This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

January, 2022


Hadronic three-body DD decays mediated by scalar resonances

Hai-Yang Cheng Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, ROC    Cheng-Wei Chiang Department of Physics, National Taiwan University, Taipei, Taiwan 10617, ROC Physics Division, National Center for Theoretical Sciences, Taipei, Taiwan 10617, ROC    Zhi-Qing Zhang Department of Physics, Henan University of Technology, Zhengzhou, Henan 450052, P.R. China
Abstract

We study the quasi-two-body DSPD\to SP decays and the three-body DD decays proceeding through intermediate scalar resonances, where SS and PP denote scalar and pseudoscalar mesons, respectively. Our main results are: (i) Certain external and internal WW-emission diagrams with the emitted meson being a scalar meson are naïvely expected to vanish, but they actually receive contributions from vertex and hard spectator-scattering corrections beyond the factorization approximation. (ii) For light scalars with masses below or close to 1 GeV, it is more sensible to study three-body decays directly and compare with experiment as the two-body branching fractions are either unavailable or subject to large finite-width effects of the scalar meson. (iii) We consider the two-quark (scheme I) and four-quark (scheme II) descriptions of the light scalar mesons, and find the latter generally in better agreement with experiment. This is in line with recent BESIII measurements of semileptonic charm decays that prefer the tetraquark description of light scalars produced in charmed meson decays. (iv) The topological amplitude approach fails here as the DSPD\to SP decay branching fractions cannot be reliably inferred from the measurements of three-body decays, mainly because the decay rates cannot be factorized into the topological amplitude squared and the phase space factor. (v) The predicted rates for D0f0P,a0PD^{0}\to f_{0}P,a_{0}P are generally smaller than experimental data by one order of magnitude, presumably implying the significance of WW-exchange amplitudes. (vi) The WW-annihilation amplitude is found to be very sizable in the SPSP sector with |A/T|SP1/2|A/T|_{SP}\sim 1/2, contrary to its suppression in the PPPP sector with |A/T|PP0.18|A/T|_{PP}\sim 0.18. (vii) Finite-width effects are very important for the very broad σ/f0(500)\sigma/f_{0}(500) and κ/K0(700)\kappa/K_{0}^{*}(700) mesons. The experimental branching fractions (D+σπ+){\cal B}(D^{+}\to\sigma\pi^{+}) and (D+κ¯0π+){\cal B}(D^{+}\to\bar{\kappa}^{0}\pi^{+}) are thus corrected to be (3.8±0.3)×103(3.8\pm 0.3)\times 10^{-3} and (6.74.5+5.6)%(6.7^{+5.6}_{-4.5})\%, respectively.

I Introduction

In recent years many measurements of hadronic three-body and four-body decays of charmed mesons have been performed with Dalitz-plot amplitude analyses. Amplitudes describing DD meson decays into multibody final states are dominated by quasi-two-body processes, such as DPP,VP,SP,APD\to PP,VP,SP,AP and TPTP, where P,V,S,AP,V,S,A and TT denote pseudoscalar, vector, scalar, axial-vector and tensor mesons, respectively. Among various SS-, PP- and DD-wave intermediate resonances, the identification of the scalar mesons is rather difficult due to their broad widths and flat angular distributions.

Scalar mesons with masses lower than 2 GeV can be classified into two nonets: one nonet with masses below or close to 1 GeV, including σ/f0(500)\sigma/f_{0}(500), f0(980)f_{0}(980), a0(980)a_{0}(980) and κ/K0(700)\kappa/K_{0}^{*}(700); and the other nonet with masses above 1 GeV, including a0(1450)a_{0}(1450), K0(1430)K^{*}_{0}(1430), f0(1370)f_{0}(1370), f0(1500)f_{0}(1500) and f0(1710)f_{0}(1710). Since the last three are all isosinglet scalars and only two of them can be accommodated in the quark model, implying a dominant scalar glueball content in one of the three isosinglets.

In this work, we shall study the quasi-two-body DSPD\to SP decays and the three-body DD decays proceeding through intermediate scalar resonances. In Tables 1 and 2 we collect all the measured branching fractions of DSPP1P2PD\to SP\to P_{1}P_{2}P decays available in the Particle Data Group (PDG) PDG . It is clear that f0(980)f_{0}(980) and the f0f_{0} family such as f0(1370)f_{0}(1370), f0(1500)f_{0}(1500) and f0(1710)f_{0}(1710) are observed in the three-body decays of D+,D0D^{+},D^{0} and Ds+D_{s}^{+}, while a0(980)a_{0}(980) is seen exclusively in three-body D0D^{0} decays (except for Ds+a0+,0π0,+D_{s}^{+}\to a_{0}^{+,0}\pi^{0,+}). Contrary to f0(980)f_{0}(980) and a0(980)a_{0}(980) which are relatively easy to identify experimentally, the establishment of σ\sigma and κ\kappa is very difficult and controversial because their widths are so broad that their shapes are not clearly resonant. Nevertheless, their signals in three-body DD decays have been identified in D+,0σπ+,0π+ππ+,0D^{+,0}\to\sigma\pi^{+,0}\to\pi^{+}\pi^{-}\pi^{+,0}, D+κ¯0π+KSπ0π+D^{+}\to\bar{\kappa}^{0}\pi^{+}\to K_{S}\pi^{0}\pi^{+} and D+κ¯0K+π+KK+D^{+}\to\bar{\kappa}^{0}K^{+}\to\pi^{+}K^{-}K^{+}, respectively. Because of threshold and coupled-channel effects for f0(980)f_{0}(980) and a0(980)a_{0}(980) and the very broad widths for σ\sigma and κ\kappa, it is no longer pertinent to use the conventional Breit-Wigner parametrization to describe their line shapes.

The DSPD\to SP decays and related three-body DD decays have been studied previously in Refs. Kamal ; Katoch ; Buccella96 ; Fajfer ; ChengSP ; ElBennich ; Boito ; Cheng:SAT ; Xie:2014tma ; Dedonder:2014xpa ; Loiseau:2016mdm ; Dedonder:2021dmb . In the DSPD\to SP decays, the flavor diagram of each topology has two possibilities: one with the spectator quark in the charmed meson going to the pseudoscalar meson in the final state, and the other with the spectator quark ending up in the scalar meson. We thus need two copies of each topological diagram to describe the decay processes. Many of these decays have been observed in recent years through dedicated experiments and powerful Dalitz plot analysis of multi-body decays. We will investigate whether an extraction of the sizes and relative strong phases of these amplitudes is possible.

One purpose of studying these decays is to check our understanding in the structures and properties of light even-parity scalar mesons. Another goal is to learn the final-state interaction pattern in view of the rich resonance spectrum around the DD meson mass range. Not only does this work update our previous study Cheng:SAT , we also study the finite-width effect in the three-body decays mediated by the scalar mesons. Such an effect is observed to be particularly important for decays involving σ/f0(500)\sigma/f_{0}(500) and κ/K0(700)\kappa/K_{0}^{*}(700) in the intermediate state because of their broad widths compared to their masses, respectively. Therefore, one should be careful in the use of the narrow width approximation (NWA) to extract the DSPD\to SP two-body decays from the three-body decay rates.

This paper is organized as follows. In Section II, we review the current experimental status about how various DSPD\to SP decay branching fractions are extracted using the NWA from three-body decay rates. In Section III, we discuss the two-quark qq¯q\bar{q} and tetraquark pictures of the scalar nonet near or below 1 GeV along with the associated conundrums. The decay constants and form factors required for subsequent numerical calculations are given in this section, too. Section IV sets up the notation and formalism of flavor amplitude analysis, for both quark-antiquark and tetraquark pictures. In Section V, we take the factorization approach as an alternative toward analyzing these decays. We also introduce line shapes for the scalar resonances when describing various three-body decays. Section VI gives the results obtained based upon the approaches in the previous two sections for a comparison. Section VI.2 is devoted to the study of finite-width effect and how the NWA should be modified. We summarize our findings in Section VII.

II Experimental status

It is known that three- and four-body decays of heavy mesons provide a rich laboratory for studying the intermediate-state resonances. The Dalitz plot analysis of three-body or four-body decays of charmed mesons is a very useful technique for this purpose. We are interested in DSPD\to SP decays followed by SP1P2S\to P_{1}P_{2}. The results of various experiments are summarized in Tables 1 and 2. To extract the branching fraction for a DSPD\to SP decay, it is the usual practice to use the NWA:

Γ(DSPP1P2P)=Γ(DSP)NWA(SP1P2).\displaystyle\Gamma(D\to SP\to P_{1}P_{2}P)=\Gamma(D\to SP)_{\rm NWA}{\cal B}(S\to P_{1}P_{2})~{}. (1)

Since this relation holds only in the ΓS0\Gamma_{S}\to 0 limit, we put the subscript NWA to emphasize that (DSP){\cal B}(D\to SP) thus obtained is under this limit. Finite width effects will be discussed in Section VI.2. For the branching fractions of two-body decays of scalar mesons, we shall use PDG

(a0(980)πη)=0.850±0.017,\displaystyle{\cal B}(a_{0}(980)\to\pi\eta)=0.850\pm 0.017~{}, (σ(500)π+π)=23,\displaystyle{\cal B}(\sigma(500)\to\pi^{+}\pi^{-})={2\over 3}~{},
(f0(1500)ππ)=0.345±0.022,\displaystyle{\cal B}(f_{0}(1500)\to\pi\pi)=0.345\pm 0.022~{}, (f0(1710)K+K)=0.292±0.027,\displaystyle{\cal B}(f_{0}(1710)\to K^{+}K^{-})=0.292\pm 0.027~{}, (2)
(K00(1430)K+π)=23(0.93±0.10),\displaystyle{\cal B}(K_{0}^{*0}(1430)\to K^{+}\pi^{-})={2\over 3}(0.93\pm 0.10)~{}, (κ(700)K+π)=23,\displaystyle{\cal B}(\kappa(700)\to K^{+}\pi^{-})={2\over 3}~{},

where we have applied the average of Γ(a0(980)KK¯)/Γ(a0(980)πη)=0.177±0.024\Gamma(a_{0}(980)\to K\overline{K})/\Gamma(a_{0}(980)\to\pi\eta)=0.177\pm 0.024 from PDG PDG to extract the branching fraction of a0(980)πηa_{0}(980)\to\pi\eta, assuming that its width is saturated by the KK¯K\overline{K} and πη\pi\eta modes. For f0(1710)f_{0}(1710) we have used the values of Γ(f0(1710)ππ)/Γ(f0(1710)KK¯)=0.23±0.05\Gamma(f_{0}(1710)\to\pi\pi)/\Gamma(f_{0}(1710)\to K\overline{K})=0.23\pm 0.05 and Γ(f0(1710)ηη)/Γ(f0(1710)KK¯)=0.48±0.15\Gamma(f_{0}(1710)\to\eta\eta)/\Gamma(f_{0}(1710)\to K\overline{K})=0.48\pm 0.15 from PDG together with the assumption of its width being saturated by ππ\pi\pi, KK¯K\overline{K} and ηη\eta\eta modes. For S=f0(980)S=f_{0}(980) or a0(980)a_{0}(980), we are not able to extract the branching fractions of DSPD\to SP due to the lack of information of (SP1P2){\cal B}(S\to P_{1}P_{2}) (except for a0(980)πηa_{0}(980)\to\pi\eta), especially for (SKK¯){\cal B}(S\to K\overline{K}) where the threshold effect must be taken into account. For example, the NWA relation

Γ(D+f0(980)K+K+KK+)=Γ(D+f0(980)K+)(f0(980)K+K)\displaystyle\Gamma(D^{+}\to f_{0}(980)K^{+}\to K^{+}K^{-}K^{+})=\Gamma(D^{+}\to f_{0}(980)K^{+}){\cal B}(f_{0}(980)\to K^{+}K^{-}) (3)

cannot be applied to extract the branching fraction of D+f0(980)K+D^{+}\to f_{0}(980)K^{+} due to the unknown (f0(980)K+K){\cal B}(f_{0}(980)\to K^{+}K^{-}). Therefore, we will calculate the branching fractions of (DSPP1P2P){\cal B}(D\to SP\to P_{1}P_{2}P) directly and compare them with experiment (see Table 8 below).

