This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Guesswork of a quantum ensemble

Michele Dall’Arno, Francesco Buscemi, Takeshi Koshiba M. Dall’Arno is with the Yukawa Institute for Theoretical Physics, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan, and with the Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, 169-8050, Japan (e–mail: [email protected])F. Buscemi is with the Department of Mathematical Informatics, Graduate School of Informatics, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan (e–mail: [email protected])T. Koshiba is with the Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, 169-8050, Japan (e–mail: [email protected])YITP-20-161
Abstract

The guesswork of a quantum ensemble quantifies the minimum number of guesses needed in average to correctly guess the state of the ensemble, when only one state can be queried at a time. Here, we derive analytical solutions of the guesswork problem subject to a finite set of conditions, including the analytical solution for any qubit ensemble with uniform probability distribution. As explicit examples, we compute the guesswork for any qubit regular polygonal and polyhedral ensemble.

I Introduction

We consider a communication scenario involving two parties, Alice and Bob. An ensemble 𝝆\boldsymbol{\rho} of quantum states with labels in a set \mathcal{M} is given and known to both parties. At each round, Alice picks a label mm\in\mathcal{M} with probability Tr[𝝆(m)]\operatorname{Tr}[\boldsymbol{\rho}(m)] and hands state Tr[𝝆(m)]1𝝆(m)\operatorname{Tr}[\boldsymbol{\rho}(m)]^{-1}\boldsymbol{\rho}(m) over to Bob. Bob aims at correctly guessing label mm being allowed to query one element of \mathcal{M} at a time, until his query is correct, at which point the round is over. The cost function incurred by Bob is the average number of guesses, or guesswork, until he correctly guesses mm. Bob’s most general strategy consists of performing a quantum measurement 𝝅\boldsymbol{\pi} outputing an element 𝐧\mathbf{n} from the set 𝒩\mathcal{N}_{\mathcal{M}} of numberings of \mathcal{M} and querying the elements of \mathcal{M} in the order specified by 𝐧\mathbf{n}. Hence, the guesswork is given by the occurence of label mm in numbering 𝐧\mathbf{n}, averaged over all numberings. Using the formalism [1] of quantum circuits, the setup is as follows:

(3)

The guesswork has been extensively studied for classical ensembles [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], but only very recently tackled for quantum ensembles [13, 14, 15]. While previous works focused on the derivation of entropic bounds, our aim is instead the derivation of analytical solutions. Our main result, Theorem 1, provides an analytical solution subject to a finite set of conditions. In particular, Corollary 1 provides the analytical solution for any qubit ensemble with uniform probability distribution, thus disproving the conjecture [13] that analytical solutions exist only for binary and symmetric ensembles. As explicit examples, in Corollaries 2 and 3 we explicitly compute the minimum guesswork of any qubit regular polygonal and polyhedral ensebles, respectively. This proves a conjecture [14] on the guesswork of the square qubit ensemble.

II Formalization

In this section we define the guesswork problem. We use standard results from quantum information theory [1].

First, we introduce the sets of ensembles and numbering-valued measurements that appear in the setup of Eq. (3). For any finite dimensional Hilbert space \mathcal{H}, we denote with +()\mathcal{L}_{+}(\mathcal{H}) the cone of positive semi-definite operators on \mathcal{H}. For any finite set \mathcal{M}, we denote with 𝒩\mathcal{N}_{\mathcal{M}} the set of numberings given by

𝒩:={𝐧:{1,,||}|𝐧 bijective}.\displaystyle\mathcal{N}_{\mathcal{M}}:=\left\{\mathbf{n}:\left\{1,\dots,\left|\mathcal{M}\right|\right\}\to\mathcal{M}\Big{|}\mathbf{n}\textrm{ bijective}\right\}.

We denote with (,)\mathcal{E}(\mathcal{M},\mathcal{H}) the set of ensembles given by

(,):={𝝆:+()|mTr[𝝆(m)]=1}.\displaystyle\mathcal{E}\left(\mathcal{M},\mathcal{H}\right):=\left\{\boldsymbol{\rho}:\mathcal{M}\to\mathcal{L}_{+}\left(\mathcal{H}\right)\Big{|}\sum_{m\in\mathcal{M}}\operatorname{Tr}\left[\boldsymbol{\rho}\left(m\right)\right]=1\right\}.

and with 𝒫(𝒩,)\mathcal{P}(\mathcal{N}_{\mathcal{M}},\mathcal{H}) the set of numbering-valued measurements given by

𝒫(𝒩,):={𝝅:𝒩+()|𝐧𝒩𝝅(𝐧)=𝟙}.\displaystyle\mathcal{P}\left(\mathcal{N}_{\mathcal{M}},\mathcal{H}\right):=\left\{\boldsymbol{\pi}:\mathcal{N}_{\mathcal{M}}\to\mathcal{L}_{+}\left(\mathcal{H}\right)\Big{|}\sum_{\mathbf{n}\in\mathcal{N}_{\mathcal{M}}}\boldsymbol{\pi}\left(\mathbf{n}\right)=\operatorname{\mathds{1}}\right\}.

Next, we introduce the probability distributions that describe the setup in Eq. (3). For any ensemble 𝝆\boldsymbol{\rho} and any numbering-valued measurement 𝝅\boldsymbol{\pi}, we denote with p𝝆,𝝅p_{\boldsymbol{\rho},\boldsymbol{\pi}} the joint probability distribution that the outcome of 𝝅\boldsymbol{\pi} is numbering 𝐧\mathbf{n} and that the tt-th guess is correct, that is 𝐧(t)=m\mathbf{n}(t)=m. In formula:

p𝝆,𝝅:\displaystyle p_{\boldsymbol{\rho},\boldsymbol{\pi}}\;:\; 𝒩×{1,,||}[0,1]\displaystyle\mathcal{N}_{\mathcal{M}}\times\{1,\dots,|\mathcal{M}|\}\longrightarrow[0,1]
(𝐧,t)Tr[𝝆(𝐧(t))𝝅(𝐧)],\displaystyle\left(\mathbf{n},t\right)\longmapsto\operatorname{Tr}\left[\boldsymbol{\rho}\left(\mathbf{n}\left(t\right)\right)\boldsymbol{\pi}\left(\mathbf{n}\right)\right],

