This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\UseRawInputEncoding

Groups of linear isometries on weighted poset block spaces

Wen Ma   Jinquan Luo111The authors are with School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan China.
E-mails: [email protected](W.Ma), [email protected](J.Luo)

Abstract: In this paper, we introduce a new family of metrics, weighted poset block metric, that combine the weighted coordinates poset metric introduced by Panek et al. [(References)] and the metric for linear error-block codes introduced by Feng et al. [(References)]. This type of metrics include many classical metrics such as Hamming metric, Lee metric, poset metric, pomset metric, poset block metric, pomset block metric and so on. We give a complete description of the groups of linear isometries of these metric spaces in terms of a semi-direct product. Furthermore, we obtain a Singleton type bound for codes equipped with weighted poset block metric and define MDS codes. As a special case when the poset is a chain, we show that MDS codes are equivalent to perfect codes.

Key words: linear isometry, poset block metric, principal ideal, pomset block metric, weighted poset block metric

1 Introduction

The study of codes endowed with a metric other than the Hamming metric gained momentum since 1990’s, such as the poset metric by Brualdi et al. ([References]). Over the last two decades, the study of codes in the poset metric has made the subject of coding theory to see several developments. It paved a way for studying codes equipped with various metrics.

Feng, Xu and Hickernell ([References]) introduced the block metric by partitioning the set of coordinate positions of 𝔽qn\mathbb{F}_{q}^{n} and studied MDS block codes. Poset block metric was introduced by Alves, Panek, and Firer ([References]) unifying poset metric and block metric. Later, Dass, Sharma and Verma obtained a Singleton type bound for poset block codes and define a maximum distance separable poset block code as a code meeting this bound. They also extended the concept of II-balls to poset block metric and describe rr-perfect and MDS (P,π)(P,\pi)-codes in terms of II-perfect codes. Niederreiter-Rosenbloom-Tsfasman block metric (in short, NRT block metric) is a particular case of poset block when the poset is a chain. Panek, Firer and Alves in [References] classified the classes of equivalent codes and developed much of the classical theory for NRT block codes.

As the support of a vector vv in 𝔽qn\mathbb{F}_{q}^{n} is a set and hence induces order ideals and metrics on 𝔽qn\mathbb{F}_{q}^{n}, the poset metric codes could not accommodate Lee metric structure due to the fact that the support of a vector with respect to Lee weight is not a set but rather a multiset. In order to handle Lee metric, a much general class of metrics called pomset metric is introduced by Irrinki and Selvaraj ([References],[References],[References]) for codes over m\mathbb{Z}_{m}. Furthermore, construction of pomset codes are obtained and their metric properties like minimum distance, covering radius, MacWilliams’ identity, Singleton-type bound, perfect codes and so on are determined.

The group of linear isometries were determined for the Rosenbloom-Tsfasman space, generalized Rosenbloom-Tsfasman space and crown space (see [References],[References],[References]). In [References], Panek et al. gave a complete description of group of linear isometries of poset metric space. Extending their approach, Panek and Pinheiro studied Weighted coordinates poset metric ([References]) that include any additive metric space such as Hamming metric and Lee metric, as well as the poset metric and pomset metric. They provided a complete description of the groups of linear isometries of these metric spaces in terms of a semidirect product, which turns out to be similar to the case of poset metric spaces.

It is natural to ask: does there exist a metric that will be compatible with additive metric and block metric? In this work, we combine weighted poset metric with error-block metric to obtain a further generalization called the weighted poset block metric which includes not only all additive metrics mentioned above but also some block metric such as poset block metric, pomset block metric and so on.

The paper is organized as follows. Section 2 contains basic notions of posets and defines the weighted poset block metric over 𝔽qn\mathbb{F}_{q}^{n}. In Section 3, we give a complete description of groups of linear isometries of the metric space (V,dw,(P,π))\left(V,d_{w,(P,\pi)}\right), for any weighted poset block metric dw,(P,π)d_{w,(P,\pi)}. In Section 4, we give some examples to illustrate our conclusion. Finally, we establish a singleton type bound for codes with weighted poset block metric and define a maximum distance separable (P,π,w)(P,\pi,w)-code (MDS (P,π,w)(P,\pi,w)-code) as a code meeting this bound. The connection of MDS (P,π,w)(P,\pi,w)-codes with perfect codes is also investigated when PP is considered to be a chain.

Diagram 1:
weighted poset block metricweighted coordinates poset metricposet block metricpomset block metricadditive metricposet metricNRT block metricpomset metricHamming metricLee metricHamming and Lee metrics on 𝔽2\mathbb{F}_{2} and 𝔽3\mathbb{F}_{3}π(i)=1\pi(i)=1anti-chainπ(i)=1\pi(i)=1π(i)=1\pi(i)=1chainanti-chainanti-chain

2 Preliminaries

In this section, we give basic definitions and results of a weighted poset block metric to be used in the subsequent sections.

2.1 On weighted poset block metric

The definitions of weight and metric can be defined on general rings. In particular, we restrict it to finite fields because it is the most explored in the context of coding theory.

Let 𝔽q\mathbb{F}_{q} be the finite field of order qq and 𝔽qn\mathbb{F}_{q}^{n} the nn-dimensional vector space over 𝔽q\mathbb{F}_{q}.

Definition 1.

A map d:𝔽qn×𝔽qnd:\mathbb{F}_{q}^{n}\times\mathbb{F}_{q}^{n}\rightarrow\mathbb{N} is a metric on 𝔽qn\mathbb{F}_{q}^{n} if it satisfies the following conditions:

  1. (1)

    (non-negativity) d(u,v)0d(u,v)\geq 0 for all u,v𝔽qnu,v\in\mathbb{F}_{q}^{n} and d(u,v)=0d(u,v)=0 if and only if u=vu=v;

  2. (2)

    (symmetry) d(u,v)=d(v,u)d(u,v)=d(v,u) for all u,v𝔽qnu,v\in\mathbb{F}_{q}^{n};

  3. (3)

    (triangle inequality) d(u,v)d(u,w)+d(w,v)d(u,v)\leq d(u,w)+d(w,v) for all u,v,w𝔽qnu,v,w\in\mathbb{F}_{q}^{n}.

Definition 2.

A map w:𝔽qnw:\mathbb{F}_{q}^{n}\rightarrow\mathbb{N} is a weight on 𝔽qn\mathbb{F}_{q}^{n} if it satisfies the following conditions:

  1. (1)

    w(u)0w(u)\geq 0 for all u𝔽qnu\in\mathbb{F}_{q}^{n} and w(u)=0w(u)=0 if and only if u=0u=0;

  2. (2)

    w(u)=w(u)w(u)=w(-u) for all u𝔽qnu\in\mathbb{F}_{q}^{n};

  3. (3)

    w(u+v)w(u)+w(v)w(u+v)\leq w(u)+w(v) for all u,v𝔽qnu,v\in\mathbb{F}_{q}^{n}.

It is straightforward to prove that, if ww is a weight over 𝔽qn\mathbb{F}_{q}^{n}, then the map dwd_{w} defined by d(u,v)=w(uv)d(u,v)=w(u-v) is a metric on 𝔽qn\mathbb{F}_{q}^{n}. See [References] and [References] for detailed discussion on weight and metric.

Let PP be a set. A partial order on PP is a binary relation \leq on PP such that for all x,y,zPx,y,z\in P, we have xxx\leq x (reflexivity), xyx\leq y and yxy\leq x imply x=yx=y (antisymmetry), xyx\leq y and yzy\leq z imply xzx\leq z (transitivity). A set PP equipped with an order relation \leq is said to be a poset. An element aPa\in P is a maximal element of PP if aba\leq b and bPb\in P imply a=ba=b. We denote by maxP\max P the set of all maximal elements of PP. A poset PP is a chain if any two elements of PP are comparable. The opposite of a chain is an antichain, that is, a poset PP is an antichain if xyx\leq y in PP only when x=yx=y. We call a subset QQ of PP an ideal if, whenever xQx\in Q, yPy\in P and yxy\leq x, we have yQy\in Q. For a subset EE of PP, the ideal generated by EE, denoted by E\langle E\rangle, is the smallest ideal of PP containing EE. We prefer to denote the ideal generated by {i}\{i\} as i\langle i\rangle instead of {i}\langle\{i\}\rangle. We denoted by i\langle i\rangle^{*} the difference i{i}={jP:j<i}\langle i\rangle-\{i\}=\{j\in P:j<i\}.

Given two posets PP and QQ, we say that PP and QQ are isomorphic, and write PQP\cong Q, if there exists a bijective map φ\varphi from PP onto QQ such that xyx\leq y in PP if and only if φ(x)φ(y)\varphi(x)\leq\varphi(y) in QQ. Then φ\varphi is called an order-isomorphism. An order-isomorphism φ:PP\varphi:P\rightarrow P is called an automorphism and we denote by Aut(P)Aut(P) the group of automorphisms of PP.

Let [s]={1,2,,s}[s]=\{1,2,\ldots,s\}. Let P=([s],)P=([s],\leq) be a poset and let π:[s]+\pi:[s]\rightarrow\mathbb{N}^{+} be a map such that n=i=1sπ(i)n=\sum\limits_{i=1}^{s}\pi(i). The map π\pi is said to be a labeling of the poset PP, and the pair (P,π)(P,\pi) is called a poset block structure over [s][s]. Denote π(i)\pi(i) by kik_{i}. We take ViV_{i} as the 𝔽q\mathbb{F}_{q}-vector space 𝔽qki\mathbb{F}_{q}^{k_{i}} for all 1is1\leq i\leq s. We define VV as the direct sum

V=V1V2VsV=V_{1}\oplus V_{2}\oplus\cdots\oplus V_{s} (1)

which is isomorphic to 𝔽qn\mathbb{F}_{q}^{n}. Each uVu\in V can be uniquely decomposed as

u=u1+u2++usu=u_{1}+u_{2}+\cdots+u_{s} (2)

where ui=(ui1,,uiki)Viu_{i}=(u_{i_{1}},\ldots,u_{ik_{i}})\in V_{i} for 1is1\leq i\leq s.

Let ww be a weight on 𝔽q\mathbb{F}_{q} and P=([s],)P=([s],\leq) be a poset. Given uVu\in V, set

Wi(u)=max{w(uij):1jki}for 1is;W_{i}(u)=\max\left\{w(u_{ij}):1\leq j\leq k_{i}\right\}\ \text{for}\ 1\leq i\leq s; (3)
Mw=max{w(α):α𝔽q};M_{w}=\max\left\{w(\alpha):\alpha\in\mathbb{F}_{q}\right\}; (4)
mw=min{w(α):0α𝔽q}.m_{w}=\min\left\{w(\alpha):0\neq\alpha\in\mathbb{F}_{q}\right\}. (5)

The block support or π\pi-support of uVu\in V is the set

suppπ(u)={i[s]:ui0}.supp_{\pi}(u)=\left\{i\in[s]:u_{i}\neq 0\right\}.

We denote by IuPI_{u}^{P} the ideal generated by suppπ(u)supp_{\pi}(u) and denote by MuPM_{u}^{P} the set of maximal elements in the ideal IuPI_{u}^{P}. The (P,π,w)(P,\pi,w)-weight of uu is defined as

ω¯w,(P,π)(u)=iMuPWi(u)+iIuPMuPMw.\overline{\omega}_{w,(P,\pi)}(u)=\sum\limits_{i\in M_{u}^{P}}W_{i}(u)+\sum\limits_{i\in I_{u}^{P}\setminus M_{u}^{P}}M_{w}. (6)

For u,vVu,v\in V, define their (P,π,w)(P,\pi,w)-distance as

dw,(P,π)(u,v)=ω¯w,(P,π)(uv).d_{w,(P,\pi)}(u,v)=\overline{\omega}_{w,(P,\pi)}(u-v). (7)
Theorem 1.

The (P,π,w)(P,\pi,w)-weight defined above is a weight over VV and thus the (P,π,w)(P,\pi,w)-distance dw,(P,π)(.,.)d_{w,(P,\pi)}(.,.) is a metric over VV.

Proof.
  1. (1)

    Clearly ω¯w,(P,π)(u)0\overline{\omega}_{w,(P,\pi)}(u)\geq 0 and ω¯w,(P,π)(u)=0\overline{\omega}_{w,(P,\pi)}(u)=0 iff u=0u=0 for all uVu\in V.

  2. (2)

    As w(a)=w(a)w(a)=w(-a) for all a𝔽qa\in\mathbb{F}_{q} and suppπ(u)=suppπ(u)supp_{\pi}(u)=supp_{\pi}(-u) for all uVu\in V, it follows that ω¯w,(P,π)(u)=ω¯w,(P,π)(u)\overline{\omega}_{w,(P,\pi)}(u)=\overline{\omega}_{w,(P,\pi)}(-u).

  3. (3)

    Finally we show that the (P,π)(P,\pi)-weight satisfies the triangle inequality. Take u,vVu,v\in V, we have

    ω¯w,(P,π)(u+v)\displaystyle\overline{\omega}_{w,(P,\pi)}(u+v) =\displaystyle= iMu+vPWi(u+v)+iIu+vPMu+vPMw\displaystyle\sum\limits_{i\in M_{u+v}^{P}}W_{i}(u+v)+\sum\limits_{i\in I_{u+v}^{P}\setminus M_{u+v}^{P}}M_{w}
    \displaystyle\leq iMu+vP[Wi(u)+Wi(v)]+iIu+vPMu+vPMw\displaystyle\sum\limits_{i\in M_{u+v}^{P}}[W_{i}(u)+W_{i}(v)]+\sum\limits_{i\in I_{u+v}^{P}\setminus M_{u+v}^{P}}M_{w}
    \displaystyle\leq iMuPWi(u)+iIupMuPMw+iMvPWi(v)+iIvpMvPMw\displaystyle\sum\limits_{i\in M_{u}^{P}}W_{i}(u)+\sum\limits_{i\in I_{u}^{p}\setminus M_{u}^{P}}M_{w}+\sum\limits_{i\in M_{v}^{P}}W_{i}(v)+\sum\limits_{i\in I_{v}^{p}\setminus M_{v}^{P}}M_{w}
    =\displaystyle= ω¯w,(P,π)(u)+ω¯w,(P,π)(v).\displaystyle\overline{\omega}_{w,(P,\pi)}(u)+\overline{\omega}_{w,(P,\pi)}(v).

