This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Growth of matter fluctuations in f(R,T)f(R,T) Gravity

Snehasish Bhattacharjee 111Email: [email protected]
ORCID: https://orcid.org/0000-0002-7350-7043
Department of Astronomy, Osmania University, Hyderabad, 500007, India
Abstract

In this work, I present for the first time the analysis concerning the growth of matter fluctuations in the framework of f(R,T)f(R,T) modified gravity where I presume f(R,T)=R+λTf(R,T)=R+\lambda T, where RR denote the Ricci scalar, TT the trace of energy momentum tensor and λ\lambda a constant. I first solve the Friedman equations assuming a dust universe (ω=0\omega=0) for the Hubble parameter H(z)H(z) and then employ it in the equation of matter density fluctuations δ(z)\delta(z) to solve for δ(z)\delta(z) and the growth rate f(z)f(z). Next, I proceed to show the behavior of f(z)f(z) and δ(z)\delta(z) with redshift for some values of λ\lambda with observational constraints. Finally, following the prescription of growft41 , I present an analytical expression for the growth index γ\gamma which is redshift dependent and the expression reduces to 3/53/5 for λ=0\lambda=0, which is the growth index for a dust universe.

I Introduction

Cosmological observations favor a spatially flat, isotropic and homogeneous universe with majority of energy-density in the form of some unknown quantities termed dark energy and dark matter observations . Regardless of the immeasurable successes in both theoretical and observational aspects of cosmology from the past few decades, the nature of dark energy and dark matter remain unknown and linger on to be the most outstanding problem in theoretical physics. Alternative scenarios have been widely investigated in literature to suffice the late-time acceleration by either modifying the matter-energy content in the so-called scalar field dark energy models which cohere to general relativity, endorsing however the existence of new fields filling the cosmos or by changing the gravitational forces felt by cosmic objects growft (see growft3 for a review).
Modified theories of gravity furnish an alternative mathematical treatment by proposing the current acceleration to be due to gravitational effects rather than due to presence of exotic matter-energy sources growft ; growft3 . In such extended theories of gravity, the Ricci Scalar RR in the action is replaced by either a well-motivated function of RR or by other curvature invariants such as Torsion scalar 𝒯\mathcal{T} , Gauss-Bonnet scalar GG, non-metricity QQ and trace of energy momentum tensor TT, which results in modified Friedmann equations with supplementary degrees of freedom which upon tuning fits the observations elegantly.
In this spirit, Harko et al harko introduced the f(R,T)f(R,T) gravity which represents a straightforward generalization of f(R)f(R) gravity (see extended for a review on modified gravity theories). In this theory, the action contain a combined function of RR and TT. f(R,T)f(R,T) gravity has been successful to addressing major cosmological enigmas such as dark matter in22 dark energy in21 , massive pulsars in23 , super-Chandrasekhar white dwarfs in25 , gravitational waves in36 , wormholes in26 , baryogenesis baryo , bouncing cosmology bounce ; bounce2 , viscous cosmology arora , redshift drift drift , inflationary cosmology inflation big bang nucleosynthesis bang and varying speed of light scenarios physical .
Since both modified theories of gravity and scalar field dark energy models fit the current observations, one may be interested in distinguishing them. This can be achieved at the perturbation level (see growft15 for a recent analysis). In particular, the idea of employing the growth index γ\gamma growft16 to distinguish modified gravity from the Λ\LambdaCDM is well known. One may find numerous studies aimed at deriving the expression of growth index for various cosmological models including DGP growft21 ; growft23to25 , scalar field dark energy growft21 ; growft17to20 ; growft22 , Finsler-Randers growft26 , f(R)f(R) gravity ft27 and f(𝒯)f(\mathcal{T}) gravity growft .
Although f(R,T)f(R,T) gravity models have been richly employed to investigate the scalar density perturbations frt/per , as far as I know, no analysis concerning the growth rate of clustering have been attempted. In this paper, I shall fill in that gap. The manuscript is organized as follows: In Section II, I present an overview of f(R,T)f(R,T) gravity and solve the field equations for f(R,T)=R+λTf(R,T)=R+\lambda T assuming a dust universe (ω=0\omega=0). In Section III I derive the expressions for δ(z)\delta(z) and f(z)f(z) and show their behavior graphically and also their dependency on the model parameter λ\lambda. In Section IV I present an analytical expression for the growth index which is redshift dependent and the expression reduces to 3/53/5 for λ=0\lambda=0, which is the growth index for a dust universe. Finally in Section V I summarize the results and conclude the work.

II Field Equations in f(R,T)f(R,T) Gravity

The action in f(R,T)f(R,T) is defined as harko

𝒮=12κ2g[f(R,T)+m]d4x,\mathcal{S}=\frac{1}{2\kappa^{2}}\int\sqrt{-g}\left[f(R,T)+\mathcal{L}_{m}\right]d^{4}x, (1)

where κ2=8πGNc4\kappa^{2}=\frac{8\pi G_{N}}{c^{4}}. Here cc denotes the speed of light and GNG_{N} the gravitational constant. Additionally, m=p\mathcal{L}_{m}=-p represents matter Lagrangian density with pp being the cosmological pressure. In this work, I shall work with natural units and therefore I set κ2=8πGNc4=1\kappa^{2}=\frac{8\pi G_{N}}{c^{4}}=1.

