This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Groups Acting on Trees
With Prescribed Local Action

Stephan Tornier
Abstract.

We extend Burger–Mozes theory of closed, non-discrete, locally quasiprimitive automorphism groups of locally finite, connected graphs to the semiprimitive case, and develop a generalization of Burger–Mozes universal groups acting on the regular tree TdT_{d} of degree d3d\in\mathbb{N}_{\geq 3}. Three applications are given: First, we characterize the automorphism types which the quasi-center of a non-discrete subgroup of Aut(Td)\operatorname{Aut}(T_{d}) may feature in terms of the group’s local action. In doing so, we explicitly construct closed, non-discrete, compactly generated subgroups of Aut(Td)\operatorname{Aut}(T_{d}) with non-trivial quasi-center, and see that Burger–Mozes theory does not extend further to the transitive case. We then characterize the (Pk)(P_{k})-closures of locally transitive subgroups of Aut(Td)\operatorname{Aut}(T_{d}) containing an involutive inversion, and thereby partially answer two questions by Banks–Elder–Willis. Finally, we offer a new view on the Weiss conjecture.

Introduction

In the structure theory of locally compact (l.c.) groups, totally disconnected (t.d.) ones are in the focus because any locally compact group GG is an extension of its connected component G0G_{0} by the totally disconnected quotient G/G0G/G_{0},

1\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}G0\textstyle{G_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}G\textstyle{G\ignorespaces\ignorespaces\ignorespaces\ignorespaces}G/G0\textstyle{G/G_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1,\textstyle{1,}

and connected l.c. groups have been identified as inverse limits of Lie groups in seminal work by Gleason [Gle52], Montgomery-Zippin [MZ52] and Yamabe [Yam53].

Every t.d.l.c. group can be viewed as a directed union of compactly generated open subgroups. Among the latter, groups acting on regular graphs and trees stand out due to the Cayley-Abels graph construction: Every compactly generated t.d.l.c. group GG acts vertex-transitively on a connected regular graph Γ\Gamma of finite degree dd with compact kernel KK. In particular, the universal cover of Γ\Gamma is the dd-regular tree TdT_{d} and we obtain a cocompact subgroup G~\smash{\widetilde{G}} of its automorphism group Aut(Td)\operatorname{Aut}(T_{d}),

1\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π1(Γ)\textstyle{\pi_{1}(\Gamma)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}G~\widetilde{G}G/K\textstyle{G/K\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1,\textstyle{1,}

as an extension of π1(Γ)\pi_{1}(\Gamma) by G/KG/K, see [Mon01, Section 11.3] and [KM08] for details.

In studying the automorphism group Aut(Γ)\operatorname{Aut}(\Gamma) of a locally finite, connected graph Γ=(V,E)\Gamma=(V,E), we follow the notation of Serre [Ser03]. The group Aut(Γ)\operatorname{Aut}(\Gamma) is t.d.l.c. when equipped with the permutation topology for its action on VEV\cup E, see Section 1.1. Given a subgroup HAut(Γ)H\leq\operatorname{Aut}(\Gamma) and a vertex xVx\in V, the stabilizer HxH_{x} of xx in HH induces a permutation group on the set E(x):={eEo(e)=x}E(x):=\{e\in E\mid o(e)=x\} of edges issuing from xx. We say that HH is locally “X” if for every xVx\in V said permutation group satisfies property “X”, e.g. being transitive, semiprimitive or quasiprimitive.

In [BM00], Burger–Mozes develop a remarkable structure theory of closed, non-discrete, locally quasiprimitive subgroups of Aut(Γ)\operatorname{Aut}(\Gamma), which resembles the theory of semisimple Lie groups, see Theorem 1.2. In Section 2, specifically Theorem 2.14, we show that this theory readily carries over to the semiprimitive case.

Let Ω\Omega be a set of cardinality d3d\!\in\!\operatorname{\mathbb{N}}_{\geq 3} and let Td=(V,E)T_{d}\!=\!(V,E) be the dd-regular tree. Burger–Mozes complement their structure theory with a particularly accessible class of subgroups of Aut(Td)\operatorname{Aut}(T_{d}) with prescribed local action: Given FSym(Ω)F\leq\operatorname{Sym}(\Omega), their universal group U(F)\mathrm{U}(F) is closed in Aut(Td)\operatorname{Aut}(T_{d}), vertex-transitive, compactly generated and locally permutation isomorphic to FF. It is discrete if and only if FF is semiregular. When FF is transitive, U(F)\mathrm{U}(F) is maximal up to conjugation among vertex-transitive subgroups of Aut(Td)\operatorname{Aut}(T_{d}) that are locally permutation isomorphic to FF, hence universal.

We generalize the universal groups by prescribing the local action on balls of a given radius kk\in\operatorname{\mathbb{N}}, the Burger–Mozes construction corresponding to the case k=1k\!=\!1. Equip TdT_{d} with a labelling, i.e. a map l:EΩl:E\to\Omega such that for every xVx\in V the map lx:E(x)Ω,el(e)l_{x}\!:\!E(x)\!\to\!\Omega,e\!\mapsto\!l(e) is a bijection, and l(e)=l(e¯)l(e)\!=\!l(\overline{e}) for all eEe\!\in\!E. Also, fix a tree Bd,kB_{d,k} which is isomorphic to a ball of radius kk around a vertex in the labelled tree TdT_{d} and let lxk:B(x,k)Bd,kl_{x}^{k}:B(x,k)\to B_{d,k} (xVx\in V) be the unique label-respecting isomorphism. Then

σk:Aut(Td)×VAut(Bd,k),(g,x)lgxkg(lxk)1\sigma_{k}:\operatorname{Aut}(T_{d})\times V\to\operatorname{Aut}(B_{d,k}),\ (g,x)\to l_{gx}^{k}\circ g\circ(l_{x}^{k})^{-1}

captures the kk-local action of gg at the vertex xVx\in V.

Definition 3.1.

Let FAut(Bd,k)F\leq\operatorname{Aut}(B_{d,k}). Define

Uk(F):={gAut(Td)xV:σk(g,x)F}.\mathrm{U}_{k}(F):=\{g\in\operatorname{Aut}(T_{d})\mid\forall x\in V:\ \sigma_{k}(g,x)\in F\}.

While Uk(F)\mathrm{U}_{k}(F) is always closed, vertex-transitive and compactly generated, other properties of U(F)\mathrm{U}(F) need not carry over. Foremost, the group Uk(F)\mathrm{U}_{k}(F) need not be locally action isomorphic to FF; we say that FAut(Bd,k)F\leq\operatorname{Aut}(B_{d,k}) satisfies condition (C) if it is. This can be viewed as an interchangeability condition on neighbouring local actions, see Section 3.4. There also is a discreteness condition (D) on FAut(Bd,k)F\leq\operatorname{Aut}(B_{d,k}) in terms of certain stabilizers in FF under which Uk(F)\mathrm{U}_{k}(F) is discrete, see Section 3.2.2. Finally, the groups Uk(F)\mathrm{U}_{k}(\!F) are universal in a sense akin to the above by Theorem 3.34.

For F~Aut(Bd,k)\smash{\widetilde{F}\leq\operatorname{Aut}(B_{d,k})}, let F:=πF~Sym(Ω)\smash{F:=\pi\widetilde{F}\leq\operatorname{Sym}(\Omega)} denote its projection to Aut(Bd,1)\operatorname{Aut}(B_{d,1}), which is naturally permutation isomorphic to Sym(Ω)\operatorname{Sym}(\Omega) via the labelling of Bd,1B_{d,1}. The following rigidity theorem is inspired by [BM00, Proposition 3.3.1].

Theorem 3.32.

Let FSym(Ω)F\!\leq\!\operatorname{Sym}(\Omega) be 22-transitive and FωF_{\omega} (ωΩ)(\omega\!\in\!\Omega) simple non-abelian. Further, let F~Aut(Bd,k)\smash{\widetilde{F}\leq\operatorname{Aut}(B_{d,k})} with πF~=F\smash{\pi\widetilde{F}=F} satisfy (C). Then Uk(F~)\smash{\mathrm{U}_{k}(\widetilde{F})} equals either

U2(Γ(F)),U2(Δ(F))orU1(F).\mathrm{U}_{2}(\Gamma(F)),\quad\mathrm{U}_{2}(\Delta(F))\quad\text{or}\quad\mathrm{U}_{1}(F).

Here, the groups Γ(F),Δ(F)Aut(Bd,2)\Gamma(F),\Delta(F)\!\leq\!\operatorname{Aut}(B_{d,2}) of Section 3.4 satisfy both (C) and (D) and therefore yield discrete universal groups. Illustrating the necessity of the assumptions in Theorem 3.32, we construct further universal groups in the case when either point stabilizers in FF are not simple, FF is not primitive, or FF is not perfect, see e.g. Φ(F,N),Φ(F,𝒫),Π(F,ρ,X)Aut(Bd,2)\Phi(F,N),\Phi(F,\operatorname{\mathcal{P}}),\Pi(F,\rho,X)\leq\operatorname{Aut}(B_{d,2}) in Section 3.4.

In Section 4, we present three applications of the framework of universal groups. First, we study the quasi-center of subgroups of Aut(Td)\operatorname{Aut}(T_{d}). The quasi-center QZ(G)\mathrm{QZ}(G) of a topological group GG consists of those elements whose centralizer in GG is open. It plays a major role in the Burger–Mozes Structure Theorem 1.2: A non-discrete, locally quasiprimitive subgroup of Aut(Td)\operatorname{Aut}(T_{d}) does not feature any non-trivial quasi-central elliptic elements. We complete this fact to the following local-to-global-type characterization of the automorphism types which the quasi-center of a non-discrete subgroup of Aut(Td)\operatorname{Aut}(T_{d}) may feature in terms of the group’s local action.

Theorem 4.1.

Let HAut(Td)H\leq\operatorname{Aut}(T_{d}) be non-discrete. If HH is locally

  1. (i)

    transitive then QZ(H)\mathrm{QZ}(H) contains no inversion.

  2. (ii)

    semiprimitive then QZ(H)\mathrm{QZ}(H) contains no non-trivial edge-fixating element.

  3. (iii)

    quasiprimitive then QZ(H)\mathrm{QZ}(H) contains no non-trivial elliptic element.

  4. (iv)

    kk-transitive (k)(k\in\operatorname{\mathbb{N}}) then QZ(H)\mathrm{QZ}(H) contains no hyperbolic element of length kk.

More importantly, the proof of the above theorem suggests to use groups of the form kUk(F(k))\bigcap_{k\in\operatorname{\mathbb{N}}}\mathrm{U}_{k}(F^{(k)}) for appropriate local actions F(k)Aut(Bd,k)F^{(k)}\leq\operatorname{Aut}(B_{d,k}) in order to explicitly construct non-discrete subgroups of Aut(Td)\operatorname{Aut}(T_{d}) whose quasi-centers contain certain types of automorphisms. This leads to the following sharpness result.

Theorem 4.2.

There is d3d\in\operatorname{\mathbb{N}}_{\geq 3} and a closed, non-discrete, compactly generated subgroup of Aut(Td)\operatorname{Aut}(T_{d}) which is locally

  1. (i)

    intransitive and contains a quasi-central inversion.

  2. (ii)

    transitive and contains a non-trivial quasi-central edge-fixating element.

  3. (iii)

    semiprimitive and contains a non-trivial quasi-central elliptic element.

  4. (iv)
    1. (a)

      intransitive and contains a quasi-central hyperbolic element of length 11.

    2. (b)

      quasiprimitive and contains a quasi-central hyperbolic element of length 22.

Part (ii) of this theorem can be strengthened to the following result which shows that Burger–Mozes theory does not extend further to locally transitive groups.

Theorem 4.4.

There is d3d\in\operatorname{\mathbb{N}}_{\geq 3} and a closed, non-discrete, compactly generated, locally transitive subgroup of Aut(Td)\operatorname{Aut}(T_{d}) with open, hence non-discrete, quasi-center.

We also give an algebraic characterization of the (Pk)(P_{k})-closures of locally transitive subgroups of Aut(Td)\operatorname{Aut}(T_{d}) which contain an involutive inversion, and thereby partially answer two questions by Banks–Elder–Willis [BEW15, p. 259]. Recall (Section 1.2) that the (Pk)(P_{k})-closure111The (Pk)(P_{k})-closure was introduced in [BEW15] and called kk-closure; however the term kk-closure has an established meaning for permutation groups due to Wielandt, so we use (Pk)(P_{k})-closure here. (k)(k\in\operatorname{\mathbb{N}}) of a subgroup HAut(Td)H\leq\operatorname{Aut}(T_{d}) is given by

H(Pk)={gAut(Td)xV(Td)hH:g|B(x,k)=h|B(x,k)}.H^{(P_{k})}=\{g\in\operatorname{Aut}(T_{d})\mid\forall x\in V(T_{d})\ \exists h\in H:\ g|_{B(x,k)}=h|_{B(x,k)}\}.
Theorem 4.31.

Let HAut(Td)H\leq\operatorname{Aut}(T_{d}) be locally transitive and contain an involutive inversion. Then H(Pk)=Uk(F(k))\smash{H^{(P_{k})}=\mathrm{U}_{k}(F^{(k)})} for some labelling ll of TdT_{d} and F(k)Aut(Bd,k)F^{(k)}\leq\operatorname{Aut}(B_{d,k}).

Combined with the independence properties (Pk)(\!P_{k}\!) (k)(k\!\in\!\operatorname{\mathbb{N}}) (Section 1.2), introduced by Banks–Elder–Willis [BEW15] as generalizations of Tits’ Independence Property, Theorem 4.31 entails the following characterization of universal groups.

Corollary 4.32.

Let HAut(Td)H\leq\operatorname{Aut}(T_{d}) be closed, locally transitive and contain an involutive inversion. Then H=Uk(F(k))H=\mathrm{U}_{k}(F^{(k)}) if and only if HH satisfies Property (Pk)(P_{k}).

Banks–Elder–Willis use subgroups of Aut(Td)\operatorname{Aut}(T_{d}) with pairwise distinct (Pk)(P_{k})-closures to construct infinitely many, pairwise non-conjugate, non-discrete simple subgroups of Aut(Td)\operatorname{Aut}(T_{d}) via Theorem 1.1 and ask whether they are also pairwise non-isomorphic as topological groups. We partially answer this question in the following theorem.

Theorem 4.34.

Let HAut(Td)H\leq\operatorname{Aut}(T_{d}) be non-discrete, locally permutation isomorphic to FSym(Ω)F\leq\operatorname{Sym}(\Omega) and contain an involutive inversion. Suppose that FF is transitive and that every non-trivial subnormal subgroup of FωF_{\omega} (ωΩ)(\omega\!\in\!\Omega) is transitive on Ω\{ω}\Omega\backslash\{\omega\}. If H(Pk)H(Pl)H^{(P_{k})}\neq H^{(P_{l})} for some k,lk,l\in\operatorname{\mathbb{N}} then (H(Pk))+k(H^{(P_{k})})^{+_{k}} and (H(Pl))+l(H^{(P_{l})})^{+_{l}} are non-isomorphic.

Infinitely many families of pairwise non-isomorphic simple groups of this type, each sharing a certain transitive local action, are constructed in Example 4.37.

Finally, Section 4.3 offers a new view on the Weiss conjecture [Wei78] which states that there are only finitely many conjugacy classes of discrete, locally primitive and vertex-transitive subgroups of Aut(Td)\operatorname{Aut}(T_{d}) for a given d3d\in\operatorname{\mathbb{N}}_{\geq 3}. This conjecture was extended by Potočnik–Spiga–Verret in [PSV12] to semiprimitive local actions and impressive partial results have been obtained by the same authors as well as Giudici–Morgan [GM14]. We show that under the additional assumption that each group contains an involutive inversion, it suffices to show that for every semiprimitive FSym(Ω)F\leq\operatorname{Sym}(\Omega) there are only finitely many F~Aut(Bd,k)\smash{\widetilde{F}\leq\operatorname{Aut}(B_{d,k})} (k)(k\in\operatorname{\mathbb{N}}) with πF~=F\smash{\pi\widetilde{F}=F} that satisfy conditions (C) and (D) in a minimal fashion, see Definition 4.42.

Acknowledgements

The author is indebted to Marc Burger and George Willis for their support and the suggestion to define generalized universal groups. Thanks are also due to Luke Morgan and Michael Giudici for sharing their insight on permutation groups, and Michael Giudici, for providing a proof of Lemma 3.29. Two anonymous referees’ comments were also much appreciated.

A good part of this research was carried out during visits to The University of Newcastle, Australia, for the hospitality of which the author is thankful. Finally, part of this research was supported by the SNSF Doc.Mobility fellowship 172120 as well as the ARC grants DP120100996, FL170100032 and DE210100180.

1. Preliminaries

This section collects preliminaries on permutation groups, graph theory and Burger–Mozes theory. References are given in the respective subsection.

1.1. Permutation Groups

Let Ω\Omega be a set. In this section, we collect definitions and results concerning the group Sym(Ω)\operatorname{Sym}(\Omega) of bijections of Ω\Omega. Refer to [DM96], [Pra97], [GM18] and [KM08, Section 1.2] for details beyond the following.

Let FSym(Ω)F\leq\operatorname{Sym}(\Omega). The degree of FF is |Ω||\Omega|. For ωΩ\omega\in\Omega, the stabilizer of ω\omega in FF is Fω:={σFσω=ω}F_{\omega}:=\{\sigma\in F\mid\sigma\omega=\omega\}. The subgroup of FF generated by its point stabilizers is denoted by F+:={FωωΩ}F^{+}:=\langle\{F_{\omega}\mid\omega\in\Omega\}\rangle. The permutation group FF is semiregular, or free, if Fω={id}F_{\omega}=\{\operatorname{id}\} for all ωΩ\omega\in\Omega; equivalently, if F+F^{+} is trivial. It is transitive if its action on Ω\Omega is transitive, and regular if it is both semiregular and transitive.

Let FSym(Ω)F\leq\operatorname{Sym}(\Omega) be transitive. The rank of FF is the number rank(F):=|F\Ω2|\operatorname{rank}(F):=|F\backslash\Omega^{2}| of orbits of the diagonal action σ(ω,ω):=(σω,σω)\sigma\cdot(\omega,\omega^{\prime}):=(\sigma\omega,\sigma\omega^{\prime}) of FF on Ω2\Omega^{2}. Equivalently, rank(F)=|Fω\Ω|\operatorname{rank}(F)=|F_{\omega}\backslash\Omega| for all ωΩ\omega\in\Omega. Note that the diagonal Δ(Ω):={(ω,ω)ωΩ}\Delta(\Omega):=\{(\omega,\omega)\mid\omega\in\Omega\} is always an orbit of the diagonal action FΩ2F\curvearrowright\Omega^{2}. The permutation group FF is 22-transitive if it acts transitively on Ω2\Δ(Ω)\Omega^{2}\backslash\Delta(\Omega). In other words, rank(F)=2\operatorname{rank}(F)=2.

We now define several classes of permutation groups lying in between the classes of transitive and 22-transitive permutation groups. Let FSym(Ω)F\leq\operatorname{Sym}(\Omega). A partition 𝒫:Ω=iIΩi\operatorname{\mathcal{P}}:\Omega=\bigsqcup_{i\in I}\Omega_{i} of Ω\Omega is preserved by FF, or FF-invariant, if for all σF\sigma\in F we have {σΩiiI}={ΩiiI}\{\sigma\Omega_{i}\mid i\in I\}=\{\Omega_{i}\mid i\in I\}. The partitions Ω=Ω\Omega=\Omega and Ω=ωΩ{ω}\Omega=\bigsqcup_{\omega\in\Omega}\{\omega\} are trivial. A map a:ΩFa:\Omega\to F is constant with respect to 𝒫\operatorname{\mathcal{P}} if a(ω)=a(ω)a(\omega)=a(\omega^{\prime}) whenever ω,ωΩi\omega,\omega^{\prime}\in\Omega_{i} for some iIi\in I. The permutation group FF is primitive if it is transitive and preserves no non-trivial partition of Ω\Omega. Equivalently, FF is transitive and its point stabilizers are maximal subgroups. Given a normal subgroup NN of FF, the partition of Ω\Omega into NN-orbits is FF-invariant. Consequently, every non-trivial normal subgroup of a primitive group is transitive. The permutation group FF is quasiprimitive if it is transitive and all its non-trivial normal subgroups are transitive. Finally, FF is semiprimitive if it is transitive and all its normal subgroups are either transitive or semiregular. The following implications among the above properties follow from the definitions. We list examples illustrating that each implication is strict.

2-transitiveprimitiveA5A5/D5quasiprimitiveA5A5/C5semiprimitiveC4C2transitivepD4C2×C2\text{$2$-transitive}\ \Rightarrow\ \underset{\text{{\normalsize$A_{5}\curvearrowright A_{5}/D_{5}$}}}{\text{primitive}}\ \Rightarrow\underset{\text{{\normalsize$A_{5}\curvearrowright A_{5}/C_{5}$}}}{\text{quasiprimitive}}\Rightarrow\ \underset{\text{{\normalsize$C_{4}\unrhd C_{2}$}}}{\text{semiprimitive}}\ \Rightarrow\underset{\text{{\normalsize$D_{4}\unrhd C_{2}\!\times\!C_{2}$}}}{\text{transitive\phantom{p}}}

Note that A5A_{5} is simple and that C5D5A5C_{5}\lneq D_{5}\lneq A_{5} is a non-maximal subgroup of A5A_{5}.

Permutation Topology

Let XX be a set and HSym(X)H\leq\operatorname{Sym}(X). The basic open sets of the permutation topology on HH are Ux,y:={hHi{1,,n}:h(xi)=yi}U_{x,y}:=\{h\in H\mid\forall i\in\{1,\ldots,n\}:\ h(x_{i})=y_{i}\}, where nn\in\operatorname{\mathbb{N}} and x=(x1,,xn),y=(y1,,yn)Xnx=(x_{1},\ldots,x_{n}),y=(y_{1},\ldots,y_{n})\in X^{n}. This turns HH into a Hausdorff, t.d. group and makes the action map H×XXH\times X\to X continuous for the discrete topology on XX. The group HH is discrete if and only if the stabilizer in HH of a finite subset of XX is trivial. It is compact if and only if it is closed and all its orbits are finite. Finally, Sym(X)\operatorname{Sym}(X) is second-countable if and only if XX is countable.

1.2. Graph Theory

We first recall Serre’s [Ser03] notation and definitions in the context of graphs and trees, and then collect generalities about automorphisms of trees. We conclude with an important simplicity criterion.

Definitions and Notation

A graph Γ\Gamma is a tuple (V,E)(V,E) consisting of a vertex set VV and an edge set EE, together with a fixed-point-free involution of EE, denoted by ee¯e\mapsto\overline{e}, and maps o,t:EVo,t:E\to V, providing the origin and terminus of an edge, such that o(e¯)=t(e)o(\overline{e})=t(e) and t(e¯)=o(e)t(\overline{e})=o(e) for all eEe\in E. Given eEe\in E, the pair {e,e¯}\{e,\overline{e}\} is a geometric edge. For xVx\in V, we let E(x):=o1(x)={eEo(e)=x}E(x):=o^{-1}(x)=\{e\in E\mid o(e)=x\} be the set of edges issuing from xx. The valency of xVx\in V is |E(x)||E(x)|. A vertex of valency 11 is a leaf. A morphism between graphs Γ1=(V1,E1)\Gamma_{1}=(V_{1},E_{1}) and Γ2=(V2,E2)\Gamma_{2}=(V_{2},E_{2}) is a pair (αV,αE)(\alpha_{V},\alpha_{E}) of maps αV:V1V2\alpha_{V}:V_{1}\to V_{2} and αE:E1E2\alpha_{E}:E_{1}\to E_{2} preserving the graph structure, i.e. αV(o(e))=o(αE(e))\alpha_{V}(o(e))=o(\alpha_{E}(e)) and αV(t(e))=t(αE(e))\alpha_{V}(t(e))=t(\alpha_{E}(e)) for all eEe\in E.

For nn\in\operatorname{\mathbb{N}}, let Pathn\mathrm{Path}_{n} denote the graph with vertex set {0,,n}\{0,\ldots,n\} and edge set {(k,k+1),(k,k+1)¯k{0,,n1}}\smash{\{(k,k+1),\overline{(k,k+1)}\mid k\in\{0,\ldots,n-1\}\}}. A path of length nn in a graph Γ\Gamma is a morphism γ\gamma from Pathn\mathrm{Path}_{n} to Γ\Gamma. It can be identified with (e1,,en)E(Γ)n\smash{(e_{1},\ldots,e_{n})\in E(\Gamma)^{n}}, where ek=γ((k1,k))e_{k}=\gamma((k-1,k)) for k{1,,n}k\in\{1,\ldots,n\}. In this case, γ\gamma is a path from o(e1)o(e_{1}) to t(en)t(e_{n}).

Similarly, let Path0\mathrm{Path}_{\operatorname{\mathbb{N}}_{0}} and Path\mathrm{Path}_{\operatorname{\mathbb{Z}}} be the graphs with vertex sets 0\operatorname{\mathbb{N}}_{0} and \operatorname{\mathbb{Z}}, and edge sets {(k,k+1),(k,k+1)¯k0}\smash{\{(k,k+1),\overline{(k,k+1)}\mid k\in\operatorname{\mathbb{N}}_{0}\}} and {(k,k+1),(k,k+1)¯k}\smash{\{(k,k+1),\overline{(k,k+1)}\mid k\in\operatorname{\mathbb{Z}}\}} respectively. A half-infinite path, or ray, in a graph Γ\Gamma is a morphism γ\gamma from Path0\mathrm{Path}_{\operatorname{\mathbb{N}}_{0}} to Γ\Gamma. It can be identified with (ek)kE(Γ)(e_{k})_{k\in\operatorname{\mathbb{N}}}\in E(\Gamma)^{\operatorname{\mathbb{N}}} where ek=γ((k1,k))e_{k}=\gamma((k-1,k)) for kk\in\operatorname{\mathbb{N}}. In this case, γ\gamma originates at, or issues from, o(e1)o(e_{1}). An infinite path, or line, in a graph Γ\Gamma is a morphism from Path\mathrm{Path}_{\operatorname{\mathbb{Z}}} to Γ\Gamma. A pair (ek,ek+1)=(ek,ek¯)\smash{(e_{k},e_{k+1})=(e_{k},\overline{e_{k}})} of edges in a path is a backtracking. A graph is connected if any two of its vertices can be joined by a path. The maximal connected subgraphs of a graph are its connected components.

A forest is a graph in which there are no non-backtracking paths (e1,,en)(e_{1},\ldots,e_{n}) with o(e1)=t(en)o(e_{1})=t(e_{n}) (n)(n\in\operatorname{\mathbb{N}}). Consequently, a morphism of forests is determined by the underlying vertex map. In particular, a path of length nn\in\operatorname{\mathbb{N}} in a forest is determined by the images of the vertices of Pathn\mathrm{Path}_{n}.

A tree is a connected forest. As a consequence of the above, the vertex set VV of a tree TT admits a natural metric: Given x,yVx,y\in V, define d(x,y)d(x,y) as the minimal length of a path from xx to yy. A tree in which every vertex has valency dd\in\operatorname{\mathbb{N}} is dd-regular. It is unique up to isomorphism and denoted by TdT_{d}.

Let T=(V,E)T=(V,E) be a tree. For SVES\subseteq V\cup E, the subtree spanned by SS is the unique minimal subtree of TT containing SS. For xVx\in V and n0n\in\operatorname{\mathbb{N}}_{0}, the subtree spanned by {yVd(y,x)n}\{y\in V\mid d(y,x)\leq n\} is the ball of radius nn around xx, denoted by B(x,n)B(x,n). Similarly, S(x,n)={yVd(y,x)=n}S(x,n)=\{y\in V\mid d(y,x)\!=\!n\} is the sphere of radius nn around xx, and E(x,n):={eEd(o(e),x),d(t(e),x)n}E(x,n):=\{e\in E\mid d(o(e),x),d(t(e),x)\leq n\}. For a subtree TTT^{\prime}\subseteq T, let π:VV(T)\pi:V\to V(T^{\prime}) denote the closest point projection, i.e. π(x)=y\pi(x)=y whenever d(x,y)=minzV(T){d(x,z)}d(x,y)=\min_{z\in V(T^{\prime})}\{d(x,z)\}. In the case of an edge e=(x,y)Ee=(x,y)\in E, the half-trees TxT_{x} and TyT_{y} are the subtrees spanned by π1(x)\pi^{-1}(x) and π1(y)\pi^{-1}(y) respectively.

Two non-backtracking rays γ1,γ2:PathT\gamma_{1},\gamma_{2}:\mathrm{Path}_{\operatorname{\mathbb{N}}}\to T in TT are equivalent, γ1γ2\gamma_{1}\sim\gamma_{2}, if there exist N,dN,d\in\operatorname{\mathbb{N}} such that γ1(n)=γ2(n+d)\gamma_{1}(n)=\gamma_{2}(n+d) for all nNn\geq N. The boundary, or set of ends, of TT is the set T\partial T of equivalence classes of non-backtracking rays in TT.

Automorphism Groups of Graphs

Let Γ=(V,E)\Gamma=(V,E) be a graph. We equipt the group Aut(Γ)\operatorname{Aut}(\Gamma) of automorphims of Γ\Gamma with the permutation topology for its action on VEV\cup E.

Notation

Let HAut(Γ)H\leq\operatorname{Aut}(\Gamma). Given a subgraph ΓΓ\Gamma^{\prime}\subseteq\Gamma, the pointwise stabilizer of Γ\Gamma^{\prime} in HH is denoted by HΓH_{\Gamma^{\prime}}. Similary, the setwise stabilizer of Γ\Gamma^{\prime} in HH is denoted by H{Γ}H_{\{\Gamma^{\prime}\}}. In the case where Γ\Gamma^{\prime} is a single vertex xx, the permutation group that HxH_{x} induces on E(x)E(x) is denoted by Hx(1)Sym(E(x))\smash{H_{x}^{(1)}\leq\operatorname{Sym}(E(x))}. Given a property “X” of permutation groups, the group HH is locally “X” if for every xVx\in V the permutation group Hx(1)\smash{H_{x}^{(1)}} has “X”; with the exception that HH is locally kk-transitive (k3)(k\in\operatorname{\mathbb{N}}_{\geq 3}) if HxH_{x} acts transitively on the set of non-backtracking paths of length kk issuing from xx. It is locally \infty-transitive if it is locally kk-transitive for all kk\in\operatorname{\mathbb{N}}.

Let d3d\in\operatorname{\mathbb{N}}_{\geq 3} and Td=(V,E)T_{d}=(V,E) the dd-regular tree. Then Aut(Td)\operatorname{Aut}(T_{d}) acts on Td\partial T_{d} by g[γ]:=[gγ]g\cdot[\gamma]:=[g\circ\gamma]. Given [γ]Td[\gamma]\in\partial T_{d}, the stabilizer of [γ][\gamma] in HH is H[γ]={hHhγγ}H_{[\gamma]}=\{h\!\in\!H\mid h\circ\gamma\sim\gamma\}.

We let \tensor[+]H={HxxV}\tensor[^{+}]{H}{}\!=\!\langle\{H_{x}\!\mid\!x\in V\}\rangle denote the subgroup of HH generated by vertex-stabilizers and H+={HeeE}H^{+}\!=\!\langle\{H_{e}\!\mid\!e\in E\}\rangle the subgroup generated by edge-stabilizers. For a subtree TTdT\subseteq T_{d} and kk\in\operatorname{\mathbb{N}}, let TkT^{k} denote the subtree of TdT_{d} spanned by {xVd(x,T)k}\{x\in V\mid d(x,T)\leq k\}. We set H+k={Hek1eE}H^{+_{k}}=\langle\{H_{e^{k-1}}\!\mid\!e\in E\}\rangle. Then H+1=H+H^{+_{1}}=H^{+} and

H+kH+\tensor[+]HH.\smash{H^{+_{k}}\unlhd H^{+}\unlhd\tensor[^{+}]{H}{}\unlhd H}.
Classification of Automorphisms

Automorphisms of TdT_{d} can be distinguished into three distinct types. Refer to [GGT18, Section 6.2.2] for details.

For gAut(Td)g\!\in\!\operatorname{Aut}(T_{d}), set l(g):=minxVd(x,gx)l(g)\!:=\!\min_{x\in V}d(x,gx) and V(g):={xVd(x,gx)=l(g)}V(g)\!:=\!\{x\in V\!\mid\!d(x,gx)=l(g)\}. If l(g)=0l(g)=0 then gg fixes a vertex. An automorphism of this kind is elliptic. Suppose now that l(g)>0l(g)>0. If V(g)V(g) is infinite then gg is hyperbolic. Geometrically, it is a translation of length l(g)l(g) along the line in TdT_{d} defined by V(g)V(g). If V(g)V(g) is finite then l(g)=1l(g)=1 and gg maps some edge eEe\in E to e¯\overline{e}, and is termed an inversion.

Independence and Simplicity

The base case of the simplicity criterion presented below is due to Tits [Tit70] and applies to sufficiently rich subgroups of Aut(Td)\operatorname{Aut}(T_{d}). The generalized version is due to Banks–Elder–Willis [BEW15], see also [GGT18].

Let CC denote a path in TdT_{d} (finite, half-infinite or infinite). For every xV(C)x\in V(C) and k0k\in\operatorname{\mathbb{N}}_{0}, the pointwise stabilizer HCkH_{C^{k}} of CkC^{k} induces an action HCk(x)Aut(π1(x))\smash{H_{C^{k}}^{(x)}\leq\operatorname{Aut}(\pi^{-1}(x))} on π1(x)\pi^{-1}(x), the subtree spanned by those vertices of TT whose closest vertex in CC is xx. We therefore obtain an injective homomorphism

φC(k):HCkxV(C)HCk(x).\varphi_{C}^{(k)}:H_{C^{k}}\to\prod\nolimits_{x\in V(C)}H_{C^{k}}^{(x)}.

A subgroup HAut(Td)H\leq\operatorname{Aut}(T_{d}) satisfies Property (Pk)(P_{k}) (k)(k\in\operatorname{\mathbb{N}}) if φC(k1)\varphi_{C}^{(k-1)} is an isomorphism for every path CC in TdT_{d}. If HAut(Td)H\leq\operatorname{Aut}(T_{d}) is closed, it suffices to check the above properties in the case where CC is a single edge. For example, given a closed subgroup HAut(Td)H\leq\operatorname{Aut}(T_{d}), Property (Pk)(P_{k}) is satisfied by its (Pk)(P_{k})-closure

H(Pk)={gAut(Td)xV(Td)hH:g|B(x,k)=h|B(x,k)}.H^{(P_{k})}=\{g\in\operatorname{Aut}(T_{d})\mid\forall x\in V(T_{d})\ \exists h\in H:\ g|_{B(x,k)}=h|_{B(x,k)}\}.
Theorem 1.1 ([BEW15, Theorem 7.3]).

Let HAut(Td)H\leq\operatorname{Aut}(T_{d}). Suppose HH neither fixes an end nor stabilizes a proper subtree of TdT_{d} setwise, and that HH satisfies Property (Pk)(P_{k}). Then the group H+kH^{+_{k}} is either trivial or simple.

Burger–Mozes Theory

In [BM00], Burger–Mozes develop a structure theory of certain locally quasiprimitive automorphism groups of graphs which resembles the theory of semisimple Lie groups. Their fundamental definitions are meaningful in the setting of t.d.l.c. groups. Let HH be a t.d.l.c. group. Define

H():={NHN is closed and cocompact in H},H^{(\infty)}:=\bigcap\{N\unlhd H\mid N\text{ is closed and cocompact in $H$}\},

alternatively the intersection of all open finite-index subgroups of HH, and

QZ(H):={hHZH(h)H is open},\mathrm{QZ}(H):=\{h\in H\mid Z_{H}(h)\leq H\text{ is open}\},

the quasi-center of HH. Both H()H^{(\infty)} and QZ(H)\mathrm{QZ}(H) are topologically characteristic subgroups of HH, i.e. they are preserved by continuous automorphisms of HH. Whereas H()HH^{(\infty)}\leq H is closed, the quasi-center need not be so.