    The second and third inequalities follow from that ww is a weight over 𝔽q\mathbb{F}_{q} and suppπ(u+v)suppπ(u)suppπ(v)supp_{\pi}(u+v)\subseteq supp_{\pi}(u)\cup supp_{\pi}(v), Iu+vPMu+vPIuPMuPIvPMvPI_{u+v}^{P}\setminus M_{u+v}^{P}\subseteq I_{u}^{P}\setminus M_{u}^{P}\cup I_{v}^{P}\setminus M_{v}^{P} (see [References]) respectively. Therefore ω¯w,(P,π)\overline{\omega}_{w,(P,\pi)} is a weight over VV.

The metric dw,(P,π)(.,.)d_{w,(P,\pi)}(.,.) is called the weighted poset block metric and the pair (V,dw,(P,π))\left(V,d_{w,(P,\pi)}\right) is said to be a weighted poset block space. When the label π\pi satisfies π(i)=1\pi(i)=1 for all i[s]i\in[s] the weighted poset block metric is the weighted coordinates poset metric proposed by Panek et al. in [References] which combines and extends several classic metrics of coding theory such as Hamming metric, Lee metric, poset metric ([References]), pomset metric ([References]) and so on. We also refer the reader to [References, References, References, References] for a general metric called weighted poset metric. Let PP be a poset and θ:P+\theta:P\rightarrow\mathbb{R}^{+} be a map. For any βV\beta\in V, the weighted poset weight of β\beta is defined as

wt(P,w)(β)=isupp(β)Pθ(i).wt_{(P,w)}(\beta)=\sum\limits_{i\in\langle supp(\beta)\rangle_{P}}\theta(i).

Note that weighted poset metric is a metric which respect support condition. When the weight ww over 𝔽q\mathbb{F}_{q} such that w(α)=tw(\alpha)=t for all α𝔽q\alpha\in\mathbb{F}_{q} and θ(i)=t\theta(i)=t for all 1is1\leq i\leq s, weighted poset block metric would coincide with weighted poset metric over VV.

2.2 Special cases of weighted poset block metric

In this section, we will show some important metrics that can be deduced from weighted poset block metric.

1. Poset block metric

The poset block weight is defined by

w(P,π)(v)=|suppπ(v)|w_{(P,\pi)}(v)=\left|\langle supp_{\pi}(v)\rangle\right|

for all vVv\in V. For u,vVu,v\in V,

d(P,π)(u,v)=w(P,π)(uv)d_{(P,\pi)}(u,v)=w_{(P,\pi)}(u-v)

defines a metric over VV called the poset block metric and the pair (V,d(P,π))\left(V,d_{(P,\pi)}\right) is said to be a poset block space. It is clear that poset block weight is a particular case of weighted poset block weight when ww is taken to be Hamming weight over 𝔽q\mathbb{F}_{q}.

2. Pomset block metric

Though we define weighted poset block metrics over V=i=1s𝔽qkiV=\bigoplus\limits_{i=1}^{s}\mathbb{F}_{q}^{k_{i}} in Section 2.1, it is still valid if we consider the free module over m\mathbb{Z}_{m} instead of 𝔽q\mathbb{F}_{q}.

Now we recall some definitions and properties regarding multisets needed for defining the pomset block metric and we show that it is a special case of weighted poset block metric.

Let XX be a set of elements. An multiset (in short, mset) drawn from XX is represented as M={m1/a1,m2/a2,,mn/an}M=\{m_{1}/a_{1},m_{2}/a_{2},\ldots,m_{n}/a_{n}\} where aiXa_{i}\in X and mim_{i} is the number of occurrences of aia_{i} in MM denoted by CM(ai)C_{M}(a_{i}). The cardinality of MM is given by |M|=aXCM(a)|M|=\sum\limits_{a\in{X}}C_{M}(a). The set M={aX:CM(a)>0}M^{*}=\left\{a\in X:C_{M}(a)>0\right\} is called the root set of MM. A submultiset (in short, subset) of MM is an mset M1M_{1} drawn from XX which satisfies CM1(a)CM(a)C_{M_{1}}(a)\leq C_{M}(a) for all aXa\in X.

Let M1M_{1} and M2M_{2} be two msets drawn from a set XX. The union of M1M_{1} and M2M_{2} is an mset MM such that for all aXa\in X, CM(a)=max{CM1(a),CM2(a)}C_{M}(a)=\max\left\{C_{M_{1}}(a),C_{M_{2}}(a)\right\}. The Cartesian product of M1M_{1} and M2M_{2}, denoted by M1×M2M_{1}\times M_{2}, is an mset M={mm/ab:m/aM1,m/bM2}M=\{mm^{\prime}/ab:m/a\in M_{1},\ m^{\prime}/b\in M_{2}\}. A subset RR of M1M_{1} and M2M_{2} is said to be an mset relation if every member (m/a,m/b)(m/a,m^{\prime}/b) of RR has count CM1(a)CM2(b)C_{M_{1}}(a)\cdot C_{M_{2}}(b).

An mset relation on an mset MM drawn from XX is said to be reflexive iff (m/a,m/a)R(m/a,m/a)\in R for all m/aMm/a\in M; anti-symmetric iff (m/a,m/b)R(m/a,m^{\prime}/b)\in R and (m/b,m/a)R(m^{\prime}/b,m/a)\in R imply m=mm=m^{\prime} and a=ba=b; transitive iff (m/a,r/b)R(m/a,r/b)\in R, (r/b,t/c)R(r/b,t/c)\in R imply (m/a,t/c)R(m/a,t/c)\in R. The relation RR is called pomset relation if it is reflexive, anti-symmetric and transitive. The pair =(M,R)\mathbb{P}=(M,R) is called a pomset. An order ideal of \mathbb{P} is a subset II of MM such that if m/aIm/a\in I and (m/b,m/a)R(m^{\prime}/b,m/a)\in R with aba\neq b imply m/bIm^{\prime}/b\in I. An order ideal generated by m/aMm/a\in M is defined by

m/a={m/a}{m/bM:(m/b,m/a)Rfor somek>0andba}.\langle m/a\rangle=\{m/a\}\cup\{m^{\prime}/b\in M:(m^{\prime}/b,m/a)\in R\ \text{for some}\ k>0\ \text{and}\ b\neq a\}.

An order ideal generated by a subset SS of MM is defined by S=m/aSm/a\langle S\rangle=\bigcup\limits_{m/a\in S}\langle m/a\rangle.

Consider the space mn\mathbb{Z}_{m}^{n} and the multiset M={m2/1,m2/2,,m2/s}M=\left\{\left\lfloor\frac{m}{2}\right\rfloor/1,\left\lfloor\frac{m}{2}\right\rfloor/2,\ldots,\left\lfloor\frac{m}{2}\right\rfloor/s\right\} drawn from the set X={1,2,,s}X=\{1,2,\ldots,s\}. The Lee weight of an element ama\in\mathbb{Z}_{m} is defined as wL(a)=min{a,ma}w_{L}(a)=\min\{a,m-a\} and the Lee block support of umnu\in\mathbb{Z}_{m}^{n} is defined as

supp(L,π)(u)={si/i:si=w(L,π)(ui),si0},supp_{(L,\pi)}(u)=\left\{s_{i}/i:s_{i}=w_{(L,\pi)}(u_{i}),s_{i}\neq 0\right\},

where

w(L,π)(ui)=max{wL(uit):1tπ(i)}.w_{(L,\pi)}(u_{i})=\text{max}\left\{w_{L}(u_{i_{t}}):1\leq t\leq\pi(i)\right\}.

The (,π)(\mathbb{P},\pi)-weight of umnu\in\mathbb{Z}_{m}^{n} is given by

w(,π)(u)=|supp(L,π)(u)|.w_{(\mathbb{P},\pi)}(u)=\left|\langle supp_{(L,\pi)}(u)\rangle\right|.

For u,vmnu,v\in\mathbb{Z}_{m}^{n},

d(,π)(u,v)=w(,π)(uv)d_{(\mathbb{P},\pi)}(u,v)=w_{(\mathbb{P},\pi)}(u-v)

defines a metric over mn\mathbb{Z}_{m}^{n} called pomset block metric. The pair (mn,d(,π))\left(\mathbb{Z}_{m}^{n},d_{(\mathbb{P},\pi)}\right) is said to be a pomset block space.

Proposition 2.1.

Let =(M,R)\mathbb{P}=(M,R) be a pomset with M={m2/1,m2/2,,m2/s}M=\left\{\left\lfloor\frac{m}{2}\right\rfloor/1,\left\lfloor\frac{m}{2}\right\rfloor/2,\ldots,\left\lfloor\frac{m}{2}\right\rfloor/s\right\}. Let PP be the set [s][s] and π:[s]+\pi:[s]\rightarrow\mathbb{N}^{+} be a label with i=1sπ(i)=n\sum\limits_{i=1}^{s}\pi(i)=n. Define a partial order on PP as

abinP(r/a,t/b)R.a\leq b\ \text{in}\ P\Leftrightarrow(r/a,t/b)\in R.

Then the (P,π,w)(P,\pi,w)-weight and (,π)(\mathbb{P},\pi)-weight will coincide on mn\mathbb{Z}_{m}^{n}.

Proof.

Take umnu\in\mathbb{Z}_{m}^{n}. Then uu can be written as u=u1+u2++usu=u_{1}+u_{2}+\cdots+u_{s} with uimπ(i)u_{i}\in\mathbb{Z}_{m}^{\pi(i)}. Note that

w(L,π)(ui)=max{wL(uit):1tπ(i)}=Wi(u).w_{(L,\pi)}(u_{i})=\text{max}\left\{w_{L}(u_{i_{t}}):1\leq t\leq\pi(i)\right\}=W_{i}(u).

Hence

w(,π)(u)\displaystyle w_{(\mathbb{P},\pi)}(u) =\displaystyle= |supp(L,π)(u)|\displaystyle|\langle supp_{(L,\pi)}(u)\rangle|
=\displaystyle= iMu𝒫w(L,π)(ui)+iIu𝒫Mu𝒫m2\displaystyle\sum\limits_{i\in M_{u}^{\mathcal{P}}}w_{(L,\pi)}(u_{i})+\sum\limits_{i\in I_{u}^{\mathcal{P}}\setminus M_{u}^{\mathcal{P}}}\left\lfloor\frac{m}{2}\right\rfloor
=\displaystyle= iMu𝒫Wi(u)+iIu𝒫Mu𝒫m2\displaystyle\sum\limits_{i\in M_{u}^{\mathcal{P}}}W_{i}(u)+\sum\limits_{i\in I_{u}^{\mathcal{P}}\setminus M_{u}^{\mathcal{P}}}\left\lfloor\frac{m}{2}\right\rfloor
=\displaystyle= ω¯w,(P,π)(u).\displaystyle\overline{\omega}_{w,(P,\pi)}(u).

  • When the weight ww is the Hamming weight over 𝔽q\mathbb{F}_{q}, the (P,π,w)(P,\pi,w)-weight is the poset block weight proposed by Alves et al. in [References]. In particular, poset block metric deduces NRT block metric when PP is taken to be a chain and deduces poset metric when π(i)=1\pi(i)=1 for all i[s]i\in[s]. Similarly, classical Hamming metric becomes a particular case of poset metric when PP is an anti-chain.

  • When the weight ww is the Lee weight over m\mathbb{Z}_{m}, the (P,π,w)(P,\pi,w)-weight is the pomset block weight. In particular, pomset block metric deduces pomset metric when π(i)=1\pi(i)=1 for all i[s]i\in[s]. Particularly, pomset metric deduces Lee metric when =(M,R)\mathbb{P}=(M,R) with R={(m2/a,m2/a):1as}R=\left\{\left(\left\lfloor\frac{m}{2}\right\rfloor/a,\left\lfloor\frac{m}{2}\right\rfloor/a\right):1\leq a\leq s\right\}.

The diagram 1 illustrates these facts.

3 Linear isometries for weighted poset block spaces

In this section, we always assume that ww is a weight on 𝔽q\mathbb{F}_{q}, P=([s],)P=([s],\leq) is a poset, π:[s]\pi:[s]\rightarrow\mathbb{N} is a labeling of the poset PP and V=i=1s𝔽qkiV=\bigoplus\limits_{i=1}^{s}\mathbb{F}_{q}^{k_{i}} which is isomorphic to 𝔽qn\mathbb{F}_{q}^{n}.

Definition 3.

Let (V,dw,(P,π))\left(V,d_{w,(P,\pi)}\right) be a weighted poset block space. A linear isometry TT of (V,dw,(P,π))\left(V,d_{w,(P,\pi)}\right) is a linear transformation T:VVT:V\rightarrow V such that

dw,(P,π)(T(u),T(v))=dw,(P,π)(u,v)d_{w,(P,\pi)}\left(T(u),T(v)\right)=d_{w,(P,\pi)}(u,v)

for all u,vVu,v\in V. We also call a linear isometry as a (P,π,w)(P,\pi,w)-isometry.

Remark 3.1.

A linear transformation T:VVT:V\rightarrow V is a linear isometry of (V,dw,(P,π))\left(V,d_{w,(P,\pi)}\right) if and only if ω¯w,(P,π)(T(u))=ω¯w,(P,π)(u)\overline{\omega}_{w,(P,\pi)}(T(u))=\overline{\omega}_{w,(P,\pi)}(u) for all uVu\in V.

Remark 3.2.

