This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Scientiae Mathematicae Japonicae (to appear)

Groupoid Factorizations in the Semigroup of Binary Systems

Hiba F. Fayoumi University of Toledo
2801 Bancroft Street, Toledo, Ohio, 43606, U.S.A.
[email protected]
Abstract.

Let (X,)(X,\bullet) be a groupoid (binary algebra) and Bin(X)˙Bin(X\dot{)} denote the collection of all groupoids defined on XX. We introduce two methods of factorization for this binary system under the binary groupoid product “\diamond” in the semigroup (Bin(X),)\left(Bin\left(X\right),\diamond\right). We conclude that a strong non-idempotent groupoid can be represented as a product of its similar- and signature- derived factors. Moreover, we show that a groupoid with the orientation property is a product of its orient- and skew- factors. These unique factorizations can be useful for various applications in other areas of study. Application to algebras such as B/BCH/BCI/BCK/BH/BI/dB/BCH/BCI/BCK/BH/BI/d-algebra are widely given throughout this paper.

Key words and phrases:
groupoid factorization, groupoid decomposition, composite groupoid, prime groupoid, Bin(X), idempotent groupoid, signature-factor, similar-factor, orient-factor, skew-factor, u-normal, j-normal, Ψ\Psi-type-factor, τ\tau-type-factor
2010 Mathematics Subject Classification:
Primary 20N02

1. Introduction

Algebraic structures play a vital role in mathematical applications such as information science, network engineering, computer science, cell biology, etc. This encourages sufficient motivation to study abstract algebraic concepts and review previously obtained results. One such concept of interest to many mathematicians over the past two decades or so is that of a simple yet very interesting notion of a single set with one binary operation, historically known as magma and more recently referred to as groupoid. Bruck [8] published the book,“A Survey of Binary Systems” in which the theory of groupoids, loops, quasigroups, and several algebraic structures were discussed. Boru˙\mathrm{{\dot{u}}}vka in [7] explained the foundations for the theory of groupoids, set decompositions and their application to binary systems.

Given a binary operation “\bullet” on a non-empty set XX, the groupoid (X,)\left(X,\bullet\right) is a generalization of the very well-known structure of a group. H. S. Kim and J. Neggers in [33] investigated the structure (Bin(X),)\left(Bin\left(X\right),\diamond\right) where Bin(X)Bin\left(X\right) is the collection of all binary systems (groupoids or algebras) defined on a non-empty set XX along with an associative binary product (X,)(X,)=(X,)(X,\ast)\diamond(X,\circ)=\left(X,\bullet\right) such that xy=(xy)(yx)x\bullet y=(x\ast y)\circ(y\ast x) for all xx, yXy\in X. They recognized that the left-zero-semigroup serves as the identity of this semigroup. The present author in [11] introduced the notion of the center ZBin(X)ZBin(X) in the semigroup (Bin(X),)\left(Bin\left(X\right),\diamond\right), and proved that (X,)ZBin(X)(X,\bullet)\in ZBin(X), if and only if (X,)(X,\bullet) is locally-zero. Han and Kim in [13] introduced the notion of hypergroupoids HBin(X)HBin(X), and showed that (HBin(X),)(HBin(X),\diamond) is a supersemigroup of the semigroup (Bin(X),)(Bin(X),\diamond) via the identification x{x}x\longleftrightarrow\{x\}. They proved that (HBin(X),,[])(HBin^{\ast}(X),\ominus,[\emptyset]) is a BCKBCK-algebra.

In this paper, we investigate the following problem:

Main Problem:

Consider the semigroup (Bin(X),)\left(Bin\left(X\right),\diamond\right). Let the left-zero-semigroup be denoted as idBin(X)id_{Bin\left(X\right)}. Given a groupoid (binary system) (X,)(X,\bullet)\in Bin(X)Bin(X), is it possible to find two groupoid-factors (X,)\left(X,\ast\right) and (X,)\left(X,\circ\right) such that

(X,)=(X,)(X,)?\left(X,\bullet\right)=(X,\ast)\diamond(X,\circ)\text{?}

If so,

Problem 1 (Uniqueness).