Whereas for a general t.d.l.c. group HH nothing much can be said about the size of H()H^{(\infty)} and QZ(H)\mathrm{QZ}(H), Burger–Mozes show that good control can be obtained in the case of certain locally quasiprimitive automorphism groups of graphs. The following result summarizes their structure theory. It is a combination of Proposition 1.2.1, Corollary 1.5.1, Theorem 1.7.1 and Corollary 1.7.2 in [BM00].

Theorem 1.2.

Let Γ\Gamma be a locally finite, connected graph. Further, let HAut(Γ)H\leq\operatorname{Aut}(\Gamma) be closed, non-discrete and locally quasiprimitive. Then

  1. (i)

    H()H^{(\infty)} is minimal closed normal cocompact in HH,

  2. (ii)

    QZ(H)\mathrm{QZ}(H) is maximal discrete normal, and non-cocompact in HH, and

  3. (iii)

    H()/QZ(H())=H()/(QZ(H)H())H^{(\infty)}\!/\mathrm{QZ}(H^{(\infty)})\!=\!H^{(\infty)}\!/(\mathrm{QZ}(H)\cap H^{(\infty)}) admits minimal, non-trivial closed normal subgroups; finite in number, HH-conjugate and topologically simple.

If Γ\Gamma is a tree, and, in addition, HH is locally primitive then

  1. (iv)

    H()/QZ(H())H^{(\infty)}\!/\mathrm{QZ}(H^{(\infty)}) is a direct product of topologically simple groups.

Burger–Mozes Universal Groups

The first introduction of Burger–Mozes universal groups in [BM00, Section 3.2] was expanded in the introductory article [GGT18], which we follow closely. Most results are generalized in Section 3.

Let Ω\Omega be a set of cardinality d3d\in\operatorname{\mathbb{N}}_{\geq 3} and let Td=(V,E)T_{d}=(V,E) denote the dd-regular tree. A labelling ll of TdT_{d} is a map l:EΩl:E\to\Omega such that for every xVx\in V the map lx:E(x)Ω,el(e)l_{x}:E(x)\to\Omega,\ e\mapsto l(e) is a bijection, and l(e)=l(e¯)l(e)\!=\!l(\overline{e}) for all eEe\in E. The local action σ(g,x)Sym(Ω)\sigma(g,x)\in\operatorname{Sym}(\Omega) of an automorphism gAut(Td)g\in\operatorname{Aut}(T_{d}) at a vertex xVx\in V is defined via

σ:Aut(Td)×XSym(Ω),(g,x)σ(g,x):=lgxglx1.\sigma:\operatorname{Aut}(T_{d})\times X\to\operatorname{Sym}(\Omega),\ (g,x)\mapsto\sigma(g,x):=l_{gx}\circ g\circ l_{x}^{-1}.
Definition 1.3.

Let FSym(Ω)F\leq\operatorname{Sym}(\Omega) and ll a labelling of TdT_{d}. Define

U(l)(F):={gAut(Td)xV:σ(g,x)F}.\mathrm{U}^{(l)}(F)\!:=\!\{g\in\operatorname{Aut}(T_{d})\mid\forall x\in V:\ \sigma(g,x)\in F\}.

The map σ\sigma satisfies a cocycle identity: For all g,hAut(Td)g,h\in\operatorname{Aut}(T_{d}) and xVx\in V we have σ(gh,x)=σ(g,hx)σ(h,x)\sigma(gh,x)=\sigma(g,hx)\sigma(h,x). As a consequence, U(l)(F)\mathrm{U}^{(l)}(F) is a subgroup of Aut(Td)\operatorname{Aut}(T_{d}).

Passing to a different labelling amounts to passing to a conjugate of U(l)(F)\mathrm{U}^{(l)}(F) inside Aut(Td)\operatorname{Aut}(T_{d}). We therefore omit the reference to an explicit labelling from here on.

The following proposition collects several basic properties of Burger–Mozes groups. We refer the reader to [GGT18, Section 6.4] for proofs.

Proposition 1.4.

Let FSym(Ω)F\leq\operatorname{Sym}(\Omega). The group U(F)\mathrm{U}(F) is

  1. (i)

    closed in Aut(Td)\mathrm{Aut}(T_{d}),

  2. (ii)

    vertex-transitive,

  3. (iii)

    compactly generated,

  4. (iv)

    locally permutation isomorphic to FF,

  5. (v)

    edge-transitive if and only if FF is transitive, and

  6. (vi)

    discrete if and only if FF is semiregular.

Part iii of Proposition 1.4 relies on the following result which we include for future reference. Given xVx\in V and ωΩ\omega\in\Omega, let ιω(x)U({id})\smash{\iota_{\omega}^{(x)}\in\mathrm{U}(\{\operatorname{id}\})} denote the unique label-respecting inversion of the edge eωEe_{\omega}\in E with o(eω)=xo(e_{\omega})=x and l(eω)=ωl(e_{\omega})=\omega.

Lemma 1.5.

Let xVx\in V. Then U({id})={ιω(x)ωΩ}ωΩιω(x)ωΩ/2\mathrm{U}(\{\operatorname{id}\})=\langle\{\iota_{\omega}^{(x)}\mid\omega\in\Omega\}\rangle\cong\underset{\omega\in\Omega}{\operatorname{{\raisebox{-0.43057pt}{$\ast$}}}}\langle\iota_{\omega}^{(x)}\rangle\cong\underset{\omega\in\Omega}{\operatorname{{\raisebox{-0.43057pt}{$\ast$}}}}\operatorname{\mathbb{Z}}\!/2\operatorname{\mathbb{Z}}.

Proof.

Every element of U({id})\mathrm{U}(\{\operatorname{id}\}) is determined by its image on xx. Hence it suffices to show that {ιω(x)ωΩ}\smash{\langle\{\iota_{\omega}^{(x)}\mid\omega\in\Omega\}\rangle} is vertex-transitive and has the asserted structure. Indeed, let yV\{x}y\in V\backslash\{x\}, and let ω1,,ωnΩ\omega_{1},\ldots,\omega_{n}\in\Omega be the labels of the shortest path from xx to yy. Then ιω1(x)ιωn(x)\smash{\iota_{\omega_{1}}^{(x)}\circ\cdots\circ\iota_{\omega_{n}}^{(x)}} maps xx to yy as every ιω(x)\smash{\iota_{\omega}^{(x)}} (ωΩ)(\omega\in\Omega) is label-respecting. Setting Xω:=Tt(eω)X_{\omega}:=T_{t(e_{\omega})} we have ιω(Xω)Xω\iota_{\omega}(X_{\omega^{\prime}})\subseteq X_{\omega} for all distinct ω,ωΩ\omega,\omega^{\prime}\in\Omega. Hence the assertion follows from the ping-pong lemma. ∎

The name universal group is due to the following maximality statement. Its proof, see [BM00, Proposition 3.2.2], should be compared with the proof of Theorem 3.34.

Proposition 1.6.

Let HAut(Td)H\leq\operatorname{Aut}(T_{d}) be locally transitive and vertex-transitive. Then there is a labelling ll of TdT_{d} such that HU(l)(F)H\leq\mathrm{U}^{(l)}(F) where FSym(Ω)F\leq\operatorname{Sym}(\Omega) is action isomorphic to the local action of HH.

2. Structure Theory of locally semiprimitive groups

We generalize the Burger–Mozes theory of locally quasiprimitive automorphism groups of graphs to the semiprimitive case. While this adjustment of Sections 1.1 to 1.5 in [BM00] is straightforward and has been initiated in [Tor18, Section II.7] and [CB19, Section 6.2] we provide a full account for the reader’s convenience.

2.1. General Facts

Let Γ=(V,E)\Gamma=(V,E) be a connected graph. We first collect a few general facts about several classes of subgroups of Aut(Γ)\operatorname{Aut}(\Gamma) for future reference.

Lemma 2.1.

Let HAut(Γ)H\leq\operatorname{Aut}(\Gamma) be locally transitive. Then \tensor[+]H\tensor[^{+}]{H}{} is geometric edge transitive and of index at most 22 in HH.

Proof.

Since HH is locally transitive, so is \tensor[+]H\tensor[^{+}]{H}{} given that \tensor[+]H=xHx\tensor[^{+}]{H}{}_{x}=H_{x} for all xVx\in V. Hence it is geometric edge transitive. In particular it has at most two vertex orbits which implies the second assertion. ∎

Lemma 2.2.

Let HAut(Γ)H\!\leq\!\operatorname{Aut}(\Gamma) and let Γ=(V,E)\Gamma^{\prime}=(V^{\prime},E^{\prime}) be a connected subgraph of Γ\Gamma. Suppose RHR\subseteq H is such that for every xVx^{\prime}\in V^{\prime} and eE(x)e\in E(x^{\prime}) there is rRr\in R such that reEre\in E^{\prime}. Then Λ:=R\Lambda:=\langle R\rangle satisfies λΛλΓ=Γ\bigcup_{\lambda\in\Lambda}\lambda\Gamma^{\prime}=\Gamma.

Proof.

By assumption, B(Γ,1)λΛλΓB(\Gamma^{\prime},1)\subseteq\bigcup_{\lambda\in\Lambda}\lambda\Gamma^{\prime}. Now suppose B(Γ,n)λΛλΓB(\Gamma^{\prime},n)\subseteq\bigcup_{\lambda\in\Lambda}\lambda\Gamma^{\prime} for some nn\in\operatorname{\mathbb{N}}. Let xV(B(Γ,n))x^{\prime}\in V(B(\Gamma^{\prime},n)). Pick λΛ\lambda\in\Lambda such that λ(x)V\lambda(x^{\prime})\!\in\!V^{\prime}. Since λ\lambda induces a bijection between E(x)E(x^{\prime}) and E(λ(x))E(\lambda(x^{\prime})) we conclude that B(Γ,n+1)λΛλΓB(\Gamma^{\prime},n+1)\subseteq\bigcup_{\lambda\in\Lambda}\lambda\Gamma^{\prime}. ∎

Assume from now on that Γ\Gamma is a locally finite, connected graph.

Lemma 2.3.

Let HAut(Γ)H\leq\operatorname{Aut}(\Gamma). If H\ΓH\backslash\Gamma is finite then there is a finitely generated subgroup ΛH\Lambda\leq H such that Λ\Γ\Lambda\backslash\Gamma is finite.

Proof.

Let Γ=(V,E)Γ\Gamma^{\prime}=(V^{\prime},E^{\prime})\subseteq\Gamma be a connected subgraph which projects onto H\ΓH\backslash\Gamma. For every xVx^{\prime}\in V^{\prime} and eE(x)e\in E(x^{\prime}), pick λx,eH\lambda_{x^{\prime},e}\in H such that λx,e(e)E\lambda_{x^{\prime},e}(e)\in E^{\prime}. Then Λ:={λx,exX,eE(x)}\Lambda:=\langle\{\lambda_{x^{\prime},e}\mid x^{\prime}\in X,\ e\in E(x^{\prime})\}\rangle satisfies the conclusion by Lemma 2.2. ∎

Lemma 2.4.

Let ΛAut(Γ)\Lambda\leq\operatorname{Aut}(\Gamma). If Λ\Γ\Lambda\backslash\Gamma is finite then ZAut(Γ)(Λ)Z_{\operatorname{Aut}(\Gamma)}(\Lambda) is discrete.

Proof.

Let FEF\subseteq E be finite such that λΛλF=E\bigcup_{\lambda\in\Lambda}\lambda F=E and U:=ΛFZAut(Γ)(Λ)U:=\Lambda_{F}\cap Z_{\operatorname{Aut}(\Gamma)}(\Lambda), which is open in ZAut(Γ)(Λ)Z_{\operatorname{Aut}(\Gamma)}(\Lambda). Given that UU and Λ\Lambda commute, UU acts trivially on E=λΛλFE=\bigcup_{\lambda\in\Lambda}\lambda F. Hence U={id}U=\{\operatorname{id}\} and ZAut(Γ)(Λ)Z_{\operatorname{Aut}(\Gamma)}(\Lambda) is discrete. ∎

Lemma 2.5.

Let Λ1,Λ2Aut(Γ)\Lambda_{1},\Lambda_{2}\leq\operatorname{Aut}(\Gamma). If Λ1\Γ\Lambda_{1}\backslash\Gamma is finite and [Λ1,Λ2]Aut(Γ)[\Lambda_{1},\Lambda_{2}]\leq\operatorname{Aut}(\Gamma) is discrete then Λ2Aut(Γ)\Lambda_{2}\leq\operatorname{Aut}(\Gamma) is discrete.

Proof.

Using Lemma 2.3 pick RΛ1R\subseteq\Lambda_{1} such that R\Γ\langle R\rangle\backslash\Gamma is finite. As [Λ1,Λ2]Aut(Γ)[\Lambda_{1},\Lambda_{2}]\!\leq\!\operatorname{Aut}(\Gamma) is discrete, there is an open subgroup UΛ2U\leq\Lambda_{2} such that [r,U]={e}[r,U]=\{e\} for all rRr\in R. That is, UZAut(Γ)(R)U\leq Z_{\operatorname{Aut}(\Gamma)}(\langle R\rangle). Hence UU is discrete by Lemma 2.4, and so is Λ2\Lambda_{2}. ∎

Lemma 2.6.

Let HAut(Γ)H\leq\operatorname{Aut}(\Gamma) be non-discrete. Then QZ(H)\Γ\mathrm{QZ}(H)\backslash\Gamma is infinite.

Proof.

If QZ(H)\Γ\mathrm{QZ}(H)\backslash\Gamma is finite, there is a finitely generated subgroup ΛQZ(H)\Lambda\leq\mathrm{QZ}(H) such that Λ\Γ\Lambda\backslash\Gamma is finite as well by Lemma 2.3. Hence there is an open subgroup UHU\leq H with UZAut(Γ)(Λ)U\leq Z_{\operatorname{Aut}(\Gamma)}(\Lambda). Hence UU and thereby HH is discrete by Lemma 2.4. ∎

Lemma 2.7.

Let ΛAut(Γ)\Lambda\!\leq\!\operatorname{Aut}(\Gamma) be discrete. If Λ\Γ\Lambda\backslash\Gamma is finite then NAut(Γ)(Λ)N_{\operatorname{Aut}(\Gamma)}(\Lambda) is discrete.

Proof.

Apply Lemma 2.5 to Λ1:=Λ\Lambda_{1}:=\Lambda and Λ2:=NAut(Γ)(Λ)\Lambda_{2}:=N_{\operatorname{Aut}(\Gamma)}(\Lambda). ∎

2.2. Normal Subgroups

Let Γ=(V,E)\Gamma=(V,E) denote a locally finite, connected graph. For closed subgroups ΛH\Lambda\unlhd H of Aut(Γ)\operatorname{Aut}(\Gamma) we define

𝒩nf(H,Λ)={NHΛNH,N is closed and does not act freely on E},\operatorname{\mathcal{N}}_{\mathrm{nf}}(H,\Lambda)=\{N\unlhd H\mid\Lambda\leq N\unlhd H,\ N\text{ is closed and does not act freely on }E\},

the set of closed normal subgroups of HH which contain Λ\Lambda and do not act freely on EE. The set 𝒩nf(H,Λ)\operatorname{\mathcal{N}}_{\mathrm{nf}}(H,\Lambda) is partially ordered by inclusion. We let nf(H,Λ)𝒩nf(H,Λ)\operatorname{\mathcal{M}}_{\mathrm{nf}}(H,\Lambda)\subseteq\operatorname{\mathcal{N}}_{\mathrm{nf}}(H,\Lambda) denote the set of minimal elements in 𝒩nf(H,Λ)\operatorname{\mathcal{N}}_{\mathrm{nf}}(H,\Lambda).

Lemma 2.8.

Let Γ=(V,E)\Gamma\!=\!(V,E) be a locally finite, connected graph and ΛHAut(Γ)\Lambda\unlhd H\!\leq\!\operatorname{Aut}(\Gamma). If H\ΓH\backslash\Gamma is finite and HH does not act freely on EE then nf(H,Λ)\operatorname{\mathcal{M}}_{\mathrm{nf}}(H,\Lambda)\neq\emptyset.

Proof.

We argue using Zorn’s Lemma. First note that 𝒩nf(H,Λ)\operatorname{\mathcal{N}}_{\mathrm{nf}}(H,\Lambda) is non-empty as it contains HH. Let C𝒩nf(H,Λ)C\subseteq\operatorname{\mathcal{N}}_{\mathrm{nf}}(H,\Lambda) be a chain. Pick a finite set FEF\subseteq E of representatives of H\EH\backslash E. For every NCN\in C, the set FN:={eFN|e1Aut(e1) is non-trivial}F_{N}:=\{e\in F\mid N|_{e^{1}}\leq\operatorname{Aut}(e^{1})\text{ is non-trivial}\} is non-empty. Since FF is finite and CC is a chain it follows that NCFN\bigcap_{N\in C}F_{N} is non-empty, i.e. there exists eFe\in F such that N|e1N|_{e^{1}} is non-trivial for every NCN\in C. As before, we conclude that M:=NCN|e1M:=\bigcap_{N\in C}N|_{e^{1}} is non-trivial. Now, for αM\{id}\alpha\in M\backslash\{\operatorname{id}\} and NCN\in C, the set Nα:={gNeg|e1=α}N^{\alpha}:=\{g\in N_{e}\mid g|_{e^{1}}=\alpha\} is a non-empty compact subset of HeH_{e}, and since CC is a chain every finite subset of {NαNC}\{N^{\alpha}\mid N\in C\} has non-empty intersection. Hence NCNα\bigcap_{N\in C}N^{\alpha} is non-empty and therefore NC:=NCNN_{C}:=\bigcap_{N\in C}N is a closed normal subgroup of HH containing Λ\Lambda that does not act freely on EE. Overall, NCnf(H,Λ)N_{C}\in\operatorname{\mathcal{M}}_{\mathrm{nf}}(H,\Lambda). ∎

The following lemma is contained in the author’s PhD thesis [Tor18, Section II.7] and, independently, in Caprace-Le Boudec [CB19, Section 6.2].

Lemma 2.9.

Let Γ=(V,E)\Gamma=(V,E) be a locally finite, connected graph. Further, let HAut(Γ)H\leq\operatorname{Aut}(\Gamma) be locally semiprimitive and NHN\unlhd H. Define

  1. V1:={xVNxS(x,1) is transitive and not semiregular}V_{1}:=\{x\in V\mid N_{x}\curvearrowright S(x,1)\text{ is transitive and not semiregular}\},

  2. V2:={xVNxS(x,1) is semiregular}V_{2}:=\{x\in V\mid N_{x}\curvearrowright S(x,1)\text{ is semiregular}\}.

Then one of the following holds.

  1. (i)

    V=V2V=V_{2} and NN acts freely on EE.

  2. (ii)

    V=V1V=V_{1} and NN is geometric edge transitive.

  3. (iii)

    V=V1V2V=V_{1}\sqcup V_{2} is an HH-invariant partition of VV and B(x,1)B(x,1) is a fundamental domain for the action of NN on Γ\Gamma for any xV2x\in V_{2}.

Proof.

Since HH is locally semiprimitive and NN is normal in HH, we have V=V1V2V=V_{1}\sqcup V_{2}. If NN does not act freely on EE then there is an edge eEe\in E with Ne{id}N_{e}\neq\{\operatorname{id}\} and an NeN_{e}-fixed vertex xVx\in V for which NxS(x,1)N_{x}\curvearrowright S(x,1) is not semiregular, hence transitive. That is, V1V_{1}\neq\emptyset. Now, either V2(N)=V_{2}(N)=\emptyset in which case NN is locally transitive and we are in case ii, or V2(N)V_{2}(N)\neq\emptyset. Being locally transitive, HH acts transitively on the set of geometric edges and therefore has at most two vertex orbits. Given that both V1V_{1} and V2V_{2} are non-empty and HH-invariant, they constitute exactly said orbits. Since any pair of adjacent vertices (x,y)(x,y) is a fundamental domain for the HH-action on VV, we conclude that if yV2y\in V_{2} then xV1x\in V_{1}. Thus every leaf of B(y,1)B(y,1) is in V1V_{1} and we are in case (iii) by Lemma 2.2. ∎

2.3. The Subquotient H()/QZ(H()H^{(\infty)}/\mathrm{QZ}(H^{(\infty)}

In this section, we achieve control over H()H^{(\infty)} and QZ(H)\mathrm{QZ}(H) as well as the normal subgroups of HH in the semiprimitive case. We then describe the structure of the subquotient H()/QZ(H())H^{(\infty)}/\mathrm{QZ}(H^{(\infty)}). First, recall the following lemma from topological group theory.

Lemma 2.10.

Let GG be a topological group. If HGH\unlhd G is discrete then HQZ(G)H\subseteq\mathrm{QZ}(G).

Proof.

For hHh\in H, the map φh:GH\varphi_{h}:G\to H, gghg1g\mapsto ghg^{-1} is well-defined because HGH\unlhd G, and continuous. Hence there is an open set UGU\subseteq G containing 1G1\in G and such that φh(U){h}\varphi_{h}(U)\subseteq\{h\}, i.e. UZG(h)U\subseteq Z_{G}(h). ∎

Proposition 2.11.

Let Γ=(V,E)\Gamma=(V,E) be a locally finite, connected graph. Further, let HAut(Γ)H\leq\operatorname{Aut}(\Gamma) be closed, non-discrete and locally semiprimitive. Then

  1. (i)

    H/H()H/H^{(\infty)} is compact,

  2. (ii)

    QZ(H)\mathrm{QZ}(H) acts freely on EE, and is discrete non-cocompact in HH,

  3. (iii)

    for any closed normal subgroup NHN\unlhd H, either NN is non-discrete cocompact and NH()N\unrhd H^{(\infty)}, or NN is discrete and NQZ(H)N\unlhd\mathrm{QZ}(H),

  4. (iv)

    QZ(H())=QZ(H)H()\mathrm{QZ}(H^{(\infty)})=\mathrm{QZ}(H)\cap H^{(\infty)} acts freely on EE without inversions,

  5. (v)

    for any open normal subgroup NH()N\unlhd H^{(\infty)} we have N=H()N=H^{(\infty)}, and

  6. (vi)

    H()H^{(\infty)} is topologically perfect, i.e. H()=[H(),H()]H^{(\infty)}=[H^{(\infty)},H^{(\infty)}].

Proof.

For i, let NHN\unlhd H be closed and cocompact. Since HH is non-discrete, so is NN in view of Lemma 2.7. Hence N𝒩nf(H,{id})N\in\operatorname{\mathcal{N}}_{\mathrm{nf}}(H,\{\operatorname{id}\}). Conversely, if N𝒩nf(H,{id})N\in\operatorname{\mathcal{N}}_{\mathrm{nf}}(H,\{\operatorname{id}\}) then NN is cocompact in HH by Lemma 2.9. We conclude that H()=𝒩nf(H,{id})H^{(\infty)}=\bigcap\operatorname{\mathcal{N}}_{\mathrm{nf}}(H,\{\operatorname{id}\}). This intersection is in fact given by a single minimal element of 𝒩nf(H,{id})\operatorname{\mathcal{N}}_{\mathrm{nf}}(H,\{\operatorname{id}\}): Using Lemma 2.8, pick Mnf(H,{id})M\in\operatorname{\mathcal{M}}_{\mathrm{nf}}(H,\{\operatorname{id}\}), and let N𝒩nf(H,{id})N\in\operatorname{\mathcal{N}}_{\mathrm{nf}}(H,\{\operatorname{id}\}). Suppose NMN\not\supseteq M. Because MM is minimal, NMN\cap M acts freely on EE. In particular, NMN\cap M is discrete. Since both NN and MM are normal in HH, we also have NM[N,M]N\cap M\supseteq[N,M] and hence NN and MM are discrete by Lemma 2.5. Then so is HNAut(𝔤)(H)H\subseteq N_{\operatorname{Aut}(\operatorname{\mathfrak{g}})}(H) by Lemma 2.7. Overall, H()=Mnf(H,{id})\smash{H^{(\infty)}\!=\!M\!\in\!\operatorname{\mathcal{M}}_{\mathrm{nf}}(H,\{\operatorname{id}\})} and assertion now follows from Lemma 2.9.

As to ii, the group QZ(H)\mathrm{QZ}(H) is non-cocompact by Lemma 2.6 and therefore acts freely on EE by Lemma 2.9. In particular, it is discrete.

For iii, let NHN\unlhd H be a closed normal subgroup. If NN acts freely on EE, then NN is discrete and hence contained in QZ(H)\mathrm{QZ}(H) by Lemma 2.10. If NN does not act freely on EE then NN is cocompact in HH by Lemma 2.9 and therefore contains H()H^{(\infty)}.

Concerning iv the inclusion QZ(H)H()QZ(H())\mathrm{QZ}(H)\cap H^{(\infty)}\subseteq\mathrm{QZ}(H^{(\infty)}) is automatic. Further, QZ(H())\mathrm{QZ}(H^{(\infty)}) is normal in HH because it is topologically characteristic in H()HH^{(\infty)}\unlhd H. Therefore, if QZ(H())QZ(H)\mathrm{QZ}(H^{(\infty)})\not\subseteq\mathrm{QZ}(H), then QZ(H())\mathrm{QZ}(H^{(\infty)}) is non-discrete by part iii and does not act freely on EE. Then QZ(H())\Γ\mathrm{QZ}(H^{(\infty)})\backslash\Gamma is finite by Lemma 2.9, contradicting Lemma 2.6 applied to H()H^{(\infty)} which is non-discrete because QZ(H())H()\mathrm{QZ}(H^{(\infty)})\leq H^{(\infty)} is. Consequently, QZ(H())QZ(H)\mathrm{QZ}(H^{(\infty)})\leq\mathrm{QZ}(H) which proves the assertion.

For part v, note that nf(H(),{id})\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\{\operatorname{id}\}) is non-empty by Lemma 2.8 as H()H^{(\infty)} is cocompact in Aut(Γ)\operatorname{Aut}(\Gamma) by part i and non-discrete by part iii. Further, since QZ(H())\mathrm{QZ}(H^{(\infty)}) acts freely on EE, every N𝒩nf(H(),{id})N\in\operatorname{\mathcal{N}}_{\mathrm{nf}}(H^{(\infty)},\{\operatorname{id}\}) is non-discrete by part iii as well. Given an open subgroup UH()U\unlhd H^{(\infty)} and Nnf(H,{id})N\in\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{\infty},\{\operatorname{id}\}), the group UNU\cap N is normal in H()H^{(\infty)} and non-discrete. In particular, UNU\cap N does not act freely on EE and hence UN=NU\cap N=N. Thus UU contains the subgroup of H()H^{(\infty)} generated by the elements of nf(H(),{id})\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\{\operatorname{id}\}), which is closed, normal and non-discrete. Hence U=H()U=H^{(\infty)}.

As to vi, the group [H(),H()][H^{(\infty)},H^{(\infty)}] is non-discrete by part i and Lemma 2.5. Hence so is [H(),H()]¯H()\smash{\overline{[H^{(\infty)},H^{(\infty)}]}\unlhd H^{(\infty)}}. Now apply part iii. ∎

Proposition 2.12.

Let Γ=(V,E)\Gamma=(V,E) be a locally finite, connected graph. Further, let HAut(Γ)H\leq\operatorname{Aut}(\Gamma) be a closed, non-discrete and locally semiprimitive. Finally, let ΛH\Lambda\unlhd H such that ΛQZ(H())\Lambda\leq\mathrm{QZ}(H^{(\infty)}). Then the following hold.

  1. (i)
    1. (a)

      The group HH acts transitively on nf(H(),Λ)\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda).

    2. (b)

      The set nf(H(),Λ)\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda) is finite and non-empty.

  2. (ii)

    Let Mnf(H(),Λ)M\in\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda)

    1. (a)

      The group M/ΛM/\Lambda is topologically perfect.

    2. (b)

      The group QZ(M)\mathrm{QZ}(M) acts freely on EE and QZ(M)=QZ(H())M\mathrm{QZ}(M)=\mathrm{QZ}(H^{(\infty)})\cap M.

    3. (c)

      The group M/QZ(M)M/\mathrm{QZ}(M) is topologically simple.

  3. (iii)

    For every N𝒩nf(H(),Λ)N\in\operatorname{\mathcal{N}}_{\mathrm{nf}}(H^{(\infty)},\Lambda) there is Mnf(H(),Λ)M\in\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda) with NMN\supseteq M.

Proof.

Since every discrete normal subgroup of H()H^{(\infty)} is contained in QZ(H())\mathrm{QZ}(H^{(\infty)}) by Lemma 2.10 iii and the latter acts freely on EE by Proposition 2.11 iii, every element of 𝒩nf(H(),Λ)\mathcal{N}_{\mathrm{nf}}(H^{(\infty)},\Lambda) is non-discrete. We proceed with a number of claims.

  1. (1)

    For every N𝒩nf(H(),Λ)N\in\mathcal{N}_{\mathrm{nf}}(H^{(\infty)},\Lambda) we have [H(),N]QZ(H())[H^{(\infty)},N]\not\subseteq\mathrm{QZ}(H^{(\infty)}).
    This follows from the above combined with 2.11 i and Lemma 2.5.

In the following, given Snf(H(),Λ)S\subseteq\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda), we let MS:=MMSH()M_{S}:=\langle M\mid M\in S\rangle\leq H^{(\infty)} denote the subgroup of H()H^{(\infty)} generated by MSM\bigcup_{M\in S}M.

  1. (2)

    The group HH acts transitively on nf(H(),Λ)\mathcal{M}_{\mathrm{nf}}(H^{(\infty)},\Lambda).
    Let SS be an orbit for the action of HH on nf(H(),Λ)\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda), and suppose there is an element Mnf(H(),Λ)\SM\in\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda)\backslash S. For every NSN\in S, the subgroup NMN\cap M is normal in H()H^{(\infty)} and acts freely on EE by minimality of MM, hence is discrete. The same therefore holds for [N,M]NM[N,M]\subseteq N\cap M. Thus [N,M]QZ(H())[N,M]\subseteq\mathrm{QZ}(H^{(\infty)}). As QZ(H())\mathrm{QZ}(H^{(\infty)}) is discrete by Proposition 2.11 and therefore closed in H()H^{(\infty)} we conclude [MS¯,M]QZ(H())[\overline{M_{S}},M]\subseteq\mathrm{QZ}(H^{(\infty)}). On the other hand, MS¯\overline{M_{S}} is normal in HH since SS is an HH-orbit. It is also closed in HH, and non-discrete by the above. Thus MS¯=H()\overline{M_{S}}=H^{(\infty)} by Proposition 2.11 iii, and [H(),M]QZ(H())[H^{(\infty)},M]\subseteq\mathrm{QZ}(H^{(\infty)}) which contradicts part 1.

  2. (3)

    For every Mnf(H(),Λ)M\in\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda) we have [M,M]Λ¯=M\smash{\overline{[M,M]\cdot\Lambda}=M}.
    Note that [M,M]Λ¯\overline{[M,M]\cdot\Lambda} is a group because Λ\Lambda is normal in MM. Suppose there is an element M0nf(H(),Λ)M_{0}\in\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda) with [M0,M0]Λ¯M0\overline{[M_{0},M_{0}]\cdot\Lambda}\lneq M_{0}. Then [M0,M0]Λ¯\overline{[M_{0},M_{0}]\cdot\Lambda} acts freely on EE by minimality of M0M_{0} and is discrete. Being normal in HH, we obtain [M0,M0]QZ(H()[M_{0},M_{0}]\subseteq\mathrm{QZ}(H^{(\infty}). Part 2 now implies that [M,M]QZ(H())[M,M]\subseteq\mathrm{QZ}(H^{(\infty)}) for all Mnf(H(),Λ)M\in\mathcal{M}_{\mathrm{nf}}(H^{(\infty)},\Lambda). Given that [M,M]QZ(H())[M,M^{\prime}]\subseteq\mathrm{QZ}(H^{(\infty)}) for all distinct M,MM,M^{\prime} in nf(H(),Λ)\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda) as well, we conclude that [H(),H()]QZ(H())[H^{(\infty)},H^{(\infty)}]\subseteq\mathrm{QZ}(H^{(\infty)}) which contradicts part 1.

  3. (4)

    For every N𝒩nf(H(),Λ)N\in\operatorname{\mathcal{N}}_{\mathrm{nf}}(H^{(\infty)},\Lambda) there is Mnf(H(),Λ)M\in\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda) with NMN\supseteq M.
    Let S:={Mnf(H(),Λ)NM}S\!:=\!\{M\!\in\!\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda)\!\mid\!N\not\supseteq M\}. Then [MS¯,N]QZ(H())[\overline{M_{S}},N]\!\subseteq\!\mathrm{QZ}(H^{(\infty)}) as above. On the other hand, for T:=nf(H(),Λ)T:=\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda), the group MT¯H()\overline{M_{T}}\subseteq H^{(\infty)} is closed, non-discrete and normal in HH, thus MT¯=H()\overline{M_{T}}=H^{(\infty)}. Using 1, we conclude that STS\neq T which proves the assertion.

  4. (5)

    Let S,SS,S^{\prime} be disjoint subsets of nf(H(),Λ)\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda). Then MS¯MS¯QZ(H())\overline{M_{S}}\cap\overline{M_{S^{\prime}}}\subseteq\mathrm{QZ}(H^{(\infty)}). If not, we have MS¯MS¯nf(H(),Λ)\smash{\overline{M_{S}}\cap\overline{M_{S^{\prime}}}\!\in\!\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda)} and there is, by part 4, an element Mnf(H(),Λ)M\in\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda) with MMS¯MS¯\smash{M\subseteq\overline{M_{S}}\cap\overline{M_{S^{\prime}}}}. However, this implies that [M,M][MS¯,MS¯]QZ(H())[M,M]\subseteq[\overline{M_{S}},\overline{M_{S^{\prime}}}]\subseteq\mathrm{QZ}(H^{(\infty)}) which contradicts part 3.

  5. (6)

    The set nf(H(),Λ)\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda) is finite and non-empty.
    The set nf(H(),Λ)\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda) is non-empty by Lemma 2.8. Let G=MS¯G=\bigcup\overline{M_{S}}, where the union is taken over all finite subsets SS of the set nf(H(),Λ)\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda). Then GG is non-discrete and normal in HH. Hence G¯=H()\overline{G}=H^{(\infty)} by Proposition 2.11 iii. Since HH is second-countable and locally compact, it is metrizable. Hence H()H^{(\infty)} is a separable metric space and the same holds for GG. Let LGL\subseteq G be a countable dense subgroup, and fix an exhaustion F1F2FF_{1}\subseteq F_{2}\subseteq\dots\subseteq F of FF by finite sets. Let (Sn)n(S_{n})_{n\in\operatorname{\mathbb{N}}} be an increasing sequence of finite subsets of nf(H(),Λ)\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda) such that FnMSn¯F_{n}\subseteq\overline{M_{S_{n}}}. In particular

     LMnSn¯and thusMnSn¯=H()\hbox to0.0pt{\hfil}L\subseteq\overline{M_{\bigcup_{n\in\operatorname{\mathbb{N}}}S_{n}}}\quad\text{and thus}\quad\overline{M_{\bigcup_{n\in\operatorname{\mathbb{N}}}S_{n}}}=H^{(\infty)}

    which by 5 and 1 implies nf(H(),Λ)=nSn\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda)=\bigcup_{n\in\operatorname{\mathbb{N}}}S_{n}. Thus nf(H(),Λ)\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda) is countable. Next, fix Mnf(H(),Λ)M\in\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda). Then NH(M)N_{H}(M) is closed and of countable index in HH, and thus has non-empty interior as HH is a Baire space. Hence NH(M)N_{H}(M) is open in HH. Given that NH(M)N_{H}(M) contains H()H^{(\infty)} we conclude that NH(M)N_{H}(M) is of finite index in HH using Proposition 2.11 i. Since HH acts transitively by on nf(H(),Λ)\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda) by 2 we conclude that nf(H(),Λ)\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda) is finite by the orbit-stabilizer theorem.