for any 𝝆(,)\boldsymbol{\rho}\in\mathcal{E}(\mathcal{M},\mathcal{H}) and any 𝝅𝒫(𝒩,)\boldsymbol{\pi}\in\mathcal{P}(\mathcal{N}_{\mathcal{M}},\mathcal{H}). We denote with q𝝆,𝝅q_{\boldsymbol{\rho},\boldsymbol{\pi}} the probability distribution that the tt-th guess is correct, obtained marginalizing the joint probability distribution p𝝆,𝝅p_{\boldsymbol{\rho},\boldsymbol{\pi}}. In formula:

q𝝆,𝝅:\displaystyle q_{\boldsymbol{\rho},\boldsymbol{\pi}}\;:\; {1,,||}[0,1]\displaystyle\left\{1,\dots,|\mathcal{M}|\right\}\longrightarrow\left[0,1\right]
t𝐧𝒩p𝝆,𝝅(𝐧,t),\displaystyle t\longmapsto\sum_{\mathbf{n}\in\mathcal{N}_{\mathcal{M}}}p_{\boldsymbol{\rho},\boldsymbol{\pi}}\left(\mathbf{n},t\right),

for any 𝝆(,)\boldsymbol{\rho}\in\mathcal{E}(\mathcal{M},\mathcal{H}) and any 𝝅𝒫(𝒩,)\boldsymbol{\pi}\in\mathcal{P}(\mathcal{N}_{\mathcal{M}},\mathcal{H}).

Finally, we are in a position to introduce the guesswork. The guesswork GG is a function mapping any pair (𝝆,𝝅)(\boldsymbol{\rho},\boldsymbol{\pi}) of ensemble and numbering-valued measurement into the expectation value of the number tt of guesses, averaged with the probability distribution q𝝆,𝝅q_{\boldsymbol{\rho},\boldsymbol{\pi}} of correctness of the tt-th guess. In formula:

G:\displaystyle G\;:\; (,)×𝒫(𝒩,)[1,)\displaystyle\mathcal{E}(\mathcal{M},\mathcal{H})\times\mathcal{P}(\mathcal{N}_{\mathcal{M}},\mathcal{H})\longrightarrow[1,\infty)
(𝝆,𝝅)t=1||q𝝆,𝝅(t)t.\displaystyle\left(\boldsymbol{\rho},\boldsymbol{\pi}\right)\longmapsto\sum_{t=1}^{\left|\mathcal{M}\right|}q_{\boldsymbol{\rho},\boldsymbol{\pi}}\left(t\right)t.

The minimum guesswork GminG_{\textrm{min}} is a function mapping any ensemble 𝝆\boldsymbol{\rho} into the minimum over numbering-valued measurements of the guesswork GG. In formula:

Gmin:\displaystyle G_{\textrm{min}}\;:\; (,)[1,)\displaystyle\mathcal{E}(\mathcal{M},\mathcal{H})\longrightarrow[1,\infty)
𝝆min𝝅𝒫(𝒩,)G(𝝆,𝝅).\displaystyle\boldsymbol{\rho}\longmapsto\min_{\boldsymbol{\pi}\in\mathcal{P}\left(\mathcal{N}_{\mathcal{M}},\mathcal{H}\right)}G\left(\boldsymbol{\rho},\boldsymbol{\pi}\right).

III Main results

In this section we derive the analytical solution of the guesswork problem subject to a finite set of conditions, including any qubit ensemble with uniform probability distribution.

In order to state our main result, we need the following definitions. For any finite dimensional Hilbert space \mathcal{H}, we denote with ()\mathcal{L}(\mathcal{H}) the space of Hermitian operators on \mathcal{H}. For any finite set \mathcal{M} and any ensemble 𝝆(,)\boldsymbol{\rho}\in\mathcal{E}(\mathcal{M},\mathcal{H}), we denote with E𝝆:𝒩()E_{\boldsymbol{\rho}}:\mathcal{N}_{\mathcal{M}}\to\mathcal{L}(\mathcal{H}) the map given by

E𝝆(𝐧)\displaystyle E_{\boldsymbol{\rho}}\left(\mathbf{n}\right) :=t=1||(2t||1)𝝆(𝐧(t)),\displaystyle:=\sum_{t=1}^{\left|\mathcal{M}\right|}\left(2t-\left|\mathcal{M}\right|-1\right)\boldsymbol{\rho}\left(\mathbf{n}\left(t\right)\right),

for any 𝐧𝒩\mathbf{n}\in\mathcal{N}_{\mathcal{M}}. For any numbering 𝐧𝒩\mathbf{n}\in\mathcal{N}_{\mathcal{M}}, we denote with 𝐧¯\overline{\mathbf{n}} the reversed numbering. In formula:

𝐧¯(t):=𝐧(||+1t),\displaystyle\overline{\mathbf{n}}\left(t\right):=\mathbf{n}\left(\left|\mathcal{M}\right|+1-t\right),

for any t{1,,||}t\in\{1,\dots,|\mathcal{M}|\}. We denote with Π()\Pi_{-}(\cdot) and Π0()\Pi_{0}(\cdot) the projectors on the negative and null parts of ()(\cdot), respectively. We denote with {𝝅𝝆,𝐧𝒫(𝒩)}𝐧𝒩\{\boldsymbol{\pi}_{\boldsymbol{\rho},\mathbf{n}^{*}}\in\mathcal{P}(\mathcal{N}_{\mathcal{M}})\}_{\mathbf{n}^{*}\in\mathcal{N}_{\mathcal{M}}} the family of numbering-valued measurements given by

𝝅𝝆,𝐧(𝐧):={(Π+12Π0)(E𝝆(𝐧)),if 𝐧{𝐧,𝐧¯},0,otherwise,\displaystyle\boldsymbol{\pi}_{\boldsymbol{\rho},\mathbf{n}^{*}}\left(\mathbf{n}\right):=\begin{cases}\left(\Pi_{-}+\frac{1}{2}\Pi_{0}\right)\left(E_{\boldsymbol{\rho}}\left(\mathbf{n}\right)\right),&\textrm{if }\mathbf{n}\in\{\mathbf{n}^{*},\overline{\mathbf{n}}^{*}\},\\ 0,&\textrm{otherwise},\end{cases}

for any 𝐧,𝐧𝒩\mathbf{n}^{*},\mathbf{n}\in\mathcal{N}_{\mathcal{M}}. It follows from Lemma 1 that the corresponding guesswork is given by

G(𝝆,𝝅𝝆,𝐧)=||+1212E𝝆(𝐧)1,\displaystyle G\left(\boldsymbol{\rho},\boldsymbol{\pi}_{\boldsymbol{\rho},\mathbf{n}^{*}}\right)=\frac{\left|\mathcal{M}\right|+1}{2}-\frac{1}{2}\left\|E_{\boldsymbol{\rho}}\left(\mathbf{n}^{*}\right)\right\|_{1}, (4)

for any 𝐧𝒩\mathbf{n}^{*}\in\mathcal{N}_{\mathcal{M}}.

