:={t(1,5a11465a2,0):t0} and Rp:={t(1,a1225a2,0):t0}.R^{+}_{p}:=\{t\cdot(1,\frac{-5a_{1}}{14-\frac{6}{5}a_{2}},0):t\geq 0\}\text{ and }R^{-}_{p}:=\{t\cdot(-1,\frac{a_{1}}{2-\frac{2}{5}a_{2}},0):t\geq 0\}.

Let’s denote by Ap±A_{p}^{\pm} the intersections of these two rays with the sphere

(4.2) {Ap±}=Rp±𝕊2.\{A_{p}^{\pm}\}=R^{\pm}_{p}\cap\mathbb{S}^{2}.

It is crucial that both points are bounded away from {r=0}\{r=0\} with

(4.3) dist(Ap±,{r=0})cμ>0,\operatorname{dist}(A_{p}^{\pm},\{r=0\})\geq c_{\mu}>0,

where cμc_{\mu} depends only on μ.\mu.

Due to the degeneracy of pp, the modified p=p+dvp^{\prime}=p+dv as in (1.12) may fail to solve the thin obstacle problem, and is no longer a suitable profile to approximate our solution (for instance, a result similar to Lemma 3.2 is not necessarily true).

We tackle this issue by solving the thin obstacle problem in small spherical caps around Ap±A_{p}^{\pm}, and replace pp^{\prime} with this solution. Along the boundary of the caps, this procedure creates an error. With (4.3), we show that this error has a significant projection into 72\mathcal{H}_{\frac{7}{2}} from (2.12). This allows us to control the error in terms of the decay of the Weiss energy.

In most part of this section, we deal with profiles near the ‘doubly critical’ profile

(4.4) pdc:=u72+152v52+54v32.p_{dc}:=u_{\frac{7}{2}}+\frac{\sqrt{15}}{2}v_{\frac{5}{2}}+\frac{5}{4}v_{\frac{3}{2}}.

This is the only profile in 𝒜2\mathcal{A}_{2} for which both Δpdc(A+)\Delta p_{dc}(A^{+}) and pdc(A)p_{dc}(A^{-}) vanish. As a result, for profiles nearby, we need to find replacements in spherical caps near both A±.A^{\pm}.

For other profiles p𝒜2p\in\mathcal{A}_{2}, only one of the two constraints is degenerate. The treatment is more straightforward, and is only sketched near the end of this section.

4.1. The boundary layer problem around pdcp_{dc}

We study homogeneous harmonic functions near pdcp_{dc}. For a small universal constant δ>0\delta>0, suppose

p=a0u72+a1v52+a2v32+a3v12p=a_{0}u_{\frac{7}{2}}+a_{1}v_{\frac{5}{2}}+a_{2}v_{\frac{3}{2}}+a_{3}v_{\frac{1}{2}}

satisfy

(4.5) 12a02, and |a1a0152|+|a2a054|+|a3a0|δ.\frac{1}{2}\leq a_{0}\leq 2,\text{ and }|\frac{a_{1}}{a_{0}}-\frac{\sqrt{15}}{2}|+|\frac{a_{2}}{a_{0}}-\frac{5}{4}|+|\frac{a_{3}}{a_{0}}|\leq\delta.

Recall from (4.2) that A+=(5/8,3/8,0)A^{+}=(\sqrt{5/8},-\sqrt{3/8},0) and A=(3/8,5/8,0)A^{-}=(-\sqrt{3/8},\sqrt{5/8},0) are the points of degeneracy for pdc.p_{dc}. For a universal small η>0\eta>0, define two spherical caps

𝒞η+:={x𝕊2:|xA+|<η}, and 𝒞η:={x𝕊2:|xA|<η}.\mathcal{C}_{\eta}^{+}:=\{x\in\mathbb{S}^{2}:|x-A^{+}|<\eta\},\text{ and }\mathcal{C}_{\eta}^{-}:=\{x\in\mathbb{S}^{2}:|x-A^{-}|<\eta\}.

Thanks to (4.3), both are bounded away from {r=0}\{r=0\} for small η\eta. The same notations are used to denote the cones generated by the two caps. See Figure 3.

Refer to caption
Figure 3. Boundary layers for pdcp_{dc} in (x1,x2)(x_{1},x_{2})-plane.

In general, for >0\ell>0 we define

(4.6) 𝒞±:={x𝕊2:|xA±|<}.\mathcal{C}_{\ell}^{\pm}:=\{x\in\mathbb{S}^{2}:|x-A^{\pm}|<\ell\}.

Inside the caps 𝒞η±\mathcal{C}_{\eta}^{\pm}, we solve the thin obstacle problem for the operator (Δ𝕊2+λ72)(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}}) from (2.14) with pp as boundary data:

(4.7) {(Δ𝕊2+λ72)vp±0 in 𝒞η±,vp±0 on 𝒞η±{x3=0},(Δ𝕊2+λ72)vp±=0 in {x30}{vp±>0},vp±=p along 𝒞η±.\begin{cases}(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})v_{p}^{\pm}\leq 0&\text{ in $\mathcal{C}_{\eta}^{\pm}$,}\\ v_{p}^{\pm}\geq 0&\text{ on $\mathcal{C}_{\eta}^{\pm}\cap\{x_{3}=0\}$,}\\ (\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})v_{p}^{\pm}=0&\text{ in $\{x_{3}\neq 0\}\cup\{v_{p}^{\pm}>0\}$,}\\ v_{p}^{\pm}=p&\text{ along $\partial\mathcal{C}_{\eta}^{\pm}.$}\end{cases}

Note that when η\eta is universally small, the maximum principle holds for (Δ𝕊2+λ72)(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}}) in 𝒞η±\mathcal{C}_{\eta}^{\pm}, and problem (4.7) is well-posed.

The maximum principle also implies

(4.8) vp±p in 𝒞η±.v_{p}^{\pm}\geq p\text{ in $\mathcal{C}_{\eta}^{\pm}$.}

With the symmetry of pp, the solutions vp±v_{p}^{\pm} are even with respect to {x3=0}.\{x_{3}=0\}.

Definition 4.1.

Given pp satisfying (4.5), our replacement for pp, to be denoted by p~\tilde{p}, is the following function

p~={poutside 𝒞η±,vp±in 𝒞η±.\tilde{p}=\begin{cases}p&\text{outside $\mathcal{C}_{\eta}^{\pm}$,}\\ v_{p}^{\pm}&\text{in $\mathcal{C}_{\eta}^{\pm}.$}\end{cases}

Equivalently, the replacement p~\tilde{p} is the unique minimizer of

v𝕊2|𝕊2v|2λ72v2v\mapsto\int_{\mathbb{S}^{2}}|\nabla_{\mathbb{S}^{2}}v|^{2}-\lambda_{\frac{7}{2}}v^{2}

over

{v:v=p outside 𝒞η±, and v0 on {x3=0}}.\{v:v=p\text{ outside $\mathcal{C}_{\eta}^{\pm}$, and }v\geq 0\text{ on $\{x_{3}=0\}$}\}.

Here 𝕊2\nabla_{\mathbb{S}^{2}} denotes the tangential gradient on 𝕊2\mathbb{S}^{2}.

We also denote the 72\frac{7}{2}-homogeneous extension of p~\tilde{p} by the same notation.

Recall the notations for slit domains from (2.10). We have, by definition,

(4.9) {(Δ𝕊2+λ72)p~=fp±dH1|𝒞η±+gp±dH1|𝒞η±{x3=0} in 𝕊2\(𝕊2~\𝒞η+),p~=0 on 𝕊2~\𝒞η+.\begin{cases}(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})\tilde{p}=f_{p}^{\pm}dH^{1}|_{\partial\mathcal{C}_{\eta}^{\pm}}+g_{p}^{\pm}dH^{1}|_{\mathcal{C}_{\eta}^{\pm}\cap\{x_{3}=0\}}&\text{ in $\mathbb{S}^{2}\backslash(\widetilde{\mathbb{S}^{2}}\backslash\mathcal{C}_{\eta}^{+})$,}\\ \tilde{p}=0&\text{ on $\widetilde{\mathbb{S}^{2}}\backslash\mathcal{C}_{\eta}^{+}$.}\end{cases}

Here fp±f_{p}^{\pm} arise from the gluing of vp±v_{p}^{\pm} and pp along 𝒞η±\partial\mathcal{C}_{\eta}^{\pm}, and gp±g_{p}^{\pm} are a consequence of the thin obstacle problem (4.7). In particular, following our convention for one-sided derivatives (2.3), we have

(4.10) fp±=(p~p)ν|𝒞η±f_{p}^{\pm}=(\tilde{p}-p)_{\nu}|_{\partial\mathcal{C}_{\eta}^{\pm}}

and

gp±0 is supported in {p~=0}{x3=0}.g_{p}^{\pm}\leq 0\text{ is supported in }\{\tilde{p}=0\}\cap\{x_{3}=0\}.
Remark 4.1.

The replacement p~\tilde{p} does not necessarily satisfy the two constraints p~|{x3=0}0\tilde{p}|_{\{x_{3}=0\}}\geq 0 and Δp~{x3=0}0\Delta\tilde{p}_{\{x_{3}=0\}}\leq 0 outside 𝒞η±.\mathcal{C}_{\eta}^{\pm}. This is due to the possible presence of v12v_{\frac{1}{2}} in pp, which becomes dominant near {r=0}\{r=0\}.

On the other hand, suppose that p=a0u72+a1v52+a2v32+a3v12p=a_{0}u_{\frac{7}{2}}+a_{1}v_{\frac{5}{2}}+a_{2}v_{\frac{3}{2}}+a_{3}v_{\frac{1}{2}} satisfies (4.5) with a3=0a_{3}=0, then pp satisfies p|{x3=0}0p|_{\{x_{3}=0\}}\geq 0 and Δp|{x3=0}0\Delta p|_{\{x_{3}=0\}}\leq 0 outside 𝒞η±,\mathcal{C}_{\eta}^{\pm}, and the same holds for p~.\tilde{p}.

One essential ingredient of this section is that fp±f_{p}^{\pm} have significant projections into 72\mathcal{H}_{\frac{7}{2}} from (2.12). To measure this, we introduce some auxiliary functions.

Let φp:𝕊2\varphi_{p}:\mathbb{S}^{2}\to\mathbb{R} denote the projection of fp±f_{p}^{\pm} into 72\mathcal{H}_{\frac{7}{2}} from (2.12), namely,

(4.11) φp:=c72u72+c52v52+c32v32+c12v12,\varphi_{p}:=c_{\frac{7}{2}}u_{\frac{7}{2}}+c_{\frac{5}{2}}v_{\frac{5}{2}}+c_{\frac{3}{2}}v_{\frac{3}{2}}+c_{\frac{1}{2}}v_{\frac{1}{2}},

where

c72=1u72L2(𝕊2)𝕊2u72(fp+dH1|𝒞η++fpdH1|𝒞η)c_{\frac{7}{2}}=\frac{1}{\|u_{\frac{7}{2}}\|_{L^{2}(\mathbb{S}^{2})}}\cdot\int_{\mathbb{S}^{2}}u_{\frac{7}{2}}(f_{p}^{+}dH^{1}|_{\partial\mathcal{C}_{\eta}^{+}}+f_{p}^{-}dH^{1}|_{\partial\mathcal{C}_{\eta}^{-}})

and

cm+12=1vm+12L2(𝕊2)𝕊2vm+12(fp+dH1|𝒞η++fpdH1|𝒞η)c_{m+\frac{1}{2}}=\frac{1}{\|v_{m+\frac{1}{2}}\|_{L^{2}(\mathbb{S}^{2})}}\cdot\int_{\mathbb{S}^{2}}v_{m+\frac{1}{2}}(f_{p}^{+}dH^{1}|_{\partial\mathcal{C}_{\eta}^{+}}+f_{p}^{-}dH^{1}|_{\partial\mathcal{C}_{\eta}^{-}})

for m=0,1,2.m=0,1,2. It follows that

(fp+dH1|𝒞η++fpdH1|𝒞ηφp)72.(f_{p}^{+}dH^{1}|_{\partial\mathcal{C}_{\eta}^{+}}+f_{p}^{-}dH^{1}|_{\partial\mathcal{C}_{\eta}^{-}}-\varphi_{p})\perp\mathcal{H}_{\frac{7}{2}}.

By Fredholm alternative, there is a unique function Hp:𝕊2H_{p}:\mathbb{S}^{2}\to\mathbb{R} satisfying

{(Δ𝕊2+λ72)Hp=fp+dH1|𝒞η++fpdH1|𝒞ηφp on 𝕊2^,Hp=0 on 𝕊2~.\begin{cases}(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})H_{p}=f_{p}^{+}dH^{1}|_{\partial\mathcal{C}_{\eta}^{+}}+f_{p}^{-}dH^{1}|_{\partial\mathcal{C}_{\eta}^{-}}-\varphi_{p}&\text{ on $\widehat{\mathbb{S}^{2}},$}\\ H_{p}=0&\text{ on $\widetilde{\mathbb{S}^{2}}$.}\end{cases}

The natural extensions of fp±f^{\pm}_{p}, gp±g^{\pm}_{p}, φp\varphi_{p} and HpH_{p} into 3\mathbb{R}^{3} are denoted by the same symbols.

With this convention, we define

(4.12) Φp:=Hp(x|x|)|x|72+18φp(x|x|)|x|72log(|x|),\Phi_{p}:=H_{p}(\frac{x}{|x|})|x|^{\frac{7}{2}}+\frac{1}{8}\varphi_{p}(\frac{x}{|x|})|x|^{\frac{7}{2}}\log(|x|),

which satisfies

(4.13) {ΔΦp=fp±dH2|𝒞η± in 3^,Φp=0 on 3~,\begin{cases}\Delta\Phi_{p}=f_{p}^{\pm}dH^{2}|_{\partial\mathcal{C}_{\eta}^{\pm}}&\text{ in $\widehat{\mathbb{R}^{3}}$,}\\ \Phi_{p}=0&\text{ on $\widetilde{\mathbb{R}^{3}},$}\end{cases}

where we have used the notations for slit domains from (2.10).

Finally, let’s denote

(4.14) κp:=ΦpL(B1),\kappa_{p}:=\|\Phi_{p}\|_{L^{\infty}(B_{1})},

which measures the size of the error coming from the gluing procedure along 𝒞η±.\partial\mathcal{C}_{\eta}^{\pm}.

For all the functions and constants defined so far, the subscript pp is often omitted when there is no ambiguity.

We collect some properties of the replacement p~\tilde{p} from Definition 4.1.

We have the following localization of the contact set of p~\tilde{p}:

Lemma 4.1.

For pp satisfying (4.5), we have

p~>0 in (𝒞η\𝒞Cδ12), and p~=0 in (𝒞η+\𝒞Cδ12+),\tilde{p}>0\text{ in }(\mathcal{C}_{\eta}^{-}\backslash\mathcal{C}^{-}_{C\delta^{\frac{1}{2}}})^{\prime},\text{ and }\tilde{p}=0\text{ in }(\mathcal{C}_{\eta}^{+}\backslash\mathcal{C}_{C\delta^{\frac{1}{2}}}^{+})^{\prime},

where CC is a universal constant.

Recall our notations from (2.1) and (4.6).

Proof.

With (4.8), we have p~ppdcCδ\tilde{p}\geq p\geq p_{dc}-C\delta in 𝒞η\mathcal{C}_{\eta}^{-}. The first statement follows from direct computation.

Note that pdcp_{dc} and p~\tilde{p} both solve (4.7) in 𝒞η+\mathcal{C}_{\eta}^{+} with p~=ppdc+Cδ\tilde{p}=p\leq p_{dc}+C\delta along 𝒞η+\partial\mathcal{C}_{\eta}^{+}, it follows from the maximum principle that ppdc+Cδp\leq p_{dc}+C\delta in 𝒞η+\mathcal{C}_{\eta}^{+}. The second conclusion follows from a barrier argument similar to the proof for Lemma 3.1. ∎

The next lemma controls the change in p~\tilde{p} when pp is modified:

Lemma 4.2.

Suppose that pp satisfies (4.5), and take q=α0u72+α1v52+α2v32+α3v12q=\alpha_{0}u_{\frac{7}{2}}+\alpha_{1}v_{\frac{5}{2}}+\alpha_{2}v_{\frac{3}{2}}+\alpha_{3}v_{\frac{1}{2}} with |αj|1|\alpha_{j}|\leq 1 for j=0,1,2,3j=0,1,2,3.

Then we can find a universal modulus of continuity, ω()\omega(\cdot), such that

p+dq~(p~+dq)L(𝒞η+)ω(δ+d)d,\|\widetilde{p+dq}-(\tilde{p}+dq)\|_{L^{\infty}(\mathcal{C}_{\eta}^{+})}\leq\omega(\delta+d)\cdot d,
p+dq~(p~+dq)L(𝒞η\𝒞η/2)ω(δ+d)d,\|\widetilde{p+dq}-(\tilde{p}+dq)\|_{L^{\infty}(\mathcal{C}_{\eta}^{-}\backslash\mathcal{C}^{-}_{\eta/2})}\leq\omega(\delta+d)\cdot d,

and

p+dq~(p~+dq)L1(𝕊2)ω(d+δ)d.\|\widetilde{p+dq}-(\tilde{p}+dq)\|_{L^{1}(\mathbb{S}^{2})}\leq\omega(d+\delta)\cdot d.
Proof.

The distinction between the estimates in 𝒞η+\mathcal{C}_{\eta}^{+} and 𝒞η\mathcal{C}_{\eta}^{-} is due to the fact that q=0q=0 in 𝒞η+{x3=0}\mathcal{C}_{\eta}^{+}\cap\{x_{3}=0\}, while q0q\neq 0 in 𝒞η{x3=0}.\mathcal{C}_{\eta}^{-}\cap\{x_{3}=0\}.

Step 1: The estimate in 𝒞η+\mathcal{C}_{\eta}^{+}.

Let Ω:=𝒞η+{x3>0}\Omega:=\mathcal{C}_{\eta}^{+}\cap\{x_{3}>0\}. We build a barrier by solving the following system

{(Δ𝕊2+λ72)w=0 in Ω,w=1 in (𝒞Cδ+d+),w=0 in Ω\(𝒞Cδ+d+),\begin{cases}(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})w=0&\text{ in $\Omega$,}\\ w=1&\text{ in $(\mathcal{C}^{+}_{C\sqrt{\delta+d}})^{\prime}$,}\\ w=0&\text{ in $\partial\Omega\backslash(\mathcal{C}^{+}_{C\sqrt{\delta+d}})^{\prime}$,}\end{cases}

where CC is the universal constant from Lemma 4.1. We extend ww to 𝒞η+{x3<0}\mathcal{C}_{\eta}^{+}\cap\{x_{3}<0\} by evenly reflecting it with respect to {x3=0}.\{x_{3}=0\}.

It follows from the maximum principle and the second statement in Lemma 4.1 that

p+dq~(p~+dq)Cdw in 𝒞η+.\widetilde{p+dq}-(\tilde{p}+dq)\leq Cd\cdot w\text{ in }\mathcal{C}_{\eta}^{+}.

For >C(δ+d)12\ell>C(\delta+d)^{\frac{1}{2}} to be chosen, it follows

p+dq~p~Cd(+sup𝒞+w) along 𝒞+,\widetilde{p+dq}-\tilde{p}\leq Cd\cdot(\ell+\sup_{\partial\mathcal{C}^{+}_{\ell}}w)\text{ along }\partial\mathcal{C}^{+}_{\ell},

where we used the Lipschitz regularity of qq and q=0q=0 along 𝒞η+{x3=0}.\mathcal{C}_{\eta}^{+}\cap\{x_{3}=0\}. From here the maximum principle implies p+dq~p~Cd(+sup𝒞+w) in 𝒞+,\widetilde{p+dq}-\tilde{p}\leq Cd\cdot(\ell+\sup_{\partial\mathcal{C}^{+}_{\ell}}w)\text{ in }\mathcal{C}^{+}_{\ell}, and consequently,

p+dq~(p~+dq)Cd(+sup𝒞+w) in 𝒞+.\widetilde{p+dq}-(\tilde{p}+dq)\leq Cd\cdot(\ell+\sup_{\partial\mathcal{C}^{+}_{\ell}}w)\text{ in }\mathcal{C}^{+}_{\ell}.

Using Lemma 4.1, for small d+δd+\delta, it follows from the maximum principle in 𝒞η+\𝒞+\mathcal{C}_{\eta}^{+}\backslash\mathcal{C}_{\ell}^{+} that

p+dq~(p~+dq)Cd(+sup𝒞+w) in 𝒞η+.\widetilde{p+dq}-(\tilde{p}+dq)\leq Cd\cdot(\ell+\sup_{\partial\mathcal{C}^{+}_{\ell}}w)\text{ in $\mathcal{C}_{\eta}^{+}$.}

A symmetric argument gives

p+dq~(p~+dq)Cd(+sup𝒞+w) in 𝒞η+.\widetilde{p+dq}-(\tilde{p}+dq)\geq-Cd\cdot(\ell+\sup_{\partial\mathcal{C}^{+}_{\ell}}w)\text{ in $\mathcal{C}_{\eta}^{+}$.}

By choosing \ell small, and noting that sup𝒞+wω(d+δ)\sup_{\partial\mathcal{C}^{+}_{\ell}}w\leq\omega_{\ell}(d+\delta) for a modulus of continuity depending only on \ell, we get the desired estimate in 𝒞η+\mathcal{C}_{\eta}^{+}.

Step 2: The estimate in 𝒞η\𝒞η/2\mathcal{C}_{\eta}^{-}\backslash\mathcal{C}^{-}_{\eta/2}.

The main difference with the previous case is that qq no longer vanishes along {x3=0}\{x_{3}=0\} in the cap 𝒞η\mathcal{C}_{\eta}^{-}.

We build a barrier by solving

{(Δ𝕊2+λ72)w=0 in 𝒞η\(𝒞Cδ+d),w=1 in (𝒞Cδ+d),w=0 in 𝒞η.\begin{cases}(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})w=0&\text{ in $\mathcal{C}_{\eta}^{-}\backslash(\mathcal{C}^{-}_{C\sqrt{\delta+d}})^{\prime}$,}\\ w=1&\text{ in $(\mathcal{C}^{-}_{C\sqrt{\delta+d}})^{\prime}$,}\\ w=0&\text{ in $\partial\mathcal{C}_{\eta}^{-}$.}\end{cases}

With the first statement in Lemma 4.1, it follows from the maximum principle that

p+dq~(p~+dq)Cdw in 𝒞η.\widetilde{p+dq}-(\tilde{p}+dq)\leq Cd\cdot w\text{ in }\mathcal{C}_{\eta}^{-}.

In particular, we have

p+dq~(p~+dq)Cdsup𝒞η/2w in 𝒞η\𝒞η/2.\widetilde{p+dq}-(\tilde{p}+dq)\leq Cd\cdot\sup_{\partial\mathcal{C}_{\eta/2}}w\text{ in }\mathcal{C}_{\eta}^{-}\backslash\mathcal{C}^{-}_{\eta/2}.

A symmetric argument gives p+dq~(p~+dq)Cdsup𝒞η/2w in 𝒞η\𝒞η/2.\widetilde{p+dq}-(\tilde{p}+dq)\geq-Cd\cdot\sup_{\partial\mathcal{C}_{\eta/2}}w\text{ in }\mathcal{C}_{\eta}^{-}\backslash\mathcal{C}^{-}_{\eta/2}.

Note that sup𝒞η/2w0\sup_{\partial\mathcal{C}_{\eta/2}}w\to 0 as d+δ0d+\delta\to 0, the previous two estimates gives the desired results in 𝒞η\𝒞η/2\mathcal{C}_{\eta}^{-}\backslash\mathcal{C}^{-}_{\eta/2}.

Step 3: The L1(𝕊2)L^{1}(\mathbb{S}^{2}) estimate.

For >0\ell>0, with the same barrier from Step 2, we have for small d+δd+\delta

|p+dq~(p~+dq)|Cdsup𝒞w in 𝒞η\𝒞.|\widetilde{p+dq}-(\tilde{p}+dq)|\leq Cd\cdot\sup_{\partial\mathcal{C}_{\ell}}w\text{ in }\mathcal{C}_{\eta}^{-}\backslash\mathcal{C}^{-}_{\ell}.

Thus

p+dq~(p~+dq)L1(𝒞η)Cdsup𝒞w+Cd2.\|\widetilde{p+dq}-(\tilde{p}+dq)\|_{L^{1}(\mathcal{C}_{\eta}^{-})}\leq Cd\cdot\sup_{\partial\mathcal{C}_{\ell}}w+Cd\ell^{2}.

By choosing \ell small, and noting sup𝒞w0\sup_{\partial\mathcal{C}_{\ell}}w\to 0 as d+δ0d+\delta\to 0, we have

p+dq~(p~+dq)L1(𝒞η)ω(d+δ)d.\|\widetilde{p+dq}-(\tilde{p}+dq)\|_{L^{1}(\mathcal{C}_{\eta}^{-})}\leq\omega(d+\delta)\cdot d.

A similar estimate in 𝒞η+\mathcal{C}_{\eta}^{+} follows directly from the conclusion in Step 1. Since p+dq~(p~+dq)=0\widetilde{p+dq}-(\tilde{p}+dq)=0 outside 𝒞η±\mathcal{C}_{\eta}^{\pm}, the L1(𝕊2)L^{1}(\mathbb{S}^{2}) estimate follows. ∎

As a consequence, we can control the change of κp\kappa_{p}, defined in (4.14), when pp is modified:

Corollary 4.1.

Under the same assumption as in Lemma 4.2, we have

κp+dqκp+ω(δ+d)d.\kappa_{p+dq}\leq\kappa_{p}+\omega(\delta+d)\cdot d.
Proof.

Define wp=p~pw_{p}=\tilde{p}-p and wp+dq=p+dq~(p+dq)w_{p+dq}=\widetilde{p+dq}-(p+dq), then wp+dqwpw_{p+dq}-w_{p} vanishes along 𝒞η\partial\mathcal{C}_{\eta}^{-}, and satisfies (Δ𝕊2+λ72)(wp+dqwp)=0(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})(w_{p+dq}-w_{p})=0 in 𝒞η\𝒞η/2\mathcal{C}_{\eta}^{-}\backslash\mathcal{C}^{-}_{\eta/2}.

Boundary regularity estimate gives

(wp+dqwp)νCwp+dqwpL(𝒞η\𝒞η/2) along 𝒞η.(w_{p+dq}-w_{p})_{\nu}\leq C\|w_{p+dq}-w_{p}\|_{L^{\infty}(\mathcal{C}_{\eta}^{-}\backslash\mathcal{C}^{-}_{\eta/2})}\text{ along }\partial\mathcal{C}_{\eta}^{-}.

Similarly, with wp+dqwpw_{p+dq}-w_{p} vanishing along 𝒞η+(𝒞η+\𝒞η/2+)\partial\mathcal{C}_{\eta}^{+}\cup(\mathcal{C}_{\eta}^{+}\backslash\mathcal{C}^{+}_{\eta/2})^{\prime}, and (Δ𝕊2+λ72)(wp+dqwp)=0(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})(w_{p+dq}-w_{p})=0 in (𝒞η+\𝒞η/2+){x3>0},(\mathcal{C}_{\eta}^{+}\backslash\mathcal{C}^{+}_{\eta/2})\cap\{x_{3}>0\}, we have

(wp+dqwp)νCwp+dqwpL(𝒞η+\𝒞η/2+) along 𝒞η+.(w_{p+dq}-w_{p})_{\nu}\leq C\|w_{p+dq}-w_{p}\|_{L^{\infty}(\mathcal{C}_{\eta}^{+}\backslash\mathcal{C}^{+}_{\eta/2})}\text{ along }\partial\mathcal{C}_{\eta}^{+}.

The conclusion follows from (4.10) and Lemma 4.2. ∎

The following lemma is the key estimate of this section:

Lemma 4.3.

Suppose that pp satisfies (4.5) with δ>0\delta>0 universally small. Then

φL(𝕊2)cκ\|\varphi\|_{L^{\infty}(\mathbb{S}^{2})}\geq c\kappa

for a universal c>0c>0.

Recall the definition of φ\varphi and κ\kappa from (4.11) and (4.14) respectively.

Proof.

Define Ω=(𝒞η+\𝒞η/4+){x3>0}\Omega=(\mathcal{C}_{\eta}^{+}\backslash\mathcal{C}^{+}_{\eta/4})\cap\{x_{3}>0\}, and let ww denote the solution to

{(Δ𝕊2+λ72)w=0 in Ω,w=1 on 𝒞η/4+{x3>0},w=0 on Ω\𝒞η/4+.\begin{cases}(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})w=0&\text{ in $\Omega$,}\\ w=1&\text{ on $\partial\mathcal{C}^{+}_{\eta/4}\cap\{x_{3}>0\}$,}\\ w=0&\text{ on $\partial\Omega\backslash\partial\mathcal{C}^{+}_{\eta/4}.$}\end{cases}

For δ>0\delta>0 small, Lemma 4.1 implies that (p~p)(\tilde{p}-p) solves the same equation as ww in Ω\Omega, and both vanish long Ω\𝒞η/4+\partial\Omega\backslash\partial\mathcal{C}^{+}_{\eta/4}.

With (4.8), we can apply boundary Harnack principle to get

cp~pw(A++η2e3)p~pw(x)Cp~pw(A++η2e3)c\cdot\frac{\tilde{p}-p}{w}(A^{+}+\frac{\eta}{2}e_{3})\leq\frac{\tilde{p}-p}{w}(x)\leq C\cdot\frac{\tilde{p}-p}{w}(A^{+}+\frac{\eta}{2}e_{3})

for any x(𝒞η+\𝒞η/2+){x3>0}.x\in(\mathcal{C}_{\eta}^{+}\backslash\mathcal{C}^{+}_{\eta/2})\cap\{x_{3}>0\}. Here we denoted by (A++η2e3)(A^{+}+\frac{\eta}{2}e_{3}) the point on 𝕊2\mathbb{S}^{2} we get by moving from A+A^{+} along the x3x_{3}-direction by distance η/2\eta/2.