Varying the action (1) with respect to the metric gμνg_{\mu\nu} yields the following field equation

κ2Tμνf,T1(R,T)(Tμν+Ξμν)=Πμνf,R1(R,T)+f,R1(R,T)Rμν12gμνf(R,T)\kappa^{2}T_{\mu\nu}-f^{1}_{,T}(R,T)(T_{\mu\nu}+\Xi_{\mu\nu})=\Pi_{\mu\nu}f^{1}_{,R}(R,T)+f^{1}_{,R}(R,T)R_{\mu\nu}-\frac{1}{2}g_{\mu\nu}f(R,T) (2)

where TμνT_{\mu\nu} represents the stress-energy-momentum tensor. Note that for a perfect fluid, TμνT_{\mu\nu} can be written as

Tμν=pgμν+(ρ+p)uμuν,T_{\mu\nu}=-pg_{\mu\nu}+(\rho+p)u_{\mu}u_{\nu}, (3)

where ρ\rho represents energy density, uμu_{\mu} the four-velocity and

Πμν=gμνμν.\Pi_{\mu\nu}=g_{\mu\nu}\square-\nabla_{\mu}\nabla_{\nu}. (4)
ΞijgμνδTμνδgij,\Xi_{ij}\equiv g^{\mu\nu}\frac{\delta T_{\mu\nu}}{\delta g^{ij}}, (5)

where I used the notation f,XidifdXif^{i}_{,X}\equiv\frac{d^{i}f}{dX^{i}} .

II.1 Solutions for f(R,T)=R+λTf(R,T)=R+\lambda T

For this work I set f(R,T)=R+λTf(R,T)=R+\lambda T, where λ\lambda is a constant. This is the simplest functional choice of f(R,T)f(R,T) modified gravity as when λ=0\lambda=0, the field equations correspond to that of GR. This is also the most extensively studied f(R,T)f(R,T) gravity model and has addressed several shortcomings of the conventional Λ\LambdaCDM cosmology (see harko ; in25 ; bounce ; in26 ; in36 and in references therein). Assuming a flat Friedman-Lemâitre-Robertson-Walker space-time with (-,++,++,++) metric signature, the modified Friedman equations takes the form

H2=13[λ2(ω3)+κ2]ρ,H^{2}=\frac{1}{3}\left[-\frac{\lambda}{2}\left(\omega-3\right)+\kappa^{2}\right]\rho, (6)
3H22H˙=[λ2(13ω)+κ2ω]ρ,-3H^{2}-2\dot{H}=\left[-\frac{\lambda}{2}\left(1-3\omega\right)+\kappa^{2}\omega\right]\rho, (7)

where ω\omega represents the equation of state parameter and overhead dots represent time derivatives.

Solving the differential equation (7) for p=0p=0 yields

H=αt,H=\frac{\alpha}{t}, (8)

where

α=2+3λ3(1+λ)\alpha=\frac{2+3\lambda}{3(1+\lambda)} (9)

The scale factor a(t)a(t) reads

a(t)=a0tαa(t)=a_{0}t^{\alpha} (10)

Utilizing the relation a=a0/(1+z)a=a_{0}/(1+z), where a0a_{0} is the current scale factor and zz the cosmological redshift, I obtain the following time-redshift relation,

t(z)=(11+z)1αt(z)=\left(\frac{1}{1+z}\right)^{\frac{1}{\alpha}} (11)

Substituting 11 in 8, the Hubble parameter can be expressed in terms of redshift as

H(z)=[(11+z)α(2+3λ)3(1+α)]H(z)=\left[\frac{\left(\frac{1}{1+z}\right)^{\alpha}(2+3\lambda)}{3(1+\alpha)}\right] (12)

Additionally, the matter energy density ρ\rho reads

ρ(z)=[(11+z)6(1+λ)2+3λ(2+3λ)(2+9λ+8λ2)3(1+α)2(1+6λ+8λ2)]\rho(z)=\left[\frac{\left(\frac{1}{1+z}\right)^{\frac{-6(1+\lambda)}{2+3\lambda}}(2+3\lambda)(2+9\lambda+8\lambda^{2})}{3(1+\alpha)^{2}(1+6\lambda+8\lambda^{2})}\right] (13)

III Growth Rate in f(R,T)f(R,T) Gravity

I shall now derive an analytic expression for the matter density fluctuations δ(z)\delta(z) and growth rate f(z)f(z) in the framework of f(R,T)f(R,T) gravity. The second order differential equation describing the evolution of δ(z)\delta(z) at the sub-horizon scales reads

δ¨+2νHδ˙4πGNμρδ=0.\ddot{\delta}+2\nu H\dot{\delta}-4\pi G_{N}\mu\rho\delta=0. (14)

In extended theories of gravity, the quantity μ=Geff/GN\mu=G_{eff}/G_{N} depends on the scale factor, while for the dark energy models adhered to general relativity, GeffG_{eff} equals Newton’s gravitational constant and therefore μ=1\mu=1 growft . ν\nu is the damping coefficient which is a function of redshift and spatial Fourier frequency growft41 . Readers are encouraged to see growft21 ; growft27 ; growft38to40 ; growft41 for further clarifications.
Now from Eq. 37 in Ref. frt/per , the expression of GeffG_{eff} for f(R,T)=R+f(T)f(R,T)=R+f(T) gravity can be written as

Geff/GN=1f,T1k2f,T1/(a2(1f,T1)ρ).G_{eff}/G_{N}=1-f^{1}_{,T}-k^{2}f^{1}_{,T}/(a^{2}(1-f^{1}_{,T})\rho). (15)

Since I work with natural units, then by setting GN=1G_{N}=1, the expression of GeffG_{eff} becomes