We claim that a (P,π,w)(P,\pi,w)-isometry of (V,dw,(P,π))\left(V,d_{w,(P,\pi)}\right) is a bijection and its inverse is also a (P,π,w)(P,\pi,w)-isometry. In fact, if TT is a (P,π,w)(P,\pi,w)-isometry such that T(u)=T(v)T(u)=T(v) for u,vVu,v\in V with uvu\neq v then

dw,(P,π)(u,v)=dw,(P,π)(T(u),T(v))=0,d_{w,(P,\pi)}(u,v)=d_{w,(P,\pi)}(T(u),T(v))=0,

a contradiction. Therefore TT is injective. Since VV is a finite set, we have that TT is bijective. Let T1T^{-1} be the inverse of TT. For all u,vVu,v\in V, we have

dw,(P,π)(T1(u),T1(v))=dw,(P,π)(TT1(u),TT1(v))=dw,(P,π)(u,v).d_{w,(P,\pi)}\left(T^{-1}(u),T^{-1}(v)\right)=d_{w,(P,\pi)}\left(TT^{-1}(u),TT^{-1}(v)\right)=d_{w,(P,\pi)}(u,v).

It follows from the above discussion that the set of all (P,π)(P,\pi)-isometries of the weighted poset block space (V,dw,(P,π))\left(V,d_{w,(P,\pi)}\right) forms a group. We denoted it by GLw,(P,π)(V)GL_{w,(P,\pi)}(V) and call it the group of linear isometries of (V,dw,(P,π))\left(V,d_{w,(P,\pi)}\right).

We denote by B={e11,,e1k1,e21,,e2k2,,es1,,esks}B=\{e_{11},\ldots,e_{1k_{1}},e_{21},\ldots,e_{2k_{2}},\ldots,e_{s_{1}},\ldots,e_{sk_{s}}\} be a canonical basis of VV which is an 𝔽q\mathbb{F}_{q}-linear space of dimension nn. Note that the set Bi={ei1,,eiki}B_{i}=\{e_{i_{1}},\ldots,e_{ik_{i}}\} forms a canonical basis of ViV_{i}.

Given QPQ\subseteq P, set:

VQ={vV:suppπ(v)Q}.V_{Q}=\{v\in V:supp_{\pi}(v)\subseteq Q\}.
Definition 4.

Let π:[s]\pi:[s]\rightarrow\mathbb{N} be a label and P=([s],)P=([s],\leq) be a poset. An automorphism φAut(P)\varphi\in Aut(P) is called a (P,π)(P,\pi)-automorphism if, for all i[s]i\in[s],

kφ(i)=π(φ(i))=π(i)=ki.k_{\varphi(i)}=\pi(\varphi(i))=\pi(i)=k_{i}.

We denote by Aut(P,π)Aut(P,\pi) the group of (P,π)(P,\pi)-automorphisms.

Theorem 2.

Let φ\varphi be a (P,π)(P,\pi)-automorphism on PP. Then the linear mapping Tφ:VVT_{\varphi}:V\rightarrow V given by

Tφ(eij)=eφ(i)jT_{\varphi}(e_{ij})=e_{\varphi(i)j}

is a (P,π,w)(P,\pi,w)-isometry of (V,dw,(P,π))\left(V,d_{w,(P,\pi)}\right). Furthermore, the map

Ψ:Aut(P,π)GLw,(P,π)(V)\Psi:Aut(P,\pi)\rightarrow GL_{w,(P,\pi)}(V)

defined by φTφ\varphi\rightarrow T_{\varphi} is an injective group homomorphism.

Proof.

Take v=i=1sj=1kiaijeijVv=\sum\limits_{i=1}^{s}\sum\limits_{j=1}^{k_{i}}a_{ij}e_{ij}\in V. Then

Tφ(v)=i=1sj=1kiaijTφ(eij)=i=1sj=1kiaijeφ(i)j,T_{\varphi}(v)=\sum\limits_{i=1}^{s}\sum\limits_{j=1}^{k_{i}}a_{ij}T_{\varphi}(e_{ij})=\sum\limits_{i=1}^{s}\sum\limits_{j=1}^{k_{i}}a_{ij}e_{\varphi(i)j},

which implies that

suppπ(Tφ(v))={φ(i)P:aij0for some 1jki}={φ(i)P:isuppπ(v)}.supp_{\pi}(T_{\varphi}(v))=\left\{\varphi(i)\in P:a_{ij}\neq 0\ \text{for some}\ 1\leq j\leq k_{i}\right\}=\left\{\varphi(i)\in P:i\in supp_{\pi}(v)\right\}.

Therefore ITφ(v)P=φ(IvP)I_{T_{\varphi}(v)}^{P}=\varphi(I_{v}^{P}). It follows from the fact that φ\varphi is an order automorphism that MTφ(v)P=φ(MvP)M_{T_{\varphi}(v)}^{P}=\varphi(M_{v}^{P}). Then

ω¯w,(P,π)(Tφ(v))\displaystyle\overline{\omega}_{w,(P,\pi)}(T_{\varphi}(v)) =\displaystyle= iMTφ(v)PWi(Tφ(v))+iITφ(v)pMTφ(v)PMw\displaystyle\sum\limits_{i\in M_{T_{\varphi}(v)}^{P}}W_{i}(T_{\varphi}(v))+\sum\limits_{i\in I_{T_{\varphi}(v)}^{p}\setminus M_{T_{\varphi}(v)}^{P}}M_{w}
=\displaystyle= i=φ(r),rMvPWi(Tφ(v))+iITφ(v)pMTφ(v)PMw\displaystyle\sum\limits_{i=\varphi(r),r\in M_{v}^{P}}W_{i}(T_{\varphi}(v))+\sum\limits_{i\in I_{T_{\varphi}(v)}^{p}\setminus M_{T_{\varphi}(v)}^{P}}M_{w}
=\displaystyle= i=φ(r),rMvPmax{w(arj):1jkr}+iTvPMvpMw\displaystyle\sum\limits_{i=\varphi(r),r\in M_{v}^{P}}\max\{w(a_{rj}):1\leq j\leq k_{r}\}+\sum\limits_{i\in T_{v}^{P}\setminus M_{v}^{p}}M_{w}
=\displaystyle= rMvPWr(v)+iTvPMvpMw\displaystyle\sum\limits_{r\in M_{v}^{P}}W_{r}(v)+\sum\limits_{i\in T_{v}^{P}\setminus M_{v}^{p}}M_{w}
=\displaystyle= ω¯w,(P,π)(v).\displaystyle\overline{\omega}_{w,(P,\pi)}(v).

Hence TφT_{\varphi} is a (P,π,w)(P,\pi,w)-isometry. We next show that Ψ\Psi is a group homomorphism. Let φ\varphi, ψ\psi be two (P,π)(P,\pi)-automorphisms on PP. One has

Tφψ(eij)=eφψ(i)j=Tφ(eψ(i)j)=TφTψ(eij)T_{\varphi\psi}(e_{ij})=e_{\varphi\psi(i)j}=T_{\varphi}(e_{\psi(i)j})=T_{\varphi}T_{\psi}(e_{ij})

and the map Ψ\Psi is injective can be easily obtained by its definition. ∎

Proposition 3.1.

Let T:VVT:V\rightarrow V be a linear isomorphism such that for every i[s]i\in[s] and viViv_{i}\in V_{i},

T(vi)=ui+γiT(v_{i})=u_{i}+\gamma_{i}

where uiViu_{i}\in V_{i}, γiVi\gamma_{i}\in V_{\langle i\rangle^{*}} and Wi(vi)=Wi(ui)W_{i}(v_{i})=W_{i}(u_{i}). Then TT is a (P,π,w)(P,\pi,w)-isometry of (V,dw,(P,π))\left(V,d_{w,(P,\pi)}\right).

Proof.

Let v=v1+v2++vsVv=v_{1}+v_{2}+\cdots+v_{s}\in V where viViv_{i}\in V_{i}. Then

T(v)=(u1+γ1)++(us+γs)T(v)=(u_{1}+\gamma_{1})+\cdots+(u_{s}+\gamma_{s})

where γiVi\gamma_{i}\in V_{\langle i\rangle^{*}} and uiViu_{i}\in V_{i} such that Wi(ui)=Wi(vi)W_{i}(u_{i})=W_{i}(v_{i}). Note that whenever vi0v_{i}\neq\textbf{0}, we have ui0u_{i}\neq\textbf{0}. Decompose γi\gamma_{i} as

γi=γi1++γis\gamma_{i}=\gamma_{i}^{1}+\cdots+\gamma_{i}^{s}

where γilVl\gamma_{i}^{l}\in V_{l}. As γiVi\gamma_{i}\in V_{\langle i\rangle^{*}}, γil0\gamma_{i}^{l}\neq\textbf{0} implies that l<il<i in PP. Then

T(v)=i=1s(ui+(γ1i++γsi)).T(v)=\sum\limits_{i=1}^{s}(u_{i}+(\gamma_{1}^{i}+\cdots+\gamma_{s}^{i})).

Suppose that iMvPsuppπ(v)i\in M_{v}^{P}\subseteq supp_{\pi}(v) and γki0\gamma_{k}^{i}\neq\textbf{0} for some k[s]k\in[s]. Then ksuppπ(v)k\in supp_{\pi}(v) and hence i<ki<k in PP, a contradiction to the fact that ii is a maximal element of suppπ(v)supp_{\pi}(v). Therefore γki=0\gamma_{k}^{i}=\textbf{0} for all k[s]k\in[s] and the ii-th component of T(v)T(v) is

ui+(γ1i++γsi)=ui.u_{i}+(\gamma_{1}^{i}+\cdots+\gamma_{s}^{i})=u_{i}.

If isuppπ(T(v))i\notin supp_{\pi}(T(v)) then ui=0u_{i}=\textbf{0}. But Wi(ui)=Wi(vi)=0W_{i}(u_{i})=W_{i}(v_{i})=0 implies that vi=0v_{i}=\textbf{0}, a contradiction. Hence iMT(v)Psuppπ(T(v))i\in M_{T(v)}^{P}\subseteq supp_{\pi}(T(v)).

On the other hand, MT(v)PMvPM_{T(v)}^{P}\subseteq M_{v}^{P}. In fact, if jMT(v)Pj\in M_{T(v)}^{P} then the jj-th component of T(v)T(v) is

uj+(γ1j++γsj).u_{j}+(\gamma_{1}^{j}+\cdots+\gamma_{s}^{j}).

If γlj0\gamma_{l}^{j}\neq\textbf{0} then lsuppπ(v)l\in supp_{\pi}(v) and j<lij<l\leq i for some iMvPsuppπ(T(v))i\in M_{v}^{P}\subseteq supp_{\pi}(T(v)), a contradiction. Thus γlj=0\gamma_{l}^{j}=\textbf{0} for all 1ls1\leq l\leq s and uj0u_{j}\neq\textbf{0}. Note that Wj(vj)=Wj(uj)0W_{j}(v_{j})=W_{j}(u_{j})\neq 0 implies that vj0v_{j}\neq\textbf{0}. Therefore jsuppπ(v)j\in supp_{\pi}(v). If jMvPj\notin M_{v}^{P}, then j<ij<i for some iMvPsuppπ(T(v))i\in M_{v}^{P}\subseteq supp_{\pi}(T(v)), a contradiction. Hence MT(v)P=MvPM_{T(v)}^{P}=M_{v}^{P} and thus IT(v)P=IvPI_{T(v)}^{P}=I_{v}^{P}.

As the ii-th component of T(v)T(v) is uiu_{i} such that Wi(vi)=Wi(ui)W_{i}(v_{i})=W_{i}(u_{i}) for all iMT(v)Pi\in M_{T(v)}^{P}, we have

ω¯w,(P,π)(T(v))\displaystyle\overline{\omega}_{w,(P,\pi)}(T(v)) =\displaystyle= iMT(v)PWi(T(v))+iIT(v)PMT(v)PMw\displaystyle\sum\limits_{i\in M_{T(v)}^{P}}W_{i}(T(v))+\sum\limits_{i\in I_{T(v)}^{P}\setminus M_{T(v)}^{P}}M_{w}
=\displaystyle= iMT(v)PWi(ui)+iIT(v)PMT(v)PMw\displaystyle\sum\limits_{i\in M_{T(v)}^{P}}W_{i}(u_{i})+\sum\limits_{i\in I_{T(v)}^{P}\setminus M_{T(v)}^{P}}M_{w}
=\displaystyle= iMvPWi(vi)+iIvPMvPMw\displaystyle\sum\limits_{i\in M_{v}^{P}}W_{i}(v_{i})+\sum\limits_{i\in I_{v}^{P}\setminus M_{v}^{P}}M_{w}
=\displaystyle= ω¯w,(P,π)(v).\displaystyle\overline{\omega}_{w,(P,\pi)}(v).

This completes our proof. ∎

Let Bi={ei1,ei2,,eiki}B_{i}=\{e_{i1},e_{i2},\ldots,e_{ik_{i}}\} be a canonical basis of ViV_{i}. Then ω¯w,(P,π)(ei1)==ω¯w,(P,π)(eiki)=w(1)+Mw|i|\overline{\omega}_{w,(P,\pi)}(e_{i1})=\cdots=\overline{\omega}_{w,(P,\pi)}(e_{ik_{i}})=w(1)+M_{w}\cdot|\langle i\rangle^{*}|. We set ω¯w,(P,π)(Bi)=w(1)+Mw|i|\overline{\omega}_{w,(P,\pi)}(B_{i})=w(1)+M_{w}\cdot|\langle i\rangle^{*}|. Let B=(Bi1,Bi2,,Bis)B=(B_{i_{1}},B_{i_{2}},\ldots,B_{i_{s}}) be a total ordering of the basis of VV such that BirB_{i_{r}} appears before BilB_{i_{l}} wherever ω¯w,(P,π)(Bir)ω¯w,(P,π)(Bil)\overline{\omega}_{w,(P,\pi)}(B_{i_{r}})\leq\overline{\omega}_{w,(P,\pi)}(B_{i_{l}}) for all ir,il[s]i_{r},i_{l}\in[s]. Without loss of generality, we suppose that B={B1,B2,,Bs}B=\{B_{1},B_{2},\ldots,B_{s}\} is a total ordering basis of VV. Then |r|<|l||\langle r\rangle|<|\langle l\rangle| follows that all elements of BrB_{r} come before BlB_{l}.

Let 𝒯\mathcal{T} be the set of mappings defined in Proposition 3.1.

Corollary 3.1.

Let B=(B1,B2,,Bs}B=(B_{1},B_{2},\ldots,B_{s}\} be a canonical base of VV defined as above. Given T𝒯T\in\mathcal{T}, we have

T(eij)=rit=1kraijrtest.T(e_{ij})=\sum\limits_{r\leq i}\sum\limits_{t=1}^{k_{r}}a_{ij}^{rt}e_{st}.