The above claims yield parts iia, iib, iiiia and iii of Proposition 2.12. We now turn to parts iiiib and iiiic.

  1. iiiib

    Using part 6, let nf(H(),Λ)={M1,,Mr}\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda)=\{M_{1},\ldots,M_{r}\} and define

     Ω:=QZ(M1)QZ(Mr).\hbox to0.0pt{\hfil}\Omega:=\mathrm{QZ}(M_{1})\cdot\ldots\cdot\mathrm{QZ}(M_{r}).

    Note that since QZ(Mi)\mathrm{QZ}(M_{i}) is characteristic in MiM_{i}, which is normal in H()H^{(\infty)}, the quasi-centers in the above definition normalize each other, so Ω\Omega is a group. It is then normal in HH. If Ω\Omega does not act freely on EE then Ω\Γ\Omega\backslash\Gamma is finite by Lemma 2.9 and there exist λ1,,λkΩ\lambda_{1},\ldots,\lambda_{k}\in\Omega by Lemma 2.3 such that for Ω:=λ1,,λk\Omega^{\prime}:=\langle\lambda_{1},\ldots,\lambda_{k}\rangle the quotient Ω\Γ\Omega^{\prime}\backslash\Gamma is finite. For every i{1,,k}i\in\{1,\ldots,k\}, write λi=aibi\lambda_{i}=a_{i}b_{i} where aiQZ(M1)a_{i}\in\mathrm{QZ}(M_{1}) and biQZ(M2)QZ(Mr)b_{i}\in\mathrm{QZ}(M_{2})\cdot\ldots\cdot\mathrm{QZ}(M_{r}). Let U1M1U_{1}\leq M_{1} be an open subgroup such that [ai,U1]={e}[a_{i},U_{1}]=\{e\} for all i{1,,k}i\in\{1,\ldots,k\}. Since [M2Mr,M1]QZ(H())[M_{2}\cdot\ldots M_{r},M_{1}]\subseteq\mathrm{QZ}(H^{(\infty)}), there is an open subgroup U2M1U_{2}\leq M_{1} such that [bi,U2]={e}[b_{i},U_{2}]=\{e\} for all i{1,,k}i\in\{1,\ldots,k\}. Hence U:=U1U2M1U:=U_{1}\cap U_{2}\leq M_{1} is contained in ZAut(Γ)(Ω)Z_{\operatorname{Aut}(\Gamma)}(\Omega^{\prime}) which by Lemma 2.4 implies that UU and hence M1M_{1} is discrete, a contradiction. Thus Ω\Omega acts freely on EE, is discrete and therefore ΩQZ(H())\Omega\subseteq\mathrm{QZ}(H^{(\infty)}). That is, QZ(Mi)QZ(H())Mi\mathrm{QZ}(M_{i})\subseteq\mathrm{QZ}(H^{(\infty)})\cap M_{i}. The opposite inclusion follows from the definitions.

  2. iiiic

    Let Mnf(H(),Λ)M\in\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda) and NMN\unlhd M a closed subgroup containing QZ(M)\mathrm{QZ}(M). For every Mnf(H(),Λ)M^{\prime}\in\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda) with MMM\neq M^{\prime} we have

     [M,M]MMQZ(H())\hbox to0.0pt{\hfil}[M^{\prime},M]\subseteq M^{\prime}\subseteq M\subseteq\mathrm{QZ}(H^{(\infty)})

    This implies [M,N]QZ(H())M=QZ(M)N[M^{\prime},N]\subseteq\mathrm{QZ}(H^{(\infty)})\cap M=\mathrm{QZ}(M)\subseteq N, i.e. MM^{\prime} normalizes NN. Since NMN\unlhd M, this implies NH()N\unlhd H^{(\infty)} and hence, by minimality of MM, we have either N=MN=M or NN acts freely on EE and NQZ(H())M=QZ(M)N\subseteq\mathrm{QZ}(H^{(\infty)})\cap M=\mathrm{QZ}(M). ∎

Corollary 2.13.

Let Γ=(V,E)\Gamma=(V,E) be a locally finite, connected graph. Further, let HAut(Γ)H\leq\operatorname{Aut}(\Gamma) be closed, non-discrete and locally semiprimitive. Minimal, non-trivial closed normal subgroups of H()/QZ(H())H^{(\infty)}\!/\mathrm{QZ}(H^{(\infty)}) exist. They are all HH-conjugate, finite in number and topologically simple.

Proof.

Apply Proposition 2.12 to Λ=QZ(H())\Lambda=\mathrm{QZ}(H^{(\infty)}). ∎

We summarize the previous results in the following theorem, which is a verbatim copy of Burger–Mozes’ Theorem 1.2, except that the local action need only be semiprimitive, not quasiprimitive.

Theorem 2.14.

Let Γ\Gamma be a locally finite, connected graph. Further, let HAut(Γ)H\!\leq\!\operatorname{Aut}(\Gamma) be closed, non-discrete and locally semiprimitive. Then

  1. (i)

    H()H^{(\infty)} is minimal closed normal cocompact in HH,

  2. (ii)

    QZ(H)\mathrm{QZ}(H) is maximal discrete normal, and non-cocompact in HH, and

  3. (iii)

    H()/QZ(H())=H()/(QZ(H)H())H^{(\infty)}\!/\mathrm{QZ}(H^{(\infty)})\!=\!H^{(\infty)}\!/(\mathrm{QZ}(H)\cap H^{(\infty)}) admits minimal, non-trivial closed normal subgroups; finite in number, HH-conjugate and topologically simple.

If Γ\Gamma is a tree, and, in addition, HH is locally primitive then

  1. (iv)

    H()/QZ(H())H^{(\infty)}\!/\mathrm{QZ}(H^{(\infty)}) is a direct product of topologically simple groups.

Proof.

Parts i and ii stem from parts i, ii and iii of Proposition 2.11 in combination with Section 1. For part iii, use part iv of Proposition 2.11 and Corollary 2.13. Finally, part iv is Corollary 1.7.2 in [BM00]. It follows from Theorem 1.7.1 in [BM00] as the commutator of any two distinct elements in nf(H(),Λ)\operatorname{\mathcal{M}}_{\mathrm{nf}}(H^{(\infty)},\Lambda) is contained in QZ(H())\mathrm{QZ}(H^{(\infty)}). ∎

3. Universal Groups

In this section, we develop a generalization of Burger–Mozes universal groups that arises through prescribing the local action on balls of a given radius kk\in\operatorname{\mathbb{N}} around vertices. The Burger–Mozes construction corresponds to the case k=1k=1.

Whereas many properties of the original construction carry over to the new setup, others require adjustments. Notably, there are compatibility and discreteness conditions on the local action FF under which the associated universal group is locally action isomorphic to FF and discrete respectively.

We then exhibit examples and (non)-rigidity phenomena of our construction. Finally, a universality statement holds under an additional assumption.

3.1. Definition and Basic Properties

3.1.1. Definition

Let Ω\Omega be a set of cardinality d3d\in\operatorname{\mathbb{N}}_{\geq 3} and let Td=(V,E)T_{d}=(V,E) denote the dd-regular tree. A labelling ll of TdT_{d} is a map l:EΩl:E\to\Omega such that for every xVx\in V the map lx:E(x)Ω,el(e)l_{x}\!:E(x)\to\Omega,\ e\mapsto l(e) is a bijection, and l(e)=l(e¯)l(e)=l(\overline{e}) for all eEe\in E.

For every kk\in\operatorname{\mathbb{N}}, fix a tree Bd,kB_{d,k} which is isomorphic to a ball of radius kk around a vertex in TdT_{d}. Let bb denote its center and carry over the labelling of TdT_{d} to Bd,kB_{d,k} via the chosen isomorphism. Then for every xVx\in V there is a unique, label-respecting isomorphism lxk:B(x,k)Bd,kl_{x}^{k}:B(x,k)\to B_{d,k}. We define the kk-local action σk(g,x)Aut(Bd,k)\sigma_{k}(g,x)\!\in\!\operatorname{Aut}(B_{d,k}) of an automorphism gAut(Td)g\!\in\!\operatorname{Aut}(T_{d}) at a vertex xVx\in V via

σk:Aut(Td)×VAut(Bd,k),(g,x)σk(g,x):=lgxkg(lxk)1.\sigma_{k}:\operatorname{Aut}(T_{d})\times V\to\operatorname{Aut}(B_{d,k}),\ (g,x)\mapsto\sigma_{k}(g,x):=l_{gx}^{k}\circ g\circ(l_{x}^{k})^{-1}.
Definition 3.1.

Let FAut(Bd,k)F\leq\operatorname{Aut}(B_{d,k}) and ll be a labelling of TdT_{d}. Define

Uk(l)(F):={gAut(Td)xV:σk(g,x)F}.\mathrm{U}_{k}^{(l)}(F):=\{g\in\operatorname{Aut}(T_{d})\mid\ \forall x\in V:\ \sigma_{k}(g,x)\in F\}.

The following lemma states that the maps σk\sigma_{k} satisfy a cocycle identity which implies that Uk(l)(F)\smash{\mathrm{U}_{k}^{(l)}(F)} is a subgroup of Aut(Td)\operatorname{Aut}(T_{d}) for every FAut(Bd,k)F\leq\operatorname{Aut}(B_{d,k}).

Lemma 3.2.

Let xVx\in V and g,hAut(Td)g,h\in\operatorname{Aut}(T_{d}). Then σk(gh,x)=σk(g,hx)σk(h,x)\sigma_{k}(gh,x)=\sigma_{k}(g,hx)\sigma_{k}(h,x).

Proof.

We compute

σk(gh,x)=\displaystyle\sigma_{k}(gh,x)= l(gh)xkgh(lxk)1=l(gh)xkgh(lxk)1=\displaystyle l_{(gh)x}^{k}\circ gh\circ(l_{x}^{k})^{-1}=l_{(gh)x}^{k}\circ g\circ h\circ(l_{x}^{k})^{-1}=
=l(gh)xkg(lhxk)1lhxkh(lxk)1=σk(g,hx)σk(h,x).\displaystyle=l_{(gh)x}^{k}\circ g\circ(l_{hx}^{k})^{-1}\circ l_{hx}^{k}\circ h\circ(l_{x}^{k})^{-1}=\sigma_{k}(g,hx)\sigma_{k}(h,x).\qed

3.1.2. Basic Properties

Note that the group U1(l)(F)\smash{\mathrm{U}_{1}^{(l)}(F)} of Definition 3.1 coincides with the Burger–Mozes universal group U(l)(F)\smash{\mathrm{U}_{(l)}(F)} introduced in [BM00, Section 3.2] under the natural isomorphism Aut(Bd,1)Sym(Ω)\operatorname{Aut}(B_{d,1})\cong\operatorname{Sym}(\Omega). Several basic properties of the latter group carry over to the generalized setup. First of all, passing between different labellings of TdT_{d} amounts to conjugating in Aut(Td)\operatorname{Aut}(T_{d}). Subsequently, we shall therefore omit the reference to an explicit labelling.

Lemma 3.3.

For every quadruple (l,l,x,x)(l,l^{\prime},x,x^{\prime}) of labellings l,ll,l^{\prime} of TdT_{d} and vertices x,xVx,x^{\prime}\in V, there is a unique automorphism gAut(Td)g\in\operatorname{Aut}(T_{d}) with gx=xgx=x^{\prime} and l=lgl^{\prime}=l\circ g.

Proof.

Set gx:=xgx:=x^{\prime}. Now assume inductively that gg is uniquely determined on B(x,n)B(x,n) (n0)(n\in\operatorname{\mathbb{N}}_{0}) and let vS(x,n)v\in S(x,n). Then gg is also uniquely determined on E(v)E(v) by the requirement l=lgl^{\prime}=l\circ g, namely g|E(v):=l|E(gv)1l|E(v)g|_{E(v)}:=l|_{E(gv)}^{-1}\circ l^{\prime}|_{E(v)}. ∎

Proposition 3.4.

Let FAut(Bd,k)F\leq\operatorname{Aut}(B_{d,k}). Further, let ll and ll^{\prime} be labellings of TdT_{d}. Then the groups Uk(l)(F)\smash{\mathrm{U}_{k}^{(l)}(F)} and Uk(l)(F)\smash{\mathrm{U}_{k}^{(l^{\prime})}(F)} are conjugate in Aut(Td)\operatorname{Aut}(T_{d}).

Proof.

Choose xVx\in V. Let τAut(Td)\tau\in\operatorname{Aut}(T_{d}) denote the automorphism of TdT_{d} associated to (l,l,x,x)(l,l^{\prime},x,x) by Lemma 3.3, then Uk(l)(F)=τUk(l)(F)τ1\smash{\mathrm{U}_{k}^{(l)}(F)=\tau\mathrm{U}_{k}^{(l^{\prime})}(F)\tau^{-1}}. ∎

The following basic properties of Uk(F)\mathrm{U}_{k}(F) are as in Proposition 1.4.

Proposition 3.5.

Let FAut(Bd,k)F\leq\operatorname{Aut}(B_{d,k}). The group Uk(F)\mathrm{U}_{k}(F) is

  1. (i)

    closed in Aut(Td)\operatorname{Aut}(T_{d}),

  2. (ii)

    vertex-transitive, and

  3. (iii)

    compactly generated.

Proof.

As to (i), note that if gUk(F)g\notin\mathrm{U}_{k}(F) then σk(g,x)F\sigma_{k}(g,x)\notin F for some xVx\in V. In this case, the open neighbourhood {hAut(Td)h|B(x,k)=g|B(x,k)}\{h\in\operatorname{Aut}(T_{d})\mid h|_{B(x,k)}=g|_{B(x,k)}\} of gg in Aut(Td)\operatorname{Aut}(T_{d}) is also contained in the complement of Uk(F)\mathrm{U}_{k}(F).

For (ii), let x,xVx,x^{\prime}\in V and let gAut(Td)g\in\operatorname{Aut}(T_{d}) be the automorphism of TdT_{d} associated to (l,l,x,x)(l,l,x,x^{\prime}) by Lemma 3.3. Then gUk(F)g\in\mathrm{U}_{k}(F) as σk(g,v)=idF\sigma_{k}(g,v)=\operatorname{id}\in F for all vVv\in V.

To prove (iii), fix xVx\in V. We show that Uk(F)\mathrm{U}_{k}(F) is generated by the join of the compact set Uk(F)x\mathrm{U}_{k}(F)_{x} and the finite generating set of U1({id})=Uk({id})Uk(F)\mathrm{U}_{1}(\{\operatorname{id}\})=\mathrm{U}_{k}(\{\operatorname{id}\})\leq\mathrm{U}_{k}(F) guaranteed by Lemma 1.5: Indeed, for gUk(F)g\in\mathrm{U}_{k}(F) pick gg^{\prime} in the finitely generated, vertex-transitive subgroup U1({id})\mathrm{U}_{1}(\{\operatorname{id}\}) of Uk(F)\mathrm{U}_{k}(F) such that ggx=xg^{\prime}gx=x. We then have ggUk(F)xg^{\prime}g\in\mathrm{U}_{k}(F)_{x} and the assertion follows. ∎

For completeness, we explicitly state the following.

Proposition 3.6.

Let FAut(Bd,k)F\leq\operatorname{Aut}(B_{d,k}). Then Uk(F)\mathrm{U}_{k}(F) is a compactly generated, totally disconnected, locally compact, second countable group.

Proof.

The group Uk(F)\mathrm{U}_{k}(F) is totally disconnected, locally compact, second countable as a closed subgroup of Aut(Td)\operatorname{Aut}(T_{d}) and compactly generated by Proposition 3.5. ∎

Finally, we record that the groups Uk(F)\mathrm{U}_{k}(F) are (Pk)(P_{k})-closed.

Proposition 3.7.

Let FAut(Bd,k)F\leq\operatorname{Aut}(B_{d,k}). Then Uk(F)\mathrm{U}_{k}(F) satisfies Property (Pk)(P_{k}).

Proof.

Let e=(x,y)Ee=(x,y)\in E. Clearly, Uk(F)ekUk(F)ek,TyUk(F)ek,Tx\mathrm{U}_{k}(F)_{e^{k}}\supseteq\mathrm{U}_{k}(F)_{e^{k},T_{y}}\cdot\mathrm{U}_{k}(F)_{e^{k},T_{x}}. Conversely, consider gUk(F)ekg\in\mathrm{U}_{k}(F)_{e^{k}} and define gyAut(Td)g_{y}\in\operatorname{Aut}(T_{d}) and gxAut(Td)g_{x}\in\operatorname{Aut}(T_{d}) by

σk(gy,v)={σk(g,v)vV(Tx)idvV(Ty)andσk(gx,v)={idvV(Tx)σk(g,v)vV(Ty)\sigma_{k}(g_{y},v)=\begin{cases}\sigma_{k}(g,v)&v\in V(T_{x})\\ \operatorname{id}&v\in V(T_{y})\end{cases}\quad\text{and}\quad\sigma_{k}(g_{x},v)=\begin{cases}\operatorname{id}&v\in V(T_{x})\\ \sigma_{k}(g,v)&v\in V(T_{y})\end{cases}

respectively. Then gyUk(F)ek,Tyg_{y}\in\mathrm{U}_{k}(F)_{e^{k},T_{y}}, gxUk(F)ek,Txg_{x}\in\mathrm{U}_{k}(F)_{e^{k},T_{x}} and g=gygxg=g_{y}\circ g_{x}. ∎

3.2. Compatibility and Discreteness

We now generalize parts iv and vi of Burger–Mozes’ Proposition 1.4. There are compatibility and discreteness conditions (C) and (D) on subgroups FAut(Bd,k)F\leq\operatorname{Aut}(B_{d,k}) that hold if and only if the associated universal group is locally action isomorphic to FF and discrete respectively.

We introduce the following notation for vertices in the labelled tree (Td,l)(T_{d},l): Given xVx\in V and w=(ω1,,ωn)Ωnw=(\omega_{1},\ldots,\omega_{n})\in\Omega^{n} (n0)(n\in\operatorname{\mathbb{N}}_{0}), set xw:=γx,w(n)x_{w}:=\gamma_{x,w}(n) where

γx,w:Pathn(w):=012nω1ω2Td\psset{xunit=49.79233pt}\gamma_{x,w}:\mathrm{Path}_{n}^{(w)}:=\pspicture(-4.97923pt,-2.13394pt)(104.56389pt,14.22636pt){\psline(0.0pt,0.0pt)(62.2404pt,0.0pt)}{\psline(87.13657pt,0.0pt)(99.58466pt,0.0pt)}{\psset{}\psdots(0.0pt,0.0pt)(24.89616pt,0.0pt)(49.79233pt,0.0pt)(99.58466pt,0.0pt)}\uput[d](0.0pt,0.0pt){$0$}\uput[d](24.89616pt,0.0pt){$1$}\uput[d](49.79233pt,0.0pt){$2$}\rput(74.68849pt,0.0pt){$\ldots$}\uput[d](99.58466pt,0.0pt){$n$}\uput[u](12.44807pt,0.0pt){$\omega_{1}$}\uput[u](37.34424pt,0.0pt){$\omega_{2}$}\endpspicture\to T_{d}

is the unique label-respecting morphism sending 0 to xVx\in V. If ww is the empty word, set xw:=xx_{w}:=x. Whenever admissible, we also adopt this notation in the case of Bd,kB_{d,k} and its labelling. In particular, S(x,n)S(x,n) is in natural bijection with the set Ω(n):={(ω1,,ωn)Ωnk{1,,n1}:ωk+1ωk}\Omega^{(n)}:=\{(\omega_{1},\ldots,\omega_{n})\in\Omega^{n}\mid\forall k\in\{1,\ldots,n-1\}:\ \omega_{k+1}\neq\omega_{k}\}.

3.2.1. Compatibility

First, we ask whether Uk(F)\mathrm{U}_{k}(F) locally acts like FF, that is whether the actions Uk(F)xB(x,k)\mathrm{U}_{k}(F)_{x}\curvearrowright B(x,k) and FBd,kF\curvearrowright B_{d,k} are isomorphic for every xVx\in V. Whereas this always holds for k=1k=1 by Proposition 1.4iv it need not be true for k2k\geq 2, the issue being (non)-compatibility among elements of FF. See Example 3.9. The condition developed in this section allows for computations. A more practical version from a theoretical viewpoint follows in Section 3.4.

Now, let xVx\in V and suppose that αUk(F)x\alpha\in\mathrm{U}_{k}(F)_{x} realizes aFa\in F at xx, that is

α|B(x,k)=(lxk)1alxk.\alpha|_{B(x,k)}=(l_{x}^{k})^{-1}\circ a\circ l_{x}^{k}.

Then given the condition that σk(α,xω)\sigma_{k}(\alpha,x_{\omega}) be in FF for all ωΩ\omega\in\Omega, we obtain the following necessary compatibility condition on FF for Uk(F)\mathrm{U}_{k}(F) to act like FF at xVx\in V:

aFωΩ:aωF:(lxk)1alxk|Sω=(lαxωk)1aωlxωk|Sω\forall a\in F\ \forall\omega\in\Omega:\ \exists a_{\omega}\in F:\ (l_{x}^{k})^{-1}\circ a\circ l_{x}^{k}|_{S_{\omega}}=(l_{\alpha x_{\omega}}^{k})^{-1}\circ a_{\omega}\circ l_{x_{\omega}}^{k}|_{S_{\omega}}

where Sω:=B(x,k)B(xω,k)TdS_{\omega}:=B(x,k)\cap B(x_{\omega},k)\subseteq T_{d}. Set Tω:=lxk(Sω)Bd,kT_{\omega}:=l_{x}^{k}(S_{\omega})\subseteq B_{d,k}. Then the above condition can be rewritten as

aFωΩ:aωF:aω|Tω=lαxωk(lxk)1alxk(lxωk)1|Tω.\forall a\in F\ \forall\omega\in\Omega:\ \exists a_{\omega}\in F:\ a_{\omega}|_{T_{\omega}}=l_{\alpha x_{\omega}}^{k}\circ(l_{x}^{k})^{-1}\circ a\circ l_{x}^{k}\circ(l_{x_{\omega}}^{k})^{-1}|_{T_{\omega}}.

Now observe the following: First, αxω\alpha x_{\omega} depends only on aa. Second, the subtree TωT_{\omega} of Bd,kB_{d,k} does not depend on xx. Third, ιω:=lxk|Tω(lxωk)1|Tω\iota_{\omega}:=l_{x}^{k}|^{T_{\omega}}\circ(l_{x_{\omega}}^{k})^{-1}|_{T_{\omega}} is the unique non-trivial, involutive and label-respecting automorphism of TωT_{\omega}; it is given by

ιω:=lxk|Tω(lxωk)1|Tω:TωSωTω,bwxωwbωw\iota_{\omega}:=\left.l_{x}^{k}\right|^{T_{\omega}}\circ\left.(l_{x_{\omega}}^{k})^{-1}\right|_{T_{\omega}}:T_{\omega}\to S_{\omega}\to T_{\omega},\ b_{w}\mapsto x_{\omega w}\mapsto b_{\omega w}

for admissible words ww. Hence the above condition may be rewritten as

(C) aFωΩ:aωF:aω|Tω=ιaωaιω.\forall a\in F\ \forall\omega\in\Omega:\ \exists a_{\omega}\in F:\ a_{\omega}|_{T_{\omega}}=\iota_{a\omega}\circ a\circ\iota_{\omega}.

In this situation we shall say that aωa_{\omega} is compatible with aa in direction ω\omega.

Proposition 3.8.

Let FAut(Bd,k)F\leq\operatorname{Aut}(B_{d,k}). Then Uk(F)\mathrm{U}_{k}(F) is locally action isomorphic to FF if and only if FF satisfies (C).

Proof.

By the above, condition (C) is necessary. To show that it is also sufficient, let xVx\in V and aFa\in F. We aim to define an automorphism αUk(F)\alpha\in\mathrm{U}_{k}(F) which realizes aa at xx. This forces us to define

α|B(x,k):=(lxk)1alxk.\alpha|_{B(x,k)}:=(l_{x}^{k})^{-1}\circ a\circ l_{x}^{k}.

Now, assume inductively that α\alpha is defined consistently on B(x,n)B(x,n) in the sense that σk(α,y)F\sigma_{k}(\alpha,y)\in F for all yB(x,n)y\in B(x,n) with B(y,k)B(x,n)B(y,k)\subseteq B(x,n). In order to extend α\alpha to B(x,n+1)B(x,n+1), let yS(x,nk+1)y\in S(x,n-k+1) and let ωΩ\omega\in\Omega be the unique label such that yωS(x,nk)y_{\omega}\in S(x,n-k). Set c:=σk(α,yω)c:=\sigma_{k}(\alpha,y_{\omega}). Applying condition (C) to the pair (c,ω)(c,\omega) yields an element cωFc_{\omega}\in F such that

(lαyωk)1clyωk|Sω=(lαyk)1cωlyk|Sω\left.(l_{\alpha y_{\omega}}^{k})^{-1}\circ c\circ l_{y_{\omega}}^{k}\right|_{S_{\omega}}=\left.(l_{\alpha y}^{k})^{-1}\circ c_{\omega}\circ l_{y}^{k}\right|_{S_{\omega}}

where Sω:=B(y,k)B(yω,k)S_{\omega}:=B(y,k)\cap B(y_{\omega},k) and we have realized

ιω as lyωk|Tω(lyk)1|Tωandιcω as lαyk|Tcω(lαyωk)1|Tcω.\iota_{\omega}\text{ as }\left.l_{y_{\omega}}^{k}\right|^{T_{\omega}}\circ\left.(l_{y}^{k})^{-1}\right|_{T_{\omega}}\quad\text{and}\quad\iota_{c\omega}\text{ as }\left.l_{\alpha y}^{k}\right|^{T_{c\omega}}\circ\left.(l_{\alpha y_{\omega}}^{k})^{-1}\right|_{T_{c\omega}}.

Now extend α\alpha consistently to B(v,n+1)B(v,n+1) by setting α|B(x,k):=(lαxk)1cωlxk\alpha|_{B(x,k)}:=(l_{\alpha x}^{k})^{-1}\circ c_{\omega}\circ l_{x}^{k}. ∎

Example 3.9.

Let Ω:={1,2,3}\Omega:=\{1,2,3\} and aAut(B3,2)a\in\operatorname{Aut}(B_{3,2}) be the element which swaps the leaves b12b_{12} and b13b_{13} of B3,2B_{3,2}. Then F:=a={id,a}F:=\langle a\rangle=\{\operatorname{id},a\} does not contain an element compatible with aa in direction 1Ω1\in\Omega and hence does not satisfy condition (C).

We show that it suffices to check condition (C) on the elements of a generating set. Let FAut(Bd,k)F\leq\operatorname{Aut}(B_{d,k}) and a,bFa,b\in F. Set c:=abc:=ab. Then

cω|Tω=ιcωabιω\displaystyle c_{\omega}|_{T_{\omega}}=\iota_{c\omega}\circ a\circ b\circ\iota_{\omega} =(ιcωaιbω)(ιbωbιω)\displaystyle=\left(\iota_{c\omega}\circ a\circ\iota_{b\omega}\right)\circ\left(\iota_{b\omega}\circ b\circ\iota_{\omega}\right)
(M) =(ιa(bω)aιbω)(ιbωbιω).\displaystyle=\left(\iota_{a(b\omega)}\circ a\circ\iota_{b\omega}\right)\circ\left(\iota_{b\omega}\circ b\circ\iota_{\omega}\right).

Let CF(a,ω)C_{F}(a,\omega) denote the compatibility set of elements in FF which are compatible with aFa\in F in direction ωΩ\omega\in\Omega. Then (M) shows that CF(ab,ω)CF(a,bω)CF(b,ω)C_{F}(ab,\omega)\supseteq C_{F}(a,b\omega)C_{F}(b,\omega). It therefore suffices to check condition (C) on a generating set of FF.

Given SΩS\subseteq\Omega, we also define CF(a,S):=ωSCF(a,ω)C_{F}(a,S):=\bigcap_{\omega\in S}C_{F}(a,\omega), the set of elements in FF which are compatible with aFa\in F in all directions from SS. We omit FF in this notation when it is clear from the context.

As a consequence, we obtain the following description of the local action of Uk(F)\mathrm{U}_{k}(F) when FF does not satisfy condition (C).

Proposition 3.10.

Let FAut(Bd,k)F\!\leq\!\operatorname{Aut}(B_{d,k}). Then FF has a unique maximal subgroup C(F)C(F) which satisfies (C). We have C(C(F))=C(F)C(C(F))\!=\!C(F) and Uk(F)=Uk(C(F))\mathrm{U}_{k}(F)\!=\!\mathrm{U}_{k}(C(F)).

Proof.

By the above, C(F):=HFH satisfies (C)FC(F)\!:=\!\langle H\leq F\mid H\text{ satisfies \eqref{eq:C}}\rangle\!\leq\!F satisfies condition (C). It is the unique maximal such subgroup of FF by definition, and C(C(F))=C(F)C(C(F))=C(F).

Furthermore, Uk(C(F))Uk(F)\mathrm{U}_{k}(C(F))\leq\mathrm{U}_{k}(F). Conversely, suppose gUk(F)\Uk(C(F))g\in\mathrm{U}_{k}(F)\backslash\mathrm{U}_{k}(C(F)). Then there is xVx\in V such that σk(g,x)F\C(F)\sigma_{k}(g,x)\in F\backslash C(F) and the group

C(F)C(F),{σk(g,x)xV}FC(F)\lneq\langle C(F),\{\sigma_{k}(g,x)\mid x\in V\}\rangle\leq F

satisfies condition (C), too, as can be seen by setting σk(g,x)ω:=σk(g,xω)\sigma_{k}(g,x)_{\omega}:=\sigma_{k}(g,x_{\omega}). This contradicts the maximality of C(F)C(F). ∎

Remark 3.11.

Let FAut(Bd,k)F\leq\operatorname{Aut}(B_{d,k}) satisfy (C). The proof of Proposition 3.8 shows that elements of Uk(F)\mathrm{U}_{k}(F) are readily constructed: Given x,yV(Td)x,y\in V(T_{d}) and aFa\in F, define g:B(x,k)B(y,k)g:B(x,k)\to B(y,k) by setting g(x)=yg(x)=y and σk(g,x)=a\sigma_{k}(g,x)=a. Then, given elements aωFa_{\omega}\in F (ωΩ)(\omega\in\Omega) such that aωCF(a,ω)a_{\omega}\in C_{F}(a,\omega) for all ωΩ\omega\in\Omega, there is a unique extension of gg to B(x,k+1)B(x,k+1) so that σk(g,xω)=aω\sigma_{k}(g,x_{\omega})=a_{\omega} for all ωΩ\omega\in\Omega. Proceed iteratively.

3.2.2. Discreteness

The group FAut(Bd,k)F\leq\operatorname{Aut}(B_{d,k}) also determines whether or not Uk(F)\mathrm{U}_{k}(F) is discrete. In fact, the following proposition generalizes Proposition 1.4vi.

Proposition 3.12.

Let FAut(Bd,k)F\leq\operatorname{Aut}(B_{d,k}). Then Uk(F)\mathrm{U}_{k}(F) is discrete if FF satisfies

(D) ωΩ:FTω={id}.\forall\omega\in\Omega:\ F_{T_{\omega}}=\{\operatorname{id}\}.

Conversely, if Uk(F)\mathrm{U}_{k}(F) is discrete and FF satisfies (C), then FF satisfies (D).

Alternatively, Uk(F)\mathrm{U}_{k}(F) is discrete if and only if C(F)C(F) satisfies (D). Example 3.9 shows that condition (C) is necessary for the second part of Proposition 3.12.

Finally, note that FF satisfies (D) if and only if CF(id,ω)={id}C_{F}(\operatorname{id},\omega)=\{\operatorname{id}\} for all ωΩ\omega\in\Omega.

Proof.

(Proposition 3.12). Fix xVx\in V. A subgroup HAut(Td)H\leq\operatorname{Aut}(T_{d}) is non-discrete if and only if for every nn\in\operatorname{\mathbb{N}} there is hH\{id}h\in H\backslash\{\operatorname{id}\} such that h|B(x,n)=idh|_{B(x,n)}=\operatorname{id}.

Suppose that Uk(F)\mathrm{U}_{k}(F) is non-discrete. Then there are nkn\in\operatorname{\mathbb{N}}_{\geq k} and αUk(F)\alpha\in\text{U}_{k}(F) such that α|B(x,n)=id\alpha|_{B(x,n)}=\operatorname{id} and α|B(x,n+1)id\alpha|_{B(x,n+1)}\neq\operatorname{id}. Hence there is yS(x,nk+1)y\in S(x,n-k+1) with a:=σk(α,y)ida:=\sigma_{k}(\alpha,y)\neq\operatorname{id}. In particular, aFTω\{id}a\in F_{T_{\omega}}\backslash\{\operatorname{id}\} where ω\omega is the label of the unique edge eEe\in E with o(e)=yo(e)=y and d(x,y)=d(x,t(e))+1d(x,y)=d(x,t(e))+1.

Conversely, suppose that FF satisfies (C) and FTω{id}F_{T_{\omega}}\neq\{\operatorname{id}\} for some ωΩ\omega\in\Omega. Then for every nkn\in\operatorname{\mathbb{N}}_{\geq k}, we define an automorphism αUk(F)\alpha\in\text{U}_{k}(F) with α|B(x,n)=id\alpha|_{B(x,n)}=\operatorname{id} and α|B(x,n+1)id\alpha|_{B(x,n+1)}\neq\operatorname{id}: If α|B(x,n)=id\alpha|_{B(x,n)}=\operatorname{id}, then σk(α,y)F\sigma_{k}(\alpha,y)\in F for all yB(x,nk)y\in B(x,n-k). Choose eEe\in E with y:=o(e)S(x,nk+1)y:=o(e)\in S(x,n-k+1) and t(e)S(x,nk)t(e)\in S(x,n-k) such that l(e)=ωl(e)=\omega. We extend α\alpha to B(y,k)B(y,k) by setting α|B(y,k):=lyks(lyk)1\alpha|_{B(y,k)}:=l_{y}^{k}\circ s\circ(l_{y}^{k})^{-1} where sFTω\{id}s\in F_{T_{\omega}}\backslash\{\operatorname{id}\}. Finally, we extend α\alpha to TdT_{d} using (C). ∎

We define condition (CD) on FAut(Bd,k)F\leq\operatorname{Aut}(B_{d,k}) as the conjunction of (C) and (D). The following description is immediate from the above.

(CD) aFωΩ:!aωF:aω|Tω=ιaωaιω.\forall a\in F\ \forall\omega\in\Omega:\ \exists!\ a_{\omega}\in F:\ a_{\omega}|_{T_{\omega}}=\iota_{a\omega}\circ a\circ\iota_{\omega}.

When FF satisfies (CD), an element of Uk(F)x\mathrm{U}_{k}(F)_{x} is determined by its action on B(x,k)B(x,k). Hence Uk(F)xF\mathrm{U}_{k}(F)_{x}\cong F for every xVx\in V and Uk(F)(x,y)F(b,bω)\mathrm{U}_{k}(F)_{(x,y)}\cong F_{(b,b_{\omega})} for every (x,y)E(x,y)\in E with l(x,y)=ωl(x,y)=\omega. Furthermore, FF admits a unique involutive compatibility cocycle, i.e. a map z:F×ΩF,(a,ω)aωz:F\times\Omega\to F,\ (a,\omega)\mapsto a_{\omega} which for all a,bFa,b\in F and ωΩ\omega\in\Omega satisfies

  1. (i)

    (compatibility) z(a,ω)CF(a,ω)z(a,\omega)\in C_{F}(a,\omega),

  2. (ii)

    (cocycle) z(ab,ω)=z(a,bω)z(b,ω)z(ab,\omega)=z(a,b\omega)z(b,\omega), and

  3. (iii)

    (involutive) z(z(a,ω),ω)=az(z(a,\omega),\omega)=a.