With (4.10), this implies

cp~pw(A++η2e3)f+wνCp~pw(A++η2e3) along 𝒞η+.c\cdot\frac{\tilde{p}-p}{w}(A^{+}+\frac{\eta}{2}e_{3})\leq\frac{f^{+}}{w_{\nu}}\leq C\cdot\frac{\tilde{p}-p}{w}(A^{+}+\frac{\eta}{2}e_{3})\text{ along $\partial\mathcal{C}_{\eta}^{+}$.}

With a similar argument, we have

cp~pv(A+η2e3)fvνCp~pv(A+η2e3) along 𝒞η,c\cdot\frac{\tilde{p}-p}{v}(A^{-}+\frac{\eta}{2}e_{3})\leq\frac{f^{-}}{v_{\nu}}\leq C\cdot\frac{\tilde{p}-p}{v}(A^{-}+\frac{\eta}{2}e_{3})\text{ along $\partial\mathcal{C}_{\eta}^{-}$,}

where vv denotes the solution to

{(Δ𝕊2+λ72)v=0 in 𝒞η\𝒞η/4,v=1 on 𝒞η/4,v=0 on 𝒞η.\begin{cases}(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})v=0&\text{ in $\mathcal{C}_{\eta}^{-}\backslash\mathcal{C}^{-}_{\eta/4}$,}\\ v=1&\text{ on $\partial\mathcal{C}^{-}_{\eta/4}$,}\\ v=0&\text{ on $\partial\mathcal{C}_{\eta}^{-}.$}\end{cases}

Now for a constant β>0\beta>0 to be chosen, let’s define

(4.15) q=u72+βv5272.q=u_{\frac{7}{2}}+\beta v_{\frac{5}{2}}\in\mathcal{H}_{\frac{7}{2}}.

A direct computation gives

x3q(A+)=a(β7535), and q(A)=b(53β),\frac{\partial}{\partial x_{3}}q(A^{+})=a(\beta-\frac{7}{5}\sqrt{\frac{3}{5}}),\text{ and }q(A^{-})=b(\sqrt{\frac{5}{3}}-\beta),

where aa and bb are positive constants. With 7535<53\frac{7}{5}\sqrt{\frac{3}{5}}<\sqrt{\frac{5}{3}}, we find β\beta such that

(4.16) Δqc>0 along 𝒞η+{x3=0},qc|x3| in 𝒞η+, and qc in 𝒞η\Delta q\geq c>0\text{ along $\mathcal{C}_{\eta}^{+}\cap\{x_{3}=0\}$},\hskip 5.0ptq\geq c|x_{3}|\text{ in $\mathcal{C}_{\eta}^{+}$, and }q\geq c\text{ in $\mathcal{C}_{\eta}^{-}$}

for a universal c>0c>0 if η\eta is small.

Consequently,

𝒞η+f+q𝑑H1\displaystyle\int_{\partial\mathcal{C}_{\eta}^{+}}f^{+}qdH^{1} c𝒞η+wν|x3|𝑑H1p~pw(A++η2e3)\displaystyle\geq c\int_{\partial\mathcal{C}_{\eta}^{+}}w_{\nu}|x_{3}|dH^{1}\cdot\frac{\tilde{p}-p}{w}(A^{+}+\frac{\eta}{2}e_{3})
cp~pw(A++η2e3)\displaystyle\geq c\frac{\tilde{p}-p}{w}(A^{+}+\frac{\eta}{2}e_{3})
cf+L(𝒞η+).\displaystyle\geq c\|f^{+}\|_{L^{\infty}(\partial\mathcal{C}_{\eta}^{+})}.

Similarly,

(4.17) 𝒞ηfq𝑑H1cp~pw(A+η2e3)cfL(𝒞η).\int_{\partial\mathcal{C}_{\eta}^{-}}f^{-}qdH^{1}\geq c\frac{\tilde{p}-p}{w}(A^{-}+\frac{\eta}{2}e_{3})\geq c\|f^{-}\|_{L^{\infty}(\partial\mathcal{C}_{\eta}^{-})}.

Note that q72q\in\mathcal{H}_{\frac{7}{2}}, we have φL(𝕊2)c(f+L(𝒞η+)+fL(𝒞η))\|\varphi\|_{L^{\infty}(\mathbb{S}^{2})}\geq c(\|f^{+}\|_{L^{\infty}(\partial\mathcal{C}_{\eta}^{+})}+\|f^{-}\|_{L^{\infty}(\partial\mathcal{C}_{\eta}^{-})}), which gives the desired estimate. ∎

We also have

Lemma 4.4.

Under the same assumptions as in Lemma 4.3, we have

|p~p|Cκ in 𝒞η|\tilde{p}-p|\leq C\kappa\text{ in $\mathcal{C}_{\eta}^{-}$}

for a universal constant CC.

Proof.

In this proof, define w=p~pw=\tilde{p}-p. By (4.8), it suffices to get an upper bound for ww in 𝒞η.\mathcal{C}_{\eta}^{-}.

Suppose ε:=max𝒞ηw>0\varepsilon:=\max_{\mathcal{C}_{\eta}^{-}}w>0, and that x0x_{0} is a point where this maximum is achieved, then x0{(Δ𝕊2+λ72)w<0}x_{0}\in\{(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})w<0\}. As a result, x0{p~=0}.x_{0}\in\{\tilde{p}=0\}^{\prime}. This implies that p(x0)=εp(x_{0})=-\varepsilon, and x1w(x0)=x1p~(x0)=0\frac{\partial}{\partial x_{1}}w(x_{0})=\frac{\partial}{\partial x_{1}}\tilde{p}(x_{0})=0. Thus x1p(x0)=0\frac{\partial}{\partial x_{1}}p(x_{0})=0 and we have

p78ε in (Bcε(x0)).p\leq-\frac{7}{8}\varepsilon\text{ in }(B_{c\sqrt{\varepsilon}}(x_{0}))^{\prime}.

Since p~0\tilde{p}\geq 0 along {x3=0}\{x_{3}=0\}, this implies w78εw\geq\frac{7}{8}\varepsilon in (Bcε(x0)).(B_{c\sqrt{\varepsilon}}(x_{0}))^{\prime}. With the super-harmonicity of ww in 𝒞η\mathcal{C}_{\eta}^{-}, we have

w12ε in Bcε(x0).w\geq\frac{1}{2}\varepsilon\text{ in $B_{c\sqrt{\varepsilon}}(x_{0}).$}

Comparing with the Green’s function for 𝒞η\mathcal{C}_{\eta}^{-} with a pole at x0x_{0}, we see that

(p~p)(A+η2e3)cε/|logε|.(\tilde{p}-p)(A^{-}+\frac{\eta}{2}e_{3})\geq c\varepsilon/|\log\varepsilon|.

With (4.17) from the proof of Lemma 4.3, this implies κcε,\kappa\geq c\varepsilon, the desired estimate. ∎

We also have the following control on the Weiss energy of the replacement p~\tilde{p}:

Lemma 4.5.

Suppose that pp satisfies (4.5), then

W72(p~;1)Cκ2W_{\frac{7}{2}}(\tilde{p};1)\leq C\kappa^{2}

for a universal constant CC.

Recall the definition of the Weiss energy from (2.6).

Proof.

We first control the total mass of gg^{-} from (4.9).

Take the auxiliary function qq from (4.15), we have

𝕊2p~(Δ𝕊2+λ72)q\displaystyle\int_{\mathbb{S}^{2}}\tilde{p}\cdot(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})q =𝕊2(Δ𝕊2+λ72)p~q\displaystyle=\int_{\mathbb{S}^{2}}(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})\tilde{p}\cdot q
=𝒞η±f±q+𝒞η±{x3=0}g±q\displaystyle=\int_{\partial\mathcal{C}_{\eta}^{\pm}}f^{\pm}q+\int_{\mathcal{C}_{\eta}^{\pm}\cap\{x_{3}=0\}}g^{\pm}q
=𝒞η±f±q+𝒞η{x3=0}gq.\displaystyle=\int_{\partial\mathcal{C}_{\eta}^{\pm}}f^{\pm}q+\int_{\mathcal{C}_{\eta}^{-}\cap\{x_{3}=0\}}g^{-}q.

For the last equality, we used that q=0q=0 along (𝒞η+)(\mathcal{C}_{\eta}^{+})^{\prime}, which contains spt(g+).\operatorname{spt}(g^{+}).

Now we note that (Δ𝕊2+λ72)q(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})q is supported in 𝕊2~\widetilde{\mathbb{S}^{2}}. On this set, p~0\tilde{p}\geq 0 is supported in (𝒞η+)(\mathcal{C}_{\eta}^{+})^{\prime}. Recall from (4.16), we have (Δ𝕊2+λ72)q0(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})q\geq 0 in (𝒞η+)(\mathcal{C}_{\eta}^{+})^{\prime}. Thus p~(Δ𝕊2+λ72)q0\tilde{p}\cdot(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})q\geq 0 and we conclude

𝒞η{x3=0}gq𝒞η+f+q+𝒞ηfqCκ.-\int_{\mathcal{C}_{\eta}^{-}\cap\{x_{3}=0\}}g^{-}q\leq\int_{\partial\mathcal{C}_{\eta}^{+}}f^{+}q+\int_{\partial\mathcal{C}_{\eta}^{-}}f^{-}q\leq C\kappa.

With qcq\geq c in 𝒞η\mathcal{C}_{\eta}^{-} and g0g^{-}\leq 0, we conclude

(4.18) 𝕊2|g|Cκ.\int_{\mathbb{S}^{2}}|g^{-}|\leq C\kappa.

Using (3.1) and the homogeneity of p~\tilde{p}, we have

W72(p~;1)=\displaystyle W_{\frac{7}{2}}(\tilde{p};1)= C[𝕊2(|𝕊2p~|2λ72p~2)𝕊2(|𝕊2p|2λ72p2)]\displaystyle C[\int_{\mathbb{S}^{2}}(|\nabla_{\mathbb{S}^{2}}\tilde{p}|^{2}-\lambda_{\frac{7}{2}}\tilde{p}^{2})-\int_{\mathbb{S}^{2}}(|\nabla_{\mathbb{S}^{2}}p|^{2}-\lambda_{\frac{7}{2}}p^{2})]
=\displaystyle= C[𝒞η+(|𝕊2p~|2λ72p~2)𝒞η+(|𝕊2p|2λ72p2)]\displaystyle C[\int_{\mathcal{C}_{\eta}^{+}}(|\nabla_{\mathbb{S}^{2}}\tilde{p}|^{2}-\lambda_{\frac{7}{2}}\tilde{p}^{2})-\int_{\mathcal{C}_{\eta}^{+}}(|\nabla_{\mathbb{S}^{2}}p|^{2}-\lambda_{\frac{7}{2}}p^{2})]
+C[𝒞η(|𝕊2p~|2λ72p~2)𝒞η(|𝕊2p|2λ72p2)],\displaystyle+C[\int_{\mathcal{C}_{\eta}^{-}}(|\nabla_{\mathbb{S}^{2}}\tilde{p}|^{2}-\lambda_{\frac{7}{2}}\tilde{p}^{2})-\int_{\mathcal{C}_{\eta}^{-}}(|\nabla_{\mathbb{S}^{2}}p|^{2}-\lambda_{\frac{7}{2}}p^{2})],

since spt(p~p)𝒞η±.\operatorname{spt}(\tilde{p}-p)\subset\mathcal{C}_{\eta}^{\pm}.

With p=0p=0 along (𝒞η+)(\mathcal{C}_{\eta}^{+})^{\prime}, the profile pp is admissible in the minimization problem defining p~\tilde{p} in 𝒞η+\mathcal{C}_{\eta}^{+}. See Definition 4.1. Using the harmonicity of pp in 𝒞η\mathcal{C}_{\eta}^{-}, we continue the previous estimate

W72(p~;1)\displaystyle W_{\frac{7}{2}}(\tilde{p};1)\leq C[𝒞η(|𝕊2p~|2λ72p~2)𝒞η(|𝕊2p|2λ72p2)]\displaystyle C[\int_{\mathcal{C}_{\eta}^{-}}(|\nabla_{\mathbb{S}^{2}}\tilde{p}|^{2}-\lambda_{\frac{7}{2}}\tilde{p}^{2})-\int_{\mathcal{C}_{\eta}^{-}}(|\nabla_{\mathbb{S}^{2}}p|^{2}-\lambda_{\frac{7}{2}}p^{2})]
=\displaystyle= C𝒞η(p~p)(Δ𝕊2+λ72)p~\displaystyle-C\int_{\mathcal{C}_{\eta}^{-}}(\tilde{p}-p)(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})\tilde{p}
=\displaystyle= C𝒞η(p~p)g.\displaystyle-C\int_{\mathcal{C}_{\eta}^{-}}(\tilde{p}-p)g^{-}.

Combining this with (4.18) and Lemma 4.4, we have the desired estimate. ∎

4.2. Well-approximated solutions near pdcp_{dc}

For pp satisfying (4.5), we define the space of well-approximated solutions in a similar manner as in Subsection 3.1. The main difference is that now the solutions are approximated by the replacement p~\tilde{p} as in Definition 4.1.

Definition 4.2.

Suppose that the coefficients of pp satisfy (4.5).

For d,ρ(0,1]d,\rho\in(0,1], we say that uu is a solution dd-approximated by pp at scale ρ\rho if uu solves the thin obstacle problem (1.1) in BρB_{\rho}, and

|up~|dρ72 in Bρ.|u-\tilde{p}|\leq d\rho^{\frac{7}{2}}\text{ in $B_{\rho}$.}

In this case, we write

u𝒮(p,d,ρ).u\in\mathcal{S}(p,d,\rho).

Similar to Lemma 3.1, we can localize the contact set of a well-approximated solution if we assume a3=0a_{3}=0 in the expansion of pp. See Remark 4.1.

Lemma 4.6.

Suppose that u𝒮(p,d,1)u\in\mathcal{S}(p,d,1) with dd small, and that pp satisfies (4.5) with a3=0a_{3}=0.

We have

Δu=0 in B1^{r>C(d+δ)27}{(x1,x2,0):|x2+53x1|>C(d+δ)12,x10},\Delta u=0\text{ in }\widehat{B_{1}}\cap\{r>C(d+\delta)^{\frac{2}{7}}\}\cap\{(x_{1},x_{2},0):|x_{2}+\sqrt{\frac{5}{3}}x_{1}|>C(d+\delta)^{\frac{1}{2}},x_{1}\leq 0\},

and

u=0 in B78~{r>C(d+δ)215}{(x1,x2,0):|x2+35x1|>C(d+δ)12,x10}.u=0\text{ in }\widetilde{B_{\frac{7}{8}}}\cap\{r>C(d+\delta)^{\frac{2}{15}}\}\cap\{(x_{1},x_{2},0):|x_{2}+\sqrt{\frac{3}{5}}x_{1}|>C(d+\delta)^{\frac{1}{2}},x_{1}\geq 0\}.

Recall that δ>0\delta>0 is the small parameter from (4.5), and that {(x1,x2,0):|x2+35x1|=0,x10}\{(x_{1},x_{2},0):|x_{2}+\sqrt{\frac{3}{5}}x_{1}|=0,x_{1}\geq 0\} and {(x1,x2,0):|x2+53x1|=0,x10}\{(x_{1},x_{2},0):|x_{2}+\sqrt{\frac{5}{3}}x_{1}|=0,x_{1}\leq 0\} are the two rays of degeneracy R±R^{\pm} from (4.1) for pdcp_{dc}.

Proof.

Under our assumptions, we have, inside B1B_{1},

up~dpdCpdcCδd, and up~+dCpdc+Cδ+d.u\geq\tilde{p}-d\geq p-d\geq Cp_{dc}-C\delta-d,\text{ and }u\leq\tilde{p}+d\leq Cp_{dc}+C\delta+d.

The conclusion follows from the same argument as in the proof for Lemma 3.1. ∎

The following is similar to Lemma 3.2 and Lemma 3.3. It is the main reason why it is preferable to work with p~\tilde{p} instead of directly with pp.

Lemma 4.7.

Suppose that pp satisfies (4.5) with a3=0a_{3}=0. Let uu be a solution to (1.1) in B1B_{1}, then

up~L(B1/2)+up~H1(B1/2)C(up~L1(B1)+κ)\|u-\tilde{p}\|_{L^{\infty}(B_{1/2})}+\|u-\tilde{p}\|_{H^{1}(B_{1/2})}\leq C(\|u-\tilde{p}\|_{L^{1}(B_{1})}+\kappa)

and

W72(u;12)C(up~L1(B1)2+κ2).W_{\frac{7}{2}}(u;\frac{1}{2})\leq C(\|u-\tilde{p}\|^{2}_{L^{1}(B_{1})}+\kappa^{2}).
Proof.

With Remark 4.1 and a3=0a_{3}=0, p~\tilde{p} satisfies the constraints p~|{x3=0}0\tilde{p}|_{\{x_{3}=0\}}\geq 0 and Δp~{x3=0}0\Delta\tilde{p}_{\{x_{3}=0\}}\leq 0 outside 𝒞η±.\mathcal{C}_{\eta}^{\pm}. The same constraints are satisfied inside 𝒞η±\mathcal{C}_{\eta}^{\pm} by Definition 4.1.

As a result, inside {u>p~}\{u>\tilde{p}\}, we have

Δ(up~)f±dH2|𝒞η±Cκ|x|52dH2|𝒞η±.\Delta(u-\tilde{p})\geq-f^{\pm}dH^{2}|_{\partial\mathcal{C}_{\eta}^{\pm}}\geq-C\kappa|x|^{\frac{5}{2}}dH^{2}|_{\partial\mathcal{C}_{\eta}^{\pm}}.

This implies

up~(up~L1(B1)+κ) in B1/2.u-\tilde{p}\leq(\|u-\tilde{p}\|_{L^{1}(B_{1})}+\kappa)\text{ in $B_{1/2}$.}

A symmetric argument gives the corresponding lower bound, and we have the control on up~L(B1/2)\|u-\tilde{p}\|_{L^{\infty}(B_{1/2})}.

The other estimates follow from the same argument as for Lemma 3.2 and Lemma 3.3, together with Lemma 4.5. ∎

4.3. The dichotomy near pdcp_{dc}

With these preparations, we state the dichotomy for profiles near pdcp_{dc} from (4.4).

Lemma 4.8.

Suppose that

u𝒮(p,d,1)u\in\mathcal{S}(p,d,1)

for some p=a0u72+a1v52+a2v32p=a_{0}u_{\frac{7}{2}}+a_{1}v_{\frac{5}{2}}+a_{2}v_{\frac{3}{2}} satisfying

a0[12,2], and |a1/a0152|+|a2/a054|δ.a_{0}\in[\frac{1}{2},2],\text{ and }|a_{1}/a_{0}-\frac{\sqrt{15}}{2}|+|a_{2}/a_{0}-\frac{5}{4}|\leq\delta.

There is a universal small constant δ~>0\tilde{\delta}>0, such that if d<δ~d<\tilde{\delta} and δ<δ~\delta<\tilde{\delta}, then we have the following dichotomy:

  1. (1)

    either

    W72(u;1)W72(u;ρ0)c02d2W_{\frac{7}{2}}(u;1)-W_{\frac{7}{2}}(u;\rho_{0})\geq c_{0}^{2}d^{2}

    and

    u𝒮(p,Cd,ρ0);u\in\mathcal{S}(p,Cd,\rho_{0});
  2. (2)

    or

    u𝒮(p,12d,ρ0)u\in\mathcal{S}(p^{\prime},\frac{1}{2}d,\rho_{0})

    for some

    p=Uτ[a0u72+a1v52+a2v32]p^{\prime}=\operatorname{U}_{\tau}[a_{0}^{\prime}u_{\frac{7}{2}}+a_{1}^{\prime}v_{\frac{5}{2}}+a_{2}^{\prime}v_{\frac{3}{2}}]

    with

    κp<d, and |τ|+|ajaj|Cd.\kappa_{p^{\prime}}<d,\text{ and }|\tau|+\sum|a_{j}^{\prime}-a_{j}|\leq Cd.

The constants c0c_{0}, ρ0\rho_{0} and CC are universal.

Recall the rotation operator U\operatorname{U} from (2), and the basis {u72,v52,v32,v12}\{u_{\frac{7}{2}},v_{\frac{5}{2}},v_{\frac{3}{2}},v_{\frac{1}{2}}\} from (2.15).

Remark 4.2.

For p=Uτ[a0u72+a1v52+a2v32]p^{\prime}=\operatorname{U}_{\tau}[a_{0}^{\prime}u_{\frac{7}{2}}+a_{1}^{\prime}v_{\frac{5}{2}}+a_{2}^{\prime}v_{\frac{3}{2}}], all the constructions in Subsection 4.1, leading to p~\tilde{p^{\prime}}, are performed with respect to the rotated coordinate system.

Proof.

We apply a similar strategy as in the proof for Lemma 4.8.

For c0c_{0} and ρ0\rho_{0} to be chosen, suppose that the lemma is false, then we find a sequence (un,pn,dn,δn)(u_{n},p_{n},d_{n},\delta_{n}) satisfying the assumptions as in the lemma with dn,δn0d_{n},\delta_{n}\to 0, but both alternatives fail, namely,

(4.19) W72(un;1)W72(un;ρ0)c02dn2 for all n,W_{\frac{7}{2}}(u_{n};1)-W_{\frac{7}{2}}(u_{n};\rho_{0})\leq c_{0}^{2}d_{n}^{2}\text{ for all }n,

and

(4.20) un𝒮(p,12dn,ρ0)u_{n}\not\in\mathcal{S}(p^{\prime},\frac{1}{2}d_{n},\rho_{0})

for any pp^{\prime} satisfying the properties as in alternative (2) from the lemma.

Step 1: Compactness.

Define

u^n:=1dn+κpn(unp~n+Φpn),\hat{u}_{n}:=\frac{1}{d_{n}+\kappa_{p_{n}}}(u_{n}-\tilde{p}_{n}+\Phi_{p_{n}}),

where Φ\Phi and κ\kappa are defined in (4.12) and (4.14) respectively. Then |u^n|2|\hat{u}_{n}|\leq 2 in B1B_{1}.

With Lemma 4.1, Lemma 4.6, (4.9) and (4.13), we have, up to a subsequence,

u^nu^L2(B7/8)0.\|\hat{u}_{n}-\hat{u}_{\infty}\|_{L^{2}(B_{7/8})}\to 0.

The limit u^\hat{u}_{\infty} is a harmonic function in the slit domain B^1\widehat{B}_{1} according to (2.11).

For m=0,1,2,3,m=0,1,2,3, Theorem 2.1 allows us to find hm+12h_{m+\frac{1}{2}}, an (m+12)(m+\frac{1}{2})-homogeneous harmonic function that is universally bounded in B1B_{1} and satisfies

[u^n(h12+h32+h52+h72)](12)[u^n(h12+h32+h52+h72)]L2(Bρ)Cρ112+o(1)\|[\hat{u}_{n}-(h_{\frac{1}{2}}+h_{\frac{3}{2}}+h_{\frac{5}{2}}+h_{\frac{7}{2}})]_{(\frac{1}{2})}-[\hat{u}_{n}-(h_{\frac{1}{2}}+h_{\frac{3}{2}}+h_{\frac{5}{2}}+h_{\frac{7}{2}})]\|_{L^{2}(\partial B_{\rho})}\leq C\rho^{\frac{11}{2}}+o(1)

for some ρ[ρ0,4ρ0].\rho\in[\rho_{0},4\rho_{0}].

Recall that f(12)f_{(\frac{1}{2})} denotes the rescaling of ff as in (2.5).

We omit the subscripts in unu_{n}, u^n\hat{u}_{n}, pnp_{n}, dnd_{n} and δn\delta_{n} in the remaining of the proof.

Step 2: Almost homogeneity.

Using the homogeneity of the functions as well as the definition of Φ\Phi from (4.12), the last estimate from the previous step gives

(4.21) (7h12+3h32+h52)+log28(d+κ)φ(x|x|)|x|72L2(Bρ)Cρ92(c0+ρ)+o(1).\|(7h_{\frac{1}{2}}+3h_{\frac{3}{2}}+h_{\frac{5}{2}})+\frac{\log 2}{8(d+\kappa)}\varphi(\frac{x}{|x|})|x|^{\frac{7}{2}}\|_{L^{2}(\partial B_{\rho})}\leq C\rho^{\frac{9}{2}}(c_{0}+\rho)+o(1).

For this, we used (4.19) in the same way as in Step 2 from the proof of Lemma 3.4 to control (u(12)u).(u_{(\frac{1}{2})}-u).

By definition, we have φ72\varphi\in\mathcal{H}_{\frac{7}{2}} from (2.12). With (4.21), we apply Proposition 2.2 to get

h12L(B1)+ρh32L(B1)+ρ2h52L(B1)C(ρ04+c0ρ03+o(1)),\|h_{\frac{1}{2}}\|_{L^{\infty}(B_{1})}+\rho\|h_{\frac{3}{2}}\|_{L^{\infty}(B_{1})}+\rho^{2}\|h_{\frac{5}{2}}\|_{L^{\infty}(B_{1})}\leq C(\rho_{0}^{4}+c_{0}\rho_{0}^{3}+o(1)),

and

(4.22) 1d+κφL(B1)C[(c0+ρ0)+o(1)].\|\frac{1}{d+\kappa}\varphi\|_{L^{\infty}(B_{1})}\leq C[(c_{0}+\rho_{0})+o(1)].

These imply

(4.23) u^h72L1(B2ρ0)C(ρ0+c0)ρ0132+o(1).\|\hat{u}-h_{\frac{7}{2}}\|_{L^{1}(B_{2\rho_{0}})}\leq C(\rho_{0}+c_{0})\rho_{0}^{\frac{13}{2}}+o(1).

Moreover, with Lemma 4.3, we use (4.22) to conclude

(4.24) κCd[(c0+ρ0)+o(1)]\kappa\leq Cd[(c_{0}+\rho_{0})+o(1)]

for small (c0+ρ0)(c_{0}+\rho_{0}) and large nn. Consequently,

ΦL1(B2ρ0)Cd[(c0+ρ0)ρ0132|logρ0|+o(1)].\|\Phi\|_{L^{1}(B_{2\rho_{0}})}\leq Cd[(c_{0}+\rho_{0})\rho_{0}^{\frac{13}{2}}|\log\rho_{0}|+o(1)].

Combining this with the definition of u^\hat{u} and (4.23), we have

u[p~+(d+κ)h72]L1(B2ρ0)Cd[(ρ0+c0)ρ0132|logρ0|+o(1)].\|u-[\tilde{p}+(d+\kappa)h_{\frac{7}{2}}]\|_{L^{1}(B_{2\rho_{0}})}\leq Cd[(\rho_{0}+c_{0})\rho_{0}^{\frac{13}{2}}|\log\rho_{0}|+o(1)].

With Lemma 4.2, we get

uq~L1(B2ρ0)Cd[(ρ0+c0)ρ0132|logρ0|+o(1)],\|u-\tilde{q}\|_{L^{1}(B_{2\rho_{0}})}\leq Cd[(\rho_{0}+c_{0})\rho_{0}^{\frac{13}{2}}|\log\rho_{0}|+o(1)],

where q=p+(d+κ)h72.q=p+(d+\kappa)h_{\frac{7}{2}}.

Step 3: Improvement of flatness.

With the same technique in Step 3 from the proof of Lemma 4.8, we find

p=a0u72+a1v52+a2v32p^{\prime}=a_{0}^{\prime}u_{\frac{7}{2}}+a_{1}^{\prime}v_{\frac{5}{2}}+a_{2}^{\prime}v_{\frac{3}{2}}

such that

(4.25) qUτ(p)L(𝕊2{r>18})Cd2\|q-\operatorname{U}_{\tau}(p^{\prime})\|_{L^{\infty}(\mathbb{S}^{2}\cap\{r>\frac{1}{8}\})}\leq Cd^{2}

where |τ|+|ajaj|Cd.|\tau|+\sum|a_{j}-a_{j}^{\prime}|\leq Cd. In this step, it is crucial that a2a_{2} is bounded away from 0.

If η\eta and δ\delta are small, then {r>18}\{r>\frac{1}{8}\} contains 𝒞η±\mathcal{C}_{\eta}^{\pm} and Uτ(𝒞η±).\operatorname{U}_{\tau}(\mathcal{C}_{\eta}^{\pm}). By definition of replacements and (4.25), we have

|q~Uτ(p)~|Cd2 on 𝕊2.|\tilde{q}-\widetilde{\operatorname{U}_{\tau}(p^{\prime})}|\leq Cd^{2}\text{ on $\mathbb{S}^{2}$.}

Combining this with the last estimate from the previous step, we have

(4.26) uUτ(p)~L1(B2ρ0)Cd[(ρ0+c0)ρ0132|logρ0|+o(1)].\|u-\widetilde{\operatorname{U}_{\tau}(p^{\prime})}\|_{L^{1}(B_{2\rho_{0}})}\leq Cd[(\rho_{0}+c_{0})\rho_{0}^{\frac{13}{2}}|\log\rho_{0}|+o(1)].

On the other hand, with Lemma 4.1, we have

(4.27) κpκp+do(1)Cd[(c0+ρ0)+o(1)],\kappa_{p^{\prime}}\leq\kappa_{p}+d\cdot o(1)\leq Cd[(c_{0}+\rho_{0})+o(1)],

where we used (4.24) for the last comparison.

With Lemma 4.7 and (4.26), this implies

uUτ(p)~L(Bρ0)Cdρ072[(ρ0+c0)|logρ0|+o(1)],\|u-\widetilde{\operatorname{U}_{\tau}(p^{\prime})}\|_{L^{\infty}(B_{\rho_{0}})}\leq Cd\rho_{0}^{\frac{7}{2}}[(\rho_{0}+c_{0})|\log\rho_{0}|+o(1)],

which implies

u𝒮(p,12d,ρ0)u\in\mathcal{S}(p^{\prime},\frac{1}{2}d,\rho_{0})

if ρ0\rho_{0}, c0c_{0} are chosen small universally and nn is large. The bound on κp\kappa_{p^{\prime}} follows from (4.27).