Moreover, TT can be represented by an n×nn\times n upper triangular block matrix with respect to BB as following

[T]B=[[T]B11[T]B21[T]B31[T]Bs1O[T]B22[T]B32[T]Bs2OO[T]B33[T]Bs3OOO[T]Bss][T]_{B}=\left[\begin{array}[]{ccccc}[T]_{B_{1}}^{1}&[T]_{B_{2}}^{1}&[T]_{B_{3}}^{1}&\cdots&[T]_{B_{s}}^{1}\\[2.84526pt] O&[T]_{B_{2}}^{2}&[T]_{B_{3}}^{2}&\cdots&[T]_{B_{s}}^{2}\\[2.84526pt] O&O&[T]_{B_{3}}^{3}&\cdots&[T]_{B_{s}}^{3}\\[2.84526pt] \vdots&\vdots&\vdots&\ddots&\vdots\\[2.84526pt] O&O&O&\cdots&[T]_{B_{s}}^{s}\end{array}\right]

where

[T]Brt=[ar1t1ar2t1arkrt1ar1t2ar2t2arkrt2ar1tktar2tktarkrtkt][T]_{B_{r}}^{t}=\left[\begin{array}[]{cccc}a_{r1}^{t1}&a_{r2}^{t1}&\cdots&a_{rk_{r}}^{t1}\\ a_{r1}^{t2}&a_{r2}^{t2}&\cdots&a_{rk_{r}}^{t2}\\ \vdots&\vdots&\ddots&\vdots\\ a_{r1}^{tk_{t}}&a_{r2}^{tk_{t}}&\ldots&a_{rk_{r}}^{tk_{t}}\\ \end{array}\right]

and the element vrl=(arlr1,arlr2,,arlrkr)Vrv_{rl}=(a_{r_{l}}^{r_{1}},a_{r_{l}}^{r_{2}},\ldots,a_{rl}^{rk_{r}})\in V_{r} such that Wr(vrl)=w(1)W_{r}(v_{rl})=w(1) for all 1lkr1\leq l\leq k_{r}, Wr(β1vr1++βkrvrkr)=Wr(β)W_{r}(\beta_{1}v_{r1}+\cdots+\beta_{k_{r}}v_{rk_{r}})=W_{r}(\beta) where β=(β1,,βkr)Vr\beta=(\beta_{1},\ldots,\beta_{k_{r}})\in V_{r}.

For each iPi\in P, the set i\langle i\rangle is an ideal and it is known as the principal ideal generated by ii.

Theorem 3.

Let TT be a (P,π,w)(P,\pi,w)-isometry of (V,dw,(P,π))\left(V,d_{w,(P,\pi)}\right). Then for every i[s]i\in[s] and 0viVi\textbf{0}\neq v_{i}\in V_{i}, we have that suppπ(T(vi))\langle supp_{\pi}(T(v_{i}))\rangle is a principal ideal.

Proof.

We present the proof in three steps.

  • Step 1

    We first prove that suppπ(T(eij))\langle supp_{\pi}(T(e_{ij}))\rangle is a principal ideal. Let α𝔽q\alpha\in\mathbb{F}_{q} such that w(α)=mww(\alpha)=m_{w}. Suppose that

    T(αeij)=vr1++vrtT(\alpha e_{ij})=v_{r1}+\cdots+v_{rt}

    where 0vrlVrl\textbf{0}\neq v_{rl}\in V_{rl} for all l[t]l\in[t]. Then suppπ(T(αeij))={r1,,rt}supp_{\pi}(T(\alpha e_{ij}))=\{r1,\ldots,rt\}. We now prove that there exists k[t]k\in[t] such that ω¯w,(P,π)(vrk)=ω¯w,(P,π)(T(αeij))\overline{\omega}_{w,(P,\pi)}(v_{rk})=\overline{\omega}_{w,(P,\pi)}(T(\alpha e_{ij})). Assume the contrary, namely that for all l[t]l\in[t], one has

    ω¯w,(P,π)(vrl)<ω¯w,(P,π)(T(αeij))=ω¯w,(P,π)(αeij).\overline{\omega}_{w,(P,\pi)}(v_{rl})<\overline{\omega}_{w,(P,\pi)}\left(T(\alpha e_{ij})\right)=\overline{\omega}_{w,(P,\pi)}(\alpha e_{ij}).

    It follows from T1T^{-1} is a (P,π,w)(P,\pi,w)-isometry of (V,dw,(P,π))\left(V,d_{w,(P,\pi)}\right) that

    i=suppπ(αeij)l=1tsuppπ(T1(vrl)),{i}=supp_{\pi}(\alpha e_{ij})\subseteq\bigcup\limits_{l=1}^{t}supp_{\pi}\left(T^{-1}(v_{rl})\right),

    which implies that isuppπ(T1(vrk))i\in supp_{\pi}\left(T^{-1}(v_{rk})\right) for some k[t]k\in[t]. Suppose that Wi(T1(vrk))=w(β)W_{i}\left(T^{-1}(v_{rk})\right)=w(\beta) for some β𝔽q\beta\in\mathbb{F}_{q}, then

    ω¯w,(P,π)(βeij)ω¯w,(P,π)(T1(vrk))=ω¯w,(P,π)(vrk)<ω¯w,(P,π)(αeij).\overline{\omega}_{w,(P,\pi)}(\beta e_{ij})\leq\overline{\omega}_{w,(P,\pi)}\left(T^{-1}(v_{rk})\right)=\overline{\omega}_{w,(P,\pi)}(v_{rk})<\overline{\omega}_{w,(P,\pi)}(\alpha e_{ij}).

    It follows that w(β)+Mw|i|<mw+Mw|i|w(\beta)+M_{w}\cdot|\langle i\rangle^{*}|<m_{w}+M_{w}\cdot|\langle i\rangle^{*}|, a contradiction. Therefore, there exists l[t]l\in[t] such that ω¯w,(P,π)(vrl)=ω¯w,(P,π)(T(αeij))\overline{\omega}_{w,(P,\pi)}(v_{rl})=\overline{\omega}_{w,(P,\pi)}(T(\alpha e_{ij})) and IT(αeij)P=rlI_{T(\alpha e_{ij})}^{P}=\langle rl\rangle is a principal ideal. Since suppπ(T(αeij))=suppπ(αT(eij))=suppπ(T(eij))supp_{\pi}(T(\alpha e_{ij}))=supp_{\pi}(\alpha T(e_{ij}))=supp_{\pi}(T(e_{ij})), the result follows.

  • Step 2

    We next show that IT(ei1)P=IT(ei2)P==IT(eiki)PI_{T(e_{i1})}^{P}=I_{T(e_{i2})}^{P}=\cdots=I_{T(e_{ik_{i}})}^{P}. It is sufficient to show that IT(ei1)P=IT(ei2)PI_{T(e_{i1})}^{P}=I_{T(e_{i2})}^{P}. Suppose that IT(ei1)P=kI_{T(e_{i1})}^{P}=\langle k\rangle and IT(ei2)P=lI_{T(e_{i2})}^{P}=\langle l\rangle. Then

    {T(ei1)=uk+γkukVk,γkVk,T(ei2)=ul+γlulVl,γlVl.\left\{\begin{array}[]{ll}T(e_{i1})=u_{k}+\gamma_{k}&u_{k}\in V_{k},\gamma_{k}\in V_{\langle k\rangle^{*}},\\[5.69054pt] T(e_{i2})=u_{l}+\gamma_{l}&u_{l}\in V_{l},\gamma_{l}\in V_{\langle l\rangle^{*}}.\end{array}\right.

    Since TT preserves (P,π,w)(P,\pi,w)-weight, we have

    w(1)+Mw|i|=ω¯w,(P,π)(ei1)=ω¯w,(P,π)(T(ei1))=ω¯w,(P,π)(uk+γk)=Wk(uk)+Mw|k|.w(1)+M_{w}\cdot|\langle i\rangle^{*}|=\overline{\omega}_{w,(P,\pi)}(e_{i1})=\overline{\omega}_{w,(P,\pi)}(T(e_{i1}))=\overline{\omega}_{w,(P,\pi)}(u_{k}+\gamma_{k})=W_{k}(u_{k})+M_{w}\cdot|\langle k\rangle^{*}|.

    It follows that (Wk(uk)w(1))(W_{k}(u_{k})-w(1)) is divisible by MwM_{w}. As 0<w(1),Wk(uk)Mw0<w(1),W_{k}(u_{k})\leq M_{w}, we have that w(1)=Wk(uk)w(1)=W_{k}(u_{k}) and |i|=|k||\langle i\rangle|=|\langle k\rangle|. One can prove that Wl(ul)=w(1)W_{l}(u_{l})=w(1) and |i|=|l||\langle i\rangle|=|\langle l\rangle| in similar way.

    By the (P,π,w)(P,\pi,w)-weight preservation and linearity of TT,

    w(1)+Mw|i|\displaystyle w(1)+M_{w}\cdot|\langle i\rangle^{*}| =\displaystyle= ω¯w,(P,π)(ei1+ei2)=ω¯w,(P,π)(T(ei1)+T(ei2))\displaystyle\overline{\omega}_{w,(P,\pi)}(e_{i1}+e_{i2})=\overline{\omega}_{w,(P,\pi)}(T(e_{i1})+T(e_{i2}))
    =\displaystyle= ω¯w,(P,π)(uk+γk+ul+γl)\displaystyle\overline{\omega}_{w,(P,\pi)}(u_{k}+\gamma_{k}+u_{l}+\gamma_{l})
    =\displaystyle= ω¯w,(P,π)(uk+ul).\displaystyle\overline{\omega}_{w,(P,\pi)}(u_{k}+u_{l}).

    If klk\nleq l, then

    ω¯w,(P,π)(uk+ul)Wl(ul)+Mw|l|+Wk(uk)=2w(1)+Mw|i|,\overline{\omega}_{w,(P,\pi)}(u_{k}+u_{l})\geq W_{l}(u_{l})+M_{w}\cdot|\langle l\rangle^{*}|+W_{k}(u_{k})=2w(1)+M_{w}\cdot|\langle i\rangle^{*}|,

    a contradiction. Thus klk\leq l. It follows from |k|=|l||\langle k\rangle|=|\langle l\rangle| that k=lk=l.

  • Step 3

    Let 0vi=ai1ei1++aikieikiVi\textbf{0}\neq v_{i}=a_{i1}e_{i1}+\cdots+a_{ik_{i}}e_{ik_{i}}\in V_{i}. From Step 2, we know that IT(ei1)P=IT(ei2)P==IT(eiki)P=jI_{T(e_{i1})}^{P}=I_{T(e_{i2})}^{P}=\cdots=I_{T(e_{ik_{i}})}^{P}=\langle j\rangle for some jj such that |i|=|j||\langle i\rangle|=|\langle j\rangle|. Suppose that

    T(eil)=ul+γl, 1lkiT(e_{il})=u_{l}+\gamma_{l},\ 1\leq l\leq k_{i}

    where γlVj\gamma_{l}\in V_{\langle j\rangle^{*}} and ulVju_{l}\in V_{j} such that Wj(ul)=w(1)W_{j}(u_{l})=w(1). Then

    T(vi)\displaystyle T(v_{i}) =\displaystyle= ai1T(ei1)++aikiT(eiki)\displaystyle a_{i1}T(e_{i1})+\cdots+a_{ik_{i}}T(e_{ik_{i}})
    =\displaystyle= ai1(u1+γ1)++aiki(uki+γki)\displaystyle a_{i1}(u_{1}+\gamma_{1})+\cdots+a_{ik_{i}}(u_{k_{i}}+\gamma_{k_{i}})
    =\displaystyle= (ai1u1++aikiuki)+(ai1γ1++aikiγki).\displaystyle(a_{i1}u_{1}+\cdots+a_{ik_{i}}u_{k_{i}})+(a_{i1}\gamma_{1}+\cdots+a_{ik_{i}}\gamma_{k_{i}}).

    If ai1u1++aikiuki=0Vja_{i1}u_{1}+\cdots+a_{ik_{i}}u_{k_{i}}=\textbf{0}\in V_{j} then ω¯w,(P,π)(T(vi))Mw|j|\overline{\omega}_{w,(P,\pi)}(T(v_{i}))\leq M_{w}\cdot|\langle j\rangle^{*}|. On the other hand,

    ω¯w,(P,π)(T(vi))=ω¯w,(P,π)(vi)=Wi(v)+Mw|i|>Mw|i|=Mw|j|,\overline{\omega}_{w,(P,\pi)}(T(v_{i}))=\overline{\omega}_{w,(P,\pi)}(v_{i})=W_{i}(v)+M_{w}\cdot|\langle i\rangle^{*}|>M_{w}\cdot|\langle i\rangle^{*}|=M_{w}\cdot|\langle j\rangle^{*}|,

    a contradiction. Therefore ai1u1++aikiuki0a_{i1}u_{1}+\cdots+a_{ik_{i}}u_{k_{i}}\neq\textbf{0} and hence IT(vi)P=jI_{T(v_{i})}^{P}=\langle j\rangle. This completes our proof.

From the proof of Theorem 3, we obtain a corollary.

Corollary 3.2.

Let TT be a (P,π,w)(P,\pi,w)-isometry of (V,dw,(P,π))\left(V,d_{w,(P,\pi)}\right). Then, for every i[s]i\in[s], there is a unique j[s]j\in[s] such that T(Vi)VjT(V_{i})\subseteq V_{\langle j\rangle} and |i|=|j||\langle i\rangle|=|\langle j\rangle|. Moreover, for 0viVi\textbf{0}\neq v_{i}\in V_{i}, there is a non-zero vector ujVju_{j}\in V_{j} and a vector γjVj\gamma_{j}\in V_{\langle j\rangle^{*}} such that T(vi)=uj+γjT(v_{i})=u_{j}+\gamma_{j} and Wi(vi)=Wj(uj)W_{i}(v_{i})=W_{j}(u_{j}).

Theorem 4.