Note that zz restricts to an automorphism zωz_{\omega} of F(b,bω)F_{(b,b_{\omega})} (ωΩ)(\omega\in\Omega) of order at most 22.

3.3. Group Structure

For F~Aut(Bd,k)\smash{\widetilde{F}\leq\operatorname{Aut}(B_{d,k})}, let F:=πF~Sym(Ω)\smash{F:=\pi\widetilde{F}\leq\operatorname{Sym}(\Omega)} denote the projection of F~\smash{\widetilde{F}} onto Aut(Bd,1)Sym(Ω)\operatorname{Aut}(B_{d,1})\cong\operatorname{Sym}(\Omega). As an illustration, we record that the group structure of Uk(F~)\smash{\mathrm{U}_{k}(\widetilde{F})} is particularly clear when FF is regular.

Proposition 3.13.

Let F~Aut(Bd,k)\smash{\widetilde{F}\leq\operatorname{Aut}(B_{d,k})} satisfy (C). Suppose F:=πF~\smash{F:=\pi\widetilde{F}} is regular. Then Uk(F~)=U1(F)F/2\smash{\mathrm{U}_{k}(\widetilde{F})=\mathrm{U}_{1}(F)\cong F\ast\operatorname{\mathbb{Z}}\!/2\operatorname{\mathbb{Z}}}.

Proof.

Fix xVx\in V. Since FF is transitive, the group Uk(F~)\mathrm{U}_{k}(\widetilde{F}) is generated by Uk(F~)x\mathrm{U}_{k}(\widetilde{F})_{x} and an involution ι\iota inverting an edge with origin xx. Given αUk(F~)x\smash{\alpha\in\mathrm{U}_{k}(\widetilde{F})_{x}}, regularity of FF implies that σ1(α,y)=σ1(α,x)F\sigma_{1}(\alpha,y)=\sigma_{1}(\alpha,x)\in F for all yVy\in V. Now, the subgroups H1:=Uk(F~)xFH_{1}:=\smash{\mathrm{U}_{k}(\widetilde{F})_{x}\cong F} and H2:=ιH_{2}:=\langle\iota\rangle of Uk(F~)\smash{\mathrm{U}_{k}(\widetilde{F})} generate a free product within Uk(F)\mathrm{U}_{k}(F) by the ping-pong lemma: Put X1:=V(Tx)X_{1}:=V(T_{x}) and X2:=V(Txω)X_{2}:=V(T_{x_{\omega}}). Any non-trivial element of H1H_{1} maps X2X_{2} into X1X_{1} as Fω={id}F_{\omega}=\{\operatorname{id}\}, and ιH2\iota\in H_{2} maps X1X_{1} into X2X_{2}. ∎

More generally, Bass-Serre theory [Ser03] identifies the universal groups Uk(F)\mathrm{U}_{k}(F) as amalgamated free products, taking into account that Uk(F)\mathrm{U}_{k}(F) acts with inversions.

Proposition 3.14.

Let FAut(Bd,k)\smash{F\leq\operatorname{Aut}(B_{d,k})} satisfy (C) (and (D)). If πF\pi F is transitive,

Uk(F)Uk(F)xUk(F)(x,y)Uk(F){x,y}(FF(b,bω)(F(b,bω)/2))\mathrm{U}_{k}(F)\cong\mathrm{U}_{k}(F)_{x}\underset{\text{\makebox[14.22636pt]{\raisebox{0.0pt}[8.5359pt]{$\mathrm{U}_{k}(F)_{(x,y)}$}}}}{\ast}\mathrm{U}_{k}(F)_{\{x,y\}}\left(\cong F\underset{\text{\makebox[14.22636pt]{\raisebox{0.0pt}[8.5359pt]{$F_{(b,b_{\omega})}$}}}}{\ast}(F_{(b,b_{\omega})}\rtimes\operatorname{\mathbb{Z}}\!/2\operatorname{\mathbb{Z}})\right)

for any edge (x,y)E(x,y)\in E, where ω=l(x,y)\omega=l(x,y) and /2\operatorname{\mathbb{Z}}\!/2\operatorname{\mathbb{Z}} acts on F(b,bω)F_{(b,b_{\omega})} as zωz_{\omega}.

Corollary 3.15.

Let F,FAut(Bd,k)F,F^{\prime}\!\leq\!\operatorname{Aut}(\!B_{d,k}) satisfy (CD). If there are ω,ωΩ\omega,\omega^{\prime}\in\Omega and an isomorphism φ:FF\varphi\!:\!F\!\to\!F^{\prime} such that φ(F(b,bω))=F(b,bω)\varphi(F_{(b,b_{\omega})})=F^{\prime}_{(b,b_{\omega^{\prime}})}, then Uk(F)Uk(F)\mathrm{U}_{k}(F)\cong\mathrm{U}_{k}(F^{\prime}). ∎

Note that Corollary 3.15 applies to conjugate subgroups of Aut(Bd,k)\operatorname{Aut}(B_{d,k}) which satisfy (CD). The following example shows that the assumption that both FF and FF^{\prime} in Corollary 3.15 satisfy (CD) is indeed necessary.

Example 3.16.

Let Ω:={1,2,3}\Omega:=\{1,2,3\} and tAut(B3,2)t\in\operatorname{Aut}(B_{3,2}) be the element which swaps the leaves x12x_{12} and x13x_{13} of B3,2B_{3,2}. Using the notation of Section 3.4.1, consider the group Γ(A3)Aut(B3,2)\Gamma(A_{3})\!\leq\!\operatorname{Aut}(B_{3,2}) which satisfies (C). In particular, U2(Γ(A3))A3/2\mathrm{U}_{2}(\Gamma(A_{3}))\!\cong\!A_{3}\ast\operatorname{\mathbb{Z}}\!/2\operatorname{\mathbb{Z}} by Proposition 3.13. On the other hand, set F:=tΓ(A3)t1F^{\prime}:=t\Gamma(A_{3})t^{-1}. Then πF=A3\pi F^{\prime}=A_{3} while for a non-trivial element α\alpha of FF^{\prime}, we have σ1(α,bω)S3\A3\sigma_{1}(\alpha,b_{\omega})\!\in\!S_{3}\backslash A_{3} for some ωΩ\omega\in\Omega. Therefore, U2(F)=U1({id})\mathrm{U}_{2}(F^{\prime})=\mathrm{U}_{1}(\{\operatorname{id}\}) is isomorphic to /2/2/2\operatorname{\mathbb{Z}}\!/2\operatorname{\mathbb{Z}}\ast\operatorname{\mathbb{Z}}\!/2\operatorname{\mathbb{Z}}\ast\operatorname{\mathbb{Z}}\!/2\operatorname{\mathbb{Z}} by Lemma 1.5. In particular, U2(Γ(A3))\mathrm{U}_{2}(\Gamma(A_{3})) and U2(tΓ(A3)t1)\mathrm{U}_{2}(t\Gamma(A_{3})t^{-1}) are not isomorphic.

Conversely, the following Proposition based on [Rad17, Appendix A], which states that in certain cases the tree can be recovered from the topological group structure of a subgroup of Aut(Td)\operatorname{Aut}(T_{d}), applies to appropriate universal groups.

Proposition 3.17.

Let H,HAut(Td)H,H^{\prime}\leq\operatorname{Aut}(T_{d}) be closed and locally transitive with distinct point stabilizers. Then HH and HH^{\prime} are isomorphic topological groups if and only if they are conjugate in Aut(Td)\operatorname{Aut}(T_{d}).

Proof.

By [FTN91], every compact subgroup of HH is either contained in a vertex stabilizer HxH_{x} (xV)(x\in V) or, in case HAut(Td)+H\not\leq\operatorname{Aut}(T_{d})^{+}, in a geometric edge stabilizer H{e,e¯}H_{\{e,\overline{e}\}} (eE)(e\in E). Since HH is locally transitive, the above are pairwise distinct.

The vertex stabilizers are precisely those maximal compact subgroups KHK\leq H for which there is no maximal compact subgroup KK^{\prime} with [K:KK]=2[K:K\cap K^{\prime}]=2: Indeed, for eEe\in E and x{o(e),t(e)}x\in\{o(e),t(e)\} we have [H{e,e¯}:H{e,e¯}Hx]=2[H_{\{e,\overline{e}\}}:H_{\{e,\overline{e}\}}\cap H_{x}]=2 whereas [Hx:HxHy],[Hx:HxH{e,e¯}]3[H_{x}:H_{x}\cap H_{y}],[H_{x}:H_{x}\cap H_{\{e,\overline{e}\}}]\geq 3 for all distinct x,yVx,y\in V and eEe\in E by the orbit-stabilizer theorem because d3d\geq 3 and HH is locally transitive.

Adjacency can be expressed in terms of indices as well: Let x,yVx,y\in V be distinct. Then (x,y)E(x,y)\in E if and only if [Hx:HxHy][Hx:HxHz][H_{x}:H_{x}\cap H_{y}]\leq[H_{x}:H_{x}\cap H_{z}] for all zVz\in V: Indeed, if (x,y)E(x,y)\in E, then [Hx:HxHy]=d[H_{x}:H_{x}\cap H_{y}]=d by the orbit-stabilizer theorem given that HH is locally transitive. If zVz\in V is not adjacent to xx then [Hx:HxHz]>d[H_{x}:H_{x}\cap H_{z}]>d because point stabilizers of every local action of HH are distinct.

Now, let Φ:HH\Phi:H\to H^{\prime} be an isomorphism of topological groups. Then Φ\Phi induces a bijection between the maximal compact subgroups of HH and HH^{\prime}, and preserves indices. Hence there is an automorphism φAut(Td)\varphi\in\operatorname{Aut}(T_{d}) such that Φ(Hx)=Hφ(x)\Phi(H_{x})=H^{\prime}_{\varphi(x)} for all xVx\in V. Furthermore, since vertex stabilizers in HH^{\prime} are pairwise distinct and

Hφhφ1(x)=Φ(Hhφ1(x))=Φ(hHφ1(x)h1)=Φ(h)HxΦ(h1)=HΦ(h)xH^{\prime}_{\varphi h\varphi^{-1}(x)}=\Phi(H_{h\varphi^{-1}(x)})=\Phi(hH_{\varphi^{-1}(x)}h^{-1})=\Phi(h)H^{\prime}_{x}\Phi(h^{-1})=H^{\prime}_{\Phi(h)x}

for all xVx\in V we have φhφ1=Φ(h)\varphi h\varphi^{-1}=\Phi(h) for all hHh\in H. ∎

The following Corollary uses the notation Φk(F)\Phi^{k}(F^{\prime}) from Section 3.4.2.

Corollary 3.18.

Let FAut(Bd,k)F\!\leq\!\operatorname{Aut}(B_{d,k}) and FAut(Bd,k)F^{\prime}\!\leq\!\operatorname{Aut}(B_{d,k^{\prime}}) satisfy (C). Assume kkk\!\geq\!k^{\prime} and πF,πFSym(Ω)\pi F,\pi F^{\prime}\!\leq\!\operatorname{Sym}(\Omega) are transitive with distinct point stabilizers. If Uk(F)\mathrm{U}_{k}(F) and Uk(F)\mathrm{U}_{k^{\prime}}(F^{\prime}) are isomorphic topological groups then F,Φk(F)Aut(Bd,k)F,\Phi^{k}(F^{\prime})\!\leq\!\operatorname{Aut}(\!B_{d,k}) are conjugate.

Proof.

By Proposition 3.17, the groups Uk(F)\mathrm{U}_{k}(F) and Uk(F)\mathrm{U}_{k}(F^{\prime}) are conjugate in Aut(Td)\operatorname{Aut}(T_{d}), hence so are Uk(F)x\mathrm{U}_{k}(F)_{x} and Uk(F)x\mathrm{U}_{k^{\prime}}(F^{\prime})_{x} for every xVx\in V and the assertion follows. ∎

Example 3.19.

Section 3.4.1 introduces the isomorphic, non-conjugate subgroups Π(S3,sgn,{1})\Pi(S_{3},\mathrm{sgn},\{1\}) and Π(S3,sgn,{0,1})\Pi(S_{3},\mathrm{sgn},\{0,1\}) of Aut(B3,2)\operatorname{Aut}(B_{3,2}), both of which project onto S3S_{3} and satisfy (C) but not (D). An explicit isomorphism satisfies the assumption of Corollary 3.15. However, by Corollary 3.18 the universal groups U2(Π(S3,sgn,{1}))\mathrm{U}_{2}(\Pi(S_{3},\mathrm{sgn},\{1\})) and U2(Π(S3,sgn,{0,1}))\mathrm{U}_{2}(\Pi(S_{3},\mathrm{sgn},\{0,1\})) are non-isomorphic. Therefore, Corollary 3.15 does not generalize to the non-discrete case.

Question 3.20.

Let F,FAut(Bd,k)F,F^{\prime}\leq\operatorname{Aut}(B_{d,k}) satisfy (C) and be conjugate. Are the associated universal groups Uk(F)\mathrm{U}_{k}(F) and Uk(F)\mathrm{U}_{k}(F^{\prime}) necessarily isomorphic?

In the following, we determine the Burger–Mozes subquotient H()/QZ(H())H^{(\infty)}\!/\mathrm{QZ}(H^{(\infty)}) of Theorem 2.14 for non-discrete, locally semiprimitive universal groups.

Proposition 3.21.

Let FAut(Bd,k)F\leq\operatorname{Aut}(B_{d,k}) satisfy (C). If, in addition, FF satisfies (D) then QZ(Uk(F))=Uk(F)\mathrm{QZ}(\mathrm{U}_{k}(F))=\mathrm{U}_{k}(F). Otherwise, QZ(Uk(F))={id}\mathrm{QZ}(\mathrm{U}_{k}(F))=\{\operatorname{id}\}.

Proof.

If FF satisfies (D) then Uk(F)\mathrm{U}_{k}(F) is discrete and hence QZ(Uk(F))=Uk(F)\mathrm{QZ}(\mathrm{U}_{k}(F))=\mathrm{U}_{k}(F). Conversely, if FF satisfies (C) but not (D) then the stabilizer of any half-tree TTdT\subseteq T_{d} in Uk(F)\mathrm{U}_{k}(F) is non-trivial: We have T{Tx,Ty}T\in\{T_{x},T_{y}\} for some edge e:=(x,y)Ee:=(x,y)\in E. Since Uk(F)\mathrm{U}_{k}(F) is non-discrete by Proposition 3.12 and has Property (Pk)(P_{k}) by Proposition 3.7, the group Uk(F)ek=Uk(F)ek,TyUk(F)ek,Tx\mathrm{U}_{k}(F)_{e^{k}}=\mathrm{U}_{k}(F)_{e^{k},T_{y}}\cdot\mathrm{U}_{k}(F)_{e^{k},T_{x}} is non-trivial. In particular, either Uk(F)Tx\mathrm{U}_{k}(F)_{T_{x}} or Uk(F)Ty\mathrm{U}_{k}(F)_{T_{y}} is non-trivial. In view of the existence of label-respecting inversions, both are non-trivial and hence so is Uk(F)T\mathrm{U}_{k}(F)_{T}. Therefore, Uk(F)\mathrm{U}_{k}(F) has Property H of Möller–Vonk [MV12, Definition 2.3] and [MV12, Proposition 2.6] implies that Uk(F)\mathrm{U}_{k}(F) has trivial quasi-center. ∎

Proposition 3.22.

Let FAut(Bd,k)F\leq\operatorname{Aut}(B_{d,k}) satisfy (C) but not (D). Suppose that πF\pi F is semiprimitive. Then Uk(F)()/QZ(Uk(F)())=Uk(F)()=Uk(F)+k\mathrm{U}_{k}(F)^{(\infty)}/\mathrm{QZ}(\mathrm{U}_{k}(F)^{(\infty)})=\mathrm{U}_{k}(F)^{(\infty)}=\mathrm{U}_{k}(F)^{+_{k}}.

Proof.

The subgroup Uk(F)+kUk(F)\mathrm{U}_{k}(F)^{+_{k}}\leq\mathrm{U}_{k}(F) is open, hence closed, and normal in Uk(F)\mathrm{U}_{k}(F) by definition. Since Uk(F)\mathrm{U}_{k}(F) is non-discrete by Proposition 3.12, so is Uk(F)+k\mathrm{U}_{k}(F)^{+_{k}}. Using Proposition 2.11iii, we conclude that Uk(F)+kUk(F)()\mathrm{U}_{k}(F)^{+_{k}}\geq\mathrm{U}_{k}(F)^{(\infty)}. Since Uk(F)\mathrm{U}_{k}(F) satisfies Property (Pk)(P_{k}) by Proposition 3.7, the group Uk(F)+k\mathrm{U}_{k}(F)^{+_{k}} is simple due to Theorem 1.1. Thus Uk(F)+k=Uk(F)()\mathrm{U}_{k}(F)^{+_{k}}=\mathrm{U}_{k}(F)^{(\infty)}. Given that QZ(Uk(F)())=QZ(Uk(F))Uk(F)()\mathrm{QZ}(\mathrm{U}_{k}(F)^{(\infty)})=\mathrm{QZ}(\mathrm{U}_{k}(F))\cap\mathrm{U}_{k}(F)^{(\infty)} by Proposition 2.11iv, the assertion follows from Proposition 3.21. ∎

In the context of Proposition 3.22, the group Uk(F)+k\mathrm{U}_{k}(F)^{+_{k}} is simple, compactly generated, non-discrete, totally disconnected, locally compact, second countable. Compact generation follows from [KM08, Corollary 2.11] given that Uk(F)+k\smash{\mathrm{U}_{k}(F)^{+_{k}}} is cocompact in Uk(F)\mathrm{U}_{k}(F) by Proposition 2.11i.

3.4. Examples

We now construct various classes of examples of subgroups of Aut(Bd,k)\operatorname{Aut}(B_{d,k}) satisfying (C) or (CD), and prove a rigidity result for certain local actions.

First, we give a suitable realization of Aut(Bd,k)\operatorname{Aut}(B_{d,k}) and the conditions (C) and (D). Namely, we view an automorphism α\alpha of Bd,kB_{d,k} as the set {σk1(α,v)vB(b,1)}\{\sigma_{k-1}(\alpha,v)\mid v\in B(b,1)\} as follows: Let Aut(Bd,1)Sym(Ω)\operatorname{Aut}(B_{d,1})\cong\operatorname{Sym}(\Omega) be the natural isomorphism. For k2k\geq 2, we iteratively identify Aut(Bd,k)\operatorname{Aut}(B_{d,k}) with its image under the map

Aut(Bd,k)Aut(Bd,k1)ωΩAut(Bd,k1),α(σk1(α,b),(σk1(α,bω))ω)\operatorname{Aut}(B_{d,k})\to\operatorname{Aut}(B_{d,k-1})\ltimes\prod\nolimits_{\omega\in\Omega}\operatorname{Aut}(B_{d,k-1}),\ \alpha\mapsto(\sigma_{k-1}(\alpha,b),(\sigma_{k-1}(\alpha,b_{\omega}))_{\omega})

where Aut(Bd,k1)\operatorname{Aut}(B_{d,k-1}) acts on ωΩAut(Bd,k1)\smash{\prod_{\omega\in\Omega}\operatorname{Aut}(B_{d,k-1})} by permuting the factors according to its action on S(b,1)ΩS(b,1)\cong\Omega. That is, multiplication in Aut(Bd,k)\operatorname{Aut}(B_{d,k}) is given by

(α,(αω)ωΩ)(β,(βω)ωΩ)=(αβ,(αβωβω)ωΩ).(\alpha,(\alpha_{\omega})_{\omega\in\Omega})\circ(\beta,(\beta_{\omega})_{\omega\in\Omega})=(\alpha\beta,(\alpha_{\beta\omega}\beta_{\omega})_{\omega\in\Omega}).

Consider the homomorphism πk1:Aut(Bd,k)Aut(Bd,k1),ασk1(α,b)\pi_{k-1}:\operatorname{Aut}(B_{d,k})\to\operatorname{Aut}(B_{d,k-1}),\ \alpha\mapsto\sigma_{k-1}(\alpha,b), the projections prω:Aut(Bd,k)Aut(Bd,k1),ασk1(α,bω)\operatorname{pr}_{\omega}:\operatorname{Aut}(B_{d,k})\to\operatorname{Aut}(B_{d,k-1}),\ \alpha\mapsto\sigma_{k-1}(\alpha,b_{\omega}) (ωΩ)(\omega\in\Omega), and

pω=(πk1,prω):Aut(Bd,k)Aut(Bd,k1)×Aut(Bd,k1),p_{\omega}=(\pi_{k-1},\operatorname{pr}_{\omega}):\operatorname{Aut}(B_{d,k})\to\operatorname{Aut}(B_{d,k-1})\times\operatorname{Aut}(B_{d,k-1}),

whose image we interpret as a relation on Aut(Bd,k1)\operatorname{Aut}(B_{d,k-1}). The conditions (C) and (D) for a subgroup FAut(Bd,k)F\leq\operatorname{Aut}(B_{d,k}) now read as follows.

(C) ωΩ:pω(F) is symmetric\forall\omega\in\Omega:\ p_{\omega}(F)\text{ is symmetric}
(D) ωΩ:pω|F1(id,id)={id}\forall\omega\in\Omega:\ p_{\omega}|_{F}^{-1}(\operatorname{id},\operatorname{id})=\{\operatorname{id}\}

3.4.1. The case k=2k=2

We first consider the case k=2k=2 which is all-encompassing in certain situations, see Theorem 3.32. By the above, Aut(Bd,2)\operatorname{Aut}(B_{d,2}) is realized as follows: Aut(Bd,2)={(a,(aω)ωΩ)aSym(Ω),ωΩ:aωSym(Ω) and aωω=aω}\operatorname{Aut}(B_{d,2})=\{(a,(a_{\omega})_{\omega\in\Omega})\mid a\in\operatorname{Sym}(\Omega),\ \forall\omega\in\Omega:\ a_{\omega}\in\operatorname{Sym}(\Omega)\text{ and }a_{\omega}\omega=a\omega\}.

Consider the map γ:Sym(Ω)Aut(Bd,2)\gamma:\operatorname{Sym}(\Omega)\to\operatorname{Aut}(B_{d,2}), a(a,(a,,a))Aut(Bd,2)a\mapsto(a,(a,\ldots,a))\in\operatorname{Aut}(B_{d,2}), using the realization of Aut(Bd,2)\operatorname{Aut}(B_{d,2}) from above. For every FSym(Ω)F\leq\operatorname{Sym}(\Omega), the image

Γ(F):=im(γ|F)={(a,(a,,a))aF}F\Gamma(F):=\operatorname{im}(\gamma|_{F})=\{(a,(a,\ldots,a))\mid a\in F\}\cong F

is a subgroup of Aut(Bd,2)\operatorname{Aut}(B_{d,2}) which is isomorphic to FF and satisfies both (C) and (D). The involutive compatibility cocycle is given by Γ(F)×ΩΓ(F),(γ(a),ω)γ(a)\Gamma(F)\times\Omega\to\Gamma(F),\ (\gamma(a),\omega)\mapsto\gamma(a). Note that Γ(F)F\Gamma(F)\!\cong\!F implements the diagonal action FΩ2F\curvearrowright\Omega^{2} on S(b,2)Ω(2)Ω2S(b,2)\cong\Omega^{(2)}\subset\Omega^{2}.

We obtain U2(Γ(F))={αAut(Td)aF:xV:σ1(α,x)=a}=:D(F)\mathrm{U}_{2}(\Gamma(F))\!=\!\{\alpha\in\operatorname{Aut}(T_{d})\mid\exists a\in F:\forall x\in V:\ \sigma_{1}(\alpha,x)=a\}=:\mathrm{D}(F), following the notation of [BEW15]. Moreover, there is the following description of all subgroups F~Aut(Bd,2)\smash{\widetilde{F}\leq\operatorname{Aut}(B_{d,2})} with πF~=F\smash{\pi\widetilde{F}=F} that satisfy (C) and contain Γ(F)\Gamma(F).

Proposition 3.23.

Let FSym(Ω)F\leq\operatorname{Sym}(\Omega). Given KωΩFωkerπAut(Bd,2)K\leq\prod_{\omega\in\Omega}F_{\omega}\cong\ker\pi\leq\operatorname{Aut}(B_{d,2}), there is F~Aut(Bd,2)\smash{\widetilde{F}\leq\operatorname{Aut}(B_{d,2})} satisfying (C) and fitting into the split exact sequence

1\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K\textstyle{K\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι\scriptstyle{\iota}F~\textstyle{\widetilde{F}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π\scriptstyle{\pi}F\textstyle{F\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}γ\scriptstyle{\gamma}1\textstyle{1}

if and only if KK is preserved by the action FωΩFωF\curvearrowright\prod_{\omega\in\Omega}F_{\omega}, a(aω)ω:=(aaa1ωa1)ω\ a\cdot(a_{\omega})_{\omega}:=(aa_{a^{-1}\omega}a^{-1})_{\omega}.

Proof.

If there is a split exact sequence as above then KF~K\unlhd\widetilde{F} is invariant under conjugation by Γ(F)F~\smash{\Gamma(F)\leq\widetilde{F}}, hence the assertion.

Conversely, if KK is invariant under the given action, then

F~:={(a,(aaω)ω)aF,(aω)ωK}\smash{\widetilde{F}:=\{(a,(aa_{\omega})_{\omega})\mid a\in F,\ (a_{\omega})_{\omega}\in K\}}

fits into the sequence: First, note that F~\smash{\widetilde{F}} contains both KK and Γ(F)\Gamma(F). It is also a subgroup of Aut(Bd,2)\operatorname{Aut}(B_{d,2}): For (a,(aaω)ω),(b,(bbω)ω)F~\smash{(a,(aa_{\omega})_{\omega}),\ (b,(bb_{\omega})_{\omega})\in\widetilde{F}} we have

(a,(aaω)ω)(b,(bbω)ω)=(ab,(aabωbbω)ω)=(ab,(abb1abωbbω)ω)F~\displaystyle(a,(aa_{\omega})_{\omega})\circ(b,(bb_{\omega})_{\omega})=(ab,(aa_{b\omega}bb_{\omega})_{\omega})=(ab,(ab\circ b^{-1}a_{b\omega}b\circ b_{\omega})_{\omega})\in\widetilde{F}

by assumption. In particular, F~=Γ(F),K\widetilde{F}=\langle\Gamma(F),K\rangle. It suffices to check condition (C) on these generators of F~\smash{\widetilde{F}}. As before, γ(a)C(γ(a),ω)\gamma(a)\in C(\gamma(a),\omega) for all aFa\in F and ωΩ\omega\in\Omega. Now let kKk\in K. Then γ(prωk)k1C(k,ω)\gamma(\operatorname{pr}_{\omega}k)k^{-1}\in C(k,\omega) for all ωΩ\omega\in\Omega. ∎

Example 3.24.

We show that for certain dihedral groups there are only four groups of the type given in Proposition 3.23: Set F:=DpSym(p)F:=D_{p}\leq\operatorname{Sym}(p) for some prime p3p\geq 3. Then Fω(𝔽2,+)F_{\omega}\!\cong\!(\operatorname{\mathbb{F}}_{2},+). Hence U:=ωΩFω\smash{U\!:=\!\prod_{\omega\in\Omega}F_{\omega}} is a pp-dimensional vector space over 𝔽2\operatorname{\mathbb{F}}_{2} and the FF-action on it permutes coordinates. When 2(/p)2\in(\operatorname{\mathbb{Z}}/p\operatorname{\mathbb{Z}})^{\ast} is primitive, there are only four FF-invariant subspaces of UU: The trivial subspace, the diagonal subspace (1,,1)\langle(1,\ldots,1)\rangle, the whole space, and K:=kerσ𝔽2(p1)\smash{K:=\ker\sigma\cong\operatorname{\mathbb{F}}_{2}^{(p-1)}} where σ:U𝔽2\smash{\sigma\!:U\to\operatorname{\mathbb{F}}_{2}} is given by (v1,,vp)i=1pvi\smash{(v_{1},\ldots,v_{p})\mapsto\sum_{i=1}^{p}v_{i}}. Note that KK is FF-invariant because the homomorphism σ\sigma is. Conjecturally, there are infinitely many primes for which 2(/p)2\in(\operatorname{\mathbb{Z}}/p\operatorname{\mathbb{Z}})^{\ast} is primitive. The list starts with 33, 55, 1111, 13,13,\ldots, see [Slo, A001122].

Suppose that WUW\leq U is FF-invariant. It suffices to show that WW contains KK as soon as WkerσW\cap\ker\sigma contains a non-trivial element ww. To see this, we show that the orbit of ww under the cyclic group ϱ=CpDp\langle\varrho\rangle=C_{p}\leq D_{p} generates a (p1)(p-1)-dimensional subspace of KK which hence equals KK: Indeed, the rank of the circulant matrix C:=(w,ϱw,ϱ2w,,ϱ(p1)w)C:=(w,\varrho w,\varrho^{2}w,\ldots,\varrho^{(p-1)}w) equals pdeg(gcd(xp1,f(x)))p-\deg(\gcd(x^{p}-1,f(x))) where f(x)𝔽2[x]f(x)\in\operatorname{\mathbb{F}}_{2}[x] is the polynomial f(x)=wpxp1++w2x+w1f(x)=w_{p}x^{p-1}+\cdots+w_{2}x+w_{1}, see e.g. [Day60, Corollary 1]. The polynomial xp1𝔽2[x]x^{p}-1\in\operatorname{\mathbb{F}}_{2}[x] factors into the irreducibles (xp1+xp2++x+1)(x1)(x^{p-1}+x^{p-2}+\cdots+x+1)(x-1) by the assumption on pp. Since ff has an even number of non-zero coefficients, we conclude that rank(C)=p1\mathrm{rank}(C)=p-1.

The following subgroups of Aut(Bd,2)\operatorname{Aut}(B_{d,2}) are of the type given in Proposition 3.23. Let FSym(Ω)F\leq\operatorname{Sym}(\Omega) be transitive. Fix ω0Ω\omega_{0}\in\Omega, let CZ(Fω0)C\leq Z(F_{\omega_{0}}) and let NFω0N\unlhd F_{\omega_{0}} be normal. Furthermore, fix elements fωFf_{\omega}\in F (ωΩ\omega\in\Omega) satisfying fω(ω0)=ωf_{\omega}(\omega_{0})=\omega. We define

Δ(F,C):={(a,(afωa0fω1)ω)aF,a0C}F×C,and\Delta(F,C):=\{(a,(a\circ f_{\omega}a_{0}f_{\omega}^{-1})_{\omega})\mid a\in F,\ a_{0}\in C\}\cong F\times C,\ \text{and}
Φ(F,N):={(a,(afωa0(ω)fω1)ω)aF,ωΩ:a0(ω)N}FNd.\Phi(F,N):=\{(a,(a\circ f_{\omega}a_{0}^{(\omega)}f_{\omega}^{-1})_{\omega})\mid a\in F,\ \forall\omega\in\Omega:\ a_{0}^{(\omega)}\in N\}\cong F\ltimes N^{d}.

In the case of Δ(F,C)\Delta(F,C) we have K={(fωa0fω1)ωa0C}K=\{(f_{\omega}a_{0}f_{\omega}^{-1})_{\omega}\mid a_{0}\in C\} whereas in the case of Φ(F,N)\Phi(F,N) we have K={(fωa0(ω)fω1)ωωΩ:a0(ω)N}\smash{K=\{(f_{\omega}a_{0}^{(\omega)}f_{\omega}^{-1})_{\omega}\mid\forall\omega\in\Omega:a_{0}^{(\omega)}\in N\}}. In both cases, invariance under the action of FF is readily verified, as is condition (D) for Δ(F,C)\Delta(F,C).

The group Δ(F,Fω0)\Delta(F,F_{\omega_{0}}) can be defined for non-abelian Fω0F_{\omega_{0}} as well, namely

Δ(F):={(a,(faωfω1fωa0fω1)ω)aF,a0Fω0}F×Fω0.\Delta(F):=\{(a,(f_{a\omega}f_{\omega}^{-1}\circ f_{\omega}a_{0}f_{\omega}^{-1})_{\omega})\mid a\in F,a_{0}\in F_{\omega_{0}}\}\cong F\times F_{\omega_{0}}.

However, it need not contain Γ(F)\Gamma(F). Note that Φ(F,N)\Phi(F,N) does not depend on the choice of the elements (fω)ωΩ(f_{\omega})_{\omega\in\Omega} as NN is normal in Fω0F_{\omega_{0}}, whereas Δ(F,C)\Delta(F,C) and Δ(F)\Delta(F) may. However, any group of the form {(a,(z(a,ω)αω(a0))ω)aF,a0Fω0}\{(a,(z(a,\omega)\alpha_{\omega}(a_{0}))_{\omega})\mid a\in F,\ a_{0}\in F_{\omega_{0}}\}, where zz is a compatibility cocycle of FF and αω:Fω0Fω\alpha_{\omega}:F_{\omega_{0}}\to F_{\omega} (ωΩ)(\omega\in\Omega) are isomorphisms, which satisfies (C) and in which {(a,(z(a,ω))ω)aF}\{(a,(z(a,\omega))_{\omega})\mid a\in F\} and {(id,(αω(a0))ω)a0Fω0}\{(\operatorname{id},(\alpha_{\omega}(a_{0}))_{\omega})\mid a_{0}\in F_{\omega_{0}}\} commute, will be referred to as Δ(F)\Delta(F) in view of Corollary 3.15.

The group Φ(F,Fω0)\Phi(F,F_{\omega_{0}}) can be defined without assuming transitivity of FF, namely

Φ(F):={(a,(aω)ω)aF,ωΩ:aωCF(a,ω)}FωΩFω.\Phi(F):=\{(a,(a_{\omega})_{\omega})\mid a\in F,\ \forall\omega\in\Omega:\ a_{\omega}\in C_{F}(a,\omega)\}\cong F\ltimes\prod\nolimits_{\omega\in\Omega}F_{\omega}.

We conclude that U2(Φ(F))=U1(F)\mathrm{U}_{2}(\Phi(F))=\mathrm{U}_{1}(F) for every FSym(Ω)F\leq\operatorname{Sym}(\Omega).

When FSym(Ω)F\leq\operatorname{Sym}(\Omega) preserves a partition 𝒫:Ω=iIΩi\operatorname{\mathcal{P}}:\Omega=\bigsqcup_{i\in I}\Omega_{i} of Ω\Omega, we define

Φ(F,𝒫):={(a,(aω)ω)aF,aωCF(a,ω) constant w.r.t. 𝒫}FiIFΩi.\Phi(F,\operatorname{\mathcal{P}}):=\{(a,(a_{\omega})_{\omega})\mid a\in F,\ a_{\omega}\in C_{F}(a,\omega)\text{ constant w.r.t. $\operatorname{\mathcal{P}}$}\}\cong F\ltimes\prod\nolimits_{i\in I}F_{\Omega_{i}}.

The group Φ(F,𝒫)\Phi(F,\operatorname{\mathcal{P}}) satisfies (C) as well and features prominently in Section 4.1.

The following kind of 22-local action generalises the sign construction in [Rad17]. Let FSym(Ω)F\leq\operatorname{Sym}(\Omega) and ρ:FA\rho:F\twoheadrightarrow A a homomorphism to an abelian group AA. Define

Π(F,ρ,{1})\displaystyle\Pi(F,\rho,\{1\}) :={(a,(aω)ω)Φ(F)|ωΩρ(aω)=1},and\displaystyle:=\left\{(a,(a_{\omega})_{\omega})\in\Phi(F)\left|\ \prod\nolimits_{\omega\in\Omega}\rho(a_{\omega})=1\right.\right\},\ \text{and}
Π(F,ρ,{0,1})\displaystyle\Pi(F,\rho,\{0,1\}) :={(a,(aω)ω)Φ(F)|ρ(a)ωΩρ(aω)=1}.\displaystyle:=\left\{(a,(a_{\omega})_{\omega})\in\Phi(F)\left|\ \rho(a)\prod\nolimits_{\omega\in\Omega}\rho(a_{\omega})=1\right.\right\}.