This contradicts (4.20). ∎

4.4. Dichotomy near general p𝒜2p^{*}\in\mathcal{A}_{2}

In this subsection, we sketch the ideas for dealing with other profiles in 𝒜2\mathcal{A}_{2}. Let’s take p𝒜2p^{*}\in\mathcal{A}_{2}, namely,

p=u72+a1v52+a2v32p^{*}=u_{\frac{7}{2}}+a_{1}^{*}v_{\frac{5}{2}}+a_{2}^{*}v_{\frac{3}{2}}

with

μa25 and (a1)2=Γ(a2)\mu\leq a_{2}^{*}\leq 5\text{ and }(a_{1}^{*})^{2}=\Gamma(a_{2}^{*})

for a small parameter μ>0\mu>0 to be fixed in the next section (see Remark 5.1), and the function Γ\Gamma defined in (1.8). Let’s further assume a10a_{1}^{*}\geq 0 as the other case is symmetric.

Thanks to results from Subsection 4.3, it suffices to consider the case when

(4.28) |a254|δ~.|a_{2}^{*}-\frac{5}{4}|\geq\tilde{\delta}.

For such pp^{*}, we define

𝒞η±(p)={x𝕊2:|xAp±|<η},\mathcal{C}_{\eta}^{\pm}(p^{*})=\{x\in\mathbb{S}^{2}:|x-A^{\pm}_{p^{*}}|<\eta\},

with the notation from (4.2). With (4.3), these caps are bounded away from {r=0}\{r=0\} if η\eta is small, depending on μ\mu.

For small δ>0\delta>0 and a profile

p=a0u72+a1v52+a2v32p=a_{0}u_{\frac{7}{2}}+a_{1}v_{\frac{5}{2}}+a_{2}v_{\frac{3}{2}}

with

a0[1/2,2] and |a1/a0a1|+|a2/a0a2|<δ,a_{0}\in[1/2,2]\text{ and }|a_{1}/a_{0}-a_{1}^{*}|+|a_{2}/a_{0}-a_{2}^{*}|<\delta,

we define its replacement p~\tilde{p} by solving (4.7) in 𝒞η±(p)\mathcal{C}_{\eta}^{\pm}(p^{*}), as in Definition 4.1. With (4.28), we see that when δ>0\delta>0 is small, the replacement in one of the caps is identical to pp. The auxiliary functions in Subsection 4.1 can be defined in a similar fashion.

With this construction, results from Subsection 4.1 follow from the same argument, with the constants possibly depending on μ.\mu. The class of well-approximated solutions can be defined similarly to Definition 4.2 with similar properties. The same argument in the previous section leads to a similar dichotomy for profiles near pp^{*}.

Combining these with Lemma 4.8, we have the following

Lemma 4.9.

Suppose that

u𝒮(p,d,1)u\in\mathcal{S}(p,d,1)

for some p=a0u72+a1v52+a2v32p=a_{0}u_{\frac{7}{2}}+a_{1}v_{\frac{5}{2}}+a_{2}v_{\frac{3}{2}} satisfying

a0[12,2] and |a1/a0a1|+|a2/a0a2|δa_{0}\in[\frac{1}{2},2]\text{ and }|a_{1}/a_{0}-a_{1}^{*}|+|a_{2}/a_{0}-a_{2}^{*}|\leq\delta

with

μa25 and (a1)2=Γ(a2).\mu\leq a_{2}^{*}\leq 5\text{ and }(a_{1}^{*})^{2}=\Gamma(a_{2}^{*}).

There is a small constant δ~>0\tilde{\delta}>0, depending only on μ\mu, such that if d<δ~d<\tilde{\delta} and δ<δ~\delta<\tilde{\delta}, then we have the following dichotomy:

  1. (1)

    either

    W72(u;1)W72(u;ρ0)c02d2W_{\frac{7}{2}}(u;1)-W_{\frac{7}{2}}(u;\rho_{0})\geq c_{0}^{2}d^{2}

    and

    u𝒮(p,Cd,ρ0);u\in\mathcal{S}(p,Cd,\rho_{0});
  2. (2)

    or

    u𝒮(p,12d,ρ0)u\in\mathcal{S}(p^{\prime},\frac{1}{2}d,\rho_{0})

    for some

    p=Uτ[a0u72+a1v52+a2v32]p^{\prime}=\operatorname{U}_{\tau}[a_{0}^{\prime}u_{\frac{7}{2}}+a_{1}^{\prime}v_{\frac{5}{2}}+a_{2}^{\prime}v_{\frac{3}{2}}]

    with

    κp<d, and |τ|+|ajaj|Cd.\kappa_{p^{\prime}}<d,\text{ and }|\tau|+\sum|a_{j}^{\prime}-a_{j}|\leq Cd.

The constants c0c_{0}, ρ0\rho_{0} and CC depend only on μ\mu.

5. Trichotomy for p𝒜3p\in\mathcal{A}_{3}

In this section, we study profiles near 𝒜3\mathcal{A}_{3} from (1.3), that is, profiles near u72u_{\frac{7}{2}}. To some extend, this section contains the main contribution of the work.

Similar to the case studied in Section 4, the constraints p|{x3=0}0p|_{\{x_{3}=0\}}\geq 0 and Δp|{x3=0}0\Delta p|_{\{x_{3}=0\}}\leq 0 become degenerate for profiles in 𝒜3\mathcal{A}_{3}. Contrary to the previous case, the points of degeneracy can be arbitrarily close to two poles P+,P𝕊2{r=0}P^{+},P^{-}\in\mathbb{S}^{2}\cap\{r=0\}. As a result, the cornerstone for the previous case, Lemma 4.3, no longer holds.

To tackle this issue, we need to study the the thin obstacle problem on spherical caps near P±P^{\pm}. At the infinitesimal level, this reduces to the problem in 2\mathbb{R}^{2} studied in Appendix B. This is one of the main reasons why we need to restrict to three dimensions in this work. This infinitesimal information influences the solution at unit scale through two higher Fourier coefficients along small spherical caps near P±.P^{\pm}. With these two extra Fourier coefficients, we can define two extended profiles, one for each semi-sphere. These extended profiles approximate the solution with finer accuracy.

Arising from this procedure are two errors, say E1E_{1} and E2E_{2}. The former E1E_{1} happens along the big circle 𝕊2{x1=0}\mathbb{S}^{2}\cap\{x_{1}=0\}, where the extended profiles from the two semi-spheres are glued. The latter E2E_{2} happens along the boundary of small spherical caps near the poles P±.P^{\pm}. We establish that E1E_{1} has a projection into 72\mathcal{H}_{\frac{7}{2}} with size proportional to E1E_{1}. Therefore, if E1E_{1} is dominating, a similar strategy as in Section 4 can be carried out.

This leads to the following trichotomy, the main result in this section.

Lemma 5.1.

Suppose that

u𝒮(p,d,1)u\in\mathcal{S}(p,d,1)

for some p=a0u72+a1v52+a2v32+a3v12p=a_{0}u_{\frac{7}{2}}+a_{1}v_{\frac{5}{2}}+a_{2}v_{\frac{3}{2}}+a_{3}v_{\frac{1}{2}} with a0[12,2]a_{0}\in[\frac{1}{2},2] and

(5.1) εp:=max{|a1/a0|,|a2/a0|12,|a3/a0|13}\varepsilon_{p}:=\max\{|a_{1}/a_{0}|,|a_{2}/a_{0}|^{\frac{1}{2}},|a_{3}/a_{0}|^{\frac{1}{3}}\}

small.

Given small σ>0\sigma>0, we can find δ~,c0\tilde{\delta},c_{0},ρ0\rho_{0} small, and CC big, depending only on σ\sigma, such that if d<δ~d<\tilde{\delta} and εp<δ~\varepsilon_{p}<\tilde{\delta}, then we have the following three possibilities:

  1. (1)
    W72(u;1)W72(u;ρ0)c02d2;W_{\frac{7}{2}}(u;1)-W_{\frac{7}{2}}(u;\rho_{0})\geq c_{0}^{2}d^{2};

    and

    u𝒮(p,Cd,ρ0);u\in\mathcal{S}(p,Cd,\rho_{0});
  2. (2)

    or

    u𝒮(p,14d,ρ0)u\in\mathcal{S}(p^{\prime},\frac{1}{4}d,\rho_{0})

    for p=a0u72+a1v52+a2v32+a3v12p^{\prime}=a_{0}^{\prime}u_{\frac{7}{2}}+a_{1}^{\prime}v_{\frac{5}{2}}+a_{2}^{\prime}v_{\frac{3}{2}}+a_{3}^{\prime}v_{\frac{1}{2}} with

    κp<σκp, and |ajaj|Cd;\kappa_{p^{\prime}}<\sigma\kappa_{p},\text{ and }\sum|a_{j}^{\prime}-a_{j}|\leq Cd;
  3. (3)

    or

    dεp5.d\leq\varepsilon_{p}^{5}.

Recall the basis {u72,v52,v32,v12}\{u_{\frac{7}{2}},v_{\frac{5}{2}},v_{\frac{3}{2}},v_{\frac{1}{2}}\}, the rotation operator U\operatorname{U}, and the Weiss energy W72W_{\frac{7}{2}} from (2.15), (2) and (2.6) respectively. The solution class 𝒮()\mathcal{S}(\dots) and the measurement for error κ\kappa, similar to their counterparts from Section 4, will be defined later in this section.

Remark 5.1.

We will fix σ\sigma universally, which leads to universally defined δ~\tilde{\delta} as in the lemma. If we choose μ\mu, the parameter from (1.3), small depending on δ~\tilde{\delta}, then Lemma 5.1 holds true for pp near 𝒜3\mathcal{A}_{3} from (1.3). Once this choice of μ\mu is made, estimates from previous sections become universal.

Remark 5.2.

With the definition of εp\varepsilon_{p}, we can write p=a0u72+a~1εpv52+a~2εp2v32+a~3εp3v12p=a_{0}u_{\frac{7}{2}}+\tilde{a}_{1}\varepsilon_{p}v_{\frac{5}{2}}+\tilde{a}_{2}\varepsilon_{p}^{2}v_{\frac{3}{2}}+\tilde{a}_{3}\varepsilon_{p}^{3}v_{\frac{1}{2}} with |a~j|1.|\tilde{a}_{j}|\leq 1. Such coordinates are more convenient for profiles near u72u_{\frac{7}{2}}.

In this section, we often write

p=a0u72+a1εv52+a2ε2v32+a3ε3v12,p=a_{0}u_{\frac{7}{2}}+a_{1}\varepsilon v_{\frac{5}{2}}+a_{2}\varepsilon^{2}v_{\frac{3}{2}}+a_{3}\varepsilon^{3}v_{\frac{1}{2}},

assuming implicitly that

a0[12,2] and |aj|1 for j=1,2,3 with ε small.a_{0}\in[\frac{1}{2},2]\text{ and }|a_{j}|\leq 1\text{ for $j=1,2,3$ with $\varepsilon$ small.}

Equivalently, in the basis {u72,w52,w32,w12}\{u_{\frac{7}{2}},w_{\frac{5}{2}},w_{\frac{3}{2}},w_{\frac{1}{2}}\} from (2.16)444The coefficients are related by a0=a~074a~2ε2,a1=72a~11338a~3ε2,a2=354a~2, and a3=1058a~3.a_{0}=\tilde{a}_{0}-\frac{7}{4}\tilde{a}_{2}\varepsilon^{2},\hskip 5.0pta_{1}=\frac{7}{2}\tilde{a}_{1}-\frac{133}{8}\tilde{a}_{3}\varepsilon^{2},\hskip 5.0pta_{2}=\frac{35}{4}\tilde{a}_{2},\text{ and }a_{3}=\frac{105}{8}\tilde{a}_{3}.,

p=a~0u72+a~1εw52+a~2ε2w32+a~3ε3w12.p=\tilde{a}_{0}u_{\frac{7}{2}}+\tilde{a}_{1}\varepsilon w_{\frac{5}{2}}+\tilde{a}_{2}\varepsilon^{2}w_{\frac{3}{2}}+\tilde{a}_{3}\varepsilon^{3}w_{\frac{1}{2}}.
Remark 5.3.

By comparing with (1.7) and (1.8) we see that p=a0u72+a1εv52+a2ε2v32+a3ε3v12p=a_{0}u_{\frac{7}{2}}+a_{1}\varepsilon v_{\frac{5}{2}}+a_{2}\varepsilon^{2}v_{\frac{3}{2}}+a_{3}\varepsilon^{3}v_{\frac{1}{2}} solves the thin obstacle problem if and only if

a0>0,a20,a3=0, and (a1a0)2min{4a2a0(115a2ε2a0),2425a2a0(72310a2ε2a0)}.a_{0}>0,\hskip 5.0pta_{2}\geq 0,\hskip 5.0pta_{3}=0,\text{ and }(\frac{a_{1}}{a_{0}})^{2}\leq\min\{4\frac{a_{2}}{a_{0}}(1-\frac{1}{5}\frac{a_{2}\varepsilon^{2}}{a_{0}}),\hskip 5.0pt\frac{24}{25}\frac{a_{2}}{a_{0}}(\frac{7}{2}-\frac{3}{10}\frac{a_{2}\varepsilon^{2}}{a_{0}})\}.

If we assume only

a0>0,a20,a3=0, and (a1a0)24a2a0(115a2ε2a0),a_{0}>0,\hskip 5.0pta_{2}\geq 0,\hskip 5.0pta_{3}=0,\text{ and }(\frac{a_{1}}{a_{0}})^{2}\leq 4\frac{a_{2}}{a_{0}}(1-\frac{1}{5}\frac{a_{2}\varepsilon^{2}}{a_{0}}),

and further a10,a_{1}\geq 0, then pp solves the thin obstacle problem outside a cone with O(a1εa0)O(\frac{a_{1}\varepsilon}{a_{0}})-opening near {r=0,x1>0}\{r=0,x_{1}>0\}, where Δp|{x3=0}\Delta p|_{\{x_{3}=0\}} might become positive.

The first half of this section is devoted to the proof of Lemma 5.1.

If the last possibility in Lemma 5.1 happens, then E1E_{1} is not necessarily dominating (see the paragraph before the statement of the lemma). In this case, we need finer information of the solution using information from Appendix B. This is carried out in the second half of this section.

5.1. The extended profile pextp_{ext}

Recall that (r,θ)(r,\theta) denotes the polar coordinate of the (x2,x3)(x_{2},x_{3})-plane. For a small universal constant η>0\eta>0, we define two small spherical caps near 𝕊2{r=0}\mathbb{S}^{2}\cap\{r=0\}

(5.2) 𝒞η±:={r<η,±x1>0}𝕊2.\mathcal{C}_{\eta}^{\pm}:=\{r<\eta,\hskip 5.0pt\pm x_{1}>0\}\cap\mathbb{S}^{2}.

In general, for small r0>0r_{0}>0, let

𝒞r0±:={r<r0,±x1>0}𝕊2.\mathcal{C}_{r_{0}}^{\pm}:=\{r<r_{0},\hskip 5.0pt\pm x_{1}>0\}\cap\mathbb{S}^{2}.

The cones generated by these caps are denoted by the same notations.

In this subsection, we focus on 𝒞η+\mathcal{C}_{\eta}^{+}. The other case is symmetric. As a result, we often omit the superscript in 𝒞η+\mathcal{C}_{\eta}^{+}

Given a profile p=a0u72+a1εv52+a2ε2v32+a3ε3v12p=a_{0}u_{\frac{7}{2}}+a_{1}\varepsilon v_{\frac{5}{2}}+a_{2}\varepsilon^{2}v_{\frac{3}{2}}+a_{3}\varepsilon^{3}v_{\frac{1}{2}}, if we denote by vv the solution to the thin obstacle problem in 𝒞η\mathcal{C}_{\eta} with pp as boundary data, then in general we have |vp|Cε72|v-p|\leq C\varepsilon^{\frac{7}{2}}. This is not precise enough for later development.

The main task of this subsection is to show that we can find an extended profile, pextp_{ext}, so that if we solve a similar problem with pextp_{ext} as boundary data, then the error can be improved to O(ε6)O(\varepsilon^{6})-order. This pextp_{ext} will be an essential building block for our replacement of pp.

Throughout this subsection, we assume

(5.3) a0[12,2];|aj|1 for j=1,2,3;|bj|A+1 for j=1,2; and ε<ε~,a_{0}\in[\frac{1}{2},2];\hskip 5.0pt|a_{j}|\leq 1\text{ for }j=1,2,3;\hskip 5.0pt|b_{j}|\leq A+1\text{ for }j=1,2;\text{ and }\varepsilon<\tilde{\varepsilon},

where AA is the universal constant from Proposition B.1, and ε~\tilde{\varepsilon} is a small universal constant.

Corresponding to these parameters, let us denote

(5.4) p[a0,a1,a2,a3;ε]:\displaystyle p[a_{0},a_{1},a_{2},a_{3};\varepsilon]: =a0u72+a1εv52+a2ε2v32+a3ε3v12, and\displaystyle=a_{0}u_{\frac{7}{2}}+a_{1}\varepsilon v_{\frac{5}{2}}+a_{2}\varepsilon^{2}v_{\frac{3}{2}}+a_{3}\varepsilon^{3}v_{\frac{1}{2}},\text{ and }
pext[a0,a1,a2,a3;b1,b2;ε]:\displaystyle p_{ext}[a_{0},a_{1},a_{2},a_{3};b_{1},b_{2};\varepsilon]: =p[a0,a1,a2,a3;ε]+b1ε4v12+b2ε5v32.\displaystyle=p[a_{0},a_{1},a_{2},a_{3};\varepsilon]+b_{1}\varepsilon^{4}v_{-\frac{1}{2}}+b_{2}\varepsilon^{5}v_{-\frac{3}{2}}.

Recall the basis {u72,v52,v32,v12}\{u_{\frac{7}{2}},v_{\frac{5}{2}},v_{\frac{3}{2}},v_{\frac{1}{2}}\} from (2.15) and the functions v12v_{-\frac{1}{2}}, v32v_{-\frac{3}{2}} from (2.18).

Let v=v[a0,a1,a2,a3;b1,b2;ε]v=v[a_{0},a_{1},a_{2},a_{3};b_{1},b_{2};\varepsilon] denote the solution to

(5.5) {(Δ𝕊2+λ72)v0 in 𝒞η,v0 in 𝒞η{x3=0},(Δ𝕊2+λ72)v=0 in 𝒞η({v>0}{x30})v=pext[a0,a1,a2,a3;b1,b2;ε] along 𝒞η.\begin{cases}(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})v\leq 0&\text{ in }\mathcal{C}_{\eta},\\ v\geq 0&\text{ in }\mathcal{C}_{\eta}\cap\{x_{3}=0\},\\ (\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})v=0&\text{ in }\mathcal{C}_{\eta}\cap(\{v>0\}\cup\{x_{3}\neq 0\})\\ v=p_{ext}[a_{0},a_{1},a_{2},a_{3};b_{1},b_{2};\varepsilon]&\text{ along }\partial\mathcal{C}_{\eta}.\end{cases}

The 72\frac{7}{2}-homogeneous extension of vv is denoted by the same notation.

We often omit some of the parameters in p[],pext[]p[\dots],\hskip 5.0ptp_{ext}[\dots] and v[]v[\dots] when there is no ambiguity.

We begin with localization of the contact set of vv:

Lemma 5.2.

Assuming (5.3), we have

|vp|Cε72 in 𝒞η,|v-p|\leq C\varepsilon^{\frac{7}{2}}\text{ in $\mathcal{C}_{\eta}$,}
(Δ𝕊2+λ72)v=0 in 𝒞η^{r>Mε}, and v=0 in 𝒞η~{r>Mε}(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})v=0\text{ in }\widehat{\mathcal{C}_{\eta}}\cap\{r>M\varepsilon\},\text{ and }v=0\text{ in }\widetilde{\mathcal{C}_{\eta}}\cap\{r>M\varepsilon\}

for universal constants CC and MM.

Here we are using the notations for slit domains from (2.10).

Proof.

The key is to construct a barrier similar to the one in Step 2 from the proof of Proposition B.1. We omit some details.

With the basis from (2.16), rewrite pextp_{ext} as

pext=a~0u72+a~1εw52+a~2ε2w32+a~3ε3w12+b1ε4v12+b2ε5v32.p_{ext}=\tilde{a}_{0}u_{\frac{7}{2}}+\tilde{a}_{1}\varepsilon w_{\frac{5}{2}}+\tilde{a}_{2}\varepsilon^{2}w_{\frac{3}{2}}+\tilde{a}_{3}\varepsilon^{3}w_{\frac{1}{2}}+b_{1}\varepsilon^{4}v_{-\frac{1}{2}}+b_{2}\varepsilon^{5}v_{-\frac{3}{2}}.

By taking τ\tau large universally and (α1,α2)(\alpha_{1},\alpha_{2}) solving

α1+a~0τ=a~1, and α2+α1τ+12a~0τ2=a~2,\alpha_{1}+\tilde{a}_{0}\tau=\tilde{a}_{1},\text{ and }\alpha_{2}+\alpha_{1}\tau+\frac{1}{2}\tilde{a}_{0}\tau^{2}=\tilde{a}_{2},

the function q=a~0u72+α1εw52+α2ε2w32q=\tilde{a}_{0}u_{\frac{7}{2}}+\alpha_{1}\varepsilon w_{\frac{5}{2}}+\alpha_{2}\varepsilon^{2}w_{\frac{3}{2}} satisfies

Uτε(q)pext along 𝒞η\operatorname{U}_{-\tau\varepsilon}(q)\geq p_{ext}\text{ along }\partial\mathcal{C}_{\eta}

for ε\varepsilon small. Recall the rotation operator U\operatorname{U} from (2). By taking τ\tau larger, if necessary, it can be verified that qq solves the thin obstacle problem in 3\mathbb{R}^{3} (See Remark 5.3).

By the maximum principle, we have

(5.6) vUτε(q) in 𝒞η.v\leq\operatorname{U}_{-\tau\varepsilon}(q)\text{ in }\mathcal{C}_{\eta}.

With q=0q=0 along 3~\widetilde{\mathbb{R}^{3}}, we have

v=0 in 𝒞η~{r>Mε}.v=0\text{ in }\widetilde{\mathcal{C}_{\eta}}\cap\{r>M\varepsilon\}.

Using again (5.6), we have

vpUτε(q)pCε72 in 𝒞Mε.v-p\leq\operatorname{U}_{-\tau\varepsilon}(q)-p\leq C\varepsilon^{\frac{7}{2}}\text{ in }\mathcal{C}_{M\varepsilon}.

With a similar argument, we can construct a lower barrier of the form Uτε(a~0u72+β1εw52+β2ε2w32)\operatorname{U}_{\tau\varepsilon}(\tilde{a}_{0}u_{\frac{7}{2}}+\beta_{1}\varepsilon w_{\frac{5}{2}}+\beta_{2}\varepsilon^{2}w_{\frac{3}{2}}), which implies

(Δ𝕊2+λ72)v=0 in 𝒞η^{r>Mε},(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})v=0\text{ in }\widehat{\mathcal{C}_{\eta}}\cap\{r>M\varepsilon\},

and

vpCε72 in 𝒞Mε.v-p\geq-C\varepsilon^{\frac{7}{2}}\text{ in }\mathcal{C}_{M\varepsilon}.

Finally, we apply the maximum principle to vpv-p in 𝒞η\𝒞Mε\mathcal{C}_{\eta}\backslash\mathcal{C}_{M\varepsilon} to get the desired bound on |vp||v-p|. ∎

We now link the behavior of vv near {r=0}𝕊2\{r=0\}\cap\mathbb{S}^{2} to the problem studied in Appendix B. Before the precise statement, we introduce some notations.

For a function w:3w:\mathbb{R}^{3}\to\mathbb{R}, let us denote by w~ε\tilde{w}_{\varepsilon} the following rescaling of its restriction to the plane {x1=1}\{x_{1}=1\}

(5.7) w~ε:2, and w~ε(x2,x3):=1ε72w(1,εx2,εx3).\tilde{w}_{\varepsilon}:\mathbb{R}^{2}\to\mathbb{R},\text{ and }\tilde{w}_{\varepsilon}(x_{2},x_{3}):=\frac{1}{\varepsilon^{\frac{7}{2}}}w(1,\varepsilon x_{2},\varepsilon x_{3}).

For the solution vv from (5.5), it follows that v~ε\tilde{v}_{\varepsilon} solves the following

(5.8) {εv~ε0 in BRε,v~ε0 in BRε,εv~ε=0 in BRε({v~ε>0}{x30}),v~ε=(p~ext)ε on BRε,\begin{cases}\mathcal{L}_{\varepsilon}\tilde{v}_{\varepsilon}\leq 0&\text{ in }B_{R_{\varepsilon}},\\ \tilde{v}_{\varepsilon}\geq 0&\text{ in }B^{\prime}_{R_{\varepsilon}},\\ \mathcal{L}_{\varepsilon}\tilde{v}_{\varepsilon}=0&\text{ in }B_{R_{\varepsilon}}\cap(\{\tilde{v}_{\varepsilon}>0\}\cup\{x_{3}\neq 0\}),\\ \tilde{v}_{\varepsilon}=(\tilde{p}_{ext})_{\varepsilon}&\text{ on }\partial B_{R_{\varepsilon}},\end{cases}

where Rε=ηε1η2R_{\varepsilon}=\frac{\eta}{\varepsilon\sqrt{1-\eta^{2}}}, and ε\mathcal{L}_{\varepsilon} is the operator defined as

εw=Δ2w+ε2[x(D22wx)5x2w+354w].\mathcal{L}_{\varepsilon}w=\Delta_{\mathbb{R}^{2}}w+\varepsilon^{2}[x\cdot(D^{2}_{\mathbb{R}^{2}}w\hskip 5.0ptx)-5x\cdot\nabla_{\mathbb{R}^{2}}w+\frac{35}{4}w].
Proposition 5.1.

For {aj}\{a_{j}\}, {bj}\{b_{j}\}, ε\varepsilon satisfying (5.3), let v=v[aj;bj;ε]v=v[a_{j};b_{j};\varepsilon] be the solution to (5.5).

For a0[12,2]a_{0}^{*}\in[\frac{1}{2},2] and |aj|1|a_{j}^{*}|\leq 1 for j=1,2,3j=1,2,3, let vv^{*} be the solution to (B.3) with data p=a0u72+a1u52+a2u32+a3u12p^{*}=a_{0}^{*}u_{\frac{7}{2}}+a_{1}^{*}u_{\frac{5}{2}}+a_{2}^{*}u_{\frac{3}{2}}+a_{3}^{*}u_{\frac{1}{2}} at infinity.

Given R>0R>0, there is a modulus of continuity, ωR\omega_{R}, depending only on RR, such that

v~εvL(BR)ωR(|ajaj|+ε),\|\tilde{v}_{\varepsilon}-v^{*}\|_{L^{\infty}(B_{R})}\leq\omega_{R}(\sum|a_{j}-a_{j}^{*}|+\varepsilon),

where v~ε\tilde{v}_{\varepsilon} is defined in (5.7).

Proof.

With the compactness of the region for (aj),(a_{j}^{*}), it suffices to find a modulus of continuity for a fixed (aj)(a_{j}^{*}).

Suppose there is no such ω\omega, we find a sequence (ajn,bjn,εn)(a_{j}^{n},b_{j}^{n},\varepsilon_{n}) with εn0\varepsilon_{n}\to 0 and ajnaja_{j}^{n}\to a_{j}^{*} such that

(5.9) v~εnnvL(BR)δ>0,\|\tilde{v}^{n}_{\varepsilon_{n}}-v^{*}\|_{L^{\infty}(B_{R})}\geq\delta>0,

where vn=vn[ajn;bjn;εn]v^{n}=v^{n}[a_{j}^{n};b_{j}^{n};\varepsilon_{n}] as in (5.5).

With the bound on |vp||v-p| from Lemma 5.2, we have, for a universal CC,

|v~εnn[pn+εn2(a2nr25u32+a3nr2u12)]|C in BRεn,|\tilde{v}^{n}_{\varepsilon_{n}}-[p_{n}+\varepsilon_{n}^{2}(-a_{2}^{n}\frac{r^{2}}{5}u_{\frac{3}{2}}+a_{3}^{n}r^{2}u_{\frac{1}{2}})]|\leq C\text{ in }B_{R_{\varepsilon_{n}}},

where Rεn=ηεn1η2R_{\varepsilon_{n}}=\frac{\eta}{\varepsilon_{n}\sqrt{1-\eta^{2}}} and

pn=a0nu72+a1nu52+a2nu32+a3nu12.p_{n}=a_{0}^{n}u_{\frac{7}{2}}+a_{1}^{n}u_{\frac{5}{2}}+a_{2}^{n}u_{\frac{3}{2}}+a_{3}^{n}u_{\frac{1}{2}}.

Consequently, for any compact K2K\subset\mathbb{R}^{2}, there is a constant CKC_{K} depending only on KK, such that

|v~εnnpn|C+CKεn2 in K if n is large.|\tilde{v}^{n}_{\varepsilon_{n}}-p_{n}|\leq C+C_{K}\varepsilon_{n}^{2}\text{ in }K\text{ if $n$ is large.}

With v~εnn\tilde{v}^{n}_{\varepsilon_{n}} solving (5.8), we have, up to a subsequence,

(5.10) v~εnnu locally uniformly in 2,\tilde{v}^{n}_{\varepsilon_{n}}\to u_{\infty}\text{ locally uniformly in }\mathbb{R}^{2},

with the limit uu_{\infty} solving the thin obstacle problem (1.1) in 2\mathbb{R}^{2}.

Now for any x2x\in\mathbb{R}^{2}, we find a compact set Kx,K\ni x, then

|up|(x)\displaystyle|u_{\infty}-p^{*}|(x) lim sup[|uv~εnn|(x)+|v~εnnpn|(x)+|pnp|(x)]\displaystyle\leq\limsup[|u_{\infty}-\tilde{v}^{n}_{\varepsilon_{n}}|(x)+|\tilde{v}^{n}_{\varepsilon_{n}}-p_{n}|(x)+|p_{n}-p^{*}|(x)]
lim sup(C+CKεn2)C.\displaystyle\leq\limsup(C+C_{K}\varepsilon_{n}^{2})\leq C.

With this, we have sup2|up|<+,\sup_{\mathbb{R}^{2}}|u_{\infty}-p^{*}|<+\infty, and by the uniqueness result in Proposition B.1, we have u=v.u_{\infty}=v^{*}. This contradicts (5.9) and (5.10). ∎

If we apply Proposition 5.1 to the special case when aj=aja_{j}=a_{j}^{*}, we see that the infinitesimal behavior of vv near {r=0}𝕊2\{r=0\}\cap\mathbb{S}^{2} is not affected by the coefficient bjb_{j}. This allows the fixed argument in the following lemma:

Lemma 5.3.