Table 1: Experimental branching fractions of (D+,Ds+)SPP1P2P(D^{+},D_{s}^{+})\to SP\to P_{1}P_{2}P decays. For simplicity and convenience, we have dropped the mass identification for σ(500)\sigma(500), f0(980)f_{0}(980), a0(980)a_{0}(980), κ(700)\kappa(700) and K0(1430)K^{*}_{0}(1430). Data are taken from Ref. PDG unless specified otherwise. We have applied the NWA given by Eq. (1) to extract the branching fractions of the two-body DD decay denoted by (DSP)NWA{\cal B}(D\to SP)_{\rm NWA}.
(DSP;SP1P2){\cal B}(D\to SP;S\to P_{1}P_{2}) (DSP)NWA{\cal B}(D\to SP)_{\rm NWA}
(D+f0π+;f0π+π)=(1.56±0.33)×104{\cal B}(D^{+}\to f_{0}\pi^{+};f_{0}\to\pi^{+}\pi^{-})=(1.56\pm 0.33)\times 10^{-4}
(D+f0(1370)π+;f0(1370)π+π)=(8±4)×105{\cal B}(D^{+}\to f_{0}(1370)\pi^{+};f_{0}(1370)\to\pi^{+}\pi^{-})=(8\pm 4)\times 10^{-5}
(D+f0(1500)π+;f0(1500)π+π)=(1.1±0.4)×104{\cal B}(D^{+}\to f_{0}(1500)\pi^{+};f_{0}(1500)\to\pi^{+}\pi^{-})=(1.1\pm 0.4)\times 10^{-4} (D+f0(1500)π+)=(4.78±1.77)×104{\cal B}(D^{+}\to f_{0}(1500)\pi^{+})=(4.78\pm 1.77)\times 10^{-4}
(D+f0(1710)π+;f0(1710)π+π)<5×105{\cal B}(D^{+}\to f_{0}(1710)\pi^{+};f_{0}(1710)\to\pi^{+}\pi^{-})<5\times 10^{-5} (D+f0(1710)π+)<5.8×104{\cal B}(D^{+}\to f_{0}(1710)\pi^{+})<5.8\times 10^{-4}
(D+f0K+;f0π+π)=(4.4±2.6)×105{\cal B}(D^{+}\to f_{0}K^{+};f_{0}\to\pi^{+}\pi^{-})=(4.4\pm 2.6)\times 10^{-5}
(D+f0K+;f0K+K)=(1.23±0.02)×105{\cal B}(D^{+}\to f_{0}K^{+};f_{0}\to K^{+}K^{-})=(1.23\pm 0.02)\times 10^{-5} 111Assuming a fit fraction of 20% for D+f0(980)K+D^{+}\to f_{0}(980)K^{+} in D+K+KK+D^{+}\to K^{+}K^{-}K^{+} decay LHCb:D+toKKK .
(D+a0(1450)0π+;a00K+K)=(4.51.8+7.0)×104{\cal B}(D^{+}\to a_{0}(1450)^{0}\pi^{+};a_{0}^{0}\to K^{+}K^{-})=(4.5^{+7.0}_{-1.8})\times 10^{-4}
(D+σπ+;σπ+π)=(1.38±0.12)×103{\cal B}(D^{+}\to\sigma\pi^{+};\sigma\to\pi^{+}\pi^{-})=(1.38\pm 0.12)\times 10^{-3} (D+σπ+)=(2.07±0.18)×103{\cal B}(D^{+}\to\sigma\pi^{+})=({2.07\pm 0.18})\times 10^{-3}
(D+κ¯0π+;κ¯0KSπ0)=(64+5)×103{\cal B}(D^{+}\to\bar{\kappa}^{0}\pi^{+};\bar{\kappa}^{0}\to K_{S}\pi^{0})=(6^{+5}_{-4})\times 10^{-3} (D+κ¯0π+)=(3.62.4+3.0)%{\cal B}(D^{+}\to\bar{\kappa}^{0}\pi^{+})=({3.6^{+3.0}_{-2.4}})\%
(D+κ¯0K+;κ¯0Kπ+)=(6.82.1+3.5)×104{\cal B}(D^{+}\to\bar{\kappa}^{0}K^{+};\bar{\kappa}^{0}\to K^{-}\pi^{+})=(6.8^{+3.5}_{-2.1})\times 10^{-4} (D+κ¯0K+)=(1.00.3+0.5)×103{\cal B}(D^{+}\to\bar{\kappa}^{0}K^{+})=({1.0^{+0.5}_{-0.3}})\times 10^{-3}
(D+K¯00π+;K¯00Kπ+)=(1.25±0.06)%{\cal B}(D^{+}\to\overline{K}_{0}^{*0}\pi^{+};\overline{K}_{0}^{*0}\to K^{-}\pi^{+})=(1.25\pm 0.06)\% (D+K¯00π+)=(2.02±0.24)%{\cal B}(D^{+}\to\overline{K}_{0}^{*0}\pi^{+})=(2.02\pm 0.24)\%
(D+K¯00π+;K¯00KSπ0)=(2.7±0.9)×103{\cal B}(D^{+}\to\overline{K}_{0}^{*0}\pi^{+};\overline{K}_{0}^{*0}\to K_{S}\pi^{0})=(2.7\pm 0.9)\times 10^{-3} (D+K¯00π+)=(1.74±0.61)%{\cal B}(D^{+}\to\overline{K}_{0}^{*0}\pi^{+})=(1.74\pm 0.61)\%
(D+K¯00K+;K¯00Kπ+)=(1.82±0.35)×103{\cal B}(D^{+}\to\overline{K}_{0}^{*0}K^{+};\overline{K}_{0}^{*0}\to K^{-}\pi^{+})=(1.82\pm 0.35)\times 10^{-3} D+K¯00K+D^{+}\to\overline{K}_{0}^{*0}K^{+} prohibited on-shell
(Ds+f0π+;f0K+K)=(1.14±0.31)%{\cal B}(D_{s}^{+}\to f_{0}\pi^{+};f_{0}\to K^{+}K^{-})=(1.14\pm 0.31)\%
(Ds+f0π+;f0π0π0)=(2.1±0.4)×103{\cal B}(D_{s}^{+}\to f_{0}\pi^{+};f_{0}\to\pi^{0}\pi^{0})=(2.1\pm 0.4)\times 10^{-3} 222BESIII data taken from Ref. BESIII:Dspi+pi0pi0 .
(Ds+S(980)π+;S(980)K+K)=(1.05±0.07)%{\cal B}(D_{s}^{+}\to S(980)\pi^{+};S(980)\to K^{+}K^{-})=(1.05\pm 0.07)\% 333BESIII data taken from Ref. BESIII:DsKKpi ., 444S(980)S(980) denotes both f0(980)f_{0}(980) and a0(980)a_{0}(980).
(Ds+f0(1370)π+;f0K+K)=(7±5)×104{\cal B}(D_{s}^{+}\to f_{0}(1370)\pi^{+};f_{0}\to K^{+}K^{-})=(7\pm 5)\times 10^{-4}
(Ds+f0(1370)π+;f0K+K)=(7±2)×104{\cal B}(D_{s}^{+}\to f_{0}(1370)\pi^{+};f_{0}\to K^{+}K^{-})=(7\pm 2)\times 10^{-4} 333BESIII data taken from Ref. BESIII:DsKKpi .
(Ds+f0(1370)π+;f0π0π0)=(1.3±0.2)×103{\cal B}(D_{s}^{+}\to f_{0}(1370)\pi^{+};f_{0}\to\pi^{0}\pi^{0})=(1.3\pm 0.2)\times 10^{-3} 222BESIII data taken from Ref. BESIII:Dspi+pi0pi0 .
(Ds+f0(1710)π+;f0K+K)=(6.6±2.8)×104{\cal B}(D_{s}^{+}\to f_{0}(1710)\pi^{+};f_{0}\to K^{+}K^{-})=(6.6\pm 2.8)\times 10^{-4} (Ds+f0(1710)π+)=(2.26±0.98)×103{\cal B}(D_{s}^{+}\to f_{0}(1710)\pi^{+})=(2.26\pm 0.98)\times 10^{-3}
(Ds+f0(1710)π+;f0K+K)=(10±4)×104{\cal B}(D_{s}^{+}\to f_{0}(1710)\pi^{+};f_{0}\to K^{+}K^{-})=(10\pm 4)\times 10^{-4} 333BESIII data taken from Ref. BESIII:DsKKpi . (Ds+f0(1710)π+)=(3.42±1.40)×103{\cal B}(D_{s}^{+}\to f_{0}(1710)\pi^{+})=(3.42\pm 1.40)\times 10^{-3}
(Ds+a0+,0π0,+;a0+,0ηπ+,0)=(1.46±0.27)%{\cal B}(D_{s}^{+}\to a_{0}^{+,0}\pi^{0,+};a_{0}^{+,0}\to\eta\pi^{+,0})=(1.46\pm 0.27)\% 555The branching fraction is assigned to be (2.2±0.4)%(2.2\pm 0.4)\% by the PDG PDG . However, as pointed out in Ref. BESIII:Dstoa0pi , the fraction of Ds+a0(980)+(0)π0(+),a0(980)+(0)π0(+)ηD_{s}^{+}\to a_{0}(980)^{+(0)}\pi^{0(+)},a_{0}(980)^{+(0)}\to\pi^{0(+)}\eta with respect to the total fraction of Ds+a0(980)π,a0(980)πηD_{s}^{+}\to a_{0}(980)\pi,a_{0}(980)\to\pi\eta is evaluated to be 0.66. Consequently, the branching fraction should be multiplied by a factor of 0.66 to become (1.46±0.27)%(1.46\pm 0.27)\%. (Ds+a00π++a0+π0)=(1.72±0.32)%{\cal B}(D_{s}^{+}\to a_{0}^{0}\pi^{+}+a_{0}^{+}\pi^{0})=(1.72\pm 0.32)\%
(Ds+K¯00K+;K¯00Kπ+)=(1.8±0.4)×103{\cal B}(D_{s}^{+}\to\overline{K}_{0}^{*0}K^{+};\overline{K}_{0}^{*0}\to K^{-}\pi^{+})=(1.8\pm 0.4)\times 10^{-3} (Ds+K¯00K+)=(2.9±0.7)×103{\cal B}(D_{s}^{+}\to\overline{K}_{0}^{*0}K^{+})=({2.9\pm 0.7})\times 10^{-3}
(Ds+K¯00K+;K¯00Kπ+)=(1.6±0.4)×103{\cal B}(D_{s}^{+}\to\overline{K}_{0}^{*0}K^{+};\overline{K}_{0}^{*0}\to K^{-}\pi^{+})=(1.6\pm 0.4)\times 10^{-3} 333BESIII data taken from Ref. BESIII:DsKKpi . (Ds+K¯00K+)=(2.6±0.7)×103{\cal B}(D_{s}^{+}\to\overline{K}_{0}^{*0}K^{+})=({2.6\pm 0.7})\times 10^{-3}
(Ds+K00π+;K00K+π)=(5.0±3.5)×104{\cal B}(D_{s}^{+}\to K_{0}^{*0}\pi^{+};K_{0}^{*0}\to K^{+}\pi^{-})=(5.0\pm 3.5)\times 10^{-4} (Ds+K00π+)=(8.1±5.7)×104{\cal B}(D_{s}^{+}\to K_{0}^{*0}\pi^{+})=({8.1\pm 5.7})\times 10^{-4}
Table 2: Same as Table 1 except for D0SPP1P2PD^{0}\to SP\to P_{1}P_{2}P decays.
(DSP;SP1P2){\cal B}(D\to SP;S\to P_{1}P_{2}) (DSP)NWA{\cal B}(D\to SP)_{\rm NWA}
(D0f0π0;f0π+π)=(3.7±0.9)×105{\cal B}(D^{0}\to f_{0}\pi^{0};f_{0}\to\pi^{+}\pi^{-})=(3.7\pm 0.9)\times 10^{-5}
(D0f0π0;f0K+K)=(3.6±0.6)×104{\cal B}(D^{0}\to f_{0}\pi^{0};f_{0}\to K^{+}K^{-})=(3.6\pm 0.6)\times 10^{-4}
(D0f0(1370)π0;f0π+π)=(5.5±2.1)×105{\cal B}(D^{0}\to f_{0}(1370)\pi^{0};f_{0}\to\pi^{+}\pi^{-})=(5.5\pm 2.1)\times 10^{-5}
(D0f0(1500)π0;f0π+π)=(5.8±1.6)×105{\cal B}(D^{0}\to f_{0}(1500)\pi^{0};f_{0}\to\pi^{+}\pi^{-})=(5.8\pm 1.6)\times 10^{-5} (D0f0(1500)π0)=(2.5±0.7)×104{\cal B}(D^{0}\to f_{0}(1500)\pi^{0})=(2.5\pm 0.7)\times 10^{-4}
(D0f0(1710)π0;f0π+π)=(4.6±1.6)×105{\cal B}(D^{0}\to f_{0}(1710)\pi^{0};f_{0}\to\pi^{+}\pi^{-})=(4.6\pm 1.6)\times 10^{-5} (D0f0(1710)π0)=(3.7±1.4)×104{\cal B}(D^{0}\to f_{0}(1710)\pi^{0})=(3.7\pm 1.4)\times 10^{-4}
(D0f0K¯0;f0π+π)=(2.400.46+0.80)×103{\cal B}(D^{0}\to f_{0}\overline{K}^{0};f_{0}\to\pi^{+}\pi^{-})=(2.40^{+0.80}_{-0.46})\times 10^{-3}
(D0f0K¯0;f0K+K)<1.8×104{\cal B}(D^{0}\to f_{0}\overline{K}^{0};f_{0}\to K^{+}K^{-})<1.8\times 10^{-4}
(D0f0(1370)K¯0;f0π+π)=(5.62.6+1.8)×103{\cal B}(D^{0}\to f_{0}(1370)\overline{K}^{0};f_{0}\to\pi^{+}\pi^{-})=(5.6^{+1.8}_{-2.6})\times 10^{-3}
(D0f0(1370)K¯0;f0K+K)=(3.4±2.2)×104{\cal B}(D^{0}\to f_{0}(1370)\overline{K}^{0};f_{0}\to K^{+}K^{-})=(3.4\pm 2.2)\times 10^{-4}
(D0a0+K;a0+K+K¯0)=(1.18±0.36)×103{\cal B}(D^{0}\to a_{0}^{+}K^{-};a_{0}^{+}\to K^{+}\overline{K}^{0})=(1.18\pm 0.36)\times 10^{-3}
(D0a0+K;a0+K+K¯0)=(3.07±0.84)×103{\cal B}(D^{0}\to a_{0}^{+}K^{-};a_{0}^{+}\to K^{+}\overline{K}^{0})=(3.07\pm 0.84)\times 10^{-3} 111BESIII data taken from Ref. BESIII:D0KKKS .
(D0a0K+;a0KK¯0)<2.2×104{\cal B}(D^{0}\to a_{0}^{-}K^{+};a_{0}^{-}\to K^{-}\overline{K}^{0})<2.2\times 10^{-4}
(D0a00K¯0;a00K+K)=(5.8±0.8)×103{\cal B}(D^{0}\to a_{0}^{0}\overline{K}^{0};a_{0}^{0}\to K^{+}K^{-})=(5.8\pm 0.8)\times 10^{-3}
(D0a00K¯0;a00K+K)=(8.12±1.80)×103{\cal B}(D^{0}\to a_{0}^{0}\overline{K}^{0};a_{0}^{0}\to K^{+}K^{-})=(8.12\pm 1.80)\times 10^{-3} 111BESIII data taken from Ref. BESIII:D0KKKS .
(D0a00K¯0;a00ηπ0)=(2.40±0.56)×102{\cal B}(D^{0}\to a_{0}^{0}\overline{K}^{0};a_{0}^{0}\to\eta\pi^{0})=(2.40\pm 0.56)\times 10^{-2} (D0a00K¯0)=(2.83±0.66)%{\cal B}(D^{0}\to a_{0}^{0}\overline{K}^{0})=({2.83\pm 0.66})\%
(D0a0π+;a0KK0)=(2.6±2.8)×104{\cal B}(D^{0}\to a_{0}^{-}\pi^{+};a_{0}^{-}\to K^{-}K^{0})=(2.6\pm 2.8)\times 10^{-4}
(D0a0+π;a0+K+K¯0)=(1.2±0.8)×103{\cal B}(D^{0}\to a_{0}^{+}\pi^{-};a_{0}^{+}\to K^{+}\overline{K}^{0})=(1.2\pm 0.8)\times 10^{-3}
(D0a0(1450)π+;a0KK0)=(5.0±4.0)×105{\cal B}(D^{0}\to a_{0}(1450)^{-}\pi^{+};a_{0}^{-}\to K^{-}K^{0})=(5.0\pm 4.0)\times 10^{-5}
(D0a0(1450)+π;a0+K+K¯0)=(6.4±5.0)×105{\cal B}(D^{0}\to a_{0}(1450)^{+}\pi^{-};a_{0}^{+}\to K^{+}\overline{K}^{0})=(6.4\pm 5.0)\times 10^{-5}
(D0a0(1450)K+;a0KKS)<0.6×103{\cal B}(D^{0}\to a_{0}(1450)^{-}K^{+};a_{0}^{-}\to K^{-}K_{S})<0.6\times 10^{-3} 111BESIII data taken from Ref. BESIII:D0KKKS .
(D0σπ0;σπ+π)=(1.22±0.22)×104{\cal B}(D^{0}\to\sigma\pi^{0};\sigma\to\pi^{+}\pi^{-})=(1.22\pm 0.22)\times 10^{-4} (D0σπ0)=(1.8±0.3)×104{\cal B}(D^{0}\to\sigma\pi^{0})=({1.8\pm 0.3})\times 10^{-4}
(D0K0π+;K0K¯0π)=(5.340.66+0.80)×103{\cal B}(D^{0}\to K_{0}^{*-}\pi^{+};K_{0}^{*-}\to\overline{K}^{0}\pi^{-})=(5.34^{+0.80}_{-0.66})\times 10^{-3} (D0K0π+)=(8.61.4+1.6)×103{\cal B}(D^{0}\to K_{0}^{*-}\pi^{+})=({8.6^{+1.6}_{-1.4}})\times 10^{-3}
(D0K0π+;K0Kπ0)=(4.8±2.2)×103{\cal B}(D^{0}\to K_{0}^{*-}\pi^{+};K_{0}^{*-}\to K^{-}\pi^{0})=(4.8\pm 2.2)\times 10^{-3} (D0K0π+)=(1.55±0.73)%{\cal B}(D^{0}\to K_{0}^{*-}\pi^{+})=(1.55\pm 0.73)\%
(D0K¯00π0;K¯00Kπ+)=(5.91.6+5.0)×103{\cal B}(D^{0}\to\overline{K}_{0}^{*0}\pi^{0};\overline{K}_{0}^{*0}\to K^{-}\pi^{+})=(5.9^{+5.0}_{-1.6})\times 10^{-3} (D0K¯00π0)=(9.52.8+8.1)×103{\cal B}(D^{0}\to\overline{K}_{0}^{*0}\pi^{0})=(9.5^{+8.1}_{-2.8})\times 10^{-3}
(D0K0+π;K0+K0π+)<2.8×105{\cal B}(D^{0}\to K_{0}^{*+}\pi^{-};K_{0}^{*+}\to K^{0}\pi^{+})<2.8\times 10^{-5} (D0K0+π)<4.5×105{\cal B}(D^{0}\to K_{0}^{*+}\pi^{-})<4.5\times 10^{-5}

III Physical properties of scalar mesons

It is known that the underlying structure of scalar mesons is not well established theoretically (see, e.g., Refs. Amsler ; Close for a review). Scalar mesons with masses lower than 2 GeV can be classified into two nonets: one nonet with masses below or close to 1 GeV, including the isoscalars f0(500)f_{0}(500) (or σ\sigma), f0(980)f_{0}(980), the isodoublet K0(700)K_{0}^{*}(700) (or κ\kappa) and the isovector a0(980)a_{0}(980); and the other nonet with masses above 1 GeV, including f0(1370)f_{0}(1370), a0(1450)a_{0}(1450), K0(1430)K^{*}_{0}(1430) and f0(1500)/f0(1710)f_{0}(1500)/f_{0}(1710). If the scalar meson states below or near 1 GeV are identified as the conventional low-lying 0+0^{+} qq¯q\bar{q} nonet, then the nonet states above 1 GeV could be excited qq¯q\bar{q} states.

In the naïve quark model, the flavor wave functions of the light scalars read

σ=12(uu¯+dd¯),f0=ss¯,\displaystyle\sigma={1\over\sqrt{2}}(u\bar{u}+d\bar{d})~{},\qquad\qquad~{}f_{0}=s\bar{s}~{},
a00=12(uu¯dd¯),a0+=ud¯,a0=du¯,\displaystyle a_{0}^{0}={1\over\sqrt{2}}(u\bar{u}-d\bar{d})~{},\qquad\qquad a_{0}^{+}=u\bar{d}~{},\qquad a_{0}^{-}=d\bar{u}~{}, (4)
κ+=us¯,κ0=ds¯,κ¯0=sd¯,κ=su¯,\displaystyle\kappa^{+}=u\bar{s}~{},\qquad\kappa^{0}=d\bar{s}~{},\qquad~{}\bar{\kappa}^{0}=s\bar{d}~{},\qquad~{}\kappa^{-}=s\bar{u}~{},

where an ideal mixing for f0f_{0} and σ\sigma is assumed as f0(980)f_{0}(980) is the heaviest one and σ\sigma the lightest one in the light scalar nonet. However, as summarized in Ref. Cheng:SAT , this simple picture encounters several serious problems:

  1. 1.

    It is impossible to understand the mass degeneracy between f0(980)f_{0}(980) and a0(980)a_{0}(980), which is the so-called “inverted spectrum problem.”

  2. 2.

    The PP-wave 0+0^{+} meson has one unit of orbital angular momentum which costs an energy around 500 MeV. Hence, it should have a mass lying above rather than below 1 GeV.

  3. 3.

    It is difficult to explain why σ\sigma and κ\kappa are much broader than f0(980)f_{0}(980) and a0(980)a_{0}(980) in width.

  4. 4.

    The γγ\gamma\gamma widths of a0(980)a_{0}(980) and f0(980)f_{0}(980) are much smaller than naïvely expected for a qq¯q\bar{q} state bar85 .

  5. 5.

    The radiative decay ϕa0(980)γ\phi\to a_{0}(980)\gamma, which cannot proceed if a0(980)a_{0}(980) is a pure qq¯q\bar{q} state, can be nicely described by the four-quark nature of a0(980)a_{0}(980) Achasov:1987ts ; Achasov:2003cn or the kaon loop mechanism Schechter06 . Likewise, the observation of the radiative decay ϕf0(980)γππγ\phi\to f_{0}(980)\gamma\to\pi\pi\gamma is also accounted for by the four-quark state of f0(980)f_{0}(980) Achasov:2003cn .

It turns out that these difficulties can be readily resolved in the tetraquark scenario where the four-quark flavor wave functions of light scalar mesons are symbolically given by Jaffe

σ=uu¯dd¯,f0=12(uu¯+dd¯)ss¯,\displaystyle\sigma=u\bar{u}d\bar{d}~{},\qquad\qquad\qquad~{}~{}f_{0}=\frac{1}{\sqrt{2}}(u\bar{u}+d\bar{d})s\bar{s}~{},
a00=12(uu¯dd¯)ss¯,a0+=ud¯ss¯,a0=du¯ss¯,\displaystyle a_{0}^{0}=\frac{1}{\sqrt{2}}(u\bar{u}-d\bar{d})s\bar{s}~{},\qquad a_{0}^{+}=u\bar{d}s\bar{s}~{},\qquad a_{0}^{-}=d\bar{u}s\bar{s}~{},
κ+=us¯dd¯,κ0=ds¯uu¯,κ¯0=sd¯uu¯,κ=su¯dd¯.\displaystyle\kappa^{+}=u\bar{s}d\bar{d}~{},\qquad\kappa^{0}=d\bar{s}u\bar{u}~{},\qquad\bar{\kappa}^{0}=s\bar{d}u\bar{u}~{},\qquad\kappa^{-}=s\bar{u}d\bar{d}~{}. (5)

The four quarks q2q¯2q^{2}\bar{q}^{2} can form an SS-wave (rather than PP-wave) 0+0^{+} meson without introducing one unit of orbital angular momentum. This four-quark description explains naturally the inverted mass spectrum of the light nonet, 111However, it has been claimed recently in Ref. Kuroda:2019jzm that the inverse mass hierarchy can be realized in the qq¯q\bar{q} picture through a U(1)U(1) axial anomaly including explicit SU(3)FSU(3)_{F} breaking. The anomaly term contributes to a0(980)a_{0}(980) with the strange quark mass and to κ/K0(700)\kappa/K_{0}^{*}(700) with the up or down quark mass due to its flavor singlet nature. The current mass of the strange quark makes the a0a_{0} meson heavier than the κ\kappa meson. especially the mass degeneracy between f0(980)f_{0}(980) and a0(980)a_{0}(980), and accounts for the broad widths of σ\sigma and κ\kappa while f0(980)f_{0}(980) and a0(980)a_{0}(980) are narrow because of the suppressed phase space for their decays to the kaon pairs. Lattice calculations have confirmed that a0(1450)a_{0}(1450) and K0(1430)K_{0}^{*}(1430) are qq¯q\bar{q} mesons, and suggested that σ\sigma, κ\kappa and a0(980)a_{0}(980) are tetraquark mesonia Prelovsek ; Mathur ; Wakayama:scalar ; Alexandrou:a0kappa ; Alexandrou:a0 .

The inverted spectrum problem can also be alleviated in the scenario where the light scalars are dynamically generated from the meson-meson interaction, with the f0(980)f_{0}(980) and the a0(980)a_{0}(980) coupling strongly to the KK¯K\overline{K} channel with isospin 0 and 1, respectively. Indeed, the whole light scalar nonet appears naturally from properly unitarized chiral amplitudes for pseudoscalar-pseudoscalar scatterings Oller:1997ng ; Oller:1998hw . Consequently, both f0(980)f_{0}(980) and a0(980)a_{0}(980) are good candidates of KK¯K\overline{K} molecular states Weinstein:1990gu , while σ\sigma and κ\kappa can be considered as the bound states of ππ\pi\pi and KπK\pi, respectively.

In the naïve two-quark model with ideal mixing for f0(980)f_{0}(980) and σ(500)\sigma(500), f0(980)f_{0}(980) is purely an ss¯s\bar{s} state, while σ(500)\sigma(500) is an nn¯n\bar{n} state with nn¯(u¯u+d¯d)/2n\bar{n}\equiv(\bar{u}u+\bar{d}d)/\sqrt{2}. However, there also exists some experimental evidence indicating that f0(980)f_{0}(980) is not a purely ss¯s\bar{s} state. For example, the observation of Γ(J/ψf0ω)12Γ(J/ψf0ϕ)\Gamma(J/\psi\to f_{0}\omega)\approx{1\over 2}\Gamma(J/\psi\to f_{0}\phi) PDG clearly shows the existence of the non-strange and strange quark contents in f0(980)f_{0}(980). Therefore, isoscalars σ(500)\sigma(500) and f0(980)f_{0}(980) must have a mixing

|f0(980)=|ss¯cosθ+|nn¯sinθ,|σ(500)=|ss¯sinθ+|nn¯cosθ.\displaystyle|f_{0}(980)\rangle=|s\bar{s}\rangle\cos\theta+|n\bar{n}\rangle\sin\theta~{},\qquad|\sigma(500)\rangle=-|s\bar{s}\rangle\sin\theta+|n\bar{n}\rangle\cos\theta~{}. (6)

Various mixing angle measurements have been discussed in the literature and summarized in Refs. CCY ; Fleischer:2011au . A recent measurement of the upper limit on the branching fraction product (B¯0J/ψf0(980))×(f0(980)π+π){\cal B}(\overline{B}^{0}\to J/\psi f_{0}(980))\times{\cal B}(f_{0}(980)\to\pi^{+}\pi^{-}) by LHCb leads to |θ|<30|\theta|<30^{\circ} LHCb:theta . Likewise, in the four-quark scenario for light scalar mesons, one can also define a similar f0f_{0}-σ\sigma mixing angle

|f0(980)=|nn¯ss¯cosϕ+|uu¯dd¯sinϕ,|σ(500)=|nn¯ss¯sinϕ+|uu¯dd¯cosϕ.\displaystyle|f_{0}(980)\rangle=|n\bar{n}s\bar{s}\rangle\cos\phi+|u\bar{u}d\bar{d}\rangle\sin\phi~{},\qquad|\sigma(500)\rangle=-|n\bar{n}s\bar{s}\rangle\sin\phi+|u\bar{u}d\bar{d}\rangle\cos\phi~{}. (7)

It has been shown that ϕ=174.6\phi=174.6^{\circ} Maiani .