This construction is generalised to k2k\geq 2 in Section 3.4.2 where the third entry of Π\Pi is a set of radii over which the defining product is taken.

Proposition 3.25.

Let FSym(Ω)F\leq\operatorname{Sym}(\Omega) and ρ:FA\rho:F\twoheadrightarrow A a homomorphism to an abelian group AA. Let F~{Π(F,ρ,{1}),Π(F,ρ,{0,1})}\smash{\widetilde{F}\in\{\Pi(F,\rho,\{1\}),\Pi(F,\rho,\{0,1\})\}}. If ρ(Fω)=A\rho(F_{\omega})=A for all ωΩ\omega\in\Omega then πF~=F\smash{\pi\widetilde{F}=F} and F~\smash{\widetilde{F}} satisfies (C).

Proof.

As CF(a,ω)=aFωC_{F}(a,\omega)\!=\!aF_{\omega}, and ρ(Fω)=A\rho(F_{\omega})\!=\!A for all ωΩ\omega\in\Omega, an element (a,(aω)ω)Φ(F)(a,(a_{\omega})_{\omega})\!\in\!\Phi(F) can be turned into an element of F~\smash{\widetilde{F}} by changing aωa_{\omega} for a single, arbitrary ωΩ\omega\!\in\!\Omega. We conclude that πF~=F\smash{\pi\widetilde{F}=F} and that F~\smash{\widetilde{F}} satisfies (C)\eqref{eq:C}. ∎

3.4.2. General case

We extend some constructions of Section 3.4.1 to arbitrary kk. Given FAut(Bd,k)\smash{F\leq\operatorname{Aut}(B_{d,k})} satisfying (C), define the subgroup

Φk(F):={(α,(αω)ω)αF,ωΩ:αωCF(α,ω)}Aut(Bd,k+1).\Phi_{k}(F):=\{(\alpha,(\alpha_{\omega})_{\omega})\mid\alpha\in F,\ \forall\omega\in\Omega:\ \alpha_{\omega}\in C_{F}(\alpha,\omega)\}\leq\operatorname{Aut}(B_{d,k+1}).

Then Φk(F)\Phi_{k}(F) inherits condition (C) from FF and we obtain Uk+1(Φk(F))=Uk(F)\mathrm{U}_{k+1}(\Phi_{k}(F))=\mathrm{U}_{k}(F). Concerning the construction Γ\Gamma we have the following.

Proposition 3.26.

Let FAut(Bd,k)F\!\leq\!\operatorname{Aut}(B_{d,k}) satisfy (C). Then there exists a group Γk(F)Aut(Bd,k+1)\Gamma_{k}(F)\!\leq\!\operatorname{Aut}(B_{d,k+1}) satisfying (CD) such that πk:Γk(F)F\pi_{k}:\Gamma_{k}(F)\to F is an isomorphism if and only if FF admits an involutive compatibility cocycle zz.

Proof.

If FF admits an involutive compatibility cocycle zz, define

Γk(F):={(α,(z(α,ω))ω)αF}Aut(Bd,k+1).\Gamma_{k}(F):=\{(\alpha,(z(\alpha,\omega))_{\omega})\mid\alpha\in F\}\leq\operatorname{Aut}(B_{d,k+1}).

Then γz:FΓk(F),α(α,(z(α,ω))ω)\gamma_{z}:F\to\Gamma_{k}(F),\ \alpha\mapsto(\alpha,(z(\alpha,\omega))_{\omega}) is an isomorphism and the involutive compatibility cocycle of Γk(F)\Gamma_{k}(F) is given by z~:(γz(α),ω)γz(z(α,ω))\widetilde{z}:(\gamma_{z}(\alpha),\omega)\mapsto\gamma_{z}(z(\alpha,\omega)). Conversely, if a group Γk(F)\Gamma_{k}(F) with the asserted properties exists, set z:(α,ω)prωπk1α\smash{z:(\alpha,\omega)\mapsto\operatorname{pr}_{\omega}\pi_{k}^{-1}\alpha}. ∎

Let FAut(Bd,k)F\leq\operatorname{Aut}(B_{d,k}) satisfy (C) and let l>kl>k. We set Γl(F):=Γl1Γk(F)\Gamma^{l}(F):=\Gamma_{l-1}\circ\cdots\circ\Gamma_{k}(F) for an implicit sequence of involutive compatibility cocycles. Similarly, we define Φl(F):=Φl1Φk(F)\Phi^{l}(F):=\Phi_{l-1}\circ\cdots\circ\Phi_{k}(F). Now, let F~Aut(Bd,k)\smash{\widetilde{F}\leq\operatorname{Aut}(B_{d,k})}. Assume F:=πF~Sym(Ω)\smash{F:=\pi\widetilde{F}\leq\operatorname{Sym}(\Omega)} preserves a partition 𝒫:Ω=iIΩi\operatorname{\mathcal{P}}:\Omega=\bigsqcup_{i\in I}\Omega_{i} of Ω\Omega. Define the group

Φk(F~,𝒫):={(α,(αω)ω)αF~,αωCF~(α,ω) is constant w.r.t. 𝒫}.\Phi_{k}(\widetilde{F},\operatorname{\mathcal{P}}):=\{(\alpha,(\alpha_{\omega})_{\omega})\mid\alpha\in\widetilde{F},\ \alpha_{\omega}\in C_{\widetilde{F}}(\alpha,\omega)\text{ is constant w.r.t. $\operatorname{\mathcal{P}}$}\}.

If CF~(α,Ωi)\smash{C_{\widetilde{F}}(\alpha,\Omega_{i})} is non-empty for all αF~\smash{\alpha\in\widetilde{F}} and iIi\in I then Φk(F~,𝒫)\smash{\Phi_{k}(\widetilde{F},\operatorname{\mathcal{P}})} satisfies (C), and if CF~(id,Ωi)\smash{C_{\widetilde{F}}(\operatorname{id},\Omega_{i})} is non-trivial for all iIi\in I then Φk(F~,𝒫)\smash{\Phi_{k}(\widetilde{F},\operatorname{\mathcal{P}})} does not satisfy (D).

The following statement generalizes Proposition 3.23.

Proposition 3.27.

Let FAut(Bd,k)F\leq\operatorname{Aut}(B_{d,k}) satisfy (C). Suppose FF admits an involutive compatibility cocycle zz. Given KΦk(F)ker(πk)K\leq\Phi_{k}(F)\cap\ker(\pi_{k}), there is F~Aut(Bd,k+1)\smash{\widetilde{F}\leq\operatorname{Aut}(B_{d,k+1})} satisfying (C) and fitting into the split exact sequence

1\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K\textstyle{K\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι\scriptstyle{\iota}F~\textstyle{\widetilde{F}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π\scriptstyle{\pi}F\textstyle{F\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}γz\scriptstyle{\gamma_{z}}1\textstyle{1}

if and only if Γk(F)\Gamma_{k}(F) normalizes KK, and for all kKk\in K and ωΩ\omega\in\Omega there is kωKk_{\omega}\in K such that prωkω=z(prωk,ω)1\operatorname{pr}_{\omega}k_{\omega}=z(\operatorname{pr}_{\omega}k,\omega)^{-1}.

Proof.

If there is a split exact sequence as above then KF~K\unlhd\widetilde{F} is invariant under conjugation by Γk(F)\Gamma_{k}(F). Moreover, all elements of F~\smash{\widetilde{F}} have the form (α,(z(α,ω)αω)ω)(\alpha,(z(\alpha,\omega)\alpha_{\omega})_{\omega}) for some αF\alpha\!\in\!F and (αω)ωK(\alpha_{\omega})_{\omega}\in K. This implies the second assertion on KK.

Conversely, if KK satisfies the assumptions, then

F~:={(α,(z(α,ω)αω)ω)αF,(αω)ωK}\widetilde{F}:=\{(\alpha,(z(\alpha,\omega)\alpha_{\omega})_{\omega})\mid\alpha\in F,\ (\alpha_{\omega})_{\omega}\in K\}

fits into the sequence: First, note that F~\widetilde{F} contains both KK and Γk(F)\Gamma_{k}(F). It is also a subgroup of Aut(Bd,k+1)\operatorname{Aut}(B_{d,k+1}): For (α,(z(α,ω)αω)ω),(β,(z(β,ω)βω)ω)F~\smash{(\alpha,(z(\alpha,\omega)\alpha_{\omega})_{\omega}),\ (\beta,(z(\beta,\omega)\beta_{\omega})_{\omega})\in\widetilde{F}} we have

(α,(z(α,ω)αω)ω)\displaystyle(\alpha,(z(\alpha,\omega)\alpha_{\omega})_{\omega}) (β,(z(β,ω)βω)ω)=(αβ,(z(α,βω)αβωz(β,ω)βω)ω)\displaystyle\circ(\beta,(z(\beta,\omega)\beta_{\omega})_{\omega})=(\alpha\beta,(z(\alpha,\beta\omega)\alpha_{\beta\omega}z(\beta,\omega)\beta_{\omega})_{\omega})
=(αβ,(z(α,βω)z(β,ω)z(β,ω)1αβωz(β,ω)βω)ω)\displaystyle=(\alpha\beta,(z(\alpha,\beta\omega)z(\beta,\omega)\circ z(\beta,\omega)^{-1}\alpha_{\beta\omega}z(\beta,\omega)\circ\beta_{\omega})_{\omega})
=(αβ,(z(αβ,ω)αωβω)ω)F~\displaystyle=(\alpha\beta,(z(\alpha\beta,\omega)\alpha_{\omega}^{\prime}\beta_{\omega})_{\omega})\in\widetilde{F}

for some (αω)ωK(\alpha_{\omega}^{\prime})_{\omega}\in K because Γk(F)\Gamma_{k}(F) normalizes KK. In particular, F~=Γk(F),K\smash{\widetilde{F}=\langle\Gamma_{k}(F),K\rangle}. We check condition (C) on these generators. As before, γz(z(α,ω))C(γz(α),ω)\gamma_{z}(z(\alpha,\omega))\in C(\gamma_{z}(\alpha),\omega) for all αF\alpha\in F and ωΩ\omega\in\Omega because zz is involutive. Now, let kKk\in K. We then have γz(prωk)kωC(k,ω)\gamma_{z}(\operatorname{pr}_{\omega}k)k_{\omega}\in C(k,\omega) for all ωΩ\omega\in\Omega by the assumption on kωk_{\omega}. ∎

In the split situation of Proposition 3.27 we also denote F~\smash{\widetilde{F}} by Σk(F,K)\Sigma_{k}(F,K). For instance, the group Π(S3,sgn,{1})\Pi(S_{3},\mathrm{sgn},\{1\}) of Proposition 3.25 satisfies (C), admits an involutive compatibility cocycle but does not satisfy (D), see Section 4.3.

Now, let FSym(Ω)F\leq\operatorname{Sym}(\Omega) and ρ:FA\rho:F\twoheadrightarrow A a homomorphism to an abelian group AA. Further, let kk\in\operatorname{\mathbb{N}} and X{0,,k1}X\subseteq\{0,\ldots,k-1\}. Define

Πk(F,ρ,X):={αΦk(F)|rXxS(b,r)ρ(σ1(α,x))=1}.\Pi^{k}(F,\rho,X):=\left\{\alpha\in\Phi^{k}(F)\left|\ \prod\nolimits_{r\in X}\prod\nolimits_{x\in S(b,r)}\rho(\sigma_{1}(\alpha,x))=1\right.\right\}.
Proposition 3.28.

Let FSym(Ω)F\!\leq\!\operatorname{Sym}(\Omega) and ρ:FA\rho\!:\!F\twoheadrightarrow\!A a homomorphism to an abelian group AA. Further, let kk\in\operatorname{\mathbb{N}} and X{0,,k1}X\subseteq\{0,\ldots,k-1\} non-empty and non-zero with k1Xk\!-\!1\!\in\!X. If ρ(Fω)=A\rho(F_{\omega})\!=\!A for all ωΩ\omega\!\in\!\Omega then π(Πk(F,ρ,X))=F\smash{\pi(\Pi^{k}(F,\rho,X))\!=\!F} and Πk(F,ρ,X)\smash{\Pi^{k}(F,\rho,X)} has (C).

Proof.

As CF(a,ω)=aFωC_{F}(a,\omega)=aF_{\omega}, and ρ(Fω)=A\rho(F_{\omega})=A for all ωΩ\omega\in\Omega, an element αΦk(F)\alpha\in\Phi^{k}(F) can be turned into an element of Πk(F,ρ,X)\Pi^{k}(F,\rho,X) by changing σ1(α,x)\sigma_{1}(\alpha,x) for a single, arbitrary xS(b,k1)x\in S(b,k-1). When XX is non-zero we conclude that π(Πk(F,ρ,X))=F\pi(\Pi^{k}(F,\rho,X))\!=\!F and that Πk(F,ρ,X)\Pi^{k}(F,\rho,X) satisfies (C)\eqref{eq:C}. ∎

3.4.3. A rigid case

For certain FSym(Ω)F\leq\operatorname{Sym}(\Omega) the groups Γ(F)\Gamma(F), Δ(F)\Delta(F) and Φ(F)\Phi(F) already yield all possible Uk(F~)\smash{\mathrm{U}_{k}(\widetilde{F})} with πF~=F\smash{\pi\widetilde{F}=F}. The main argument is based on Sections 3.4 and 3.5 of [BM00]. We first record the following lemma whose proof is due to M. Giudici by personal communication.

Lemma 3.29.

Let FSym(Ω)F\leq\operatorname{Sym}(\Omega) be 22-transitive and FωF_{\omega} (ωΩ)(\omega\in\Omega) simple non-abelian. Then every extension F~\smash{\widetilde{F}} of FωF_{\omega} (ωΩ\omega\in\Omega) by FF is equivalent to Fω×FF_{\omega}\times F.

Proof.

Regarding FωF_{\omega} as a normal subgroup of F~\smash{\widetilde{F}}, consider the conjugation map φ:F~Aut(Fω)\smash{\varphi:\widetilde{F}\to\operatorname{Aut}(F_{\omega})}. We show that K:=kerφ=ZF~(Fω)F~\smash{K:=\ker\varphi=Z_{\widetilde{F}}(F_{\omega})\unlhd\widetilde{F}} complements FωF_{\omega} in F~\widetilde{F}. Since Z(Fω)={id}Z(F_{\omega})=\{\operatorname{id}\}, we have FωK={id}F_{\omega}\cap K=\{\operatorname{id}\}. Hence FωKF~\smash{F_{\omega}K\unlhd\widetilde{F}}. Next, consider F~/(FωK)Out(Fω)\smash{\widetilde{F}/(F_{\omega}K)\lesssim\mathrm{Out}(F_{\omega})}. By the solution of Schreier’ conjecture, Out(Fω)\mathrm{Out}(F_{\omega}) is solvable. Since F~/FωF\smash{\widetilde{F}/F_{\omega}\cong F} is not solvable we conclude K{id}K\neq\{\operatorname{id}\}. Now, by a theorem of Burnside, every 22-transitive permutation group FF is either almost simple or affine type, see [DM96, Theorem 4.1B and Section 4.8].

In the first case, FF is actually simple: Let NFN\unlhd F. Then FωNFωF_{\omega}\cap N\unlhd F_{\omega}. Hence either FωN={id}F_{\omega}\cap N=\{\operatorname{id}\} or FωN=FωF_{\omega}\cap N=F_{\omega}. Since FF is 22-transitive and thereby primitive, every normal subgroup acts transitively. Hence, in the first case, NN is regular which contradicts FF being almost simple. Thus the second case holds and N=NFω=FN=NF_{\omega}=F. Now F~/FωK\smash{\widetilde{F}/F_{\omega}K} is a proper quotient of FF and therefore trivial. We conclude that F~=FωKFω×K\smash{\widetilde{F}=F_{\omega}K\cong F_{\omega}\times K} and KF~/FωF\smash{K\cong\widetilde{F}/F_{\omega}\cong F}.

In the second case, F=FωCpd\smash{F=F_{\omega}\ltimes C_{p}^{d}} for some dd\in\operatorname{\mathbb{N}} and prime pp. Given that KK is non-trivial and KFωK/FωFK\cong F_{\omega}K/F_{\omega}\ooalign{\kern 2.15277pt\raisebox{2.15277pt}{$\lhd$}\cr\kern 2.15277pt{\raisebox{-2.79857pt}{$\sim$}}\kern 2.15277pt}F, it contains the unique minimal normal subgroup CpdKF\smash{C_{p}^{d}}\ooalign{\kern 2.15277pt\raisebox{2.15277pt}{$\lhd$}\cr\kern 2.15277pt{\raisebox{-2.79857pt}{$\sim$}}\kern 2.15277pt}K\ooalign{\kern 2.15277pt\raisebox{2.15277pt}{$\lhd$}\cr\kern 2.15277pt{\raisebox{-2.79857pt}{$\sim$}}\kern 2.15277pt}F. Since F/CpdFωF/C_{p}^{d}\cong F_{\omega} is non-abelian simple whereas the proper quotient F~/FωK\smash{\widetilde{F}/F_{\omega}K} of FF is solvable, KCpd\smash{K\neq C_{p}^{d}}. But F/CpdFω\smash{F/C_{p}^{d}\cong F_{\omega}} is simple, so FωK=F~\smash{\smash{F_{\omega}K=\widetilde{F}}}. ∎

The following propositions are of independent interest and used in Theorem 3.32 below. We introduce the following notation: Let F~Aut(Bd,k)\smash{\widetilde{F}\!\leq\!\operatorname{Aut}(B_{d,k})} and KF~bw\smash{K\leq\widetilde{F}_{b_{w}}} for some w=(ω1,,ωk1)Ω(k1)w=(\omega_{1},\ldots,\omega_{k-1})\in\Omega^{(k-1)}. We set πwK:=σ1(K,bw)Sym(Ω)ωk1\smash{\pi_{w}K:=\sigma_{1}(K,b_{w})\leq\operatorname{Sym}(\Omega)_{\omega_{k-1}}}.

Proposition 3.30.

Let F~Aut(Bd,k)\smash{\widetilde{F}\leq\operatorname{Aut}(B_{d,k})} satisfy (C). Suppose F:=πF~\smash{F:=\pi\widetilde{F}} is transitive. Further, let ωΩ\omega\!\in\!\Omega and w=(ω1,,ωk1)Ω(k1)w\!=\!(\omega_{1},\ldots,\omega_{k-1})\!\in\!\Omega^{(k-1)} with ω1ω\omega_{1}\!\neq\!\omega. Then πw(F~bwkerπ)\smash{\pi_{w}(\widetilde{F}_{b_{w}}\!\cap\ker\pi)} and πwF~Tω\smash{\pi_{w}\widetilde{F}_{T_{\omega}}} are subnormal in Fωk1F_{\omega_{k-1}} of depth at most k1k-1 and kk respectively.

Proof.

We argue by induction on k2k\!\geq\!2. For k=2k\!=\!2, the assertion that πw(F~bwkerπ)\smash{\pi_{w}(\widetilde{F}_{b_{w}}\cap\ker\pi)} is normal in Fω1F_{\omega_{1}} is a consequence of condition (C). Now, suppose F~Aut(Bd,k+1)\smash{\widetilde{F}\leq\operatorname{Aut}(B_{d,k+1})} satisfies the assumptions, and let ωΩ\omega\in\Omega and w=(ω1,,ωk)Ω(k)w=(\omega_{1},\ldots,\omega_{k})\in\Omega^{(k)} be such that ω1ω\omega_{1}\!\neq\!\omega. Since F~\smash{\widetilde{F}} satisfies (C), we have prω1(F~bwkerπ)(πkF~)bwkerπ\smash{\operatorname{pr}_{\omega_{1}}(\widetilde{F}_{b_{w}}\cap\ker\pi)\unlhd(\pi_{k}\widetilde{F})_{b_{w^{\prime}}}\cap\ker\pi}, where w:=(ω2,,ωk1)w^{\prime}:=(\omega_{2},\ldots,\omega_{k-1}) and the right hand side π\pi implicitly has domain πkF~\smash{\pi_{k}\widetilde{F}}. Hence

πw(F~bwkerπ)=πw(prω1(F~bwkerπ))πw((πkF~)bwkerπ)Fωk1\pi_{w}(\widetilde{F}_{b_{w}}\cap\ker\pi)=\pi_{w^{\prime}}(\operatorname{pr}_{\omega_{1}}(\widetilde{F}_{b_{w}}\cap\ker\pi))\unlhd\pi_{w^{\prime}}((\pi_{k}\widetilde{F})_{b_{w^{\prime}}}\cap\ker\pi)\unlhd F_{\omega_{k-1}}

by the induction hypothesis. The second assertion follows as F~TωF~bwkerπ\smash{\widetilde{F}_{T_{\omega}}\unlhd\smash{\widetilde{F}_{b_{w}}\cap\ker\pi}}. ∎

Proposition 3.31.

Let F~Aut(Bd,k)\smash{\widetilde{F}\leq\operatorname{Aut}(B_{d,k})} satisfy (C) but not (D). Suppose F:=πF~\smash{F:=\pi\widetilde{F}} is transitive, and every non-trivial subnormal subgroup of FωF_{\omega} (ωΩ\omega\in\Omega) of depth at most k1k-1 is transitive on Ω\{ω}\Omega\backslash\{\omega\}. Then Uk(F~)\smash{\mathrm{U}_{k}(\widetilde{F})} is locally kk-transitive.

Proof.

We argue by induction on kk. For k=1k=1, the assertion follows from transitivity of FF. Now, let F~Aut(Bd,k+1)\smash{\widetilde{F}\leq\operatorname{Aut}(B_{d,k+1})} satisfy (C) but not (D). Then the same holds for F(k):=πkF~Aut(Bd,k)\smash{F^{(k)}:=\pi_{k}\widetilde{F}\leq\operatorname{Aut}(B_{d,k})}. Given w~,w~Ω(k)\smash{\widetilde{w},\widetilde{w}^{\prime}\in\Omega^{(k)}}, write w~=(w,ω)\smash{\widetilde{w}=(w,\omega)} and w~=(w,ω)\smash{\widetilde{w}^{\prime}=(w^{\prime},\omega^{\prime})} where w,wΩ(k1)w,w^{\prime}\in\Omega^{(k-1)} and ω,ωΩ\omega,\omega^{\prime}\in\Omega. By the induction hypothesis, the group F(k)\smash{F^{(k)}} acts transitively on S(b,k)S(b,k). Hence, using (C), there is gF~\smash{g\in\widetilde{F}} such that gbw=bwgb_{w}=b_{w^{\prime}}. As F~\smash{\widetilde{F}} does not satisfy (D) said transitivity further implies that πw(F~bwkerπ))\smash{\pi_{w^{\prime}}(\widetilde{F}_{b_{w^{\prime}}}\cap\ker\pi))} is non-trivial. By Proposition 3.30, it is also subnormal of depth at most k1k-1 in FωF_{\omega^{\prime}} and thus transitive. Hence there is gF~bw\smash{g^{\prime}\in\widetilde{F}_{b_{w^{\prime}}}} with ggbw~=bw~g^{\prime}gb_{\widetilde{w}}=b_{\widetilde{w}^{\prime}}. ∎

The following theorem is closely related to [BM00, Proposition 3.3.1].

Theorem 3.32.

Let FSym(Ω)F\!\leq\!\operatorname{Sym}(\Omega) be 22-transitive and FωF_{\omega} (ωΩ)(\omega\!\in\!\Omega) simple non-abelian. Further, let F~Aut(Bd,k)\smash{\widetilde{F}\leq\operatorname{Aut}(B_{d,k})} with πF~=F\smash{\pi\widetilde{F}=F} satisfy (C). Then Uk(F~)\smash{\mathrm{U}_{k}(\widetilde{F})} equals either

U2(Γ1(F)),U2(Δ(F))orU2(Φ(F))=U1(F).\mathrm{U}_{2}(\Gamma_{1}(F)),\quad\mathrm{U}_{2}(\Delta(F))\quad\text{or}\quad\mathrm{U}_{2}(\Phi(F))=\mathrm{U}_{1}(F).
Proof.

Since U1(F)=U2(Φ(F))\mathrm{U}_{1}(F)=\mathrm{U}_{2}(\Phi(F)), we may assume k2k\geq 2. Given that F~Aut(Bd,k)\widetilde{F}\leq\operatorname{Aut}(B_{d,k}) satisfies (C) so does the restriction F(2):=π2F~Φ(F)Aut(Bd,2)\smash{F^{(2)}:=\pi_{2}\widetilde{F}\leq\Phi(F)\leq\operatorname{Aut}(B_{d,2})}. Consider the projection π:F(2)F\smash{\pi:F^{(2)}\twoheadrightarrow F}. We have kerπωΩFω\ker\pi\leq\prod_{\omega\in\Omega}F_{\omega} and prωkerπFω\operatorname{pr}_{\omega}\ker\pi\unlhd F_{\omega} for all ωΩ\omega\in\Omega by Proposition 3.30. Since FωF_{\omega} is simple, kerπF(2)\smash{\ker\pi\unlhd F^{(2)}} and FF is transitive this implies that either prωkerπ={id}\operatorname{pr}_{\omega}\ker\pi=\{\operatorname{id}\} for all ωΩ\omega\in\Omega or prωkerπ=Fω\operatorname{pr}_{\omega}\ker\pi=F_{\omega} for all ωΩ\omega\in\Omega.

In the first case, π:F(2)F\smash{\pi:F^{(2)}\to F} is an isomorphism. Hence F(2)\smash{F^{(2)}} satisfies (CD) and Uk(F~)=U2(Γ1(F))\smash{\mathrm{U}_{k}(\widetilde{F})\!=\!\mathrm{U}_{2}(\Gamma_{1}(F))} for an involutive compatibility cocycle of FF by Proposition 3.26.

In the second case, fix ω0Ω\omega_{0}\in\Omega. We have kerπωΩFωFω0d\ker\pi\leq\prod_{\omega\in\Omega}F_{\omega}\cong F_{\omega_{0}}^{d} by transitivity of FF. Since Fω0F_{\omega_{0}} is simple non-abelian, [Rad17, Lemma 2.3] implies that the group kerπ\ker\pi is a product of subdiagonals preserved by the primitive action of FF on the index set of Fω0dF_{\omega_{0}}^{d}. Hence, either there is just one block and kerπFω0\ker\pi\cong F_{\omega_{0}} has the form {(id,(αω(a0))ω)a0Fω0}\{(\operatorname{id},(\alpha_{\omega}(a_{0}))_{\omega})\mid a_{0}\in F_{\omega_{0}}\} for some isomorphisms αω:Fω0Fω\alpha_{\omega}:F_{\omega_{0}}\to F_{\omega}, or all blocks are singletons and kerπ=ωΩFωFω0d\smash{\ker\pi=\prod_{\omega\in\Omega}F_{\omega}\cong F_{\omega_{0}}^{d}}. In the first case, there is a compatibility cocycle zz of FF such that F{(a,(z(a,ω))ω)aF}F(2)F\cong\{(a,(z(a,\omega))_{\omega})\mid a\in F\}\leq F^{(2)} commutes with kerπF(2)\ker\pi\leq F^{(2)} by Lemma 3.29. Thus F(2)={a,(z(a,ω)αω(a0))ωaF,a0Fω0}F^{(2)}=\{a,(z(a,\omega)\alpha_{\omega}(a_{0}))_{\omega}\mid a\in F,\ a_{0}\in F_{\omega_{0}}\}. In particular, F(2)F^{(2)} satisfies (CD). Hence Uk(F~)=U2(Δ(F))\smash{\mathrm{U}_{k}(\widetilde{F})=\mathrm{U}_{2}(\Delta(F))}.

When kerπFω0d\smash{\ker\pi\cong F_{\omega_{0}}^{d}}, we have Uk(F~)=U1(F)\smash{\mathrm{U}_{k}(\widetilde{F})=\mathrm{U}_{1}(F)} by [BM00, Proposition 3.3.1]. ∎

If FF does not have simple point stabilizers or preserves a non-trivial partition, more universal groups are given by U2(Φ(F,N))\mathrm{U}_{2}(\Phi(F,N)) and U2(Φ(F,𝒫))\mathrm{U}_{2}(\Phi(F,\operatorname{\mathcal{P}})), see Section 3.4.1. When FF is 22-transitive and has abelian point stabilizers then FAGL(1,q)F\!\cong\!\operatorname{AGL}(1,q) for some prime power qq by [KKP90]. Hence point stabilizers in FF are isomorphic to 𝔽q\operatorname{\mathbb{F}}_{q}^{\ast} and simple if and only if q1q-1 is a Mersenne prime. For any value of qq, the projection ρ:AGL(1,q)𝔽q\rho:\operatorname{AGL}(1,q)\to\operatorname{\mathbb{F}}_{q}^{\ast} satisfies the assumptions of Proposition 3.28 and so the groups Uk(Πk(AGL(1,q),ρ,X))\smash{\mathrm{U}_{k}(\Pi^{k}(\operatorname{AGL}(1,q),\rho,X))} provide further examples. The following question remains.

Question 3.33.

Let FSym(Ω)F\!\leq\!\operatorname{Sym}(\Omega) be primitive and FωF_{\omega} (ωΩ)(\omega\in\Omega) simple non-abelian. Is there F~Aut(Bd,k)\smash{\widetilde{F}\!\leq\!\operatorname{Aut}(B_{d,k})} with (C) and πF~=F\pi\widetilde{F}\!=\!F other than Γk(F)\Gamma^{k}(F), Δ(F)\Delta(F) and Φk(F)\Phi^{k}(F)?

3.5. Universality

The constructed groups Uk(F)\mathrm{U}_{k}(F) are universal in the sense of the following maximality statement, which should be compared to Proposition 1.6.

Theorem 3.34.

Let HAut(Td)H\leq\operatorname{Aut}(T_{d}) be locally transitive and contain an involutive inversion. Then there is a labelling ll of TdT_{d} such that

U1(l)(F(1))U2(l)(F(2))Uk(l)(F(k))HU1(l)({id})\mathrm{U}_{1}^{(l)}(F^{(1)})\geq\mathrm{U}_{2}^{(l)}(F^{(2)})\geq\cdots\geq\mathrm{U}_{k}^{(l)}(F^{(k)})\geq\cdots\geq H\geq\mathrm{U}_{1}^{(l)}(\{\operatorname{id}\})

where F(k)Aut(Bd,k)F^{(k)}\leq\operatorname{Aut}(B_{d,k}) is action isomorphic to the kk-local action of HH.

Proof.

First, we construct a labelling ll of TdT_{d} such that HU1(l)({id})H\geq\mathrm{U}_{1}^{(l)}(\{\operatorname{id}\}): Fix xVx\in V and choose a bijection lx:E(x)Ωl_{x}:E(x)\to\Omega. By the assumptions, there is an involutive inversion ιωH\iota_{\omega}\in H of the edge (x,xω)E(x,x_{\omega})\in E for every ωΩ\omega\in\Omega. Using these inversions, we define the announced labelling inductively: Set l|E(x):=lxl|_{E(x)}:=l_{x} and assume that ll is defined on E(x,n)E(x,n). For eE(x,n+1)\E(x,n)e\in E(x,n+1)\backslash E(x,n) put l(e):=l(ιω(e))l(e):=l(\iota_{\omega}(e)) if xωx_{\omega} is part of the unique reduced path from xx to o(e)o(e). Since the ιω\iota_{\omega} (ωΩ)(\omega\in\Omega) have order 22, we obtain σ1(ιω,y)=id\sigma_{1}(\iota_{\omega},y)=\operatorname{id} for all ωΩ\omega\in\Omega and yVy\in V. Therefore, {ιωωΩ}=U1(l)({id})H\smash{\langle\{\iota_{\omega}\mid\omega\in\Omega\}\rangle=\mathrm{U}_{1}^{(l)}(\{\operatorname{id}\})\leq H}, following the proof of Lemma 1.5.

Now, let hHh\in H and yVy\in V. Further, let (x,x1,,xn,y)(x,x_{1},\ldots,x_{n},y) and (x,x1,,xm,h(y))(x,x_{1}^{\prime},\ldots,x_{m}^{\prime},h(y)) be the unique reduced paths from xx to yy and h(y)h(y) respectively. Since U1(l)({id})H\smash{\mathrm{U}_{1}^{(l)}(\{\operatorname{id}\})}\leq H, the group HH contains the unique label-respecting inversion ιe\iota_{e} of every edge eEe\in E. We therefore have

s:=ι(x1,x)1ι(xm,xm1)1ι(h(y),xm)1hι(y,xn)ι(x2,x1)ι(x1,x)H.s:=\iota_{(x_{1}^{\prime},x)}^{-1}\cdots\iota_{(x_{m}^{\prime},x_{m-1}^{\prime})}^{-1}\iota_{(h(y),x_{m}^{\prime})}^{-1}\circ h\circ\iota_{(y,x_{n})}\cdots\iota_{(x_{2},x_{1})}\iota_{(x_{1},x)}\in H.

Also, ss stabilizes xx. The cocycle identity implies for every kk\in\operatorname{\mathbb{N}}:

σk(h,y)=σk(ι(h(y),xm)ι(x1,x)sι(x1,x)1ι(y,xn)1,y)=σk(s,x)F(k).\sigma_{k}(h,y)=\sigma_{k}(\iota_{(h(y),x_{m}^{\prime})}\cdots\iota_{(x_{1}^{\prime},x)}\circ s\circ\iota_{(x_{1},x)}^{-1}\cdots\iota_{(y,x_{n})}^{-1},y)=\sigma_{k}(s,x)\in F^{(k)}.

where F(k)Aut(Bd,k)F^{(k)}\leq\operatorname{Aut}(B_{d,k}) is defined by lxkHx|B(x,k)(lxk)1l_{x}^{k}\circ H_{x}|_{B(x,k)}\circ(l_{x}^{k})^{-1}. ∎

Remark 3.35.

Retain the notation of Theorem 3.34. By Proposition 1.6, there is a labelling ll of TdT_{d} such that U1(l)(F(1))H\smash{\mathrm{U}_{1}^{(l)}(F^{(1)})\geq H} regardless of the minimal order of an inversion in HH. This labelling may be distinct from the one of Theorem 3.34 which fails without assuming the existence of an involutive inversion: For example, a vertex-stabilizer of the group G21G_{2}^{1} of Example 4.39 below is action isomorphic to Γ(S3)\Gamma(S_{3}) but G21U2(l)(Γ(S3))\smash{G_{2}^{1}\not\leq\mathrm{U}_{2}^{(l)}(\Gamma(S_{3}))} for any labelling ll because (G21){b,bω}/4(G_{2}^{1})_{\{b,b_{\omega}\}}\cong\operatorname{\mathbb{Z}}/4\operatorname{\mathbb{Z}} whereas

U2(l)(Γ(S3)){b,bω}Γ(S3)(b,bω)/2/2×/2\mathrm{U}_{2}^{(l)}(\Gamma(S_{3}))_{\{b,b_{\omega}\}}\cong\Gamma(S_{3})_{(b,b_{\omega})}\rtimes\operatorname{\mathbb{Z}}\!/2\operatorname{\mathbb{Z}}\cong\operatorname{\mathbb{Z}}\!/2\operatorname{\mathbb{Z}}\times\operatorname{\mathbb{Z}}\!/2\operatorname{\mathbb{Z}}

by Proposition 3.14.

We complement Theorem 3.34 with the following criterion for certain subgroups of Aut(Td)\operatorname{Aut}(T_{d}) to contain an involutive inversions.

Proposition 3.36.

Let HAut(Td)H\leq\operatorname{Aut}(T_{d}) be locally transitive with odd order point stabilizers. If HH contains a finite order inversion then it contains an involutive one.

Proof.