Upon denoting with |||\cdot| the absolute value of operator ()(\cdot), the following theorem provides analytical solutions of the minimum guesswork problem subject to a finite set of conditions.

Theorem 1.

For any finite set \mathcal{M}, any finite dimensional Hilbert space \mathcal{H}, and any ensemble 𝛒(,)\boldsymbol{\rho}\in\mathcal{E}(\mathcal{M},\mathcal{H}), if there exists numbering 𝐧𝒩()\mathbf{n}^{*}\in\mathcal{N}(\mathcal{M}) such that

|E𝝆(𝐧)|E𝝆(𝐧),\displaystyle\left|E_{\boldsymbol{\rho}}\left(\mathbf{n}^{*}\right)\right|\geq E_{\boldsymbol{\rho}}\left(\mathbf{n}\right), (5)

for any 𝐧𝒩\mathbf{n}\in\mathcal{N}_{\mathcal{M}}, then numbering-valued measurement 𝛑𝛒,𝐧𝒫(𝒩,)\boldsymbol{\pi}_{\boldsymbol{\rho},\mathbf{n}^{*}}\in\mathcal{P}(\mathcal{N}_{\mathcal{M}},\mathcal{H}) minimizes the guesswork, that is

Gmin(𝝆)=G(𝝆,𝝅𝝆,𝐧).\displaystyle G_{\textrm{min}}\left(\boldsymbol{\rho}\right)=G\left(\boldsymbol{\rho},\boldsymbol{\pi}_{\boldsymbol{\rho},\mathbf{n}^{*}}\right).

We remark that, while the minimum guesswork problem is by definition an optimization over a continuous set, the conditions given by Eq. (5) are finite in number and hence can be checked by exhaustive search. If they hold, Eq. (4) provides the analytical solution of the minimum guesswork problem.

Proof.

Due to Lemma 1 one has Gmin(𝝆)=(||+1+x𝝆)/2G_{\textrm{min}}(\boldsymbol{\rho})=(|\mathcal{M}|+1+x_{\boldsymbol{\rho}})/2, where

x𝝆:=min𝝅𝒫(𝒩)𝐧𝒩Tr[E𝝆(𝐧)𝝅(𝐧)𝝅(𝐧¯)2].\displaystyle x_{\boldsymbol{\rho}}:=\min_{\boldsymbol{\pi}\in\mathcal{P}\left(\mathcal{N}_{\mathcal{M}}\right)}\sum_{\mathbf{n}\in\mathcal{N}_{\mathcal{M}}}\operatorname{Tr}\left[E_{\boldsymbol{\rho}}\left(\mathbf{n}\right)\frac{\boldsymbol{\pi}\left(\mathbf{n}\right)-\boldsymbol{\pi}\left(\overline{\mathbf{n}}\right)}{2}\right].

Since for any 𝝅𝒫(𝒩)\boldsymbol{\pi}\in\mathcal{P}(\mathcal{N}_{\mathcal{M}}) the sum is lower bounded by its minimum term, one has

x𝝆y𝝆:=min𝝅𝒫(𝒩())𝐧𝒩Tr[E𝝆(𝐧)𝝅(𝐧)𝝅(𝐧¯)2].\displaystyle x_{\boldsymbol{\rho}}\geq y_{\boldsymbol{\rho}}:=\min_{\begin{subarray}{c}\boldsymbol{\pi}\in\mathcal{P}\left(\mathcal{N}\left(\mathcal{M}\right)\right)\\ \mathbf{n}\in\mathcal{N}_{\mathcal{M}}\end{subarray}}\operatorname{Tr}\left[E_{\boldsymbol{\rho}}\left(\mathbf{n}\right)\frac{\boldsymbol{\pi}\left(\mathbf{n}\right)-\boldsymbol{\pi}\left(\overline{\mathbf{n}}\right)}{2}\right].

Using Lemma 2, for any 𝐧𝒩\mathbf{n}\in\mathcal{N}_{\mathcal{M}} the minimum over 𝝅𝒫(𝒩)\boldsymbol{\pi}\in\mathcal{P}(\mathcal{N}_{\mathcal{M}}) can be computed leading to

y𝝆=max𝐧𝒩E𝝆(𝐧)1.\displaystyle y_{\boldsymbol{\rho}}=-\max_{\mathbf{n}\in\mathcal{N}_{\mathcal{M}}}\left\|E_{\boldsymbol{\rho}}\left(\mathbf{n}\right)\right\|_{1}.

Using Eq. (5), Lemma 3, and again E𝝆(𝐧)=E𝝆(𝐧¯)E_{\boldsymbol{\rho}}(\mathbf{n})=-E_{\boldsymbol{\rho}}(\overline{\mathbf{n}}), the maximum over 𝐧𝒩\mathbf{n}\in\mathcal{N}_{\mathcal{M}} can be computed leading to

y𝝆=E𝝆(𝐧)1.\displaystyle y_{\boldsymbol{\rho}}=-\left\|E_{\boldsymbol{\rho}}\left(\mathbf{n}^{*}\right)\right\|_{1}.

Since G(𝝆,𝝅𝝆,𝐧)=(||+1+y𝝆)/2G(\boldsymbol{\rho},\boldsymbol{\pi}_{\boldsymbol{\rho},\mathbf{n}^{*}})=(|\mathcal{M}|+1+y_{\boldsymbol{\rho}})/2, the statement follows. ∎

The following corollary provides the analytical solution of the minimum guesswork problem for any qubit ensemble with uniform probability distribution.

Corollary 1.