In reality, the light scalar mesons could have both two-quark and four-quark components. Indeed, a real hadron in the QCD language should be described by a set of Fock states each of which has the same quantum number as the hadron. For example,

|a+(980)\displaystyle|a^{+}(980)\rangle =\displaystyle= ψud¯a0|ud¯+ψud¯ga0|ud¯g+ψud¯ss¯a0|ud¯ss¯+.\displaystyle\psi_{u\bar{d}}^{a_{0}}|u\bar{d}\rangle+\psi_{u\bar{d}g}^{a_{0}}|u\bar{d}g\rangle+\psi_{u\bar{d}s\bar{s}}^{a_{0}}|u\bar{d}s\bar{s}\rangle+\dots\,. (8)

In the tetraquark model, ψud¯ss¯a0ψud¯a0\psi_{u\bar{d}s\bar{s}}^{a_{0}}\gg\psi_{u\bar{d}}^{a_{0}}, while it is the other way around in the two-quark model. Although as far as the spectrum and decay are concerned, light scalars are predominately tetraquark states, their productions in heavy meson decays and in high energy hadron collisions are probably more sensitive to the two-quark component of the scalar mesons. For example, one may wonder if the energetic f0(980)f_{0}(980) produced in BB decays is dominated by the four-quark configuration as it requires to pick up two energetic quark-antiquark pairs to form a fast moving light tetraquark. Since the scalar meson production in charm decays is not energetic, it is possible that it has adequate time to form a tetraquark state. In principle, the two-quark and four-quark descriptions of the light scalars can be discriminated in the semileptonic charm decays. For example, the ratio

R=(D+f0+ν)+(D+σ+ν)(D+a00+ν)\displaystyle R={{\cal B}(D^{+}\to f_{0}\ell^{+}\nu)+{\cal B}(D^{+}\to\sigma\ell^{+}\nu)\over{\cal B}(D^{+}\to a_{0}^{0}\ell^{+}\nu)} (9)

is equal to 1 in the two-quark scenario and 3 in the four-quark model under the flavor SU(3) symmetry Wang:2009azc . Based on the BESIII measurements of D+a0(980)0e+νeD^{+}\to a_{0}(980)^{0}e^{+}\nu_{e} BESIII:Dtoa0SL , D+σe+νeD^{+}\to\sigma e^{+}\nu_{e} and the upper limit on D+f0(980)e+νeD^{+}\to f_{0}(980)e^{+}\nu_{e} BESIII:DtosigmaSL , it follows that R>2.7R>2.7 at 90% confidence level. Hence, the BESIII results favor the SU(3) nonet tetraquark description of the f0(500)f_{0}(500), f0(980)f_{0}(980) and a0(980)a_{0}(980) produced in charmed meson decays. A detailed analysis of BESIII and CLEO data on the decays D+π+πe+νeD^{+}\to\pi^{+}\pi^{-}e^{+}\nu_{e} and s+π+πe+νe{}_{s}^{+}\to\pi^{+}\pi^{-}e^{+}\nu_{e} in Ref. Achasov:2020qfx also shows results in favor of the four-quark nature of light scalar mesons f0(500)f_{0}(500) and f0(980)f_{0}(980).

The vector and scalar decay constants of the scalar meson are, respectively, defined as

S(p)|q¯2γμq1|0=fSpμ,S|q¯2q1|0=mSf¯S.\displaystyle\langle S(p)|\bar{q}_{2}\gamma_{\mu}q_{1}|0\rangle=f_{S}p_{\mu}~{},\qquad\langle S|\bar{q}_{2}q_{1}|0\rangle=m_{S}\bar{f}_{S}~{}. (10)

The neutral scalar mesons σ\sigma, f0f_{0} and a00a_{0}^{0} cannot be produced via the vector current owing to charge conjugation invariance or conservation of vector current:

fσ=ff0=fa00=0.\displaystyle f_{\sigma}=f_{f_{0}}=f_{a_{0}^{0}}=0~{}. (11)

Applying the equation of motion to Eq. (10) yields

μSfS=f¯S,withμS=mSm2(μ)m1(μ),\displaystyle\mu_{S}f_{S}=\bar{f}_{S}~{},\qquad\quad{\rm with}~{}~{}\mu_{S}={m_{S}\over m_{2}(\mu)-m_{1}(\mu)}~{}, (12)

where m2m_{2} and m1m_{1} are the running current quark masses. Therefore, the vector decay constant of the scalar meson fSf_{S} vanishes in the SU(3) or isospin limit. The vector decay constants of K0(1430)K^{*}_{0}(1430) and the charged a0(980)a_{0}(980) are non-vanishing, but they are suppressed due to the small mass difference between the constituent ss and uu quarks and between dd and uu quarks, respectively. The scalar decay constants f¯S\bar{f}_{S} have been computed in Ref. CCY within the framework of QCD sum rules. For reader’s conveneince, we list the scalar decay constants (in units of MeV) at μ=1\mu=1 GeV relevant to the present work

f¯f0=370±20,f¯a0=365±20,f¯σ=350±20,f¯κ=340±20,\displaystyle\bar{f}_{f_{0}}=370\pm 20,\qquad\bar{f}_{a_{0}}=365\pm 20,\qquad\bar{f}_{\sigma}=350\pm 20,\qquad\bar{f}_{\kappa}=340\pm 20,
f¯a0(1450)=460±50,ff0(1500)=490±50,f¯K0=445±50.\displaystyle\bar{f}_{a_{0}(1450)}=460\pm 50,\qquad f_{f_{0}(1500)}=490\pm 50,\qquad\bar{f}_{K_{0}^{*}}=445\pm 50. (13)

From Eq. (12) we obtain (in units of MeV) 222The vector decay constants of the scalar meson and its antiparticle are of opposite sign. For example, fa0(980)+=1.3MeVf_{a_{0}(980)^{+}}=-1.3\,{\rm MeV} and fa0(980)=1.3MeVf_{a_{0}(980)^{-}}=1.3\,{\rm MeV}.

|fa0(980)±|=1.3,|fa0(1450)±|=1.1,|fκ|=45.5,|fK0(1430)|=35.3.\displaystyle|f_{a_{0}(980)^{\pm}}|=1.3\,,\qquad|f_{a_{0}(1450)^{\pm}}|=1.1\,,\qquad|f_{\kappa}|=45.5\,,\qquad|f_{K^{*}_{0}(1430)}|=35.3\,. (14)

In short, the vector decay constants of scalar mesons are either zero or very small for non-strange scalar mesons.

Form factors for DP,SD\to P,S transitions are defined by BSW

P(p)|Vμ|D(p)\displaystyle\langle P(p^{\prime})|V_{\mu}|D(p)\rangle =\displaystyle= (PμmD2mP2q2qμ)F1DP(q2)+mD2mP2q2qμF0DP(q2),\displaystyle\left(P_{\mu}-{m_{D}^{2}-m_{P}^{2}\over q^{2}}\,q_{\mu}\right)F_{1}^{DP}(q^{2})+{m_{D}^{2}-m_{P}^{2}\over q^{2}}q_{\mu}\,F_{0}^{DP}(q^{2})~{},
S(p)|Aμ|D(p)\displaystyle\langle S(p^{\prime})|A_{\mu}|D(p)\rangle =\displaystyle= i[(PμmD2mS2q2qμ)F1DS(q2)+mD2mS2q2qμF0DS(q2)],\displaystyle-i\Bigg{[}\left(P_{\mu}-{m_{D}^{2}-m_{S}^{2}\over q^{2}}\,q_{\mu}\right)F_{1}^{DS}(q^{2})+{m_{D}^{2}-m_{S}^{2}\over q^{2}}q_{\mu}\,F_{0}^{DS}(q^{2})\Bigg{]}~{}, (15)

where Pμ=(p+p)μP_{\mu}=(p+p^{\prime})_{\mu} and qμ=(pp)μq_{\mu}=(p-p^{\prime})_{\mu}. As shown in Ref. CCH , a factor of (i)(-i) is needed in the DSD\to S transition in order for the DSD\to S form factors to be positive. This can also be checked from heavy quark symmetry consideration CCH .

Throughout this paper, we use the 3-parameter parametrization

F(q2)=F(0)1a(q2/mD2)+b(q2/mD2)2\displaystyle F(q^{2})=\,{F(0)\over 1-a(q^{2}/m_{D}^{2})+b(q^{2}/m_{D}^{2})^{2}} (16)

for DSD\to S transitions. For hadronic DSPD\to SP decays, the relevant form factor is F0DS(q2)F_{0}^{DS}(q^{2}). The parameters F0DS(0)F_{0}^{DS}(0), aa and bb for DSD\to S transitions calculated in the covariant light-front quark model (CLFQM) CCH ; Verma:2011yw , covariant confined quark model (CCQM) Soni:2020sgn , light-cone sum rules (LCSR) Shi:2017pgh ; Cheng:2017fkw ; Huang:2021owr are exhibited in Table 3. Note that the matrix element S(p)|Aμ|D(p)\langle S(p^{\prime})|A_{\mu}|D(p)\rangle is sometimes parametrized as

S(p)|Aμ|D(p)\displaystyle\langle S(p^{\prime})|A_{\mu}|D(p)\rangle =\displaystyle= i[F+DS(q2)Pμ+FDS(q2)qμ].\displaystyle-i\left[F_{+}^{DS}(q^{2})P_{\mu}+F_{-}^{DS}(q^{2})q_{\mu}\right]. (17)

It is easily seen that

F1(q2)=F+(q2),F0(q2)=q2mD2mS2F(q2)+F+(q2),\displaystyle F_{1}(q^{2})=F_{+}(q^{2}),\qquad F_{0}(q^{2})={q^{2}\over m_{D}^{2}-m_{S}^{2}}F_{-}(q^{2})+F_{+}(q^{2})~{}, (18)

and hence F1(0)=F0(0)=F+(0)F_{1}(0)=F_{0}(0)=F_{+}(0). It was argued in Huang:2021owr that the relation F(q2)=F+(q2)F_{-}(q^{2})=-F_{+}(q^{2}) holds in the LCSR calculation. In Soni:2020sgn , the DSD\to S transition form factors are defined by

S(p)|Aμ|D(p+q)\displaystyle\langle S(p)|A_{\mu}|D(p+q)\rangle =\displaystyle= i[F+(q2)pμ+F(q2)qμ].\displaystyle-i\left[{F^{\prime}}_{+}(q^{2})p_{\mu}+{F^{\prime}}_{-}(q^{2})q_{\mu}\right]. (19)

They are related to F+(q2)F_{+}(q^{2}) and F(q2)F_{-}(q^{2}) through the relation

F+(q2)=2F+(q2),F(q2)=F+(q2)+F(q2).\displaystyle F^{\prime}_{+}(q^{2})=2F_{+}(q^{2}),\qquad F^{\prime}_{-}(q^{2})=F_{+}(q^{2})+F_{-}(q^{2}). (20)
Table 3: Form factors F0DS(0)F_{0}^{DS}(0) for D,Dsf0(980),a0(980),a0(1450)D,D_{s}\to f_{0}(980),a_{0}(980),a_{0}(1450) and K0(1430)K_{0}^{*}(1430) transitions in various models.
Transition CLFQM CCQM LCSR(I) LCSR(II) LCSR(III)
CCH ; Verma:2011yw Soni:2020sgn Shi:2017pgh Cheng:2017fkw Huang:2021owr
Df0(980)D\to f_{0}(980) 0.510.05+0.040.51^{+0.04}_{-0.05} 111For Df0qD\to f_{0}^{q} transition. 0.45±0.020.45\pm 0.02 0.321
Ds+f0(980)D_{s}^{+}\to f_{0}(980) 0.520.01+0.010.52^{+0.01}_{-0.01} 222For Ds+f0sD_{s}^{+}\to f_{0}^{s} transition. 0.36±0.020.36\pm 0.02
Da0(980)D\to a_{0}(980) 333It stands for either D0a0(980)D^{0}\to a_{0}(980)^{-} or D+a0(980)0D^{+}\to a_{0}(980)^{0} transition. 0.55±0.020.55\pm 0.02 0.88±0.130.88\pm 0.13 444Use of the relation F+(0)=F+(0)/2F_{+}(0)=F^{\prime}_{+}(0)/2 has been made. 0.850.11+0.100.85^{+0.10}_{-0.11}
Da0(1450)D\to a_{0}(1450) 0.510.02+0.010.51^{+0.01}_{-0.02} 0.940.03+0.020.94^{+0.02}_{-0.03}
DK0(1430)D\to K_{0}^{*}(1430) 0.470.03+0.020.47^{+0.02}_{-0.03}
Ds+K0(1430)D_{s}^{+}\to K_{0}^{*}(1430) 0.550.03+0.020.55^{+0.02}_{-0.03}

For the q2q^{2} dependence of the form factors in various models, the parameters aa and bb are available in Refs. CCH ; Verma:2011yw and Ref. Shi:2017pgh for CLFQM and LCSR(I), respectively. In CCQM and LCSR(II), one needs to apply Eq. (18) to get the q2q^{2} dependence of F0F_{0}. The form-factor q2q^{2} dependence in the LCSR(III) calculation is shown in Fig. 3 of Ref. Huang:2021owr .

BESIII has measured the branching fractions of both D0a0(980)e+νeD^{0}\to a_{0}(980)^{-}e^{+}\nu_{e} and D+a0(980)0e+νeD^{+}\to a_{0}(980)^{0}e^{+}\nu_{e} BESIII:SLa0 . The theoretical calculations depend on the form factors F+(q2)F_{+}(q^{2}) and F(q2)F_{-}(q^{2}) and their q2q^{2} dependence (see e.g. Ref. Cheng:DmesonSL ). It turns out that the predicted branching fractions for Da0(980)e+νeD\to a_{0}(980)e^{+}\nu_{e} in LCSR(II) Cheng:2017fkw are too large by more than a factor of 2 compared to the BESIII experiment (see Table VI of Ref. Huang:2021owr ). Hence, this model is disfavored.

IV Diagrammatic amplitudes

A least model-dependent analysis of heavy meson decays can be carried out in the so-called topological diagram approach. In this diagrammatic scenario, all two-body nonleptonic weak decays of heavy mesons can be expressed in terms of six distinct quark diagrams Chau ; CC86 ; CC87 : TT, the external WW-emission tree diagram; CC, the internal WW-emission; EE, the WW-exchange; AA, the WW-annihilation; HH, the horizontal WW-loop; and VV, the vertical WW-loop. The one-gluon exchange approximation of the HH graph is the so-called “penguin diagram.” These diagrams are classified according to the topologies of weak interactions with all strong interaction effects encoded.

The topological amplitudes for DSPD\to SP decays have been discussed in ChengSP ; Cheng:SAT . Just as DVPD\to V\!P decays, one generally has two sets of distinct diagrams for each topology. For example, there are two external WW-emission and two internal WW-emission diagrams, depending on whether the emitted particle is an even-party meson or an odd-parity one. Following the convention in ChengSP ; Cheng:SAT , we shall denote the primed amplitudes TT^{\prime} and CC^{\prime} for the case when the emitted meson is a scalar one. For the WW-exchange and WW-annihilation diagrams with the final state q1q¯2q_{1}\bar{q}_{2}, the primed amplitude denotes that the even-parity meson contains the quark q1q_{1}. Since K0K^{*}_{0}, a0(1450)a_{0}(1450) and the light scalars σ,κ,f0(980),a0(980)\sigma,~{}\kappa,~{}f_{0}(980),~{}a_{0}(980) fall into two different SU(3) flavor nonets, in principle one cannot apply SU(3) symmetry to relate the topological amplitudes in D+f0(980)π+D^{+}\to f_{0}(980)\pi^{+} to, for example, those in D+K¯00π+D^{+}\to\overline{K}^{*0}_{0}\pi^{+}.

Table 4: Topological amplitudes of various DSPD\to SP decays. Schemes I has (α,β)=(sinθ,cosθ)(\alpha,\beta)=(\sin\theta,\cos\theta), and scheme II has (α,β)=(1,2)(\alpha,\beta)=(1,\sqrt{2}) for those modes with one f0f_{0} and (0,2)(0,\sqrt{2}) for those modes with one σ\sigma. In Scheme I, light scalar mesons σ,κ,a0(980)\sigma,~{}\kappa,~{}a_{0}(980) and f0(980)f_{0}(980) are described by the qq¯q\bar{q} states, while K0K^{*}_{0} and a0(1450)a_{0}(1450) as excited qq¯q\bar{q} states. In Scheme II, light scalars are tetraquark states, while K0K^{*}_{0} and a0(1450)a_{0}(1450) are ground-state qq¯q\bar{q}. The f0σf_{0}-\sigma mixing angle θ\theta in the two-quark model is defined in Eq. (6). The experimental branching fractions denoted by NWA{\cal B}_{\rm NWA} are taken from Tables 1 and 2. For simplicity, we do not consider the f0σf_{0}-\sigma mixing in the tetraquark model as its value is close to π\pi Maiani .
Decay Amplitude NWA{\cal B}_{\rm NWA}
D+f0π+D^{+}\to f_{0}\pi^{+} 12αVcdVud(T+C+A+A)+βVcsVusC\frac{1}{\sqrt{2}}\alpha V_{cd}^{*}V_{ud}(T+C^{\prime}+A+A^{\prime})+\beta V_{cs}^{*}V_{us}C^{\prime}
    f0K+\to f_{0}K^{+} VcdVus[12α(T+A)+βA]V_{cd}^{*}V_{us}\left[{1\over\sqrt{2}}\alpha(T+A^{\prime})+\beta A\right]
    a0+K¯0\to a_{0}^{+}\overline{K}^{0} VcsVud(T+C)V_{cs}^{*}V_{ud}(T^{\prime}+C)
    a00π+\to a_{0}^{0}\pi^{+} 12VcdVud(TCA+A)\frac{1}{\sqrt{2}}V_{cd}^{*}V_{ud}(-T-C^{\prime}-A+A^{\prime})
    σπ+\to\sigma\pi^{+} 12βVcdVud(T+C+A+A)αVcsVusC{1\over\sqrt{2}}\beta V_{cd}^{*}V_{ud}(T+C^{\prime}+A+A^{\prime})-\alpha V_{cs}^{*}V_{us}C^{\prime} (2.1±0.2)×103(2.1\pm 0.2)\times 10^{-3}
    κ¯0π+\to\bar{\kappa}^{0}\pi^{+} VcsVud(T+C)V_{cs}^{*}V_{ud}(T+C^{\prime}) (3.62.4+3.0)%(3.6^{+3.0}_{-2.4})\%
    κ¯0K+\to\bar{\kappa}^{0}K^{+} VcsVusT+VcdVudAV_{cs}^{*}V_{us}T+V_{cd}^{*}V_{ud}A (1.00.3+0.5)×103(1.0^{+0.5}_{-0.3})\times 10^{-3}
D0f0π0D^{0}\to f_{0}\pi^{0} 12αVcdVud(C+CEE)+12βVcsVusC{1\over 2}\alpha V_{cd}^{*}V_{ud}(-C+C^{\prime}-E-E^{\prime})+{1\over\sqrt{2}}\beta V_{cs}^{*}V_{us}C^{\prime}
     f0K¯0\to f_{0}\overline{K}^{0} VcsVud[12α(C+E)+βE]V_{cs}^{*}V_{ud}[{1\over\sqrt{2}}\alpha(C+E)+\beta E^{\prime}]
     a0+π\to a_{0}^{+}\pi^{-} VcdVud(T+E)V_{cd}^{*}V_{ud}(T^{\prime}+E)
     a0π+\to a_{0}^{-}\pi^{+} VcdVud(T+E)V_{cd}^{*}V_{ud}(T+E^{\prime})
     a0+K\to a_{0}^{+}K^{-} VcsVud(T+E)V_{cs}^{*}V_{ud}(T^{\prime}+E)
     a00K¯0\to a_{0}^{0}\overline{K}^{0} VcsVud(CE)/2V_{cs}^{*}V_{ud}(C-E)/\sqrt{2} (2.83±0.66)%(2.83\pm 0.66)\%
     a0K+\to a_{0}^{-}K^{+} VcdVus(T+E)V_{cd}^{*}V_{us}(T+E^{\prime})
     σπ0\to\sigma\pi^{0} 12VcdVudβ(C+CEE)12αVcsVusC{1\over 2}V_{cd}^{*}V_{ud}\beta(-C+C^{\prime}-E-E^{\prime})-{1\over\sqrt{2}}\alpha V_{cs}^{*}V_{us}C^{\prime} (1.8±0.3)×104({1.8\pm 0.3})\times 10^{-4}
Ds+f0π+D_{s}^{+}\to f_{0}\pi^{+} 12VcsVud[2βT+α(A+A)]\frac{1}{\sqrt{2}}V_{cs}^{*}V_{ud}\left[\sqrt{2}\beta T+\alpha(A+A^{\prime})\right]
     f0K+\to f_{0}K^{+} VcsVus[β(T+C+A)+12αA]+12VcdVudαCV_{cs}^{*}V_{us}\left[\beta(T+C^{\prime}+A)+{1\over\sqrt{2}}\alpha A^{\prime}\right]+{1\over\sqrt{2}}V_{cd}^{*}V_{ud}\alpha C^{\prime}
     a00π+\to a_{0}^{0}\pi^{+} 12VcsVud(A+A){1\over\sqrt{2}}V_{cs}^{*}V_{ud}(-A+A^{\prime}) (0.86±0.23)%(0.86\pm 0.23)\% 111Since the decay amplitudes of Ds+a0+π0D_{s}^{+}\to a_{0}^{+}\pi^{0} and Ds+a00π+D_{s}^{+}\to a_{0}^{0}\pi^{+} are the same except an overall negative sign, they have the same rates.
D+a0(1450)0π+D^{+}\to a_{0}(1450)^{0}\pi^{+} 12VcdVud(TCA+A){1\over\sqrt{2}}V_{cd}^{*}V_{ud}(-T-C^{\prime}-A+A^{\prime})
     K¯00π+\to\overline{K}_{0}^{*0}\pi^{+} VcsVud(T+C)V_{cs}^{*}V_{ud}(T+C^{\prime}) (1.98±0.22)%(1.98\pm 0.22)\%
     K¯00K+\to\overline{K}_{0}^{*0}K^{+} VcsVusT+VcdVudAV_{cs}^{*}V_{us}T+V_{cd}^{*}V_{ud}A prohibited
D0a0(1450)+πD^{0}\to a_{0}(1450)^{+}\pi^{-} VcdVud(T+E)V_{cd}^{*}V_{ud}(T^{\prime}+E)
     a0(1450)π+\to a_{0}(1450)^{-}\pi^{+} VcdVud(T+E)V_{cd}^{*}V_{ud}(T+E^{\prime})
     a0(1450)K+\to a_{0}(1450)^{-}K^{+} VcdVus(T+E)V_{cd}^{*}V_{us}(T+E^{\prime})
     K0π+\to K_{0}^{*-}\pi^{+} VcsVud(T+E)V_{cs}^{*}V_{ud}(T+E^{\prime}) (8.8±1.5)×103(8.8\pm 1.5)\times 10^{-3}
     K¯00π0\to\overline{K}_{0}^{*0}\pi^{0} 12VcsVud(CE){1\over\sqrt{2}}V_{cs}^{*}V_{ud}(C^{\prime}-E^{\prime}) (9.52.8+8.1)×103(9.5^{+8.1}_{-2.8})\times 10^{-3}
     K0+π\to K_{0}^{*+}\pi^{-} VcdVus(T+E)V_{cd}^{*}V_{us}(T^{\prime}+E) <4.5×105<4.5\times 10^{-5}
Ds+K00π+D_{s}^{+}\to K_{0}^{*0}\pi^{+} VcdVudT+VcsVusAV_{cd}^{*}V_{ud}\,T+V_{cs}V_{us}^{*}\,A (8.1±5.7)×104(8.1\pm 5.7)\times 10^{-4}
     K¯00K+\to\overline{K}_{0}^{*0}K^{+} VcsVud(C+A)V_{cs}^{*}V_{ud}(C^{\prime}+A) (2.8±0.5)×103(2.8\pm 0.5)\times 10^{-3}