Let ιH\iota\in H be a finite order inversion of an edge eEe\in E and ord(ι)=2km\mathrm{ord}(\iota)=2^{k}\cdot m for some odd mm\in\operatorname{\mathbb{N}} and some kk\in\operatorname{\mathbb{N}}. It suffices to show that k=1k=1, in which case ιm\iota^{m} is an involutive inversion. Suppose k1k\geq 1. Then ι2k1m\smash{\iota^{2^{k-1}\cdot m}} is non-trivial and fixes the edge ee. Because point stabilizers in the local action of HH have odd order, it follows that (ι2k1m)2\smash{(\iota^{2^{k-1}\cdot m})^{2}} is non-trivial as well, but (ι2k1m)2=ιord(ι)=id\smash{(\iota^{2^{k-1}\cdot m})^{2}=\iota^{\mathrm{ord}(\iota)}=\operatorname{id}}. ∎

For example, Proposition 3.36 applies when HH is discrete and vertex-transitive: Combined with local transitivity this implies the existence of a finite order inversion.

We remark that primitive permutation groups with odd order point stabilizers were classified in [LS91]. For instance, they include PSL(2,q)P1(𝔽q)\mathrm{PSL}(2,q)\curvearrowright\mathrm{P}^{1}(\operatorname{\mathbb{F}}_{q}) for any prime power qq that satisfies q3mod 4q\equiv 3\ \mathrm{mod}\ 4.

3.6. A Bipartite Version

In this section, we introduce a bipartite version of the universal groups developed in Section 3 which plays a critical role in the proof of Theorem 4.2ivivb below. Retain the notation of Section 3. In particular, let Td=(V,E)T_{d}=(V,E) denote the dd-regular tree. Fix a regular bipartition V=V1V2V=V_{1}\sqcup V_{2} of VV.

3.6.1. Definition and Basic Properties

The groups to be defined are subgroups of \tensor[+]Aut(Td)Aut(Td)\tensor[^{+}]{\operatorname{Aut}(T_{d})}{}\leq\operatorname{Aut}(T_{d}), the maximal subgroup of Aut(Td)\operatorname{Aut}(T_{d}) preserving the bipartition V=V1V2V=V_{1}\sqcup V_{2}. Alternatively, it can be described as the subgroup generated by all point stabilizers, or all edge-stabilizers.

Definition 3.37.

Let FAut(Bd,2k)F\leq\operatorname{Aut}(B_{d,2k}) and ll be a labelling of TdT_{d}. Define

BU2k(l)(F):={α\tensor[+]Aut(Td)vV1:σ2k(α,v)F}.\mathrm{BU}_{2k}^{(l)}(F):=\{\alpha\in\!\!\tensor[^{+}]{\operatorname{Aut}(T_{d})}{}\mid\forall v\in V_{1}:\ \sigma_{2k}(\alpha,v)\in F\}.

Note that BU2k(l)(F)\mathrm{BU}_{2k}^{(l)}(F) is a subgroup of \tensor[+]Aut(Td)\tensor[^{+}]{\operatorname{Aut}(T_{d})}{} thanks to Lemma 3.2 and the assumption that it is a subset of \tensor[+]Aut(Td)\tensor[^{+}]{\operatorname{Aut}(T_{d})}{}. Further, Proposition 3.4 carries over to the groups BU2k(l)(F)\smash{\mathrm{BU}_{2k}^{(l)}(F)}. We shall therefore omit the reference to an explicit labelling in the following. Also, we recover the following basic properties.

Proposition 3.38.

Let FAut(Bd,2k)F\leq\operatorname{Aut}(B_{d,2k}). The group BU2k(F)\mathrm{BU}_{2k}(F) is

  1. (i)

    closed in Aut(Td)\operatorname{Aut}(T_{d})

  2. (ii)

    transitive on both V1V_{1} and V2V_{2}, and

  3. (iii)

    compactly generated.

Parts i and ii are proven as their analogues in Proposition 3.5 whereas part iii relies on part ii and the subsequent analogue of Lemma 1.5, for which we introduce the following notation: Given xVx\in V and wΩ(2k)\smash{w\in\Omega^{(2k)}}, let tw(x)BU2({id})\smash{t_{w}^{(x)}\in\mathrm{BU}_{2}(\{\operatorname{id}\})} denote the unique label-respecting translation with tw(x)(x)=xw\smash{t_{w}^{(x)}(x)=x_{w}}. Given an element w=(ω1,,ω2k)Ω(2k)\smash{w=(\omega_{1},\ldots,\omega_{2k})\in\Omega^{(2k)}}, we set w¯:=(ω2k,,ω1)Ω(2k)\smash{\overline{w}:=(\omega_{2k},\ldots,\omega_{1})\in\Omega^{(2k)}}. Then (tw(x))1=tw¯(x)\smash{(t_{w}^{(x)})^{-1}=t_{\overline{w}}^{(x)}} and if Ω+(2k)Ω(2k)\smash{\Omega_{+}^{(2k)}\subseteq\Omega^{(2k)}} is such that for every wΩ(2k)\smash{w\in\Omega^{(2k)}} exactly one of {w,w¯}\{w,\overline{w}\} belongs to Ω+(2k)\smash{\Omega_{+}^{(2k)}}, then Ω+(2k)=Ω+(2k)Ω¯+(2k)\smash{\Omega_{+}^{(2k)}=\Omega_{+}^{(2k)}\sqcup\overline{\Omega}_{+}^{(2k)}} where Ω¯+(2k):={w¯wΩ+(2k)}\smash{\overline{\Omega}_{+}^{(2k)}:=\{\overline{w}\mid w\in\Omega_{+}^{(2k)}\}}.

Lemma 3.39.

Let xV1x\in V_{1}. Then BU2({id})={tw(x)wΩ(2)}FΩ+(2)\smash{\mathrm{BU}_{2}(\{\operatorname{id}\})=\langle\{t_{w}^{(x)}\mid w\in\Omega^{(2)}\}\rangle\cong F_{\Omega_{+}^{(2)}}}, the free group on the set Ω+(2)\smash{\Omega_{+}^{(2)}}.

Proof.

Every element of BU2k({id})\mathrm{BU}_{2k}(\{\operatorname{id}\}) is uniquely determined by its image on xx. To see that BU2({id})={tw(x)wΩ(2)}\smash{\mathrm{BU}_{2}(\{\operatorname{id}\})=\langle\{t_{w}^{(x)}\mid w\in\Omega^{(2)}\}\rangle} it hence suffices to show that {tw(x)wΩ(2)}\smash{\{t_{w}^{(x)}\!\mid\!w\!\in\!\Omega^{(2)}\}} is transitive on V1V_{1}. Indeed, let yV1y\in V_{1}. Then y=xwy=x_{w} for some wΩ(2k)w\in\Omega^{(2k)} where 2k=d(x,y)2k=d(x,y). Write w=(w1,,wk)(Ω(2))kw=(w_{1},\ldots,w_{k})\in(\Omega^{(2)})^{k}. Then tw1(x)twk(x)=tw(x)\smash{t_{w_{1}}^{(x)}\circ\cdots\circ t_{w_{k}}^{(x)}=t_{w}^{(x)}} as every twi(x)\smash{t_{w_{i}}^{(x)}} (i{1,,k})(i\in\{1,\ldots,k\}) is label-respecting. Hence tw1(x)twk(x)(x)=y\smash{t_{w_{1}}^{(x)}\circ\dots\circ t_{w_{k}}^{(x)}(x)=y} and that

{tw(x)wΩ(2)}FΩ+(2),{tw(x)wwΩ+(2)tw(x)w¯1wΩ+(2)\langle\{t_{w}^{(x)}\!\mid\!w\in\Omega^{(2)}\}\rangle\to F_{\Omega_{+}^{(2)}},\ \begin{cases}t_{w}^{(x)}\mapsto w&w\in\Omega_{+}^{(2)}\\ t_{w}^{(x)}\mapsto\overline{w}^{-1}&w\not\in\Omega_{+}^{(2)}\end{cases}

yields a well-defined isomorphism. ∎

3.6.2. Compatibility and Discreteness

In order to describe the compatibility and the discreteness condition in the bipartite setting, we first introduce a suitable realization of Aut(Bd,2k)\operatorname{Aut}(B_{d,2k}) (k)(k\in\operatorname{\mathbb{N}}), similar to the one at the beginning of Section 3.4. Let Aut(Bd,1)Sym(Ω)\operatorname{Aut}(B_{d,1})\cong\operatorname{Sym}(\Omega) and Aut(Bd,2)\operatorname{Aut}(B_{d,2}) be as before. For k2k\geq 2, we inductively identify Aut(Bd,2k)\operatorname{Aut}(B_{d,2k}) with its image under

Aut(Bd,2k)\displaystyle\operatorname{Aut}(B_{d,2k}) Aut(Bd,2(k1))wΩ(2)Aut(Bd,2(k1))\displaystyle\to\operatorname{Aut}(B_{d,2(k-1)})\ltimes\prod_{w\in\Omega^{(2)}}\operatorname{Aut}(B_{d,2(k-1)})
α\displaystyle\alpha (σ2(k1)(α,b),(σ2(k1)(α,bw))w))\displaystyle\mapsto(\sigma_{2(k-1)}(\alpha,b),(\sigma_{2(k-1)}(\alpha,b_{w}))_{w}))

where Aut(Bd,2(k1))\operatorname{Aut}(B_{d,2(k-1)}) acts on Ω(2)\Omega^{(2)} by permuting the factors according to its action on S(b,2)Ω(2)\smash{S(b,2)\cong\Omega^{(2)}}. In addition, consider the map prw:Aut(Bd,2k)Aut(Bd,2(k1))\operatorname{pr}_{w}:\operatorname{Aut}(B_{d,2k})\to\operatorname{Aut}(B_{d,2(k-1)}), ασ2(k1)(α,bw)\alpha\mapsto\sigma_{2(k-1)}(\alpha,b_{w}) for every wΩ(2)\smash{w\in\Omega^{(2)}}, as well as

pw=(π2(k1),prw):Aut(Bd,2k)Aut(Bd,2(k1))×Aut(Bd,2(k1))p_{w}=(\pi_{2(k-1)},\operatorname{pr}_{w}):\operatorname{Aut}(B_{d,2k})\to\operatorname{Aut}(B_{d,2(k-1)})\times\operatorname{Aut}(B_{d,2(k-1)})

For k2k\geq 2, conditions (C) and (D) for FAut(Bd,2k)F\leq\operatorname{Aut}(B_{d,2k}) now read as follows.

(C) αFwΩ(2)αwF:π2(k1)(αw)=prw(α),prw¯(αw)=π2(k1)(α)\forall\alpha\in F\ \forall w\in\Omega^{(2)}\ \exists\alpha_{w}\in F:\ \pi_{2(k-1)}(\alpha_{w})=\operatorname{pr}_{w}(\alpha),\ \operatorname{pr}_{\overline{w}}(\alpha_{w})=\pi_{2(k-1)}(\alpha)
(D) wΩ(2):pw|F1(id,id)={id}\forall w\in\Omega^{(2)}:\ p_{w}|_{F}^{-1}(\operatorname{id},\operatorname{id})=\{\operatorname{id}\}

For k=1k=1 we have, using the maps prω\operatorname{pr}_{\omega} (ωΩ\omega\in\Omega) as in Section 3.4,

(C) αFw=(ω1,ω2)Ω(2)αwF:prω2(αw)=prω1(α).\forall\alpha\in F\ \forall w=(\omega_{1},\omega_{2})\in\Omega^{(2)}\ \exists\alpha_{w}\in F:\ \operatorname{pr}_{\omega_{2}}(\alpha_{w})=\operatorname{pr}_{\omega_{1}}(\alpha).
(D) ωΩ:prω|F1(id)={id}.\forall\omega\in\Omega:\ \operatorname{pr}_{\omega}|_{F}^{-1}(\operatorname{id})=\{\operatorname{id}\}.

Analogues of Proposition 3.12 are proven using the discreteness conditions (D) above. We do not introduce new notation for any of the above as the context always implies which condition is to be considered. The definition of the compatibility sets CF(α,S)C_{F}(\alpha,S) for FAut(Bd,2k)F\leq\operatorname{Aut}(B_{d,2k}) and SΩ(2)\smash{S\subseteq\Omega^{(2)}} carries over from Section 3.2 in a straightforward fashion.

3.6.3. Examples

Let FSym(Ω)F\leq\operatorname{Sym}(\Omega). Then the group Γ(F)Aut(Bd,2)\Gamma(F)\leq\operatorname{Aut}(B_{d,2}) introduced in Section 3.4.1 satisfies conditions (C) and (D) for the case k=1k=1 above, and we have BU2(Γ(F))=U2(Γ(F))\tensor[+]Aut(Td)\mathrm{BU}_{2}(\Gamma(F))=\mathrm{U}_{2}(\Gamma(F))\cap\!\tensor[^{+}]{\operatorname{Aut}(T_{d})}{}.

Similarly, the group Φ(F)Aut(Bd,2)\Phi(F)\leq\operatorname{Aut}(B_{d,2}) satisfies condition (C) for the case k=1k=1 as Γ(F)Φ(F)\Gamma(F)\leq\Phi(F), and we have BU2(Φ(F))=U1(F)\tensor[+]Aut(Td)\mathrm{BU}_{2}(\Phi(F))=\mathrm{U}_{1}(F)\cap\!\tensor[^{+}]{\operatorname{Aut}(T_{d})}{}.

The following example gives an analogue of the groups Φ(F,N)\Phi(F,N). Notice, however, that in this case the second argument is a subgroup of FF rather than Fω0F_{\omega_{0}} and need not be normal, as the 11-local action at vertices in V1V_{1} and V2V_{2} need not be the same.

Example 3.40.

Let FFSym(Ω)F^{\prime}\leq F\leq\operatorname{Sym}(\Omega). Then

BΦ(F,F):={(a,(aω)ωΩ)aF,ωΩ:aωCF(a,ω)F}Aut(Bd,2)\mathrm{B}\Phi(F,F^{\prime}):=\{(a,(a_{\omega})_{\omega\in\Omega})\mid a\in F,\ \forall\omega\in\Omega:\ a_{\omega}\in C_{F}(a,\omega)\cap F^{\prime}\}\leq\operatorname{Aut}(B_{d,2})

satisfies condition (C) for the case k=1k=1 above given that Γ(F)BΦ(F,F)\Gamma(F^{\prime})\leq\mathrm{B}\Phi(F,F^{\prime}). If F\Ω=F\ΩF^{\prime}\backslash\Omega=F\backslash\Omega, the 11-local action of BΦ(F,F)\mathrm{B}\Phi(F,F^{\prime}) at vertices in V1V_{1} is indeed FF, whereas it is F+F^{\prime+} at vertices in V2V_{2}. This construction is similar to 𝒰(M,N)\operatorname{\mathcal{U}}_{\operatorname{\mathcal{L}}}(M,N) in [Smi17].

The next example constitutes the base case in Section 4.1.5 below.

Example 3.41.

Let FSym(Ω)F\leq\operatorname{Sym}(\Omega). Suppose FF preserves a non-trivial partition 𝒫:Ω=iIΩi\operatorname{\mathcal{P}}:\Omega=\bigsqcup_{i\in I}\Omega_{i} of Ω\Omega. Then

Ω0(2):={(ω1,ω2)iI:ω1,ω2Ωi}Ω(2).\Omega^{(2)}_{0}:=\{(\omega_{1},\omega_{2})\mid\exists i\in I:\ \omega_{1},\omega_{2}\in\Omega_{i}\}\subseteq\Omega^{(2)}.

is preserved by the action of Φ(F)\Phi(F) on S(b,2)Ω(2)S(b,2)\cong\Omega^{(2)}: Let α=(a,(aω)ω)Φ(F)\alpha\!=\!(a,(a_{\omega})_{\omega})\!\in\!\Phi(F) and (ω1,ω2)Ω0(2)\smash{(\omega_{1},\omega_{2})\in\Omega^{(2)}_{0}}. Then α(ω1,ω2)=(aω1,aω1ω2)=(aω1ω1,aω1ω1)Ω0(2)\smash{\alpha(\omega_{1},\omega_{2})=(a\omega_{1},a_{\omega_{1}}\omega_{2})=(a_{\omega_{1}}\omega_{1},a_{\omega_{1}}\omega_{1})\in\Omega^{(2)}_{0}}. Also, note that if w=(ω1,ω2)Ω0(2)\smash{w=(\omega_{1},\omega_{2})\in\Omega^{(2)}_{0}} then so is w¯=(ω2,ω1)\overline{w}=(\omega_{2},\omega_{1}).

The subgroup of Φ(F)\Phi(F) consisting of those elements which are self-compatible in all directions from Ω0(2)\smash{\Omega^{(2)}_{0}} is precisely given by

F(2):={(a,(aω)ω)aF,aωCF(a,ω) constant w.r.t. 𝒫}.F^{(2)}:=\{(a,(a_{\omega})_{\omega})\mid a\in F,a_{\omega}\in C_{F}(a,\omega)\text{ constant w.r.t. $\operatorname{\mathcal{P}}$}\}.

in view of condition (C) for the case k=1k=1 above.

Suppose now that FAut(Bd,2k)F\leq\operatorname{Aut}(B_{d,2k}) satisfies (C). Analogous to the group Φk(F)\Phi_{k}(F) of Section 3.4.2, we define

BΦ2k(F):={(α,(αw)wΩ(2))αF,wΩ(2):αwCF(α,w)}Aut(Bd,2(k+1)).\mathrm{B}\Phi_{2k}(F)\!:=\!\{(\alpha,(\alpha_{w})_{w\in\Omega^{(2)}})\!\mid\!\alpha\!\in\!F,\ \forall w\!\in\!\Omega^{(2)}\!:\ \alpha_{w}\!\in\!C_{F}(\alpha,w)\}\leq\operatorname{Aut}(B_{d,2(k+1)}).

Then BΦ2k(F)Aut(Bd,2(k+1))\mathrm{B}\Phi_{2k}(F)\leq\operatorname{Aut}(B_{d,2(k+1)}) satisfies (C) and BU2(k+1)(BΦ2k(F))=BU2k(F)\mathrm{BU}_{2(k+1)}(\mathrm{B}\Phi_{2k}(F))=\mathrm{BU}_{2k}(F). Given l>kl>k, we also set BΦ2l(F):=BΦ2(l1)BΦ2k(F)\mathrm{B}\Phi^{2l}(F):=\mathrm{B}\Phi_{2(l-1)}\circ\cdots\circ\mathrm{B}\Phi_{2k}(F), c.f. Section 3.4.2.

4. Applications

In this section, we give three applications of the framework of universal groups. First, we characterize the automorphism types which the quasi-center of a non-discrete subgroup of Aut(Td)\operatorname{Aut}(T_{d}) may feature in terms of the group’s local action, and see that Burger–Mozes theory does not extend to the transitive case. Second, we give an algebraic characterization of the (Pk)(P_{k})-closures of locally transitive subgroups of Aut(Td)\operatorname{Aut}(T_{d}) containing an involutive inversion, and thereby partially answer two question by Banks–Elder–Willis. Third, we offer a new view on the Weiss conjecture.

4.1. Groups Acting on Trees With Non-Trivial Quasi-Center

By Proposition 2.11ii, a non-discrete, locally semiprimitive subgroup of Aut(Td)\operatorname{Aut}(T_{d}) does not contain any non-trivial quasi-central edge-fixating elements. We complete this fact to the following local-to-global-type characterization of quasi-central elements.

Theorem 4.1.

Let HAut(Td)H\leq\operatorname{Aut}(T_{d}) be non-discrete. If HH is locally

  1. (i)

    transitive then QZ(H)\mathrm{QZ}(H) contains no inversion.

  2. (ii)

    semiprimitive then QZ(H)\mathrm{QZ}(H) contains no non-trivial edge-fixating element.

  3. (iii)

    quasiprimitive then QZ(H)\mathrm{QZ}(H) contains no non-trivial elliptic element.

  4. (iv)

    kk-transitive (k)(k\in\operatorname{\mathbb{N}}) then QZ(H)\mathrm{QZ}(H) contains no hyperbolic element of length kk.

Theorem 4.2.

There is d3d\in\operatorname{\mathbb{N}}_{\geq 3} and a closed, non-discrete, compactly generated subgroup of Aut(Td)\operatorname{Aut}(T_{d}) which is locally

  1. (i)

    intransitive and contains a quasi-central inversion.

  2. (ii)

    transitive and contains a non-trivial quasi-central edge-fixating element.

  3. (iii)

    semiprimitive and contains a non-trivial quasi-central elliptic element.

  4. (iv)
    1. (a)

      intransitive and contains a quasi-central hyperbolic element of length 11.

    2. (b)

      quasiprimitive and contains a quasi-central hyperbolic element of length 22.

Proof.

(Theorem 4.1). Fix a labelling of TdT_{d} and let HAut(Td)H\leq\operatorname{Aut}(T_{d}) be non-discrete.

For i, suppose ιQZ(H)\iota\in\mathrm{QZ}(H) inverts (x,xω)E(x,x_{\omega})\in E. Since HH is locally transitive and QZ(H)H\mathrm{QZ}(H)\unlhd H, there is an inversion ιωQZ(H)\iota_{\omega}\in\mathrm{QZ}(H) of (x,xω)E(x,x_{\omega})\in E for all ωΩ\omega\in\Omega. By definition, the centralizer of ιω\iota_{\omega} in HH is open for all ωΩ\omega\in\Omega. Hence, using non-discreteness of HH, there is nn\in\operatorname{\mathbb{N}} such that HB(x,n)H_{B(x,n)} commutes with ιω\iota_{\omega} for all ωΩ\omega\in\Omega and HB(x,n+1){id}H_{B(x,n+1)}\neq\{\operatorname{id}\}. However, HB(x,n)=ιωHB(x,n)ιω1=HB(xω,n)H_{B(x,n)}=\iota_{\omega}H_{B(x,n)}\iota_{\omega}^{-1}=H_{B(x_{\omega},n)} for all ωΩ\omega\in\Omega, that is HB(x,n+1)HB(x,n)H_{B(x,n+1)}\subseteq H_{B(x,n)} in contradiction to the above.

Part ii is Proposition 2.11ii and part iii is [BM00, Proposition 1.2.1 (ii)]. Here, the closedness assumption is unnecessary.

For part iv, suppose τQZ(H)\tau\in\mathrm{QZ}(H) is a translation of length kk which maps xVx\in V to xwVx_{w}\in V for some wΩ(k)w\in\Omega^{(k)}. Since HH is locally kk-transitive and QZ(H)H\mathrm{QZ}(H)\unlhd H, there is a translation τwQZ(H)\tau_{w}\in\mathrm{QZ}(H) which maps xx to xwx_{w} for all wΩ(k)\smash{w\in\Omega^{(k)}}. By definition, the centralizer of τw\tau_{w} in HH is open for all wΩ(k)w\in\Omega^{(k)}. Hence, using non-discreteness of HH there is nn\in\operatorname{\mathbb{N}} such that HB(x,n)H_{B(x,n)} commutes with τw\tau_{w} for all wΩ(k)\smash{w\in\Omega^{(k)}} and HB(x,n+1){id}H_{B(x,n+1)}\neq\{\operatorname{id}\}. However, HB(x,n)=τwHB(x,n)τw1=HB(xw,n)H_{B(x,n)}=\tau_{w}H_{B(x,n)}\tau_{w}^{-1}=H_{B(x_{w},n)} for all wΩ(k)\smash{w\in\Omega^{(k)}}, that is HB(x,n+k)HB(x,n)H_{B(x,n+k)}\subseteq H_{B(x,n)} in contradiction to the above. ∎

We complement part ii of Theorem 4.1 with the following result inspired by [BM00, Proposition 3.1.2] and [Rat04, Conjecture 2.63],

Proposition 4.3.

Let HAut(Td)H\leq\operatorname{Aut}(T_{d}) be non-discrete and locally semiprimitive. If all orbits of HTdH\curvearrowright\partial T_{d} are uncountable then QZ(H)\mathrm{QZ}(H) is trivial.

Proof.

By Theorem 4.1, the group QZ(H)\mathrm{QZ}(H) contains no inversions. Let STdS\subseteq\partial T_{d} be the set of fixed points of hyperbolic elements in QZ(H)\mathrm{QZ}(H). Since QZ(H)H\mathrm{QZ}(H)\unlhd H, the set SS is HH-invariant. Also, QZ(H)\mathrm{QZ}(H) is discrete by Theorem 4.1 and hence countable as HH is second-countable. Thus SS is countable and hence empty. We conclude that QZ(H)H\mathrm{QZ}(H)\unlhd H does not contain elliptic elements in view of [GGT18, Lemma 6.4]. ∎

The following strengthening of Theorem 4.2ii proved in Section 4.1.2 shows that Burger–Mozes theory does not generalize to the locally transitive case.

Theorem 4.4.

There is d3d\in\operatorname{\mathbb{N}}_{\geq 3} and a closed, non-discrete, compactly generated, locally transitive subgroup of Aut(Td)\operatorname{Aut}(T_{d}) with open, hence non-discrete, quasi-center.

We prove Theorem 4.2 by construction in the consecutive sections. Whereas parts i to iviva all use groups of the form kUk(F(k))\bigcap_{k\in\operatorname{\mathbb{N}}}\mathrm{U}_{k}(F^{(k)}) for appropriate local actions F(k)Aut(Bd,k)\smash{F^{(k)}\leq\operatorname{Aut}(B_{d,k})}, part ivivb uses a group of the form kBU(F(2k))\smash{\bigcap_{k\in\operatorname{\mathbb{N}}}\mathrm{BU}(F^{(2k)})}. All sections appear similar at first glance but vary in detail.

4.1.1. Theorem 4.2i

For certain intransitive FSym(Ω)F\leq\mathrm{Sym}(\Omega) we construct a closed, non-discrete, compactly generated, vertex-transitive group H(F)Aut(Td)H(F)\leq\operatorname{Aut}(T_{d}) which locally acts like FF and contains a quasi-central involutive inversion.

Let FSym(Ω)F\leq\operatorname{Sym}(\Omega). Assume that the partition F\Ω=iIΩiF\backslash\Omega=\bigsqcup_{i\in I}\Omega_{i} of Ω\Omega into FF-orbits has at least three elements and that FΩi{id}F_{\Omega_{i}}\neq\{\operatorname{id}\} for all iIi\in I.

Fix an orbit Ω0\Omega_{0} of size at least 22 and ω0Ω0\omega_{0}\in\Omega_{0}. Define groups F(k)Aut(Bd,k)F^{(k)}\leq\operatorname{Aut}(B_{d,k}) for kk\in\operatorname{\mathbb{N}} inductively by F(1):=FF^{(1)}:=F and

F(k+1):={(α,(αω)ω)αF(k),αωCF(k)(α,ω) constant w.r.t. F\Ω,αω0=α}.F^{(k+1)}\!:=\!\{(\alpha,(\alpha_{\omega})_{\omega})\!\mid\!\alpha\!\in\!F^{(k)},\ \alpha_{\omega}\!\in\!C_{F^{(k)}}(\alpha,\omega)\text{ constant w.r.t. $F\backslash\Omega$},\ \alpha_{\omega_{0}}\!=\!\alpha\}.
Proposition 4.5.

The groups F(k)Aut(Bd,k)F^{(k)}\leq\operatorname{Aut}(B_{d,k}) (kk\in\operatorname{\mathbb{N}}) defined above satisfy:

  1. (i)

    Every αF(k)\alpha\in F^{(k)} is self-compatible in directions from Ω0\Omega_{0}.

  2. (ii)

    The compatibility set CF(k)(α,Ωi)C_{F^{(k)}}(\alpha,\Omega_{i}) is non-empty for all αF(k)\alpha\in F^{(k)} and iIi\in I.
    In particular, the group F(k)F^{(k)} satisfies (C).

  3. (iii)

    The compatibility set CF(k)(id,Ωi)C_{F^{(k)}}(\operatorname{id},\Omega_{i}) is non-trivial for all ΩiΩ0\Omega_{i}\neq\Omega_{0}.
    In particular, the group F(k)F^{(k)} does not satisfy (D).

Proof.

We prove all three properties simultaneously by induction: For k=1k=1, the assertions i and ii are trivial. The third translates to FΩiF_{\Omega_{i}} being non-trivial for all ΩiΩ0\Omega_{i}\neq\Omega_{0} which is an assumption. Now, assume that all properties hold for F(k)F^{(k)}. Then the definition of F(k+1)F^{(k+1)} is meaningful because of i and it is a subgroup of Aut(Bd,k+1)\operatorname{Aut}(B_{d,k+1}) because FF preserves each Ωi\Omega_{i} (iI)(i\in I). Assertion i is now evident. Statement ii carries over from F(k)F^{(k)} to F(k+1)F^{(k+1)}. So does iii since |F\Ω|3|F\backslash\Omega|\geq 3. ∎

Definition 4.6.

Retain the above notation. Define H(F):=kUk(F(k))H(F):=\bigcap_{k\in\operatorname{\mathbb{N}}}\mathrm{U}_{k}(F^{(k)}).

Now, H(F)H(F) is compactly generated, vertex-transitive and contains an involutive inversion because U1({id})H(F)\smash{\mathrm{U}_{1}(\{\operatorname{id}\})\leq H(F)}. Also, H(F)H(F) is closed as an intersection of closed sets. The 11-local action of HH is given by F=F(1)F=F^{(1)} because Γk(F)F(k)\Gamma^{k}(F)\leq F^{(k)} for all kk\in\operatorname{\mathbb{N}} and therefore D(F)H(F)\mathrm{D}(F)\leq H(F).

Lemma 4.7.

The group H(F)H(F) is non-discrete.

Proof.

Let xVx\in V and nn\in\operatorname{\mathbb{N}}. We construct a non-trivial element hH(F)h\in H(F) which fixes B(x,n)B(x,n): Set αn:=idF(n)\alpha_{n}:=\operatorname{id}\in F^{(n)}. By parts i and iii of Proposition 4.5 as well as the definition of F(n+1)F^{(n+1)}, there is a non-trivial element αn+1F(n+1)\alpha_{n+1}\in F^{(n+1)} with πnαn+1=αn\pi_{n}\alpha_{n+1}=\alpha_{n}. Applying parts i and ii of Proposition 4.5 repeatedly, we obtain non-trivial elements αkF(k)\alpha_{k}\!\in\!F^{(k)} for all kn+1k\geq n+1 with πkαk+1=αk\pi_{k}\alpha_{k+1}=\alpha_{k}. Set αk:=idF(k)\alpha_{k}:=\operatorname{id}\!\in\!F^{(k)} for all knk\!\leq\!n and define hAut(Td)xh\!\in\!\operatorname{Aut}(T_{d})_{x} by fixing xx and setting σk(h,x):=αkF(k)\sigma_{k}(h,x)\!:=\!\alpha_{k}\in F^{(k)}. Since F(l)Φl(F(k))F^{(l)}\!\leq\!\Phi^{l}(F^{(k)}) for all klk\!\leq\!l we conclude that hkUk(F(k))=H(F)h\in\bigcap_{k\in\operatorname{\mathbb{N}}}\mathrm{U}_{k}(F^{(k)})=H(F). ∎

Proposition 4.8.

The quasi-center of H(F)H(F) contains an involutive inversion.

Proof.

Let xVx\!\in\!V. The group QZ(H(F))\mathrm{QZ}(H(F)) contains the label-respecting inversion ιω\iota_{\omega} of (x,xω)E(x,x_{\omega})\!\in\!E for all ωΩ0\omega\!\in\!\Omega_{0}: Let hH(F)B(x,1)h\!\in\!H(F)_{B(x,1)} and ωΩ0\omega\!\in\!\Omega_{0}. Then hιω(x)=xω=ιωh(x)h\iota_{\omega}(x)\!=\!x_{\omega}\!=\!\iota_{\omega}h(x) and σk(hιω,x)=σk(h,ιωx)σk(ιω,x)=σk(h,xω)=σk(ιω,hx)σk(h,x)=σk(ιωh,x)\sigma_{k}(h\iota_{\omega},x)=\sigma_{k}(h,\iota_{\omega}x)\sigma_{k}(\iota_{\omega},x)=\sigma_{k}(h,x_{\omega})=\sigma_{k}(\iota_{\omega},hx)\sigma_{k}(h,x)=\sigma_{k}(\iota_{\omega}h,x) for all kk\in\operatorname{\mathbb{N}} since hUk+1(F(k+1))h\in\mathrm{U}_{k+1}(F^{(k+1)}). That is, ιω\iota_{\omega} commutes with H(F)B(b,1)H(F)_{B(b,1)}. ∎

4.1.2. Theorem 4.2ii

For certain transitive FSym(Ω)F\leq\mathrm{Sym}(\Omega) we construct a closed, non-discrete, compactly generated, vertex-transitive group H(F)Aut(Td)H(F)\leq\operatorname{Aut}(T_{d}) which locally acts like FF and has open quasi-center.

Let FSym(Ω)F\leq\operatorname{Sym}(\Omega) be transitive. Assume that FF preserves a non-trivial partition 𝒫:Ω=iIΩi\operatorname{\mathcal{P}}:\Omega=\bigsqcup_{i\in I}\Omega_{i} of Ω\Omega and that FΩi{id}F_{\Omega_{i}}\neq\{\operatorname{id}\} for all iIi\in I. Further, suppose that F+F^{+} is abelian and preserves 𝒫\operatorname{\mathcal{P}} setwise.

Example 4.9.

Let FSym(Ω)F^{\prime}\leq\operatorname{Sym}(\Omega^{\prime}) be regular abelian and PSym(Λ)P\leq\operatorname{Sym}(\Lambda) regular. Then F:=FPSym(Ω×Λ)F:=F^{\prime}\wr P\leq\operatorname{Sym}(\Omega^{\prime}\times\Lambda) satisfies the above properties as F+=λΛFF^{+}=\prod_{\lambda\in\Lambda}F^{\prime}.

Define groups F(k)Aut(Bd,k)F^{(k)}\leq\operatorname{Aut}(B_{d,k}) for kk\in\operatorname{\mathbb{N}} inductively by F(1):=FF^{(1)}:=F and

F(k+1):={(α,(αω)ω)αF(k),αωCF(k)(α,ω) constant w.r.t. 𝒫}.F^{(k+1)}:=\{(\alpha,(\alpha_{\omega})_{\omega})\mid\alpha\in F^{(k)},\ \alpha_{\omega}\in C_{F^{(k)}}(\alpha,\omega)\text{ constant w.r.t. $\operatorname{\mathcal{P}}$}\}.
Proposition 4.10.

The groups F(k)Aut(Bd,k)F^{(k)}\leq\operatorname{Aut}(B_{d,k}) (kk\in\operatorname{\mathbb{N}}) defined above satisfy:

  1. (i)

    The compatibility set CF(k)(α,Ωi)C_{F^{(k)}}(\alpha,\Omega_{i}) is non-empty for all αF(k)\alpha\in F^{(k)} and iIi\in I.
    In particular, the group F(k)F^{(k)} satisfies (C).

  2. (ii)

    The compatibility set CF(k)(id,Ωi)C_{F^{(k)}}(\operatorname{id},\Omega_{i}) is non-trivial for all iIi\in I.
    In particular, the group F(k)F^{(k)} does not satisfy (D).

  3. (iii)

    The group F(k)Φk(F+)F^{(k)}\cap\Phi^{k}(F^{+}) is abelian.

Proof.

We prove all three properties simultaneously by induction: For k=1k=1, the assertion i is trivial whereas iii is an assumption. The second translates to FΩiF_{\Omega_{i}} being non-trivial for all iIi\in I which is an assumption. Now, assume all properties hold for F(k)F^{(k)}. Then the definition of F(k+1)F^{(k+1)} is meaningful because of i and it is a subgroup of Aut(Bd,k)\operatorname{Aut}(B_{d,k}) because FF preserves 𝒫\operatorname{\mathcal{P}}. Statement ii carries over from F(k)F^{(k)} to F(k+1)F^{(k+1)}. Finally, iii follows inductively because F+F^{+} preserves 𝒫\operatorname{\mathcal{P}} setwise. ∎

Definition 4.11.

Retain the above notation. Define H(F):=kUk(F(k))H(F):=\bigcap_{k\in\operatorname{\mathbb{N}}}\mathrm{U}_{k}(F^{(k)}).