For any finite set \mathcal{M}, any two dimensional Hilbert space \mathcal{H}, and any ensemble 𝛒(,)\boldsymbol{\rho}\in\mathcal{E}(\mathcal{M},\mathcal{H}) such that the prior probability distribution Tr[𝛒()]=||1\operatorname{Tr}[\boldsymbol{\rho}(\cdot)]=|\mathcal{M}|^{-1} is uniform, there exists numbering 𝐧𝒩\mathbf{n}^{*}\in\mathcal{N}_{\mathcal{M}} such that measurement 𝛑𝛒,𝐧\boldsymbol{\pi}_{\boldsymbol{\rho},\mathbf{n}^{*}} minimizes the guesswork, that is

Gmin(𝝆)=G(𝝆,𝝅𝝆,𝐧).\displaystyle G_{\textrm{min}}\left(\boldsymbol{\rho}\right)=G\left(\boldsymbol{\rho},\boldsymbol{\pi}_{\boldsymbol{\rho},\mathbf{n}^{*}}\right).

We remark that Corollary 1 recasts the minimum guesswork problem, by definition an optimization problem over a continuous set, as an optimization problem over a finite set, that can be therefore performed by exhaustive search.

Proof.

Since by hypothesis Tr[𝝆()]=||1\operatorname{Tr}[\boldsymbol{\rho}(\cdot)]=|\mathcal{M}|^{-1}, one has

Tr[E𝝆(𝐧)]=0,\displaystyle\operatorname{Tr}\left[E_{\boldsymbol{\rho}}\left(\mathbf{n}\right)\right]=0,

for any 𝐧𝒩\mathbf{n}\in\mathcal{N}_{\mathcal{M}}. Hence, since by hypothesis \mathcal{H} is two-dimensional, one has

|E𝝆(𝐧)|=E𝝆(𝐧)1𝟙2,\displaystyle\left|E_{\boldsymbol{\rho}}\left(\mathbf{n}\right)\right|=\left\|E_{\boldsymbol{\rho}}\left(\mathbf{n}\right)\right\|_{1}\frac{\operatorname{\mathds{1}}}{2},

for any 𝐧𝒩\mathbf{n}\in\mathcal{N}_{\mathcal{M}}. Hence, the range |E𝝆(𝒩())|\left|E_{\boldsymbol{\rho}}\left(\mathcal{N}\left(\mathcal{M}\right)\right)\right| is totally ordered. Hence, there exists 𝐧\mathbf{n}^{*} such that

|E𝝆(𝐧)||E𝝆(𝐧)|E𝝆(𝐧),\displaystyle\left|E_{\boldsymbol{\rho}}\left(\mathbf{n}^{*}\right)\right|\geq\left|E_{\boldsymbol{\rho}}\left(\mathbf{n}\right)\right|\geq E_{\boldsymbol{\rho}}\left(\mathbf{n}\right),

for any 𝐧𝒩\mathbf{n}\in\mathcal{N}_{\mathcal{M}}. Hence the statement follows from Theorem 1. ∎

IV Explicit Examples

In this section we provide the minimum guesswork of any qubit regular polygonal or polyhedral ensemble by explicitly solving the optimization over a finite set given by Corollary 1.

Corollary 2 (Regular polygonal ensembles).

For any discrete set \mathcal{M}, any two-dimensional Hilbert space \mathcal{H}, and any bijective ensemble 𝛒𝕄(,)\boldsymbol{\rho}\in\mathbb{M}(\mathcal{M},\mathcal{H}) whose range 𝛒()\boldsymbol{\rho}(\mathcal{M}) is proportional to a regular polygon in the Bloch circle, one has

Gmin(𝝆)=||+1212{23cos(π||)2+1||sin(π||)2,if || even,cos(π2||)||sin(π2||)2,if || odd.\displaystyle G_{\textrm{min}}\left(\boldsymbol{\rho}\right)=\frac{\left|\mathcal{M}\right|+1}{2}-\frac{1}{2}\begin{cases}\frac{2\sqrt{3\cos\left(\frac{\pi}{\left|\mathcal{M}\right|}\right)^{2}+1}}{\left|\mathcal{M}\right|\sin\left(\frac{\pi}{\left|\mathcal{M}\right|}\right)^{2}},&\textrm{if $|\mathcal{M}|$ even,}\\ \frac{\cos\left(\frac{\pi}{2\left|\mathcal{M}\right|}\right)}{\left|\mathcal{M}\right|\sin\left(\frac{\pi}{2\left|\mathcal{M}\right|}\right)^{2}},&\textrm{if $|\mathcal{M}|$ odd.}\end{cases}
Proof.

Due to Corollary 1, there exists numbering 𝐧𝒩()\mathbf{n}^{*}\in\mathcal{N}(\mathcal{M}) such that Gmin(𝝆)=G(𝝆,𝝅𝝆,𝐧)G_{\textrm{min}}(\boldsymbol{\rho})=G(\boldsymbol{\rho},\boldsymbol{\pi}_{\boldsymbol{\rho},\mathbf{n}^{*}}). Due to Lemma 4, q𝝆,𝝅𝝆,𝐧q_{\boldsymbol{\rho},\boldsymbol{\pi}_{\boldsymbol{\rho},\mathbf{n}^{*}}} is not increasing. One way of representing 𝐧\mathbf{n}^{*} is as follows. Without loss of generality take ={1,,||}\mathcal{M}=\{1,\dots,|\mathcal{M}|\} and 𝝆(m)=||1|ψmψm|\boldsymbol{\rho}(m)=|\mathcal{M}|^{-1}\ket{\psi_{m}}\!\!\bra{\psi_{m}}, where |ψm=cos(2πm/||)|0+sin(2πm/||)|1\ket{\psi_{m}}=\cos(2\pi m/|\mathcal{M}|)\ket{0}+\sin(2\pi m/|\mathcal{M}|)\ket{1}. Then one has

𝐧(m)={2m if m<||2+14,2m+2||+1 otherwise.\displaystyle\mathbf{n}^{*}\left(m\right)=\begin{cases}2m&\textrm{ if }m<\frac{\left|\mathcal{M}\right|}{2}+\frac{1}{4},\\ -2m+2\left|\mathcal{M}\right|+1&\textrm{ otherwise.}\end{cases}

Numbering 𝐧\mathbf{n}^{*} is illustrated in Fig. 1 for ||=8|\mathcal{M}|=8. By summing finite trigonometric series, for |||\mathcal{M}| even one has