Geff=1f,T1k2f,T1/(a2(1f,T1)ρ).G_{eff}=1-f^{1}_{,T}-k^{2}f^{1}_{,T}/(a^{2}(1-f^{1}_{,T})\rho). (16)

Finally, the parameter μ\mu for f(T)=λTf(T)=\lambda T can be written as

μ=Geff/GN=1λk2λ/(a2(1λ)ρ).\mu=G_{eff}/G_{N}=1-\lambda-k^{2}\lambda/(a^{2}(1-\lambda)\rho). (17)

It may be noted that for λ=0\lambda=0, μ=1\mu=1 since Geff=GNG_{eff}=G_{N} as it should be.
In most cases, Eq. 14 does not have an analytic solution and can only be approached numerically. Fortunately, an analytic solution does exists for the f(R,T)f(R,T) gravity model employed in this work. Upon substituting the expression of H(z)H(z) (Eq. 12) and ρ(z)\rho(z) (Eq. 13) in Eq. 14, the expression of matter perturbation δ\delta reads

δ(z)=216λ2+3R+12λ+232λ2+24λ+43R16λ2+12λ+2λλ+123(λ+1)(((1z+1)3λ3λ+2+33λ+2)23(λ+1))16λ2+R+12λ+232λ2+24λ+4((1z+1)3λ3λ+2+33λ+2)3λ+16λ+6×((λ+1)(1z+1)3λ3λ+2+33λ+2)3λ+23λ+3×(λ(λ+1)2((1z+1)3λ3λ+2+33λ+2)23(λ+1)λ1)R32λ2+24λ+4(KR16λ2+12λ+2(3S)×IR16λ2+12λ+2(3S))\delta(z)=2^{\frac{16\lambda^{2}+3R+12\lambda+2}{32\lambda^{2}+24\lambda+4}}3^{-\frac{R}{16\lambda^{2}+12\lambda+2}-\frac{\lambda}{\lambda+1}-\frac{2}{3(\lambda+1)}}\left(\left(\left(\frac{1}{z+1}\right)^{\frac{3\lambda}{3\lambda+2}+\frac{3}{3\lambda+2}}\right)^{\frac{2}{3(\lambda+1)}}\right)^{\frac{16\lambda^{2}+R+12\lambda+2}{32\lambda^{2}+24\lambda+4}}\left(\left(\frac{1}{z+1}\right)^{\frac{3\lambda}{3\lambda+2}+\frac{3}{3\lambda+2}}\right)^{\frac{3\lambda+1}{6\lambda+6}}\\ \times\left((\lambda+1)\left(\frac{1}{z+1}\right)^{\frac{3\lambda}{3\lambda+2}+\frac{3}{3\lambda+2}}\right)^{-\frac{3\lambda+2}{3\lambda+3}}\\ \times\left(\frac{\lambda(\lambda+1)^{2}\left(\left(\frac{1}{z+1}\right)^{\frac{3\lambda}{3\lambda+2}+\frac{3}{3\lambda+2}}\right)^{\frac{2}{3(\lambda+1)}}}{\lambda-1}\right)^{-\frac{R}{32\lambda^{2}+24\lambda+4}}\left(K_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3S\right)\times I_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3S\right)\right) (18)

where

R=1728λ62304λ5+1276λ4+3576λ3+2185λ2+546λ+49R=\sqrt{-1728\lambda^{6}-2304\lambda^{5}+1276\lambda^{4}+3576\lambda^{3}+2185\lambda^{2}+546\lambda+49} (19)

and

S=((1z+1)3λ3λ+2+33λ+2)23(λ+1)λ(λ+1)2λ1S=\sqrt{\frac{\left(\left(\frac{1}{z+1}\right)^{\frac{3\lambda}{3\lambda+2}+\frac{3}{3\lambda+2}}\right)^{\frac{2}{3(\lambda+1)}}\lambda(\lambda+1)^{2}}{\lambda-1}} (20)

and II and KK represent the modified Bessel functions of the first and second kind respectively. The growth rate of clustering ff introduced in growft16 is defined as

f(a)=dlnδdlna=Ωmγ(a)f(a)=\frac{d\text{ln}\delta}{d\text{ln}a}=\Omega_{m}^{\gamma}(a) (21)

which can be re-written in terms of redshift zz as

f(z)=(1+z)δdδdz=Ωmγ(z).f(z)=\frac{-(1+z)}{\delta}\frac{d\delta}{dz}=\Omega_{m}^{\gamma}(z). (22)

Where Ωm=8πGρm3H02\Omega_{m}=\frac{8\pi G\rho_{m}}{3H_{0}^{2}}. Substituting Eq. 18 in Eq. 22, the expression of growth rate becomes