Let aja_{j} satisfy a0[12,2]a_{0}\in[\frac{1}{2},2] and |aj|1|a_{j}|\leq 1 for j=1,2,3j=1,2,3, and AA be the universal constant from Proposition B.1.

We can find b1b_{1} and b2b_{2} with |bj|A+1|b_{j}|\leq A+1 such that

|vpext|L(𝒞η\𝒞η/2)Cε6,|v-p_{ext}|_{L^{\infty}(\mathcal{C}_{\eta}\backslash\mathcal{C}_{\eta/2})}\leq C\varepsilon^{6},

where v=v[aj;bj;ε]v=v[a_{j};b_{j};\varepsilon] and pext=pext[aj;bj;ε]p_{ext}=p_{ext}[a_{j};b_{j};\varepsilon] are defined in (5.5) and (5.4), and CC is universal.

Moreover, there is a universal modulus of continuity, ω\omega, such that

|bja0bj2[a1/a0,a2/a0,a3/a0]|ω(ε)|b_{j}-a_{0}\cdot b_{j}^{\mathbb{R}^{2}}[a_{1}/a_{0},a_{2}/a_{0},a_{3}/a_{0}]|\leq\omega(\varepsilon)

for j=1,2j=1,2.

Recall the definition of bj2[]b_{j}^{\mathbb{R}^{2}}[\dots] from Remark B.1.

Proof.

With Lemma 5.2, we have

{(Δ𝕊2+λ72)(vpext)=0 in 𝒞η\𝒞Mε^,vpext=0 on 𝒞η𝒞η\𝒞Mε~,\begin{cases}(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})(v-p_{ext})=0&\text{ in }\widehat{\mathcal{C}_{\eta}\backslash\mathcal{C}_{M\varepsilon}},\\ v-p_{ext}=0&\text{ on }\partial\mathcal{C}_{\eta}\cup\widetilde{\mathcal{C}_{\eta}\backslash\mathcal{C}_{M\varepsilon}},\end{cases}

and |vpext|Cε72|v-p_{ext}|\leq C\varepsilon^{\frac{7}{2}} along 𝒞Mε\partial\mathcal{C}_{M\varepsilon}. By Lemma A.1 with m=2m=2, to get the bound on |vpext||v-p_{ext}|, it suffices to choose bjb_{j} so that

(5.11) 𝒞Mε(vpext)cos(12θ)=0, and 𝒞Mε(vpext)cos(32θ)=0.\int_{\partial\mathcal{C}_{M\varepsilon}}(v-p_{ext})\cdot\cos(\frac{1}{2}\theta)=0,\text{ and }\int_{\partial\mathcal{C}_{M\varepsilon}}(v-p_{ext})\cdot\cos(\frac{3}{2}\theta)=0.

By a change of variable, we have

(5.12) 𝒞Mε(vpext)cos(12θ)=ε92(1M2ε2)94BRε(v~ε(p~ext)ε)cos(12θ),\int_{\partial\mathcal{C}_{M\varepsilon}}(v-p_{ext})\cdot\cos(\frac{1}{2}\theta)=\varepsilon^{\frac{9}{2}}(1-M^{2}\varepsilon^{2})^{\frac{9}{4}}\int_{\partial B_{R_{\varepsilon}}}(\tilde{v}_{\varepsilon}-(\tilde{p}_{ext})_{\varepsilon})\cdot\cos(\frac{1}{2}\theta),

where Rε=M1M2ε2R_{\varepsilon}=\frac{M}{\sqrt{1-M^{2}\varepsilon^{2}}}, and v~ε\tilde{v}_{\varepsilon}, and (p~ext)ε(\tilde{p}_{ext})_{\varepsilon} are defined in (5.7).

Now let us we define

p=a0u72+a1u52+a2u32+a3u12,p^{*}=a_{0}u_{\frac{7}{2}}+a_{1}u_{\frac{5}{2}}+a_{2}u_{\frac{3}{2}}+a_{3}u_{\frac{1}{2}},
v is the solution to (B.3) with data p at infinity,v^{*}\text{ is the solution to \eqref{TOPIn2D} with data $p^{*}$ at infinity},
βj=a0bj2[a1/a0,a2/a0,a3/a0]\beta_{j}=a_{0}\cdot b_{j}^{\mathbb{R}^{2}}[a_{1}/a_{0},a_{2}/a_{0},a_{3}/a_{0}]

and

pext=p+β1u12+β2u32.p_{ext}^{*}=p^{*}+\beta_{1}u_{-\frac{1}{2}}+\beta_{2}u_{-\frac{3}{2}}.

Then we can compute the last term in (5.12) as

BRε(v~ε(p~ext)ε)cos(12θ)=\displaystyle\int_{\partial B_{R_{\varepsilon}}}(\tilde{v}_{\varepsilon}-(\tilde{p}_{ext})_{\varepsilon})\cdot\cos(\frac{1}{2}\theta)= BRε(v~εv)cos(12θ)\displaystyle\int_{\partial B_{R_{\varepsilon}}}(\tilde{v}_{\varepsilon}-v^{*})\cdot\cos(\frac{1}{2}\theta)
+BRε(vpext)\displaystyle+\int_{\partial B_{R_{\varepsilon}}}(v^{*}-p_{ext}^{*}) cos(12θ)+BRε(pext(p~ext)ε)cos(12θ)\displaystyle\cdot\cos(\frac{1}{2}\theta)+\int_{\partial B_{R_{\varepsilon}}}(p_{ext}^{*}-(\tilde{p}_{ext})_{\varepsilon})\cdot\cos(\frac{1}{2}\theta)

With Corollary B.1, the second term vanishes. With Proposition 5.1 and Rε2MR_{\varepsilon}\leq 2M for ε\varepsilon small, the first term is of order ω2M(ε)BRεcos(12θ)\omega_{2M}(\varepsilon)\int_{\partial B_{R_{\varepsilon}}}\cos(\frac{1}{2}\theta). We can use the definition of pextp_{ext} and pextp_{ext}^{*} to continue

BRε(v~ε(p~ext)ε)cos(12θ)=BRεcos(12θ)ω2M(ε)+(β1b1)Rε12BRεcos2(12θ).\displaystyle\int_{\partial B_{R_{\varepsilon}}}(\tilde{v}_{\varepsilon}-(\tilde{p}_{ext})_{\varepsilon})\cdot\cos(\frac{1}{2}\theta)=\int_{\partial B_{R_{\varepsilon}}}\cos(\frac{1}{2}\theta)\cdot\omega_{2M}(\varepsilon)+(\beta_{1}-b_{1})R_{\varepsilon}^{-\frac{1}{2}}\int_{\partial B_{R_{\varepsilon}}}\cos^{2}(\frac{1}{2}\theta).

By adjusting b1b_{1}, we can make the right-hand side 0. Moreover, this choice of b1b_{1} satisfies

(5.13) |b1β1|2M12ω2M(ε),|b_{1}-\beta_{1}|\leq 2M^{\frac{1}{2}}\omega_{2M}(\varepsilon),

where ω2M\omega_{2M} is the modulus of continuity from Proposition 5.1, and MM is the constant from Lemma 5.2.

In particular, for ε\varepsilon small, we can find b1b_{1} satisfying |b1|A+1|b_{1}|\leq A+1 as in (5.3) such that

𝒞Mε(vpext)cos(12θ)=0.\int_{\partial\mathcal{C}_{M\varepsilon}}(v-p_{ext})\cdot\cos(\frac{1}{2}\theta)=0.

A similar argument gives b2b_{2} satisfying |b2|A+1|b_{2}|\leq A+1 such that

(5.14) |b2β2|CM32ω2M(ε),|b_{2}-\beta_{2}|\leq CM^{\frac{3}{2}}\omega_{2M}(\varepsilon),

and

𝒞Mε(vpext)cos(32θ)=0.\int_{\partial\mathcal{C}_{M\varepsilon}}(v-p_{ext})\cdot\cos(\frac{3}{2}\theta)=0.

Therefore, we have (5.11) and the bound on |vpext||v-p_{ext}| follows. The control on |bjβj||b_{j}-\beta_{j}| is consequence of (5.13) and (5.14). ∎

With these, we finally define the extended profile:

Definition 5.1.

Corresponding to p=a0u72+a1εv52+a2ε2v32+a3ε3v12p=a_{0}u_{\frac{7}{2}}+a_{1}\varepsilon v_{\frac{5}{2}}+a_{2}\varepsilon^{2}v_{\frac{3}{2}}+a_{3}\varepsilon^{3}v_{\frac{1}{2}} with aj,εa_{j},\varepsilon satisfying (5.3), we define the extended profile, pextp_{ext}, by

pext={p+b1+ε4v12+b2+ε5v32 in {x1>0},p+b1ε4v12+b2ε5v32 in {x1<0},p_{ext}=\begin{cases}&p+b_{1}^{+}\varepsilon^{4}v_{-\frac{1}{2}}+b_{2}^{+}\varepsilon^{5}v_{-\frac{3}{2}}\text{ in }\{x_{1}>0\},\\ &p+b_{1}^{-}\varepsilon^{4}v_{-\frac{1}{2}}+b_{2}^{-}\varepsilon^{5}v_{-\frac{3}{2}}\text{ in }\{x_{1}<0\},\end{cases}

where bj+b_{j}^{+} are the coefficients from Lemma 5.3, and bjb_{j}^{-} are given by a similar procedure in 𝒞η.\mathcal{C}_{\eta}^{-}.

Remark 5.4.

Corresponding to aj,εa_{j},\varepsilon, we refer the coefficients bj±b_{j}^{\pm} from Definition 5.1 by

bj±,𝕊2[aj;ε]:=bj±.b_{j}^{\pm,\mathbb{S}^{2}}[a_{j};\varepsilon]:=b_{j}^{\pm}.

5.2. Boundary layer near 𝒜3\mathcal{A}_{3} and well-approximated solutions

In this section we construct the replacement of profiles near 𝒜3\mathcal{A}_{3}. It is illustrative to compare this subsection with the construction from Subsection 4.1.

Given p=a0u72+a1εv52+a2ε2v32+a3ε3v12p=a_{0}u_{\frac{7}{2}}+a_{1}\varepsilon v_{\frac{5}{2}}+a_{2}\varepsilon^{2}v_{\frac{3}{2}}+a_{3}\varepsilon^{3}v_{\frac{1}{2}}, satisfying (5.3), and the corresponding pextp_{ext} as in Definition 5.1, we define vp±v_{p}^{\pm} as the solution to (5.5) in 𝒞η±\mathcal{C}_{\eta}^{\pm}.

If bj+bjb^{+}_{j}\neq b^{-}_{j} in Definition 5.1, the extended profile pextp_{ext} is discontinuous along {x1=0}\{x_{1}=0\}. To fix this issue, we make another replacement in the following layer

η:={|x1|<η}𝕊2.\mathcal{L}_{\eta}:=\{|x_{1}|<\eta\}\cap\mathbb{S}^{2}.

The cone generated by η\mathcal{L}_{\eta} is denoted by the same notation.

In this layer, we solve

{(Δ𝕊2+λ72)hp=0 in η^,hp=pext in ηη~.\begin{cases}(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})h_{p}=0&\text{ in }\widehat{\mathcal{L}_{\eta}},\\ h_{p}=p_{ext}&\text{ in }\partial\mathcal{L}_{\eta}\cup\widetilde{\mathcal{L}_{\eta}}.\end{cases}

Recall the notation for slit domains from (2.10).

With this, we define the replacement of pp as:

Definition 5.2.

For pp satisfying (5.3), its replacement, p¯\overline{p}, is defined as

p¯={vp± in 𝒞η±,hp in η,pext in 𝕊2\(𝒞η±η).\overline{p}=\begin{cases}v_{p}^{\pm}&\text{ in }\mathcal{C}_{\eta}^{\pm},\\ h_{p}&\text{ in }\mathcal{L}_{\eta},\\ p_{ext}&\text{ in }\mathbb{S}^{2}\backslash(\mathcal{C}_{\eta}^{\pm}\cup\mathcal{L}_{\eta}).\end{cases}

Equivalently, the replacement p¯\overline{p} is the minimizer of the energy

v𝕊2|𝕊2v|2λ72v2v\mapsto\int_{\mathbb{S}^{2}}|\nabla_{\mathbb{S}^{2}}v|^{2}-\lambda_{\frac{7}{2}}v^{2}

over

{v:v=pext outside 𝒞η±η, and v0 on {x3=0}𝒞η±}.\{v:v=p_{ext}\text{ outside }\mathcal{C}_{\eta}^{\pm}\cup\mathcal{L}_{\eta},\text{ and }v\geq 0\text{ on }\{x_{3}=0\}\cap\mathcal{C}_{\eta}^{\pm}\}.

This replacement satisfies

(5.15) {(Δ𝕊2+λ72)p¯=f1,pdH1|η+f2,p±dH1|𝒞η±+gp±dH1|𝒞η±{x3=0} in 𝕊2^{r<η},p¯=0 in 𝕊2~{rη}.\begin{cases}(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})\overline{p}=f_{1,p}dH^{1}|_{\partial\mathcal{L}_{\eta}}+f_{2,p}^{\pm}dH^{1}|_{\partial\mathcal{C}_{\eta}^{\pm}}+g_{p}^{\pm}dH^{1}|_{\mathcal{C}_{\eta}^{\pm}\cap\{x_{3}=0\}}&\text{ in }\widehat{\mathbb{S}^{2}}\cup\{r<\eta\},\\ \overline{p}=0&\text{ in }\widetilde{\mathbb{S}^{2}}\cap\{r\geq\eta\}.\end{cases}

Similar to Subsection 4.1, we define some auxiliary functions.

The projection of f1,pf_{1,p} into 72\mathcal{H}_{\frac{7}{2}} (see (2.12)) is denoted by φ1,p\varphi_{1,p}, namely,

(5.16) φ1,p:=c72u72+c52v52+c32v32+c12v12,\varphi_{1,p}:=c_{\frac{7}{2}}u_{\frac{7}{2}}+c_{\frac{5}{2}}v_{\frac{5}{2}}+c_{\frac{3}{2}}v_{\frac{3}{2}}+c_{\frac{1}{2}}v_{\frac{1}{2}},

where

c72=1u72L2(𝕊2)𝕊2u72f1,p𝑑H1|η, and cm+12=1vm+12L2(𝕊2)𝕊2vm+12f1,p𝑑H1|ηc_{\frac{7}{2}}=\frac{1}{\|u_{\frac{7}{2}}\|_{L^{2}(\mathbb{S}^{2})}}\cdot\int_{\mathbb{S}^{2}}u_{\frac{7}{2}}\cdot f_{1,p}dH^{1}|_{\partial\mathcal{L}_{\eta}},\text{ and }c_{m+\frac{1}{2}}=\frac{1}{\|v_{m+\frac{1}{2}}\|_{L^{2}(\mathbb{S}^{2})}}\cdot\int_{\mathbb{S}^{2}}v_{m+\frac{1}{2}}\cdot f_{1,p}dH^{1}|_{\partial\mathcal{L}_{\eta}}

for m=0,1,2.m=0,1,2.

By Fredholm alternative, there is a unique function H1,p:𝕊2H_{1,p}:\mathbb{S}^{2}\to\mathbb{R} satisfying

{(Δ𝕊2+λ72)H1,p=f1,pdH1|ηφ1,p on 𝕊2^,H1,p=0 on 𝕊2~.\begin{cases}(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})H_{1,p}=f_{1,p}dH^{1}|_{\partial\mathcal{L}_{\eta}}-\varphi_{1,p}&\text{ on $\widehat{\mathbb{S}^{2}},$}\\ H_{1,p}=0&\text{ on $\widetilde{\mathbb{S}^{2}}$.}\end{cases}

Corresponding to these, we define

(5.17) Φ1,p:=H1,p(x|x|)|x|72+18φ1,p(x|x|)|x|72log(|x|),\Phi_{1,p}:=H_{1,p}(\frac{x}{|x|})|x|^{\frac{7}{2}}+\frac{1}{8}\varphi_{1,p}(\frac{x}{|x|})|x|^{\frac{7}{2}}\log(|x|),

which satisfies

(5.18) {ΔΦ1,p=f1,pdH2|η in 3^,Φ1,p=0 on 3~.\begin{cases}\Delta\Phi_{1,p}=f_{1,p}dH^{2}|_{\partial\mathcal{L}_{\eta}}&\text{ in $\widehat{\mathbb{R}^{3}}$,}\\ \Phi_{1,p}=0&\text{ on $\widetilde{\mathbb{R}^{3}}.$}\end{cases}

Let’s denote

(5.19) κ1,p:=Φ1,pL(B1),\kappa_{1,p}:=\|\Phi_{1,p}\|_{L^{\infty}(B_{1})},

which measures the size of the error coming from the gluing procedure along η.\partial\mathcal{L}_{\eta}.

Similarly, corresponding to f2,p+dH1|𝒞η++f2,pdH1|𝒞ηf_{2,p}^{+}dH^{1}|_{\partial\mathcal{C}_{\eta}^{+}}+f_{2,p}^{-}dH^{1}|_{\partial\mathcal{C}_{\eta}^{-}} from (5.15), we define

φ2,p:=Proj72(f2,p+dH1|𝒞η++f2,pdH1|𝒞η).\varphi_{2,p}:=\operatorname{Proj}_{\mathcal{H}_{\frac{7}{2}}}(f_{2,p}^{+}dH^{1}|_{\partial\mathcal{C}_{\eta}^{+}}+f_{2,p}^{-}dH^{1}|_{\partial\mathcal{C}_{\eta}^{-}}).

The function H2,pH_{2,p} is the unique solution to

(Δ𝕊2+λ72)H2,p=f2,p+dH1|𝒞η++f2,pdH1|𝒞ηφ2,p on 𝕊2^, and H2,p=0 on 𝕊2~.(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})H_{2,p}=f_{2,p}^{+}dH^{1}|_{\partial\mathcal{C}_{\eta}^{+}}+f_{2,p}^{-}dH^{1}|_{\partial\mathcal{C}_{\eta}^{-}}-\varphi_{2,p}\hskip 5.0pt\text{ on $\widehat{\mathbb{S}^{2}},$ and }\hskip 5.0ptH_{2,p}=0\text{ on $\widetilde{\mathbb{S}^{2}}$.}

Finally, we let

Φ2,p:=H2,p(x|x|)|x|72+18φ2,p(x|x|)|x|72log(|x|),\Phi_{2,p}:=H_{2,p}(\frac{x}{|x|})|x|^{\frac{7}{2}}+\frac{1}{8}\varphi_{2,p}(\frac{x}{|x|})|x|^{\frac{7}{2}}\log(|x|),
(5.20) κ2,p:=Φ2,pL(B1),\kappa_{2,p}:=\|\Phi_{2,p}\|_{L^{\infty}(B_{1})},

and

(5.21) κp:=κ1,p+κ2,p.\kappa_{p}:=\kappa_{1,p}+\kappa_{2,p}.

The subscript pp is often omitted when there is no ambiguity.

We estimate the change in p¯\overline{p} when pp is modified:

Lemma 5.4.

Suppose that p=a0u72+a1εv52+a2ε2v32+a3ε3v12p=a_{0}u_{\frac{7}{2}}+a_{1}\varepsilon v_{\frac{5}{2}}+a_{2}\varepsilon^{2}v_{\frac{3}{2}}+a_{3}\varepsilon^{3}v_{\frac{1}{2}} satisfies (5.3), and that q=α0u72+α1v52+α2v32+α3v12q=\alpha_{0}u_{\frac{7}{2}}+\alpha_{1}v_{\frac{5}{2}}+\alpha_{2}v_{\frac{3}{2}}+\alpha_{3}v_{\frac{1}{2}} satisfies |αj|1.|\alpha_{j}|\leq 1.

Given small a>0a>0, we have, for Ca>0C_{a}>0 big depending on aa,

p+dq¯(p¯+dq)L(𝕊2)ad+Caε6\|\overline{p+dq}-(\overline{p}+dq)\|_{L^{\infty}(\mathbb{S}^{2})}\leq ad+C_{a}\varepsilon^{6}

for small d,ε>0d,\varepsilon>0.

Remark 5.5.

It suffices to consider the case when dε3d\leq\varepsilon^{3}. In case d>ε3d>\varepsilon^{3}, we define ε¯=d13>ε\bar{\varepsilon}=d^{\frac{1}{3}}>\varepsilon, and rewrite p=a0u72+a~1ε¯v52+a~2ε¯2v32+a~3ε¯3v12p=a_{0}u_{\frac{7}{2}}+\tilde{a}_{1}\bar{\varepsilon}v_{\frac{5}{2}}+\tilde{a}_{2}\bar{\varepsilon}^{2}v_{\frac{3}{2}}+\tilde{a}_{3}\bar{\varepsilon}^{3}v_{\frac{1}{2}}. Then |a~j||aj||\tilde{a}_{j}|\leq|a_{j}|. Consequently, conditions from (5.3) are satisfied if dd is small enough.

Once the case for dε3d\leq\varepsilon^{3} is established, to deal with the case d>ε3d>\varepsilon^{3}, we can apply the conclusion to get an upper bound of the form ad+Caε¯6=ad+Cad2ad+C_{a}\bar{\varepsilon}^{6}=ad+C_{a}d^{2}, leading to the desired conclusion if we slightly decrease aa and choose dd small enough.

Proof.

We first focus on the estimate in {x1>0}\{x_{1}>0\}. In this region, suppose

pext=p+b1ε4v12+b2ε5v32, and (p+dq)ext=p+dq+β1ε4v12+β2ε5v32.p_{ext}=p+b_{1}\varepsilon^{4}v_{-\frac{1}{2}}+b_{2}\varepsilon^{5}v_{-\frac{3}{2}},\text{ and }(p+dq)_{ext}=p+dq+\beta_{1}\varepsilon^{4}v_{-\frac{1}{2}}+\beta_{2}\varepsilon^{5}v_{-\frac{3}{2}}.

Step 1: Estimate on |bjβj||b_{j}-\beta_{j}|.

For r0>0r_{0}>0 to be chosen, with the same argument as in Lemma 5.3, we have

(5.22) |p¯pext|+|p+dq¯(p+dq)ext|Cr0ε6 in 𝒞η\𝒞r0,|\overline{p}-p_{ext}|+|\overline{p+dq}-(p+dq)_{ext}|\leq C_{r_{0}}\varepsilon^{6}\text{ in }\mathcal{C}_{\eta}\backslash\mathcal{C}_{r_{0}},

for a constant Cr0C_{r_{0}} depending on r0r_{0}.

Since p¯\overline{p} and p+dq¯\overline{p+dq} both solve the thin obstacle problem (5.5) in 𝒞η\mathcal{C}_{\eta}, the maximum principle implies that the function rp¯p+dq¯L(𝒞r)r\mapsto\|\overline{p}-\overline{p+dq}\|_{L^{\infty}(\partial\mathcal{C}_{r})} is increasing for r(0,η).r\in(0,\eta). With the previous estimate, this gives

(b1β1)ε4v12+(b2β2)ε5v32L(𝒞r0)\displaystyle\|(b_{1}-\beta_{1})\varepsilon^{4}v_{-\frac{1}{2}}+(b_{2}-\beta_{2})\varepsilon^{5}v_{-\frac{3}{2}}\|_{L^{\infty}(\partial\mathcal{C}_{r_{0}})} (b1β1)ε4v12+(b2β2)ε5v32L(𝒞r1)\displaystyle\leq\|(b_{1}-\beta_{1})\varepsilon^{4}v_{-\frac{1}{2}}+(b_{2}-\beta_{2})\varepsilon^{5}v_{-\frac{3}{2}}\|_{L^{\infty}(\partial\mathcal{C}_{r_{1}})}
+Cr0ε6+Cr112d\displaystyle+C_{r_{0}}\varepsilon^{6}+Cr_{1}^{\frac{1}{2}}d

if r0<r1<ηr_{0}<r_{1}<\eta. The last term is a consequence of the bound |q|Cr112|q|\leq Cr_{1}^{\frac{1}{2}} in 𝒞r1\mathcal{C}_{r_{1}}.

With the orthogonality between v12v_{-\frac{1}{2}} and v32v_{-\frac{3}{2}}, this implies

|b1β1|ε4r012+|b2β2|ε5r032C[|b1β1|ε4r112+|b2β2|ε5r132]+Cr0ε6+Cr112d,|b_{1}-\beta_{1}|\varepsilon^{4}r_{0}^{-\frac{1}{2}}+|b_{2}-\beta_{2}|\varepsilon^{5}r_{0}^{-\frac{3}{2}}\leq C[|b_{1}-\beta_{1}|\varepsilon^{4}r_{1}^{-\frac{1}{2}}+|b_{2}-\beta_{2}|\varepsilon^{5}r_{1}^{-\frac{3}{2}}]+C_{r_{0}}\varepsilon^{6}+Cr_{1}^{\frac{1}{2}}d,

where CC is universal. By choosing r1/r01r_{1}/r_{0}\gg 1, universally, we have

|b1β1|ε4r012+|b2β2|ε5r032Cr0ε6+Cr112d.|b_{1}-\beta_{1}|\varepsilon^{4}r_{0}^{-\frac{1}{2}}+|b_{2}-\beta_{2}|\varepsilon^{5}r_{0}^{-\frac{3}{2}}\leq C_{r_{0}}\varepsilon^{6}+Cr_{1}^{\frac{1}{2}}d.

Step 2: Estimate in {x1>η}\{x_{1}>\eta\}.

With the final estimate from the previous step, we have

|(pext+dq)(p+dq)ext|Cr0ε6+Cr112d in {x1>0}\𝒞r0.|(p_{ext}+dq)-(p+dq)_{ext}|\leq C_{r_{0}}\varepsilon^{6}+Cr_{1}^{\frac{1}{2}}d\hskip 5.0pt\text{ in }\{x_{1}>0\}\backslash\mathcal{C}_{r_{0}}.

With the maximum principle and (5.22), this gives

|p+dq¯(p¯+dq)|Cr0ε6+Cr112d in 𝒞η.|\overline{p+dq}-(\overline{p}+dq)|\leq C_{r_{0}}\varepsilon^{6}+Cr_{1}^{\frac{1}{2}}d\text{ in }\mathcal{C}_{\eta}.

Meanwhile, p+dq¯=(p+dq)ext\overline{p+dq}=(p+dq)_{ext} and p¯=pext\overline{p}=p_{ext} in {x1>η}\𝒞η\{x_{1}>\eta\}\backslash\mathcal{C}_{\eta} by definition, we conclude

|p+dq¯(p¯+dq)|Cr0ε6+Cr112d in {x1>η}.|\overline{p+dq}-(\overline{p}+dq)|\leq C_{r_{0}}\varepsilon^{6}+Cr_{1}^{\frac{1}{2}}d\text{ in }\{x_{1}>\eta\}.

Step 3: Conclusion.

With a symmetric argument, we have

|p+dq¯(p¯+dq)|Cr0ε6+Cr112d in {x1<η}.|\overline{p+dq}-(\overline{p}+dq)|\leq C_{r_{0}}\varepsilon^{6}+Cr_{1}^{\frac{1}{2}}d\text{ in }\{x_{1}<-\eta\}.

Using the maximum principle, we have

|p+dq¯(p¯+dq)|Cr0ε6+Cr112d in 𝕊2.|\overline{p+dq}-(\overline{p}+dq)|\leq C_{r_{0}}\varepsilon^{6}+Cr_{1}^{\frac{1}{2}}d\text{ in }\mathbb{S}^{2}.

From here, we choose r1r_{1} small, depending on aa such that Cr112<aCr_{1}^{\frac{1}{2}}<a. Then we choose r0r1r_{0}\ll r_{1}, which fixes the constant Cr0C_{r_{0}}. ∎

Lemma 5.4 leads to a control over the change in κ1,p\kappa_{1,p} and κ2,p\kappa_{2,p} from (5.19) and (5.20) when pp is modified. The proof is similar to the proof for Corollary 4.1 and is omitted.

Corollary 5.1.

With the same assumption and the same notation as in Lemma 5.4, we have

κj,p+dqκj,p+ad+Caε6 for j=1,2.\kappa_{j,p+dq}\leq\kappa_{j,p}+ad+C_{a}\varepsilon^{6}\text{ for }j=1,2.

Among the terms on the right-hand side of (5.15), the term f1f_{1} has a significant projection into 72\mathcal{H}_{\frac{7}{2}}. While the similar result is not necessarily true for f2±f_{2}^{\pm}, we can show that f2±f_{2}^{\pm} is small. This is the content of the following lemma.

Lemma 5.5.

Suppose that pp satisfies (5.3) and pextp_{ext} is as in Definition 5.1, then we have

cκ1|b1+b1|ε4+|b2+b2|ε5Cφ1L(𝕊2),c\kappa_{1}\leq|b_{1}^{+}-b_{1}^{-}|\varepsilon^{4}+|b_{2}^{+}-b_{2}^{-}|\varepsilon^{5}\leq C\|\varphi_{1}\|_{L^{\infty}(\mathbb{S}^{2})},

and

κ2Cε6\kappa_{2}\leq C\varepsilon^{6}

for universal constants cc small and CC large.

Proof.

With our convention for one-sided derivatives from (2.3), we have f1=(p¯pext)ν|η.f_{1}=(\overline{p}-p_{ext})_{\nu}|_{\partial\mathcal{L}_{\eta}}. By definition of p¯\overline{p} and the maximum principle, we have |p¯pext|C(|b1+b1|ε4+|b2+b2|ε5)|\overline{p}-p_{ext}|\leq C(|b_{1}^{+}-b_{1}^{-}|\varepsilon^{4}+|b_{2}^{+}-b_{2}^{-}|\varepsilon^{5}) in η\mathcal{L}_{\eta}. The upper bound on κ1\kappa_{1} follows from boundary regularity of harmonic functions.

With Lemma 5.3, the bound on κ2\kappa_{2} follows from a similar argument.

It remains to prove the lower bound for φ1L(𝕊2).\|\varphi_{1}\|_{L^{\infty}(\mathbb{S}^{2})}.