E𝝆(𝐧)=1||[2cot(π||)21cot(π||)cot(π||)2cot(π||)2+1],\displaystyle E_{\boldsymbol{\rho}}\left(\mathbf{n}^{*}\right)=\frac{1}{\left|\mathcal{M}\right|}\begin{bmatrix}-2\cot\left(\frac{\pi}{\left|\mathcal{M}\right|}\right)^{2}-1&-\cot\left(\frac{\pi}{\left|\mathcal{M}\right|}\right)\\ -\cot\left(\frac{\pi}{\left|\mathcal{M}\right|}\right)&2\cot\left(\frac{\pi}{\left|\mathcal{M}\right|}\right)^{2}+1\end{bmatrix},

and for |||\mathcal{M}| odd one has

E𝝆(𝐧)=12||[cot(π2||)2cot(π2||)cot(π2||)cot(π2||)2].\displaystyle E_{\boldsymbol{\rho}}\left(\mathbf{n}^{*}\right)=\frac{1}{2\left|\mathcal{M}\right|}\begin{bmatrix}-\cot\left(\frac{\pi}{2\left|\mathcal{M}\right|}\right)^{2}&-\cot\left(\frac{\pi}{2\left|\mathcal{M}\right|}\right)\\ -\cot\left(\frac{\pi}{2\left|\mathcal{M}\right|}\right)&\cot\left(\frac{\pi}{2\left|\mathcal{M}\right|}\right)^{2}\end{bmatrix}.

By explicit computation one has

E𝝆(𝐧)1={23cos(π||)2+1||sin(π||)2,if || even,cos(π2||)||sin(π2||)2,if || odd.\displaystyle\left\|E_{\boldsymbol{\rho}}\left(\mathbf{n}^{*}\right)\right\|_{1}=\begin{cases}2\frac{\sqrt{3\cos\left(\frac{\pi}{\left|\mathcal{M}\right|}\right)^{2}+1}}{\left|\mathcal{M}\right|\sin\left(\frac{\pi}{\left|\mathcal{M}\right|}\right)^{2}},&\textrm{if $|\mathcal{M}|$ even,}\\ \frac{\cos\left(\frac{\pi}{2\left|\mathcal{M}\right|}\right)}{\left|\mathcal{M}\right|\sin\left(\frac{\pi}{2\left|\mathcal{M}\right|}\right)^{2}},&\textrm{if $|\mathcal{M}|$ odd.}\end{cases}

Hence the statement follows from Eq. (4). ∎

Refer to caption
Figure 1: The figure illustrates the numbering 𝐧𝒩()\mathbf{n}^{*}\in\mathcal{N}(\mathcal{M}) such that Gmin(𝝆)=G(𝝆,𝝅𝝆,𝐧)G_{\textrm{min}}(\boldsymbol{\rho})=G(\boldsymbol{\rho},\boldsymbol{\pi}_{\boldsymbol{\rho},\mathbf{n}^{*}}), when 𝝆(,2)\boldsymbol{\rho}\in\mathcal{E}(\mathcal{M},\mathbb{R}^{2}) is a bijective ensemble such that 𝝆()\boldsymbol{\rho}(\mathcal{M}) is proportional to a regular polygon (||=8|\mathcal{M}|=8 in the figure) in the Bloch circle.
Corollary 3 (Regular polyhedral ensembles).

For any discrete set \mathcal{M}, any two-dimensional Hilbert space \mathcal{H}, and any bijective ensemble 𝛒(,)\boldsymbol{\rho}\in\mathcal{E}(\mathcal{M},\mathcal{H}) whose range 𝛒()\boldsymbol{\rho}(\mathcal{M}) is proportional to a regular polyhedron in the Bloch sphere, one has

Gmin(𝝆)={521561.9if ||=4,723562.5if ||=6,92723.2if ||=8,132110(65+295)604.5if ||=12,2126(3321+14835)607.2if ||=20.\displaystyle G_{\textrm{min}}\left(\boldsymbol{\rho}\right)=\begin{cases}\frac{5}{2}-\frac{\sqrt{15}}{6}\sim 1.9&\textrm{if $|\mathcal{M}|=4$,}\\ \frac{7}{2}-\frac{\sqrt{35}}{6}\sim 2.5&\textrm{if $|\mathcal{M}|=6$,}\\ \frac{9}{2}-\frac{\sqrt{7}}{2}\sim 3.2&\textrm{if $|\mathcal{M}|=8$,}\\ \frac{13}{2}-\frac{\sqrt{110\left(65+29\sqrt{5}\right)}}{60}\sim 4.5&\textrm{if $|\mathcal{M}|=12$,}\\ \frac{21}{2}-\frac{\sqrt{6\left(3321+1483\sqrt{5}\right)}}{60}\sim 7.2&\textrm{if $|\mathcal{M}|=20$.}\end{cases}
Proof.

Due to Corollary 1, there exists numbering 𝐧𝒩()\mathbf{n}^{*}\in\mathcal{N}(\mathcal{M}) such that Gmin(𝝆)=G(𝝆,𝝅𝝆,𝐧)G_{\textrm{min}}(\boldsymbol{\rho})=G(\boldsymbol{\rho},\boldsymbol{\pi}_{\boldsymbol{\rho},\mathbf{n}^{*}}). For ||=4|\mathcal{M}|=4 any 𝐧𝒩()\mathbf{n}^{*}\in\mathcal{N}(\mathcal{M}) is such that Gmin(𝝆)=G(𝝆,𝝅𝝆,𝐧)G_{\textrm{min}}(\boldsymbol{\rho})=G(\boldsymbol{\rho},\boldsymbol{\pi}_{\boldsymbol{\rho},\mathbf{n}^{*}}), hence the result for ||=4|\mathcal{M}|=4 follows. Let us consider the case ||>4|\mathcal{M}|>4. Due to Lemma 4, q𝝆,𝝅𝝆,𝐧q_{\boldsymbol{\rho},\boldsymbol{\pi}_{\boldsymbol{\rho},\mathbf{n}^{*}}} is not increasing. Since the range 𝝆()\boldsymbol{\rho}(\mathcal{M}) is centrally symmetric, that is

𝝆()=||1𝟙𝝆(),\displaystyle\boldsymbol{\rho}\left(\mathcal{M}\right)=\left|\mathcal{M}\right|^{-1}\operatorname{\mathds{1}}-\boldsymbol{\rho}\left(\mathcal{M}\right),

any 𝐧\mathbf{n}^{*} with q𝝆,𝝅𝝆,𝐧q_{\boldsymbol{\rho},\boldsymbol{\pi}_{\boldsymbol{\rho},\mathbf{n}^{*}}} not increasing satisfies

𝝆(𝐧())+𝝆(𝐧¯())=||1𝟙.\displaystyle\boldsymbol{\rho}\left(\mathbf{n}^{*}\left(\cdot\right)\right)+\boldsymbol{\rho}\left(\overline{\mathbf{n}}^{*}\left(\cdot\right)\right)=\left|\mathcal{M}\right|^{-1}\operatorname{\mathds{1}}.