Let TGLw,(P,π)(V)T\in GL_{w,(P,\pi)}(V) and ijPi\leq j\in P. Let 0viVi\textbf{0}\neq v_{i}\in V_{i} and let 0vjVj\textbf{0}\neq v_{j}\in V_{j}. Then

IT(vi)PIT(vj)P.I_{T(v_{i})}^{P}\subseteq I_{T(v_{j})}^{P}.
Proof.

It follows from Theorem 3 that TT(vi)PT_{T(v_{i})}^{P} and IT(vj)PI_{T(v_{j})}^{P} are principal ideals. By Corollary 3.2, it is sufficient to show that IT(ei1)PIT(ej1)PI_{T(e_{i1})}^{P}\subseteq I_{T(e_{j1})}^{P}. Suppose that there are elements kk and ll in PP such that IT(ei1)P=kI_{T(e_{i1})}^{P}=\langle k\rangle and IT(ej1)P=lI_{T(e_{j1})}^{P}=\langle l\rangle. Then

T(ei1)=uk+γkandT(ej1)=ul+γlT(e_{i1})=u_{k}+\gamma_{k}\ \ \text{and}\ \ T(e_{j1})=u_{l}+\gamma_{l}

where γtVt\gamma_{t}\in V_{\langle t\rangle^{*}} and 0utVt\textbf{0}\neq u_{t}\in V_{t} such that Wt(ut)=w(1)W_{t}(u_{t})=w(1) for t=l,kt=l,k respectively.

Note that |i|=|k||\langle i\rangle|=|\langle k\rangle| and |j|=|l||\langle j\rangle|=|\langle l\rangle|. If k=lk=l, there is nothing to prove. So we assume that klk\neq l. This means that

eitherksuppπ(T(ei1)T(ej1))orlsuppπ(T(ei1)T(ej1)).\text{either}\ \ k\in supp_{\pi}(T(e_{i1})-T(e_{j1}))\ \ \text{or}\ \ l\in supp_{\pi}(T(e_{i1})-T(e_{j1})).
  • Case 1: ksuppπ(T(ei1)T(ej1))k\notin supp_{\pi}(T(e_{i1})-T(e_{j1})). It follows that ksuppπ(T(ej1))k\in supp_{\pi}(T(e_{j1})) and hence IT(ei1)P=kIT(ej1)PI_{T(e_{i1})}^{P}=\langle k\rangle\subseteq I_{T(e_{j1})}^{P}.

  • Case 2: lsuppπ(T(ei1)T(ej1))l\notin supp_{\pi}(T(e_{i1})-T(e_{j1})). Then lsuppπ(T(ei1))l\in supp_{\pi}(T(e_{i1})) which implies that l<kl<k. Therefore IT(ej1)P=lk=IT(ei1)PI_{T(e_{j1})}^{P}=\langle l\rangle\subsetneq\langle k\rangle=I_{T(e_{i1})}^{P}. Hence

    ω¯w,(P,π)(ej1)\displaystyle\overline{\omega}_{w,(P,\pi)}(e_{j1}) =\displaystyle= ω¯w,(P,π)(T(ej1))=ω¯w,(P,π)(ul+γl)\displaystyle\overline{\omega}_{w,(P,\pi)}(T(e_{j1}))=\overline{\omega}_{w,(P,\pi)}(u_{l}+\gamma_{l})
    =\displaystyle= Wl(ul)+Mw|l|=w(1)+Mw|l|\displaystyle W_{l}(u_{l})+M_{w}\cdot|\langle l\rangle^{*}|=w(1)+M_{w}\cdot|\langle l\rangle^{*}|
    <\displaystyle< w(1)+Mw|k|=Wk(uk)+Mw|k|\displaystyle w(1)+M_{w}\cdot|\langle k\rangle^{*}|=W_{k}(u_{k})+M_{w}\cdot|\langle k\rangle^{*}|
    =\displaystyle= ω¯w,(P,π)(uk)=ω¯w,(P,π)(T(ei1))\displaystyle\overline{\omega}_{w,(P,\pi)}(u_{k})=\overline{\omega}_{w,(P,\pi)}(T(e_{i1}))
    =\displaystyle= ω¯w,(P,π)(ei1),\displaystyle\overline{\omega}_{w,(P,\pi)}(e_{i1}),

    which implies that |j|<|i||\langle j\rangle|<|\langle i\rangle|, a contradiction to the hypothesis that iji\leq j.

  • Case 3: k,lsuppπ(T(ei1)T(ej1))k,l\in supp_{\pi}(T(e_{i1})-T(e_{j1})). For 1ts1\leq t\leq s, there exist αt\alpha_{t}, βt\beta_{t} and ζt𝔽q\zeta_{t}\in\mathbb{F}_{q} such that

    w(αt)=Wt(T(ei1)),w(βt)=Wt(T(ej1))andw(ζt)=Wt(T(ei1)T(ej1)).w(\alpha_{t})=W_{t}(T(e_{i1})),\ w(\beta_{t})=W_{t}(T(e_{j1}))\ \text{and}\ w(\zeta_{t})=W_{t}(T(e_{i1})-T(e_{j1})).

    If the ll-th component of T(ei1)T(e_{i1}) and the kk-th component of T(ej1)T(e_{j1}) are both non-zeros. Then lkl\leq k and klk\leq l, a contradiction to the assumption that klk\neq l. So, either (T(ei1))l=0(T(e_{i1}))_{l}=\textbf{0} or (T(ej1))k=0(T(e_{j1}))_{k}=\textbf{0} (here (T(ei1))l(T(e_{i1}))_{l} denotes the ll-th component of T(ei1)T(e_{i1}) and (T(ej1))k(T(e_{j1}))_{k} denotes the kk-th component of T(ej1)T(e_{j1})). By the (P,π,w)(P,\pi,w)-weight preservation and the linearity of TT,

    ω¯w,(P,π)(ζkek1ζlel1)\displaystyle\overline{\omega}_{w,(P,\pi)}(\zeta_{k}e_{k1}-\zeta_{l}e_{l1}) \displaystyle\leq ω¯w,(P,π)(T(ei1)T(ej1))=ω¯w,(P,π)(ei1ej1)\displaystyle\overline{\omega}_{w,(P,\pi)}(T(e_{i1})-T(e_{j1}))=\overline{\omega}_{w,(P,\pi)}(e_{i1}-e_{j1})
    \displaystyle\leq ω¯w,(P,π)(ej1)=ω¯w,(P,π)(T(ej1))=ω¯w,(P,π)(ul)\displaystyle\overline{\omega}_{w,(P,\pi)}(e_{j1})=\overline{\omega}_{w,(P,\pi)}(T(e_{j1}))=\overline{\omega}_{w,(P,\pi)}(u_{l})
    =\displaystyle= w(1)+Mw|l|.\displaystyle w(1)+M_{w}\cdot|\langle l\rangle^{*}|.
    • (T(ei1))l=0(T(e_{i1}))_{l}=\textbf{0}. Then w(ζl)=w(βl)=Wl(T(ej1))=Wl(ul+γl)=Wl(ul)=w(1)w(\zeta_{l})=w(\beta_{l})=W_{l}(T(e_{j1}))=W_{l}(u_{l}+\gamma_{l})=W_{l}(u_{l})=w(1) which implies that klk\leq l and hence IT(ei1)P=kl=IT(ej1)PI_{T(e_{i1})}^{P}=\langle k\rangle\subseteq\langle l\rangle=I_{T(e_{j1})}^{P}.

    • (T(ej1))k=0(T(e_{j1}))_{k}=\textbf{0}. Then w(ζk)=w(αk)=w(1)w(\zeta_{k})=w(\alpha_{k})=w(1). If klk\nleq l, then

      ω¯w,(P,π)(ζkek1ζlel1)w(ζk)+w(ζl)+Mw|l|=w(ζl)+w(1)+Mw|l|>w(1)+Mw|l|,\overline{\omega}_{w,(P,\pi)}(\zeta_{k}e_{k1}-\zeta_{l}e_{l1})\geq w(\zeta_{k})+w(\zeta_{l})+M_{w}\cdot|\langle l\rangle^{*}|=w(\zeta_{l})+w(1)+M_{w}\cdot|\langle l\rangle^{*}|>w(1)+M_{w}\cdot|\langle l\rangle^{*}|,

      a contradiction.

Corollary 3.3.

Given TGlw,(P,π)(V)T\in Gl_{w,(P,\pi)}(V) and i[s]i\in[s], there is a unique j[s]j\in[s] such that |i|=|j||\langle i\rangle|=|\langle j\rangle| and T(Vi)VjT\left(V_{\langle i\rangle}\right)\subseteq V_{\langle j\rangle}.

Proof.

Take vViv\in V_{\langle i\rangle}, then v=vi1++vitv=v_{i_{1}}+\cdots+v_{i_{t}} where ilii_{l}\leq i for each l[t]l\in[t]. It follows from Corollary 3.2 that there exists j[s]j\in[s] such that T(Vi)VjT(V_{i})\subseteq V_{\langle j\rangle} and IT(vi)P=jI_{T(v_{i})}^{P}=\langle j\rangle for 0viVi\textbf{0}\neq v_{i}\in V_{i}. By Theorem 4, we have that

IT(vil)PIT(ei1)P=j.I_{T(v_{i_{l}})}^{P}\subseteq I_{T(e_{i1})}^{P}=\langle j\rangle.

Hence

IT(v)Pl=1tIT(vil)Pj.I_{T(v)}^{P}\subseteq\bigcup\limits_{l=1}^{t}I_{T(v_{i_{l}})}^{P}\subseteq\langle j\rangle.

Lemma 3.1.

Given TGLw,(P,π)(V)T\in GL_{w,(P,\pi)}(V). Let iPi\in P and jj be the unique element of PP determined by T(Vi)VjT(V_{\langle i\rangle})\subseteq V_{\langle j\rangle}. Then dim(Vi)=dim(Vj)dim(V_{i})=dim(V_{j}).

Proof.

Consider a sequence of linear maps:

ViTiVjfVj/VjgVjV_{i}\stackrel{{\scriptstyle T_{i}}}{{\longrightarrow}}V_{\langle j\rangle}\stackrel{{\scriptstyle f}}{{\longrightarrow}}V_{\langle j\rangle}/V_{\langle j\rangle^{*}}\stackrel{{\scriptstyle g}}{{\longrightarrow}}V_{j}

where TiT_{i} is a restriction of TT on ViV_{i}, ff is the canonical projection and gg is the isomorphism given by

u+Vj=uj.u+V_{\langle j\rangle^{*}}=u_{j}.

Since ker(gfTi)={0}ker(g\circ f\circ T_{i})=\{\textbf{0}\}, we have that gfTig\circ f\circ T_{i} is injective and hence dim(Vi)dim(Vj)dim(V_{i})\leq dim(V_{j}).

We next show that dim(Vj)dim(Vi)dim(V_{j})\leq dim(V_{i}). It is sufficient to show that there exists TGLw,(P,π)(V)T^{{}^{\prime}}\in GL_{w,(P,\pi)}(V) such that T(Vj)ViT^{{}^{\prime}}(V_{j})\subseteq V_{\langle i\rangle}. Let 0viVi\textbf{0}\neq v_{i}\in V_{i}. Then T(vi)=vj+γjT(v_{i})=v_{j}+\gamma_{j} where 0vjVj\textbf{0}\neq v_{j}\in V_{j} such that Wi(vi)=Wj(vj)W_{i}(v_{i})=W_{j}(v_{j}) and γjVj\gamma_{j}\in V_{\langle j\rangle^{*}}. By the linearity of T1T^{-1}, we have T1(vj)=viT1(γj)T^{-1}(v_{j})=v_{i}-T^{-1}(\gamma_{j}). Note that iT1(γj)i\notin T^{-1}(\gamma_{j}), otherwise

ω¯w,(P,π)(γj)=ω¯w,(P,π)(T1(γj))mw+Mw|i|=mw+Mw|j|>Mw|j|,\overline{\omega}_{w,(P,\pi)}(\gamma_{j})=\overline{\omega}_{w,(P,\pi)}\left(T^{-1}(\gamma_{j})\right)\geq m_{w}+M_{w}\cdot|\langle i\rangle^{*}|=m_{w}+M_{w}\cdot|\langle j\rangle^{*}|>M_{w}\cdot|\langle j\rangle^{*}|,

a contradiction to the fact that γjVj\gamma_{j}\in V_{\langle j\rangle^{*}}. Therefore isuppπ(T1(vj))i\in supp_{\pi}\left(T^{-1}(v_{j})\right). As

ω¯w,(P,π)(T1(vj))=ω¯w,(P,π)(vj)=Wj(vj)+Mw|j|=Wi(vi)+Mw|i|,\overline{\omega}_{w,(P,\pi)}\left(T^{-1}(v_{j})\right)=\overline{\omega}_{w,(P,\pi)}(v_{j})=W_{j}(v_{j})+M_{w}\cdot|\langle j\rangle^{*}|=W_{i}(v_{i})+M_{w}\cdot\left|\langle i\rangle^{*}\right|,

which implies that suppπ(T1(vj))=i\left\langle supp_{\pi}\left(T^{-1}(v_{j})\right)\right\rangle=\langle i\rangle. By Corollary 3.2, we have T1(Vj)ViT^{-1}(V_{j})\subseteq V_{\langle i\rangle}. This completes our proof. ∎

Lemma 3.2.

Let TT be a (P,π,w)(P,\pi,w)-isometry of (V,dw,(P,π))\left(V,d_{w,(P,\pi)}\right). Define the map ηT:PP\eta_{T}:P\rightarrow P as

ηT(i)=maxIT(vi)P,\eta_{T}(i)=\max I_{T(v_{i})}^{P},

where 0viVi\textbf{0}\neq v_{i}\in V_{i}. Then ηT\eta_{T} is a (P,π)(P,\pi)-automorphism of PP.

Proof.

By Corollary 3.2, ηT\eta_{T} is well-defined. Theorem 4 assures that ηT\eta_{T} is an order preserving map.