For this let’s define

q:={p¯p in 𝕊2\𝒞η±,pextp in 𝒞η±.q:=\begin{cases}\overline{p}-p&\text{ in }\mathbb{S}^{2}\backslash\mathcal{C}_{\eta}^{\pm},\\ p_{ext}-p&\text{ in }\mathcal{C}_{\eta}^{\pm}.\end{cases}

Then for small r0>0r_{0}>0, we have

𝕊2f1v12𝑑H1|η\displaystyle\int_{\mathbb{S}^{2}}f_{1}v_{\frac{1}{2}}dH^{1}|_{\partial\mathcal{L}_{\eta}} =𝕊2\𝒞r0±(Δ𝕊2+λ72)qv12\displaystyle=\int_{\mathbb{S}^{2}\backslash\mathcal{C}_{r_{0}}^{\pm}}(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})q\cdot v_{\frac{1}{2}}
=𝕊2\𝒞r0±(Δ𝕊2+λ72)qv12q(Δ𝕊2+λ72)v12\displaystyle=\int_{\mathbb{S}^{2}\backslash\mathcal{C}_{r_{0}}^{\pm}}(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})q\cdot v_{\frac{1}{2}}-q\cdot(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})v_{\frac{1}{2}}
=𝒞r0±q(v12)νv12qν.\displaystyle=\int_{\partial\mathcal{C}_{r_{0}}^{\pm}}q\cdot(v_{\frac{1}{2}})_{\nu}-v_{\frac{1}{2}}\cdot q_{\nu}.

With the definition of qq and orthogonality, we have

(5.23) 𝕊2f1v12𝑑H1|η=b1+ε4𝒞r0+[v12(v12)νv12(v12)ν]+b1ε4𝒞r0[v12(v12)νv12(v12)ν].\int_{\mathbb{S}^{2}}f_{1}v_{\frac{1}{2}}dH^{1}|_{\partial\mathcal{L}_{\eta}}=b_{1}^{+}\varepsilon^{4}\int_{\partial\mathcal{C}_{r_{0}}^{+}}[v_{-\frac{1}{2}}(v_{\frac{1}{2}})_{\nu}-v_{\frac{1}{2}}(v_{-\frac{1}{2}})_{\nu}]+b_{1}^{-}\varepsilon^{4}\int_{\partial\mathcal{C}_{r_{0}}^{-}}[v_{-\frac{1}{2}}(v_{\frac{1}{2}})_{\nu}-v_{\frac{1}{2}}(v_{-\frac{1}{2}})_{\nu}].

By direct computation, we have

limr00𝒞r0+v12(v12)ν=A1=limr00𝒞r0+v12(v12)ν,\lim_{r_{0}\to 0}\int_{\partial\mathcal{C}_{r_{0}}^{+}}v_{-\frac{1}{2}}(v_{\frac{1}{2}})_{\nu}=-A_{1}=-\lim_{r_{0}\to 0}\int_{\partial\mathcal{C}_{r_{0}}^{+}}v_{\frac{1}{2}}(v_{-\frac{1}{2}})_{\nu},

where A1A_{1} is a positive constant. Thus

𝒞r0+[v12(v12)νv12(v12)ν]2A1 as r00.\int_{\partial\mathcal{C}_{r_{0}}^{+}}[v_{-\frac{1}{2}}(v_{\frac{1}{2}})_{\nu}-v_{\frac{1}{2}}(v_{-\frac{1}{2}})_{\nu}]\to-2A_{1}\text{ as }r_{0}\to 0.

Now note that v12v_{\frac{1}{2}} is odd with respect to the x1x_{1}-variable and v12v_{-\frac{1}{2}} is even with respect to the x1x_{1}-variable, we have

𝒞r0[v12(v12)νv12(v12)ν]2A1 as r00.\int_{\partial\mathcal{C}_{r_{0}}^{-}}[v_{-\frac{1}{2}}(v_{\frac{1}{2}})_{\nu}-v_{\frac{1}{2}}(v_{-\frac{1}{2}})_{\nu}]\to 2A_{1}\text{ as }r_{0}\to 0.

Consequently, sending r00r_{0}\to 0 in (5.23), we have

𝕊2f1v12𝑑H1|η=2A1(b1b1+)ε4.\int_{\mathbb{S}^{2}}f_{1}v_{\frac{1}{2}}dH^{1}|_{\partial\mathcal{L}_{\eta}}=2A_{1}(b_{1}^{-}-b_{1}^{+})\varepsilon^{4}.

A similar argument gives 𝕊2f1v32𝑑H1|η=2A2(b2b2+)ε5\int_{\mathbb{S}^{2}}f_{1}v_{\frac{3}{2}}dH^{1}|_{\partial\mathcal{L}_{\eta}}=2A_{2}(b_{2}^{-}-b_{2}^{+})\varepsilon^{5} for a positive constant A2A_{2}. The lower bound for φ1L(𝕊2)\|\varphi_{1}\|_{L^{\infty}(\mathbb{S}^{2})} follows from these two equations together with the definition in (5.16). ∎

We now control the Weiss energy from (2.6) for the replacement p¯\overline{p}:

Lemma 5.6.

Suppose that pp satisfies (5.3) and p¯\overline{p} is as in Definition 5.2. Then

W72(p¯;1)Cε6W_{\frac{7}{2}}(\overline{p};1)\leq C\varepsilon^{6}

for a universal CC.

Proof.

Similar to Lemma 4.5, it suffices to prove the upper bound for the following quantity

𝕊2(|𝕊2p¯|2λ72p¯2)\displaystyle\int_{\mathbb{S}^{2}}(|\nabla_{\mathbb{S}^{2}}\overline{p}|^{2}-\lambda_{\frac{7}{2}}\overline{p}^{2}) =𝕊2(|𝕊2p¯|2λ72p¯2)(|𝕊2p|2λ72p2)\displaystyle=\int_{\mathbb{S}^{2}}(|\nabla_{\mathbb{S}^{2}}\overline{p}|^{2}-\lambda_{\frac{7}{2}}\overline{p}^{2})-(|\nabla_{\mathbb{S}^{2}}p|^{2}-\lambda_{\frac{7}{2}}p^{2})
=𝕊2(Δ𝕊2+λ72)p¯(p¯p)𝕊2(Δ𝕊2+λ72)p(p¯p)\displaystyle=\int_{\mathbb{S}^{2}}-(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})\overline{p}\cdot(\overline{p}-p)-\int_{\mathbb{S}^{2}}(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})p\cdot(\overline{p}-p)
(5.24) =𝕊2(f1+f2±+g±)(p¯p)𝕊2(Δ𝕊2+λ72)p(p¯p).\displaystyle=-\int_{\mathbb{S}^{2}}(f_{1}+f_{2}^{\pm}+g^{\pm})(\overline{p}-p)-\int_{\mathbb{S}^{2}}(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})p\cdot(\overline{p}-p).

For the second term, we note that (Δ𝕊2+λ72)p(p¯p)(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})p\cdot(\overline{p}-p) is supported in {Mεx20}{x3=0}\{-M\varepsilon\leq x_{2}\leq 0\}\cap\{x_{3}=0\} by Lemma 5.2. On this segment, we have (Δ𝕊2+λ72)pr52+εr32+ε2r12+ε3r12(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})p\sim r^{\frac{5}{2}}+\varepsilon r^{\frac{3}{2}}+\varepsilon^{2}r^{\frac{1}{2}}+\varepsilon^{3}r^{-\frac{1}{2}}, thus

(5.25) |𝕊2(Δ𝕊2+λ72)p(p¯p)|Cp¯pL(𝒞η±)0εr52+εr32+ε2r12+ε3r12Cε7|\int_{\mathbb{S}^{2}}(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})p\cdot(\overline{p}-p)|\leq C\|\overline{p}-p\|_{L^{\infty}(\mathcal{C}_{\eta}^{\pm})}\cdot\int_{0}^{\varepsilon}r^{\frac{5}{2}}+\varepsilon r^{\frac{3}{2}}+\varepsilon^{2}r^{\frac{1}{2}}+\varepsilon^{3}r^{-\frac{1}{2}}\leq C\varepsilon^{7}

since p¯pL(𝒞η±)Cε72\|\overline{p}-p\|_{L^{\infty}(\mathcal{C}_{\eta}^{\pm})}\leq C\varepsilon^{\frac{7}{2}} by Lemma 5.2.

For 𝕊2(f1+f2±)(p¯p)\int_{\mathbb{S}^{2}}(f_{1}+f_{2}^{\pm})(\overline{p}-p) from (5.2), we notice that on the support of fjf_{j}, we have p¯=pext\overline{p}=p_{ext} and |pextp|=O(ε4)|p_{ext}-p|=O(\varepsilon^{4}) by definition. With |fj|Cε4|f_{j}|\leq C\varepsilon^{4} from Lemma 5.5, we have

(5.26) |𝕊2(f1+f2±)(p¯p)|Cε8.|\int_{\mathbb{S}^{2}}(f_{1}+f_{2}^{\pm})(\overline{p}-p)|\leq C\varepsilon^{8}.

It remains to control 𝕊2g±(p¯p)-\int_{\mathbb{S}^{2}}g^{\pm}\cdot(\overline{p}-p). To this end, we have

𝕊2g±(p¯p)\displaystyle-\int_{\mathbb{S}^{2}}g^{\pm}\cdot(\overline{p}-p) =𝒞η±(Δ𝕊2+λ72)(p¯p)(p)\displaystyle=-\int_{\mathcal{C}_{\eta}^{\pm}}(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})(\overline{p}-p)\cdot(-p)
=𝒞η±(p¯p)(Δ𝕊2+λ72)p𝒞η±(p¯p)νp+𝒞η±(p¯p)pν\displaystyle=\int_{\mathcal{C}_{\eta}^{\pm}}(\overline{p}-p)(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})p-\int_{\partial\mathcal{C}_{\eta}^{\pm}}(\overline{p}-p)_{\nu}\cdot p+\int_{\partial\mathcal{C}_{\eta}^{\pm}}(\overline{p}-p)\cdot p_{\nu}
𝒞η±(p¯p)νp+𝒞η±(p¯p)pν+Cε7\displaystyle\leq-\int_{\partial\mathcal{C}_{\eta}^{\pm}}(\overline{p}-p)_{\nu}\cdot p+\int_{\partial\mathcal{C}_{\eta}^{\pm}}(\overline{p}-p)\cdot p_{\nu}+C\varepsilon^{7}
=𝒞η±(p¯pext)νp𝒞η±(pextp)νp\displaystyle=-\int_{\partial\mathcal{C}_{\eta}^{\pm}}(\overline{p}-p_{ext})_{\nu}\cdot p-\int_{\partial\mathcal{C}_{\eta}^{\pm}}(p_{ext}-p)_{\nu}\cdot p
+𝒞η±(p¯pext)pν+𝒞η±(pextp)pν+Cε7\displaystyle+\int_{\partial\mathcal{C}_{\eta}^{\pm}}(\overline{p}-p_{ext})\cdot p_{\nu}+\int_{\partial\mathcal{C}_{\eta}^{\pm}}(p_{ext}-p)\cdot p_{\nu}+C\varepsilon^{7}

where we used (5.25) for the second to last line.

Note that (p¯pext)ν=O(ε6)(\overline{p}-p_{ext})_{\nu}=O(\varepsilon^{6}) along 𝒞η±\partial\mathcal{C}_{\eta}^{\pm} by Lemma 5.5, this implies

(5.27) 𝕊2g±(p¯p)𝒞η±(pextp)νp+𝒞η±(pextp)pν+Cε6.-\int_{\mathbb{S}^{2}}g^{\pm}\cdot(\overline{p}-p)\leq-\int_{\partial\mathcal{C}_{\eta}^{\pm}}(p_{ext}-p)_{\nu}\cdot p+\int_{\partial\mathcal{C}_{\eta}^{\pm}}(p_{ext}-p)\cdot p_{\nu}+C\varepsilon^{6}.

On the other hand, using orthogonality, we have

(5.28) 𝒞η±(pextp)νp=𝒞η±(b1±ε4v12)νa3ε3v12+(b2±ε5v32)νa2ε2v32=O(ε7).\int_{\partial\mathcal{C}_{\eta}^{\pm}}(p_{ext}-p)_{\nu}\cdot p=\int_{\partial\mathcal{C}_{\eta}^{\pm}}(b_{1}^{\pm}\varepsilon^{4}v_{-\frac{1}{2}})_{\nu}\cdot a_{3}\varepsilon^{3}v_{\frac{1}{2}}+(b_{2}^{\pm}\varepsilon^{5}v_{-\frac{3}{2}})_{\nu}\cdot a_{2}\varepsilon^{2}v_{\frac{3}{2}}=O(\varepsilon^{7}).

Similarly,

(5.29) 𝒞η±(pextp)pν=O(ε7).\int_{\partial\mathcal{C}_{\eta}^{\pm}}(p_{ext}-p)\cdot p_{\nu}=O(\varepsilon^{7}).

Putting (5.28) and (5.29) into (5.27), we have

𝕊2g±(p¯p)Cε6.-\int_{\mathbb{S}^{2}}g^{\pm}\cdot(\overline{p}-p)\leq C\varepsilon^{6}.

Together with (5.2), (5.25) and (5.26), this implies the desired control. ∎

The following lemma explains the main reason why it is preferable to work with p¯\overline{p} instead of pp or pextp_{ext}.

Lemma 5.7.

Suppose that pp satisfies (5.3). Let uu be a solution to (1.1) in B1B_{1}, then

up¯L(B1/2)+up¯H1(B1/2)C(up¯L1(B1)+κp)\|u-\overline{p}\|_{L^{\infty}(B_{1/2})}+\|u-\overline{p}\|_{H^{1}(B_{1/2})}\leq C(\|u-\overline{p}\|_{L^{1}(B_{1})}+\kappa_{p})

and

W72(u;12)C(up¯L1(B1)2+κp2+ε6).W_{\frac{7}{2}}(u;\frac{1}{2})\leq C(\|u-\overline{p}\|^{2}_{L^{1}(B_{1})}+\kappa_{p}^{2}+\varepsilon^{6}).

Similar to Definition 4.2, we define the class of well-approximated solutions:

Definition 5.3.

Suppose that the coefficients of pp satisfy (5.3).

For d,ρ(0,1]d,\rho\in(0,1], we say that uu is a solution dd-approximated by pp at scale ρ\rho if uu solves the thin obstacle problem (1.1) in BρB_{\rho}, and

|up¯|dρ72 in Bρ.|u-\overline{p}|\leq d\rho^{\frac{7}{2}}\text{ in $B_{\rho}$.}

In this case, we write

u𝒮(p,d,ρ).u\in\mathcal{S}(p,d,\rho).

Similar to Lemma 3.1 and Lemma 4.6, we can localize the contact set of well-approximated solutions:

Lemma 5.8.

Suppose that u𝒮(p,d,1)u\in\mathcal{S}(p,d,1) with pp satisfying (5.3) and dε3d\leq\varepsilon^{3}.

We have

Δu=0 in B1^{r>Cε}, and u=0 in B78~{r>Cε25}.\Delta u=0\text{ in }\widehat{B_{1}}\cap\{r>C\varepsilon\},\text{ and }u=0\text{ in }\widetilde{B_{\frac{7}{8}}}\cap\{r>C\varepsilon^{\frac{2}{5}}\}.

5.3. The trichotomy near 𝒜3\mathcal{A}_{3}

With all these preparations, we prove the trichotomy as stated in Lemma 5.1. Steps similar to those in the proofs of Lemma 3.4 and Lemma 4.8 are omitted.

Proof of Lemma 5.1.

For c0c_{0} and ρ0\rho_{0} to be chosen, depending on σ\sigma, suppose that the lemma fails, we find a sequence (un,pn,dn)(u_{n},p_{n},d_{n}) satisfying the assumptions from the lemma with dn0d_{n}\to 0 and εpn0\varepsilon_{p_{n}}\to 0, but none of the three possibilities happens, namely,

(5.30) W72(un;1)W72(un;ρ0)c02dn2 for all n,W_{\frac{7}{2}}(u_{n};1)-W_{\frac{7}{2}}(u_{n};\rho_{0})\leq c_{0}^{2}d_{n}^{2}\text{ for all }n,
(5.31) un𝒮(p,14dn,ρ0)u_{n}\not\in\mathcal{S}(p^{\prime},\frac{1}{4}d_{n},\rho_{0})

for any pp^{\prime} satisfying the properties as in alternative (2) from the lemma, and

(5.32) dnεpn5.d_{n}\geq\varepsilon_{p_{n}}^{5}.

A direct consequence of Lemma 5.5 is that

(5.33) κ2,pnCdnεpn=dno(1).\kappa_{2,p_{n}}\leq Cd_{n}\cdot\varepsilon_{p_{n}}=d_{n}o(1).

With the same reasoning as in Remark 5.5, it suffices to consider the case when

dnεpn3.d_{n}\leq\varepsilon^{3}_{p_{n}}.

We omit the subscript in the remaining of the proof.

Define u^=1d+κ1+κ2(up¯+Φ1+Φ2)\hat{u}=\frac{1}{d+\kappa_{1}+\kappa_{2}}(u-\overline{p}+\Phi_{1}+\Phi_{2}), with the parameters and auxiliary functions from Subsection 5.2. Similar to the proofs for Lemma 3.4 and Lemma 4.8, for each m=0,1,2,3m=0,1,2,3, we find an (m+12)(m+\frac{1}{2})-homogeneous harmonic function hm+12h_{m+\frac{1}{2}} such that

(5.34) u^(h12+h32+h52+h72)L1(B2ρ0)=Cρ0152+o(1).\|\hat{u}-(h_{\frac{1}{2}}+h_{\frac{3}{2}}+h_{\frac{5}{2}}+h_{\frac{7}{2}})\|_{L^{1}(B_{2\rho_{0}})}=C\rho_{0}^{\frac{15}{2}}+o(1).

We also have

[(u^)(1/2)u^](7h12+3h32+h52)L2(Bρ0)Cρ0112+o(1).\|[(\hat{u})_{(1/2)}-\hat{u}]-(7h_{\frac{1}{2}}+3h_{\frac{3}{2}}+h_{\frac{5}{2}})\|_{L^{2}(\partial B_{\rho_{0}})}\leq C\rho_{0}^{\frac{11}{2}}+o(1).

Recall that f(1/2)f_{(1/2)} denotes the rescaling of ff as in (2.5). With the definitions of u^\hat{u}, Φ1\Phi_{1} and (5.30), this implies

1d+κ1+κ2[cφ1(x|x|)|x|72+(Φ2)(1/2)Φ2](7h12+3h32+h52)L2(Bρ0)\displaystyle\|\frac{1}{d+\kappa_{1}+\kappa_{2}}[c\varphi_{1}(\frac{x}{|x|})|x|^{\frac{7}{2}}+(\Phi_{2})_{(1/2)}-\Phi_{2}]-(7h_{\frac{1}{2}}+3h_{\frac{3}{2}}+h_{\frac{5}{2}})\|_{L^{2}(\partial B_{\rho_{0}})}
Cρ092(c0+ρ0)+o(1).\displaystyle\leq C\rho_{0}^{\frac{9}{2}}(c_{0}+\rho_{0})+o(1).

Now with (5.33), we have Φ2L(B1)=do(1)\|\Phi_{2}\|_{L^{\infty}(B_{1})}=d\cdot o(1). The previous estimate leads to

cd+κ1+κ2φ1(x|x|)|x|72(7h12+3h32+h52)L2(Bρ0)Cρ092(c0+ρ0)+o(1).\|\frac{c}{d+\kappa_{1}+\kappa_{2}}\varphi_{1}(\frac{x}{|x|})|x|^{\frac{7}{2}}-(7h_{\frac{1}{2}}+3h_{\frac{3}{2}}+h_{\frac{5}{2}})\|_{L^{2}(\partial B_{\rho_{0}})}\leq C\rho_{0}^{\frac{9}{2}}(c_{0}+\rho_{0})+o(1).

From here, we apply orthogonality and Lemma 5.5 to conclude

(5.35) κ1Cd(c0+ρ0+o(1)).\kappa_{1}\leq Cd(c_{0}+\rho_{0}+o(1)).

Consequently,

Φ1L1(B2ρ0)Cd[(c0+ρ0)ρ0132|logρ0|+o(1)].\|\Phi_{1}\|_{L^{1}(B_{2\rho_{0}})}\leq Cd[(c_{0}+\rho_{0})\rho_{0}^{\frac{13}{2}}|\log\rho_{0}|+o(1)].

Putting this into (5.34), we have

up¯(d+κ1+κ2)h72L1(B2ρ0)Cd[(c0+ρ0)ρ0132|logρ0|+o(1)].\|u-\overline{p}-(d+\kappa_{1}+\kappa_{2})h_{\frac{7}{2}}\|_{L^{1}(B_{2\rho_{0}})}\leq Cd[(c_{0}+\rho_{0})\rho_{0}^{\frac{13}{2}}|\log\rho_{0}|+o(1)].

With Lemma 5.4 and Lemma 5.7, if we take p=p+(d+κ1+κ2)h72p^{\prime}=p+(d+\kappa_{1}+\kappa_{2})h_{\frac{7}{2}}, then

up¯L(Bρ0)Cd[(c0+ρ0)ρ072|logρ0|+o(1)].\|u-\overline{p}^{\prime}\|_{L^{\infty}(B_{\rho_{0}})}\leq Cd[(c_{0}+\rho_{0})\rho_{0}^{\frac{7}{2}}|\log\rho_{0}|+o(1)].

Note that we used (5.32) to absorb the O(ε6)O(\varepsilon^{6}) error from Lemma 5.4.

Choosing c0,ρ0c_{0},\rho_{0} universally small and nn large, we have

u𝒮(p,14d,ρ0).u\in\mathcal{S}(p^{\prime},\frac{1}{4}d,\rho_{0}).

With (5.35), we apply Corollary 5.1 with a=14σa=\frac{1}{4}\sigma to get

κ1,pκ1+14σd+Cσεd14σd+Cd(c0+ρ0+o(1)).\kappa_{1,p^{\prime}}\leq\kappa_{1}+\frac{1}{4}\sigma d+C_{\sigma}\varepsilon d\leq\frac{1}{4}\sigma d+Cd(c_{0}+\rho_{0}+o(1)).

Choosing now c0,ρ0c_{0},\rho_{0} small, depending on σ\sigma, we have κ1,p<12σd,\kappa_{1,p^{\prime}}<\frac{1}{2}\sigma d, which implies

κp<σd\kappa_{p^{\prime}}<\sigma d

for large nn by (5.33), contradicting (5.31). ∎

5.4. Almost symmetric solutions

Based on Lemma 5.5, the term f1dH1|ηf_{1}dH^{1}|_{\partial\mathcal{L}_{\eta}} from (5.15) has a significant projection into 72\mathcal{H}_{\frac{7}{2}}. When κ1ε5\kappa_{1}\geq\varepsilon^{5}, we can apply Lemma 5.5 to see that κ1κ2\kappa_{1}\gg\kappa_{2}. In this case, κ2\kappa_{2} is negligible, and the lower bound on the projection is what leads to possibilities (1) and (2) in Lemma 5.1.

When κ1ε5\kappa_{1}\ll\varepsilon^{5}, this argument no longer works. In this case, the extended profile pextp_{ext} from Definition 5.1 is ‘almost continuous’ long the big circle {x1=0}𝕊2\{x_{1}=0\}\cap\mathbb{S}^{2} since κ1|b1+b1|ε4+|b2+b2|ε5\kappa_{1}\sim|b_{1}^{+}-b_{1}^{-}|\varepsilon^{4}+|b_{2}^{+}-b_{2}^{-}|\varepsilon^{5} by Lemma 5.5. This leads to information about the profile by our analysis of the problem in 2\mathbb{R}^{2}.

Lemma 5.9.

For aj,εa_{j},\varepsilon satisfying (5.3), we set pextp_{ext} be as in Definition 5.1, bj±b_{j}^{\pm} as in Remark 5.4, and p¯\overline{p} as in Definition 5.2.

Given any γ>0\gamma>0, we can find two small constants, σγ\sigma_{\gamma} and εγ\varepsilon_{\gamma}, depending on γ\gamma, such that

if

ε<εγ and |b1+b1|+|b2+b2|ε<σγε,\varepsilon<\varepsilon_{\gamma}\text{ and }\hskip 5.0pt|b_{1}^{+}-b_{1}^{-}|+|b_{2}^{+}-b_{2}^{-}|\varepsilon<\sigma_{\gamma}\cdot\varepsilon,

then

(5.36) p¯Uτε(q¯)L(B1)γε5\|\overline{p}-\operatorname{U}_{\tau\varepsilon}(\bar{q})\|_{L^{\infty}(B_{1})}\leq\gamma\varepsilon^{5}

for

q=a0u72+a1εv52+a2ε2v32+a3ε3v12q=a_{0}^{\prime}u_{\frac{7}{2}}+a_{1}^{\prime}\varepsilon v_{\frac{5}{2}}+a_{2}^{\prime}\varepsilon^{2}v_{\frac{3}{2}}+a_{3}^{\prime}\varepsilon^{3}v_{\frac{1}{2}}

satisfying

|a0a0|<Cε2,|aj|C,|τ|C for a universal C,|a_{0}^{\prime}-a_{0}|<C\varepsilon^{2},\hskip 5.0pt|a_{j}^{\prime}|\leq C,\hskip 5.0pt|\tau|\leq C\text{ for a universal $C$},

and

(5.37) a2>γ,|a3|<γ, and (a1/a0)2<8524a2/a0+γ.a_{2}^{\prime}>-\gamma,\hskip 5.0pt|a_{3}^{\prime}|<\gamma,\text{ and }(a_{1}^{\prime}/a_{0}^{\prime})^{2}<\frac{85}{24}\cdot a_{2}^{\prime}/a_{0}^{\prime}+\gamma.

Recall the rotation operator U\operatorname{U} from (2).

Compare with Remark 5.3, we see from (5.37) that qq ‘almost solves’ the thin obstacle problem up to an error of size γ\gamma.

Proof.

Let δ>0\delta>0 be a small constant to be chosen, depending on γ.\gamma.

With Lemma 5.3, we have

|b1+a0b12[a1a0,a2a0,a3a0]|<ω(ε), and |b1a0b12[a1a0,a2a0,a3a0]|<ω(ε).|b_{1}^{+}-a_{0}\cdot b_{1}^{\mathbb{R}^{2}}[\frac{a_{1}}{a_{0}},\frac{a_{2}}{a_{0}},\frac{a_{3}}{a_{0}}]|<\omega(\varepsilon),\text{ and }|b_{1}^{-}-a_{0}\cdot b_{1}^{\mathbb{R}^{2}}[-\frac{a_{1}}{a_{0}},\frac{a_{2}}{a_{0}},-\frac{a_{3}}{a_{0}}]|<\omega(\varepsilon).

With our assumption on |b1+b1||b_{1}^{+}-b_{1}^{-}| and a0[12,2]a_{0}\in[\frac{1}{2},2], this implies

|b12[a1a0,a2a0,a3a0]b12[a1a0,a2a0,a3a0]|<4(ω(ε)+σ).|b_{1}^{\mathbb{R}^{2}}[\frac{a_{1}}{a_{0}},\frac{a_{2}}{a_{0}},\frac{a_{3}}{a_{0}}]-b_{1}^{\mathbb{R}^{2}}[-\frac{a_{1}}{a_{0}},\frac{a_{2}}{a_{0}},-\frac{a_{3}}{a_{0}}]|<4(\omega(\varepsilon)+\sigma).

Similarly, we have

|b22[a1a0,a2a0,a3a0]+b22[a1a0,a2a0,a3a0]|<4(ω(ε)+σ).|b_{2}^{\mathbb{R}^{2}}[\frac{a_{1}}{a_{0}},\frac{a_{2}}{a_{0}},\frac{a_{3}}{a_{0}}]+b_{2}^{\mathbb{R}^{2}}[-\frac{a_{1}}{a_{0}},\frac{a_{2}}{a_{0}},-\frac{a_{3}}{a_{0}}]|<4(\omega(\varepsilon)+\sigma).

The change of sign in front of b22b_{2}^{\mathbb{R}^{2}} is due to the odd symmetry of v32v_{-\frac{3}{2}} with respect to {x1=0}.\{x_{1}=0\}.

We perform a change of basis (see (2.16) and (2.19))

pext\displaystyle p_{ext} =a0u72++b1±ε4χ{±x1>0}v12+b2±ε5χ{±x1>0}v32\displaystyle=a_{0}u_{\frac{7}{2}}+\dots+b_{1}^{\pm}\varepsilon^{4}\chi_{\{\pm x_{1}>0\}}v_{-\frac{1}{2}}+b_{2}^{\pm}\varepsilon^{5}\chi_{\{\pm x_{1}>0\}}v_{-\frac{3}{2}}
=a~0u72+a~1εw52+a~2ε2w32+a~3ε3w12+b~1±ε4χ{±x1>0}w12+b~2±ε5χ{±x1>0}w32.\displaystyle=\tilde{a}_{0}u_{\frac{7}{2}}+\tilde{a}_{1}\varepsilon w_{\frac{5}{2}}+\tilde{a}_{2}\varepsilon^{2}w_{\frac{3}{2}}+\tilde{a}_{3}\varepsilon^{3}w_{\frac{1}{2}}+\tilde{b}_{1}^{\pm}\varepsilon^{4}\chi_{\{\pm x_{1}>0\}}w_{-\frac{1}{2}}+\tilde{b}_{2}^{\pm}\varepsilon^{5}\chi_{\{\pm x_{1}>0\}}w_{-\frac{3}{2}}.

With Corollary B.2, if ε\varepsilon and σ\sigma are small, depending on δ\delta, then we find universally bounded τ\tau, αj\alpha_{j} and βj\beta_{j} satisfying

(5.38) |α0a~0|Cε2,α2δ,|α3|<δ, and α12125α2+δ,|\alpha_{0}-\tilde{a}_{0}|\leq C\varepsilon^{2},\hskip 5.0pt\alpha_{2}\geq-\delta,\hskip 5.0pt|\alpha_{3}|<\delta,\text{ and }\alpha_{1}^{2}\leq\frac{12}{5}\alpha_{2}+\delta,

and

(5.39) |pextUτε(f)|Cρ0δε5 in {r>ρ0}{x1>C|τ|ε},|p_{ext}-\operatorname{U}_{-\tau\varepsilon}(f)|\leq C_{\rho_{0}}\delta\varepsilon^{5}\text{ in }\{r>\rho_{0}\}\cap\{x_{1}>C|\tau|\varepsilon\},

where ρ0>0\rho_{0}>0 is a small parameter to be chosen, and

f=α0u72+α1εw52+α2ε2w32+α3ε3w12+β1ε4w12+β2ε5w32.f=\alpha_{0}u_{\frac{7}{2}}+\alpha_{1}\varepsilon w_{\frac{5}{2}}+\alpha_{2}\varepsilon^{2}w_{\frac{3}{2}}+\alpha_{3}\varepsilon^{3}w_{\frac{1}{2}}+\beta_{1}\varepsilon^{4}w_{-\frac{1}{2}}+\beta_{2}\varepsilon^{5}w_{-\frac{3}{2}}.