Since fixing the value of 𝐧(t)\mathbf{n}^{*}(t) also fixes the value of 𝐧¯(t)\overline{\mathbf{n}}^{*}(t), numbering 𝐧\mathbf{n}^{*} can be found in ||!!|\mathcal{M}|!! steps. Also, since regular polyhedra are vertex transitive, the choice of 𝐧(1)\mathbf{n}^{*}(1) is irrelevant, hence 𝐧\mathbf{n}^{*} can be found in |2|!!|\mathcal{M}-2|!! steps. The exhaustive search is practical even for the dodecahedron for which ||=20|\mathcal{M}|=20 and hence |2|!!108|\mathcal{M}-2|!!\sim 10^{8}. Numbering 𝐧\mathbf{n}^{*} is illustrated in Fig. 2 for ||=6|\mathcal{M}|=6. Hence the results for ||>4|\mathcal{M}|>4 follow. Further details can be found in Ref. [15], where algorithms for the classical computation of the quantum guesswork in analytical closed form based on the present results are provided and analyzed. ∎

Refer to caption
Figure 2: The figure illustrates the numbering 𝐧𝒩()\mathbf{n}^{*}\in\mathcal{N}(\mathcal{M}) such that Gmin(𝝆)=G(𝝆,𝝅𝝆,𝐧)G_{\textrm{min}}(\boldsymbol{\rho})=G(\boldsymbol{\rho},\boldsymbol{\pi}_{\boldsymbol{\rho},\mathbf{n}^{*}}), when 𝝆(,2)\boldsymbol{\rho}\in\mathcal{E}(\mathcal{M},\mathbb{C}^{2}) is a bijective ensemble such that 𝝆()\boldsymbol{\rho}(\mathcal{M}) is proportional to a regular polyhedron (||=6|\mathcal{M}|=6 in the figure) in the Bloch sphere.

Appendix

In this appendix we derive technical results needed for the derivation of our main results.

Lemma 1.

For any finite set \mathcal{M}, any finite dimensional Hilbert space \mathcal{H}, any ensemble 𝛒(,)\boldsymbol{\rho}\in\mathcal{E}(\mathcal{M},\mathcal{H}), and any numbering-valued measurement 𝛑𝒫(𝒩,)\boldsymbol{\pi}\in\mathcal{P}(\mathcal{N}_{\mathcal{M}},\mathcal{H}), the guesswork G(𝛒,𝛑)G(\boldsymbol{\rho},\boldsymbol{\pi}) is given by

G(𝝆,𝝅)=||+12+12𝐧𝒩Tr[E𝝆(𝐧)𝝅(𝐧)𝝅(𝐧¯)2].\displaystyle G\left(\boldsymbol{\rho},\boldsymbol{\pi}\right)=\frac{\left|\mathcal{M}\right|+1}{2}+\frac{1}{2}\sum_{\mathbf{n}\in\mathcal{N}_{\mathcal{M}}}\operatorname{Tr}\left[E_{\boldsymbol{\rho}}\left(\mathbf{n}\right)\frac{\boldsymbol{\pi}\left(\mathbf{n}\right)-\boldsymbol{\pi}\left(\overline{\mathbf{n}}\right)}{2}\right].
Proof.

By definition of map E𝝆E_{\boldsymbol{\rho}} one has G(𝝆,𝝅)=(||+1+x𝝆,𝝅)/2G(\boldsymbol{\rho},\boldsymbol{\pi})=(|\mathcal{M}|+1+x_{\boldsymbol{\rho},\boldsymbol{\pi}})/2, where

x𝝆,𝝅:=𝐧𝒩Tr[E𝝆(𝐧)𝝅(𝐧)].\displaystyle x_{\boldsymbol{\rho},\boldsymbol{\pi}}:=\sum_{\mathbf{n}\in\mathcal{N}_{\mathcal{M}}}\operatorname{Tr}\left[E_{\boldsymbol{\rho}}\left(\mathbf{n}\right)\boldsymbol{\pi}\left(\mathbf{n}\right)\right].

Using the identity E𝝆(𝐧)=E𝝆(𝐧¯)E_{\boldsymbol{\rho}}(\mathbf{n})=-E_{\boldsymbol{\rho}}(\overline{\mathbf{n}}) one has

x𝝆,𝝅=𝐧𝒩Tr[E𝝆(𝐧)𝝅(𝐧)𝝅(𝐧¯)2].\displaystyle x_{\boldsymbol{\rho},\boldsymbol{\pi}}=\sum_{\mathbf{n}\in\mathcal{N}_{\mathcal{M}}}\operatorname{Tr}\left[E_{\boldsymbol{\rho}}\left(\mathbf{n}\right)\frac{\boldsymbol{\pi}\left(\mathbf{n}\right)-\boldsymbol{\pi}\left(\overline{\mathbf{n}}\right)}{2}\right].

Hence the statement follows. ∎

For any finite dimensional Hilbert space \mathcal{H} and any operator A()A\in\mathcal{L}(\mathcal{H}), let 𝒫A:()()\mathcal{P}_{A}:\mathcal{L}(\mathcal{H})\to\mathcal{L}(\mathcal{H}) be a dephasing map given by 𝒫A()=aa||a|aa|\mathcal{P}_{A}(\cdot)=\sum_{a}\bra{a}\cdot\ket{a}\ket{a}\!\!\bra{a}, where {|a}\{\ket{a}\} is a complete set of eigenvectors of AA.

Lemma 2.

For any finite dimensional Hilbert space \mathcal{H} and any X,A()X,A\in\mathcal{L}(\mathcal{H}), if |X|𝟙|X|\leq\operatorname{\mathds{1}} one has that |Tr[AX]|A1|\operatorname{Tr}[AX]|\leq\|A\|_{1}.

Proof.

Since 𝒫A\mathcal{P}_{A} is linear, positive, and unital, by the hypothesis it follows that |𝒫A(X)|𝟙|\mathcal{P}_{A}(X)|\leq\operatorname{\mathds{1}}. Since Tr[AX]=Tr[A𝒫A(X)]\operatorname{Tr}[AX]=\operatorname{Tr}[A\mathcal{P}_{A}(X)], the statement follows. ∎

Lemma 3.