In Ref. Cheng:SAT we have presented the topological amplitude decomposition in DSPD\to SP decays in two different schemes. In scheme I, light scalar mesons σ,κ,a0(980)\sigma,\kappa,a_{0}(980) and f0(980)f_{0}(980) are described by the ground-state qq¯q\bar{q} states, while K0K^{*}_{0} and a0(1450)a_{0}(1450) as excited qq¯q\bar{q} states. In scheme II, light scalars are tetraquark states, while K0K^{*}_{0} and a0(1450)a_{0}(1450) are ground-state qq¯q\bar{q}. The topological amplitudes for DSPD\to SP decays are listed in Table 4. The expressions of topological amplitudes are the same in both schemes I and II except for the channels involving f0f_{0} and σ\sigma. For example,

A(D+f0π+)\displaystyle A(D^{+}\to f_{0}\pi^{+}) =\displaystyle= {12VcdVud(T+C+A+A)sinθ+VcsVusCcosθScheme I,12VcdVud(T+C+A+A)+2VcsVusCScheme II,\displaystyle\left\{\begin{array}[]{cl}{1\over\sqrt{2}}V_{cd}^{*}V_{ud}(T+C^{\prime}+A+A^{\prime})\sin\theta+V_{cs}^{*}V_{us}C^{\prime}\cos\theta&\quad\mbox{Scheme~{}I}\ ,\\ {1\over\sqrt{2}}V_{cd}^{*}V_{ud}(T+C^{\prime}+A+A^{\prime})+\sqrt{2}V_{cs}^{*}V_{us}C^{\prime}&\quad\mbox{Scheme~{}II}\ ,\end{array}\right. (23)
A(D+σπ+)\displaystyle A(D^{+}\to\sigma\pi^{+}) =\displaystyle= {12VcdVud(T+C+A+A)cosθVcsVusCsinθScheme I,VcdVud(T+C+A+A)Scheme II.\displaystyle\left\{\begin{array}[]{cl}{1\over\sqrt{2}}V_{cd}^{*}V_{ud}(T+C^{\prime}+A+A^{\prime})\cos\theta-V_{cs}^{*}V_{us}C^{\prime}\sin\theta&\quad\mbox{Scheme~{}I}\ ,\\ V_{cd}^{*}V_{ud}(T+C^{\prime}+A+A^{\prime})&\quad\mbox{Scheme~{}II}\ .\end{array}\right. (26)

In our numerical estimates, we will take θ=30\theta=30^{\circ}, saturating the measured upper bound mentioned earlier.

In Table 4 the upper part involves only light scalar mesons (f0f_{0}, a0a_{0}, σ\sigma, and κ\kappa), whereas the lower part involves the a0(1450)a_{0}(1450) and K0(1430)K_{0}^{*}(1430) mesons in the heavier nonet representation. This division is made because the amplitudes of the same topology in these two groups have no a priori relations. In each group we have 15 unknown parameters for the 8 topological amplitudes T,C,E,AT,C,E,A and T,C,E,AT^{\prime},C^{\prime},E^{\prime},A^{\prime}. For neutral scalar mesons σ,f0\sigma,f_{0} and a00a_{0}^{0}, we cannot set T=C=0T^{\prime}=C^{\prime}=0 even though their vector decay constants vanish. As will be discussed in Sec. V.A, TT^{\prime} and CC^{\prime} do receive nonfactorizable contributions through vertex and spectator-scattering corrections Cheng:2006 ; Cheng:2013 . Nevertheless, it is naïvely expected that, for example, |T||T||T^{\prime}|\ll|T| and |C||C||C^{\prime}|\ll|C| for charged a0a_{0}. However, as we shall see in Sec. V.C, a realistic calculation yields |C|>|C||C^{\prime}|>|C| instead. At any rate, we have more theory parameters than observables (6 in the upper part and 5 in the lower part of the table), barring a fit.

Since the branching fractions of f0ππf_{0}\to\pi\pi and (f0,a0)KK¯(f_{0},a_{0})\to K\overline{K} are unknown, many of the two-body decays in Table 4 cannot be extracted from the data of three-body decays. Nevertheless, the strong couplings such as gf0ππ,gf0KK¯,ga0KK¯g_{f_{0}\to\pi\pi},g_{f_{0}\to K\bar{K}},g_{a_{0}\to K\bar{K}} and ga0ηπg_{a_{0}\to\eta\pi} have been inferred from a fit to the data. There are 17 available DSPP1P2P2D\to SP\to P_{1}P_{2}P_{2} modes, but there are only 14 data related to DSPD\to SP and we have 15 parameters to fit. Moreover, since we need to introduce appropriate energy-dependent line shapes for the scalar mesons, it is not conceivable to extract the topological amplitudes from three-body decays as the decay rate cannot be factorized into the topological amplitude squared and the phase space factor. We will come back to this point later.

It is interesting to notice that the current data already imply the importance of WW-exchange and WW-annihilation amplitudes. Consider the decays: D0a0+πK+K¯0πD^{0}\to a_{0}^{+}\pi^{-}\to K^{+}\overline{K}^{0}\pi^{-} and D0a0π+KK0π+D^{0}\to a_{0}^{-}\pi^{+}\to K^{-}K^{0}\pi^{+} with the two-body decay amplitudes proportional to (T+E)(T^{\prime}+E) and (T+E)(T+E^{\prime}), respectively (see Table 4). If the WW-exchange contributions are negligible, the former mode governed by the amplitude TT^{\prime} is expected to have a rate smaller than the latter (cf. Table 2). Experimentally, it is the other way around. This is an indication that EE and EE^{\prime} play some role.

V Factorization Approach

The diagrammatic approach has been applied quite successfully to hadronic decays of charmed mesons into PPPP and VPV\!P final states RosnerPP08 ; RosnerVP ; RosnerPP09 ; Cheng:Ddecay2010 ; Cheng:2012a ; Cheng:2012b ; Li:2012 ; Qin ; Cheng:2016 ; Cheng:2021 . When generalized to the decay modes involving a scalar meson in the final state, it appears that the current data are still insufficient for us to fully extract the information of all amplitudes. Therefore, we take the naïve factorization formalism as a complementary approach to estimate the rates of these decay modes. In this framework, the WW-exchange and -annihilation type of contributions will be neglected.

V.1 Factorizable and nonfactorizable amplitudes

The factorizable amplitudes for the DSPD\to SP decays read

X(DS,P)\displaystyle X^{(DS,P)} =\displaystyle= P(q)|(VA)μ|0S(p)|(VA)μ|D(pD),\displaystyle\langle P(q)|(V-A)_{\mu}|0\rangle\langle S(p)|(V-A)^{\mu}|D(p_{D})\rangle,
X(DP,S)\displaystyle X^{(DP,S)} =\displaystyle= S(q)|(VA)μ|0P(p)|(VA)μ|D(pD),\displaystyle\langle S(q)|(V-A)_{\mu}|0\rangle\langle P(p)|(V-A)^{\mu}|D(p_{D})\rangle, (27)

and have the expressions

X(DS,P)=fP(mD2mS2)F0DS(q2),X(DP,S)=fS(mD2mP2)F0DP(q2),\displaystyle X^{(DS,P)}=-f_{P}(m_{D}^{2}-m_{S}^{2})F_{0}^{DS}(q^{2})\,,\qquad X^{(DP,S)}=f_{S}(m_{D}^{2}-m_{P}^{2})F_{0}^{DP}(q^{2})\,, (28)

where use of Eqs. (10) and (III) has been made. Hence,

T=a1(SP)fP(mD2mS2)F0DS(q2),\displaystyle T=-a_{1}(SP)f_{P}(m_{D}^{2}-m_{S}^{2})F_{0}^{DS}(q^{2}), C=a2(SP)fP(mD2mS2)F0DS(q2),\displaystyle C=-a_{2}(SP)f_{P}(m_{D}^{2}-m_{S}^{2})F_{0}^{DS}(q^{2}),
T=a1(PS)fS(mD2mP2)F0DP(q2),\displaystyle T^{\prime}=a_{1}(PS)f_{S}(m_{D}^{2}-m_{P}^{2})F_{0}^{DP}(q^{2}), C=a2(PS)fS(mD2mP2)F0DP(q2).\displaystyle C^{\prime}=a_{2}(PS)f_{S}(m_{D}^{2}-m_{P}^{2})F_{0}^{DP}(q^{2}). (29)

The primed amplitudes TT^{\prime} and CC^{\prime} vanish for the neutral scalar mesons such as σ/f0(500)\sigma/f_{0}(500), f0(980)f_{0}(980) and a0(980)0a_{0}(980)^{0} as they cannot be produced through the (VA)(V-A) current; that is, fS=0f_{S}=0. Nevertheless, beyond the factorization approximation, contributions proportional to the scalar decay constant f¯S\bar{f}_{S} of the scalar meson defined in Eq. (10) can be produced from vertex and hard spectator-scattering corrections. It has been shown in Refs. Cheng:2006 ; Cheng:2013 that the nonfactorizable amplitudes can be recast to

T=a1(PS)f¯S(mD2mP2)F0DP(q2),\displaystyle T^{\prime}=a_{1}(PS)\bar{f}_{S}(m_{D}^{2}-m_{P}^{2})F_{0}^{DP}(q^{2}), C=a2(PS)f¯S(mD2mP2)F0DP(q2),\displaystyle C^{\prime}=a_{2}(PS)\bar{f}_{S}(m_{D}^{2}-m_{P}^{2})F_{0}^{DP}(q^{2}), (30)

for S=σ/f0(500),f0(980)S=\sigma/f_{0}(500),f_{0}(980) and a0(980)0a_{0}(980)^{0}, etc., while the expressions of TT^{\prime} and CC^{\prime} given in Eq. (V.1) are valid for S=a0±,κ/K0(800)S=a_{0}^{\pm},\kappa/K^{*}_{0}(800) and K0(1430)K_{0}^{*}(1430), etc.

V.2 Flavor operators

The flavor operators ai(M1M2)a_{i}(M_{1}M_{2}) in Eqs. (V.1) and (30) are basically the Wilson coefficients in conjunction with short-distance nonfactorizable corrections such as vertex corrections and hard spectator interactions. In general, they have the expressions BBNS ; BN 333Notice that a1a_{1} and a2a_{2} do not receive contributions from penguin contractions.

a1(M1M2)\displaystyle a_{1}(M_{1}M_{2}) =\displaystyle= (c1+c2Nc)N1(M2)+c2NcCFαs4π[V1(M2)+4π2NcH1(M1M2)],\displaystyle\left(c_{1}+{c_{2}\over N_{c}}\right)N_{1}(M_{2})+{c_{2}\over N_{c}}\,{C_{F}\alpha_{s}\over 4\pi}\Big{[}V_{1}(M_{2})+{4\pi^{2}\over N_{c}}H_{1}(M_{1}M_{2})\Big{]},
a2(M1M2)\displaystyle a_{2}(M_{1}M_{2}) =\displaystyle= (c2+c1Nc)N2(M2)+c1NcCFαs4π[V2(M2)+4π2NcH2(M1M2)],\displaystyle\left(c_{2}+{c_{1}\over N_{c}}\right)N_{2}(M_{2})+{c_{1}\over N_{c}}\,{C_{F}\alpha_{s}\over 4\pi}\Big{[}V_{2}(M_{2})+{4\pi^{2}\over N_{c}}H_{2}(M_{1}M_{2})\Big{]}, (31)

where cic_{i} are the Wilson coefficients, CF=(Nc21)/(2Nc)C_{F}=(N_{c}^{2}-1)/(2N_{c}) with Nc=3N_{c}=3, M2M_{2} is the emitted meson and M1M_{1} shares the same spectator quark with the DD meson. The quantities Vi(M2)V_{i}(M_{2}) account for vertex corrections, Hi(M1M2)H_{i}(M_{1}M_{2}) for hard spectator interactions with a hard gluon exchange between the emitted meson and the spectator quark of the DD meson. The explicit expressions of V1,2(M)V_{1,2}(M) and H1,2(M1M2)H_{1,2}(M_{1}M_{2}) in the QCD factorization approach are given in Cheng:2006 . The expression of the quantities Ni(M2)N_{i}(M_{2}), which are relevant to the factorizable amplitudes, reads

Ni(P)=1,Ni(S)={0,forS=σ,f0,a00,1,else.\displaystyle N_{i}(P)=1,\qquad N_{i}(S)=\begin{cases}0,\quad{\rm for}~{}S=\sigma,f_{0},a_{0}^{0},\\ 1,\quad{\rm else.}\end{cases} (32)

Results for the flavor operators ai(M1M2)a_{i}(M_{1}M_{2}) with M1M2=SPM_{1}M_{2}=SP and PSPS are shown in Table 5. 444Studies of BSPB\to SP decays in QCDF were presented in Refs. Cheng:2006 ; Cheng:2013 . Here We generalize these works to the DSPD\to SP decays and obtain the flavor operators given in Table 5.

Table 5: Numerical values of the flavor operators a1,2(M1M2)a_{1,2}(M_{1}M_{2}) for M1M2=SPM_{1}M_{2}=SP and PSPS at the scale μ=m¯c(m¯c)=1.3\mu=\overline{m}_{c}(\overline{m}_{c})=1.3 GeV, where use of c1(μ)=1.33c_{1}(\mu)=1.33 and c2(μ)=0.62c_{2}(\mu)=-0.62 has been made.
  f0(500)πf_{0}(500)\pi    πf0(500)\pi f_{0}(500)     K0(700)πK_{0}^{*}(700)\pi    πK0(700)\pi K_{0}^{*}(700)
a1a_{1}    1.292+0.080i1.292+0.080i   0.0330.056i0.033-0.056i a1a_{1} 1.292+0.080i1.292+0.080i 1.5790.492i1.579-0.492i
a2a_{2} 0.5270.172i-0.527-0.172i 0.070+0.121i-0.070+0.121i a2a_{2} 0.5270.172i-0.527-0.172i 1.147+0.930i-1.147+0.930i
  f0(980)πf_{0}(980)\pi    πf0(980)\pi f_{0}(980)   f0(980)Kf_{0}(980)K Kf0(980)Kf_{0}(980)
a1a_{1}    1.292+0.080i1.292+0.080i   0.0330.056i0.033-0.056i a1a_{1} 1.295+0.075i1.295+0.075i 0.033+0.075i0.033+0.075i
a2a_{2} 0.5270.172i-0.527-0.172i 0.070+0.121i-0.070+0.121i a2a_{2} 0.5330.162i-0.533-0.162i 0.070+0.121i-0.070+0.121i
  a0(980)0πa_{0}(980)^{0}\pi    πa0(980)0\pi a_{0}(980)^{0}   a0(980)0Ka_{0}(980)^{0}K Ka0(980)0Ka_{0}(980)^{0}
a1a_{1}    1.292+0.080i1.292+0.080i   0.0370.066i0.037-0.066i a1a_{1} 1.295+0.075i1.295+0.075i 0.0370.066i0.037-0.066i
a2a_{2} 0.5270.172i-0.527-0.172i 0.080+0.141i-0.080+0.141i a2a_{2} 0.5330.162i-0.533-0.162i 0.080+0.141i-0.080+0.141i
  a0(980)±πa_{0}(980)^{\pm}\pi    πa0(980)±\pi a_{0}(980)^{\pm}   a0(980)±Ka_{0}(980)^{\pm}K Ka0(980)±Ka_{0}(980)^{\pm}
a1a_{1}    1.292+0.080i1.292+0.080i   ±(10.04+20.03i)\pm(-10.04+20.03i) a1a_{1} 1.295+0.075i1.295+0.075i    ±(10.04+20.03i)\pm(-10.04+20.03i)
a2a_{2} 0.5270.172i-0.527-0.172i   ±(23.8943.14i)\pm(23.89-43.14i) a2a_{2} 0.5330.162i-0.533-0.162i    ±(23.8943.14i)\pm(23.89-43.14i)
  a0(1450)πa_{0}(1450)\pi    πa0(1450)\pi a_{0}(1450)   K0(1430)πK_{0}^{*}(1430)\pi πK0(1430)\pi K_{0}^{*}(1430)
a1a_{1}    1.292+0.080i1.292+0.080i   0.0330.056i0.033-0.056i a1a_{1} 1.292+0.080i1.292+0.080i   1.6920.544i1.692-0.544i
a2a_{2} 0.5270.172i-0.527-0.172i 0.071+0.108i-0.071+0.108i a2a_{2} 0.5270.172i-0.527-0.172i 1.390+1.171i-1.390+1.171i

We see from Eqs. (V.2) and (32) that the factorizable contributions to a1(PS)a_{1}(PS) and a2(PS)a_{2}(PS) vanish for S=σ,f0S=\sigma,f_{0} and a00a_{0}^{0}. Beyond the factorization approximation, nonfactorizable contributions proportional to the decay constant f¯S\bar{f}_{S} can be produced from vertex and spectator-scattering corrections Cheng:2006 ; Cheng:2013 . Therefore, when the strong coupling αs\alpha_{s} is turned off, the nonfactorizable contributions vanish accordingly. In short, the primed amplitudes TT^{\prime} and CC^{\prime} are factorizable for S=a0±,κ,K0S=a_{0}^{\pm},\kappa,K^{*}_{0}, namely S|Jμ|0P|Jμ|D\langle S|J^{\mu}|0\rangle\langle P|J^{\prime}_{\mu}|D\rangle, whereas they are nonfactorizable for S=σ,f0,a00S=\sigma,f_{0},a_{0}^{0}.

Upon an inspection of Table 5, we see that (i) the flavor operators ai(PS)a_{i}(PS) and ai(SP)a_{i}(SP) are very different as the former does not receive factorizable contributions (i.e. Ni(S)=0N_{i}(S)=0), and (ii) while a1(SP)a_{1}(SP) and a2(SP)a_{2}(SP) are similar for any light and heavy scalar mesons, namely a1(SP)1.29±0.08ia_{1}(SP)\approx 1.29\pm 0.08i and a2(SP)0.530.17ia_{2}(SP)\approx-0.53-0.17i, a1(PS)a_{1}(PS) and a2(PS)a_{2}(PS) vary from neutral to the charged ones as shown in Table 6. One may wonder why the flavor operators a1,2(πa0±)a_{1,2}(\pi a_{0}^{\pm}) are much greater than a1,2(πa00)a_{1,2}(\pi a_{0}^{0}). As noticed in Eqs. (V.1) and (30), the nonfactorizable amplitudes are proportional to a1,2(πa0±)fa0±a_{1,2}(\pi a_{0}^{\pm})f_{a_{0}^{\pm}} for charged a0±a_{0}^{\pm} and to a1,2(πa00)f¯a0a_{1,2}(\pi a_{0}^{0})\bar{f}_{a_{0}} for neutral a00a_{0}^{0}. Hence, a1,2(πa0±)/a1,2(πa00)=f¯a0/fa0±1a_{1,2}(\pi a_{0}^{\pm})/a_{1,2}(\pi a_{0}^{0})=\bar{f}_{a_{0}}/f_{a_{0}^{\pm}}\gg 1. We see from Table 6 that a1,2(PS)a_{1,2}(PS) become larger when the decay constants become smaller.