Now, H(F)H(F) is compactly generated, vertex-transitive and contains an involutive inversion because U1({id})H(F)\smash{\mathrm{U}_{1}(\{\operatorname{id}\})\leq H(F)}. Also, H(F)H(F) is closed as an intersection of closed sets. The 11-local action of HH is given by F=F(1)F=F^{(1)} because Γk(F)F(k)\Gamma_{k}(F)\leq F^{(k)} for all kk\in\operatorname{\mathbb{N}} and therefore D(F)H(F)\mathrm{D}(F)\leq H(F).

Lemma 4.12.

The group H(F)H(F) is non-discrete.

Proof.

Let xVx\in V and nn\in\operatorname{\mathbb{N}}. We construct a non-trivial element hH(F)h\in H(F) which fixes B(x,n)B(x,n): Consider αn:=idF(n)\smash{\alpha_{n}:=\operatorname{id}\in F^{(n)}}. By part ii of Proposition 4.10 as well as the definition of F(n+1)\smash{F^{(n+1)}}, there is a non-trivial element αn+1F(n+1)\smash{\alpha_{n+1}\in F^{(n+1)}} with πnαn+1=αn\pi_{n}\alpha_{n+1}=\alpha_{n}. Applying part i of Proposition 4.10 repeatedly, we obtain non-trivial elements αkF(k)\smash{\alpha_{k}\in F^{(k)}} for all kn+1k\geq n+1 with πkαk+1=αk\pi_{k}\alpha_{k+1}=\alpha_{k}. Set αk:=idF(k)\alpha_{k}:=\operatorname{id}\in F^{(k)} for all knk\leq n and define hAut(Td)xh\in\operatorname{Aut}(T_{d})_{x} by fixing xx and setting σk(h,x):=αkF(k)\smash{\sigma_{k}(h,x):=\alpha_{k}\in F^{(k)}}. Since F(l)Φl(F(k))\smash{F^{(l)}\!\leq\!\Phi^{l}(F^{(k)})} for all klk\!\leq\!l we conclude that hkUk(F(k))=H(F)h\in\bigcap_{k\in\operatorname{\mathbb{N}}}\mathrm{U}_{k}(F^{(k)})=H(F). ∎

Proposition 4.13.

The group H(F)H(F) has open quasi-center.

Proof.

The group H(F)B(x,1)H(F)_{B(x,1)} is a subgroup of the group H(F+)xH(F^{+})_{x} which is abelian by part iii of Proposition 4.10. Hence H(F)B(x,1)QZ(H(F))H(F)_{B(x,1)}\leq\mathrm{QZ}(H(F)). ∎

Remark 4.14.

Without assuming local transitivity one can achieve abelian point stabilizers, following the construction of the previous section. This cannot happen for non-discrete locally transitive groups HAut(Td)H\leq\operatorname{Aut}(T_{d}) which are vertex-transitive as the following argument shows: By Proposition 1.6, the group HH is contained in U(F)\mathrm{U}(F) where FSym(Ω)F\leq\operatorname{Sym}(\Omega) is the local action of HH. If HxH_{x} is abelian, then so is FF. Since any transitive abelian permutation group is regular we conclude that U(F)\mathrm{U}(F) and hence HH are discrete. In this sense, the construction of this section is efficient.

4.1.3. Theorem 4.2iii

For certain semiprimitive FSym(Ω)F\leq\mathrm{Sym}(\Omega) we construct a closed, non-discrete, compactly generated, vertex-transitive group H(F)Aut(Td)H(F)\!\leq\!\operatorname{Aut}(T_{d}) which locally acts like FF and contains a non-trivial quasi-central elliptic element.

Let FSym(Ω)F\!\leq\!\operatorname{Sym}(\Omega) be semiprimitive. Suppose FF preserves a non-trivial partition 𝒫:Ω=iIΩi\operatorname{\mathcal{P}}:\Omega=\bigsqcup_{i\in I}\Omega_{i} of Ω\Omega and that FΩi{id}F_{\Omega_{i}}\neq\{\operatorname{id}\} for all iIi\in I. Further, suppose that FF contains a non-trivial central element τ\tau which preserves 𝒫\operatorname{\mathcal{P}} setwise.

Example 4.15.

Consider SL(2,3)𝔽32\{0}={±e1,±e2,±(e1+e2),±(e1e2)}\operatorname{SL}(2,3)\curvearrowright\operatorname{\mathbb{F}}_{3}^{2}\backslash\{0\}=\{\pm e_{1},\pm e_{2},\pm(e_{1}+e_{2}),\pm(e_{1}-e_{2})\} where e1,e2e_{1},e_{2} are the standard basis vectors. We have Z(SL(2,3))={±Id}Z(\operatorname{SL}(2,3))=\{\pm\operatorname{Id}\}. The blocks of size 22 are as listed above given that SL(2,3)e12±SL(2,3)e1\operatorname{SL}(2,3)_{e_{1}}\leq_{2}\pm\operatorname{SL}(2,3)_{e_{1}}.

Define groups F(k)Aut(Bd,k)F^{(k)}\leq\operatorname{Aut}(B_{d,k}) for kk\in\operatorname{\mathbb{N}} inductively by F(1):=FF^{(1)}:=F and

F(k+1):={(α,(αω)ω)αF(k),αωCF(k)(α,ω) constant w.r.t 𝒫}.F^{(k+1)}:=\{(\alpha,(\alpha_{\omega})_{\omega})\mid\alpha\in F^{(k)},\ \alpha_{\omega}\in C_{F^{(k)}}(\alpha,\omega)\text{ constant w.r.t $\operatorname{\mathcal{P}}$}\}.
Proposition 4.16.

The groups F(k)Aut(Bd,k)F^{(k)}\leq\operatorname{Aut}(B_{d,k}) (kk\in\operatorname{\mathbb{N}}) defined above satisfy:

  1. (i)

    The compatibility set CF(k)(α,Ωi)C_{F^{(k)}}(\alpha,\Omega_{i}) is non-empty for all αF(k)\alpha\in F^{(k)} and iIi\in I.
    In particular, the group F(k)F^{(k)} satisfies (C).

  2. (ii)

    The compatibility set CF(k)(id,Ωi)C_{F^{(k)}}(\operatorname{id},\Omega_{i}) is non-trivial for all iIi\in I.
    In particular, the group F(k)F^{(k)} does not satisfy (D).

  3. (iii)

    The element γk(τ)Aut(Bd,k)\gamma_{k}(\tau)\in\operatorname{Aut}(B_{d,k}) is central in F(k)F^{(k)}.

Proof.

We prove all three properties simultaneously by induction: For k=1k=1, the assertion i is trivial whereas iii is an assumption. The second translates to FΩiF_{\Omega_{i}} being non-trivial for all iIi\in I which is an assumption. Now, assume all properties hold for F(k)F^{(k)}. Then the definition of F(k+1)F^{(k+1)} is meaningful because of i and it is a subgroup of Aut(Bd,k+1)\operatorname{Aut}(B_{d,k+1}) because FF preserves 𝒫\operatorname{\mathcal{P}}. Statement ii carries over from F(k)F^{(k)} to F(k+1)F^{(k+1)}. Finally, iii follows inductively because τ\tau and hence τ1\tau^{-1} preserves 𝒫\operatorname{\mathcal{P}} setwise: For α~=(α,(αω)ω)F(k+1)\smash{\widetilde{\alpha}=(\alpha,(\alpha_{\omega})_{\omega})\in F^{(k+1)}} we have

γk+1(τ)α~γk+1(τ)1=(γk(τ)αγk(τ)1,(γk(τ)ατ1(ω)γk(τ)1)ω).\gamma^{k+1}(\tau)\widetilde{\alpha}\gamma^{k+1}(\tau)^{-1}=(\gamma^{k}(\tau)\alpha\gamma^{k}(\tau)^{-1},(\gamma^{k}(\tau)\alpha_{\tau^{-1}(\omega)}\gamma^{k}(\tau)^{-1})_{\omega}).\qed
Definition 4.17.

Retain the above notation. Define H(F):=kUk(F(k))H(F):=\bigcap_{k\in\operatorname{\mathbb{N}}}\mathrm{U}_{k}(F^{(k)}).

Now, H(F)H(F) is compactly generated, vertex-transitive and contains an involutive inversion because U1({id})H(F)\smash{\mathrm{U}_{1}(\{\operatorname{id}\})\leq H(F)}. Also, H(F)H(F) is closed as an intersection of closed sets. The 11-local action of HH is given by F=F(1)F=F^{(1)} because Γk(F)F(k)\Gamma^{k}(F)\leq F^{(k)} for all kk\in\operatorname{\mathbb{N}} and therefore D(F)H(F)\mathrm{D}(F)\leq H(F).

Lemma 4.18.

The group H(F)H(F) is non-discrete.

Proof.

Let xVx\in V and nn\in\operatorname{\mathbb{N}}. We construct a non-trivial element hH(F)h\in H(F) which fixes B(x,n)B(x,n): Consider αn:=idF(n)\alpha_{n}:=\operatorname{id}\in F^{(n)}. By part ii of Proposition 4.16 and the definition of F(n+1)F^{(n+1)}, there is a non-trivial αn+1F(n+1)\alpha_{n+1}\in F^{(n+1)} with πnαn+1=αn\pi_{n}\alpha_{n+1}=\alpha_{n}. Applying part i of Proposition 4.16 repeatedly, we obtain non-trivial elements αkF(k)\alpha_{k}\in F^{(k)} for all kn+1k\geq n+1 with πkαk+1=αk\pi_{k}\alpha_{k+1}=\alpha_{k}. Set αk:=idF(k)\alpha_{k}:=\operatorname{id}\in F^{(k)} for all knk\leq n and define hAut(Td)xh\in\operatorname{Aut}(T_{d})_{x} by fixing xx and setting σk(h,x):=αkF(k)\sigma_{k}(h,x):=\alpha_{k}\in F^{(k)}. Since F(l)Φl(F(k))F^{(l)}\leq\Phi^{l}(F^{(k)}) for all klk\leq l we conclude that hkUk(F(k))=H(F)h\in\bigcap_{k\in\operatorname{\mathbb{N}}}\mathrm{U}_{k}(F^{(k)})=H(F). ∎

Proposition 4.19.

The quasi-center of H(F)H\!(F) contains a non-trivial elliptic element.

Proof.

By Proposition 4.16, the element d(τ)d(\tau) which fixes xx and whose 11-local action is τ\tau everywhere commutes with H(F)xH(F)_{x}. Hence d(τ)QZ(H(F))d(\tau)\in\mathrm{QZ}(H(F)). ∎

Remark 4.20.

The argument of this section does not work in the quasiprimitive case because a quasiprimitive group FSym(Ω)F\leq\operatorname{Sym}(\Omega) with non-trivial center is abelian and regular: If Z(F)FZ(F)\unlhd F is non-trivial then it is transitive, and it suffices to show that F+F^{+} is trivial. Suppose aFωa\in F_{\omega} moves ωΩ\omega^{\prime}\in\Omega. Pick zZ(F)z\in Z(F) with z(ω)=ωz(\omega)=\omega^{\prime}. Then za(ω)=ωaz(ω)za(\omega)=\omega^{\prime}\neq az(\omega), contradicting the assumption that zZ(F)z\in Z(F).

4.1.4. Theorem 4.2iviva

For certain intransitive FSym(Ω)F\leq\mathrm{Sym}(\Omega) we construct a closed, non-discrete, compactly generated, vertex-transitive group H(F)Aut(Td)H(F)\leq\operatorname{Aut}(T_{d}) which locally acts like FF and contains a quasi-central hyperbolic element of length 11.

Let FSym(Ω)F\leq\mathrm{Sym}(\Omega). Assume that the partition F\Ω=iIΩiF\backslash\Omega=\bigsqcup_{i\in I}\Omega_{i} of Ω\Omega has at least three elements and that Z(F){id}Z(F)\neq\{\operatorname{id}\}. Choose a non-trivial element τZ(F)\tau\in Z(F) and ω0Ω0F\Ω\omega_{0}\in\Omega_{0}\in F\backslash\Omega with τ(ω0)ω0\tau(\omega_{0})\neq\omega_{0}. Further, suppose that FΩi{id}F_{\Omega_{i}}\neq\{\operatorname{id}\} for all ΩiΩ0\Omega_{i}\neq\Omega_{0}.

Define groups F(k)Aut(Bd,k)F^{(k)}\leq\operatorname{Aut}(B_{d,k}) for kk\in\operatorname{\mathbb{N}} inductively by F(1):=FF^{(1)}:=F and

F(k+1):={(α,(αω)ω)αF(k),αωCF(k)(α,ω) constant w.r.t. F\Ω,αω0=α}.F^{(k+1)}\!:=\!\{(\alpha,(\alpha_{\omega})_{\omega})\!\mid\!\alpha\!\in\!F^{(k)},\ \alpha_{\omega}\!\in\!C_{F^{(k)}}(\alpha,\omega)\text{ constant w.r.t. $F\backslash\Omega$},\ \alpha_{\omega_{0}}\!=\!\alpha\}.
Proposition 4.21.

The groups F(k)Aut(Bd,k)F^{(k)}\leq\operatorname{Aut}(B_{d,k}) (kk\in\operatorname{\mathbb{N}}) defined above satisfy:

  1. (i)

    Every αF(k)\alpha\in F^{(k)} is self-compatible in directions from Ω0\Omega_{0}.

  2. (ii)

    The compatibility set CF(k)(α,Ωi)C_{F^{(k)}}(\alpha,\Omega_{i}) is non-empty for all αF(k)\alpha\in F^{(k)} and iIi\in I.
    In particular, the group F(k)F^{(k)} satisfies (C).

  3. (iii)

    The compatibility set CF(k)(id,Ωi)C_{F^{(k)}}(\operatorname{id},\Omega_{i}) is non-trivial for all iI\{0}i\in I\backslash\{0\}.
    In particular, the group F(k)F^{(k)} does not satisfy (D).

  4. (iv)

    The element γk(τ)Aut(Bd,k)\gamma_{k}(\tau)\in\operatorname{Aut}(B_{d,k}) is central in F(k)F^{(k)}.

Proof.

We prove all four properties simultaneously by induction: For k=1k=1, the assertions i and ii are trivial. The third translates to FΩiF_{\Omega_{i}} being non-trivial for all iI\{0}i\in I\backslash\{0\} which is an assumption, as is iv. Now, assume that all properties hold for F(k)F^{(k)}. Then the definition of F(k+1)F^{(k+1)} is meaningful because of i and it is a subgroup of Aut(Bd,k)\operatorname{Aut}(B_{d,k}) because FF preserves F\ΩF\backslash\Omega. Assertion i is now evident. Statements ii and iii carry over from F(k)F^{(k)} to F(k+1)F^{(k+1)}. Finally, iii follows inductively because τ\tau and hence τ1\tau^{-1} preserves F\ΩF\backslash\Omega setwise: For α~=(α,(αω)ω)F(k+1)\smash{\widetilde{\alpha}=(\alpha,(\alpha_{\omega})_{\omega})\in F^{(k+1)}} we have

γk+1(τ)α~γk+1(τ)1=(γk(τ)αγk(τ)1,(γk(τ)ατ1(ω)γk(τ)1)ω).\gamma^{k+1}(\tau)\widetilde{\alpha}\gamma^{k+1}(\tau)^{-1}=(\gamma^{k}(\tau)\alpha\gamma^{k}(\tau)^{-1},(\gamma^{k}(\tau)\alpha_{\tau^{-1}(\omega)}\gamma^{k}(\tau)^{-1})_{\omega}).\qed
Definition 4.22.

Retain the above notation. Define H(F):=kUk(F(k))H(F):=\bigcap_{k\in\operatorname{\mathbb{N}}}\mathrm{U}_{k}(F^{(k)}).

Now, H(F)H(F) is compactly generated, vertex-transitive and contains an involutive inversion because U1({id})H(F)\smash{\mathrm{U}_{1}(\{\operatorname{id}\})\leq H(F)}. Also, H(F)H(F) is closed as the intersection of all its (Pk)(P_{k})-closures. The 11-local action of HH is given by F=F(1)F=F^{(1)} as Γk(F)F(k)\Gamma^{k}(F)\leq F^{(k)} for all kk\in\operatorname{\mathbb{N}} and therefore D(F)H\mathrm{D}(F)\leq H.

Lemma 4.23.

The group H(F)H(F) is non-discrete.

Proof.

Let xVx\in V and nn\in\operatorname{\mathbb{N}}. We construct a non-trivial element hH(F)h\in H(F) which fixes B(x,n)B(x,n): Consider αn:=idF(n)\alpha_{n}:=\operatorname{id}\in F^{(n)}. By parts i and iii of Proposition 4.21 as well as the definition of F(n+1)F^{(n+1)}, there is a non-trivial element αn+1F(n+1)\alpha_{n+1}\in F^{(n+1)} with πnαn+1=αn\pi_{n}\alpha_{n+1}=\alpha_{n}. Applying parts i and ii of Proposition 4.21 repeatedly, we obtain non-trivial elements αkF(k)\alpha_{k}\in F^{(k)} for all kn+1k\geq n+1 with πkαk+1=αk\pi_{k}\alpha_{k+1}=\alpha_{k}. Set αk:=idF(k)\alpha_{k}:=\operatorname{id}\in F^{(k)} for all knk\leq n and define hAut(Td)xh\in\operatorname{Aut}(T_{d})_{x} by fixing xx and setting σk(h,x):=αkF(k)\sigma_{k}(h,x):=\alpha_{k}\in F^{(k)}. Since F(l)Φl(F(k))F^{(l)}\leq\Phi^{l}(F^{(k)}) for all klk\leq l we conclude that hkUk(F(k))=H(F)h\in\bigcap_{k\in\operatorname{\mathbb{N}}}\mathrm{U}_{k}(F^{(k)})=H(F). ∎

Proposition 4.24.

The quasi-center of H(F)H(F) contains a translation of length 11.

Proof.

Fix xVx\in V and let τ\tau be as above. Consider the line LL through xx with labels

,τ2ω0,τ1ω0,ω0,τω0,τ2ω0,\ldots,\tau^{-2}\omega_{0},\tau^{-1}\omega_{0},\omega_{0},\tau\omega_{0},\tau^{2}\omega_{0},\ldots

Define tD(F)t\in\mathrm{D}(F) by t(x)=xω0t(x)=x_{\omega_{0}} and σ1(t,y)=τ\sigma_{1}(t,y)=\tau for all yVy\in V. Then tt is a translation of length 11 along LL. Furthermore, tt commutes with H(F)B(x,1)H(F)_{B(x,1)}: Indeed, let gH(F)B(x,1)g\in H(F)_{B(x,1)}. Then (gt)(x)=t(x)=(tg)(x)(gt)(x)=t(x)=(tg)(x) and

σk(gt,x)=σk(g,tx)σk(t,x)=σk(t,x)σk(g,x)=σk(t,gx)σk(g,x)=σk(tg,x)\sigma_{k}(gt,x)=\sigma_{k}(g,tx)\sigma_{k}(t,x)=\sigma_{k}(t,x)\sigma_{k}(g,x)=\sigma_{k}(t,gx)\sigma_{k}(g,x)=\sigma_{k}(tg,x)

for all kk\in\operatorname{\mathbb{N}} because σk(t,x)=γk(τ)Z(F(k))\sigma_{k}(t,x)=\gamma^{k}(\tau)\in Z(F^{(k)}) and gUk+1(F(k+1))B(x,1)g\in\mathrm{U}_{k+1}(F^{(k+1)})_{B(x,1)}. ∎

4.1.5. Theorem 4.2ivivb

For certain quasiprimitive FSym(Ω)F\leq\mathrm{Sym}(\Omega) we construct a closed, non-discrete, compactly generated group H(F)Aut(Td)H(F)\leq\operatorname{Aut}(T_{d}) which locally acts like FF and contains a quasi-central hyperbolic element of length 22.

Let FSym(Ω)F\!\leq\!\operatorname{Sym}(\Omega) be quasiprimitive. Suppose FF preserves a non-trivial partition 𝒫:Ω=iIΩi\operatorname{\mathcal{P}}:\Omega=\bigsqcup_{i\in I}\Omega_{i}. Further, suppose that FΩi{id}F_{\Omega_{i}}\!\neq\!\{\operatorname{id}\} and that FωiΩi\{ωi}F_{\omega_{i}}\curvearrowright\Omega_{i}\backslash\{\omega_{i}\} is transitive for all iIi\in I and ωiΩi\omega_{i}\in\Omega_{i}.

Example 4.25.

Consider A5A5/C5A_{5}\curvearrowright A_{5}/C_{5} which has blocks of size [D5:C5]=2[D_{5}:C_{5}]=2 and non-trivial block stabilizers as C5τC5τ1=C5C_{5}\cap\tau C_{5}\tau^{-1}=C_{5} for all τD5\tau\in D_{5} given that C5D5C_{5}\unlhd D_{5}.

Retain the notation of Example 3.41. Define groups F(2k)Aut(Bd,2k)\smash{F^{(2k)}\leq\operatorname{Aut}(B_{d,2k})} for kk\in\operatorname{\mathbb{N}} inductively by F(2)={(a,(aω)ω)aF,aωCF(a,ω) constant w.r.t. 𝒫}\smash{F^{(2)}=\{(a,(a_{\omega})_{\omega})\mid a\in F,a_{\omega}\in C_{F}(a,\omega)\text{ constant w.r.t. $\operatorname{\mathcal{P}}$}\}} and

F(2(k+1)):={(α,(αw)w)αF(2k),αwCF(2k)(α,w),wΩ0(2):αw=α}.F^{(2(k+1))}:=\{(\alpha,(\alpha_{w})_{w})\mid\alpha\in F^{(2k)},\alpha_{w}\in C_{F^{(2k)}}(\alpha,w),\ \forall w\in\Omega^{(2)}_{0}:\ \alpha_{w}=\alpha\}.
Proposition 4.26.

The groups F(2k)Aut(Bd,2k)F^{(2k)}\leq\operatorname{Aut}(B_{d,2k}) (kk\in\operatorname{\mathbb{N}}) defined above satisfy:

  1. (i)

    Every αF(2k)\alpha\in F^{(2k)} is self-compatible in all directions from Ω0(2)\Omega^{(2)}_{0}.

  2. (ii)

    The compatibility set CF(2k)(α,w)C_{F^{(2k)}}(\alpha,w) is non-empty for all αF(2k)\alpha\!\in\!F^{(2k)} and wΩ(2)w\!\in\!\Omega^{(2)}.
    In particular, the group F(2k)F^{(2k)} satisfies (C).

  3. (iii)

    The compatibility set CF(2k)(id,w)C_{F^{(2k)}}(\operatorname{id},w) is non-trivial for all wΩ(2)w\in\Omega^{(2)}.
    In particular, the group F(2k)F^{(2k)} does not satisfy (D).

Proof.

We prove all three properties simultaneously by induction: For k=1k=1, the assertion i holds by construction of F(2)F^{(2)}, as do ii and iii. Now assume that all properties hold for F(2k)F^{(2k)}. Then the definition of F(2(k+1))F^{(2(k+1))} is meaningful because of i and it is a subgroup because F(2)F^{(2)} preserves Ω0(2)\smash{\Omega^{(2)}_{0}}. Also, F(2(k+1))F^{(2(k+1))} satisfies i because Ω0(2)\smash{\Omega^{(2)}_{0}} is inversion-closed. Statements ii and iii carry over from F(2k)\smash{F^{(2k)}}. ∎

Definition 4.27.

Retain the above notation. Define H(F):=kBU2k(F(2k))H(F):=\bigcap_{k\in\operatorname{\mathbb{N}}}\mathrm{BU}_{2k}(F^{(2k)}).

Now, H(F)H(F) is closed as an intersection of closed sets and compactly generated by H(F)xH(F)_{x} for some xV1x\in V_{1} and a finite generating set of BU2({id})+\mathrm{BU}_{2}(\{\operatorname{id}\})^{+}, see Lemma 3.39. For vertices in V1V_{1}, the 11-local action is FF because Γ2k(F)F(2k)\Gamma^{2k}(F)\leq F^{(2k)}. For vertices in V2V_{2} the 11-local action is F+=FF^{+}=F as Γ2(F)F(2)\Gamma^{2}(F)\leq F^{(2)}.

Lemma 4.28.

The group H(F)H(F) is non-discrete.

Proof.

Let xV1x\in V_{1} and nn\in\operatorname{\mathbb{N}}. We construct a non-trivial element hH(F)h\in H(F) which fixes B(x,2n)B(x,2n): Consider α2n:=idF(2n)\alpha_{2n}:=\operatorname{id}\in F^{(2n)}: By parts i and iii of Proposition 4.5 and the definition of F(2(n+1))F^{(2(n+1))}, there is a non-trivial element α2(n+1)F(2(n+1))\smash{\alpha_{2(n+1)}\in F^{(2(n+1))}} with π2nα2(n+1)=α2n\pi_{2n}\alpha_{2(n+1)}=\alpha_{2n}. Applying parts i and ii of Proposition 4.26 repeatedly, we obtain non-trivial elements α2kF(2k)\smash{\alpha_{2k}\in F^{(2k)}} for all kn+1k\geq n+1 with π2kα2(k+1)=α2k\smash{\pi_{2k}\alpha^{2(k+1)}=\alpha_{2k}}. Set α2k:=idF(2k)\smash{\alpha_{2k}:=\operatorname{id}\in F^{(2k)}} for all knk\leq n and define hAut(Td)xh\in\operatorname{Aut}(T_{d})_{x} by fixing xx and setting σ2k(h,x):=α2kF(2k)\smash{\sigma_{2k}(h,x):=\alpha_{2k}\in F^{(2k)}}. Since F(2l)BΦ2l(F(2k))\smash{F^{(2l)}\!\leq\!\mathrm{B}\Phi^{2l}(F^{(2k)})} for all klk\!\leq\!l we conclude that hkBU2k(F(2k))=H(F)\smash{h\in\bigcap_{k\in\operatorname{\mathbb{N}}}\mathrm{BU}_{2k}(F^{(2k)})=H(F)}. ∎

Proposition 4.29.

The quasi-center of H(F)H(F) contains a translation of length 22.

Proof.

Fix xV1x\!\in\!V_{1} and w=(ω1,ω2)Ω0(2)w\!=\!(\omega_{1},\omega_{2})\!\in\!\Omega^{(2)}_{0}. Consider the line LL through bb with labels

,ω1,ω2,ω1,ω2,\ldots,\omega_{1},\omega_{2},\omega_{1},\omega_{2},\ldots

Define tD(F)t\in\mathrm{D}(F) by t(x)=xwt(x)=x_{w} and σ1(t,y)=id\sigma_{1}(t,y)=\operatorname{id} for all yVy\in V. Then tt is a translation of length 22 along LL. Furthermore, tt commutes with H(F)B(x,2)H(F)_{B(x,2)}: Indeed, let gH(F)B(x,2)g\in H(F)_{B(x,2)}. Then gt(x)=t(x)=tg(x)gt(x)=t(x)=tg(x) and for all kk\in\operatorname{\mathbb{N}}:

σ2k(gt,x)=σ2k(g,tx)σ2k(t,x)\displaystyle\sigma_{2k}(gt,x)=\sigma_{2k}(g,tx)\sigma_{2k}(t,x) =σ2k(g,xw)\displaystyle=\sigma_{2k}(g,x_{w})
=σ2k(g,x)=σ2k(t,gx)σ2k(g,x)=σ2k(tg,x)\displaystyle=\sigma_{2k}(g,x)=\sigma_{2k}(t,gx)\sigma_{2k}(g,x)=\sigma_{2k}(tg,x)

as σl(t,y)=id\sigma_{l}(t,y)=\operatorname{id} for all ll\in\operatorname{\mathbb{N}} and yV(Td)y\in V(T_{d}), and gBU2(k+1)(F(2(k+1)))B(b,2)g\in\mathrm{BU}_{2(k+1)}(F^{(2(k+1))})_{B(b,2)}. ∎

Remark 4.30.

We argue that the construction of this section does not carry over to any primitive FSym(Ω)F\leq\operatorname{Sym}(\Omega) and Γ(F)F(2)Φ(F)\Gamma(F)\leq F^{(2)}\leq\Phi(F).

First, note that Φ(F)\Ω(2)=Γ(F)\Ω(2)\Phi(F)\backslash\Omega^{(2)}=\Gamma(F)\backslash\Omega^{(2)}: For α:=(a,(aω)ωΩ)Φ(F)\alpha:=(a,(a_{\omega})_{\omega\in\Omega})\in\Phi(F) and (ω1,ω2)Ω(2)\smash{(\omega_{1},\omega_{2})\!\in\!\Omega^{(2)}} we have α(ω1,ω2)=(aω1,aω1ω2){(aω1,aFω1ω2)}Γ(F)(ω1,ω2)\alpha(\omega_{1},\omega_{2})=(a\omega_{1},a_{\omega_{1}}\omega_{2})\in\{(a\omega_{1},aF_{\omega_{1}}\omega_{2})\}\subseteq\Gamma(F)(\omega_{1},\omega_{2}). We now observe the following obstruction to non-discreteness: Given any orbit Ω0(2)Φ(F)\Ω(2)=F(2)\Ω(2)\smash{\Omega^{(2)}_{0}\in\Phi(F)\backslash\Omega^{(2)}=F^{(2)}\backslash\Omega^{(2)}}, the subgroup of Φ(F)\Phi(F) consisting of elements which are self-compatible in all directions from Ω0(2)\smash{\Omega^{(2)}_{0}} is precisely Γ(F)\Gamma(F).

Indeed, every element of Γ(F)\Gamma(F) is self-compatible in all directions from Ω(2)Ω02\Omega^{(2)}\!\supseteq\!\Omega_{0}^{2}. Conversely, let (a,(aω)ω)Φ(F)(a,(a_{\omega})_{\omega})\in\Phi(F) be self-compatible in all directions from Ω0(2)\smash{\Omega^{(2)}_{0}}. Consider the equivalence relation on Ω\Omega defined by ω1ω2\omega_{1}\sim\omega_{2} if and only if aω1=aω2a_{\omega_{1}}=a_{\omega_{2}}. Since aω1=aω2a_{\omega_{1}}=a_{\omega_{2}} whenever w:=(ω1,ω2)Ω0(2)w:=(\omega_{1},\omega_{2})\in\smash{\Omega^{(2)}_{0}}, this relation is FF-invariant: Since Γ(F)Φ(F)\Gamma(F)\leq\Phi(F) we have γ(a)(ω1,ω2)=(aω1,aω2)Ω0(2)\smash{\gamma(a)(\omega_{1},\omega_{2})=(a\omega_{1},a\omega_{2})\in\Omega^{(2)}_{0}} for all aFa\in F whenever (ω1,ω2)Ω0(2)\smash{(\omega_{1},\omega_{2})\in\Omega^{(2)}_{0}}. Since FF is primitive, it is the universal relation, so (a,(aω)ω)Γ(F)(a,(a_{\omega})_{\omega})\!\in\!\Gamma(F).

4.2. Banks–Elder–Willis (Pk)(P_{k})-closures

Theorem 3.34 yields a description of the (Pk)(P_{k})-closures of locally transitive subgroups of Aut(Td)\operatorname{Aut}(T_{d}) which contain an involutive inversion, and thereby a characterization of the locally transitive universal groups. Recall that the (Pk)(P_{k})-closure of a subgroup HAut(Td)H\leq\operatorname{Aut}(T_{d}) is

H(Pk)={gAut(Td)xVhH:g|B(x,k)=h|B(x,k)}.H^{(P_{k})}=\{g\in\operatorname{Aut}(T_{d})\mid\forall x\in V\ \exists h\in H:\ g|_{B(x,k)}=h|_{B(x,k)}\}.

Combined with Corollary 3.18 the following partially answers the question for an algebraic description of a group’s (Pk)(P_{k})-closure in the last paragraph of [BEW15].

Theorem 4.31.

Let HAut(Td)H\leq\operatorname{Aut}(T_{d}) be locally transitive and contain an involutive inversion. Then H(Pk)=Uk(l)(F(k))\smash{H^{(P_{k})}=\mathrm{U}_{k}^{(l)}(F^{(k)})} for some labelling ll of TdT_{d} and F(k)Aut(Bd,k)F^{(k)}\leq\operatorname{Aut}(B_{d,k}).

Proof.

Let ll and F(k)Aut(Bd,k)F^{(k)}\leq\operatorname{Aut}(B_{d,k}) be as in Theorem 3.34. Then H(Pk)=Uk(l)(F(k))\smash{H^{(P_{k})}\!=\!\mathrm{U}_{k}^{(l)}(F^{(k)})}:

Let gUk(F(k))\smash{g\in\mathrm{U}_{k}(F^{(k)})} and xVx\in V. Since U1(l)({id})H\smash{\mathrm{U}_{1}^{(l)}(\{\operatorname{id}\})\leq H} there is hU1(l)({id})H\smash{h^{\prime}\in\mathrm{U}_{1}^{(l)}(\{\operatorname{id}\})}\leq H with h(x)=g(x)h^{\prime}(x)=g(x), and since HH is kk-locally action isomorphic to F(k)\smash{F^{(k)}} there is h′′Hxh^{\prime\prime}\!\in\!H_{x} such that σk(h′′,x)=σk(g,x)\sigma_{k}(h^{\prime\prime},x)=\sigma_{k}(g,x). Then h:=hh′′Hh:=h^{\prime}h^{\prime\prime}\in H satisfies g|B(x,k)=h|B(x,k)g|_{B(x,k)}=h|_{B(x,k)}.

Conversely, let gH(Pk)\smash{g\in H^{(P_{k})}}. Then all kk-local actions of gg stem from elements of HH. Given that HUk(F(k))H\leq\mathrm{U}_{k}(F^{(k)}) by Theorem 3.34, we conclude that gUk(F(k))g\in\mathrm{U}_{k}(F^{(k)}). ∎

Corollary 4.32.

Let HAut(Td)H\leq\operatorname{Aut}(T_{d}) be closed, locally transitive and contain an involutive inversion. Then H=Uk(l)(F(k))\smash{H=\mathrm{U}_{k}^{(l)}(F^{(k)})} for some labelling ll of TdT_{d} and an action F(k)Aut(Bd,k)\smash{F^{(k)}\leq\operatorname{Aut}(B_{d,k})} if and only if HH satisfies Property (Pk)(P_{k}).

Proof.

If H=Uk(l)(F(k))H=\mathrm{U}_{k}^{(l)}(F^{(k)}) then HH satisfies Property (Pk)(P_{k}) by Proposition 3.7. Conversely, if HH satisfies Property (Pk)\smash{(P_{k})} then H=H¯=H(Pk)\smash{H=\overline{H}\!=\!H^{(P_{k})}} by [BEW15, Theorem 5.4] and the assertion follows from Theorem 4.31. ∎

Banks–Elder–Willis use certain subgroups of Aut(Td)\operatorname{Aut}(T_{d}) with pairwise distinct (Pk)(P_{k})-closures to construct infinitely many, pairwise non-conjugate, non-discrete simple subgroups of Aut(Td)\operatorname{Aut}(T_{d}) via Theorem 1.1 and [BEW15, Theorem 8.2]. For example, the group PGL(2,p)Aut(Tp+1)\operatorname{PGL}(2,\operatorname{\mathbb{Q}}_{p})\!\leq\!\operatorname{Aut}(T_{p+1}) qualifies by the argument in [BEW15, Section 4.1]. Whereas PGL(2,p)\operatorname{PGL}(2,\operatorname{\mathbb{Q}}_{p}) has trivial quasi-center given that it is simple, certain groups with non-trivial quasi-center, always have infinitely many distinct (Pk)(P_{k})-closures.

Proposition 4.33.

Let HAut(Td)H\leq\operatorname{Aut}(T_{d}) be closed, non-discrete, locally transitive and contain an involutive inversion. If, in addition, HH has non-trivial quasi-center then HH has infinitely many distinct (Pk)(P_{k})-closures.

Proof.