For any finite dimensional Hilbert space \mathcal{H} and any X,A()X,A\in\mathcal{L}(\mathcal{H}), if XAX-X\leq A\leq X one has that A1X1\|A\|_{1}\leq\|X\|_{1}.

Proof.

Since 𝒫A\mathcal{P}_{A} is linear and positive and 𝒫A(A)=A\mathcal{P}_{A}(A)=A, by the hypothesis it follows that 𝒫A(X)A𝒫A(X)-\mathcal{P}_{A}(X)\leq A\leq\mathcal{P}_{A}(X). Since [𝒫A(X),A]=0[\mathcal{P}_{A}(X),A]=0 and by the hypothesis it follows that X0X\geq 0, one has |A|𝒫A(X)|A|\leq\mathcal{P}_{A}(X). Since 𝒫A\mathcal{P}_{A} is trace preserving, by tracing both sides the statement follows. ∎

The following lemma provides a necessary condition for any measurement to attain the minimum guesswork.

Lemma 4.

For any discrete set \mathcal{M}, any finite dimensional Hilbert space \mathcal{H}, and any ensemble 𝛒(,)\boldsymbol{\rho}\in\mathcal{E}(\mathcal{M},\mathcal{H}), a measurement 𝛑𝒫(𝒩,)\boldsymbol{\pi}\in\mathcal{P}(\mathcal{N}_{\mathcal{M}},\mathcal{H}) minimizes the guesswork, that is Gmin(𝛒)=G(𝛒,𝛑)G_{\textrm{min}}(\boldsymbol{\rho})=G(\boldsymbol{\rho},\boldsymbol{\pi}), only if p𝛒,𝛑(𝐧,)p_{\boldsymbol{\rho},\boldsymbol{\pi}}(\mathbf{n},\cdot) is not increasing for any 𝐧𝒩()\mathbf{n}\in\mathcal{N}(\mathcal{M}).

Proof.

We show that for any measurement 𝝅𝒫(𝒩,)\boldsymbol{\pi}\in\mathcal{P}(\mathcal{N}_{\mathcal{M}},\mathcal{H}) there exists a measurement 𝝅𝒫(𝒩,)\boldsymbol{\pi}^{\prime}\in\mathcal{P}(\mathcal{N}_{\mathcal{M}},\mathcal{H}) such that p𝝆,𝝅(𝐧,)p_{\boldsymbol{\rho},\boldsymbol{\pi}^{\prime}}(\mathbf{n},\cdot) is not increasing for any 𝐧𝒩\mathbf{n}\in\mathcal{N}_{\mathcal{M}} and G(𝝆,𝝅)G(𝝆,𝝅)G(\boldsymbol{\rho},\boldsymbol{\pi}^{\prime})\leq G(\boldsymbol{\rho},\boldsymbol{\pi}), with equality if and only if p𝝆,𝝅(𝐧,)=p𝝆,𝝅(𝐧,)p_{\boldsymbol{\rho},\boldsymbol{\pi}}(\mathbf{n},\cdot)=p_{\boldsymbol{\rho},\boldsymbol{\pi}^{\prime}}(\mathbf{n},\cdot) for any 𝐧𝒩\mathbf{n}\in\mathcal{N}_{\mathcal{M}}. Let {g𝐧:{1,,||}{1,,||}|g𝐧 bijective}𝐧𝒩\{g_{\mathbf{n}}:\{1,\dots,|\mathcal{M}|\}\to\{1,\dots,|\mathcal{M}|\}\;|\;g_{\mathbf{n}}\textrm{ bijective}\}_{\mathbf{n}\in\mathcal{N}_{\mathcal{M}}} be a family of permutations such that p𝝆,𝝅(𝐧,g𝐧())p_{\boldsymbol{\rho},\boldsymbol{\pi}}(\mathbf{n},g_{\mathbf{n}}(\cdot)) is not increasing for any 𝐧𝒩\mathbf{n}\in\mathcal{N}_{\mathcal{M}}. Let f:𝒩𝒩f:\mathcal{N}_{\mathcal{M}}\to\mathcal{N}_{\mathcal{M}} be given by

f(𝐧):=𝐧g𝐧,\displaystyle f\left(\mathbf{n}\right):=\mathbf{n}\circ g_{\mathbf{n}},

for any 𝐧𝒩\mathbf{n}\in\mathcal{N}_{\mathcal{M}}. Let 𝝅𝒫(𝒩,)\boldsymbol{\pi}^{\prime}\in\mathcal{P}(\mathcal{N}_{\mathcal{M}},\mathcal{H}) be the coarse graining of 𝝅\boldsymbol{\pi} given by

𝝅(𝐧):=𝐧f1[𝐧]𝝅(𝐧),\displaystyle\boldsymbol{\pi}^{\prime}\left(\mathbf{n}^{\prime}\right):=\sum_{\mathbf{n}\in f^{-1}\left[\mathbf{n}^{\prime}\right]}\boldsymbol{\pi}\left(\mathbf{n}\right),

for any 𝐧𝒩\mathbf{n}^{\prime}\in\mathcal{N}_{\mathcal{M}}, where f1[𝐧]f^{-1}[\mathbf{n}^{\prime}] denotes the counter-image of 𝐧\mathbf{n}^{\prime} with respect to ff. By explicit computation one has

q𝝆,𝝅(t)\displaystyle q_{\boldsymbol{\rho},\boldsymbol{\pi}^{\prime}}\left(t\right) =𝐧𝒩𝐧f1[𝐧]Tr[𝝆(𝐧(t))𝝅(𝐧)]\displaystyle=\sum_{\mathbf{n}^{\prime}\in\mathcal{N}_{\mathcal{M}}}\sum_{\mathbf{n}\in f^{-1}\left[\mathbf{n}^{\prime}\right]}\operatorname{Tr}\left[\boldsymbol{\rho}\left(\mathbf{n}^{\prime}\left(t\right)\right)\boldsymbol{\pi}\left(\mathbf{n}\right)\right]
=𝐧𝒩Tr[𝝆(f(𝐧)(t))𝝅(𝐧)]\displaystyle=\sum_{\mathbf{n}\in\mathcal{N}_{\mathcal{M}}}\operatorname{Tr}\left[\boldsymbol{\rho}\left(f\left(\mathbf{n}\right)\left(t\right)\right)\boldsymbol{\pi}\left(\mathbf{n}\right)\right]
=𝐧𝒩p𝝆,𝝅(𝐧,g𝐧(t)),\displaystyle=\sum_{\mathbf{n}\in\mathcal{N}_{\mathcal{M}}}p_{\boldsymbol{\rho},\boldsymbol{\pi}}\left(\mathbf{n},g_{\mathbf{n}}\left(t\right)\right),