If we take q=α0u72+α1εw52+α2ε2w32+α3ε3w12q=\alpha_{0}u_{\frac{7}{2}}+\alpha_{1}\varepsilon w_{\frac{5}{2}}+\alpha_{2}\varepsilon^{2}w_{\frac{3}{2}}+\alpha_{3}\varepsilon^{3}w_{\frac{1}{2}}, and suppose

qext=q+γ1ε4w12+γ2ε5w32,q_{ext}=q+\gamma_{1}\varepsilon^{4}w_{-\frac{1}{2}}+\gamma_{2}\varepsilon^{5}w_{-\frac{3}{2}},

then p¯\overline{p} and Uτε(q¯)\operatorname{U}_{-\tau\varepsilon}(\bar{q}) both solve (5.5) in 𝒞ηC|τ|ε+\mathcal{C}^{+}_{\eta-C|\tau|\varepsilon}. With (5.39) and

p¯Uτε(q¯)=(p¯pext)+(pextUτε(f))+(Uτε(fqext))+(Uτε(qextq¯)),\overline{p}-\operatorname{U}_{-\tau\varepsilon}(\bar{q})=(\overline{p}-p_{ext})+(p_{ext}-\operatorname{U}_{-\tau\varepsilon}(f))+(\operatorname{U}_{-\tau\varepsilon}(f-q_{ext}))+(\operatorname{U}_{-\tau\varepsilon}(q_{ext}-\bar{q})),

we can apply the same argument as in Step 1 from the proof for Lemma 5.4 to conclude

|γ1β1|ε4+|γ2β2|ε5Cρ0δε5|\gamma_{1}-\beta_{1}|\varepsilon^{4}+|\gamma_{2}-\beta_{2}|\varepsilon^{5}\leq C_{\rho_{0}}\delta\varepsilon^{5}

if ρ0\rho_{0} is fixed small enough.

With (5.39), this implies

|pextUτε(qext)|Cρ0δε5 in {r>ρ0}{x1>C|τ|ε}.|p_{ext}-\operatorname{U}_{-\tau\varepsilon}(q_{ext})|\leq C_{\rho_{0}}\delta\varepsilon^{5}\text{ in }\{r>\rho_{0}\}\cap\{x_{1}>C|\tau|\varepsilon\}.

An application of the maximum principle leads to

|p¯Uτε(q¯)|Cρ0δε5 in {x1>C|τ|ε}.|\overline{p}-\operatorname{U}_{-\tau\varepsilon}(\bar{q})|\leq C_{\rho_{0}}\delta\varepsilon^{5}\text{ in }\{x_{1}>C|\tau|\varepsilon\}.

A similar argument gives |p¯Uτε(q¯)|Cρ0δε5 in {x1<C|τ|ε}.|\overline{p}-\operatorname{U}_{-\tau\varepsilon}(\bar{q})|\leq C_{\rho_{0}}\delta\varepsilon^{5}\text{ in }\{x_{1}<-C|\tau|\varepsilon\}. Together with the estimate in {x1>C|τ|ε}\{x_{1}>C|\tau|\varepsilon\}, we can apply the maximum principle in η\mathcal{L}_{\eta} to get

|p¯Uτε(q¯)|<Cρ0δε5 in 𝕊2.|\overline{p}-\operatorname{U}_{-\tau\varepsilon}(\bar{q})|<C_{\rho_{0}}\delta\varepsilon^{5}\text{ in }\mathbb{S}^{2}.

Choosing δ\delta small, depending on γ\gamma, we have (5.36). The constraint (5.37) follows from (5.38). ∎

Remark 5.6.

For q=a0u72+a1εv52+a2ε2v32+a3ε3v12q=a_{0}^{\prime}u_{\frac{7}{2}}+a_{1}^{\prime}\varepsilon v_{\frac{5}{2}}+a_{2}^{\prime}\varepsilon^{2}v_{\frac{3}{2}}+a_{3}^{\prime}\varepsilon^{3}v_{\frac{1}{2}} as in the statement of Lemma 5.9, if we assume

a2124,a_{2}^{\prime}\geq\frac{1}{24},

then we can use the same argument as in Step 3 of the proof for Lemma 3.4 to find τ\tau and a^j\hat{a}_{j} with |τ|=O(γ), and |a^jaj|=O(γ)|\tau|=O(\gamma),\text{ and }|\hat{a}_{j}-a_{j}^{\prime}|=O(\gamma) such that

q^=a0u72+a^1εv52+a^2ε2v32\hat{q}=a_{0}^{\prime}u_{\frac{7}{2}}+\hat{a}_{1}\varepsilon v_{\frac{5}{2}}+\hat{a}_{2}\varepsilon^{2}v_{\frac{3}{2}}

satisfies

q^|{x3=0}0,Δq^|{x3=0}0,\hat{q}|_{\{x_{3}=0\}}\geq 0,\hskip 5.0pt\Delta\hat{q}|_{\{x_{3}=0\}}\leq 0,

and

|qUτε(q^)|Cγε3 in {r>η/2}B1.|q-\operatorname{U}_{\tau\varepsilon}(\hat{q})|\leq C\gamma\varepsilon^{3}\text{ in }\{r>\eta/2\}\cap B_{1}.

Moreover, if γ\gamma and ε\varepsilon are universally small, then we have a^2124O(γ)0,\hat{a}_{2}\geq\frac{1}{24}-O(\gamma)\geq 0, and

(a^1a0)24a^2a0(115a^2ε2a0)\displaystyle(\frac{\hat{a}_{1}}{a_{0}^{\prime}})^{2}-4\frac{\hat{a}_{2}}{a_{0}^{\prime}}(1-\frac{1}{5}\frac{\hat{a}_{2}\varepsilon^{2}}{a_{0}^{\prime}}) (a1a0)24a2a0+O(γ+ε)\displaystyle\leq(\frac{a^{\prime}_{1}}{a_{0}^{\prime}})^{2}-4\frac{a^{\prime}_{2}}{a_{0}^{\prime}}+O(\gamma+\varepsilon)
1124a2a0+O(γ+ε)\displaystyle\leq\frac{-11}{24}\frac{a^{\prime}_{2}}{a_{0}^{\prime}}+O(\gamma+\varepsilon)
(124)2.\displaystyle\leq-(\frac{1}{24})^{2}.

Note that we used a2124a_{2}^{\prime}\geq\frac{1}{24} together with (5.37).

Consequently, if a^10\hat{a}_{1}\geq 0, then small perturbations from q^\hat{q} solve the thin obstacle problem outside a cone of O(ε)O(\varepsilon)-opening near {r=0,x1>0}\{r=0,x_{1}>0\} (See Remark 5.3).

5.5. One-sided replacement

For profile of the form q^\hat{q} as in Remark 5.6, that is,

p=a0u72+a1εv52+a2ε2v32p=a_{0}u_{\frac{7}{2}}+a_{1}\varepsilon v_{\frac{5}{2}}+a_{2}\varepsilon^{2}v_{\frac{3}{2}}

with

(5.40) a0[12,2],a10,a2124, and (a1a0)24a2a0(115a2ε2a0)(124)2,a_{0}\in[\frac{1}{2},2],\hskip 5.0pta_{1}\geq 0,\hskip 5.0pta_{2}\geq\frac{1}{24},\text{ and }(\frac{a_{1}}{a_{0}})^{2}-4\frac{a_{2}}{a_{0}}(1-\frac{1}{5}\frac{a_{2}\varepsilon^{2}}{a_{0}})\leq-(\frac{1}{24})^{2},

we only need to replace it in a small spherical cap near {r=0,x1>0}.\{r=0,x_{1}>0\}.

To this end, we solve in 𝒞η+\mathcal{C}_{\eta}^{+} from (5.2) the following

(5.41) {(Δ𝕊2+λ72)vp0 in 𝒞η+,vp0 in 𝒞η+{x3=0},(Δ𝕊2+λ72)vp=0 in 𝒞η+({vp>0}{x30}),vp=p along 𝒞η+.\begin{cases}(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})v_{p}\leq 0&\text{ in }\mathcal{C}_{\eta}^{+},\\ v_{p}\geq 0&\text{ in }\mathcal{C}_{\eta}^{+}\cap\{x_{3}=0\},\\ (\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})v_{p}=0&\text{ in }\mathcal{C}_{\eta}^{+}\cap(\{v_{p}>0\}\cup\{x_{3}\neq 0\}),\\ v_{p}=p&\text{ along }\partial\mathcal{C}_{\eta}^{+}.\end{cases}

With this, we define the replacement of pp as:

Definition 5.4.

For pp satisfying (5.40), its replacement, p~\tilde{p}, is defined as

p~={vp in 𝒞η+,p in 𝕊2\𝒞η+.\tilde{p}=\begin{cases}v_{p}&\text{ in }\mathcal{C}_{\eta}^{+},\\ p&\text{ in }\mathbb{S}^{2}\backslash\mathcal{C}_{\eta}^{+}.\end{cases}

Equivalently, the replacement p~\tilde{p} is the minimizer of the energy

v𝕊2|𝕊2v|2λ72v2v\mapsto\int_{\mathbb{S}^{2}}|\nabla_{\mathbb{S}^{2}}v|^{2}-\lambda_{\frac{7}{2}}v^{2}

over {v:v=p outside 𝒞η+, and v0 on {x3=0}}.\{v:v=p\text{ outside }\mathcal{C}_{\eta}^{+},\text{ and }v\geq 0\text{ on }\{x_{3}=0\}\}.

This replacement satisfies

(5.42) {(Δ𝕊2+λ72)p~=fpdH1|𝒞η++gpdH1|𝒞η+{x3=0} in 𝕊2^𝒞η+,p~=0 in 𝕊2~\𝒞η+.\begin{cases}(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})\tilde{p}=f_{p}dH^{1}|_{\partial\mathcal{C}_{\eta}^{+}}+g_{p}dH^{1}|_{\mathcal{C}_{\eta}^{+}\cap\{x_{3}=0\}}&\text{ in }\widehat{\mathbb{S}^{2}}\cup\mathcal{C}_{\eta}^{+},\\ \tilde{p}=0&\text{ in }\widetilde{\mathbb{S}^{2}}\backslash\mathcal{C}_{\eta}^{+}.\end{cases}

Similar to Subsection 4.1, we define some auxiliary functions.

The projection of fpf_{p} into 72\mathcal{H}_{\frac{7}{2}} (see (2.12)) is denoted by φp\varphi_{p}.

The function Hp:𝕊2H_{p}:\mathbb{S}^{2}\to\mathbb{R} is the unique solution to

{(Δ𝕊2+λ72)Hp=fpdH1|𝒞η+φp on 𝕊2^,Hp=0 on 𝕊2~.\begin{cases}(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})H_{p}=f_{p}dH^{1}|_{\partial\mathcal{C}_{\eta}^{+}}-\varphi_{p}&\text{ on $\widehat{\mathbb{S}^{2}},$}\\ H_{p}=0&\text{ on $\widetilde{\mathbb{S}^{2}}$.}\end{cases}

Corresponding to these, we define

Φp:=H1,p(x|x|)|x|72+18φ1,p(x|x|)|x|72log(|x|),\Phi_{p}:=H_{1,p}(\frac{x}{|x|})|x|^{\frac{7}{2}}+\frac{1}{8}\varphi_{1,p}(\frac{x}{|x|})|x|^{\frac{7}{2}}\log(|x|),

which satisfies

{ΔΦp=fpdH2|𝒞η+ in 3^,Φp=0 on 3~.\begin{cases}\Delta\Phi_{p}=f_{p}dH^{2}|_{\partial\mathcal{C}_{\eta}^{+}}&\text{ in $\widehat{\mathbb{R}^{3}}$,}\\ \Phi_{p}=0&\text{ on $\widetilde{\mathbb{R}^{3}}.$}\end{cases}

Finally, let’s denote

κp:=ΦpL(B1).\kappa_{p}:=\|\Phi_{p}\|_{L^{\infty}(B_{1})}.

With similar argument as in Subsection 4.1, we have the following properties:

Lemma 5.10.

For pp satisfying (5.40), we have

p~=0 in (𝒞η+\𝒞Cε+),\tilde{p}=0\text{ in }(\mathcal{C}_{\eta}^{+}\backslash\mathcal{C}_{C\varepsilon}^{+})^{\prime},

where CC is a universal constant.

Lemma 5.11.

Suppose that pp satisfies (5.40), and take q=α0u72+α1v52+α2v32+α3v12q=\alpha_{0}u_{\frac{7}{2}}+\alpha_{1}v_{\frac{5}{2}}+\alpha_{2}v_{\frac{3}{2}}+\alpha_{3}v_{\frac{1}{2}} with |αj|1|\alpha_{j}|\leq 1.

Then we can find a modulus of continuity, ω()\omega(\cdot), such that

p+dq~(p~+dq)L(𝕊2)ω(ε+d)d.\|\widetilde{p+dq}-(\tilde{p}+dq)\|_{L^{\infty}(\mathbb{S}^{2})}\leq\omega(\varepsilon+d)\cdot d.
Corollary 5.2.

Under the same assumption as in Lemma 5.11, we have

κp+dqκp+ω(ε+d)d.\kappa_{p+dq}\leq\kappa_{p}+\omega(\varepsilon+d)\cdot d.

By directly computing the inner product of ff and v12v_{\frac{1}{2}}, we have

Lemma 5.12.

Suppose that pp satisfies (5.40). Then

φL(𝕊2)cκ\|\varphi\|_{L^{\infty}(\mathbb{S}^{2})}\geq c\kappa

for a universal c>0c>0.

Note that p0p\geq 0 in 𝒞η+{x3=0}\mathcal{C}_{\eta}^{+}\cap\{x_{3}=0\}, thus pp is admissible in the minimization problem in Definition 5.4, we have

Lemma 5.13.

Suppose that pp satisfies (5.40), then W72(p~;1)0.W_{\frac{7}{2}}(\tilde{p};1)\leq 0.

This implies

Lemma 5.14.

Suppose that pp satisfies (5.40). Let uu be a solution to (1.1) in B1B_{1}, then

up~L(B1/2)+up~H1(B1/2)C(up~L1(B1)+κ)\|u-\tilde{p}\|_{L^{\infty}(B_{1/2})}+\|u-\tilde{p}\|_{H^{1}(B_{1/2})}\leq C(\|u-\tilde{p}\|_{L^{1}(B_{1})}+\kappa)

and

W72(u;12)C(up~L1(B1)2+κ2).W_{\frac{7}{2}}(u;\frac{1}{2})\leq C(\|u-\tilde{p}\|^{2}_{L^{1}(B_{1})}+\kappa^{2}).

Similar to Subsection 4.2, we have

Definition 5.5.

Suppose that the coefficients of pp satisfy (5.40).

For d,ρ(0,1]d,\rho\in(0,1], we say that uu is a solution dd-approximated by pp at scale ρ\rho if uu solves the thin obstacle problem (1.1) in BρB_{\rho}, and

|up~|dρ72 in Bρ.|u-\tilde{p}|\leq d\rho^{\frac{7}{2}}\text{ in $B_{\rho}$.}

In this case, we write

u𝒮(p,d,ρ).u\in\mathcal{S}(p,d,\rho).

We can localize the contact set of well-approximated solutions

Lemma 5.15.

Suppose that u𝒮(p,d,1)u\in\mathcal{S}(p,d,1) with dd small, and that pp satisfies (5.40).

We have

Δu=0 in B1^{r>Cd27},\Delta u=0\text{ in }\widehat{B_{1}}\cap\{r>Cd^{\frac{2}{7}}\},

and

u=0 in B78~{r>C(d+ε)α}u=0\text{ in }\widetilde{B_{\frac{7}{8}}}\cap\{r>C(d+\varepsilon)^{\alpha}\}

for universal small α>0\alpha>0 and big C>0C>0.

With these preparations, we have the following dichotomy similar to the one in Subsection 4.3.

Lemma 5.16.

Suppose that

u𝒮(p,d,1)u\in\mathcal{S}(p,d,1)

for some p=a0u72+a1εv52+a2ε2v32p=a_{0}u_{\frac{7}{2}}+a_{1}\varepsilon v_{\frac{5}{2}}+a_{2}\varepsilon^{2}v_{\frac{3}{2}} satisfying (5.40).

There is a universal small constant ε~>0\tilde{\varepsilon}>0, such that if ε<ε~\varepsilon<\tilde{\varepsilon} and dε3d\leq\varepsilon^{3}, then we have the following dichotomy:

  1. (1)

    either

    W72(u;1)W72(u;ρ0)c02d2W_{\frac{7}{2}}(u;1)-W_{\frac{7}{2}}(u;\rho_{0})\geq c_{0}^{2}d^{2}

    and

    u𝒮(p,Cd,ρ0);u\in\mathcal{S}(p,Cd,\rho_{0});
  2. (2)

    or

    u𝒮(p,12d,ρ0)u\in\mathcal{S}(p^{\prime},\frac{1}{2}d,\rho_{0})

    for some

    p=Uτε[a0u72+a1εv52+a2ε2v32]p^{\prime}=\operatorname{U}_{\tau\varepsilon}[a_{0}^{\prime}u_{\frac{7}{2}}+a_{1}^{\prime}\varepsilon v_{\frac{5}{2}}+a_{2}^{\prime}\varepsilon^{2}v_{\frac{3}{2}}]

    with κp<d,\kappa_{p^{\prime}}<d, and

    |a0a0|Cd,|τ|+|a1a1|+|a2a2|Cd/ε3.|a_{0}^{\prime}-a_{0}|\leq Cd,\hskip 5.0pt|\tau|+|a_{1}^{\prime}-a_{1}|+|a_{2}^{\prime}-a_{2}|\leq Cd/\varepsilon^{3}.

The constants c0c_{0}, ρ0\rho_{0} and CC are universal.

Proof.

For c0c_{0} and ρ0\rho_{0} to be chosen, suppose the lemma is false, we find a sequence (un,pn,dn,εn)(u_{n},p_{n},d_{n},\varepsilon_{n}) satisfying the hypothesis of the lemma with dn,εn0d_{n},\varepsilon_{n}\to 0, but neither of the two alternatives happens.

This allows us to find

q=p+d(α0u72+α1w52+α2w32+α3w12)q=p+d(\alpha_{0}u_{\frac{7}{2}}+\alpha_{1}w_{\frac{5}{2}}+\alpha_{2}w_{\frac{3}{2}}+\alpha_{3}w_{\frac{1}{2}})

such that

(5.43) uq~L1(B2ρ0)Cdρ0132[(c0+ρ0)|logρ0|+o(1)].\|u-\tilde{q}\|_{L^{1}(B_{2\rho_{0}})}\leq Cd\rho_{0}^{\frac{13}{2}}[(c_{0}+\rho_{0})|\log\rho_{0}|+o(1)].

With a2124a_{2}\geq\frac{1}{24} as in (5.40), there are τ\tau and aja_{j}^{\prime} satisfying

a0=a0+dα0,|τ|Cd/ε3, and |ajaj|Cd/ε3 for j=1,2a_{0}^{\prime}=a_{0}+d\alpha_{0},\hskip 5.0pt|\tau|\leq Cd/\varepsilon^{3},\text{ and }|a_{j}^{\prime}-a_{j}|\leq Cd/\varepsilon^{3}\text{ for $j=1,2$}

such that

qUτε(a0u72+a1εv52+a2ε2v32)L(𝕊2\𝒞η/2±)Cτ2ε4Cεd.\|q-\operatorname{U}_{-\tau\varepsilon}(a_{0}^{\prime}u_{\frac{7}{2}}+a_{1}^{\prime}\varepsilon v_{\frac{5}{2}}+a_{2}^{\prime}\varepsilon^{2}v_{\frac{3}{2}})\|_{L^{\infty}(\mathbb{S}^{2}\backslash\mathcal{C}^{\pm}_{\eta/2})}\leq C\tau^{2}\varepsilon^{4}\leq C\varepsilon d.

Note that we used our assumption that dε3d\leq\varepsilon^{3} for the last comparison. If we denote by p=a0u72+a1εv52+a2ε2v32p^{\prime}=a_{0}^{\prime}u_{\frac{7}{2}}+a_{1}^{\prime}\varepsilon v_{\frac{5}{2}}+a_{2}^{\prime}\varepsilon^{2}v_{\frac{3}{2}}, then the maximum principle gives q~p~L(𝕊2)Cεd.\|\tilde{q}-\tilde{p}^{\prime}\|_{L^{\infty}(\mathbb{S}^{2})}\leq C\varepsilon d. Together with (5.43), we get

up~L1(B2ρ0)Cdρ0132[(c0+ρ0)|logρ0|+o(1)].\|u-\tilde{p}^{\prime}\|_{L^{1}(B_{2\rho_{0}})}\leq Cd\rho_{0}^{\frac{13}{2}}[(c_{0}+\rho_{0})|\log\rho_{0}|+o(1)].

From here the remaining of the argument is similar to the proof of Lemma 4.8. ∎

6. Proof of main results

In this section, we prove our main results, Theorem 1.1, Theorem 1.2 and Theorem 1.3.

We begin with some preparatory propositions.

Proposition 6.1.

For a solution uu to the thin obstacle problem (1.1) in B13B_{1}\subset\mathbb{R}^{3}, suppose that its frequency at 0 is 72\frac{7}{2}, and that

|uu72|d in B1.|u-u_{\frac{7}{2}}|\leq d\text{ in }B_{1}.

There is a small universal d~>0\tilde{d}>0, such that if d<d~,d<\tilde{d}, then up to a normalization

  1. (1)

    either

    |uu72|O(|x|72|log|x||c0),|u-u_{\frac{7}{2}}|\leq O(|x|^{\frac{7}{2}}|\log|x||^{-c_{0}}),
  2. (2)

    or

    |up|O(|x|72+c0)|u-p|\leq O(|x|^{\frac{7}{2}+c_{0}})

    for some p1\{u72}p\in\mathcal{F}_{1}\backslash\{u_{\frac{7}{2}}\}.

Here c0>0c_{0}>0 is universal.

Recall the notion of normalization from Remark 1.1. The family of normalized solutions, 1\mathcal{F}_{1}, is given in (1.7).

Proof.

The proof is based on iterations of the trichotomy in Lemma 5.1 and the dichotomy in Lemma 5.16.

To begin with, let γ\gamma denote a small universal constant to be chosen, and let σγ\sigma_{\gamma} denote the constant from Lemma 5.9 corresponding to this γ\gamma. Choose σ\sigma such that σ/σγ1\sigma/\sigma_{\gamma}\ll 1. This choice of σ\sigma fixes δ~\tilde{\delta}, c0c_{0} and ρ0\rho_{0} as in the statement of Lemma 5.1.

Step 1: Initiation.

For uu satisfying the conditions in the proposition, let

u0:=u(1/2),p0:=u72,d0:=d, and w0=W72(u0;1).u_{0}:=u_{(1/2)},\hskip 5.0ptp_{0}:=u_{\frac{7}{2}},\hskip 5.0ptd_{0}:=d,\text{ and }w_{0}=W_{\frac{7}{2}}(u_{0};1).

Recall the notation for rescaling from (2.5), and the Weiss energy functional from (2.6).

Let εp\varepsilon_{p} be as in (5.1), then εp0=0.\varepsilon_{p_{0}}=0. According to definitions in Subsection 5.2, we have

κp0=0,\kappa_{p_{0}}=0,

and

u0𝒮(p0,d0,1).u_{0}\in\mathcal{S}(p_{0},d_{0},1).

Consequently, if d~\tilde{d} is small, then d0<δ~d_{0}<\tilde{\delta} and εp0<δ~\varepsilon_{p_{0}}<\tilde{\delta} as in Lemma 5.1. Moreover, by Lemma 5.7, we have

(6.1) w0Cd02.w_{0}\leq Cd_{0}^{2}.

Step 2: Induction.

Suppose for k=0,,n1k=0,\dots,n-1, we have found (uk,pk,dk)(u_{k},p_{k},d_{k}) such that uk𝒮(pk,dk,1)u_{k}\in\mathcal{S}(p_{k},d_{k},1), εpk<δ~\varepsilon_{p_{k}}<\tilde{\delta} and dk<δ~d_{k}<\tilde{\delta}. We can apply the trichotomy in Lemma 5.1 to un1u_{n-1}.

If possibility (1) happens, we let

pn:=pn1, and dn=Cdn1.p_{n}:=p_{n-1},\text{ and }d_{n}=Cd_{n-1}.

If possibility (2) happens, we let

pn:=p, and dn=12dn1.p_{n}:=p^{\prime},\text{ and }d_{n}=\frac{1}{2}d_{n-1}.

In both cases, we let

un:=(un1)(ρ0), and wn:=W72(un;1).u_{n}:=(u_{n-1})_{(\rho_{0})},\text{ and }w_{n}:=W_{\frac{7}{2}}(u_{n};1).

We claim that until possibility (3) happens, Lemma 5.1 remains applicable. To be precise, we have

(6.2)  Claim: Until dnεpn5, we have κpkdk,wkCdk6/5, and dk<δ~ for all kn.\text{ Claim: Until $d_{n}\leq\varepsilon_{p_{n}}^{5}$, we have }\kappa_{p_{k}}\leq d_{k},\hskip 5.0ptw_{k}\leq Cd_{k}^{6/5},\text{ and }d_{k}<\tilde{\delta}\text{ for all $k\leq n$.}

To see this claim, we first notice that all three comparisons are true when k=0k=0. It suffices to show that they stay true in the iteration.

Note that each time possibility (1) happens, κpk=κpk1\kappa_{p_{k}}=\kappa_{p_{k-1}} and dk>dk1d_{k}>d_{k-1}. Each time possibility (2) happens, we have κpkσdk1=2σdk.\kappa_{p_{k}}\leq\sigma d_{k-1}=2\sigma d_{k}. We see that if σ<12\sigma<\frac{1}{2}, then the comparison between κpk\kappa_{p_{k}} and dkd_{k} stays true.

With this, we can apply Lemma 5.7 to see that

wkC(dk12+κpk12+εpk16)C(dk12+εpk16).w_{k}\leq C(d_{k-1}^{2}+\kappa_{p_{k-1}}^{2}+\varepsilon_{p_{k-1}}^{6})\leq C(d_{k-1}^{2}+\varepsilon_{p_{k-1}}^{6}).

With dk1εpk15d_{k-1}\geq\varepsilon_{p_{k-1}}^{5}, we have

wkCdk16/5Cdk6/5.w_{k}\leq Cd_{k-1}^{6/5}\leq Cd_{k}^{6/5}.

It remains to see the comparison between dkd_{k} and δ~\tilde{\delta}. Note that dkd_{k} decreases if possibility (2) happens, thus we only need to prove the comparison when possibility (1) happens. In this case, using Lemma 2.1 and our assumption that 0 is a point with frequency 72\frac{7}{2}, we have

w0wk1wkc02dk12.w_{0}\geq w_{k-1}-w_{k}\geq c_{0}^{2}d_{k-1}^{2}.

With (6.1), this implies

dk=Cdk1Cd0Cd~.d_{k}=Cd_{k-1}\leq Cd_{0}\leq C\tilde{d}.

Consequently, dkd_{k} stays below δ~\tilde{\delta} if d~\tilde{d} is chosen small.

In summary, the claim (6.2) holds.

From here we see that until dnεpn5d_{n}\leq\varepsilon_{p_{n}}^{5}, the double sequence (wk,dk)(w_{k},d_{k}) satisfies the conditions in Lemma 2.2 with γ=15\gamma=\frac{1}{5}. In particular, if d~\tilde{d} is chosen small, then dk\sum d_{k} is small.

Recall that the deviation in the coefficients of pkp_{k} is comparable to dk\sum d_{k}, and that p0=u72p_{0}=u_{\frac{7}{2}}. If we denote

pk=a0ku72+a1kv52+a2kv32+a3kv12,p_{k}=a_{0}^{k}u_{\frac{7}{2}}+a_{1}^{k}v_{\frac{5}{2}}+a_{2}^{k}v_{\frac{3}{2}}+a_{3}^{k}v_{\frac{1}{2}},

then a0ka_{0}^{k} stays in [12,2][\frac{1}{2},2]. By choosing d~\tilde{d} smaller if necessary, we ensure that εpk\varepsilon_{p_{k}}, as defined in (5.1), stays below δ~\tilde{\delta}.

Therefore, until dnεpn5d_{n}\leq\varepsilon_{p_{n}}^{5}, the conditions in Lemma 5.1 are satisfied, and we can iterate this lemma to continue the sequence (un,pn,dn)(u_{n},p_{n},d_{n}).

In particular, if dnd_{n} stays above εpn5\varepsilon_{p_{n}}^{5} indefinitely, we can apply the same argument in Section 5 of [SY2] to conclude

|uu72|O(|x|72|log|x||c0)|u-u_{\frac{7}{2}}|\leq O(|x|^{\frac{7}{2}}|\log|x||^{-c_{0}})

up to a normalization.

We now analyze the case when dnd_{n} drops below εpn5.\varepsilon_{p_{n}}^{5}.

Step 3: Adjustment when dnεpn5d_{n}\leq\varepsilon_{p_{n}}^{5}.

Suppose this happens for the first time at step nn in the iteration, then possibility (2) from Lemma 5.1 happens at this step. In particular, we have

dn=12dn1,κpnσdn12σdn,d_{n}=\frac{1}{2}d_{n-1},\hskip 5.0pt\kappa_{p_{n}}\leq\sigma d_{n-1}\leq 2\sigma d_{n},

and

unp¯nL(B1)14dn1.\|u_{n}-\overline{p}_{n}\|_{L^{\infty}(B_{1})}\leq\frac{1}{4}d_{n-1}.

As a result, we have

εpn15dn12εpn5.\varepsilon_{p_{n-1}}^{5}\leq d_{n-1}\leq 2\varepsilon_{p_{n}}^{5}.