f(z)=3λ(λ+1)2IR16λ2+12λ+21(3S)Y+3λ3IR16λ2+12λ+2+1(3S)Y+6λ2IR16λ2+12λ+2+1(3Yλ(λ+1)2λ1)Y+3λIR16λ2+12λ+2+1(3S)Y3λ3KR16λ2+12λ+21(3S)Y6λ2KR16λ2+12λ+21(3S)Y3λKR16λ2+12λ+21(3((1z+1)3(λ+1)3λ+2)23(λ+1)λ(λ+1)2λ1)Y3λ3KR16λ2+12λ+2+1(3Yλ(λ+1)2λ1)Y6λ2KR16λ2+12λ+2+1(3Yλ(λ+1)2λ1)Y3λKR16λ2+12λ+2+1(3S)Y3λ2Yλ(λ+1)2λ1KR16λ2+12λ+2(3S)(3λ22λ1)IR16λ2+12λ+2(3S)Yλ(λ+1)2λ1+KR16λ2+12λ+2(3S)Yλ(λ+1)2λ1+2λKR16λ2+12λ+2(3S)S2(λ1)S(3λ+2)(IR16λ2+12λ+2(3S)+KR16λ2+12λ+2(3Yλ(λ+1)2λ1))f(z)=\frac{\begin{multlined}\begin{multlined}3\lambda(\lambda+1)^{2}I_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3S\right)Y+3\lambda^{3}I_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3S\right)Y+6\lambda^{2}I_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\\ \begin{multlined}+3\lambda I_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3S\right)Y-3\lambda^{3}K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3S\right)Y-6\lambda^{2}K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3S\right)Y\\ \begin{multlined}-3\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3\sqrt{\frac{\left(\left(\frac{1}{z+1}\right)^{\frac{3(\lambda+1)}{3\lambda+2}}\right)^{\frac{2}{3(\lambda+1)}}\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\\ -3\lambda^{3}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y-6\lambda^{2}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\end{multlined}-3\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3\sqrt{\frac{\left(\left(\frac{1}{z+1}\right)^{\frac{3(\lambda+1)}{3\lambda+2}}\right)^{\frac{2}{3(\lambda+1)}}\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\\ -3\lambda^{3}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y-6\lambda^{2}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\end{multlined}+3\lambda I_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3S\right)Y-3\lambda^{3}K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3S\right)Y-6\lambda^{2}K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3S\right)Y\\ \begin{multlined}-3\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3\sqrt{\frac{\left(\left(\frac{1}{z+1}\right)^{\frac{3(\lambda+1)}{3\lambda+2}}\right)^{\frac{2}{3(\lambda+1)}}\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\\ -3\lambda^{3}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y-6\lambda^{2}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\end{multlined}-3\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3\sqrt{\frac{\left(\left(\frac{1}{z+1}\right)^{\frac{3(\lambda+1)}{3\lambda+2}}\right)^{\frac{2}{3(\lambda+1)}}\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\\ -3\lambda^{3}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y-6\lambda^{2}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\end{multlined}3\lambda(\lambda+1)^{2}I_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3S\right)Y+3\lambda^{3}I_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3S\right)Y+6\lambda^{2}I_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\\ \begin{multlined}+3\lambda I_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3S\right)Y-3\lambda^{3}K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3S\right)Y-6\lambda^{2}K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3S\right)Y\\ \begin{multlined}-3\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3\sqrt{\frac{\left(\left(\frac{1}{z+1}\right)^{\frac{3(\lambda+1)}{3\lambda+2}}\right)^{\frac{2}{3(\lambda+1)}}\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\\ -3\lambda^{3}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y-6\lambda^{2}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\end{multlined}-3\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3\sqrt{\frac{\left(\left(\frac{1}{z+1}\right)^{\frac{3(\lambda+1)}{3\lambda+2}}\right)^{\frac{2}{3(\lambda+1)}}\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\\ -3\lambda^{3}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y-6\lambda^{2}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\end{multlined}+3\lambda I_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3S\right)Y-3\lambda^{3}K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3S\right)Y-6\lambda^{2}K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3S\right)Y\\ \begin{multlined}-3\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3\sqrt{\frac{\left(\left(\frac{1}{z+1}\right)^{\frac{3(\lambda+1)}{3\lambda+2}}\right)^{\frac{2}{3(\lambda+1)}}\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\\ -3\lambda^{3}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y-6\lambda^{2}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\end{multlined}-3\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3\sqrt{\frac{\left(\left(\frac{1}{z+1}\right)^{\frac{3(\lambda+1)}{3\lambda+2}}\right)^{\frac{2}{3(\lambda+1)}}\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\\ -3\lambda^{3}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y-6\lambda^{2}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\\ {\begin{multlined}\begin{multlined}-3\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3S\right)Y-3\lambda^{2}\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}K_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3S\right)\\ \left(3\lambda^{2}-2\lambda-1\right)I_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3S\right)\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\end{multlined}-3\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3S\right)Y-3\lambda^{2}\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}K_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3S\right)\\ \left(3\lambda^{2}-2\lambda-1\right)I_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3S\right)\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\\ +K_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3S\right)\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}+2\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3S\right)S\end{multlined}\begin{multlined}-3\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3S\right)Y-3\lambda^{2}\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}K_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3S\right)\\ \left(3\lambda^{2}-2\lambda-1\right)I_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3S\right)\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\end{multlined}-3\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3S\right)Y-3\lambda^{2}\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}K_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3S\right)\\ \left(3\lambda^{2}-2\lambda-1\right)I_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3S\right)\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\\ +K_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3S\right)\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}+2\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3S\right)S}\end{multlined}\begin{multlined}3\lambda(\lambda+1)^{2}I_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3S\right)Y+3\lambda^{3}I_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3S\right)Y+6\lambda^{2}I_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\\ \begin{multlined}+3\lambda I_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3S\right)Y-3\lambda^{3}K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3S\right)Y-6\lambda^{2}K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3S\right)Y\\ \begin{multlined}-3\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3\sqrt{\frac{\left(\left(\frac{1}{z+1}\right)^{\frac{3(\lambda+1)}{3\lambda+2}}\right)^{\frac{2}{3(\lambda+1)}}\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\\ -3\lambda^{3}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y-6\lambda^{2}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\end{multlined}-3\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3\sqrt{\frac{\left(\left(\frac{1}{z+1}\right)^{\frac{3(\lambda+1)}{3\lambda+2}}\right)^{\frac{2}{3(\lambda+1)}}\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\\ -3\lambda^{3}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y-6\lambda^{2}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\end{multlined}+3\lambda I_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3S\right)Y-3\lambda^{3}K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3S\right)Y-6\lambda^{2}K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3S\right)Y\\ \begin{multlined}-3\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3\sqrt{\frac{\left(\left(\frac{1}{z+1}\right)^{\frac{3(\lambda+1)}{3\lambda+2}}\right)^{\frac{2}{3(\lambda+1)}}\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\\ -3\lambda^{3}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y-6\lambda^{2}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\end{multlined}-3\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3\sqrt{\frac{\left(\left(\frac{1}{z+1}\right)^{\frac{3(\lambda+1)}{3\lambda+2}}\right)^{\frac{2}{3(\lambda+1)}}\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\\ -3\lambda^{3}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y-6\lambda^{2}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\end{multlined}3\lambda(\lambda+1)^{2}I_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3S\right)Y+3\lambda^{3}I_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3S\right)Y+6\lambda^{2}I_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\\ \begin{multlined}+3\lambda I_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3S\right)Y-3\lambda^{3}K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3S\right)Y-6\lambda^{2}K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3S\right)Y\\ \begin{multlined}-3\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3\sqrt{\frac{\left(\left(\frac{1}{z+1}\right)^{\frac{3(\lambda+1)}{3\lambda+2}}\right)^{\frac{2}{3(\lambda+1)}}\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\\ -3\lambda^{3}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y-6\lambda^{2}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\end{multlined}-3\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3\sqrt{\frac{\left(\left(\frac{1}{z+1}\right)^{\frac{3(\lambda+1)}{3\lambda+2}}\right)^{\frac{2}{3(\lambda+1)}}\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\\ -3\lambda^{3}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y-6\lambda^{2}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\end{multlined}+3\lambda I_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3S\right)Y-3\lambda^{3}K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3S\right)Y-6\lambda^{2}K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3S\right)Y\\ \begin{multlined}-3\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3\sqrt{\frac{\left(\left(\frac{1}{z+1}\right)^{\frac{3(\lambda+1)}{3\lambda+2}}\right)^{\frac{2}{3(\lambda+1)}}\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\\ -3\lambda^{3}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y-6\lambda^{2}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\end{multlined}-3\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}-1}\left(3\sqrt{\frac{\left(\left(\frac{1}{z+1}\right)^{\frac{3(\lambda+1)}{3\lambda+2}}\right)^{\frac{2}{3(\lambda+1)}}\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\\ -3\lambda^{3}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y-6\lambda^{2}K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)Y\\ {\begin{multlined}\begin{multlined}-3\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3S\right)Y-3\lambda^{2}\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}K_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3S\right)\\ \left(3\lambda^{2}-2\lambda-1\right)I_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3S\right)\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\end{multlined}-3\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3S\right)Y-3\lambda^{2}\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}K_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3S\right)\\ \left(3\lambda^{2}-2\lambda-1\right)I_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3S\right)\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\\ +K_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3S\right)\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}+2\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3S\right)S\end{multlined}\begin{multlined}-3\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3S\right)Y-3\lambda^{2}\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}K_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3S\right)\\ \left(3\lambda^{2}-2\lambda-1\right)I_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3S\right)\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\end{multlined}-3\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}+1}\left(3S\right)Y-3\lambda^{2}\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}K_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3S\right)\\ \left(3\lambda^{2}-2\lambda-1\right)I_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3S\right)\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\\ +K_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3S\right)\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}+2\lambda K_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3S\right)S}}{2(\lambda-1)S(3\lambda+2)\left(I_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3S\right)+K_{\frac{R}{16\lambda^{2}+12\lambda+2}}\left(3\sqrt{\frac{Y\lambda(\lambda+1)^{2}}{\lambda-1}}\right)\right)} (23)