for any t{1,,||}t\in\{1,\dots,|\mathcal{M}|\}. Hence by construction

t{1,,T}q𝝆,𝝅(t)t{1,,T}q𝝆,𝝅(t)\displaystyle\sum_{t\in\left\{1,\dots,T\right\}}q_{\boldsymbol{\rho},\boldsymbol{\pi}^{\prime}}\left(t\right)\geq\sum_{t\in\left\{1,\dots,T\right\}}q_{\boldsymbol{\rho},\boldsymbol{\pi}}(t)

for any T{1,,||}T\in\{1,\dots,|\mathcal{M}|\}, with equality if and only if p𝝆,𝝅(𝐧,)=p𝝆,𝝅(𝐧,)p_{\boldsymbol{\rho},\boldsymbol{\pi}}(\mathbf{n},\cdot)=p_{\boldsymbol{\rho},\boldsymbol{\pi}^{\prime}}(\mathbf{n},\cdot) for any 𝐧𝒩()\mathbf{n}\in\mathcal{N}(\mathcal{M}). Hence the statement follows by definition of guesswork. ∎

V Conclusion

The guesswork of a quantum ensemble quantifies the minimum number of guesses needed in average to correctly guess the state of the ensemble, when only one state can be queried at a time. Here, we derived analytical solutions subject to a finite set of conditions, including analytical solutions for any qubit ensemble with uniform probability distribution, thus disproving the conjecture [13] that analytical solutions only exist for binary and symmetric ensembles. As explicit examples, we computed the guesswork for any qubit regular polygonal and polyhedral ensemble, thus proving a conjecture [14] on the guesswork of the square qubit ensemble.

VI Acknowledgments

M. D. is grateful to Eric Hanson and Nilanjana Datta for insightful discussions during a visit to the University of Cambridge. M. D. acknowledges support from MEXT Quantum Leap Flagship Program (MEXT Q-LEAP) Grant No. JPMXS0118067285, JSPS KAKENHI Grant Number JP20K03774, and the International Research Unit of Quantum Information, Kyoto University. F. B. acknowledges support from MEXT Quantum Leap Flagship Program (MEXT Q-LEAP) Grant No. JPMXS0120319794; from MEXT-JSPS Grant-in-Aid for Transformative Research Areas (A) “Extreme Universe”, No. 21H05183; from JSPS KAKENHI Grants No. 19H04066 and 20K03746. T. K. acknowledges support from MEXT Quantum Leap Flagship Program (MEXT Q-LEAP) Grant No. JPMXS0118067285 and No. JPMXS0120319794 and JSPS KAKENHI Grant Number 16H01705, 17H01695, 19K22849 and 21H04879.

References

  • [1] M. M. Wilde, Quantum Information Theory, (Cambridge University Press, 2017).
  • [2] J. Massey, Guessing and entropy, Proceedings of 1994 IEEE International Symposium on Information Theory, 204 (1994).
  • [3] E. Arikan, An inequality on guessing and its application to sequential decoding, IEEE Trans. Inform. Theory 42, 99 (1996).
  • [4] E. Arikan and N. Merhav, Guessing subject to distortion, IEEE Trans. Inform. Theory 44, 1041 (1998).
  • [5] E. Arikan and N. Merhav, Joint source-channel coding and guessing with application to sequential decoding, IEEE Trans. Inform. Theory 44, 1756 (1998).
  • [6] J. Pliam, The Disparity between Work and Entropy in Cryptology, Cryptology ePrint Archive 1998/024 (1998).
  • [7] D. Malone and W. Sullivan, Guesswork and Entropy, IEEE Trans. Inform. Theory 50, 525 (2004).
  • [8] R. Sundaresan, Guessing Under Source Uncertainty, IEEE Trans. Inform. Theory 53, 269 (2007).
  • [9] M. K. Hanawal and R. Sundaresan, Guessing Revisited: A Large Deviations Approach, IEEE Trans. Inform. Theory 57, 70 (2011).
  • [10] M. M. Christiansen and K. R. Duffy, Guesswork, Large Deviations, and Shannon Entropy, IEEE Trans. Inform. Theory 59, 796 (2013).
  • [11] I. Sason and S. Verdú, Improved Bounds on Lossless Source Coding and Guessing Moments via Rényi Measures, IEEE Trans. Inform. Theory 64, 4323 (2018).
  • [12] I. Sason, Tight Bounds on the Rényi Entropy via Majorization with Applications to Guessing and Compression, Entropy 20, 896 (2018).
  • [13] W. Chen, Y. Cao, H. Wang, Y. Feng, Minimum guesswork discrimination between quantum states, Quantum Information & Computation 15, 0737 (2015).
  • [14] E. P. Hanson, V. Katariya, N. Datta, and M. M. Wilde, Guesswork with Quantum Side Information, IEEE Trans. Inform. Theory 68, 322 (2022).
  • [15] M. Dall’Arno, F. Buscemi, and T. Koshiba, Classical computation of quantum guesswork, arXiv:2112.01666.

Michele Dall’Arno received his PhD in theoretical physics from the University of Pavia, Italy, in 2012. He held post-doc positions in ICFO (Barcelona), Nagoya University (Japan), and the National University of Singapore. Since 2020, he is assistant professor in quantum information in Kyoto University, and visiting researcher in Waseda University, Tokyo.

Francesco Buscemi received his PhD in theoretical physics from the University of Pavia, Italy, in 2006. After post-doc positions in Tokyo, Japan, and Cambridge, UK, he joined Nagoya University in 2009, where he is a professor in the department of mathematical informatics. In 2018 he was awarded the Birkhoff-von Neumann Prize by the International Quantum Structures Association.

Takeshi Koshiba received his PhD degree from the Tokyo Institute of Technology. He is a full professor at the Department of Mathematics, Faculty of Education and Integrated Arts and Sciences, Waseda University, Japan. His interests include theoretical and applied cryptography, randomness in algorithms, and quantum computing, cryptography and information.