Also note that in this case, the coefficients of pnp_{n} deviates from those of pn1p_{n-1} by O(dn1)O(d_{n-1}), the definition of εp\varepsilon_{p} in (5.1) gives

(6.3) εpn5εpn15+Cdn17/5dn1(1+Cdn12/5)2dn1\varepsilon_{p_{n}}^{5}\leq\varepsilon_{p_{n-1}}^{5}+Cd_{n-1}^{7/5}\leq d_{n-1}(1+Cd_{n-1}^{2/5})\leq 2d_{n-1}

if d~\tilde{d} is small.

If we denote by

pn,ext=pn+b1±,nεpn4χ{±x1>0}v12+b2±,nεpn5χ{±x1>0}v32,p_{n,ext}=p_{n}+b_{1}^{\pm,n}\varepsilon_{p_{n}}^{4}\chi_{\{\pm x_{1}>0\}}v_{-\frac{1}{2}}+b_{2}^{\pm,n}\varepsilon_{p_{n}}^{5}\chi_{\{\pm x_{1}>0\}}v_{-\frac{3}{2}},

where the coefficients bj±b_{j}^{\pm} are from Remark 5.4, then Lemma 5.5 gives

|b1+,nb1,n|εpn4+|b2+,nb2,n|εpn5CκpnCσdn1Cσεpn5<σγεpn5|b_{1}^{+,n}-b_{1}^{-,n}|\varepsilon_{p_{n}}^{4}+|b_{2}^{+,n}-b_{2}^{-,n}|\varepsilon_{p_{n}}^{5}\leq C\kappa_{p_{n}}\leq C\sigma d_{n-1}\leq C\sigma\varepsilon_{p_{n}}^{5}<\sigma_{\gamma}\varepsilon^{5}_{p_{n}}

by our choice of σ/σγ1\sigma/\sigma_{\gamma}\ll 1 before Step 1.

This allows us to apply Lemma 5.9, leading to

(6.4) q=a0u72+a1εpnv52+a2εpn2v32+a3εpn3v12q=a_{0}^{\prime}u_{\frac{7}{2}}+a_{1}^{\prime}\varepsilon_{p_{n}}v_{\frac{5}{2}}+a_{2}^{\prime}\varepsilon_{p_{n}}^{2}v_{\frac{3}{2}}+a_{3}^{\prime}\varepsilon_{p_{n}}^{3}v_{\frac{1}{2}}

such that

(6.5) p¯nUτεpn(q¯)L(B1)γεpn5.\|\overline{p}_{n}-\operatorname{U}_{\tau\varepsilon_{p_{n}}}(\bar{q})\|_{L^{\infty}(B_{1})}\leq\gamma\varepsilon_{p_{n}}^{5}.

Depending on the size of a2a_{2}^{\prime}, we divide the discussion into two cases.

Step 4: The case when a2116a_{2}^{\prime}\leq\frac{1}{16} each time the adjustment in Step 3 is made.

In this case, we define pn=qp_{n}^{\prime}=q, then up to a rotation, we have

unp¯nL(B1)14dn1+γεpn514dn1+2γdn112dn1\|u_{n}-\overline{p^{\prime}}_{n}\|_{L^{\infty}(B_{1})}\leq\frac{1}{4}d_{n-1}+\gamma\varepsilon_{p_{n}}^{5}\leq\frac{1}{4}d_{n-1}+2\gamma d_{n-1}\leq\frac{1}{2}d_{n-1}

if γ\gamma is small. Note that we used (6.3) and (6.5).

In particular, with dn=12dn1d_{n}=\frac{1}{2}d_{n-1} we still have

un𝒮(pn,dn,1).u_{n}\in\mathcal{S}(p_{n}^{\prime},d_{n},1).

Meanwhile, in this case, Lemma 5.9 gives

|a1|28425|a2|+γ14,|a2|116, and |a3|γ.|a_{1}^{\prime}|^{2}\leq\frac{84}{25}|a_{2}^{\prime}|+\gamma\leq\frac{1}{4},\hskip 5.0pt|a_{2}^{\prime}|\leq\frac{1}{16},\text{ and }|a_{3}^{\prime}|\leq\gamma.

By (6.4) and (5.1), we have

εpn12εpn.\varepsilon_{p_{n}^{\prime}}\leq\frac{1}{2}\varepsilon_{p_{n}}.

Consequently, if a2116a_{2}^{\prime}\leq\frac{1}{16} each time the adjustment happens, after this adjustment, we have

dn=12dn114εpn58εpn5,d_{n}=\frac{1}{2}d_{n-1}\geq\frac{1}{4}\varepsilon_{p_{n}}^{5}\geq 8\varepsilon_{p_{n}^{\prime}}^{5},

and the induction in Step 2 can be continued, leading to

|uu72|O(|x|72|log|x||c0)|u-u_{\frac{7}{2}}|\leq O(|x|^{\frac{7}{2}}|\log|x||^{-c_{0}})

with the argument in Section 5 of [SY2] .

Step 5: The case when a2116a_{2}^{\prime}\geq\frac{1}{16} at one time the adjustment in Step 3 is made.

Suppose after the adjustment described in Step 3, we have

q=a0u72+a1εpnv52+a2εpn2v32+a3εpn3v12q=a_{0}^{\prime}u_{\frac{7}{2}}+a_{1}^{\prime}\varepsilon_{p_{n}}v_{\frac{5}{2}}+a_{2}^{\prime}\varepsilon_{p_{n}}^{2}v_{\frac{3}{2}}+a_{3}^{\prime}\varepsilon_{p_{n}}^{3}v_{\frac{1}{2}}

with a2116a_{2}^{\prime}\geq\frac{1}{16}.

In this case, with the reasoning in Remark 5.6, we find a solution to the thin obstacle problem q^\hat{q} such that

(6.6) |qUτεpn(q^)|Cγεpn3 in {r>η/2}B1.|q-\operatorname{U}_{\tau\varepsilon_{p_{n}}}(\hat{q})|\leq C\gamma\varepsilon_{p_{n}}^{3}\text{ in }\{r>\eta/2\}\cap B_{1}.

With (6.5), (6.6), and dnεpn5d_{n}\leq\varepsilon_{p_{n}}^{5}, we have, up to a rotation

|unq^|Cγεpn3 in B1.|u_{n}-\hat{q}|\leq C\gamma\varepsilon_{p_{n}}^{3}\text{ in }B_{1}.

From here, we fix the parameter ε\varepsilon by

ε=εpn,\varepsilon=\varepsilon_{p_{n}},

and relabeling our sequence

u0:=un,p0:=q^, and d0:=Cγε3.u_{0}:=u_{n},\hskip 5.0ptp_{0}:=\hat{q},\text{ and }d_{0}:=C\gamma\varepsilon^{3}.

Then

u0𝒮(p0,d0,1)u_{0}\in\mathcal{S}(p_{0},d_{0},1)

where the class 𝒮\mathcal{S} is defined in Definition 5.5. Moreover, with p0p_{0} solving the thin obstacle problem, we can apply Lemma 5.14 to get

(6.7) w0:=W(u0;1)Cd02Cγ2ε6.w_{0}:=W(u_{0};1)\leq Cd_{0}^{2}\leq C\gamma^{2}\varepsilon^{6}.

If d~\tilde{d} is chosen small enough, then ε<ε~\varepsilon<\tilde{\varepsilon} from Lemma 5.16. Similar to Step 2, we apply Lemma 5.16 iteratively and obtain a sequence (un,pn,dn)(u_{n},p_{n},d_{n}) with

un𝒮(pn,dn,1).u_{n}\in\mathcal{S}(p_{n},d_{n},1).

Note that if alternative (1) in Lemma 5.16 happens, we apply (6.7) to get

c02dn2wn1wnw0Cγ2ε6.c_{0}^{2}d_{n}^{2}\leq w_{n-1}-w_{n}\leq w_{0}\leq C\gamma^{2}\varepsilon^{6}.

With a similar argument for comparison between dd and δ~\tilde{\delta} in claim (6.2), this implies

dnCγε3 for all n.d_{n}\leq C\gamma\varepsilon^{3}\text{ for all }n.

With a similar argument for comparison between κ\kappa and dd in claim (6.2), we have

κpndn for all n.\kappa_{p_{n}}\leq d_{n}\text{ for all }n.

Consequently, with Lemma 5.14, we have

wn=W72(un;1)Cdn2.w_{n}=W_{\frac{7}{2}}(u_{n};1)\leq Cd_{n}^{2}.

Therefore, the double sequence (wn,dn)(w_{n},d_{n}) satisfies the condition in Lemma 2.2 for γ=1\gamma=1, and we have

dnC(d02+w0)1/2Cγε3.\sum d_{n}\leq C(d_{0}^{2}+w_{0})^{1/2}\leq C\gamma\varepsilon^{3}.

In particular, the deviation for coefficients of pnp_{n} is of order CγC\gamma. Consequently, if γ\gamma is universally small, the conditions on the coefficients from Lemma 5.16 are satisfied, and Lemma 5.16 can be applied indefinitely. With the same argument in Section 5 of [SY2], we conclude

|up|O(|x|72+c0)|u-p|\leq O(|x|^{\frac{7}{2}+c_{0}})

up to a normalization for some p1\{u72}.p\in\mathcal{F}_{1}\backslash\{u_{\frac{7}{2}}\}.

With a similar argument, we can apply Lemma 3.4 and Lemma 4.9 to establish the following:

Proposition 6.2.

For a solution uu to the thin obstacle problem (1.1) in B13B_{1}\subset\mathbb{R}^{3}, suppose that its frequency at 0 is 72\frac{7}{2}, and that

|up|d in B1|u-p|\leq d\text{ in }B_{1}

for some p1p\in\mathcal{F}_{1} and |pu72|12d~|p-u_{\frac{7}{2}}|\geq\frac{1}{2}\tilde{d}, where d~\tilde{d} is the universal constant from Proposition 6.1.

There is a small universal d¯>0\bar{d}>0, such that if d<d¯,d<\bar{d}, then up to a normalization

|up|O(|x|72+c0)|u-p^{\prime}|\leq O(|x|^{\frac{7}{2}+c_{0}})

for some p1\{u72}p^{\prime}\in\mathcal{F}_{1}\backslash\{u_{\frac{7}{2}}\}.

Here c0>0c_{0}>0 is universal.

With these two propositions in hand, we sketch the proofs for the main results.

Proof of Theorem 1.1.

For a 72\frac{7}{2}-homogeneous solution uu as in Theorem 1.1, we see that if d<min{d~,d¯}d<\min\{\tilde{d},\bar{d}\} with d~\tilde{d} and d¯\bar{d} from Proposition 6.1 and Proposition 6.2 respectively, then

|up|=o(|x|72) as x0|u-p|=o(|x|^{\frac{7}{2}})\text{ as }x\to 0

for some p1p\in\mathcal{F}_{1}.

From here the homogeneity of uu leads to u=p.u=p.

Proof of Theorem 1.2.

Suppose that p1p\in\mathcal{F}_{1} is a blow-up profile of uu at 0. Then up to a rescaling we have

|up|min{d~,d¯} in B1|u-p|\leq\min\{\tilde{d},\bar{d}\}\text{ in }B_{1}

for d~\tilde{d} and d¯\bar{d} from Proposition 6.1 and Proposition 6.2, which leads to

|up|=o(|x|72) as x0|u-p^{\prime}|=o(|x|^{\frac{7}{2}})\text{ as }x\to 0

for some p1p^{\prime}\in\mathcal{F}_{1} up to a normalization.

However, with pp being a blow-up profile, this forces p=pp^{\prime}=p. From here we either apply Proposition 6.1 or Proposition 6.2 to get the desired rate of convergence. ∎

With this rate of convergence, the stratification in Theorem 1.3 follows from the Whitney extension lemma. See, for instance, [GP, CSV]. We sketch the proof for the more precise Remark 1.3:

Proof of Remark 1.3.

Case 1: the solution blows up to u72u_{\frac{7}{2}} at 0.

With the rate of convergence in Theorem 1.2 and Lemma 5.8, we see that in a ball of radius rr, the free boundary n1Λ(u)\partial_{\mathbb{R}^{n-1}}\Lambda(u) is trapped between two parallel lines with distance r|log(r)|c0r|\log(r)|^{-c_{0}}. This is the desired C1,logC^{1,\log}-regularity of the free boundary at a point where u72u_{\frac{7}{2}} is the blow-up profile.

Case 2: the solution blows up to p1\{u72}p\in\mathcal{F}_{1}\backslash\{u_{\frac{7}{2}}\} at 0.

Now suppose p1\{u72}p\in\mathcal{F}_{1}\backslash\{u_{\frac{7}{2}}\} is a blow-up profile at 0, we need to find ρ>0\rho>0 such that Λ72(u)Bρ={0}.\Lambda_{\frac{7}{2}}(u)\cap B_{\rho}=\{0\}. If the conditions p|{x3=0}0p|_{\{x_{3}=0\}}\geq 0 and Δp|{x3=0}0\Delta p|_{\{x_{3}=0\}}\leq 0 are not degenerate, the conclusion follows from a standard blow-up argument.

We give the proof when p=pdcp=p_{dc}, the doubly critical profile from (4.4).

Suppose, on the contrary, that there is a sequence xkΛ72(u)0.x_{k}\in\Lambda_{\frac{7}{2}}(u)\to 0. With the notation from (2.5), we define

uk:=u(|xk|).u_{k}:=u_{(|x_{k}|)}.

With the Hölder rate of convergence from Theorem 1.2 and Lemma 4.6, we have that xk/|xk|x_{k}/|x_{k}| converges to the two rays of degeneracies R±R^{\pm} from (4.1) or {r=0}\{r=0\}. On the other hand, for pdcp_{dc}, points on R±{r=0}R^{\pm}\cup\{r=0\} have frequencies in {1,32,2}\{1,\frac{3}{2},2\}, all bounded away from 72\frac{7}{2}. This implies that xk/|xk|x_{k}/|x_{k}| has frequency bounded away from 72\frac{7}{2}, a contradiction. ∎

Appendix A Fourier expansion in spherical caps

In this appendix, we study the decay of a harmonic function in a slit domain near the boundary of a spherical cap if some of its Fourier coefficients vanish along a smaller cap.

Recall that we use (x1,r,θ)(x_{1},r,\theta) as the coordinate system for 3\mathbb{R}^{3}, where r0r\geq 0 and θ(π,π]\theta\in(-\pi,\pi] are the polar coordinates for the (x2,x3)(x_{2},x_{3})-plane. For small r0>0r_{0}>0, the r0r_{0}-spherical cap is defined as

𝒞r0:={r<r0,x1>0}𝕊2.\mathcal{C}_{r_{0}}:=\{r<r_{0},\hskip 5.0ptx_{1}>0\}\cap\mathbb{S}^{2}.

The main result of this appendix is

Lemma A.1.

For two small parameters η,ε\eta,\varepsilon with εη\varepsilon\ll\eta, suppose that vv is a bounded solution to

{(Δ𝕊2+λ72)v=0 in 𝒞η\𝒞ε^,v=0 on 𝒞η𝒞η\𝒞ε~.\begin{cases}(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})v=0&\text{ in }\widehat{\mathcal{C}_{\eta}\backslash\mathcal{C}_{\varepsilon}},\\ v=0&\text{ on }\partial\mathcal{C}_{\eta}\cup\widetilde{\mathcal{C}_{\eta}\backslash\mathcal{C}_{\varepsilon}}.\end{cases}

If we have, for n=0,1,,m1n=0,1,\dots,m-1,

𝒞εvcos((n+12)θ)=0,\int_{\partial\mathcal{C}_{\varepsilon}}v\cdot\cos((n+\frac{1}{2})\theta)=0,

then

sup𝒞η\𝒞η/2|v|Cmεm+12sup𝒞ε|v|\sup_{\mathcal{C}_{\eta}\backslash\mathcal{C}_{\eta/2}}|v|\leq C^{m}\varepsilon^{m+\frac{1}{2}}\cdot\sup_{\partial\mathcal{C}_{\varepsilon}}|v|

for a constant CC depending only on η.\eta.

Recall the notations for slit domains and homogeneous harmonic functions in slit domains from (2.10) and (2.13).

Proof.

With the functions from (2.17), we define, for n=0,1,n=0,1,\dots,

fn(x1,r,θ):=u(n+12)0kkakx1n+42kr2kf_{n}(x_{1},r,\theta):=u_{-(n+\frac{1}{2})}\cdot\sum_{0\leq k\leq k^{*}}a_{k}x_{1}^{n+4-2k}r^{2k}

where kk^{*} satisfies (n2k+4)(n2k+3)=0(n-2k^{*}+4)(n-2k^{*}+3)=0, a0=1a_{0}=1, and

(A.1) ak(n2k+4)(n2k+3)=ak+1(2n2k1)(2k+2).a_{k}(n-2k+4)(n-2k+3)=a_{k+1}(2n-2k-1)(2k+2).

It is elementary to verify that fnf_{n} is 72\frac{7}{2}-homogeneous and harmonic in 3^\widehat{\mathbb{R}^{3}}.

By the iterative relation (A.1), we can find a universal large constant MM such that

|ak|Mn for k=0,1,,k.|a_{k}|\leq M^{n}\text{ for }k=0,1,\dots,k^{*}.

As a result, by taking MM larger if necessary, we have

|fn|rn12[1+r2Mn] in 𝒞η.|f_{n}|\leq r^{-n-\frac{1}{2}}[1+r^{2}M^{n}]\text{ in }\mathcal{C}_{\eta}.

On the other hand, we have fn(x1,r,0)rn12[1r2Mn]f_{n}(x_{1},r,0)\geq r^{-n-\frac{1}{2}}[1-r^{2}M^{n}] in 𝒞η\mathcal{C}_{\eta}, which gives

fn(x1,ε,0)12εn12f_{n}(x_{1},\varepsilon,0)\geq\frac{1}{2}\varepsilon^{-n-\frac{1}{2}}

if ε\varepsilon is small and n5.n\leq 5. For n6,n\geq 6, the same comparison follows directly from the fact that ak0a_{k}\geq 0 for all kk if n6.n\geq 6.

Consequently, the ratio fn(r,θ)/fn(ε,0)f_{n}(r,\theta)/f_{n}(\varepsilon,0) satisfies

fn(ε,θ)/fn(ε,0)=cos((n+12)θ)f_{n}(\varepsilon,\theta)/f_{n}(\varepsilon,0)=\cos((n+\frac{1}{2})\theta)

and

|fn(r,θ)/fn(ε,0)|εn+12rn12Mn in 𝒞η|f_{n}(r,\theta)/f_{n}(\varepsilon,0)|\leq\varepsilon^{n+\frac{1}{2}}r^{-n-\frac{1}{2}}M^{n}\text{ in }\mathcal{C}_{\eta}

by choosing MM larger if necessary.

For each nn, let φn\varphi_{n} denote the solution to

{(Δ𝕊2+λ72)φn=0 in 𝒞η\𝒞ε,^φn=cos((n+12)θ) along 𝒞ε,φn=0 along 𝒞η𝒞η\𝒞ε~.\begin{cases}(\Delta_{\mathbb{S}^{2}}+\lambda_{\frac{7}{2}})\varphi_{n}=0&\text{ in }\widehat{\mathcal{C}_{\eta}\backslash\mathcal{C}_{\varepsilon},}\\ \varphi_{n}=\cos((n+\frac{1}{2})\theta)&\text{ along $\partial\mathcal{C}_{\varepsilon}$,}\\ \varphi_{n}=0&\text{ along }\partial\mathcal{C}_{\eta}\cup\widetilde{\mathcal{C}_{\eta}\backslash\mathcal{C}_{\varepsilon}}.\end{cases}

With the maximum principle, we have

|φnfn(r,θ)fn(ε,0)|εn+12ηn12Mn in 𝒞η\𝒞ε,|\varphi_{n}-\frac{f_{n}(r,\theta)}{f_{n}(\varepsilon,0)}|\leq\varepsilon^{n+\frac{1}{2}}\eta^{-n-\frac{1}{2}}M^{n}\text{ in }\mathcal{C}_{\eta}\backslash\mathcal{C}_{\varepsilon},

which implies

|φn|Cεn+12rn12Mn in 𝒞η\𝒞ε.|\varphi_{n}|\leq C\varepsilon^{n+\frac{1}{2}}r^{-n-\frac{1}{2}}M^{n}\text{ in }\mathcal{C}_{\eta}\backslash\mathcal{C}_{\varepsilon}.

Now with {cos((n+12)θ)}\{\cos((n+\frac{1}{2})\theta)\} being a basis for L2(𝒞ε)L^{2}(\partial\mathcal{C}_{\varepsilon}), for vv as in the statement of the lemma, we can write v=cnφnv=\sum c_{n}\varphi_{n} where

cn=𝒞εvcos((n+12)θ)𝒞εcos2((n+12)θ).c_{n}=\frac{\int_{\partial\mathcal{C}_{\varepsilon}}v\cdot\cos((n+\frac{1}{2})\theta)}{\int_{\partial\mathcal{C}_{\varepsilon}}\cos^{2}((n+\frac{1}{2})\theta)}.

For rη/2r\geq\eta/2, this implies

|v(r,θ)|(cn2)12(cn0φn(r,θ)2)12Csup𝒞ε|v|(cn0ε2n+1M2n)1/2|v(r,\theta)|\leq(\sum c_{n}^{2})^{\frac{1}{2}}(\sum_{c_{n}\neq 0}\varphi_{n}(r,\theta)^{2})^{\frac{1}{2}}\leq C\sup_{\partial\mathcal{C}_{\varepsilon}}|v|\cdot(\sum_{c_{n}\neq 0}\varepsilon^{2n+1}M^{2n})^{1/2}

for a constant CC depending on η\eta.

With our assumption on vv, we have cn=0c_{n}=0 for nm1n\leq m-1. The conclusion follows by observing

nmε2n+1M2nCε2m+1M2m.\sum_{n\geq m}\varepsilon^{2n+1}M^{2n}\leq C\varepsilon^{2m+1}M^{2m}.

Appendix B The thin obstacle problem in 2\mathbb{R}^{2}

Our treatment of solutions near u72=r72cos(72θ)u_{\frac{7}{2}}=r^{\frac{7}{2}}\cos(\frac{7}{2}\theta) relies on a fine analysis of the thin obstacle problem in tiny spherical caps around 𝕊2{r=0}\mathbb{S}^{2}\cap\{r=0\}. In the limit, this problem leads to the thin obstacle problem in 2\mathbb{R}^{2} with prescribed expansion at infinity.

In this section, we use (r,θ)(r,\theta) to denote the polar coordinates of 2={(x1,x2)}\mathbb{R}^{2}=\{(x_{1},x_{2})\}. The notations for slit domains from (2.9) and (2.10) carry over with straightforward modifications. We will also take advantage of the functions from (1.6) and (2.17). Similar to the functions in (2.16), in this appendix, we denote the derivatives of u72u_{\frac{7}{2}} by the following555The two bases {u72,u52,u32,u12}\{u_{\frac{7}{2}},u_{\frac{5}{2}},u_{\frac{3}{2}},u_{\frac{1}{2}}\} and {u72,w52,w32,w12}\{u_{\frac{7}{2}},w_{\frac{5}{2}},w_{\frac{3}{2}},w_{\frac{1}{2}}\} are related by w52=72u52,w32=354u32, and w12=1058u12.w_{\frac{5}{2}}=\frac{7}{2}u_{\frac{5}{2}},\hskip 5.0ptw_{\frac{3}{2}}=\frac{35}{4}u_{\frac{3}{2}},\text{ and }w_{\frac{1}{2}}=\frac{105}{8}u_{\frac{1}{2}}. :

w52:=x1u72,w32:=x1w52, and w12:=x1w32.w_{\frac{5}{2}}:=\frac{\partial}{\partial x_{1}}u_{\frac{7}{2}},\hskip 5.0ptw_{\frac{3}{2}}:=\frac{\partial}{\partial x_{1}}w_{\frac{5}{2}},\text{ and }w_{\frac{1}{2}}:=\frac{\partial}{\partial x_{1}}w_{\frac{3}{2}}.

The following two derivatives are singular near {r=0}\{r=0\}:

(B.1) w12:=x1w12, and w32:=x1w12.w_{-\frac{1}{2}}:=\frac{\partial}{\partial x_{1}}w_{\frac{1}{2}},\text{ and }w_{-\frac{3}{2}}:=\frac{\partial}{\partial x_{1}}w_{-\frac{1}{2}}.

Let p=u72+a1u52+a2u32+a3u12=u72+a~1w52+a~2w32+a~3w12p=u_{\frac{7}{2}}+a_{1}u_{\frac{5}{2}}+a_{2}u_{\frac{3}{2}}+a_{3}u_{\frac{1}{2}}=u_{\frac{7}{2}}+\tilde{a}_{1}w_{\frac{5}{2}}+\tilde{a}_{2}w_{\frac{3}{2}}+\tilde{a}_{3}w_{\frac{1}{2}}, then pp solves the thin obstacle problem in 2\mathbb{R}^{2} if and only if

(B.2) a20,a3=0, and a128425a2; equivalently, a~20,a~3=0, and a~12125a~2.a_{2}\geq 0,\hskip 5.0pta_{3}=0,\text{ and }a_{1}^{2}\leq\frac{84}{25}a_{2};\text{ equivalently, }\tilde{a}_{2}\geq 0,\hskip 5.0pt\tilde{a}_{3}=0,\text{ and }\tilde{a}_{1}^{2}\leq\frac{12}{5}\tilde{a}_{2}.

For τ\tau\in\mathbb{R}, the translation operator Uτ\operatorname{U}_{\tau} is defined by its action on points, sets, and functions in the following manner:

Uτ(x1,x2)=(x1+τ,x2),Uτ(E)={x:UτxE},Uτ(f)(x)=f(Uτx).\operatorname{U}_{\tau}(x_{1},x_{2})=(x_{1}+\tau,x_{2}),\quad\operatorname{U}_{\tau}(E)=\{x:\operatorname{U}_{-\tau}x\in E\},\quad\operatorname{U}_{\tau}(f)(x)=f(\operatorname{U}_{-\tau}x).

In this appendix, for p=u72+a1u52+a2u32+a3u12p=u_{\frac{7}{2}}+a_{1}u_{\frac{5}{2}}+a_{2}u_{\frac{3}{2}}+a_{3}u_{\frac{1}{2}}, we study solutions to the thin obstacle problem in 2\mathbb{R}^{2} with data pp at infinity:

(B.3) {u solves (1.1) in 2,sup2|up|<+.\begin{cases}&u\text{ solves \eqref{IntroTOP} in }\mathbb{R}^{2},\\ &\sup_{\mathbb{R}^{2}}|u-p|<+\infty.\end{cases}

The starting point is the following proposition:

Proposition B.1.

For |aj|1|a_{j}|\leq 1, there is a unique solution to (B.3).

For this solution, there is a universal constant A>0A>0 such that

sup2|up|A;Δu=0 in {r>A}^; and u=0 in {r>A}~.\sup_{\mathbb{R}^{2}}|u-p|\leq A;\hskip 5.0pt\Delta u=0\text{ in }\widehat{\{r>A\}};\text{ and }u=0\text{ in }\widetilde{\{r>A\}}.

Moreover, we can find b1,b2b_{1},b_{2} satisfying |bj|A|b_{j}|\leq A such that

|u(p+b1u12+b2u32)|A|x|2u12 for all x2.|u-(p+b_{1}u_{-\frac{1}{2}}+b_{2}u_{-\frac{3}{2}})|\leq A|x|^{-2}u_{-\frac{1}{2}}\text{ for all }x\in\mathbb{R}^{2}.

Recall the harmonic functions with negative homogeneities from (2.17).

Remark B.1.

For simplicity, we will denote the coefficients bjb_{j} by bj2[a1,a2,a3]b_{j}^{\mathbb{R}^{2}}[a_{1},a_{2},a_{3}] or simply bj[a1,a2,a3]b_{j}[a_{1},a_{2},a_{3}] when there is no ambiguity.

Proof.

Step 1: Uniqueness.

Suppose that u1u_{1} and u2u_{2} are two solutions to (1.1) in 2\mathbb{R}^{2} with sup|ujp|<+.\sup|u_{j}-p|<+\infty. With a similar argument as in Lemma 3.1, we find R>0R>0 such that

Δuj=0 in {r>R}^, and uj=0 in {r>R}~.\Delta u_{j}=0\text{ in }\widehat{\{r>R\}},\text{ and }u_{j}=0\text{ in }\widetilde{\{r>R\}}.

Let w(x):=(u1u2)(R2x/|x|2)w(x):=(u_{1}-u_{2})(R^{2}x/|x|^{2}) be the Kelvin transform of (u1u2)(u_{1}-u_{2}) with respect to BR\partial B_{R}. Then ww is a harmonic function in the slit domain BR^\widehat{B_{R}}, as defined in (2.11). Applying Theorem 2.1, we have |w|Cu12 in BR,|w|\leq Cu_{\frac{1}{2}}\text{ in }B_{R}, which implies

|u1u2|Cu12 in 2.|u_{1}-u_{2}|\leq Cu_{-\frac{1}{2}}\text{ in }\mathbb{R}^{2}.

From here we have u1=u2u_{1}=u_{2} bythe maximum principle.

Step 2: A barrier function.

Rewrite pp in the basis {u72,w52,w32,w12}\{u_{\frac{7}{2}},w_{\frac{5}{2}},w_{\frac{3}{2}},w_{\frac{1}{2}}\} as p=u72+a~1w52+a~2w32+a~3w12p=u_{\frac{7}{2}}+\tilde{a}_{1}w_{\frac{5}{2}}+\tilde{a}_{2}w_{\frac{3}{2}}+\tilde{a}_{3}w_{\frac{1}{2}}.

For τ>0\tau>0 to be chosen, if we let (α1,α2)(\alpha_{1},\alpha_{2}) denote the solution to

α1+τ=a~1, and α2+α1τ+12τ2=a~2,\alpha_{1}+\tau=\tilde{a}_{1},\text{ and }\alpha_{2}+\alpha_{1}\tau+\frac{1}{2}\tau^{2}=\tilde{a}_{2},

and define

q=u72+α1w52+α2w32,q=u_{\frac{7}{2}}+\alpha_{1}w_{\frac{5}{2}}+\alpha_{2}w_{\frac{3}{2}},

then Taylor’s Theorem gives

Uτ(q)p(16τ312a~1τ2+a~2τ)u12Cτ4u12.\operatorname{U}_{-\tau}(q)-p\geq(\frac{1}{6}\tau^{3}-\frac{1}{2}\tilde{a}_{1}\tau^{2}+\tilde{a}_{2}\tau)u_{\frac{1}{2}}-C\tau^{4}u_{-\frac{1}{2}}.