where

Y=((1z+1)3(λ+1)3λ+2)23(λ+1)Y=\left(\left(\frac{1}{z+1}\right)^{\frac{3(\lambda+1)}{3\lambda+2}}\right)^{\frac{2}{3(\lambda+1)}} (24)

In Fig. 1 I show the evolution of Eq. 23 for different values of λ\lambda and also for λ=0\lambda=0. the linear growth rate f(z)f(z) is a extremely useful concept in physical cosmology which provides information about the evolution of density perturbations from a nearly smooth state to the highly clumpy state observed at the present epoch. From the figure it is clear that the linear growth rate is sensitive to the model parameter λ\lambda and it is observed that as λ\lambda increases, f(z)f(z) assumes lower values at all redshift. This implies that the presence of the model parameter λ\lambda enhances the effect of geometrical dark energy and acts against gravity and represses the growth of formation of structures. Note that for negative λ\lambda, the growth rate becomes imaginary and therefore not permissible.
In Fig. 2, I show the evolution of Eq. 18 for 0λ10\leq\lambda\leq 1 as a function of redshift. I find that, for λ=0\lambda=0, the density perturbations decrease faster with increasing redshift compared to the cases when λ>0\lambda>0. Also as λ\lambda increases, δ(z)\delta(z) decreases slower. For λ<0\lambda<0, δ(z)\delta(z) increases with redshift which is unphysical. Hence, I find from the present analysis that negative λ\lambda values do not yield satisfactory results.