Table 6: Same as Table 5 except for the flavor operators a1,2(PS)a_{1,2}(PS) with P=πP=\pi. For neutral scalar mesons σ,f0,a00\sigma,f_{0},a_{0}^{0}, the vector decay constant fSf_{S} is replaced by the scalar decay constant f¯S\bar{f}_{S}.
SS   fSf_{S} (MeV)    a1(PS)a_{1}(PS)    a2(PS)a_{2}(PS)
σ,f0,a00\sigma,f_{0},a_{0}^{0} 350370350\sim 370   0.0350.060i\sim 0.035-0.060i   0.075+0.130i\sim-0.075+0.130i
κ¯\bar{\kappa} 45.545.5 1.580.49i1.58-0.49i 1.15+0.93i-1.15+0.93i
K¯0\bar{K}_{0}^{*} 35.3 1.690.54i1.69-0.54i 1.39+1.17i-1.39+1.17i
a0a_{0}^{-} 1.3 1020i10-20i 24+43i-24+43i

V.3 Implications

Naïvely it is expected that |T(πa0+)||T(a0π+)||T^{\prime}(\pi^{-}a_{0}^{+})|\ll|T(a_{0}^{-}\pi^{+})| because fπfa0+f_{\pi}\gg f_{a_{0}^{+}} and |C(π+κ¯0)|<|C(π+f0)||C^{\prime}(\pi^{+}\bar{\kappa}^{0})|<|C(\pi^{+}f_{0})| due to the fact that fπ>fκf_{\pi}>f_{\kappa}. Although we are not able to extract the topological amplitudes of DSPD\to SP from the experimental data of three-body DP1P2P3D\to P_{1}P_{2}P_{3} decays, we can use the theoretical calculations to see their sizes and relative phases. From Eq. (V.1) we have

T(f0π+)\displaystyle T(f_{0}\pi^{+}) =\displaystyle= a1(f0π)fπ(mD2mf02)F0Df0(mπ2),\displaystyle-a_{1}(f_{0}\pi)f_{\pi}(m_{D}^{2}-m_{f_{0}}^{2})F_{0}^{Df_{0}}(m_{\pi}^{2}),
C(f0π0)\displaystyle C(f_{0}\pi^{0}) =\displaystyle= a2(f0π)fπ(mD2mf02)F0Df0(mπ2),\displaystyle-a_{2}(f_{0}\pi)f_{\pi}(m_{D}^{2}-m_{f_{0}}^{2})F_{0}^{Df_{0}}(m_{\pi}^{2}),
T(πa0+)\displaystyle T^{\prime}(\pi^{-}a_{0}^{+}) =\displaystyle= a1(πa0+)fa0+(mD2mπ2)F0Dπ(ma02),\displaystyle a_{1}(\pi a_{0}^{+})f_{a_{0}^{+}}(m_{D}^{2}-m_{\pi}^{2})F_{0}^{D\pi}(m_{a_{0}}^{2}), (33)
C(π0f00)\displaystyle C^{\prime}(\pi^{0}f_{0}^{0}) =\displaystyle= a2(πf0)f¯f0(mD2mπ2)F0Dπ(mf02),\displaystyle a_{2}(\pi f_{0})\bar{f}_{f_{0}}(m_{D}^{2}-m_{\pi}^{2})F_{0}^{D\pi}(m_{f_{0}}^{2}),
C(π+κ¯0)\displaystyle C^{\prime}(\pi^{+}\bar{\kappa}^{0}) =\displaystyle= a2(πκ)fκ(mD2mπ2)F0Dπ(mκ2).\displaystyle a_{2}(\pi\kappa)f_{\kappa}(m_{D}^{2}-m_{\pi}^{2})F_{0}^{D\pi}(m_{\kappa}^{2}).

Using the flavor operators given in Table 5, form factors FDSF^{DS} listed in Table 3 and FDP(q2)F^{DP}(q^{2}) evaluated in the covariant confining quark model Ivanov:2019nqd , we find numerically (in units of 10610^{-6} GeV),

T(f0π+)=1.80ei186,C(f0π0)=0.77ei18,T(πa0+)=0.55ei117,\displaystyle T(f_{0}\pi^{+})=1.80\,e^{-i186^{\circ}},\quad~{}C(f_{0}\pi^{0})=0.77\,e^{-i18^{\circ}},\quad T^{\prime}(\pi^{-}a_{0}^{+})=0.55\,e^{i117^{\circ}},
C(π0f0)=0.99ei120,C(π+κ¯0)=1.26ei141.\displaystyle C^{\prime}(\pi^{0}f_{0})=0.99\,e^{i120^{\circ}},\quad~{}~{}C^{\prime}(\pi^{+}\bar{\kappa}^{0})=1.26\,e^{i141^{\circ}}. (34)

For heavier scalar mesons we find

T(K0π+)=0.70ei177,T(πK0+)=1.29ei18,C(π0K¯00)=1.32ei140,\displaystyle T(K_{0}^{*-}\pi^{+})=0.70\,e^{-i177^{\circ}},\quad T^{\prime}(\pi^{-}K_{0}^{*+})=1.29\,e^{-i18^{\circ}},\qquad C^{\prime}(\pi^{0}\bar{K}_{0}^{*0})=1.32\,e^{i140^{\circ}}, (35)
T(a0(1450)0π+)=0.93ei177,T(πa0(1450)+)=0.59ei121,C(π0a0(1450)0)=1.21ei123.\displaystyle T(a_{0}(1450)^{0}\pi^{+})=0.93\,e^{-i177^{\circ}},\quad T^{\prime}(\pi^{-}a_{0}(1450)^{+})=0.59\,e^{i121^{\circ}},\quad C^{\prime}(\pi^{0}a_{0}(1450)^{0})=1.21\,e^{i123^{\circ}}.

In the light scalar meson sector, we have |T|>|T||T|>|T^{\prime}| and |C|<|C||C|<|C^{\prime}| rather than |T||T||T|\gg|T^{\prime}| and |C|>|C||C|>|C^{\prime}|. For scalar mesons in the higher nonet representation, we find |T|>|C|>|T||T^{\prime}|>|C^{\prime}|>|T| with |T||T| being suppressed as the mass term (mD2mS2)(m_{D}^{2}-m_{S}^{2}) becomes smaller when SS becomes heavier.

V.4 Flatté line shape

To describe three-body decays we need to introduce a line shape of the scalar resonance. Normally we use the relativistic Breit-Wigner line shape to describe the scalar resonance contributions to three-body decays DSPP1P2PD\to SP\to P_{1}P_{2}P:

TBW(s)=1smR2+imRΓR(s),\displaystyle T^{\rm BW}(s)={1\over s-m_{R}^{2}+im_{R}\Gamma_{R}(s)}, (36)

with

ΓR(s)=ΓR0(qq0)mRs,\displaystyle\Gamma_{R}(s)=\Gamma_{R}^{0}\left({q\over q_{0}}\right){m_{R}\over\sqrt{s}}, (37)

where q=|p1|=|p2|q=|\vec{p}_{1}|=|\vec{p}_{2}| is the c.m. momentum in the rest frame of RR, q0q_{0} the value of qq when ss is equal to mR2m_{R}^{2}. However, this parametrization is not suitable to describe the decay of f0(980)f_{0}(980) or a0(980)a_{0}(980) into KK¯K\overline{K} as m(K+)+m(K)=987.4m(K^{+})+m(K^{-})=987.4 MeV and m(K0)+m(K¯0)=995.2m(K^{0})+m(\bar{K}^{0})=995.2 MeV are near threshold. In other words, one has to take the threshold effect into account. Since f0(980)f_{0}(980) couples strongly to the channel KK¯K\overline{K} as well as to the channel ππ\pi\pi, they can be described by a coupled channel formula, the so-called Flatté line shape Flatte:1976xu

Tf0Flatte(s)=1smf02+i[gf0ππ2ρππ(s)+gf0KK¯2ρKK¯(s)],\displaystyle T^{\rm Flatte}_{f_{0}}(s)={1\over s-m_{f_{0}}^{2}+i\left[g_{f_{0}\to\pi\pi}^{2}\rho_{\pi\pi}(s)+g^{2}_{f_{0}\to K\bar{K}}\rho_{K\bar{K}}(s)\right]}, (38)

with the phase space factor

ρab=116π(1(ma+mb)2s)1/2(1(mamb)2s)1/2,\displaystyle\rho_{ab}={1\over 16\pi}\left(1-{(m_{a}+m_{b})^{2}\over s}\right)^{1/2}\left(1-{(m_{a}-m_{b})^{2}\over s}\right)^{1/2}, (39)

so that

ρKK¯(s)\displaystyle\rho_{K\!\bar{K}}(s) =\displaystyle= ρK+K(s)+ρK0K¯0(s)=116π(1(4mK±2/s)+1(4mK02/s)),\displaystyle\rho_{K^{+}K^{-}}(s)+\rho_{K^{0}\bar{K}^{0}}(s)={1\over 16\pi}\left(\sqrt{1-(4m_{K^{\pm}}^{2}/s)}+\sqrt{1-(4m_{K^{0}}^{2}/s)}\right),
ρππ(s)\displaystyle\rho_{\pi\pi}(s) =\displaystyle= ρπ+π(s)+12ρπ0π0(s)=116π(1(4mπ±2/s)+121(4mπ02/s)),\displaystyle\rho_{\pi^{+}\pi^{-}}(s)+{1\over 2}\rho_{\pi^{0}\pi^{0}}(s)={1\over 16\pi}\left(\sqrt{1-(4m_{\pi^{\pm}}^{2}/s)}+{1\over 2}\sqrt{1-(4m_{\pi^{0}}^{2}/s)}\right), (40)

and ρiρ2\rho\to i\sqrt{-\rho^{2}} when below the threshold, i.e. s<4mK2s<4m_{K}^{2} for ρKK¯\rho_{K\bar{K}}. The dimensionful coupling constants in Eq. (38) are

gf0ππgf0π+π=2gf0π0π0,gf0KK¯gf0K+K=gf0K0K¯0.\displaystyle g_{f_{0}\to\pi\pi}\equiv g_{f_{0}\to\pi^{+}\pi^{-}}=\sqrt{2}g_{f_{0}\to\pi^{0}\pi^{0}},\qquad g_{f_{0}\to K\bar{K}}\equiv g_{f_{0}\to K^{+}K^{-}}=g_{f_{0}\to K^{0}\bar{K}^{0}}. (41)

Likewise, a0(980)a_{0}(980) couples strongly to KK¯K\overline{K} and ηπ\eta\pi

Ta0Flatte(s)=1sma02+i[ga0ηπ2ρηπ(s)+ga0KK¯2ρKK¯(s)].\displaystyle T^{\rm Flatte}_{a_{0}}(s)={1\over s-m_{a_{0}}^{2}+i\left[g_{a_{0}\to\eta\pi}^{2}\rho_{\eta\pi}(s)+g^{2}_{a_{0}\to K\bar{K}}\rho_{K\bar{K}}(s)\right]}. (42)

with

ρηπ(s)\displaystyle\rho_{\eta\pi}(s) =\displaystyle= 116π(1(mηmπ)2s)1/2(1(mη+mπ)2s)1/2.\displaystyle{1\over 16\pi}\left(1-{(m_{\eta}-m_{\pi})^{2}\over s}\right)^{1/2}\left(1-{(m_{\eta}+m_{\pi})^{2}\over s}\right)^{1/2}. (43)

It is important to check whether gf0ππg_{f_{0}\to\pi\pi} and gf0,a0KK¯g_{f_{0},a_{0}\to K\bar{K}} can be interpreted as the strong couplings of f0f_{0} to ππ\pi\pi and KK¯K\overline{K}, respectively. Using the formula

Γ(f0π+π)=pc8πmf02gf0π+π2,\displaystyle\Gamma(f_{0}\to\pi^{+}\pi^{-})={p_{c}\over 8\pi m_{f_{0}}^{2}}g_{f_{0}\to\pi^{+}\pi^{-}}^{2}, (44)

with pcp_{c} being the c.m. momentum of the pion in the rest frame of f0f_{0}, it is easily seen that the term gf0ππ2ρππ(mf02)g_{f_{0}\to\pi\pi}^{2}\rho_{\pi\pi}(m_{f_{0}}^{2}) in Eq. (38) is identical to mf0(Γ(f0π+π)+Γ(f0π0π0))m_{f_{0}}(\Gamma(f_{0}\to\pi^{+}\pi^{-})+\Gamma(f_{0}\to\pi^{0}\pi^{0})). Therefore, we are sure that gf0ππg_{f_{0}\to\pi\pi} is the strong coupling appearing in the matrix element π+π|f0\langle\pi^{+}\pi^{-}|f_{0}\rangle. The strong couplings gf0,a0KK¯g_{f_{0},a_{0}\to K\bar{K}}, gf0ππg_{f_{0}\to\pi\pi} and ga0ηπg_{a_{0}\to\eta\pi} have been extracted from fits to the experimental data. In this work we shall use

gf0KK¯=(3.54±0.05)GeV,ga0KK¯=(3.77±0.42)GeV,\displaystyle g_{f_{0}\to K\bar{K}}=(3.54\pm 0.05)\,{\rm GeV},\qquad~{}~{}g_{a_{0}\to K\bar{K}}=(3.77\pm 0.42)\,{\rm GeV}, (45)
gf0ππ=(1.5±0.1)GeV,ga0ηπ=(2.54±0.16)GeV,\displaystyle g_{f_{0}\to\pi\pi}=(1.5\pm 0.1)\,{\rm GeV},\qquad\qquad~{}g_{a_{0}\to\eta\pi}=(2.54\pm 0.16)\,{\rm GeV},

where the values of gf0KK¯g_{f_{0}\to K\bar{K}} and gf0ππg_{f_{0}\to\pi\pi} are taken from Ref. BESIII:D0KKKS , dominated by the Dalitz plot analysis of e+eπ0π0γe^{+}e^{-}\to\pi^{0}\pi^{0}\gamma performed by KLOE KLOE:f0 . The couplings ga0KK¯g_{a_{0}\to K\bar{K}} and ga0πηg_{a_{0}\to\pi\eta} are taken from the analysis of the decay D0KS0K+KD^{0}\to K_{S}^{0}K^{+}K^{-} by BESIII BESIII:D0KKKS . 555From the amplitude analysis of the χc1ηπ+π\chi_{c1}\to\eta\pi^{+}\pi^{-} decay, BESIII obtained another set of couplings: ga0ηπ=(4.14±0.02)GeVg_{a_{0}\to\eta\pi}=(4.14\pm 0.02)\,{\rm GeV} and ga0KK¯=(3.91±0.02)GeVg_{a_{0}\to K\bar{K}}=(3.91\pm 0.02)\,{\rm GeV} BESIII:etapipi . However, this set of couplings is not appealing for two reasons: (a) the large coupling constant ga0ηπg_{a_{0}\to\eta\pi} will yield too large partial width Γηπ=222\Gamma_{\eta\pi}=222 MeV, recalling that the total width of a0(980)a_{0}(980) lies in the range of 50 to 100 MeV PDG , and (b) it is commonly believed that a0(980)a_{0}(980) couples more strongly to KK¯K\overline{K} than to ηπ\eta\pi, especially in the scenario in which a0(980)a_{0}(980) is a KK¯K\overline{K} molecular state. Note the result for the coupling gf0ππg_{f_{0}\to\pi\pi} is consistent with the value of 1.330.26+0.291.33^{+0.29}_{-0.26} GeV extracted from Belle’s measurement of the partial width of f0(980)π+πf_{0}(980)\to\pi^{+}\pi^{-} Belle:f0 .

The partial widths can be inferred from the strong couplings listed in Eq. (45) as

Γ(f0(980)ππ)=(65.7±8.8)MeV,Γ(a0(980)ηπ)=(85.2±10.7)MeV,\displaystyle\Gamma(f_{0}(980)\to\pi\pi)=(65.7\pm 8.8)\,{\rm MeV},\qquad\Gamma(a_{0}(980)\to\eta\pi)=(85.2\pm 10.7)\,{\rm MeV}, (46)

though they are not directly measured.

V.5 Line shape for σ/f0(500)\sigma/f_{0}(500)

As stressed in Ref. Pelaez:2015qba , the scalar resonance σ/f0(500)\sigma/f_{0}(500) is very broad and cannot be described by the usual Breit-Wigner line shape. Its partial wave amplitude does not resemble a Breit-Wigner shape with a clear peak and a simultaneous steep rise in the phase. The mass and width of the σ\sigma resonance are identified from the associated pole position sσ\sqrt{s_{\sigma}} of the partial wave amplitude in the second Riemann sheet as sσ=mσiΓσ/2\sqrt{s_{\sigma}}=m_{\sigma}-i\Gamma_{\sigma}/2 Pelaez:2015qba . We shall follow the LHCb Collaboration Aaij:3pi_2 to use a simple pole description

Tσ(s)=1ssσ=1smσ2+Γσ2(s)/4+imσΓσ(s),\displaystyle T_{\sigma}(s)={1\over s-s_{\sigma}}={1\over s-m_{\sigma}^{2}+\Gamma_{\sigma}^{2}(s)/4+im_{\sigma}\Gamma_{\sigma}(s)}, (47)

with sσ=mσiΓσ/2\sqrt{s_{\sigma}}=m_{\sigma}-i\Gamma_{\sigma}/2 and

Γσ(s)=Γσ0(qq0)mσs.\displaystyle\Gamma_{\sigma}(s)=\Gamma_{\sigma}^{0}\left({q\over q_{0}}\right){m_{\sigma}\over\sqrt{s}}. (48)

Using the isobar description of the π+π\pi^{+}\pi^{-} SS-wave to fit the B+π+ππ+B^{+}\to\pi^{+}\pi^{-}\pi^{+} decay data, the LHCb Collaboration found Aaij:3pi_2

sσ=(563±10)i(350±13)MeV,\displaystyle\sqrt{s_{\sigma}}=(563\pm 10)-i(350\pm 13)\,{\rm MeV}, (49)

consistent with the PDG value of sσ=(400550)i(200350)MeV\sqrt{s_{\sigma}}=(400-550)-i(200-350)\,{\rm MeV} PDG .

In principle, we could also use a similar pole shape Tκ(s)T_{\kappa}(s)

Tκ(s)=1ssκ=1smκ2+Γκ2(s)/4+imκΓκ(s).\displaystyle T_{\kappa}(s)={1\over s-s_{\kappa}}={1\over s-m_{\kappa}^{2}+\Gamma_{\kappa}^{2}(s)/4+im_{\kappa}\Gamma_{\kappa}(s)}. (50)

to describe the broad resonance κ/K0(700)\kappa/K_{0}^{*}(700) and follow Pelaez:2020uiw to use the latest result

sκ=(648±7)i(280±16)MeV,\displaystyle\sqrt{s_{\kappa}}=(648\pm 7)-i(280\pm 16)\,{\rm MeV}, (51)

determined from a dispersive data analysis. However, we find that this line shape together with the above pole mass and width will yield a very huge and unreasonable result for the finite-width correction to D+κ¯0π+D^{+}\to\bar{\kappa}^{0}\pi^{+} (see Sec. VI.B below). Hence, we will use the usual Breit-Wigner lineshape for κ/K0(700)\kappa/K_{0}^{*}(700) and take the Breit-Wigner mass and width PDG

mK0(700)BW=845±17MeV,ΓK0(700)BW=468±30MeV.\displaystyle m_{K_{0}^{*}(700)}^{\rm BW}=845\pm 17\,{\rm MeV},\qquad\Gamma_{K_{0}^{*}(700)}^{\rm BW}=468\pm 30\,{\rm MeV}. (52)

V.6 Three-body decays

We take D+σπ+π+ππ+D^{+}\to\sigma\pi^{+}\to\pi^{+}\pi^{-}\pi^{+} as an example to illustrate the calculation for the three-body rate. The two-body decay amplitude for D+σ(m12)π+D^{+}\to\sigma(m_{12})\pi^{+} with m12m_{12} (m122(p1+p2)2)m_{12}^{2}\equiv(p_{1}+p_{2})^{2}) being the invariant mass of the σ\sigma is given by

A(D+σ(m12)π+)=GF2VcdVud[a1(σπ)fπ(mD2s)F0Dσ(mπ2)+a2(πσ)f¯σ(mD2mπ2)F0Dπ(s)].\displaystyle\begin{split}A(D^{+}\to\sigma(m_{12})\pi^{+})=&{G_{F}\over\sqrt{2}}V_{cd}^{*}V_{ud}\Big{[}-a_{1}(\sigma\pi)f_{\pi}(m_{D}^{2}-s)F_{0}^{D\sigma}(m_{\pi}^{2})\\ &~{}~{}~{}+a_{2}(\pi\sigma)\bar{f}_{\sigma}(m_{D}^{2}-m_{\pi}^{2})F_{0}^{D\pi}(s)\Big{]}.\end{split} (53)

Denoting 𝒜σA(D+σπ+π+(p1)π(p2)π+(p3)){\cal A}_{\sigma}\equiv A(D^{+}\to\sigma\pi^{+}\to\pi^{+}(p_{1})\pi^{-}(p_{2})\pi^{+}(p_{3})), we have

𝒜σ=gσπ+πF(s12,mσ)Tσ(s12)A(D+σ(s12)π+)+(s12s23),\displaystyle{\cal A}_{\sigma}=g^{\sigma\to\pi^{+}\pi^{-}}F(s_{12},m_{\sigma})\,T_{\sigma}(s_{12})A(D^{+}\to\sigma(s_{12})\pi^{+})+(s_{12}\leftrightarrow s_{23}), (54)

where the σ\sigma line shape TσT_{\sigma} is given by Eq. (47). When σ\sigma is off the mass shell, especially when s12s_{12} is approaching the upper bound of (mDmπ)2(m_{D}-m_{\pi})^{2}, it is necessary to account for the off-shell effect. For this purpose, we shall follow Cheng:FSI to introduce a form factor F(s,mR)F(s,m_{R}) parametrized as

F(s,mR)=(Λ2+mR2Λ2+s)n,\displaystyle F(s,m_{R})=\left({\Lambda^{2}+m_{R}^{2}\over\Lambda^{2}+s}\right)^{n}, (55)

with the cutoff Λ\Lambda not far from the resonance,

Λ=mR+βΛQCD,\displaystyle\Lambda=m_{R}+\beta\Lambda_{\rm QCD}, (56)

where the parameter β\beta is expected to be of order unity. We shall use n=1n=1, ΛQCD=250\Lambda_{\rm QCD}=250 MeV and β=1.0±0.2\beta=1.0\pm 0.2 in subsequent calculations.