Choosing τ\tau large universally, then

Uτ(q)p0 on {rA}\operatorname{U}_{-\tau}(q)-p\geq 0\text{ on }\{r\geq A\}

for a universal large AA.

By choosing τ\tau larger, if necessary, it is elementary to verify that (α1,α2)(\alpha_{1},\alpha_{2}) satisfies condition (B.2), and consequently, Q:=UτqQ:=\operatorname{U}_{-\tau}q solves the thin obstacle problem in 2.\mathbb{R}^{2}.

Step 3: Existence, universal boundedness, and localization of contact set.

For large nn\in\mathbb{N}, let unu_{n} be the solution to the thin obstacle problem (1.1) in BnB_{n} with un=pu_{n}=p along Bn\partial B_{n}.

By the maximum principle, we have

(B.4) unp in Bn, and unQ in Bnu_{n}\geq p\text{ in }B_{n},\text{ and }u_{n}\leq Q\text{ in }B_{n}

if nn is large. Consequently, this family {un}\{u_{n}\} is locally uniformly bounded. Therefore, we can extract a subsequence converging to some uu_{\infty} locally uniformly on 2\mathbb{R}^{2}. This limit uu_{\infty} solves the thin obstacle problem in 2\mathbb{R}^{2}.

With (B.4), we have un=0 in Bn{x1A,x2=0}u_{n}=0\text{ in }B_{n}\cap\{x_{1}\leq-A,x_{2}=0\} and un1 in Bn{x1A,x2=0}u_{n}\geq 1\text{ in }B_{n}\cap\{x_{1}\geq A,x_{2}=0\} for a universal A>0A>0. Thus we have

Δu=0 in {r>A}^; and u=0 in {r>A}~.\Delta u_{\infty}=0\text{ in }\widehat{\{r>A\}};\text{ and }u_{\infty}=0\text{ in }\widetilde{\{r>A\}}.

Along {r=A}\{r=A\}, we have 0upQpC0\leq u_{\infty}-p\leq Q-p\leq C. Thus the maximum principle, applied in the domain{r>A}\{r>A\}, gives

|up|C|u_{\infty}-p|\leq C

for a universal constant CC. In particular, uu_{\infty} is the unique solution to (B.3), according to Step 1.

Step 4: Finer expansion.

Let w(x):=(up)(A2x/|x|2)w(x):=(u-p)(A^{2}x/|x|^{2}) be the Kelvin transform of (up)(u-p) with respect to BA\partial B_{A}. Results from the previous step implies that ww is a harmonic function in the slit domain BA^\widehat{B_{A}}. An application of Theorem 2.1 gives universally bounded b1b_{1} and b2b_{2} such that

|w(b1u12+b2u32)|C|x|2u12 in BA.|w-(b_{1}u_{\frac{1}{2}}+b_{2}u_{\frac{3}{2}})|\leq C|x|^{2}u_{\frac{1}{2}}\text{ in }B_{A}.

Inverting the Kelvin transform, we have

|u(p+b1u12+b2u32)|C|x|2u12 in 2.|u-(p+b_{1}u_{-\frac{1}{2}}+b_{2}u_{-\frac{3}{2}})|\leq C|x|^{-2}u_{-\frac{1}{2}}\text{ in }\mathbb{R}^{2}.

For the solution from the previous proposition, we have precise information on its first two Fourier coefficients along big circles:

Corollary B.1.

With the same assumptions and notations from Proposition B.1, we have

BR[u(p+b1u12+b2u32)]cos(12θ)=0\int_{\partial B_{R}}[u-(p+b_{1}u_{-\frac{1}{2}}+b_{2}u_{-\frac{3}{2}})]\cdot\cos(\frac{1}{2}\theta)=0

and

BR[u(p+b1u12+b2u32)]cos(32θ)=0\int_{\partial B_{R}}[u-(p+b_{1}u_{-\frac{1}{2}}+b_{2}u_{-\frac{3}{2}})]\cdot\cos(\frac{3}{2}\theta)=0

for all RA.R\geq A.

Proof.

For simplicity, let’s denote

pext:=p+b1u12+b2u32.p_{ext}:=p+b_{1}u_{-\frac{1}{2}}+b_{2}u_{-\frac{3}{2}}.

With Proposition B.1, we have Δ(upext)=0 in {r>A}^, and upext=0 in {r>A}~.\Delta(u-p_{ext})=0\text{ in }\widehat{\{r>A\}},\text{ and }u-p_{ext}=0\text{ in }\widetilde{\{r>A\}}.

For R>AR>A, define v:=(r12Rr12)cos(12θ)v:=(r^{\frac{1}{2}}-Rr^{-\frac{1}{2}})\cos(\frac{1}{2}\theta). Then

Δv=0 in 2^, and v=0 along {r>0}~.\Delta v=0\text{ in }\widehat{\mathbb{R}^{2}},\text{ and }v=0\text{ along }\widetilde{\{r>0\}}.

With these properties, we have, for L>RL>R,

0=BL\BR(upext)ΔvΔ(upext)v=(BL\BR)(upext)νv(upext)vν.0=\int_{B_{L}\backslash B_{R}}(u-p_{ext})\cdot\Delta v-\Delta(u-p_{ext})\cdot v=\int_{\partial(B_{L}\backslash B_{R})}(u-p_{ext})_{\nu}\cdot v-(u-p_{ext})\cdot v_{\nu}.

Along BL\partial B_{L}, we have |upext|=O(L52)|u-p_{ext}|=O(L^{-\frac{5}{2}}), |(upext)ν|=O(L72)|(u-p_{ext})_{\nu}|=O(L^{-\frac{7}{2}}), |v|=O(L12)|v|=O(L^{\frac{1}{2}}) and |vν|=O(L12)|v_{\nu}|=O(L^{-\frac{1}{2}}), thus

BL(upext)νv(upext)vν=O(L2).\int_{\partial B_{L}}(u-p_{ext})_{\nu}\cdot v-(u-p_{ext})\cdot v_{\nu}=O(L^{-2}).

Along BR\partial B_{R}, we have v=0v=0 and vν=R12cos(12θ).v_{\nu}=-R^{-\frac{1}{2}}\cos(\frac{1}{2}\theta). Combining all these we have

BR(upext)cos(12θ)=O(R12L2).\int_{\partial B_{R}}(u-p_{ext})\cdot\cos(\frac{1}{2}\theta)=O(R^{\frac{1}{2}}L^{-2}).

Sending LL\to\infty gives the first conclusion. The second follows from a similar argument. ∎

The following lemma is one of the main reasons for the restriction to 3d in the main part of this work:

Lemma B.1.

Given functions

p=u72+a1u52+a2u32+a3u12, and q=u72a1u52+a2u32a3u12p=u_{\frac{7}{2}}+a_{1}u_{\frac{5}{2}}+a_{2}u_{\frac{3}{2}}+a_{3}u_{\frac{1}{2}},\text{ and }q=u_{\frac{7}{2}}-a_{1}u_{\frac{5}{2}}+a_{2}u_{\frac{3}{2}}-a_{3}u_{\frac{1}{2}}

with |aj|1,|a_{j}|\leq 1, suppose that uu and vv are solutions to (B.3) with pp and qq as data at infinity, respectively.

Assume b1[a1,a2,a3]=b1[a1,a2,a3]b_{1}[a_{1},a_{2},a_{3}]=b_{1}[-a_{1},a_{2},-a_{3}] and b2[a1,a2,a3]=b2[a1,a2,a3]b_{2}[a_{1},a_{2},a_{3}]=-b_{2}[-a_{1},a_{2},-a_{3}], then we can find universally bounded constants α1\alpha_{1}, α2\alpha_{2} and τ\tau such that

u=Uτ(u72+α1u52+α2u32), and v=Uτ(u72α1u52+α2u32).u=\operatorname{U}_{\tau}(u_{\frac{7}{2}}+\alpha_{1}u_{\frac{5}{2}}+\alpha_{2}u_{\frac{3}{2}}),\text{ and }v=\operatorname{U}_{-\tau}(u_{\frac{7}{2}}-\alpha_{1}u_{\frac{5}{2}}+\alpha_{2}u_{\frac{3}{2}}).

Recall the definition of bjb_{j}’s from Remark B.1.

Proof.

Step 1: Two auxiliary polynomials.

For simplicity, let us define bj=bj[a1,a2,a3]b_{j}=b_{j}[a_{1},a_{2},a_{3}] for j=1,2j=1,2, and

pext:=p+b1u12+b2u32, and qext:=q+b1u12b2u32.p_{ext}:=p+b_{1}u_{-\frac{1}{2}}+b_{2}u_{-\frac{3}{2}},\text{ and }q_{ext}:=q+b_{1}u_{-\frac{1}{2}}-b_{2}u_{-\frac{3}{2}}.

With Proposition B.1, we have

|upext|+|vqext|A|x|52 in 2,|u-p_{ext}|+|v-q_{ext}|\leq A|x|^{-\frac{5}{2}}\text{ in $\mathbb{R}^{2}$,}

which implies

(B.5) |upext|+|vqext|C|x|72 for |x|1.|\nabla u-\nabla p_{ext}|+|\nabla v-\nabla q_{ext}|\leq C|x|^{-\frac{7}{2}}\text{ for }|x|\geq 1.

Since uu is an entire solution to the thin obstacle problem of order O(|x|72)O(|x|^{\frac{7}{2}}) at infinity, we see that (x1uix2u)2(\partial_{x_{1}}u-i\partial_{x_{2}}u)^{2} is a polynomial of degree 5. Meanwhile, a direct computation gives that

(x1pextix2pext)2=𝒫(x1+ix2)+k=15k(x1+ix2),(\partial_{x_{1}}p_{ext}-i\partial_{x_{2}}p_{ext})^{2}=\mathcal{P}(x_{1}+ix_{2})+\sum_{k=1}^{5}\mathcal{R}_{k}(x_{1}+ix_{2}),

where 𝒫\mathcal{P} is a polynomial of degree 55, and k\mathcal{R}_{k} is a (k)(-k)-homogeneous rational function for k=1,2,,5k=1,2,\dots,5.

With (B.5), it follows that

(x1uix2u)2=𝒫 in 2.(\partial_{x_{1}}u-i\partial_{x_{2}}u)^{2}=\mathcal{P}\text{ in }\mathbb{R}^{2}.

If we define

P(t):=Re(x1uix2u)2(t,0)=[(x1u)2(x2u)2](t,0)=Re𝒫(t),P(t):=\operatorname{Re}(\partial_{x_{1}}u-i\partial_{x_{2}}u)^{2}(t,0)=[(\partial_{x_{1}}u)^{2}-(\partial_{x_{2}}u)^{2}](t,0)=\operatorname{Re}\mathcal{P}(t),

then PP is a real polynomial of degree 5.

Similarly, corresponding to vv and qextq_{ext}, we have

(x1qextix2qext)2=𝒬(x1+ix2)+k=15𝒮k(x1+ix2),(\partial_{x_{1}}q_{ext}-i\partial_{x_{2}}q_{ext})^{2}=\mathcal{Q}(x_{1}+ix_{2})+\sum_{k=1}^{5}\mathcal{S}_{k}(x_{1}+ix_{2}),

where 𝒬\mathcal{Q} is a polynomial of degree 55, and 𝒮k\mathcal{S}_{k} is a (k)(-k)-homogeneous rational function for k=1,2,,5k=1,2,\dots,5. Moreover, we have

Q(t):=Re(x1vix2v)2(t,0)=[(x1v)2(x2v)2](t,0)=Re𝒬(t),Q(t):=\operatorname{Re}(\partial_{x_{1}}v-i\partial_{x_{2}}v)^{2}(t,0)=[(\partial_{x_{1}}v)^{2}-(\partial_{x_{2}}v)^{2}](t,0)=\operatorname{Re}\mathcal{Q}(t),

also a real polynomial of degree 5.

With b1[a1,a2,a3]=b1[a1,a2,a3]b_{1}[a_{1},a_{2},a_{3}]=b_{1}[-a_{1},a_{2},-a_{3}] and b2[a1,a2,a3]=b2[a1,a2,a3]b_{2}[a_{1},a_{2},a_{3}]=-b_{2}[-a_{1},a_{2},-a_{3}], a direct computation gives

(B.6) P(t)=Q(t).P(t)=-Q(-t).

Step 2: Half-space solutions.

With (B.6), we show that up to a translation, uu must be a half-space solution. Since u=0u=0 in {r>A}~\widetilde{\{r>A\}} according to Proposition B.1, it suffices to show that spt(Δu)\operatorname{spt}(\Delta u) has only one component.

Suppose, on the contrary, that

(,a][b,+)spt(Δu)(,a][b,c] with b>a,(-\infty,a]\cup[b,+\infty)\supset\operatorname{spt}(\Delta u)\supset(-\infty,a]\cup[b,c]\text{ with }b>a,

Note that the second component has to terminate in finite length since Δu=0\Delta u=0 in {r>A}^\widehat{\{r>A\}}.

On (,a][b,c](-\infty,a]\cup[b,c], we have x1u=0\partial_{x_{1}}u=0. Thus P(t)=(x2u)20P(t)=-(\partial_{x_{2}}u)^{2}\leq 0 for t(,a][b,c]t\in(-\infty,a]\cup[b,c]. On the contrary, on (a,b)(a,b), x2u=0\partial_{x_{2}}u=0 and P(t)=(x1u)20P(t)=(\partial_{x_{1}}u)^{2}\geq 0. Moreover, since u(a)=u(b)=0u(a)=u(b)=0 and u>0u>0 on (a,b)(a,b), we must have x1u(d)=0\partial_{x_{1}}u(d)=0 at some point d(a,b)d\in(a,b). Thus P(d)=0P(d)=0. Note that dd is a root of multiplicity at least 2. Together with the roots a,b,ca,b,c, this implies that PP cannot have other roots. See Figure 4.

Refer to caption
Figure 4. PP and QQ along the x1x_{1}-axis.

With the symmetry described in (B.6), if we let b=bb^{\prime}=-b and c=cc^{\prime}=-c, then Q(b)=Q(c)=0Q(b^{\prime})=Q(c^{\prime})=0 while Q>0Q>0 on (b,c)(b^{\prime},c^{\prime}). This implies v>0v>0 on (b,c)(b^{\prime},c^{\prime}) while v(b)=v(c)=0v(b^{\prime})=v(c^{\prime})=0. However, this implies that x1v\partial_{x_{1}}v must vanish at some point on (b,c),(b^{\prime},c^{\prime}), and so does QQ. This is a contradiction.

As a result, spt(Δu)\operatorname{spt}(\Delta u) must be a half line. A similar result holds for spt(Δv).\operatorname{spt}(\Delta v). With (B.6), we see that if spt(Δu)=(,a]\operatorname{spt}(\Delta u)=(-\infty,a], then spt(Δv)=(,a].\operatorname{spt}(\Delta v)=(-\infty,-a].

Step 4: Conclusion.

After the previous step, we can apply Theorem 2.1 to get

Uau=a0u72+α1u52+α2u32+a3u12.\operatorname{U}_{-a}u=a_{0}^{\prime}u_{\frac{7}{2}}+\alpha_{1}u_{\frac{5}{2}}+\alpha_{2}u_{\frac{3}{2}}+a_{3}^{\prime}u_{\frac{1}{2}}.

We must have a3=0a_{3}^{\prime}=0 by (B.2). With |u(u72+a1u52+a2u32)||u-(u_{\frac{7}{2}}+a_{1}u_{\frac{5}{2}}+a_{2}u_{\frac{3}{2}})| being bounded in 2\mathbb{R}^{2}, we conclude a0=1.a_{0}^{\prime}=1. Therefore,

Uau=u72+α1u52+α2u32.\operatorname{U}_{-a}u=u_{\frac{7}{2}}+\alpha_{1}u_{\frac{5}{2}}+\alpha_{2}u_{\frac{3}{2}}.

Similarly, we have

Uav=u72+β1u52+β2u32.\operatorname{U}_{a}v=u_{\frac{7}{2}}+\beta_{1}u_{\frac{5}{2}}+\beta_{2}u_{\frac{3}{2}}.

From here, we use (B.6) to conclude α1=β1\alpha_{1}=\beta_{1} and α2=β2\alpha_{2}=-\beta_{2}. The conclusion follows. ∎

A perturbation of the previous lemma leads to the following corollary. Recall notations from (B.1) and Remark B.1.

Corollary B.2.

Given p=u72+a1u52+a2u32+a3u12=u72+a~1w52+a~2w32+a~3w12p=u_{\frac{7}{2}}+a_{1}u_{\frac{5}{2}}+a_{2}u_{\frac{3}{2}}+a_{3}u_{\frac{1}{2}}=u_{\frac{7}{2}}+\tilde{a}_{1}w_{\frac{5}{2}}+\tilde{a}_{2}w_{\frac{3}{2}}+\tilde{a}_{3}w_{\frac{1}{2}} with |aj|1|a_{j}|\leq 1, we set

bj+:=bj[a1,a2,a3],bj:=bj[a1,a2,a3] for j=1,2,b_{j}^{+}:=b_{j}[a_{1},a_{2},a_{3}],\hskip 5.0ptb_{j}^{-}:=b_{j}[-a_{1},a_{2},-a_{3}]\text{ for }j=1,2,

and

pext=p+b1+u12+b2+u32=p+b~1+w12+b~2+w32.p_{ext}=p+b_{1}^{+}u_{-\frac{1}{2}}+b_{2}^{+}u_{-\frac{3}{2}}=p+\tilde{b}_{1}^{+}w_{-\frac{1}{2}}+\tilde{b}_{2}^{+}w_{-\frac{3}{2}}.

Then there is a universal modulus of continuity, ω\omega, such that

|a~1(α1+τ)|+|a~2(α2+α1τ+12τ2)|+|a~3(α2τ+12α1τ2+16τ3)|\displaystyle|\tilde{a}_{1}-(\alpha_{1}+\tau)|+|\tilde{a}_{2}-(\alpha_{2}+\alpha_{1}\tau+\frac{1}{2}\tau^{2})|+|\tilde{a}_{3}-(\alpha_{2}\tau+\frac{1}{2}\alpha_{1}\tau^{2}+\frac{1}{6}\tau^{3})|
+|b~1+(12α2τ2+16α1τ3+124τ4)|+|b~2+(16α2τ3+124α1τ4+1120τ5)|\displaystyle+|\tilde{b}_{1}^{+}-(\frac{1}{2}\alpha_{2}\tau^{2}+\frac{1}{6}\alpha_{1}\tau^{3}+\frac{1}{24}\tau^{4})|+|\tilde{b}_{2}^{+}-(\frac{1}{6}\alpha_{2}\tau^{3}+\frac{1}{24}\alpha_{1}\tau^{4}+\frac{1}{120}\tau^{5})|
ω(|b1+b1|+|b2++b2|)\displaystyle\leq\omega(|b_{1}^{+}-b_{1}^{-}|+|b_{2}^{+}+b_{2}^{-}|)

for universally bounded αj\alpha_{j} and τ\tau satisfying

(B.7) α20 and α12125α2.\alpha_{2}\geq 0\text{ and }\alpha_{1}^{2}\leq\frac{12}{5}\alpha_{2}.
Proof.

Suppose there is no such ω\omega, we find a sequence (ajn)(a_{j}^{n}) such that the corresponding (bj±,n)(b_{j}^{\pm,n}) satisfy

(B.8) |b1+,nb1,n|+|b2+,n+b2,n|0,|b_{1}^{+,n}-b_{1}^{-,n}|+|b_{2}^{+,n}+b_{2}^{-,n}|\to 0,

but for any bounded αj\alpha_{j} and τ\tau satisfying (B.7), we have

(B.9) |a~1n(α1+τ)|+|a~2n(α2+α1τ+12τ2)|+|a~3n(α2τ+12α1τ2+16τ3)|\displaystyle|\tilde{a}^{n}_{1}-(\alpha_{1}+\tau)|+|\tilde{a}^{n}_{2}-(\alpha_{2}+\alpha_{1}\tau+\frac{1}{2}\tau^{2})|+|\tilde{a}^{n}_{3}-(\alpha_{2}\tau+\frac{1}{2}\alpha_{1}\tau^{2}+\frac{1}{6}\tau^{3})|
+|b~1+,n(12α2τ2+16α1τ3+124τ4)|+|b~2+,n(16α2τ3+124α1τ4+1120τ5)|\displaystyle+|\tilde{b}_{1}^{+,n}-(\frac{1}{2}\alpha_{2}\tau^{2}+\frac{1}{6}\alpha_{1}\tau^{3}+\frac{1}{24}\tau^{4})|+|\tilde{b}_{2}^{+,n}-(\frac{1}{6}\alpha_{2}\tau^{3}+\frac{1}{24}\alpha_{1}\tau^{4}+\frac{1}{120}\tau^{5})|
ε>0\displaystyle\geq\varepsilon>0

Up to a subsequence, we have

ajnaj and bj±,nbj±,.a_{j}^{n}\to a_{j}^{\infty}\text{ and }b_{j}^{\pm,n}\to b_{j}^{\pm,\infty}.

If we take

pn+=u72+a1nu52+a2nu32+a3nu12=u72+a~1nw52+a~2nw32+a~3nw12p_{n}^{+}=u_{\frac{7}{2}}+a^{n}_{1}u_{\frac{5}{2}}+a^{n}_{2}u_{\frac{3}{2}}+a^{n}_{3}u_{\frac{1}{2}}=u_{\frac{7}{2}}+\tilde{a}^{n}_{1}w_{\frac{5}{2}}+\tilde{a}^{n}_{2}w_{\frac{3}{2}}+\tilde{a}^{n}_{3}w_{\frac{1}{2}}

and denote by un+u^{+}_{n} the solution to (B.3) with data pn+p^{+}_{n} at infinity, then by Proposition B.1, we have

|un+pn+|A in 2.|u^{+}_{n}-p^{+}_{n}|\leq A\text{ in }\mathbb{R}^{2}.

Up to a subsequence, we have un+u^{+}_{n} locally uniformly converge to u+u^{+}_{\infty}, a solution to the thin obstacle problem in 2\mathbb{R}^{2}. Moreover, we have

|u+[u72+a1u52+a2u32+a3u12]|A in 2.|u^{+}_{\infty}-[u_{\frac{7}{2}}+a^{\infty}_{1}u_{\frac{5}{2}}+a^{\infty}_{2}u_{\frac{3}{2}}+a^{\infty}_{3}u_{\frac{1}{2}}]|\leq A\text{ in $\mathbb{R}^{2}$.}

Thus u+u^{+}_{\infty} is the solution to (B.3) with data p+=u72+a1u52+a2u32+a3u12p^{+}_{\infty}=u_{\frac{7}{2}}+a^{\infty}_{1}u_{\frac{5}{2}}+a^{\infty}_{2}u_{\frac{3}{2}}+a^{\infty}_{3}u_{\frac{1}{2}} at infinity.

With Corollary B.1, we see that bj+,:=bj[aj]=limbj+,n.b_{j}^{+,\infty}:=b_{j}[a_{j}^{\infty}]=\lim b_{j}^{+,n}. A similar argument applied to pn=u72a1nu52+a2nu32a3nu12p_{n}^{-}=u_{\frac{7}{2}}-a^{n}_{1}u_{\frac{5}{2}}+a^{n}_{2}u_{\frac{3}{2}}-a^{n}_{3}u_{\frac{1}{2}} leads to bj,:=bj[a,a2,a3]=limbj,n.b_{j}^{-,\infty}:=b_{j}[-a^{\infty},a_{2}^{\infty},-a_{3}^{\infty}]=\lim b_{j}^{-,n}. With (B.8), we conclude

b1[a1,a2,a3]=b1[a1,a2,a3] and b2[a1,a2,a3]=b2[a1,a2,a3].b_{1}[a_{1}^{\infty},a_{2}^{\infty},a_{3}^{\infty}]=b_{1}[-a_{1}^{\infty},a_{2}^{\infty},-a_{3}^{\infty}]\text{ and }b_{2}[a_{1}^{\infty},a_{2}^{\infty},a_{3}^{\infty}]=-b_{2}[-a_{1}^{\infty},a_{2}^{\infty},-a_{3}^{\infty}].

Lemma B.1 gives

u+=Uτ(u72+α1w52+α2w32)u_{\infty}^{+}=\operatorname{U}_{\tau}(u_{\frac{7}{2}}+\alpha_{1}w_{\frac{5}{2}}+\alpha_{2}w_{\frac{3}{2}})

for αj\alpha_{j} satisfying (B.7).

Consequently, we have

|a~1(α1+τ)|+|a~2(α2+α1τ+12τ2)|+|a~3(α2τ+12α1τ2+16τ3)|\displaystyle|\tilde{a}_{1}^{\infty}-(\alpha_{1}+\tau)|+|\tilde{a}^{\infty}_{2}-(\alpha_{2}+\alpha_{1}\tau+\frac{1}{2}\tau^{2})|+|\tilde{a}^{\infty}_{3}-(\alpha_{2}\tau+\frac{1}{2}\alpha_{1}\tau^{2}+\frac{1}{6}\tau^{3})|
+|b~1,+(12α2τ2+16α1τ3+124τ4)|+|b~2,+(16α2τ3+124α1τ4+1120τ5)|=0.\displaystyle+|\tilde{b}_{1}^{\infty,+}-(\frac{1}{2}\alpha_{2}\tau^{2}+\frac{1}{6}\alpha_{1}\tau^{3}+\frac{1}{24}\tau^{4})|+|\tilde{b}_{2}^{\infty,+}-(\frac{1}{6}\alpha_{2}\tau^{3}+\frac{1}{24}\alpha_{1}\tau^{4}+\frac{1}{120}\tau^{5})|=0.

With convergence of a~jna~j\tilde{a}_{j}^{n}\to\tilde{a}_{j}^{\infty} and b~j+,nb~j+,\tilde{b}_{j}^{+,n}\to\tilde{b}_{j}^{+,\infty}, this contradicts (B.9). ∎

References

  • [Alm] Almgren, F. Dirichlet’s problem for multiple valued functions and the regularity of mass minimizing integral currents. Minimal submanifolds and geodesics (Proc. Japan-United States Sem., Tokyo, 1977), 1-6, North-Holland, Amsterdam-New York, 1979.
  • [AC] Athanasopoulos, I.; Caffarelli, L.A. Optimal regularity of lower dimensional obstacle problems. Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. 310 (2004), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funktzs. 35, 49-66.
  • [ACS] Athanasopoulos, I.; Caffarelli, L.A.; Salsa, S. The structure of the free boundary for lower dimensional obstacle problems. Amer. J. Math. 130 (2008), no. 2, 485-498.
  • [CSV] Colombo, M.; Spolaor, L.; Velichkov, B. Direct epiperimetric inequalities for the thin obstacle problem and applications. Comm. Pure Appl. Math. 73 (2020), no. 2, 384-420.
  • [D] De Silva, D. Free boundary regularity for a problem with right hand side. Interfaces Free Bound. 13 (2011), no. 2, 223-238.
  • [DS1] De Silva, D.; Savin, O. Boundary Harnack estimates in slip domains and applications to thin free boundary problems. Rev. Mat. Iberoam. 32 (2016), no. 3, 891-912.
  • [DS2] De Silva, D.; Savin, O. CC^{\infty} regularity of certain thin free boundary problems. Indiana Univ. Math. J. 64 (2015), no. 5, 1575-1608.
  • [DL] Duvaut, G.; Lions, J.-L. Inequalities in mechanics and physics. Grundlehren der Mathematischen Wissenschaften, 219. Springer-Verlag Berlin-New York, 1976.
  • [FeR] Fernández-Real, X.; Ros-Oton, X. Free boundary regularity for almost every solution to the Signorini problem. Arch. Ration. Mech. Anal. to appear.
  • [FRS] Figalli, A.; Ros-Oton, X.; Serra, J. Generic regularity of free boundaries for the obstacle problem. Publ. Math. Inst. Hautes Études Sci. 132 (2020), 181-292.
  • [FoS1] Focardi, M.; Spadaro, E. On the measure and structure of the free boundary of the lower dimensional obstacle problem. Arch. Ration. Mech. Anal. 230 (2018), no. 1, 125-184.
  • [FoS2] Focardi, M.; Spadaro, E. Correction to : On the measure and structure of the free boundary of the lower dimensional obstacle problem. Arch. Ration. Mech. Anal. 230 (2018), no. 2, 783-784.
  • [GP] Garofalo, N.; Petrosyan, A. Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem. Invent. Math. 177 (2009), no. 2, 415-461.
  • [KPS] Koch, H.; Petrosyan, A.; Shi, W. Higher regularity of the free boundary in the elliptic Signorini problem. Nonlinear Anal. 126 (2015), 3-44.
  • [PSU] Petrosyan, A.; Shahgholian, H.; Uraltseva, N. Regularity of free boundaries in obstacle-type problems. Graduate Studies in Mathematics, 136. American Mathematical Society, Providence, RI, 2012.
  • [R] Richardson, D. Variational problems with thin obstacles. Thesis-The University of British Columbia 1978.
  • [SY1] Savin, O.; Yu, H. On the fine regularity of the singular set in the nonlinear obstacle problem. Preprint: arXiv:2101.11759.
  • [SY2] Savin, O.; Yu, H. Contact points with integer frequencies in the thin obstacle problem. Preprint: arXiv:2103.04013.
  • [SY3] Savin, O.; Yu, H. Regularity of the singular set in the fully nonlinear obstacle problem. J. Euro. Math. Soc. to appear.
  • [SY4] Savin, O.; Yu, H. Free boundary regularity in the triple membrane problem. Preprint: arXiv:2002.10628.
  • [Sig] Signorini, A. Questioni di elasticità non linearizzata e semilinearizzata. Rend. Mat. e Appl. 18 (1959), 95-139.
  • [U] Uraltseva, N. On the regularity of solutions of variational inequalities. Uspekhi Mat. Nauk 42 (1987), no. 6, 151-174.
  • [W] Weiss, G.S. A homogeneity improvement approach to the obstacle problem. Invent. Math. 138 (1999), no. 1, 23-50.