Refer to caption
Figure 1: Evolution of growth rate f(z)f(z) as a function of redshift zz for different values of λ\lambda. The profile for λ=0\lambda=0 corresponds to that of GR. Black dots with error-bars indicate observed values from Table III.
Refer to caption
Figure 2: Evolution of density perturbations δ(z)\delta(z) as a function of redshift zz for 0λ10\leq\lambda\leq 1.
Table 1: Observed growth rate f(z)f(z) as a function of redshift zz.
zz fobs(z)f_{obs}(z) References
0.15 0.51±0.110.51\pm 0.11 hawkins ; verde ; linder
0.22 0.6±0.100.6\pm 0.10 blake
0.32 0.654±0.180.654\pm 0.18 reyes
0.35 0.7±0.180.7\pm 0.18 tegmark
0.41 0.50±0.070.50\pm 0.07 blake
0.55 0.75±0.180.75\pm 0.18 ross
0.60 0.73±0.070.73\pm 0.07 blake
0.77 0.91±0.360.91\pm 0.36 guzzo
0.78 0.7±0.080.7\pm 0.08 blake
0.86 0.400±0.1100.400\pm 0.110 55 ; 104
1.4 0.90±0.240.90\pm 0.24 angela

IV Growth Index in f(R,T)f(R,T) Gravity

In this section I shall derive an analytic expression for the growth index γ\gamma for the f(R,T)f(R,T) gravity model. The growth index is very useful in discriminating various dark energy models from modified gravity theories. It is not clear whether γ\gamma is a constant or temporally evolving, owing to which, authors have studied the consequence of both a constant growth index and an one which is redshift dependent. However, in this work I shall focus on deriving an expression for a growth index which is redshift dependent. See growft ; growft21 ; growft23to25 ; growft17to20 ; growft22 ; growft26 ; ft27 for other studies related to redshift dependent growth index.
A general mathematical treatment for the growth index is proposed in growft41 , according to which the growth index γ\gamma_{\infty} can be expressed as

γ=3(M0+M1)2(H1+N1)2+2X1+3M0.\gamma_{\infty}=\frac{3(M_{0}+M_{1})-2(H_{1}+N_{1})}{2+2X_{1}+3M_{0}}. (25)

Where the relevant quantities are defined as growft41

M0=μ|ω=0,M1=dμdω|ω=0M_{0}=\mu\bigg{|}_{\omega=0},\hskip 10.84006ptM_{1}=\frac{d\mu}{d\omega}\bigg{|}_{\omega=0} (26)

and

H1=X12=d(dlnE/dlna)dω|ω=0,N1=dνdω|ω=0,H_{1}=-\frac{X_{1}}{2}=\frac{d(d\text{ln}E/d\text{ln}a)}{d\omega}\bigg{|}_{\omega=0},\hskip 10.84006ptN_{1}=\frac{d\nu}{d\omega}\bigg{|}_{\omega=0}, (27)

where E(z)=H(z)/H0E(z)=H(z)/H_{0} represents the normalized Hubble parameter. For modified gravity theories the quantity ν=1\nu=1, therefore N1=0N_{1}=0.
Note that in growft41 , all the cosmological functions are written in terms of the variable ω=lnΩm(a)\omega=\text{ln}\Omega_{m}(a), implying Ωm(a)1\Omega_{m}(a)\rightarrow 1 when ω0\omega\rightarrow 0. Therefore, I can write growft41 ; growft

M1=dμdω|ω=0=ΩmdμdΩm|Ωm=1.M_{1}=\frac{d\mu}{d\omega}\bigg{|}_{\omega=0}=\Omega_{m}\frac{d\mu}{d\Omega_{m}}\bigg{|}_{\Omega_{m}=1}. (28)

From Eq. 17, I find for the f(R,T)f(R,T) gravity model,

μ=3λ(λ+1)2(8λ2+6λ+1)(1z+1)6λ3λ+2+63λ+2a2(1λ)(3λ+2)(2(3λ+1)+λ(8λ+3))λ+1.\mu=-\frac{3\lambda(\lambda+1)^{2}\left(8\lambda^{2}+6\lambda+1\right)\left(\frac{1}{z+1}\right)^{\frac{6\lambda}{3\lambda+2}+\frac{6}{3\lambda+2}}}{a^{2}(1-\lambda)(3\lambda+2)(2(3\lambda+1)+\lambda(8\lambda+3))}-\lambda+1. (29)

Now, after some calculations I obtain dμdΩm=0\frac{d\mu}{d\Omega_{m}}=0 and therefore M1=0M_{1}=0.
Lastly, H1H_{1} can be written as growft ; growft41

H1=X12=d(dlnE/dlna)dω|ω=0=Ωmd(dlnE/dlna)dΩm|Ωm=1.H_{1}=-\frac{X_{1}}{2}=\frac{d(d\text{ln}E/d\text{ln}a)}{d\omega}\bigg{|}_{\omega=0}=\Omega_{m}\frac{d(d\text{ln}E/d\text{ln}a)}{d\Omega_{m}}\bigg{|}_{\Omega_{m}=1}. (30)

For the relevant f(R,T)f(R,T) gravity model used in this work,

dlnE/dlna=3(λ+1)3λ+2.d\text{ln}E/d\text{ln}a=-\frac{3(\lambda+1)}{3\lambda+2}. (31)