Are the corresponding groupoid-factors:

  1. (1):

    Distinct, i.e., (X,)(X,)(X,\ast)\neq(X,\circ)?

  2. (2):

    Unique, i.e., if (X,)=(X,)(X,)\left(X,\bullet\right)=(X,\ast)\diamond(X,\circ), is it possible for (X,)=(X,)\left(X,\bullet\right)=\left(X,\lhd\right)\diamond (X,)\left(X,\rhd\right) such that (X,)(X,)(X,\ast)\neq(X,\lhd) and (X,)(X,)(X,\circ)\neq(X,\rhd)?

  3. (3):

    Different from (X,)(X,\bullet), i.e., (X,)(X,)(X,\ast)\neq(X,\bullet) and (X,)(X,)(X,\circ)\neq(X,\bullet)?

  4. (4):

    Different from the left-zero-semigroup, i.e., (X,)idBin(X)(X,\ast)\neq id_{Bin\left(X\right)} and (X,)idBin(X)(X,\circ)\neq id_{Bin\left(X\right)}?

Problem 2 (Derivation).

How do we find the groupoid-factors? Are they:

  1. (1):

    Derived (related to, based off of, dependent on) from: the parent groupoid (X,)(X,\bullet)?

  2. (2):

    Derived from the identity idBin(X)id_{Bin\left(X\right)}?

Problem 3 (Factorization).

If we use a certain method to find the two groupoid-factors, what is the nature of this factorization?

  1. (1):

    Is it unique?

  2. (2):

    When is it commutative?

We begin answering these questions by introducing two methods for factoring a random groupoid in Bin(X)˙Bin(X\dot{)} using the product “\diamond”. We will show that both methods result in unique factorizations (Problem 3.1) of a given groupoid and hence we answer Problem 1.2 with a definite yes! Section two provides some definitions and preliminary ideas which are necessary in this context. We also present a summarized table of “logic” algebras for a clear view. Section three describes AUAU- and UAUA-factorizations, which comprises the first method (method-1) of factoring. In fact, method-1 factors a groupoid (X,)\left(X,\bullet\right) by obtaining two derived factors from it (Problem 2.1) and from the left-zero-semigroup (Problem 2.2), the signature- and similar-factors, respectively. We prove that a strong groupoid has a commutative method-1 factorization (Problem 3.2). The possibility of this first method is shown to be feasible and produces non-trivial decompositions (Problem 1.4), however, it is restricted to non-idempotent groupoids only. Hence, section four introduces an OJOJ- and a JOJO-factorization, which constitutes our second method (method-2). We will demonstrate that the latter method is sufficient for idempotent as well as non-idempotent groupoids. In addition, an interesting outcome of method-2 is that one of the factors is not derived from the parent groupoid (Problems 2.1 and 2.2) while the other factor is; we name them orient- and skew-factors, respectively. We show that a given groupoid (X,)\left(X,\bullet\right) with xy{x,y}x\bullet y\in\{x,y\}, for all x,yx,y in XX, has a commutative method-2 factorization (Problem 3.2). Section five briefly applies our two methods to some of the algebras listed in section two; and discusses a promising relationship to graph theory.

Finally, in our last section we generalize and summarize our findings that certain groupoids/algebras decompose into distinct groupoids via (1)\left(1\right) an operation on the parent groupoid and the left-zero-semigroup simultaneously, which is a generalization of our first method; or (2)\left(2\right) an operation which acts on the parent-groupoid and the left-zero-semigroup separately, hence resulting in a generalization of our second method.

Notions of “method”-composite, “method”-normal, “factor”-prime and “partially”-left/right-prime are used to classify and analyze various groupoids as well as other familiar algebras. For simplicity, the left-zero-semigroup will be denoted as idBin(X)id_{Bin\left(X\right)}.

2. Preliminaries

A groupoid [8] (X,)\left(X,\bullet\right) consists of a non-empty set XX together with a binary operation :X×XX\bullet:X\times X\rightarrow X where xyXx\bullet y\in X for all x,yXx,y\in X.

A groupoid (X,)\left(X,\bullet\right) is strong [33] if and only if for all x,yXx,y\in X,

(2.1) xy=yx implies x=y.x\bullet y=y\bullet x\text{ implies }x=y.