We have H(Pk)=Uk(F(k))H^{(P_{k})}=\mathrm{U}_{k}(F^{(k)}) by Theorem 4.31. Therefore, H=kUk(F(k))H=\bigcap_{k\in\operatorname{\mathbb{N}}}\mathrm{U}_{k}(F^{(k)}) by [BEW15, Proposition 3.4 (iii)]. If HH had only finitely many distinct (Pk)(P_{k})-closures, the sequence (H(Pk))k(H^{(P_{k})})_{k\in\operatorname{\mathbb{N}}} of subgroups of Aut(Td)\operatorname{Aut}(T_{d}) would be eventually constant equal to, say, H(n)=Un(F(n))HH^{(n)}=\mathrm{U}_{n}(F^{(n)})\geq H. However, since HH is non-discrete, so is Un(F(n))\mathrm{U}_{n}(F^{(n)}) which thus has trivial quasi-center by Proposition 3.21. ∎

Banks–Elder–Willis ask whether the infinitely many, pairwise non-conjugate, non-discrete simple subgroups of Aut(Td)\operatorname{Aut}(T_{d}) they construct are also pairwise non-isomorphic as topological groups. By Proposition 3.17, this is the case if said simple groups are locally transitive with distinct point stabilizers, which can be determined from the original group’s kk-local actions thanks to Theorem 4.31.

Theorem 4.34.

Let HAut(Td)H\leq\operatorname{Aut}(T_{d}) be non-discrete, locally permutation isomorphic to FSym(Ω)F\leq\operatorname{Sym}(\Omega) and contain an involutive inversion. Suppose that FF is transitive and that every non-trivial subnormal subgroup of FωF_{\omega} (ωΩ)(\omega\!\in\!\Omega) is transitive on Ω\{ω}\Omega\backslash\{\omega\}. If H(Pk)H(Pl)H^{(P_{k})}\neq H^{(P_{l})} for some k,lk,l\in\operatorname{\mathbb{N}} then (H(Pk))+k(H^{(P_{k})})^{+_{k}} and (H(Pl))+l(H^{(P_{l})})^{+_{l}} are non-isomorphic.

Proof.

In view of [BEW15, Theorem 8.2], the groups (H(Pk))+k(H^{(P_{k})})^{+_{k}} and (H(Pl))+l(H^{(P_{l})})^{+_{l}} are non-conjugate. We show that they satisfy the assumptions of Proposition 3.17 which then implies the assertion. It suffices to consider H(Pk)H^{(P_{k})}. By Theorem 4.31, we have H(Pk)=Uk(F(k))H^{(P_{k})}=\mathrm{U}_{k}(F^{(k)}) for some F(k)Aut(Bd,k)F^{(k)}\leq\operatorname{Aut}(B_{d,k}). By virtue of Proposition 3.10, we may assume that F(k)\smash{F^{(k)}} satisfies (C). Since HH is non-discrete, so is H(Pk)=Uk(F(k))\smash{H^{(P_{k})}=\mathrm{U}_{k}(F^{(k)})}. Therefore, F(k)F^{(k)} does not satisfy (D), see Proposition 3.12. Hence, in view of the local action of HH and Proposition 3.31, the group πwFTω(k)\smash{\pi_{w}F^{(k)}_{T_{\omega}}} is non-trivial and thus transitive by Proposition 3.30 for all w=(ω1,,ωk1)Ω(k1)\smash{w=(\omega_{1},\ldots,\omega_{k-1})\in\Omega^{(k-1)}} and ωΩ\{ω1}\omega\in\Omega\backslash\{\omega_{1}\}. Now, let xV(Td)x\in V(T_{d}). For every ωΩ\omega\in\Omega pick w=(ω1,,ωk2,ω)Ω(k1)w=(\omega_{1},\ldots,\omega_{k-2},\omega)\in\Omega^{(k-1)}. Let yV(Td)y\in V(T_{d}) be such that x=ywx=y_{w}. Since πwFTω(k)\smash{\pi_{w}F^{(k)}_{T_{\omega^{\prime}}}} is transitive for every ωΩ\{ω1}\omega^{\prime}\in\Omega\backslash\{\omega_{1}\} we conclude that (H(Pk))+k(H^{(P_{k})})^{+_{k}} is locally 22-transitive at xx. So Proposition 3.17 applies. ∎

Example 4.35.

Theorem 4.34 applies to PGL(2,p)Aut(Tp+1)\operatorname{PGL}(2,\operatorname{\mathbb{Q}}_{p})\!\leq\!\operatorname{Aut}(T_{p+1}) for any prime pp by Lemma 4.36 below. In fact, the local action is given by PGL(2,𝔽p)P1(𝔽p)\operatorname{PGL}(2,\operatorname{\mathbb{F}}_{p})\!\curvearrowright\!\mathrm{P}^{1}(\operatorname{\mathbb{F}}_{p}), point stabilizers of which act like AGL(1,p)=𝔽p𝔽p𝔽p\operatorname{AGL}(1,p)\!=\!\operatorname{\mathbb{F}}_{p}^{\ast}\ltimes\operatorname{\mathbb{F}}_{p}\curvearrowright\operatorname{\mathbb{F}}_{p}. Retaining the notation of [BEW15, Section 4.1], an involutive inversion in PGL(2,p)\operatorname{PGL}(2,\operatorname{\mathbb{Q}}_{p}) is given by

σ:=[01p0]withσ2=[p00p]=[1001].\sigma:=\begin{bmatrix}0&1\\ p&0\end{bmatrix}\quad\text{with}\quad\sigma^{2}=\begin{bmatrix}p&0\\ 0&p\end{bmatrix}=\begin{bmatrix}1&0\\ 0&1\end{bmatrix}.

Indeed, σ\sigma swaps the vertices vv and 𝐋p\mathbf{L}_{p}.

Lemma 4.36.

Let FSym(Ω)F\leq\operatorname{Sym}(\Omega) be 22-transitive. If |Ω|1|\Omega|-1 is prime then every non-trivial subnormal subgroup of FωF_{\omega} (ωΩ\omega\in\Omega) acts transitively on Ω\{ω}\Omega\backslash\{\omega\}.

Proof.

Since FωF_{\omega} acts transitively on Ω\{ω}\Omega\backslash\{\omega\}, which has prime order, FωF_{\omega} is primitive. So every non-trivial normal subgroup of FωF_{\omega} acts transitively on Ω\{ω}\Omega\backslash\{\omega\}. Iterate. ∎

Example 4.37.

The proof of Theorem 4.34 shows that the assumptions on FF can be replaced with asking that (H(Pk))+k(H^{(P_{k})})^{+_{k}} be locally transitive with distinct point stabilizers, which may be feasible to check in a given example.

For instance, let FSym(Ω)F\!\leq\!\mathrm{Sym}(\Omega) be transitive with distinct point stabilizers. Assume that FF preserves a non-trivial partition 𝒫:Ω=iIΩi\operatorname{\mathcal{P}}:\Omega=\bigsqcup_{i\in I}\Omega_{i} of Ω\Omega and that it is generated by its block stabilizers, i.e. F={FΩiiI}F=\langle\{F_{\Omega_{i}}\mid i\in I\}\rangle.

Let p:ΩIp:\Omega\to I be such that ωΩpω\omega\in\Omega_{p\omega} for all ωΩ\omega\in\Omega. Inductively define groups F(k)Aut(Bd,k)\smash{F^{(k)}\leq\operatorname{Aut}(B_{d,k})} by F(1):=F\smash{F^{(1)}:=F} and F(k+1):=Φk(F(k),𝒫)\smash{F^{(k+1)}\!:=\!\Phi_{k}(F^{(k)},\operatorname{\mathcal{P}})}, and check that

  1. (i)

    CF(k)(α,Ωi)C_{F^{(k)}}(\alpha,\Omega_{i}) is non-empty for all αF(k)\smash{\alpha\in F^{(k)}} and iIi\in I,

  2. (ii)

    CF(k)(id,Ωi)C_{F^{(k)}}(\operatorname{id},\Omega_{i}) is non-trivial for all iIi\in I,

  3. (iii)

    F(k+1)Φ(F(k))F^{(k+1)}\lneq\Phi(F^{(k)}), and

  4. (iv)

    πwFTω(k)=FΩpωk1\smash{\pi_{w}F^{(k)}_{T_{\omega}}\!=\!F_{\Omega_{p\omega_{k-1}}}} for all ωΩ\omega\!\in\!\Omega and w=(ω1,,ωk1)Ω(k1)w\!=\!(\omega_{1},\ldots,\omega_{k-1})\!\in\!\Omega^{(k-1)} with ω1Ωpω\omega_{1}\!\notin\!\Omega_{p\omega}.

In particular F(k)F^{(k)} satisfies (C) but not (D) for all kk\in\operatorname{\mathbb{N}}. Set H:=kUk(F(k))H:=\bigcap_{k\in\operatorname{\mathbb{N}}}\mathrm{U}_{k}(F^{(k)}). By the above, HH is non-discrete and contains both D(F)D(F) and U1({id})\mathrm{U}_{1}(\{\operatorname{id}\}). Hence Theorem 4.31 applies and we have H(Pk)=Uk(F(k))H^{(P_{k})}=\mathrm{U}_{k}(F^{(k)}). From Item iii, we conclude that the H(Pk)H^{(P_{k})} (kk\in\operatorname{\mathbb{N}}) are pairwise distinct. Given that (H(Pk))+k(H^{(P_{k})})^{+_{k}} locally acts like FF due to Item iv, the (H(Pk))+k\smash{(H^{(P_{k})})^{+_{k}}} (k)(k\in\operatorname{\mathbb{N}}) are hence pairwise non-isomorphic.

4.3. A View on the Weiss Conjecture

The Weiss conjecture states that there are only finitely many conjugacy classes of discrete, vertex-transitive, locally primitive subgroups of Aut(Td)\operatorname{Aut}(T_{d}) for a given d3d\in\operatorname{\mathbb{N}}_{\geq 3}. We now study the universal group construction in the discrete case and thereby offer a new view on this conjecture: Under the additional assumption that each group contains an involutive inversion, it suffices to show that for every primitive FSym(Ω)F\leq\operatorname{Sym}(\Omega) there are only finitely many F~Aut(Bd,k)\smash{\widetilde{F}\leq\operatorname{Aut}(B_{d,k})} (k)(k\in\operatorname{\mathbb{N}}) with πF~=F\smash{\pi\widetilde{F}=F} and which satisfy (CD) in a minimal fashion; see Definition 4.42 and the discussion thereafter.

The following consequence of Theorem 4.31 identifies certain groups relevant to the Weiss conjecture as universal groups for local actions satisfying condition (CD).

Corollary 4.38.

Let HAut(Td)H\leq\operatorname{Aut}(T_{d}) be discrete, locally transitive and contain an involutive inversion. Then H=Uk(l)(F(k))\smash{H=\mathrm{U}_{k}^{(l)}(F^{(k)})} for some kk\in\operatorname{\mathbb{N}}, a labelling ll of TdT_{d} and F(k)Aut(Bd,k)\smash{F^{(k)}\leq\operatorname{Aut}(B_{d,k})} satisfying (CD) which is isomorphic to the kk-local action of HH.

Proof.

Discreteness of HH implies Property (Pk)(P_{k}) for every kk\in\operatorname{\mathbb{N}} such that stabilizers in HH of balls of radius kk in TdT_{d} are trivial. Then apply Theorem 4.31. ∎

Therefore, studying the class of groups given in Corollary 4.38 reduces to studying subgroups FAut(Bd,k)F\leq\operatorname{Aut}(B_{d,k}) (k)(k\in\operatorname{\mathbb{N}}) which satisfy (CD) and for which πF\pi F is transitive. By Corollary 3.15, any two conjugate such groups yield isomorphic universal groups. In this sense, it suffices to examine conjugacy classes of subgroups of Aut(Bd,k)\operatorname{Aut}(B_{d,k}). This can be done computationally using the description of conditions (C) and (D) developed in Section 3.2, using e.g. [GAP17].

Example 4.39.

Consider the case d=3d\!=\!3. By [Tut47], [Tut59] and [DM80], there are, up to conjugacy, seven discrete, vertex-transitive and locally transitive subgroups of Aut(T3)\operatorname{Aut}(T_{3}). We denote them by G1G_{1}, G2G_{2}, G21G_{2}^{1}, G3G_{3}, G4G_{4}, G41G_{4}^{1} and G5G_{5}. The subscript nn determines the isomorphism class of the vertex stabilizer, whose order is 32n13\cdot 2^{n-1}. A group contains an involutive inversion if and only if it has no superscript. The minimal order of an inversion in G21G_{2}^{1} and G41G_{4}^{1} is 44. See also [CL89]. By Corollary 4.38, the groups GnG_{n} (n{1,,5})(n\!\in\!\{1,\ldots,5\}) are of the form Uk(F)\mathrm{U}_{k}(F). We recover their local actions in the following table of conjugacy class representatives of subgroups FF of Aut(B3,2)\operatorname{Aut}(B_{3,2}) and Aut(B3,3)\operatorname{Aut}(B_{3,3}) which satisfy (C) and project onto a transitive subgroup of S3S_{3}. The list is complete for k=2k=2, and for k=3k=3 in the case of (CD).

Description of FF kk πF\pi F |F||F| (C) (D) i.c.c. Φ(A3)\Phi(A_{3}) 2 A3A_{3} 3 yes yes yes \cdashline1-7 Γ(S3)\Gamma(S_{3}) 2 S3S_{3} 6 yes yes yes Δ(S3)\Delta(S_{3}) 2 S3S_{3} 12 yes yes yes Π(S3,sgn,{0,1})\Pi(S_{3},\mathrm{sgn},\{0,1\}) 2 S3S_{3} 24 yes no no Π(S3,sgn,{1})\Pi(S_{3},\mathrm{sgn},\{1\}) 2 S3S_{3} 24 yes no yes Φ(S3)\Phi(S_{3}) 2 S3S_{3} 48 yes no no Description of FF kk π2F\pi_{2}F |F||F| (C) (D) i.c.c. Γ2(Π(S3,sgn,{1}))\Gamma_{2}(\Pi(S_{3},\mathrm{sgn},\{1\})) 3 Π(S3,sgn,{1})\Pi(S_{3},\mathrm{sgn},\{1\}) 24 yes yes yes Σ2(Π(S3,sgn,{1}),K2)\Sigma_{2}(\Pi(S_{3},\mathrm{sgn},\{1\}),K_{2}) 3 Π(S3,sgn,{1})\Pi(S_{3},\mathrm{sgn},\{1\}) 48 yes yes yes

The column labelled “i.c.c.” records whether FF admits an involutive compatibility cocycle. This can be determined in [GAP17] and is automatic in the case of (CD). The group Π(S3,sgn,{1})\Pi(S_{3},\mathrm{sgn},\{1\}) of Proposition 3.25 admits an involutive compatibility cocycle zz which we describe as follows: Say Ω:={1,2,3}\Omega\!:=\!\{1,2,3\}. Let tiSym(Ω)t_{i}\!\in\!\operatorname{Sym}(\Omega) be the transposition which fixes ii, and let τiΠ(S3,sgn,{1})\tau_{i}\!\in\!\Pi(S_{3},\mathrm{sgn},\{1\}) be the element whose 11-local action is tit_{i} everywhere except at bib_{i}. Then Π(S3,sgn,{1})=τ1,τ2,τ3\Pi(S_{3},\mathrm{sgn},\{1\})=\langle\tau_{1},\tau_{2},\tau_{3}\rangle. Further, let κiΠ(S3,sgn,{1})kerπ\kappa_{i}\in\Pi(S_{3},\mathrm{sgn},\{1\})\cap\ker\pi be the non-trivial element with σ1(κi,bi)=e\sigma_{1}(\kappa_{i},b_{i})=e. We then have z(τi,i)=κi1z(\tau_{i},i)=\kappa_{i-1} and z(τi,j)=τiκjz(\tau_{i},j)=\tau_{i}\kappa_{j} for all distinct i,jΩi,j\in\Omega, with cyclic notation.

The kernel K2K_{2} is the diagonal subgroup of /23(31)kerπ2Aut(B3,3)\smash{\operatorname{\mathbb{Z}}\!/2\operatorname{\mathbb{Z}}^{3\cdot(3-1)}\cong\ker\pi_{2}\leq\operatorname{Aut}(B_{3,3})}. Using the above, we conclude G1=U1(A3)G_{1}=\mathrm{U}_{1}(A_{3}), G2=U2(Γ(S3))G_{2}=\mathrm{U}_{2}(\Gamma(S_{3})), G3=U2(Δ(S3))G_{3}=\mathrm{U}_{2}(\Delta(S_{3})), G4=U3(Γ2(Π(S3,sgn,{1})))G_{4}=\mathrm{U}_{3}(\Gamma_{2}(\Pi(S_{3},\mathrm{sgn},\{1\}))) and G5=U3(Σ2(Π(S3,sgn,{1}),K2))G_{5}=\mathrm{U}_{3}(\Sigma_{2}(\Pi(S_{3},\mathrm{sgn},\{1\}),K_{2})).

Question 4.40.

Can the groups G21G_{2}^{1} and G41G_{4}^{1} be described as universal groups with prescribed local actions on edge neighbourhoods that prevent involutive inversions?

The long standing Weiss conjecture [Wei78] states that there are only finitely many conjugacy classes of discrete, vertex-transitive, locally primitive subgroups of Aut(Td)\operatorname{Aut}(T_{d}) for a given d3d\in\operatorname{\mathbb{N}}_{\geq 3}. Potočnic–Spiga–Verret [PSV12] show that a permutation group FSym(Ω)F\leq\operatorname{Sym}(\Omega), for which there are only finitely many conjugacy classes of discrete, vertex-transitive subgroups of Aut(Td)\operatorname{Aut}(T_{d}) that locally act like FF, is necessarily semiprimitive, and conjecture the converse. Promising partial results were obtained in the same article as well as by Giudici–Morgan in [GM14].

Corollary 4.38 suggests to restrict to discrete, locally semiprimitive subgroups of Aut(Td)\operatorname{Aut}(T_{d}) containing an involutive inversion.

Conjecture 4.41.

Let FSym(Ω)F\leq\operatorname{Sym}(\Omega) be semiprimitive. Then there are only finitely many conjugacy classes of discrete subgroups of Aut(Td)\operatorname{Aut}(T_{d}) which locally act like FF and contain an involutive inversion.

For a transitive permutation group FSym(Ω)F\leq\operatorname{Sym}(\Omega), let F\operatorname{\mathcal{H}}_{F} denote the collection of subgroups of Aut(Td)\operatorname{Aut}(T_{d}) which are discrete, locally act like FF and contain an involutive inversion. Then the following definition is meaningful by Corollary 4.38.

Definition 4.42.

Let FSym(Ω)F\leq\operatorname{Sym}(\Omega) be transitive. Define

dimCD(F):=maxHFmin{k|F(k)Aut(Bd,k) with (CD):H=Uk(F(k))}\dim_{\mathrm{CD}}(F)\!:=\!\max_{H\in\operatorname{\mathcal{H}}_{F}}\!\min\left\{k\!\in\!\operatorname{\mathbb{N}}\left|\exists F^{(k)}\!\in\!\operatorname{Aut}(B_{d,k})\text{ with \eqref{eq:CD}}:\ H\!=\!\mathrm{U}_{k}(F^{(k)})\right.\right\}

if the maximum exists and dimCD(F)=\dim_{\mathrm{CD}}(F)=\infty otherwise.

Given Definition 4.42, Conjecture 4.41 is equivalent to asserting that dimCD(F)\dim_{\mathrm{CD}}(F) is finite whenever FSym(Ω)F\leq\operatorname{Sym}(\Omega) is semiprimitive. The remainder of this section is devoted to determining dimCD\dim_{\mathrm{CD}} for certain classes of transitive permutation groups.

Proposition 4.43.

Let FSym(Ω)F\leq\operatorname{Sym}(\Omega) be transitive. Then dimCD(F)=1\dim_{\mathrm{CD}}(F)=1 if and only if FF is regular.

Proof.

If FF is regular, then dimCD(F)=1\dim_{\mathrm{CD}}(F)=1 by Proposition 3.13. Conversely, if dimCD(F)=1\dim_{\mathrm{CD}}(F)=1 then U2(Δ(F))=U1(F)=U2(Γ(F))\mathrm{U}_{2}(\Delta(F))=\mathrm{U}_{1}(F)=\mathrm{U}_{2}(\Gamma(F)). Hence Γ(F)Δ(F)\Gamma(F)\cong\Delta(F) which implies that FωF_{\omega} is trivial for all ωΩ\omega\in\Omega. That is, FF is regular. ∎

The next proposition provides a large class of primitive groups of dimension 22. It relies on the following relations between various characteristic subgroups of a finite group. Recall that the socle of a finite group is the subgroup generated by its minimal normal subgroups, which form a direct product.

Lemma 4.44.

Let GG be a finite group. Then the following are equivalent.

  1. (i)

    The socle soc(G)\mathrm{soc}(G) has no abelian factor.

  2. (ii)

    The solvable radical 𝒪(G)\operatorname{\mathcal{O}}_{\infty}(G) is trivial.

  3. (iii)

    The nilpotent radical Fit(G)\mathrm{Fit}(G) is trivial.

Proof.

If soc(G)\mathrm{soc}(G) has no abelian factor then 𝒪(G)\operatorname{\mathcal{O}}_{\infty}(G) is trivial: A non-trivial solvable normal subgroup of GG would contain a minimal solvable normal subgroup of GG which is necessarily abelian. Next, ii implies iii as every nilpotent group is solvable. Finally, if soc(G)\mathrm{soc}(G) has an abelian factor then GG contains a (minimal) normal abelian, hence nilpotent subgroup. Thus iii implies i. ∎

Proposition 4.45.

Let FSym(Ω)F\leq\operatorname{Sym}(\Omega) be primitive, non-regular and assume that FωF_{\omega} has trivial nilpotent radical for all ωΩ\omega\in\Omega. Then dimCD(F)=2\dim_{\mathrm{CD}}(F)=2.

Proof.

Suppose that F(2)Aut(Bd,2)F^{(2)}\leq\operatorname{Aut}(B_{d,2}) satisfies (C) and that the sequence

1\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}kerπ\textstyle{\ker\pi\ignorespaces\ignorespaces\ignorespaces\ignorespaces}F(2)\textstyle{F^{(2)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π\scriptstyle{\pi}F\textstyle{F\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1\textstyle{1}

is exact. Fix ω0Ω\omega_{0}\in\Omega. Then kerπωΩFωFω0d\ker\pi\leq\prod_{\omega\in\Omega}F_{\omega}\cong F_{\omega_{0}}^{d}. Since F(2)F^{(2)} satisfies (C), we have prω(kerπ)Fω0\operatorname{pr}_{\omega}(\ker\pi)\unlhd F_{\omega_{0}} for all ωΩ\omega\in\Omega, and since FF is transitive these projections all coincide with the same NFω0N\unlhd F_{\omega_{0}}. Now consider FTω(2)=kerprω|kerπkerπ\smash{F^{(2)}_{T_{\omega}}=\ker\operatorname{pr}_{\omega}|_{\ker\pi}\unlhd\ker\pi} for some ωΩ\omega\in\Omega. Either FTω(2)\smash{F^{(2)}_{T_{\omega}}} is trivial, in which case F(2)\smash{F^{(2)}} has (CD), or FTω(2)\smash{F^{(2)}_{T_{\omega}}} is non-trivial. In the latter case, say Nω,ω:=prωFTω(2)\smash{N_{\omega,\omega^{\prime}}:=\operatorname{pr}_{\omega^{\prime}}F^{(2)}_{T_{\omega}}} is non-trivial for some ωΩ\omega^{\prime}\in\Omega. Then Nω,ωN_{\omega,\omega^{\prime}} is subnormal in Fω0F_{\omega_{0}} as Nω,ωNFω0N_{\omega,\omega^{\prime}}\unlhd N\unlhd F_{\omega_{0}} and therefore has trivial nilpotent radical. The Thompson-Wielandt Theorem [Tho70], [Wie71] (cf. [BM00, Theorem 2.1.1]) now implies that there is no F(k)Aut(Bd,k)F^{(k)}\leq\operatorname{Aut}(B_{d,k}) (k3)(k\geq 3) which satisfies π2F(k)=F(2)\pi_{2}F^{(k)}=F^{(2)} and (CD). Thus dimCD(F)2\dim_{\mathrm{CD}}(F)\leq 2. Equality holds by Proposition 4.43. ∎

Proposition 4.45 applies to Alt(d)\operatorname{Alt}(d) and Sym(d)\operatorname{Sym}(d) (d6d\geq 6) whose point stabilizers have non-abelian simple socle Alt(d1)\operatorname{Alt}(d-1). It also applies to primitive groups of O’Nan-Scott type (TW) and (HS), whose point stabilizers have trivial solvable radical [DM96, Theorem 4.7B] and simple non-abelian socle [LPS88] respectively.

Example 4.46.

By Example 4.39, we have dimCD(S3)3\dim_{\mathrm{CD}}(S_{3})\geq 3. The article [DM80] shows that in fact dimCD(S3)=3\dim_{\mathrm{CD}}(S_{3})=3.

To contrast the primitive case, we show that imprimitive wreath products have dimension at least 33, illustrating the use of involutive compatibility cocycles. Recall that for FSym(Ω)F\leq\mathrm{Sym}(\Omega) and PSym(Λ)P\leq\mathrm{Sym}(\Lambda) the wreath product FP:=F|Λ|P\smash{F\wr P:=F^{|\Lambda|}\rtimes P} admits a natural imprimitive action on Ω×Λ\Omega\times\Lambda with the partition λΛΩ×{λ}\bigsqcup_{\lambda\in\Lambda}\Omega\times\{\lambda\}, namely ((aλ)λ,σ)(ω,λ):=(aσ(λ)ω,σλ)((a_{\lambda})_{\lambda},\sigma)\cdot(\omega,\lambda^{\prime}):=(a_{\sigma(\lambda^{\prime})}\omega,\sigma\lambda^{\prime}).

Proposition 4.47.

Let Ω\Omega and Λ\Lambda be finite sets of size at least 22. Furthermore, let FSym(Ω)F\leq\mathrm{Sym}(\Omega) and PSym(Λ)P\leq\mathrm{Sym}(\Lambda) be transitive. Then dimCD(FP)3\dim_{\mathrm{CD}}(F\wr P)\geq 3.

Proof.

We define a subgroup W(F,P)Aut(B|Ω×Λ|,2)W(F,P)\leq\operatorname{Aut}(B_{|\Omega\times\Lambda|,2}) which projects onto FPF\wr P, satisfies (C), does not satisfy (D) but admits an involutive compatibility cocycle. This suffices by Lemma 3.26. For λΛ\lambda\in\Lambda, let ιλ\iota_{\lambda} denote the λ\lambda-th embedding of FF into FP=(λΛF)P\smash{F\wr P=\big{(}\prod_{\lambda\in\Lambda}F\big{)}\rtimes P}. Recall the map γ\gamma from Section 3.4.1 and consider

γλ:FAut(B|Ω×Λ|,2),a(ιλ(a),((ιλ(a))(ω,λ),(id)(ω,λλ))),\gamma_{\lambda}:F\to\operatorname{Aut}(B_{|\Omega\times\Lambda|,2}),\ a\mapsto(\iota_{\lambda}(a),((\iota_{\lambda}(a))_{(\omega,\lambda)},(\operatorname{id})_{(\omega,\lambda^{\prime}\neq\lambda)})),
γλ(2):FAut(B|Ω×Λ|,2),a(id,((id)(ω,λ),(ιλ(a))(ω,λλ))).\gamma_{\lambda}^{(2)}:F\to\operatorname{Aut}(B_{|\Omega\times\Lambda|,2}),\ a\mapsto(\operatorname{id},((\operatorname{id})_{(\omega,\lambda)},(\iota_{\lambda}(a))_{(\omega,\lambda^{\prime}\neq\lambda)})).

Furthermore, let ι\iota denote the embedding of PP into FPF\wr P. We define

W(F,P):=γλ(a),γλ(2)(a),γ(ι(ϱ))λΛ,aF,ϱP.W(F,P):=\langle\gamma_{\lambda}(a),\gamma_{\lambda}^{(2)}(a),\gamma(\iota(\varrho))\mid\lambda\in\Lambda,\ a\in F,\ \varrho\in P\rangle.

By construction, W(F,P)W(F,P) does not satisfy (D). To see that W(F,P)W(F,P) admits an involutive compatibility cocycle, we first determine its group structure. Consider the subgroups V:=γλ(a)λΛ,aFV:=\langle\gamma_{\lambda}(a)\mid\lambda\in\Lambda,\ a\in F\rangle and V¯:=γλ(2)(a)λΛ,aF\smash{\overline{V}:=\langle\gamma_{\lambda}^{(2)}(a)\mid\lambda\in\Lambda,\ a\in F\rangle}. Then W(F,P)=V,V¯,Γ(ι(P))W(F,P)=\langle V,\overline{V},\Gamma(\iota(P))\rangle. Observe that VF|Λ|V\cong F^{|\Lambda|} and V¯F|Λ|\overline{V}\cong F^{|\Lambda|} commute, intersect trivially and that Γ(ι(P))\Gamma(\iota(P)) permutes the factors of each product. Hence

W(F,P)(V×V¯)P(F|Λ|×F|Λ|)P.W(F,P)\cong(V\times\overline{V})\rtimes P\cong(F^{|\Lambda|}\times F^{|\Lambda|})\rtimes P.

An involutive compatibility cocycle zz of W(F,P)W(F,P) may now be defined by setting

z(γλ(a),(ω,λ)):={γλ(a)λ=λγλ(2)(a)λλ, z(γλ(2)(a),(ω,λ)):={γλ(2)(a)λ=λγλ(a)λλz(\gamma_{\lambda}(a),(\omega,\lambda^{\prime})):=\begin{cases}\gamma_{\lambda}(a)&\lambda=\lambda^{\prime}\\ \gamma_{\lambda}^{(2)}(a)&\lambda\neq\lambda^{\prime}\end{cases},\text{ }z(\gamma_{\lambda}^{(2)}(a),(\omega,\lambda^{\prime})):=\begin{cases}\gamma_{\lambda}^{(2)}(a)&\lambda=\lambda^{\prime}\\ \gamma_{\lambda}(a)&\lambda\neq\lambda^{\prime}\end{cases}

for all λΛ\lambda\in\Lambda, aFa\in F, and z(γ(ι(ϱ)),(ω,λ)):=γ(ι(ϱ))z(\gamma(\iota(\varrho)),(\omega,\lambda)):=\gamma(\iota(\varrho)) for all ϱP\varrho\in P. In fact, the map zz extends to an involutive compatibility cocycle of V×V¯W(F,P)V\times\overline{V}\leq W(F,P) which in turn extends to an involutive compatibility cocycle of W(F,P)W(F,P). ∎

References

  • [BEW15] C. Banks, M. Elder, and G. Willis, Simple groups of automorphisms of trees determined by their actions on finite subtrees, Journal of Group Theory 18 (2015), no. 2, 235–261.
  • [BM00] M. Burger and S. Mozes, Groups acting on trees: from local to global structure, Publications Mathématiques de l’IHÉS 92 (2000), no. 1, 113–150.
  • [CB19] P.-E. Caprace and A. Le Boudec, Bounding the covolume of lattices in products, Compositio Mathematica 155 (2019), no. 12, 2296–2333.
  • [CL89] M. Conder and P. Lorimer, Automorphism groups of symmetric graphs of valency 3, Journal of Combinatorial Theory, Series B 47 (1989), no. 1, 60–72.
  • [Day60] D. Daykin, On the Rank of the Matrix f(A) and the Enumeration of Certain Matrices over a Finite Field, Journal of the London Mathematical Society 1 (1960), no. 1, 36–42.
  • [DM80] D. Ž. Djoković and G. Miller, Regular groups of automorphisms of cubic graphs, Journal of Combinatorial Theory, Series B 29 (1980), no. 2, 195–230.
  • [DM96] J. Dixon and B. Mortimer, Permutation groups, vol. 163, Springer, 1996.
  • [FTN91] A. Figà-Talamanca and C. Nebbia, Harmonic analysis and representation theory for groups acting on homogenous trees, vol. 162, Cambridge University Press, 1991.
  • [GAP17] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.8.7, 2017.
  • [GGT18] A. Garrido, Y. Glasner, and S. Tornier, Automorphism Groups of Trees: Generalities and Prescribed Local Actions, New Directions in Locally Compact Groups (P.-E. Caprace and M. Monod, eds.), Cambridge University Press, 2018, pp. 92–116.
  • [Gle52] A. Gleason, Groups without small subgroups, Annals of Mathematics (1952), 193–212.
  • [GM14] M. Giudici and L. Morgan, A class of semiprimitive groups that are graph-restrictive, Bulletin of the London Mathematical Society 46 (2014), no. 6, 1226–1236.
  • [GM18] by same author, A theory of semiprimitive groups, Journal of Algebra 503 (2018), 146–185.
  • [KKP90] G. Károlyi, .J Kovács, and P. Pálfy, Doubly transitive permutation groups with abelian stabilizers, Aequationes mathematicae 39 (1990), no. 2-3, 161–166.
  • [KM08] B. Krön and R. Möller, Analogues of Cayley graphs for topological groups, Mathematische Zeitschrift 258 (2008), no. 3, 637.
  • [LPS88] M. Liebeck, C. Praeger, and J. Saxl, On the O’Nan-Scott theorem for finite primitive permutation groups, Journal of the Australian Mathematical Society (Series A) 44 (1988), no. 03, 389–396.
  • [LS91] M. Liebeck and J. Saxl, On point stabilizers in primitive permutation groups, Communications in Algebra 19 (1991), no. 10, 2777–2786.
  • [Mon01] N. Monod, Continuous bounded cohomology of locally compact groups, Springer, 2001.
  • [MV12] R. G. Möller and J. Vonk, Normal subgroups of groups acting on trees and automorphism groups of graphs, Journal of Group Theory 15 (2012), no. 6, 831–850.
  • [MZ52] D. Montgomery and L. Zippin, Small subgroups of finite-dimensional groups, Proceedings of the National Academy of Sciences 38 (1952), no. 5, 440–442.
  • [Pra97] C. Praeger, Finite quasiprimitive graphs, Surveys in combinatorics, 1997, Cambridge University Press, 1997, pp. 65–85.
  • [PSV12] P. Potočnik, P. Spiga, and G. Verret, On graph-restrictive permutation groups, Journal of Combinatorial Theory, Series B 102 (2012), no. 3, 820–831.
  • [Rad17] N. Radu, A classification theorem for boundary 2-transitive automorphism groups of trees, Inventiones Mathematicae 209 (2017), no. 1, 1–60.
  • [Rat04] D. Rattaggi, Computations in groups acting on a product of trees: Normal subgroup structures and quaternion lattices, Ph.D. thesis, ETH Zurich, 2004.
  • [Ser03] J.-P. Serre, Trees, Springer, 2003.
  • [Slo] N. Sloane, The On-Line Encyclopedia of Integer Sequences, https://oeis.org.
  • [Smi17] S. Smith, A product for permutation groups and topological groups, Duke Mathematical Journal 166 (2017), no. 15, 2965–2999.
  • [Tho70] J. Thompson, Bounds for orders of maximal subgroups, Journal of Algebra 14 (1970), no. 2, 135–138.
  • [Tit70] J. Tits, Sur le groupe des automorphismes d’un arbre, Essays on topology and related topics, Springer, 1970, pp. 188–211.
  • [Tor18] S. Tornier, Groups Acting on Trees and Contributions to Willis Theory, Ph.D. thesis, ETH Zurich, 2018.
  • [Tut47] W. Tutte, A family of cubical graphs, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 43, Cambridge University Press, 1947, pp. 459–474.
  • [Tut59] by same author, On the symmetry of cubic graphs, Canadian Journal of Mathematics 11 (1959).
  • [Wei78] R. Weiss, s-Transitive graphs, Algebraic methods in graph theory 25 (1978), 827–847.
  • [Wie71] H. Wielandt, Subnormal subgroups and permutation groups, Ohio State Univ., 1971.
  • [Yam53] H. Yamabe, A generalization of a theorem of Gleason, Annals of Mathematics (1953).