The decay rate then reads

Γ(D+σπ+π+ππ+)=121(2π)332mD3ds12ds23{|gσπ+π|2F(s12,mσ)2(s12mσ2+Γσ(s12)/4)2+mσ2Γσ2(s12)|A(D+σ(m12)π+)|2+(s12s23)+interference},\displaystyle\begin{split}&\Gamma(D^{+}\to\sigma\pi^{+}\to\pi^{+}\pi^{-}\pi^{+})\\ &={1\over 2}\,{1\over(2\pi)^{3}32m_{D}^{3}}\int ds_{12}\,ds_{23}\Bigg{\{}{|g^{\sigma\to\pi^{+}\pi^{-}}|^{2}F(s_{12},m_{\sigma})^{2}\over(s_{12}-m^{2}_{\sigma}+\Gamma_{\sigma}(s_{12})/4)^{2}+m_{\sigma}^{2}\Gamma_{\sigma}^{2}(s_{12})}|A(D^{+}\to\sigma(m_{12})\pi^{+})|^{2}\\ &\qquad\qquad+(s_{12}\leftrightarrow s_{23})+{\rm interference}\Bigg{\}},\end{split} (57)

where the factor of 12{1\over 2} accounts for the identical particle effect. The coupling constant gσπ+πg^{\sigma\to\pi^{+}\pi^{-}} is determined by the relation

Γσπ+π=pc8πmσ2gσπ+π2.\displaystyle\Gamma_{\sigma\to\pi^{+}\pi^{-}}={p_{c}\over 8\pi m_{\sigma}^{2}}g^{2}_{\sigma\to\pi^{+}\pi^{-}}. (58)
Table 7: Branching fractions for various DSPD\to SP decays calculated in schemes I and II. The upper part involves only light scalar mesons (f0f_{0}, a0a_{0}, σ\sigma, and κ\kappa), whereas the lower part involves the a0(1450)a_{0}(1450) and K0(1430)K_{0}^{*}(1430) mesons in the heavier nonet representation. The theoretical calculations are done in the factorization approach with both WW-exchange and WW-annihilation amplitudes being neglected. In scheme I, K0K_{0}^{*} and a0(1450)a_{0}(1450) are excited qq¯q\bar{q} states. Hence, their predictions are not presented here. The f0σf_{0}-\sigma mixing angle θ\theta is taken to be 3030^{\circ} for scheme I.
Decay Scheme I Scheme II NWA{\cal B}_{\rm NWA}
D+σπ+D^{+}\to\sigma\pi^{+} 2.6×1032.6\times 10^{-3} 4.6×1034.6\times 10^{-3} (2.1±0.2)×103(2.1\pm 0.2)\times 10^{-3}
    κ¯0π+\to\bar{\kappa}^{0}\pi^{+} 6.1%6.1\% 6.1%6.1\% (3.62.4+3.0)%(3.6^{+3.0}_{-2.4})\%
    κ¯0K+\to\bar{\kappa}^{0}K^{+} 1.1×1031.1\times 10^{-3} 1.1×1031.1\times 10^{-3} (1.00.3+0.5)×103(1.0^{+0.5}_{-0.3})\times 10^{-3}
D0a00K¯0D^{0}\to a_{0}^{0}\overline{K}^{0} 4.2×1034.2\times 10^{-3} 4.2×1034.2\times 10^{-3} (2.83±0.66)%(2.83\pm 0.66)\%
     σπ0\to\sigma\pi^{0} 3.2×1053.2\times 10^{-5} 7.8×1057.8\times 10^{-5} (1.8±0.3)×104({1.8\pm 0.3})\times 10^{-4}
Ds+a00π+D_{s}^{+}\to a_{0}^{0}\pi^{+} 0 0 (0.86±0.23)%(0.86\pm 0.23)\%
D+K¯00π+D^{+}\to\overline{K}_{0}^{*0}\pi^{+} 2.19%2.19\% (1.98±0.22)%(1.98\pm 0.22)\%
D0K0π+D^{0}\to K_{0}^{*-}\pi^{+} 2.1×1032.1\times 10^{-3} (8.8±1.5)×103(8.8\pm 1.5)\times 10^{-3}
     K¯00π0\to\overline{K}_{0}^{*0}\pi^{0} 2.1×1032.1\times 10^{-3} (9.52.8+8.1)×103(9.5^{+8.1}_{-2.8})\times 10^{-3}
     K0+π\to K_{0}^{*+}\pi^{-} 1.1×1051.1\times 10^{-5} <4.5×105<4.5\times 10^{-5}
Ds+K00π+D_{s}^{+}\to K_{0}^{*0}\pi^{+} 2.9×1042.9\times 10^{-4} (8.1±5.7)×104(8.1\pm 5.7)\times 10^{-4}
     K¯00K+\to\overline{K}_{0}^{*0}K^{+} 3.1×1033.1\times 10^{-3} (2.8±0.5)×103(2.8\pm 0.5)\times 10^{-3}

VI Results and Discussion

In Tables 7 and 8 we have calculated two-body DSPD\to SP and three-body DSPP1P2PD\to SP\to P_{1}P_{2}P decays, respectively, in schemes I and II using the factorization approach with WW-exchange and WW-annihilation being neglected. We see from Table 4 that the decay modes D+a0+K¯0,κ¯π+D^{+}\to a_{0}^{+}\overline{K}^{0},\bar{\kappa}\pi^{+} and K¯0π+\overline{K}_{0}^{*}\pi^{+} are free of WW-annihilation contributions and they are ideal for testing the validity of the factorization approach. From Table 8 it is evident that the calculated rates of D+κ¯π+KSπ0π+D^{+}\to\bar{\kappa}\pi^{+}\to K_{S}\pi^{0}\pi^{+} and D+K¯00π+(Kπ)0π+D^{+}\to\overline{K}^{*0}_{0}\pi^{+}\to(K\pi)^{0}\pi^{+} in scheme II are in agreement with experiment. These modes are governed by the topologies T+CT+C^{\prime} which interfere constructively. This is in contrast to the Cabibbo-favored (CF) D+K¯0π+D^{+}\to\overline{K}^{0}\pi^{+} decay in the PPP\!P sector where TT and CC contribute destructively. For (D+,D0,Ds+)f0P;f0P1P2(D^{+},D_{0},D_{s}^{+})\to f_{0}P;f_{0}\to P_{1}P_{2}, predictions in scheme II are improved over that in scheme I and the discrepancies presumably arise from the WW-exchange or WW-annihilation amplitude. This implies that the tetraquark picture for light scalars works better than the quark-antiquark scenario.

Upon an inspection of Table 7, the reader may wonder (i) why the branching fractions for D(f0,σ)PD\to(f_{0},\sigma)P decays in scheme II are always larger than that in scheme I except for D0f0π0D^{0}\to f_{0}\pi^{0}, and (ii) why the predicted branching fractions of D+σπ+D^{+}\to\sigma\pi^{+} and D+κ¯0π+D^{+}\to\bar{\kappa}^{0}\pi^{+} are larger than experimental data, while the corresponding three-body decays agree with the measurements. For (i), we see from Table IV and also Eq. (23) that the WW-emission decay amplitude involving σ\sigma is suppressed by a factor of cosθ/2\cos\theta/\sqrt{2} in scheme I relative to that in scheme II, while it is suppressed by a factor of sinθ\sin\theta for the WW-emission decay amplitude involving f0(980)f_{0}(980). As a consequence our choice of θ=30\theta=30^{\circ}, the branching fractions for D(f0,σ)PD\to(f_{0},\sigma)P in scheme II are always larger than scheme I except for D0f0π0D^{0}\to f_{0}\pi^{0}. For (ii), it has something to do with the finite-width effects of σ\sigma and κ\kappa as they are both very broad. We shall see in Sec. VI.2 that the extraction of (DSP){\cal B}(D\to SP) from the data is affected by the broad widths of both σ\sigma and κ\kappa.

Table 8: Branching fractions of various DSPP1P2PD\to SP\to P_{1}P_{2}P decays calculated in schemes I and II. For simplicity and convenience, we have dropped the mass identification for f0(980)f_{0}(980), a0(980)a_{0}(980) and K0(1430)K^{*}_{0}(1430). Data are taken from Tables 1 and 2. In scheme I, K0K_{0}^{*} and a0(1450)a_{0}(1450) are excited qq¯q\bar{q} states. Hence, their predictions are not presented here. The f0σf_{0}-\sigma mixing angle θ\theta is taken to be 3030^{\circ} for scheme I.
DSP;SP1P2D\to SP;S\to P_{1}P_{2} Scheme I Scheme II Experiment
D+f0π+;f0π+πD^{+}\to f_{0}\pi^{+};f_{0}\to\pi^{+}\pi^{-} 7.6×1057.6\times 10^{-5} 2.2×1042.2\times 10^{-4} (1.56±0.33)×104(1.56\pm 0.33)\times 10^{-4}
D+f0K+;f0π+πD^{+}\to f_{0}K^{+};f_{0}\to\pi^{+}\pi^{-} 3.6×1073.6\times 10^{-7} 1.2×1051.2\times 10^{-5} (4.4±2.6)×105(4.4\pm 2.6)\times 10^{-5}
D+f0K+;f0K+KD^{+}\to f_{0}K^{+};f_{0}\to K^{+}K^{-} 2.5×1072.5\times 10^{-7} 8.4×1068.4\times 10^{-6} (1.23±0.02)×105(1.23\pm 0.02)\times 10^{-5}
D+σπ+;σπ+πD^{+}\to\sigma\pi^{+};\sigma\to\pi^{+}\pi^{-} 4.9×1044.9\times 10^{-4} 1.7×1031.7\times 10^{-3} (1.38±0.12)×103(1.38\pm 0.12)\times 10^{-3}
D+κ¯0π+;κ¯0KSπ0D^{+}\to\bar{\kappa}^{0}\pi^{+};\bar{\kappa}^{0}\to K_{S}\pi^{0} 5.4×1035.4\times 10^{-3} 5.4×1035.4\times 10^{-3} (64+5)×103(6^{+5}_{-4})\times 10^{-3}
D+κ¯0K+;κ¯0Kπ+D^{+}\to\bar{\kappa}^{0}K^{+};\bar{\kappa}^{0}\to K^{-}\pi^{+} 3.7×1043.7\times 10^{-4} 3.7×1043.7\times 10^{-4} (6.82.1+3.5)×104(6.8^{+3.5}_{-2.1})\times 10^{-4}
D0f0π0;f0π+πD^{0}\to f_{0}\pi^{0};f_{0}\to\pi^{+}\pi^{-} 1.6×1051.6\times 10^{-5} 1.4×1051.4\times 10^{-5} (3.7±0.9)×105(3.7\pm 0.9)\times 10^{-5}
D0f0π0;f0K+KD^{0}\to f_{0}\pi^{0};f_{0}\to K^{+}K^{-} 1.1×1051.1\times 10^{-5} 8.8×1068.8\times 10^{-6} (3.6±0.6)×104(3.6\pm 0.6)\times 10^{-4}
D0f0K¯0;f0π+πD^{0}\to f_{0}\overline{K}^{0};f_{0}\to\pi^{+}\pi^{-} 9.0×1069.0\times 10^{-6} 3.0×1043.0\times 10^{-4} (2.400.46+0.80)×103(2.40^{+0.80}_{-0.46})\times 10^{-3}
D0f0K¯0;f0K+KD^{0}\to f_{0}\overline{K}^{0};f_{0}\to K^{+}K^{-} 4.3×1064.3\times 10^{-6} 1.4×1041.4\times 10^{-4} <1.8×104<1.8\times 10^{-4}
D0a0+π;a0+K+K¯0D^{0}\to a_{0}^{+}\pi^{-};a_{0}^{+}\to K^{+}\overline{K}^{0} 1.3×1051.3\times 10^{-5} 1.3×1051.3\times 10^{-5} (1.2±0.8)×103(1.2\pm 0.8)\times 10^{-3}
D0a0π+;a0KK0D^{0}\to a_{0}^{-}\pi^{+};a_{0}^{-}\to K^{-}K^{0} 2.9×1042.9\times 10^{-4} 2.9×1042.9\times 10^{-4} (2.6±2.8)×104(2.6\pm 2.8)\times 10^{-4}
D0a0+K;a0+K+K¯0D^{0}\to a_{0}^{+}K^{-};a_{0}^{+}\to K^{+}\overline{K}^{0} 2.2×1042.2\times 10^{-4} 2.2×1042.2\times 10^{-4} (1.47±0.33)×103(1.47\pm 0.33)\times 10^{-3}
D0a00K¯0;a00K+KD^{0}\to a_{0}^{0}\overline{K}^{0};a_{0}^{0}\to K^{+}K^{-} 3.4×1043.4\times 10^{-4} 3.4×1043.4\times 10^{-4} (6.18±0.73)×103(6.18\pm 0.73)\times 10^{-3}
D0a00K¯0;a00ηπ0D^{0}\to a_{0}^{0}\overline{K}^{0};a_{0}^{0}\to\eta\pi^{0} 1.1×1031.1\times 10^{-3} 1.1×1031.1\times 10^{-3} (2.40±0.56)%(2.40\pm 0.56)\%
D0a0K+;a0KK¯0D^{0}\to a_{0}^{-}K^{+};a_{0}^{-}\to K^{-}\overline{K}^{0} 1.7×1051.7\times 10^{-5} 1.7×1051.7\times 10^{-5} <2.2×104<2.2\times 10^{-4}
D0σπ0;σπ+πD^{0}\to\sigma\pi^{0};\sigma\to\pi^{+}\pi^{-} 2.2×1052.2\times 10^{-5} 2.0×1042.0\times 10^{-4} (1.22±0.22)×104(1.22\pm 0.22)\times 10^{-4}
Ds+f0π+;f0K+KD_{s}^{+}\to f_{0}\pi^{+};f_{0}\to K^{+}K^{-} 2.5×1032.5\times 10^{-3} 5.1×1035.1\times 10^{-3} (1.14±0.31)%(1.14\pm 0.31)\%
Ds+a0+,0π0,+;a0+,0ηπ+,0D_{s}^{+}\to a_{0}^{+,0}\pi^{0,+};a_{0}^{+,0}\to\eta\pi^{+,0} 0 0 (1.46±0.27)%(1.46\pm 0.27)\%
D+a0(1450)0π+;a00K+KD^{+}\to a_{0}(1450)^{0}\pi^{+};a_{0}^{0}\to K^{+}K^{-} 1.7×1051.7\times 10^{-5} (4.51.8+7.0)×104(4.5^{+7.0}_{-1.8})\times 10^{-4}
D+K¯00π+;K¯00Kπ+D^{+}\to\overline{K}_{0}^{*0}\pi^{+};\overline{K}_{0}^{*0}\to K^{-}\pi^{+} 1.38% (1.25±0.06)%(1.25\pm 0.06)\%
D+K¯00π+;K¯00KSπ0D^{+}\to\overline{K}_{0}^{*0}\pi^{+};\overline{K}_{0}^{*0}\to K_{S}\pi^{0} 6.0×1036.0\times 10^{-3} (5.4±1.8)×103(5.4\pm 1.8)\times 10^{-3}
D+K¯00K+;K¯00Kπ+D^{+}\to\overline{K}_{0}^{*0}K^{+};\overline{K}_{0}^{*0}\to K^{-}\pi^{+} 7.6×1057.6\times 10^{-5} (1.82±0.35)×103(1.82\pm 0.35)\times 10^{-3}
D0a0(1450)π+;a0KK0D^{0}\to a_{0}(1450)^{-}\pi^{+};a_{0}^{-}\to K^{-}K^{0} 6.1×1066.1\times 10^{-6} (5.0±4.0)×105(5.0\pm 4.0)\times 10^{-5}
D0a0(1450)+π;a0+K+K¯0D^{0}\to a_{0}(1450)^{+}\pi^{-};a_{0}^{+}\to K^{+}\overline{K}^{0} 1.8×1071.8\times 10^{-7} (6.4±5.0)×105(6.4\pm 5.0)\times 10^{-5}
D0a0(1450)K+;a0KKSD^{0}\to a_{0}(1450)^{-}K^{+};a_{0}^{-}\to K^{-}K_{S} <0.6×103<0.6\times 10^{-3}
D0K0π+;K0K¯0πD^{0}\to K_{0}^{*-}\pi^{+};K_{0}^{*-}\to\overline{K}^{0}\pi^{-} 8.3×1048.3\times 10^{-4} (5.340.66+0.80)×103(5.34^{+0.80}_{-0.66})\times 10^{-3}
D0K0π+;K0Kπ0D^{0}\to K_{0}^{*-}\pi^{+};K_{0}^{*-}\to K^{-}\pi^{0} 4.2×1044.2\times 10^{-4} (4.8±2.2)×103(4.8\pm 2.2)\times 10^{-3}
D0K¯00π0;K¯00Kπ+D^{0}\to\overline{K}_{0}^{*0}\pi^{0};\overline{K}_{0}^{*0}\to K^{-}\pi^{+} 9.6×1049.6\times 10^{-4} (5.91.6+5.0)×103(5.9^{+5.0}_{-1.6})\times 10^{-3}
D0K0+π;K0+K0π+D^{0}\to K_{0}^{*+}\pi^{-};K_{0}^{*+}\to K^{0}\pi^{+} 5.4×1065.4\times 10^{-6} <2.8×105<2.8\times 10^{-5}
Ds+K00π+;K00K+πD_{s}^{+}\to K_{0}^{*0}\pi^{+};K_{0}^{*0}\to K^{+}\pi^{-} 1.3×1041.3\times 10^{-4} (5.0±3.5)×104(5.0\pm 3.5)\times 10^{-4}
Ds+K¯00K+;K¯00Kπ+D_{s}^{+}\to\overline{K}_{0}^{*0}K^{+};\overline{K}_{0}^{*0}\to K^{-}\pi^{+} 2.0×1032.0\times 10^{-3} (1.7±0.3)×103(1.7\pm 0.3)\times 10^{-3}

VI.1 WW-annihilation amplitude

In the factorization calculations presented in Tables 7 and 8, we have neglected both WW-exchange and WW-annihilation amplitudes. The Ds+a0+π0+a00π+D_{s}^{+}\to a_{0}^{+}\pi^{0}+a_{0}^{0}\pi^{+} mode recently observed by BESIII BESIII:Dstoa0pi proceeds only through the WW-annihilation amplitudes. However, its branching fraction at a percent level is much larger than the other two WW-annihilation channels Ds+ωπ+D_{s}^{+}\to\omega\pi^{+} and ρ0π+\rho^{0}\pi^{+} whose branching fractions are (1.92±0.30)×103(1.92\pm 0.30)\times 10^{-3} and (1.9±1.2)×104(1.9\pm 1.2)\times 10^{-4}, respectively PDG . This implies that |A(SP)|>|A(VP)||A(SP)|>|A(V\!P)|. In other words, the WW-annihilation amplitude plays a more significant role in the SPSP sector than in the VPV\!P one.

Refer to caption
Figure 1: Long-distance contributions to the WW-annihilation amplitude of Ds+a00π+D_{s}^{+}\to a_{0}^{0}\pi^{+} through final-state rescattering of ρη()a0π\rho\eta^{(^{\prime})}\to a_{0}\pi.
Refer to caption
Refer to caption
Figure 2: Manifestation of Fig. 1 at the hadron level: (a) resonant contribution from the nearby resonance π(1800)\pi(1800) and (b) the triangle rescattering diagram.