Since dlnE/dlnad\text{ln}E/d\text{ln}a is a constantconstant, therefore Ωmd(dlnE/dlna)dΩm|Ωm=1=H1=X12=0\Omega_{m}\frac{d(d\text{ln}E/d\text{ln}a)}{d\Omega_{m}}\bigg{|}_{\Omega_{m}=1}=H_{1}=-\frac{X_{1}}{2}=0. Hence I obtain,
{M0,M1,N1,H1,X1M_{0},M_{1},N_{1},H_{1},X_{1}} = {(3λ(λ+1)2(8λ2+6λ+1)(1z+1)6λ3λ+2+63λ+2a2(1λ)(3λ+2)(2(3λ+1)+λ(8λ+3))λ+1-\frac{3\lambda(\lambda+1)^{2}\left(8\lambda^{2}+6\lambda+1\right)\left(\frac{1}{z+1}\right)^{\frac{6\lambda}{3\lambda+2}+\frac{6}{3\lambda+2}}}{a^{2}(1-\lambda)(3\lambda+2)(2(3\lambda+1)+\lambda(8\lambda+3))}-\lambda+1), 0,0,0,0,00,0,0,0,0}.
Upon substituting all the respective values of the coefficients in Eq. 25, the expression of growth index in f(R,T)f(R,T) gravity reads

γ=3(3λ(λ+1)2(8λ2+6λ+1)(1z+1)23λ+2+2a2(λ1)(3λ+2)(λ(8λ+9)+2)λ+1)9λ(λ+1)2(2λ+1)(4λ+1)(1z+1)23λ+2+2a2(λ1)(3λ+2)(λ(8λ+9)+2)3λ+5.\gamma_{\infty}=\frac{3\left(\frac{3\lambda(\lambda+1)^{2}\left(8\lambda^{2}+6\lambda+1\right)\left(\frac{1}{z+1}\right)^{\frac{2}{3\lambda+2}+2}}{a^{2}(\lambda-1)(3\lambda+2)(\lambda(8\lambda+9)+2)}-\lambda+1\right)}{\frac{9\lambda(\lambda+1)^{2}(2\lambda+1)(4\lambda+1)\left(\frac{1}{z+1}\right)^{\frac{2}{3\lambda+2}+2}}{a^{2}(\lambda-1)(3\lambda+2)(\lambda(8\lambda+9)+2)}-3\lambda+5}. (32)

For λ=0\lambda=0, the expression reduces to γ=3/5\gamma_{\infty}=3/5, which is the growth index for a dust universe.

V Conclusions

I studied the growth of matter fluctuations in the framework of f(R,T)f(R,T) modified gravity for the simplest functional choice f(R,T)=R+λTf(R,T)=R+\lambda T, where RR denote the Ricci scalar, TT the trace of energy momentum tensor and λ\lambda a constant. This is by far the most widely studied f(R,T)f(R,T) gravity model in the literature harko ; in25 ; bounce ; in26 ; in36 . However, to the best of my knowledge, no studies related to matter density fluctuations have been attempted in f(R,T)f(R,T) gravity thus far.
To carry out the analysis, I first solve the field equations assuming a dust universe (ω=0\omega=0) for the Hubble parameter H(z)H(z) and employ it to solve the equation of matter density fluctuations and finally for the growth rate f(z)f(z) and show their behavior with redshift for some values of λ\lambda with observational constraints on f(z)f(z). I found that positive λ\lambda yields remarkable values of f(z)f(z) which suits perfectly with observations, while negative λ\lambda makes f(z)f(z) imaginary and therefore should be refrained from using in future studies. I find that as λ\lambda increases, f(z)f(z) assumes lower values at each redshift.
Furthermore, I find that, for λ=0\lambda=0, the density perturbations decrease faster with increasing redshift compared to the cases when λ>0\lambda>0. Also as λ\lambda increases, δ(z)\delta(z) decreases slower. For λ<0\lambda<0, δ(z)\delta(z) increases with redshift which is unphysical.
Additionally, following the prescription of growft41 , I also present in this work an analytical expression for the growth index which is redshift dependent and the expression reduces to 3/53/5 for λ=0\lambda=0, which is the growth index for a dust universe.

Acknowledgments

I thank Tiberiu Harko for helpful suggestions. I thank the anonymous reviewer for useful criticisms and encouraging comments that helped me to improve the work significantly. I acknowledge DST, New-Delhi, Government of India for the provisional INSPIRE fellowship selection [DST/INSPIRE/03/2019/003141].