It remains to show that ηT\eta_{T} is one-to-one. Suppose that ηT(i)=ηT(j)=l\eta_{T}(i)=\eta_{T}(j)=l. Lemma 3.1 assures that ki=kl=kjk_{i}=k_{l}=k_{j}. Let α𝔽q\alpha\in\mathbb{F}_{q} such that w(α)=Mww(\alpha)=M_{w}. By Corollary 3.2, we have

{T(αei1)=ul+γlulVl,γlVl,T(αej1)=ul+γlulVl,γlVl,\left\{\begin{array}[]{ll}T(\alpha e_{i1})=u_{l}+\gamma_{l}&u_{l}\in V_{l},\gamma_{l}\in V_{\langle l\rangle^{*}},\\[5.69054pt] T(\alpha e_{j1})=u_{l}^{{}^{\prime}}+\gamma_{l}^{{}^{\prime}}&u_{l}^{{}^{\prime}}\in V_{l},\gamma_{l}^{{}^{\prime}}\in V_{\langle l\rangle^{*}},\end{array}\right.

and |i|=|l|=|j||\langle i\rangle|=|\langle l\rangle|=|\langle j\rangle|. Furthermore, Wl(ul)=Wl(ul)=w(α)=MwW_{l}(u_{l})=W_{l}(u_{l}^{{}^{\prime}})=w(\alpha)=M_{w}. Then

ω¯w,(P,π)(αei1+αej1)\displaystyle\overline{\omega}_{w,(P,\pi)}(\alpha e_{i1}+\alpha e_{j1}) =\displaystyle= ω¯w,(P,π)(T(αei1)+T(αej1))\displaystyle\overline{\omega}_{w,(P,\pi)}\left(T(\alpha e_{i1})+T(\alpha e_{j1})\right)
=\displaystyle= ω¯w,(P,π)(ul+ul)=Wl(ul+ul)+Mw|l|\displaystyle\overline{\omega}_{w,(P,\pi)}(u_{l}+u_{l}^{{}^{\prime}})=W_{l}(u_{l}+u_{l}^{{}^{\prime}})+M_{w}\cdot|\langle l\rangle^{*}|
\displaystyle\leq Mw+Mw|l|=Wl(ul)+Mw|l|\displaystyle M_{w}+M_{w}\cdot|\langle l\rangle^{*}|=W_{l}(u_{l})+M_{w}\cdot|\langle l\rangle^{*}|
=\displaystyle= ω¯w,(P,π)(ul)=ω¯w,(P,π)(T(αei1))\displaystyle\overline{\omega}_{w,(P,\pi)}(u_{l})=\overline{\omega}_{w,(P,\pi)}(T(\alpha e_{i1}))
=\displaystyle= ω¯w,(P,π)(αei1)\displaystyle\overline{\omega}_{w,(P,\pi)}(\alpha e_{i1})

Therefore jij\leq i. Similarly, one can prove that iji\leq j and hence i=ji=j. Therefore ηTAut(P,π)\eta_{T}\in Aut(P,\pi). ∎

Recall that 𝒯\mathcal{T} is the set of mappings defined in Proposition 3.1. In the following, we will show that 𝒯\mathcal{T} is a normal subgroup of GLw,(P,π)(V)GL_{w,(P,\pi)}(V).

Lemma 3.3.

Consider the map Λ:GLw,(P,π)(V)Aut(P,π)\Lambda:GL_{w,(P,\pi)}(V)\rightarrow Aut(P,\pi) given by

Λ(T)=ηT.\Lambda(T)=\eta_{T}.

Then Λ\Lambda is a surjective group homomorphism and ker(Λ)=𝒯ker(\Lambda)=\mathcal{T}.

Proof.

Let TT, TGLw,(P,π)(V)T^{{}^{\prime}}\in GL_{w,(P,\pi)}(V), i[s]i\in[s] and 0viVi\textbf{0}\neq v_{i}\in V_{i}. Suppose that ηT(i)=j\eta_{T}(i)=j and ηT(j)=k\eta_{T^{{}^{\prime}}}(j)=k. Take viViv_{i}\in V_{i} such that Wi(vi)=mwW_{i}(v_{i})=m_{w}. Then T(vi)=vj+γjT(v_{i})=v_{j}+\gamma_{j} where γjVj\gamma_{j}\in V_{\langle j\rangle^{*}} and vjVjv_{j}\in V_{j} such that Wj(vj)=mwW_{j}(v_{j})=m_{w}. Meanwhile, T(vj)=vk+γkT^{{}^{\prime}}(v_{j})=v_{k}+\gamma_{k} where γkVk\gamma_{k}\in V_{\langle k\rangle^{*}} and vkVkv_{k}\in V_{k} satisfies Wk(vk)=Wj(vj)=mwW_{k}(v_{k})=W_{j}(v_{j})=m_{w}. We can see that

TT(vi)=T(vj+γj)=vk+γk+T(γj).T^{{}^{\prime}}T(v_{i})=T^{{}^{\prime}}(v_{j}+\gamma_{j})=v_{k}+\gamma_{k}+T^{{}^{\prime}}(\gamma_{j}).

Since TT and TT^{{}^{\prime}} preserve (P,π)(P,\pi)-weight, we have

ω¯w,(P,π)(T(γj))\displaystyle\overline{\omega}_{w,(P,\pi)}\left(T^{{}^{\prime}}(\gamma_{j})\right) =\displaystyle= ω¯w,(P,π)(γj)<ω¯w,(P,π)(vj)=ω¯w,(P,π)(T(vj))\displaystyle\overline{\omega}_{w,(P,\pi)}(\gamma_{j})<\overline{\omega}_{w,(P,\pi)}(v_{j})=\overline{\omega}_{w,(P,\pi)}\left(T^{{}^{\prime}}(v_{j})\right)
=\displaystyle= ω¯w,(P,π)(vk+γk)=ω¯w,(P,π)(vk)\displaystyle\overline{\omega}_{w,(P,\pi)}(v_{k}+\gamma_{k})=\overline{\omega}_{w,(P,\pi)}(v_{k})
=\displaystyle= mw+Mw|k|,\displaystyle m_{w}+M_{w}\cdot|\langle k\rangle^{*}|,

which implies that T(γj)VkT^{{}^{\prime}}(\gamma_{j})\in V_{\langle k\rangle^{*}}. Therefore TT(vi)=vk+ukT^{{}^{\prime}}T(v_{i})=v_{k}+u_{k} where ukVku_{k}\in V_{\langle k\rangle^{*}}. It follows that ηTηT(i)=k=ηTT(i)\eta_{T^{{}^{\prime}}}\eta_{T}(i)=k=\eta_{T^{{}^{\prime}}T}(i).

Consider the map Ψ:Aut(P,π)GLw,(P,π)(V)\Psi:Aut(P,\pi)\rightarrow GL_{w,(P,\pi)}(V) defined in Theorem 2, we can see that ΛΨ=IdP\Lambda\circ\Psi=Id_{P} which implies that Λ\Lambda is surjective.

It remains to show that ker(Λ)=𝒯ker(\Lambda)=\mathcal{T}. It is clear that 𝒯ker(Λ)\mathcal{T}\subseteq ker(\Lambda). On the other hand, if Tker(Λ)T\in ker(\Lambda), then T(Vi)ViT(V_{i})\subseteq V_{\langle i\rangle} for every i[s]i\in[s]. Let 0viVi\textbf{0}\neq v_{i}\in V_{i}. Suppose that T(vi)=ui+γiT(v_{i})=u_{i}+\gamma_{i} where uiViu_{i}\in V_{i} and γiVi\gamma_{i}\in V_{\langle i\rangle^{*}}, then

ω¯w,(P,π)(vi)=ω¯w,(P,π)(T(vi))=ω¯w,(P,π)(ui+γi)>Mw|i|\overline{\omega}_{w,(P,\pi)}(v_{i})=\overline{\omega}_{w,(P,\pi)}(T(v_{i}))=\overline{\omega}_{w,(P,\pi)}(u_{i}+\gamma_{i})>M_{w}\cdot|\langle i\rangle^{*}|

which implies that ui0u_{i}\neq\textbf{0}. Furthermore, we have Wi(vi)=Wi(ui)W_{i}(v_{i})=W_{i}(u_{i}). ∎

Denote by 𝒜=Ψ(Aut(P,π))\mathcal{A}=\Psi(Aut(P,\pi)). It follows from Theorem 2 that 𝒜Aut(P,π)\mathcal{A}\cong Aut(P,\pi).

Let Mn×n(𝔽q)M_{n\times n}(\mathbb{F}_{q}) denotes the set of all n×nn\times n matrix over 𝔽q\mathbb{F}_{q} and

Uw,(P,π)={(Aij)Mn×n(𝔽q):AijMki×kj(𝔽q);Aij=Oifij;Wr(vrl)=w(1)wherevrlis the l-th column inArr,andWr(β1vr1++βkrvrkr)=Wr(β)whereβ=(β1,,βkr)Vr}.U_{w,(P,\pi)}=\left\{\left(A_{ij}\right)\in M_{n\times n}(\mathbb{F}_{q}):\left.\begin{array}[]{l}A_{ij}\in M_{k_{i}\times k_{j}}(\mathbb{F}_{q});A_{ij}=O\ \text{if}\ i\nleq j;\\[5.69054pt] W_{r}(v_{rl})=w(1)\ \text{where}\ v_{rl}\ \text{is the $l$-th column in}\ A_{rr},\ \text{and}\\[5.69054pt] W_{r}(\beta_{1}v_{r1}+\cdots+\beta_{kr}v_{rk_{r}})=W_{r}(\beta)\ \text{where}\ \beta=(\beta_{1},\ldots,\beta_{kr})\in V_{r}\end{array}\right.\right\}.
Theorem 5.

With the notations above, we have

GLw,(P,π)(V)𝒯𝒜Uw,(P,π)Aut(P,π).GL_{w,(P,\pi)}(V)\cong\mathcal{T}\rtimes\mathcal{A}\cong U_{w,(P,\pi)}\rtimes Aut(P,\pi).
Proof.

Let TT be a (P,π,w)(P,\pi,w)-isometry of (V,dw,(P,π))\left(V,d_{w,(P,\pi)}\right). Let η=ηT\eta=\eta_{T}, then S(Tη)1=STη1𝒯S\circ(T_{\eta})^{-1}=S\circ T_{\eta^{-1}}\in\mathcal{T} and

S=(S(Tη1)Tη.S=(S\circ(T_{\eta^{-1}})\circ T_{\eta}.

It remains to show that 𝒯𝒜={Id}\mathcal{T}\cap\mathcal{A}=\{Id\} where IdId is the identity mapping of (V,dw,(P,π))(V,d_{w,(P,\pi)}). Suppose that T𝒯𝒜T\in\mathcal{T}\cap\mathcal{A}. Since T𝒯=ker(Λ)T\in\mathcal{T}=ker(\Lambda), we have Λ(T)=IdP\Lambda(T)=Id_{P}. On the other hand T=Ψ(φ)T=\Psi(\varphi) for some φAut(P,π)\varphi\in Aut(P,\pi) and ΛΨ(φ)=φ=IdP\Lambda\Psi(\varphi)=\varphi=Id_{P}. Hence T=Ψ(IdP)=IdT=\Psi(Id_{P})=Id. ∎

4 Examples

Here we will illustrate our conclusion with some examples.

Example 4.1.

When the label π\pi satisfies π(i)=1\pi(i)=1 for all i[s]i\in[s], the weighted poset block metric induces weighted poset metric, d(P,w)d_{(P,w)}, introduced in [References]. Immediate substitution gives that

Uw,(P,π)={(aij)Ms×s(𝔽q):aij=0ifijandw(aii)=w(1)such thatw(αaii)=w(α)whereα𝔽q}.U_{w,(P,\pi)}=\left\{(a_{ij})\in M_{s\times s}(\mathbb{F}_{q}):\left.\begin{array}[]{l}a_{ij}=0\ \text{if}\ i\nleq j\ \text{and}\\[5.69054pt] w(a_{ii})=w(1)\ \text{such that}\ w(\alpha a_{ii})=w(\alpha)\ \text{where}\ \alpha\in\mathbb{F}_{q}\end{array}\right.\right\}.

Then the characterization of (𝔽qs,dw,(P,π))\left(\mathbb{F}_{q}^{s},d_{w,(P,\pi)}\right) given in [References, Theorem 19] follows from Theorem 5 as a particular case:

GLw,(P,π)(𝔽qs)Uw,(P,π)Aut(P).GL_{w,(P,\pi)}(\mathbb{F}_{q}^{s})\cong U_{w,(P,\pi)}\rtimes Aut(P).
Example 4.2.

When the weight ww on 𝔽q\mathbb{F}_{q} is the Hamming weight wHw_{H}, the weighted poset block metric induces poset block metric introduced in [References]. Immediate substitution gives that

UwH,(P,π)={(Aij)Mn×n(𝔽q):AijMki×kj(𝔽q);Aij=Oifij;Aiiis invertible}.U_{w_{H},(P,\pi)}=\left\{(A_{ij})\in M_{n\times n}(\mathbb{F}_{q}):\left.\begin{array}[]{l}A_{ij}\in M_{k_{i}\times k_{j}}(\mathbb{F}_{q});\\[5.69054pt] A_{ij}=O\ \text{if}\ i\nleq j;\\[5.69054pt] A_{ii}\ \text{is invertible}\end{array}\right.\right\}.

Then, the characterization of the group of linear isometries of (𝔽qn,dw,(P,π))\left(\mathbb{F}_{q}^{n},d_{w,(P,\pi)}\right) follows from Theorem 5 as a particular case:

GLwH,(P,π)(V)UwH,(P,π)Aut(P,π).GL_{w_{H},(P,\pi)}(V)\cong U_{w_{H},(P,\pi)}\rtimes Aut(P,\pi).

We remark that the results in Section 3 are also valid when we consider the Lee weight wLw_{L} over m\mathbb{Z}_{m} instead of 𝔽q\mathbb{F}_{q}.

Example 4.3.