Consider the decay amplitude of Ds+a00π+D_{s}^{+}\to a_{0}^{0}\pi^{+} and the WW-annihilation contribution to Ds+f0π+D_{s}^{+}\to f_{0}\pi^{+} (in scheme II)

𝒜(Ds+a00π+)=12VcsVud(A+A),𝒜(Ds+f0π+)ann=12VcsVud(A+A).\displaystyle{\cal A}(D_{s}^{+}\to a_{0}^{0}\pi^{+})={1\over\sqrt{2}}V_{cs}^{*}V_{ud}(-A+A^{\prime}),\qquad{\cal A}(D_{s}^{+}\to f_{0}\pi^{+})_{\rm ann}={1\over\sqrt{2}}V_{cs}^{*}V_{ud}(A+A^{\prime}). (59)

Following the GG-parity argument given in Ref. Cheng:Ddecay2010 , it is obvious that the direct WW-annihilation process through cs¯Wud¯c\bar{s}\to W\to u\bar{d} is allowed in Ds+f0π+D_{s}^{+}\to f_{0}\pi^{+} decay but not in Ds+a00π+D_{s}^{+}\to a_{0}^{0}\pi^{+} decay as G(ud¯)=G(u\bar{d})=-, G(a0π)=+G(a_{0}\pi)=+ and G(f0π)=G(f_{0}\pi)=-. This means that short-distance WW-annihilation contributions respect the relation A=AA^{\prime}=A, contrary to the naïve expectation. Hence, one needs large long-distance WW-annihilation which yields A=AA^{\prime}=-A. Since Ds+ρ+ηD_{s}^{+}\to\rho^{+}\eta has the largest branching fraction of (8.9±0.8)%(8.9\pm 0.8)\% among the CF Ds+VPD_{s}^{+}\to VP decays PDG , it is conceivable that long-distance contribution from the weak decays Ds+ρ+ηD_{s}^{+}\to\rho^{+}\eta followed by the resonantlike final-state rescattering of ρ+ηa00π+\rho^{+}\eta\to a_{0}^{0}\pi^{+} (see Fig. 1), which has the same topology as WW-annihilation, may explain the large WW-annihilation rate. 666The hadronic weak decays Ds+ρ+η,K¯0K+D_{s}^{+}\to\rho^{+}\eta^{\prime},\overline{K}^{*0}K^{+} and K¯0K+\overline{K}^{0}K^{*+} followed by final-state rescattering will also contribute to Ds+a00π+D_{s}^{+}\to a_{0}^{0}\pi^{+}. It is customary to evaluate the final-state rescattering contribution, Fig. 1, at the hadron level manifested in Fig. 2. One of the diagrams, namely, the triangle graph in Fig. 2(b) has been evaluated recently in Hsiao:a0 ; Ling:a0 . It yields a major contribution to Ds+a00π+D_{s}^{+}\to a_{0}^{0}\pi^{+} owing to the large coupling constants for ρ+π+π0\rho^{+}\to\pi^{+}\pi^{0} and a00π0ηa_{0}^{0}\to\pi^{0}\eta. The graph in Fig. 2(a) shows the resonant final-state interactions manifested by the nearby resonance π(1800)\pi(1800) whose strong decay to a0πa_{0}\pi has been seen experimentally PDG . However, we are not able to have a quantitative statement owing to the lack of information on its partial width.

Assuming AAA^{\prime}\approx-A, the annihilation amplitude extracted from the data of Ds+a0+π0+a00π+D_{s}^{+}\to a_{0}^{+}\pi^{0}+a_{0}^{0}\pi^{+} is (in units of 10610^{-6} GeV),

|A|=0.91±0.12.\displaystyle|A|=0.91\pm 0.12\,. (60)

Hence, the annihilation amplitude is very sizable in the SPSP sector, |A/T|SP1/2|A/T|_{SP}\sim 1/2, contrary to its suppression |A/T|PP0.18|A/T|_{PP}\sim 0.18 in the PPP\!P sector Cheng:2019ggx and |AV/TP|VP0.07|A_{V}/T_{P}|_{VP}\sim 0.07 in the VPVP sector Cheng:2021yrn .

VI.2 Finite Width Effects

The finite-width effect is accounted for by the quantity ηR\eta_{R} defined by Cheng:2020mna ; Cheng:2020iwk

ηRΓ(DRP3P1P2P3)ΓR0Γ(DRP3P1P2P3)=Γ(DRP3)(RP1P2)Γ(DRP3P1P2P3)=1+δ,\displaystyle\eta_{{}_{R}}\equiv\frac{\Gamma(D\to RP_{3}\to P_{1}P_{2}P_{3})_{\Gamma_{R}\to 0}}{\Gamma(D\to RP_{3}\to P_{1}P_{2}P_{3})}=\frac{\Gamma(D\to RP_{3}){\cal B}(R\to P_{1}P_{2})}{\Gamma(D\to RP_{3}\to P_{1}P_{2}P_{3})}=1+\delta~{}, (61)

so that the deviation of ηR\eta_{{}_{R}} from unity measures the degree of departure from the NWA when the resonance width is finite. It is naïvely expected that the correction δ\delta will be of order ΓR/mR\Gamma_{R}/m_{R}. It is calculable theoretically but depends on the line shape of the resonance and the approach of describing weak hadronic decays such as QCD factorization and perturbative QCD.

Using the branching fractions of two-body and three-body DD decays calculated in Tables 7 and 8, respectively, in scheme II, the resultant ηR\eta_{R} parameters for scalar resonances σ,κ\sigma,\kappa and K0K_{0}^{*} produced in the three-body DD decays are summarized in Table 9. We only consider the D+D^{+} decays as the three-body modes listed in Table 9 are not contaminated by the WW-annihilation amplitude and hence the calculated finite width effects are more trustworth. We have also checked explicitly that ηR1\eta_{R}\to 1 in the narrow width limit as it should be. The ηR\eta_{R} parameters for various resonances produced in the three-body BB decays have been evaluated in Cheng:2020mna ; Cheng:2020iwk . Our results for ηR\eta_{R}’s in Table 9 have similar features as the values ησ/f0(500)=2.15±0.05\eta_{\sigma/f_{0}(500)}=2.15\pm 0.05 and ηK0(1430)=0.83±0.04\eta_{K_{0}^{*}(1430)}=0.83\pm 0.04 obtained in BB decays.

Table 9: A summary of the ηR\eta_{R} parameter for scalar resonances produced in the three-body DD decays. The mass and width of σ/f0(500)\sigma/f_{0}(500) are taken from Eq. (49).
Resonance DRh3h1h2h3D\to Rh_{3}\to h_{1}h_{2}h_{3}  ΓR\Gamma_{R} (MeV) PDG  mRm_{R} (MeV) PDG ΓR/mR\Gamma_{R}/m_{R} ηR\eta_{R}
σ/f0(500)\sigma/f_{0}(500) D+σπ+π+ππ+D^{+}\to\sigma\pi^{+}\to\pi^{+}\pi^{-}\pi^{+}  700±26700\pm 26  563±10563\pm 10 1.243±0.0511.243\pm 0.051 1.850
κ/K0(700)\kappa/K_{0}^{*}(700) D+κ¯0π+KS0π0π+D^{+}\to\bar{\kappa}^{0}\pi^{+}\to K_{S}^{0}\pi^{0}\pi^{+}  468±30468\pm 30 845±17845\pm 17 0.554±0.0370.554\pm 0.037 1.873
K0(1430)K_{0}^{*}(1430) D+K¯00π+Kπ+π+D^{+}\to\overline{K}_{0}^{*0}\pi^{+}\to K^{-}\pi^{+}\pi^{+}  270±80270\pm 80  1425±501425\pm 50 0.19±0.060.19\pm 0.06 0.985

Note that a priori we do not know if the deviation of ηR\eta_{R} from unity is positive or negative. In general, it depends on the line shape, mass and width of the resonance. As alluded to above, the mass and width have a more dominant effect than the line shape in the case of κ(700)\kappa(700). As another example, we found in Ref. [83] that ηρ>1\eta_{\rho}>1 for the Breit-Wigner line shape and ηρ<1\eta_{\rho}<1 when the Gounaris-Sakurai model Gounaris:1968mw is used to describe the line shape of the broad ρ(770)\rho(770) resonance. To our knowledge, there is no good argument favoring one line shape over the other. Therefore, ηK0(1430)=0.985<1\eta_{K_{0}^{*}(1430)}=0.985<1, for example, is the result of our particular line shape choice.

When the resonance is sufficiently broad, it is necessary to take into account the finite-width effects characterized by the parameter ηR\eta_{R}. Explicitly Cheng:2020mna ; Cheng:2020iwk ,

(DRP)=ηR(DRP)NWA=ηR(DRP3P1P2P3)expt(RP1P2)expt,\displaystyle{\cal B}(D\to RP)=\eta_{R}{\cal B}(D\to RP)_{\rm NWA}=\eta_{R}{{\cal B}(D\to RP_{3}\to P_{1}P_{2}P_{3})_{\rm expt}\over{\cal B}(R\to P_{1}P_{2})_{\rm expt}}~{}, (62)

Therefore, the experimental branching fractions (DRP)NWA{\cal B}(D\to RP)_{\rm NWA} for D+σπ+,κ¯0π+D^{+}\to\sigma\pi^{+},\bar{\kappa}^{0}\pi^{+} and K¯00π+\overline{K}_{0}^{*0}\pi^{+} decays in Tables 1 and 7 should have the following corrections:

(D+σπ+):\displaystyle{\cal B}(D^{+}\to\sigma\pi^{+}): (2.1±0.2)×103(3.8±0.3)×103,\displaystyle(2.1\pm 0.2)\times 10^{-3}\to(3.8\pm 0.3)\times 10^{-3},
(D+κ¯0π+):\displaystyle{\cal B}(D^{+}\to\bar{\kappa}^{0}\pi^{+}): (3.62.4+3.0)%(6.74.5+5.6)%,\displaystyle(3.6^{+3.0}_{-2.4})\%\qquad\quad~{}\to(6.7^{+5.6}_{-4.5})\%, (63)
(D+K¯00π+):\displaystyle{\cal B}(D^{+}\to\overline{K}_{0}^{*0}\pi^{+}): (1.98±0.22)%(1.94±0.22)%.\displaystyle(1.98\pm 0.22)\%\quad~{}~{}\to(1.94\pm 0.22)\%.

From Table 7, it is evident that the agreement between theory and experiment is substantially improved for D+σπ+D^{+}\to\sigma\pi^{+} and D+κ¯0π+D^{+}\to\bar{\kappa}^{0}\pi^{+}.

If we employ the pole mass and width, mκ=648±7m_{\kappa}=648\pm 7 MeV and Γκ=560±32\Gamma_{\kappa}=560\pm 32 MeV, respectively, for κ/K0(700)\kappa/K_{0}^{*}(700) and the pole line shape given in Eq. (50), we will be led to the results (D+κ¯0π+)=8.10%{\cal B}(D^{+}\to\bar{\kappa}^{0}\pi^{+})=8.10\%, (D+κ¯0π+KS0π0π+)=1.62×103{\cal B}(D^{+}\to\bar{\kappa}^{0}\pi^{+}\to K_{S}^{0}\pi^{0}\pi^{+})=1.62\times 10^{-3} and ηκ=8.34\eta_{\kappa}=8.34. This implies that the finite-width correction will be unreasonably too large and thus unlikely, as alluded to at the end of Sec. V.5. However, if the Breit-Wigner mass and width are used instead, we get ηκ=1.92\eta_{\kappa}=1.92 for pole line shape, which is a more reasonable result. This implies that in this case, it is the mass and width rather than the line shape that governs the finite-width correction.

For the case of f0(500)f_{0}(500), one may wonder what the correction will be if the Breit-Wigner line shape is used. According to PDG PDG , the Breit-Wigner mass and width of f0(500)f_{0}(500) lie in the wide ranges of 400-800 MeV and 100-800 MeV, respectively. As a result, it is quite difficult to pin down a specific set of parameters and thereby determine the finite-width correction. On the contrary, LHCb has determined its pole mass and width with reasonable accuracy using the pole line shape [see Eq. (49)]. It turns out that the pole mass and width fall within the above allowed ranges of the Breit-Wigner mass and width. Therefore, it is more sensible to use pole mass and width for calculations in either line shapes.

VII Conclusions

In this work we have examined the quasi-two-body DSPD\to SP decays and the three-body DD decays proceeding through intermediate scalar resonances. Our main results are:

  • In the DSP3P1P2P3D\to SP_{3}\to P_{1}P_{2}P_{3} decays, we cannot extract the two-body branching fractions (DSP){\cal B}(D\to SP) for S=f0(980)S=f_{0}(980) and a0(980)a_{0}(980) due to the lack of information of (SP1P2){\cal B}(S\to P_{1}P_{2}) (except for a0(980)πηa_{0}(980)\to\pi\eta). For S=κ/K0(700)S=\kappa/K_{0}^{*}(700) and σ/f0(500)\sigma/f_{0}(500), the extracted two-body branching fractions are subject to large finite-width effects owing to their broad widths. Hence, for light scalars it is more sensible to study (DSPP1P2P){\cal B}(D\to SP\to P_{1}P_{2}P) directly and compare with experiment.

  • We have considered the two-quark (scheme I) and four-quark (scheme II) descriptions of the light scalar mesons with masses below or close to 1 GeV. Recent BESIII measurements of semileptonic charm decays favor the SU(3) nonet tetraquark description of the f0(500)f_{0}(500), f0(980)f_{0}(980) and a0(980)a_{0}(980) produced in charmed meson decay. In Table 8 we have calculated DSP3P1P2P3D\to SP_{3}\to P_{1}P_{2}P_{3} in schemes I and II. It is evident that scheme II agrees better with experiment for decays such as D+f0π+D^{+}\to f_{0}\pi^{+} followed by f0π+πf_{0}\to\pi^{+}\pi^{-} and D+f0K+D^{+}\to f_{0}K^{+} followed by f0π+πf_{0}\to\pi^{+}\pi^{-} or f0K+Kf_{0}\to K^{+}K^{-}. This again favors the tetraquark structure for light scalars. The predicted rates for D0f0P,a0PD^{0}\to f_{0}P,a_{0}P are generally smaller than experimental data by one order of magnitude, presumably implying the importance of WW-exchange.

  • The three-body decay modes D+κ¯0(KSπ0)π+D^{+}\to\bar{\kappa}^{0}(\to K_{S}\pi^{0})\pi^{+}, D+K¯0(Kπ+)π+D^{+}\to\overline{K}_{0}^{*}(\to K^{-}\pi^{+})\pi^{+} and D+K¯0(KSπ0)π+D^{+}\to\overline{K}_{0}^{*}(\to K_{S}\pi^{0})\pi^{+} are ideal for testing the validity of the factorization approach as they are free of WW-annihilation contributions. TT and CC^{\prime} amplitudes contribute constructively, contrary to the Cabibbo-allowed D+K¯0π+D^{+}\to\overline{K}^{0}\pi^{+} decay where the interference between external and internal WW-emission is destructive.

  • Denoting the primed amplitudes TT^{\prime} and CC^{\prime} for the case when the emitted meson is a scalar meson, it is naïvely expected that T=C=0T^{\prime}=C^{\prime}=0 for the neutral scalars σ,f0\sigma,f_{0} and a00a_{0}^{0}, |T||T||T^{\prime}|\ll|T| and |C||C||C^{\prime}|\ll|C| for the charged a0a_{0} and |T|<|T||T^{\prime}|<|T| and |C|<|C||C^{\prime}|<|C| for the κ\kappa and K0(1430)K_{0}^{*}(1430). Beyond the factorization approximation, contributions proportional to the scalar decay constant f¯S\bar{f}_{S} can be produced from vertex and hard spectator-scattering corrections for the above-mentioned neutral scalars.

  • We have studied the flavor operators a1,2(M1M2)a_{1,2}(M_{1}M_{2}) for M1M2=SPM_{1}M_{2}=SP and PSPS within the framework of QCD factorization. Notice that ai(PS)a_{i}(PS) and ai(SP)a_{i}(SP) are very different as the former does not receive factorizable contributions. While a1,2(SP)a_{1,2}(SP) are similar for any light and heavy scalar mesons, a1(PS)a_{1}(PS) and a2(PS)a_{2}(PS) vary from neutral to the charged ones as shown in Table 6. The flavor operators a1,2(πa0±)a_{1,2}(\pi a_{0}^{\pm}) are much greater than a1,2(πa00)a_{1,2}(\pi a_{0}^{0}). In general, a1,2(PS)a_{1,2}(PS) become larger when the vector decay constants become smaller.

  • For f0(980)f_{0}(980) and a0(980)a_{0}(980), we use the Flatté line shape to describe both of them to take into account the threshold and coupled channel effects. For the very broad σ/f0(500)\sigma/f_{0}(500) , we follow LHCb to employ a simple pole description.

  • The annihilation amplitude inferred from the measurement of Ds+a0+,0π0,+ηπ+,0π0,+D_{s}^{+}\to a_{0}^{+,0}\pi^{0,+}\to\eta\pi^{+,0}\pi^{0,+} is given by |A|=(0.91±0.12)×106GeV|A|=(0.91\pm 0.12)\times 10^{-6}\,{\rm GeV}. It is very sizable in the SPSP sector, |A/T|SP1/2|A/T|_{SP}\sim 1/2, contrary to its suppression in the PPP\!P sector with |A/T|PP0.18|A/T|_{PP}\sim 0.18.

  • Since σ\sigma and κ\kappa are very broad, we have considered their finite-width effects characterized by the parameter ηS\eta_{S}, whose deviation from unity measures the degree of departure from the NWA when the resonance width is finite. We find ησ\eta_{\sigma} and ηκ\eta_{\kappa} to be of order 1.851.871.85-1.87. The experimental branching fractions (D+σπ+){\cal B}(D^{+}\to\sigma\pi^{+}) and (D+κ¯0π+){\cal B}(D^{+}\to\bar{\kappa}^{0}\pi^{+}) should then read (3.8±0.3)×103(3.8\pm 0.3)\times 10^{-3} and (6.74.5+5.6)%(6.7^{+5.6}_{-4.5})\%, respectively.

  • For each scalar nonet (lighter and heavier one) we have 15 unknown parameters for the 8 topological amplitudes T,C,E,AT,C,E,A and T,C,E,AT^{\prime},C^{\prime},E^{\prime},A^{\prime}. However, there are only 14 independent data to fit. Moreover, since we need to introduce appropriate energy-dependent line shapes for the scalar mesons, it is not conceivable to extract the topological amplitudes from three-body decays as the decay rates cannot be factorized into the topological amplitude squared and the phase space factor.

Acknowledgments

This research was supported in part by the Ministry of Science and Technology of R.O.C. under Grant Nos. MOST-107-2119-M-001-034, MOST-110-2112-M-001-025 and MOST-108-2112-M-002-005-MY3, the National Natural Science Foundation of China under Grant No. 11347030, the Program of Science and Technology Innovation Talents in Universities of Henan Province 14HASTIT037.