References

  • (1) A.G. Riess et al., Astron. J. 116, 1009 (1998); S. Perlmutter et al., Astrophys. J. 517, 565 (1999).
  • (2) S. Basilakos, Phys. Rev. D, 93, 083007 (2016).
  • (3) E. J. Copeland, M. Sami and S. Tsujikawa, Intern. Journal of Modern Physics D, 15, 1753,(2006); L. Amendola and S. Tsujikawa, Dark Energy Theory and Observations, Cambridge University Press, Cambridge UK, (2010); R. R. Caldwell and M. Kamionkowski, Ann. Rev. Nucl. Part. Sci., 59, 397, (2009), arXiv:0903.0866
  • (4) T. Harko et al., Phys. Rev. D, 84, 024020 (2011).
  • (5) S. Capozziello and M. D. Laurentis, Phys. Rept. 509, 167 (2011); S. Capozziello, Int. J. Mod. Phys. D11, 483 (2002).
  • (6) R. Zaregonbadi, et al., Phys. Rev. D 94, 084052 (2016).
  • (7) G. Sun and Y.-C. Huang, Int. J. Mod. Phys. D, 25, 1650038 (2016).
  • (8) F. Rocha et al. arXiv:1911.08894 (2019)
  • (9) S.I. dos Santos, G.A. Carvalho, P.H.R.S. Moraes, C.H. Lenzi and M. Malheiro, Eur. Phys. J. Plus, 134, 398 (2019);
  • (10) P.H.R.S. Moraes and P.K. Sahoo, Eur. Phys. J. C 79, 677 (2019); E. Elizalde and M. Khurshudyan, Phys. Rev. D, 99, 024051 (2019); E. Elizalde and M. Khurshudyan, Phys. Rev. D, 98, 123525 (2018); P.H.R.S. Moraes and P.K. Sahoo, Phys. Rev. D, 97, 024007 (2018); P.K. Sahoo, P.H.R.S. Moraes and P. Sahoo, Eur. Phys. J. C, 78, 46 (2018); P.K. Sahoo, P.H.R.S. Moraes, P. Sahoo and G. Ribeiro, Int. J. Mod. Phys. D, 27, 1950004 (2018); P.H.R.S. Moraes and P.K. Sahoo, Phys. Rev. D, 96, 044038 (2017); P.H.R.S. Moraes, R.A.C. Correa and R.V. Lobato, J. Cosm. Astrop. Phys., 07, 029 (2017); T. Azizi, Int. J. Theor. Phys. 52, 3486 (2013).
  • (11) M.E.S. Alves, P.H.R.S. Moraes, J.C.N. de Araujo and M. Malheiro, Phys. Rev. D, 94, 024032 (2016).
  • (12) P.K. Sahoo and S. Bhattacharjee, Int. J. Theor. Phys, 59, 1451 (2020) [arXiv: 1907.13460].
  • (13) P. Sahoo et al, Mod. Phys. Lett. A, 35 (2020) 2050095 [arXiv: 1907.08682].
  • (14) S. Bhattacharjee and P. K. Sahoo, Phys. Dark Universe, 28, 100537 (2020) [arXiv:2003.14211].
  • (15) S. Arora, S. Bhattacharjee, P.K. Sahoo, New Astronomy, 82 (2021) 101452 [arXiv:2007.06790].
  • (16) S. Bhattacharjee et al., Eur. Phys. J. Plus 135, 576 (2020) [arXiv:2006.04336].
  • (17) S. Bhattacharjee and P. K. Sahoo, New Astronomy, 81 (2020) 101425 [arXiv:2005.11163].
  • (18) S. Bhattacharjee and P. K. Sahoo, Eur. Phys. J. Plus, 135, 86 (2020) [arXiv:2001.06569].
  • (19) S. Bhattacharjee and P.K. Sahoo, Eur. Phys. J. Plus, 135, 350 (2020) [arXiv:2004.04684].
  • (20) T. Okumura, et al., 2015 [arXiv:1511.08083]
  • (21) P. J. E. Peebles, Principles of Physical Cosmology, Princeton University Press, Princeton New Jersey (1993).
  • (22) V. Silveira and I. Waga, Phys. Rev. D, 50, 4890 (1994); L. Wang and J. P. Steinhardt, Astrophys. J, 508, 483 (1998); E. V. Linder and A. Jenkins, Mon. Not. Roy. Astron. Soc., 346, 573 (2003); A. Lue, R. Scossimarro, and G. D. Starkman, Phys. Rev. D, 69, 124015 (2004).
  • (23) E. V. Linder, Phys. Rev. D, 70, 023511 (2004); E. V. Linder, and R. N. Cahn, Astrop. Phys., 28, 481 (2007).
  • (24) S. Nesseris and L. Perivolaropoulos, Phys. Rev. D 77, 023504 (2008).
  • (25) Y. Gong, Phys. Rev. D, 78, 123010 (2008); H. Wei, Phys. Lett. B., 664, 1 (2008); Y.G. Gong, Phys. Rev. D, 78, 123010 (2008) X.-y Fu, P.-x Wu and H.-w, Phys. Lett. B., 677, 12 (2009).
  • (26) S. Basilakos and P. Stavrinos, Phys. Rev. D, 87, 043506 (2013).
  • (27) R. Gannouji, B. Moraes and D. Polarski, JCAP, 02, 034 (2009); S. Tsujikawa, R. Gannouji, B. Moraes and D. Polarski, Phys. Rev. D, 80, 084044 (2009).
  • (28) F. G. Alvarenga et al., Phys. Rev. D 87, 103526 (2013).
  • (29) R. Gannouji, B. Moraes and D. Polarski, JCAP, 02, 034 (2009).
  • (30) F. H. Stabenau and B. Jain, Phys. Rev. D, 74, 084007 (2006); P. J. Uzan, Gen. Rel. Grav., 39, 307 (2007); S. Tsujikawa, K. Uddin and R. Tavakol, Phys. Rev. D, 77, 043007 (2008).
  • (31) H. Steigerwald, J. Bel and C. Marinoni, JCAP, 05, 042 (2014)
  • (32) E. Hawkins., et al.: Mon. Not. R. Astron. Soc. 346, 78 (2003)
  • (33) L. Verde et al.: Mon. Not. R. Astron. Soc. 335, 432 (2002)
  • (34) E.V. Linder, Astropart. Phys. 29, 336 (2008)
  • (35) C. Blake et al., Mon. Not. R. Astron. Soc. 415, 2876 (2011)
  • (36) R. Reyes et al., Nature 464, 256 (2010)
  • (37) M. Tegmark et al., (SDSS Collaboration): Phys. Rev. D 74, 123507 (2006)
  • (38) N.P. Ross et al., Mon. Not. R. Astron. Soc. 381, 573 (2007)
  • (39) L. Guzzo et al., Nature, 451, 541 (2008).
  • (40) S. de la Torre et al., A&A, 608, A44 (2017).
  • (41) A. Pezzotta et al., A&A, 604, A33 (2017).
  • (42) J. Da Angela et al., Mon. Not. R. Astron. Soc. 383, 565 (2008).