When the weight ww on m\mathbb{Z}_{m} is the Lee weight wLw_{L}, the weighted poset block metric induced pomset block metric. Immediate substitution gives that

UwL,(P,π)={(Aij)Mn×n(m)£ºAijMki×kj(m);Aij=Oifij;Wr(vrl)=±1wherevrlis the l-th column inArr,andWr(β1vr1++βkrvrkr)=Wr(β)whereβ=(β1,,βkr)Vr}.U_{w_{L},(P,\pi)}=\left\{(A_{ij})\in M_{n\times n}(\mathbb{Z}_{m})\textsterling\textordmasculine\left.\begin{array}[]{l}A_{ij}\in M_{k_{i}\times k_{j}}(\mathbb{Z}_{m});A_{ij}=O\ \text{if}\ i\nleq j;\\[5.69054pt] W_{r}(v_{rl})=\pm 1\ \text{where}\ v_{rl}\ \text{is the $l$-th column in}\ A_{rr},\ \text{and}\\[5.69054pt] W_{r}(\beta_{1}v_{r1}+\cdots+\beta_{kr}v_{rk_{r}})=W_{r}(\beta)\ \text{where}\ \beta=(\beta_{1},\ldots,\beta_{kr})\in V_{r}\end{array}\right.\right\}.

Then, the characterization of the group of linear isometries of (mn,dwL,(P,π))\left(\mathbb{Z}_{m}^{n},d_{w_{L},(P,\pi)}\right) follows from Theorem 5 as a particular case:

GLwL,(P,π)(V)UwL,(P,π)Aut(P,π).GL_{w_{L},(P,\pi)}(V)\cong U_{w_{L},(P,\pi)}\rtimes Aut(P,\pi).
Example 4.4.

When PP is an anti-chain and the label π\pi satisfies

k1=kt1=m1k_{1}=\ldots k_{t_{1}}=m_{1}

kt1+1==kt1+t2=m2k_{t_{1}+1}=\ldots=k_{t_{1}+t_{2}}=m_{2}

\vdots

kt1+t2++tl1+1==kn=ml,k_{t_{1}+t_{2}+\cdots+t_{l-1}+1}=\ldots=k_{n}=m_{l},

we have

Aut(P,π)St1×St2××Stl.Aut(P,\pi)\cong S_{t_{1}}\times S_{t_{2}}\times\cdots\times S_{t_{l}}.

In this case ω¯w,(P,π)(v)=isuppπ(v)Wi(v)\overline{\omega}_{w,(P,\pi)}(v)=\sum\limits_{i\in supp_{\pi}(v)}W_{i}(v). Denote by GL(ki,w)GL(k_{i},w) the group of the linear transformation T:𝔽qki𝔽qkiT:\mathbb{F}_{q}^{k_{i}}\rightarrow\mathbb{F}_{q}^{k_{i}} such that ω¯w,(P,π)(T(vi))=ω¯w,(P,π)(vi)\overline{\omega}_{w,(P,\pi)}(T(v_{i}))=\overline{\omega}_{w,(P,\pi)}(v_{i}). Then we have

𝒯GL(k1,w)×GL(k2,w)××GL(kn,w).\mathcal{T}\cong GL(k_{1},w)\times GL(k_{2},w)\times\cdots\times GL(k_{n},w).

It follows from Theorem 5 that

GLw,(P,π)(V)(i=1nGL(ki,w))(i=1lSti).GL_{w,(P,\pi)}(V)\cong\left(\prod\limits_{i=1}^{n}GL(k_{i},w)\right)\rtimes\left(\prod\limits_{i=1}^{l}S_{t_{i}}\right).

Note that when π(i)=1\pi(i)=1, Aut(P,π)SnAut(P,\pi)\cong S_{n} and GL(ki,w)GL(k_{i},w) is the group of linear transformation T:𝔽q𝔽qT:\mathbb{F}_{q}\rightarrow\mathbb{F}_{q} that preserves the weight ww. Then we have

GLw,(P,π)(V)(i=1nGL(1,w))Sn.GL_{w,(P,\pi)}(V)\cong\left(\prod\limits_{i=1}^{n}GL(1,w)\right)\rtimes S_{n}.

5 MDS codes and perfect codes in weighted poset block metric

5.1 Basic definitions

In this section, the notation of PP, π\pi, ww and VV is the same as Section 3. A subset CVC\subseteq V with cardinality KK is said to be an (n,K,dw(C))(n,K,d_{w}(C)) (P,π,w)(P,\pi,w)-code, where VV is endowed with the weighted poset block metric dw,(P,π)(.,.)d_{w,(P,\pi)}(.,.) and

dw(C)=min{dw,(P,π)(u,v):uvC}d_{w}(C)=\min\{d_{w,(P,\pi)}(u,v):u\neq v\in C\}

is the minimal (P,π,w)(P,\pi,w)-distance of CC. When the weight ww over 𝔽q\mathbb{F}_{q} is considered to be Hamming weight wHw_{H}, we denote by dH(C)=dwH(C)d_{H}(C)=d_{w_{H}}(C). A linear (P,π,w)(P,\pi,w)-code is a subspace of VV.

Denote by (P)\mathcal{I}(P) the set of all ideals of PP. Now we state the Singleton bound for the case of weighted poset block metric over 𝔽qn\mathbb{F}_{q}^{n}.

Theorem 6.

(Singleton Bound) Let CC be an (n,K,dw(C))(n,K,d_{w}(C)) (P,π,w)(P,\pi,w)-code. Let λ=dw(C)mwMw\lambda=\left\lfloor\frac{d_{w}(C)-m_{w}}{M_{w}}\right\rfloor and μ=maxI(P),|I|=λiIki\mu=\max\limits_{I\in\mathcal{I}(P),|I|=\lambda}\sum\limits_{i\in I}k_{i}. Then

Kqnμ.K\leq q^{n-\mu}.
Proof.

Let I(P)I\in\mathcal{I}(P) with |I|=λ|I|=\lambda. Let uu and vv be two distinct elements of CC. If uu and vv coincide in all positions out of II, then

dw,(P,π)(u,v)=ω¯w,(P,π)(uv)|I|Mw=dw(C)mwMwMw<dw(C),d_{w,(P,\pi)}(u,v)=\overline{\omega}_{w,(P,\pi)}(u-v)\leq|I|\cdot M_{w}=\left\lfloor\frac{d_{w}(C)-m_{w}}{M_{w}}\right\rfloor\cdot M_{w}<d_{w}(C),

a contradiction. This means that any two distinct codewords of CC will differ in at least one position outside II. Therefore there exists an injective map from CC to 𝔽qniIki\mathbb{F}_{q}^{n-\sum\limits_{i\in I}k_{i}} which implies that KqniIkiK\leq q^{n-\sum\limits_{i\in I}k_{i}}. Hence KqniIkiK\leq q^{n-\sum\limits_{i\in I}k_{i}} for any I(P)I\in\mathcal{I}(P) with |I|=λ|I|=\lambda. ∎

Remark 5.1.

Let PP be a chain with usual order 1<2<<s1<2<\cdots<s and π(i)=1\pi(i)=1 for all i[s]i\in[s]. For a linear (n,qk,dw(C))(n,q^{k},d_{w}(C)) (P,π,w)(P,\pi,w)-code CC, Theorem 6 deduces

dw(C)Mw(nk)+mw,d_{w}(C)\leq M_{w}(n-k)+m_{w},

which is the same as the Singleton bound for the case of weighted poset metric when CC is a linear code and PP is a chain [References, Corollary 24].

Remark 5.2.

Let CC be an (n,K,dw(C))(n,K,d_{w}(C)) (P,π,w)(P,\pi,w)-code with K=qkK=q^{k}. When the weight ww is taken to be Hamming weight over 𝔽q\mathbb{F}_{q}, Theorem 6 deduces

nkmaxI(P),|I|=dH(C)1iIki,n-k\geq\max\limits_{I\in\mathcal{I}(P),|I|=d_{H}(C)-1}\sum\limits_{i\in I}k_{i},

which is the same as the Singleton bound for the case of poset block metric when CC is a linear code [References, Theorem 3.2]. Note that our results holds for non-linear codes as well.

Remark 5.3.

Let PP be a chain. Without loss of generality, we may assume that PP has the chain order 1<2<<s1<2<\cdots<s. For an (n,K,dw(C))(n,K,d_{w}(C)) (P,π,w)(P,\pi,w)-code CC. Theorem 6 deduces

Kqn(k1+k2++kλ).K\leq q^{n-(k_{1}+k_{2}+\cdots+k_{\lambda})}.

We now define a maximum distance separable (P,π,w)(P,\pi,w)-code.

Definition 5.

An (n,K,dw(C))(n,K,d_{w}(C)) (P,π,w)(P,\pi,w)-code CVC\subseteq V is called a maximum distance separable (MDS) (P,π,w)(P,\pi,w)-code if it attains the Singleton bound.

Let P=([s],P)P=\left([s],\leq_{P}\right) and Q=([s],Q)Q=\left([s],\leq_{Q}\right) be two posets. We say that QQ is finer than PP if iPji\leq_{P}j in PP implies that iQji\leq_{Q}j in QQ.

Lemma 5.1.

Let P=([s],P)P=\left([s],\leq_{P}\right) and Q=([s],Q)Q=\left([s],\leq_{Q}\right) be two posets such that QQ is finer than PP. Let π\pi be a labeling such that π(1)=π(2)==π(s)=t\pi(1)=\pi(2)=\cdots=\pi(s)=t. If CC is an MDS (P,π,w)(P,\pi,w)-code, then CC is an MDS (Q,π,w)(Q,\pi,w)-code.

Proof.

Let CC be an MDS (P,π,w)(P,\pi,w)-code with diameters (n,K,dw(C))(n,K,d_{w}(C)). Then CC is an (n,K,dw(C))(n,K,d_{w}^{\prime}(C)) (Q,π,w)(Q,\pi,w)-code (here dw(C)d_{w}^{\prime}(C) is the minimal (Q,π,w)(Q,\pi,w)-distance of CC). Since QQ is finer than PP, we have dw,(P,π)(u,v)dw,(Q,π)(u,v)d_{w,(P,\pi)}(u,v)\leq d_{w,(Q,\pi)}(u,v) for u,vVu,v\in V which implies that dw(C)dw(C)d_{w}(C)\leq d_{w}^{\prime}(C). Then

λ1=dw(C)mwMwdw(C)mwMw=λ2\lambda_{1}=\left\lfloor\frac{d_{w}(C)-m_{w}}{M_{w}}\right\rfloor\leq\left\lfloor\frac{d_{w}^{\prime}(C)-m_{w}}{M_{w}}\right\rfloor=\lambda_{2}

and hence

μ1=maxI(P),|I|=λ1iIki=λ1tλ2t=maxI(Q),|I|=λ2iIki=μ2.\mu_{1}=\max\limits_{I\in\mathcal{I}(P),|I|=\lambda_{1}}\sum\limits_{i\in I}k_{i}=\lambda_{1}t\leq\lambda_{2}t=\max\limits_{I\in\mathcal{I}(Q),|I|=\lambda_{2}}\sum\limits_{i\in I}k_{i}=\mu_{2}.

Therefore

K=qnμ1qnμ2K.K=q^{n-\mu_{1}}\geq q^{n-\mu_{2}}\geq K.

This forces that K=qnμ2K=q^{n-\mu_{2}}. Therefore CC is an MDS (Q,π,w)(Q,\pi,w)-code. ∎

Let P=([s],)P=([s],\leq) be an anti-chain and Q=([s],)Q=([s],\leq) be a poset. Then QQ is finer than PP. When the weight ww on 𝔽q\mathbb{F}_{q} is taken to be the Hamming weight wHw_{H}, we get the following result that appeared in [References]

Corollary 5.1.

If a code equipped with error-block metric is an MDS code, then it is also an MDS poset block code for every partial order defined on the set [s][s].

When π(i)=1\pi(i)=1 for all i[s]i\in[s] and the weight on m\mathbb{Z}_{m} is taken to be the Lee weight wLw_{L}, we can get the following result has been represented in [References].

Corollary 5.2.

Let CmnC\subseteq\mathbb{Z}_{m}^{n} be an (n,K)(n,K) code. Let =(M,R)\mathbb{P}=(M,R) be a pomset where M={m2/1,,m2/n}M=\left\{\lfloor\frac{m}{2}\rfloor/1,\ldots,\lfloor\frac{m}{2}\rfloor/n\right\} and RR is a pomset relation on MM. If a code CC is an MDS code with Lee metric, then it is MDS pomset code for any pomset relation defined on MM.

Definition 6.

Let ww be a weight on 𝔽q\mathbb{F}_{q}. For u𝔽qnu\in\mathbb{F}_{q}^{n}, the (P,π,w)(P,\pi,w)-ball with center uu and radius rr is the set

Bw,(P,π)(u,r)={v𝔽qn:dw,(P,π)(u,v)r}.B_{w,(P,\pi)}(u,r)=\{v\in\mathbb{F}_{q}^{n}:d_{w,(P,\pi)}(u,v)\leq r\}.

When the wight ww over 𝔽q\mathbb{F}_{q} is considered to be Hamming weight, we denote by B(P,π)(u,r)B_{(P,\pi)}(u,r) the (P,π,w)(P,\pi,w)-ball with center uu and radius rr.

Definition 7.

A code CC is said to be an rr-perfect (P,π,w)(P,\pi,w)-code if the (P,π,w)(P,\pi,w)-balls of radius rr centered at the codewords of CC are pairwise disjoint and their union is VV.

5.2 Weighted poset block metric with chain poset

In what follows, we always assume that PP is a chain defined by 1<2<<s1<2<\cdots<s. Recall the notations given in (1) and (2), we have the following.

Theorem 7.

Let CVC\subseteq V be a (P,π,w)(P,\pi,w)-code and r=tMwr=t\cdot M_{w}. Then CC is rr-perfect if and only if there is a function

f:j=t+1sVji=1tVif:\bigoplus\limits_{j=t+1}^{s}V_{j}\rightarrow\bigoplus\limits_{i=1}^{t}V_{i}

such that

C={(f(v),v):vj=t+1sVj}.C=\left\{(f(v),v):v\in\bigoplus\limits_{j=t+1}^{s}V_{j}\right\}.
Proof.