References

  • (1) P.A. Zyla et al. [Particle Data Group], Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update.
  • (2) F. Hussain, A. N. Kamal and S. N. Sinha, “Cabibbo Angle Favored Decays: DSPD\to SP,” Z. Phys.  C 36, 199 (1987).
  • (3) A. C. Katoch and R. C. Verma, “D decays into pseudoscalar and scalar mesons,” Z. Phys.  C 62, 173 (1994).
  • (4) S. Fajfer, “DPSD\to PS decays and the effective chiral Lagrangian for heavy and light mesons,” Z. Phys.  C 68, 81 (1995).
  • (5) F. Buccella, M. Lusignoli and A. Pugliese, “Charm nonleptonic decays and final state interactions,” Phys. Lett.  B 379, 249 (1996) [arXiv:hep-ph/9601343].
  • (6) H. Y. Cheng, “Hadronic D decays involving scalar mesons,” Phys. Rev.  D 67, 034024 (2003) [arXiv:hep-ph/0212117].
  • (7) B. El-Bennich, O. Leitner, J. P. Dedonder and B. Loiseau, “The Scalar Meson f0(980)f_{0}(980) in Heavy-Meson Decays,” Phys. Rev.  D 79, 076004 (2009) [arXiv:0810.5771 [hep-ph]].
  • (8) D. R. Boito, J. P. Dedonder, B. El-Bennich, O. Leitner and B. Loiseau, “Scalar resonances in a unitary ππ\pi-\pi SS-wave model for D+π+ππ+D^{+}\to\pi^{+}\pi^{-}\pi^{+},” Phys. Rev.  D 79, 034020 (2009) [arXiv:0812.3843 [hep-ph]].
  • (9) H. Y. Cheng and C. W. Chiang, “Hadronic D decays involving even-parity light mesons,” Phys. Rev. D 81, 074031 (2010) [arXiv:1002.2466 [hep-ph]].
  • (10) J. P. Dedonder, R. Kaminski, L. Lesniak and B. Loiseau, “Dalitz plot studies of D0KS0π+πD^{0}\to K_{S}^{0}\pi^{+}\pi^{-} decays in a factorization approach,” Phys. Rev. D 89, 094018 (2014) [arXiv:1403.2971 [hep-ph]].
  • (11) J. J. Xie, L. R. Dai and E. Oset, “The low lying scalar resonances in the D0D^{0} decays into Ks0K^{0}_{s} and f0(500)f_{0}(500), f0(980)f_{0}(980), a0(980)a_{0}(980),” Phys. Lett. B 742, 363-369 (2015) [arXiv:1409.0401 [hep-ph]].
  • (12) B. Loiseau, “Theory overview on amplitude analyses with charm decays,” PoS CHARM2016, 033 (2016) [arXiv:1611.05286 [hep-ph]].
  • (13) J. P. Dedonder, R. Kamiński, L. Leśniak and B. Loiseau, “Dalitz plot studies of D0KS0K+KD^{0}\rightarrow K^{0}_{S}K^{+}K^{-} decays in a factorization approach,” Phys. Rev. D 103, 114028 (2021) [arXiv:2105.03355 [hep-ph]].
  • (14) R. Aaij et al. [LHCb Collaboration], “Dalitz plot analysis of the D+KK+K+D^{+}\to K^{-}K^{+}K^{+} decay,” JHEP 04, 063 (2019) [arXiv:1902.05884 [hep-ex]].
  • (15) M. Ablikim et al. [BESIII Collaboration], “Amplitude analysis and branching fraction measurement of the decay Ds+π+π0π0D_{s}^{+}\to\pi^{+}\pi^{0}\pi^{0},” [arXiv:2109.12660 [hep-ex]].
  • (16) M. Ablikim et al. [BESIII Collaboration], “Amplitude analysis and branching fraction measurement of Ds+K+Kπ+D_{s}^{+}\rightarrow K^{+}K^{-}\pi^{+},” Phys. Rev. D 104, 012016 (2021) [arXiv:2011.08041 [hep-ex]].
  • (17) M. Ablikim et al. [BESIII Collaboration], “Amplitude analysis of Ds+π+π0ηD_{s}^{+}\rightarrow\pi^{+}\pi^{0}\eta and first observation of the pure WW-annihilation decays Ds+a0(980)+π0D_{s}^{+}\rightarrow a_{0}(980)^{+}\pi^{0} and Ds+a0(980)0π+D_{s}^{+}\rightarrow a_{0}(980)^{0}\pi^{+},” Phys. Rev. Lett. 123, 112001 (2019) [arXiv:1903.04118 [hep-ex]].
  • (18) M. Ablikim et al. [BESIII Collaboration], “Analysis of the decay D0KS0K+KD^{0}\rightarrow K_{S}^{0}K^{+}K^{-},” [arXiv:2006.02800 [hep-ex]].
  • (19) C. Amsler and N. A. Tornqvist, “Mesons beyond the naïve quark model,” Phys. Rept. 389, 61-117 (2004).
  • (20) F. E. Close and N. A. Tornqvist, “Scalar mesons above and below 1-GeV,” J. Phys. G 28, R249-R267 (2002) [arXiv:hep-ph/0204205 [hep-ph]].
  • (21) T. Barnes, “Two Photon Decays Support the (KK¯K\bar{K}) Molecule Picture of the S(975)S^{*}(975) and δ(980)\delta(980),” Phys. Lett. B 165, 434-440 (1985).
  • (22) N. N. Achasov and V. N. Ivanchenko, “On a Search for Four Quark States in Radiative Decays of ϕ\phi Meson,” Nucl. Phys. B 315, 465-476 (1989).
  • (23) N. N. Achasov, “Radiative decays of ϕ\phi meson about nature of light scalar resonances,” Nucl. Phys. A 728, 425-438 (2003) [arXiv:hep-ph/0309118 [hep-ph]].
  • (24) D. Black, M. Harada and J. Schechter, “Chiral approach to ϕ\phi radiative decays,” Phys. Rev. D 73, 054017 (2006) [arXiv:hep-ph/0601052 [hep-ph]].
  • (25) R. L. Jaffe, “Multi-Quark Hadrons. 1. The Phenomenology of (2 Quark 2 anti-Quark) Mesons,” Phys. Rev. D 15, 267 (1977); “Multi-Quark Hadrons. 2. Methods,” Phys. Rev. D 15, 281 (1977).
  • (26) Y. Kuroda, M. Harada, S. Matsuzaki and D. Jido, “Inverse Mass Hierarchy of Light Scalar Mesons Driven by Anomaly-Induced Flavor Breaking,” PTEP 2020, 053D02 (2020) [arXiv:1910.09146 [hep-ph]].
  • (27) S. Prelovsek, T. Draper, C. B. Lang, M. Limmer, K. F. Liu, N. Mathur and D. Mohler, “Lattice study of light scalar tetraquarks with I=0,2,1/2,3/2I=0,2,1/2,3/2: Are σ\sigma and κ\kappa tetraquarks?,” Phys. Rev. D 82, 094507 (2010) [arXiv:1005.0948 [hep-lat]]; S. Prelovsek and D. Mohler, “A lattice study of light scalar tetraquarks,” Phys. Rev.  D 79, 014503 (2009) [arXiv:0810.1759 [hep-lat]].
  • (28) N. Mathur, A. Alexandru, Y. Chen, S. J. Dong, T. Draper, I. Horvath, F. X. Lee, K. F. Liu, S. Tamhankar and J. B. Zhang, “Scalar mesons a0(1450)a_{0}(1450) and σ(600)\sigma(600) from lattice QCD,” Phys. Rev.  D 76, 114505 (2007) [arXiv:hep-ph/0607110].
  • (29) C. Alexandrou, J. O. Daldrop, M. Dalla Brida, M. Gravina, L. Scorzato, C. Urbach and M. Wagner, “Lattice investigation of the scalar mesons a0a_{0}(980) and κ\kappa using four-quark operators,” JHEP 04, 137 (2013) [arXiv:1212.1418 [hep-lat]].
  • (30) C. Alexandrou, J. Berlin, M. Dalla Brida, J. Finkenrath, T. Leontiou and M. Wagner, “Lattice QCD investigation of the structure of the a0(980)a_{0}(980) meson,” Phys. Rev. D 97, 034506 (2018) [arXiv:1711.09815 [hep-lat]].
  • (31) M. Wakayama, T. Kunihiro, S. Muroya, A. Nakamura, C. Nonaka, M. Sekiguchi and H. Wada, “Lattice QCD study of four-quark components of the isosinglet scalar mesons: Significance of disconnected diagrams,” Phys. Rev. D 91, 094508 (2015) [arXiv:1412.3909 [hep-lat]].
  • (32) J. A. Oller, E. Oset and J. R. Pelaez, “Nonperturbative approach to effective chiral Lagrangians and meson interactions,” Phys. Rev. Lett. 80, 3452-3455 (1998) [arXiv:hep-ph/9803242 [hep-ph]].
  • (33) J. A. Oller, E. Oset and J. R. Pelaez, “Meson meson interaction in a nonperturbative chiral approach,” Phys. Rev. D 59, 074001 (1999) [erratum: Phys. Rev. D 60, 099906 (1999); erratum: Phys. Rev. D 75, 099903 (2007)] [arXiv:hep-ph/9804209 [hep-ph]].
  • (34) J. D. Weinstein and N. Isgur, “KK¯K\overline{K} Molecules,” Phys. Rev. D 41, 2236 (1990)
  • (35) H. Y. Cheng, C. K. Chua and K. C. Yang, “Charmless hadronic B decays involving scalar mesons: Implications to the nature of light scalar mesons,” Phys. Rev. D 73, 014017 (2006) [arXiv:hep-ph/0508104 [hep-ph]].
  • (36) R. Fleischer, R. Knegjens and G. Ricciardi, “Anatomy of Bs,d0J/ψf0(980)B^{0}_{s,d}\to J/\psi f_{0}(980),” Eur. Phys. J. C 71, 1832 (2011) [arXiv:1109.1112 [hep-ph]].
  • (37) R. Aaij et al. [LHCb collaboration], “Analysis of the resonant components in B0J/ψπ+πB^{0}\to J/\psi\pi^{+}\pi^{-},” Phys. Rev. D87 (2013) 052001 [arXiv:1301.5347 [hep-ex]].
  • (38) L. Maiani, F. Piccinini, A.D. Polosa, and V. Riquer, “A New look at scalar mesons,” Phys. Rev. Lett. 93, 212002 (2004) [arXiv:hep-ph/0407017 [hep-ph]].
  • (39) W. Wang and C. D. Lu, “Distinguishing two kinds of scalar mesons from heavy meson decays,” Phys. Rev. D 82, 034016 (2010) [arXiv:0910.0613 [hep-ph]].
  • (40) M. Ablikim et al. [BESIII Collaboration], “Observation of the Semileptonic Decay D0a0(980)e+νeD^{0}\to a_{0}(980)^{-}e^{+}\nu_{e} and Evidence for D+a0(980)0e+νeD^{+}\to a_{0}(980)^{0}e^{+}\nu_{e},” Phys. Rev. Lett. 121, 081802 (2018) [arXiv:1803.02166 [hep-ex]].
  • (41) M. Ablikim et al. [BESIII Collaboration], “Observation of D+f0(500)e+νeD^{+}\to f_{0}(500)e^{+}\nu_{e} and Improved Measurements of Dρe+νeD\to\rho e^{+}\nu_{e},” Phys. Rev. Lett. 122, 062001 (2019) [arXiv:1809.06496 [hep-ex]].
  • (42) N. N. Achasov, A. V. Kiselev and G. N. Shestakov, “Semileptonic decays Dπ+πe+νeD\to\pi^{+}\pi^{-}e^{+}\nu_{e} and Dsπ+πe+νeD_{s}\to\pi^{+}\pi^{-}e^{+}\nu_{e} as the probe of constituent quark-antiquark pairs in the light scalar mesons,” Phys. Rev. D 102, no.1, 016022 (2020) [arXiv:2005.06455 [hep-ph]].
  • (43) M. Wirbel, B. Stech and M. Bauer, “Exclusive Semileptonic Decays of Heavy Mesons,” Z. Phys. C 29, 637 (1985); M. Bauer, B. Stech and M. Wirbel, “Exclusive Nonleptonic Decays of D,DsD,D_{s}, and BB Mesons,” Z. Phys. C 34, 103 (1987).
  • (44) H. Y. Cheng, C. K. Chua and C. W. Hwang, “Covariant light-front approach for s-wave and p-wave mesons: Its application to decay constants and form factors,” Phys. Rev.  D 69, 074025 (2004) [arXiv:hep-ph/0310359].
  • (45) R. C. Verma, “Decay constants and form factors of s-wave and p-wave mesons in the covariant light-front quark model,” J. Phys. G 39, 025005 (2012) [arXiv:1103.2973 [hep-ph]].
  • (46) N. R. Soni, A. N. Gadaria, J. J. Patel and J. N. Pandya, “Semileptonic Decays of Charmed Mesons to Light Scalar Mesons,” Phys. Rev. D 102, 016013 (2020) [arXiv:2001.10195 [hep-ph]].
  • (47) Y. J. Shi, W. Wang and S. Zhao, “Chiral dynamics, S-wave contributions and angular analysis in Dππν¯D\rightarrow\pi\pi\ell\bar{\nu},” Eur. Phys. J. C 77, 452 (2017) [arXiv:1701.07571 [hep-ph]].
  • (48) X. D. Cheng, H. B. Li, B. Wei, Y. G. Xu and M. Z. Yang, “Study of Da0(980)e+νeD\rightarrow a_{0}(980)e^{+}\nu_{e} decay in the light-cone sum rules approach,” Phys. Rev. D 96, 033002 (2017) [arXiv:1706.01019 [hep-ph]].
  • (49) Q. Huang, Y. J. Sun, D. Gao, G. H. Zhao, B. Wang and W. Hong, “Study of form factors and branching ratios for DS,Alνl¯D\rightarrow S,Al\bar{\nu_{l}} with light-cone sum rules,” [arXiv:2102.12241 [hep-ph]].
  • (50) M. Ablikim et al. [BESIII Collaboration], “Observation of the Semileptonic Decay D0a0(980)e+νeD^{0}\to a_{0}(980)^{-}e^{+}\nu_{e} and Evidence for D+a0(980)0e+νeD^{+}\to a_{0}(980)^{0}e^{+}\nu_{e},” Phys. Rev. Lett. 121, 081802 (2018) [arXiv:1803.02166 [hep-ex]].
  • (51) H. Y. Cheng and X. W. Kang, “Branching fractions of semileptonic DD and DsD_{s} decays from the covariant light-front quark model,” Eur. Phys. J. C 77, 587 (2017) [erratum: Eur. Phys. J. C 77, 863 (2017)] [arXiv:1707.02851 [hep-ph]].
  • (52) L. L. Chau and H. Y. Cheng, “Analysis of Exclusive Two-Body Decays of Charm Mesons Using the Quark Diagram Scheme,” Phys. Rev. D 36, 137 (1987); “Analysis of the Recent Data of Exclusive Two-body Charm Decays,” Phys. Lett. B 222, 285-292 (1989).
  • (53) L. L. Chau, “Quark Mixing in Weak Interactions,” Phys. Rept. 95, 1-94 (1983).
  • (54) L. L. Chau and H. Y. Cheng, “Quark Diagram Analysis of Two-body Charm Decays,” Phys. Rev. Lett. 56, 1655-1658 (1986).
  • (55) H. Y. Cheng, C. K. Chua and K. C. Yang, “Charmless hadronic BB decays involving scalar mesons: Implications to the nature of light scalar mesons,” Phys. Rev. D 73, 014017 (2006) [arXiv:hep-ph/0508104 [hep-ph]].
  • (56) H. Y. Cheng, C. K. Chua, K. C. Yang and Z. Q. Zhang, “Revisiting charmless hadronic BB decays to scalar mesons,” Phys. Rev. D 87, 114001 (2013) [arXiv:1303.4403 [hep-ph]].
  • (57) H. Y. Cheng and C. W. Chiang, “Two-body hadronic charmed meson decays,” Phys. Rev. D 81, 074021 (2010) [arXiv:1001.0987 [hep-ph]].
  • (58) B. Bhattacharya and J. L. Rosner, “Flavor symmetry and decays of charmed mesons to pairs of light pseudoscalars,” Phys. Rev.  D 77, 114020 (2008) [arXiv:0803.2385 [hep-ph]].
  • (59) B. Bhattacharya and J. L. Rosner, “Decays of Charmed Mesons to PV Final States,” Phys. Rev.  D 79, 034016 (2009) [arXiv:0812.3167 [hep-ph]].
  • (60) B. Bhattacharya and J. L. Rosner, “Charmed meson decays to two pseudoscalars,” arXiv:0911.2812 [hep-ph].
  • (61) H. Y. Cheng and C. W. Chiang, “Direct CP violation in two-body hadronic charmed meson decays,” Phys. Rev. D 85, 034036 (2012) [arXiv:1201.0785 [hep-ph]]; 85, 079903(E) (2012).
  • (62) H. Y. Cheng and C. W. Chiang, “SU(3) symmetry breaking and CP violation in DPPD\to PP decays,” Phys. Rev. D 86, 014014 (2012) [arXiv:1205.0580 [hep-ph]].
  • (63) H. -n. Li, C. D. Lu and F. S. Yu, “Branching ratios and direct CP asymmetries in DPPD\to PP decays,” Phys. Rev. D 86, 036012 (2012) [arXiv:1203.3120 [hep-ph]]
  • (64) Q. Qin, H. n. Li, C. D. Lü, and F. S. Yu, “Branching ratios and direct CP asymmetries in DPVD\to PV decays,” Phys. Rev. D 89, 054006 (2014) [arXiv:1305.7021 [hep-ph]].
  • (65) H. Y. Cheng, C. W. Chiang and A. L. Kuo, “Global analysis of two-body DVPD\to V\!P decays within the framework of flavor symmetry,” Phys. Rev. D 93, 114010 (2016) [arXiv:1604.03761 [hep-ph]].
  • (66) H. Y. Cheng and C. W. Chiang, “CP violation in quasi-two-body DVPD\to V\!P decays and three-body D decays mediated by vector resonances,” Phys. Rev. D 104, 073003 (2021) [arXiv:2104.13548 [hep-ph]].
  • (67) M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda, “QCD factorization for BππB\to\pi\pi decays: Strong phases and CP violation in the heavy quark limit,” Phys. Rev. Lett.  83, 1914 (1999) [arXiv:hep-ph/9905312]; “QCD factorization for exclusive, non-leptonic B meson decays: General arguments and the case of heavy-light final states,” Nucl. Phys.  B 591, 313 (2000) [arXiv:hep-ph/0006124].
  • (68) M. Beneke and M. Neubert, “QCD factorization for BPPB\to PP and BPVB\to PV decays,” Nucl. Phys. B 675, 333 (2003) [arXiv:hep-ph/0308039 [hep-ph]].
  • (69) M. A. Ivanov, J. G. Körner, J. N. Pandya, P. Santorelli, N. R. Soni and C. T. Tran, “Exclusive semileptonic decays of D and Ds mesons in the covariant confining quark model,” Front. Phys. (Beijing) 14, 64401 (2019) [arXiv:1904.07740 [hep-ph]].
  • (70) S. M. Flatte, “Coupled - Channel Analysis of the πη\pi\eta and KK¯K\bar{K} Systems Near KK¯K\bar{K} Threshold,” Phys. Lett. B 63, 224-227 (1976).
  • (71) F. Ambrosino et al. [KLOE Collaboration], “Dalitz plot analysis of e+eπ0π0γe^{+}e^{-}\to\pi^{0}\pi^{0}\gamma events at s\sqrt{s} approximately M(ϕM(\phi) with the KLOE detector,” Eur. Phys. J. C 49, 473-488 (2007) [arXiv:hep-ex/0609009 [hep-ex]].
  • (72) M. Ablikim et al. [BESIII Collaboration], “Amplitude analysis of the χc1ηπ+π\chi_{c1}\to\eta\pi^{+}\pi^{-} decays,” Phys. Rev. D 95, 032002 (2017) [arXiv:1610.02479 [hep-ex]].
  • (73) T. Mori et al. [Belle Collaboration], “High statistics study of f0(980)f_{0}(980) resonance in γγπ+π\gamma\gamma\to\pi^{+}\pi^{-} production,” Phys. Rev. D 75, 051101 (2007) [arXiv:hep-ex/0610038 [hep-ex]].
  • (74) J. R. Pelaez, “From controversy to precision on the sigma meson: a review on the status of the non-ordinary f0(500)f_{0}(500) resonance,” Phys. Rept. 658, 1 (2016) [arXiv:1510.00653 [hep-ph]].
  • (75) R. Aaij et al. [LHCb Collaboration], “Amplitude analysis of the B+π+π+πB^{+}\rightarrow\pi^{+}\pi^{+}\pi^{-} decay,” Phys. Rev. D 101, 012006 (2020) [arXiv:1909.05212 [hep-ex]].
  • (76) J. R. Peláez and A. Rodas, “Determination of the lightest strange resonance K0(700)K_{0}^{*}(700) or κ\kappa, from a dispersive data analysis,” Phys. Rev. Lett. 124, 172001 (2020) [arXiv:2001.08153 [hep-ph]].
  • (77) H. Y. Cheng, C. K. Chua and A. Soni, “Final state interactions in hadronic BB decays,” Phys. Rev. D 71, 014030 (2005) [arXiv:hep-ph/0409317 [hep-ph]].
  • (78) Y. K. Hsiao, Y. Yu and B. C. Ke, “Resonant a0(980)a_{0}(980) state in triangle rescattering Ds+π+π0ηD_{s}^{+}\rightarrow\pi^{+}\pi^{0}\eta decays,” Eur. Phys. J. C 80, 895 (2020) [arXiv:1909.07327 [hep-ph]].
  • (79) X. Z. Ling, M. Z. Liu, J. X. Lu, L. S. Geng and J. J. Xie, “Can the nature of a0(980)a_{0}(980) be tested in the Ds+π+π0ηD_{s}^{+}\to\pi^{+}\pi^{0}\eta decay?,” Phys. Rev. D 103, 116016 (2021) [arXiv:2102.05349 [hep-ph]].
  • (80) H. Y. Cheng and C. W. Chiang, “Revisiting CP violation in DPPD\to P\!P and VPV\!P decays,” Phys. Rev. D 100, 093002 (2019) [arXiv:1909.03063 [hep-ph]].
  • (81) H. Y. Cheng and C. W. Chiang, “CP violation in quasi-two-body DVPD\to VP decays and three-body DD decays mediated by vector resonances,” Phys. Rev. D 104, 073003 (2021) [arXiv:2104.13548 [hep-ph]].
  • (82) H. Y. Cheng, C. W. Chiang and C. K. Chua, “Width effects in resonant three-body decays: BB decay as an example,” Phys. Lett. B 813, 136058 (2021) [arXiv:2011.03201 [hep-ph]].
  • (83) H. Y. Cheng, C. W. Chiang and C. K. Chua, “Finite-Width Effects in Three-Body BB Decays,” Phys. Rev. D 103, 036017 (2021) [arXiv:2011.07468 [hep-ph]].
  • (84) G. J. Gounaris and J. J. Sakurai, “Finite width corrections to the vector meson dominance prediction for ρe+e\rho\to e^{+}e^{-},” Phys. Rev. Lett. 21, 244 (1968).