Assume that CC is rr-perfect. Let vj=t+1sVjv\in\bigoplus\limits_{j=t+1}^{s}V_{j}. As CC is a rr-perfect code, there exists cCc\in C such that (0,v)Bw,(P,π)(c,r)(\textbf{0},v)\in B_{w,(P,\pi)}(c,r) which implies that c(0,v)Bw,(P,π)(0,r)c-(\textbf{0},v)\in B_{w,(P,\pi)}(0,r). Since PP is a chain, we have

Bw,(P,π)(0,r)={(x1,,xt,0,,0):xiVi}.B_{w,(P,\pi)}(0,r)=\{(x_{1},\ldots,x_{t},0,\ldots,0):x_{i}\in V_{i}\}.

Therefore there exists ui=1tViu\in\bigoplus\limits_{i=1}^{t}V_{i} such that c(0,v)=(u,0)c-(\textbf{0},v)=(u,\textbf{0}) and hence c=(u,v)c=(u,v). Suppose there exists ccCc^{\prime}\neq c\in C such that (0,v)Bw,(P,π)(c)(\textbf{0},v)\in B_{w,(P,\pi)}(c^{\prime}). Then c=(u,v)c^{\prime}=(u^{\prime},v) and cc=(uu,0)Bw,(P,π)(0,r)c-c^{\prime}=(u-u^{\prime},\textbf{0})\in B_{w,(P,\pi)}(0,r), a contradiction to the hypothesis that CC is an rr-perfect code. Thus we can define a function f:j=t+1sVji=1tVif:\bigoplus\limits_{j=t+1}^{s}V_{j}\rightarrow\bigoplus\limits_{i=1}^{t}V_{i} which sends vj=t+1sVjv\in\bigoplus\limits_{j=t+1}^{s}V_{j} to the unique ui=1tViu\in\bigoplus\limits_{i=1}^{t}V_{i} such that c=(f(v),v)c=(f(v),v).

On the contrary, suppose that there exists a function ff such that C={(f(v),v):vj=t+1sVj}C=\left\{(f(v),v):v\in\bigoplus\limits_{j=t+1}^{s}V_{j}\right\}. Then

Bw,(P,π)((f(v),v),r)={(u,v):ui=1tVi}B_{w,(P,\pi)}((f(v),v),r)=\left\{(u,v):u\in\bigoplus\limits_{i=1}^{t}V_{i}\right\}

and thus |Bw,(P,π)(c,r)|=qk1+k2++kt|B_{w,(P,\pi)}(c,r)|=q^{k_{1}+k_{2}+\cdots+k_{t}}. Furthermore, for any (u,v)V(u,v)\in V, one has CBw,(P,π)((u,v),r)=(f(v),v)C\cap B_{w,(P,\pi)}((u,v),r)=(f(v),v). Therefore cCBw,(P,π)(c,r)\mathop{\bigcup}\limits_{c\in C}B_{w,(P,\pi)}(c,r) is a disjoint union and its order is |C|qk1+k2++kt=qn|C|\cdot q^{k_{1}+k_{2}+\cdots+k_{t}}=q^{n}. Thus, CC is rr-perfect. ∎

Remark 5.4.

If CC is a linear (P,π,w)(P,\pi,w)-code, then the function ff given in Theorem 7 is a linear map.

Proof.

Let u,vj=t+1sVju,v\in\bigoplus\limits_{j=t+1}^{s}V_{j}. Then (f(u),u),(f(v),v)C(f(u),u),(f(v),v)\in C. Since CC is a linear code, we have that α(f(u),u)+β(f(v),v)=(αf(u)+βf(v),αu+βv)C\alpha(f(u),u)+\beta(f(v),v)=(\alpha f(u)+\beta f(v),\alpha u+\beta v)\in C for α,β𝔽q\alpha,\beta\in\mathbb{F}_{q} which implies that f(αu+βv)=αf(u)+βf(v)f(\alpha u+\beta v)=\alpha f(u)+\beta f(v). Therefore ff is a linear map. ∎

Definition 8.

The packing radius ρ(C)\rho(C) of a code CC is the largest radius of spheres centered at codewords so that the spheres are pairwise disjoint. We call a code CC is perfect if it is ρ(C)\rho(C)-perfect.

The following proposition is a generalization of [References, Lemma 21, Corollary 22] wherein the metric considered was weighted poset metric. The proof is on similar lines and hence omitted.

Proposition 5.1.

Let r=l+iMwr=l+i\cdot M_{w} where l[Mw]l\in[M_{w}] and i0i\geq 0 is an integer. Let vVv\in V and CC be a (P,π,w)(P,\pi,w)-code. Then

  1. (1)

    Bw,(P,π)(v,r)B(P,π)(v,i+1)B_{w,(P,\pi)}(v,r)\subseteq B_{(P,\pi)}(v,i+1). Moreover, Bw,(P,π)(v,r)=B(P,π)(v,i+1)B_{w,(P,\pi)}(v,r)=B_{(P,\pi)}(v,i+1) if and only if l=Mwl=M_{w}.

  2. (2)

    ρ(C)Mw(dH(C)1)\rho(C)\geq M_{w}\cdot(d_{H}(C)-1). Moreover, ρ(C)=(dH(C)1)Mw\rho(C)=\left(d_{H}(C)-1\right)M_{w} if and only if dw,(P,π)(C)=mw+(dH(C)1)Mwd_{w,(P,\pi)}(C)=m_{w}+\left(d_{H}(C)-1\right)M_{w}.

Theorem 8.

Let CC be a (P,π,w)(P,\pi,w)-code such that dw,(P,π)(C)=mw+(dH(C)1)Mwd_{w,(P,\pi)}(C)=m_{w}+\left(d_{H}(C)-1\right)M_{w}. Then CC is MDS if and only if CC is perfect.

Proof.

Suppose that CC is an MDS code. Then |C|=qn(k1+k2++kλ)|C|=q^{n-(k_{1}+k_{2}+\cdots+k_{\lambda})}, where λ=dw(C)mwMw\lambda=\left\lfloor\frac{d_{w}(C)-m_{w}}{M_{w}}\right\rfloor. Denote by d=dH(C)d=d_{H}(C). Since PP is a chain, we have that

dw(C)=mw+Mw(d1).d_{w}(C)=m_{w}+M_{w}\cdot(d-1).

Therefore

λ=dw(C)mwMw=mw+Mw(d1)mwMw=d1.\lambda=\left\lfloor\frac{d_{w}(C)-m_{w}}{M_{w}}\right\rfloor=\left\lfloor\frac{m_{w}+M_{w}\cdot(d-1)-m_{w}}{M_{w}}\right\rfloor=d-1.

From the proof of Theorem 6, we have that there exists an injective map

g:𝔽qn(k1+k2++kλ)𝔽qk1+k2++kλg:\mathbb{F}_{q}^{n-(k_{1}+k_{2}+\cdots+k_{\lambda})}\rightarrow\mathbb{F}_{q}^{k_{1}+k_{2}+\cdots+k_{\lambda}}

and

C={(g(u),u):u𝔽qkλ+1++ks}.C=\left\{\left(g(u),u\right):u\in\mathbb{F}_{q}^{k_{\lambda+1}+\cdots+k_{s}}\right\}.

It follows from Theorem 7 and Proposition 5.1 (2) that CC is λMw\lambda M_{w}-perfect, that is, CC is ρ(C)\rho(C)-perfect.

Conversely, if CC is a perfect code, then |C||Bw,(P,π)(0,ρ(C))|=qn|C|\cdot|B_{w,(P,\pi)}(0,\rho(C))|=q^{n}. It follows from Proposition 5.1 (1) that

|Bw,(P,π)(0,ρ(C))|=|Bw,(P,π)(0,Mw(d1))|=|B(P,π)(0,d1)|=qk1++kd1.|B_{w,(P,\pi)}(0,\rho(C))|=|B_{w,(P,\pi)}(0,M_{w}\cdot(d-1))|=|B_{(P,\pi)}(0,d-1)|=q^{k_{1}+\cdots+k_{d-1}}.

Therefore

|C|=qn(k1++kd1)=qn(k1++kλ)|C|=q^{n-(k_{1}+\cdots+k_{d-1})}=q^{n-(k_{1}+\cdots+k_{\lambda})}

which implies that CC is an MDS (P,π,w)(P,\pi,w)-code. ∎

As a direct application, if we choose the weight ww on 𝔽q\mathbb{F}_{q} as the Hamming weight wHw_{H}, we immediately get the following result that appeared in [References].

Corollary 5.3.

A poset block code CC is perfect if and only if CC is MDS with poset block metric.

Let π\pi be a labeling satisfing π(i)=1\pi(i)=1 for every i[s]i\in[s]. Applying Theorem 8, we can get the following result which has represented in [References] and [References].

Corollary 5.4.

Let CC be a code with weighted poset metric. Then CC is MDS if and only if CC is perfect.

Remark 5.5.

Note that Theorem 8 is only applicable for the case when PP is considered to be a chain. It is not applicable for Hamming metric and Lee metric.

6 Conclusion

In this paper, we study weighted poset block metric over 𝔽qn\mathbb{F}_{q}^{n} which is a generalization to metrics such as Hamming metric, Lee metric, poset metric, pomset metric, poset block metric and error-block metric and so on. We give a complete description of the groups of linear isometries of weighted poset block space in terms of a semi-direct product of its two subgroups. Note that our conclusion remains valid if we replace V=i=1s𝔽qkiV=\bigoplus\limits_{i=1}^{s}\mathbb{F}_{q}^{k_{i}} with V=i=1sRkiV=\bigoplus\limits_{i=1}^{s}R^{k_{i}} where RR is an associative ring with identity and there exists a multiplicative invertible element αR\alpha\in R such that w(α)=mww(\alpha)=m_{w}. Moreover, basic parameters such as packing radius and bounds for minimum distance of weighted poset block codes are established and the relationship between MDS codes and perfect codes when the poset is considered to be a chain is investigated immediately.

References

  • [1]
  • [2] M.M.S. Alves, L. Panek, M. Firer, Error-block codes and poset metrics, Adv. Math. Commun. 2 (1) (2008) 95-111.
  • [3]
  • [4] R. Brualdi, J.S. Graves, M. Lawrence, Codes with a poset metric, Discrete Math. 147 (1) (1995) 57-72.
  • [5]
  • [6] S.H. Cho, D.S. Kim, Automorphism group of the crown-weight space, European Journal of Combinatorics. 27 (2006) 90-100.
  • [7]
  • [8] M.M. Deza and E. Deza, Encyclopedia Distance. Berlin, Germany: Springer-Verlag, 2009.
  • [9]
  • [10] B.K. Dass, Namita Sharma, Rashmi Verma, MDS and II-perfect poset block codes, Finite Fields Appl. 62 (2020) 101620.
  • [11]
  • [12] K. Feng, L. Xu, F.J. Hickernell, Linear error-block codes, Finite Fields Appl. 12 (4) (2006) 638-652.
  • [13]
  • [14] E. Gabidulin, Metrics in coding theory, in Multiple Access Channel, E. Biglieri and L. Gyorfi, Eds. Amsterdam, The Netherlands: IOS Press, 2007.
  • [15]
  • [16] J.Y. Hyun, H.K. Kim, Maximum distance separable poset codes, Des. Codes Cryptogr. 48 (3) (2008) 247-261.
  • [17]
  • [18] J.Y. Hyun, H.K. Kim, J.R. Park, Weighted posets and diagraphs admitting the extended Hamming code to be a perfect code, IEEE Trans. Inf. Theory 65 (8) (2019) 4664-4672.
  • [19]
  • [20] D.S. Kim, Associacation schemes and MacWilliams dualities for Generalized Rosenbloom-Tsfasman poset, Dissertationes Math. 487 (2012), 49 pp.
  • [21]
  • [22] K. Lee, Automorphism group of the Rosenbloom-Tsfasman space, European J. Combin. 24 (2003) 607-612.
  • [23]
  • [24] R.A. Machado, M. Firer, Weights which respect support and NN-decoding, IEEE Trans. Inf. Theory 66 (6) (2020) 3664-3674.
  • [25]
  • [26] F.J. MacWilliams, N.J. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1998.
  • [27]
  • [28] H. Niederreiter, A combinatorial problem for vector spaces over finite fields,
  • [29]
  • [30] Rosenbloom M. Yu, M.A. Tasfasman, Codes for the mm-metric, Probl. Pereda. Inf. 33 (1) (1997) 45-52.
  • [31]
  • [32] L. Panek, M. Firer, M.M.S. Alves, Classification of Niederreiter- Rosenbloom-Tsfasman block codes, IEEE Trans. Inf. Theory 56 (10) (2010) 5207-5216.
  • [33]
  • [34] L. Panek, M. Firer, H.k. Kim, J.Y. Hyun, Groups of linear isometries on poset structures, Discrete Math. 308 (2008) 4116-4123.
  • [35]
  • [36] L. Panek, N. Panek, Optimal anticodes, diameter perfect codes, chains and weights, IEEE Trans. Inf. Theory 67 (7) 4255-4262.
  • [37]
  • [38] L. Panek, J.A. Pinheiro, General approach to poset and additive metrics, IEEE Trans. Inf. Theory 66 (11) (2020) 6823-6834.
  • [39]
  • [40] I. G. Sudha, R.S. Selvaraj, Codes with a pomset metric and constructions, Des. Codes Cryptogr. 86 (2018) 875-892.
  • [41]
  • [42] I. G. Sudha, R.S. Selvaraj, MacWilliams type identities for linear codes on certain pomsets: Chain, direct and ordinal sum of pomsets, Discrete Math. 343 (2020) 111782.
  • [43]
  • [44] I. G. Sudha, R.S. Selvaraj, MDS and II-perfect codes in pomset metric, IEEE Trans. Inf. Theory 67 (3) (2021) 1622-1629.
  • [45]
  • [46] Y. Xu, H.B. Kan, G. Han, Fourier-reflexive partitions and group of linear isometries with respect to weighted poset metric, 2022 IEEE International Symposium on Information Theory (ISIT), DOI: 10.1109/ISIT50566.2022.9834567, 6 pages.
  • [47]
  • [48] Y. Xu, H.B. Kan, G. Han, Isometries and macwilliams extension property for weighted poset metric, arXiv:2202.01551 [cs.IT], https://doi.org/10.48550/arXiv.2202.01551.
  • [49]