A groupoid (X,)\left(X,\bullet\right) is idempotent if xx=xx\bullet x=x for all xXx\in X.

Example 2.1 [12] Let X=[0,)X=[0,\infty) and let xy=max{0,xy}x\bullet y=\max\{0,x-y\} for any x,yXx,y\in X. Then (X,)(X,\bullet) is a strong groupoid. To visualize this, let’s consider the associated Cayley product table for “\bullet”. For simplicity, its partial table is displayed below which shows that xy=0x\bullet y=0 for all xyx\leq y and xy0x\bullet y\neq 0 for all x>yx>y:

\bullet 0 1 2 3 4 \cdots
0 0 0 0 0 0 \cdots
1 1 0 0 0 0 \cdots
2 2 1 0 0 0 \cdots
3 3 2 1 0 0 \cdots
4 4 3 2 1 0 \cdots
\vdots \vdots \vdots \vdots \vdots \vdots \ddots

Hence, the strong or anti-commutative property holds for all x,yXx,y\in X.

Example 2.2 [12] Let X=X=\mathbf{\mathbb{R}} be the set of all real numbers and let x,y,ex,y,e\in\mathbf{\mathbb{R}}. If we define a binary operation “\bullet” on XX by xy=(xy)(xe)+ex\bullet y=(x-y)(x-e)+e,

then the groupoid (X,,e)(X,\bullet,e) is not strong, since x=e+α,x=e+\alpha, y=eα,y=e-\alpha, α±e\alpha\not=\pm e implies xy=yxx\bullet y=y\bullet x, but xyx\not=y.

A groupoid (X,)(X,\bullet) is a left-zero-semigroup if xy=xx\bullet y=x for all x,yXx,y\in X. Similarly, (X,)(X,\bullet) is a right-zero-semigroup if xy=yx\bullet y=y for all x,yXx,y\in X. For the theory of semigroups, we refer to [10, 30].

A groupoid (X,)(X,\bullet) is locally-zero [11] if

(i) xx=xx\bullet x=x for all xXx\in X; and

(ii) for any xyx\not=y in XX, ({x,y},)(\{x,y\},\bullet) is either a left-zero-semigroup or a right-zero-semigroup.

Example 2.3 Given a set X={0,1,2}X=\left\{0,1,2\right\}, let the binary operation “\bullet” be defined by the following Cayley product table:

\bullet 0 1 2
0 0 0 2
1 1 1 1
2 0 2 2

Then the binary system (X,)\left(X,\bullet\right) is locally-zero and has the following subtables:

\bullet 0 1 0 0 0 1 1 1 \bullet 1 2 1 1 1 2 2 2 \bullet 0 2 0 0 2 2 0 2

where ({0,1},)\left(\left\{0,1\right\},\bullet\right) is a left-zero-semigroup; ({1,2},)\left(\left\{1,2\right\},\bullet\right) is also a left-zero-semigroup; and ({0,2},)\left(\left\{0,2\right\},\bullet\right) is a right-zero-semigroup.

The notion of the semigroup (Bin(X),)(Bin(X),\diamond) was introduced by J. Neggers and H.S. Kim in [33]. Given a non-empty set XX, let Bin(X)Bin(X) denote the collection of all groupoids (X,)\left(X,\bullet\right), where :X×XX\bullet:X\times X\rightarrow X is a map. Given elements (X,)(X,\ast) and (X,)(X,\circ) of Bin(X)Bin\left(X\right), define a binary product “\diamond” on these groupoids as follows:

(2.2) (X,)(X,)=(X,)(X,\ast)\diamond(X,\circ)=(X,\bullet)

where

(2.3) xy=(xy)(yx)x\bullet y=(x\ast y)\circ(y\ast x)

for all xx, yXy\in X. This turns (Bin(X),)(Bin(X),\diamond) into a semigroup with identity, the left-zero-semigroup, and an analog of negative one in the right-zero-semigroup.

The present author [11] showed that a groupoid (X,)\left(X,\bullet\right) commutes, relative to the product “\diamond”, if and only if any 2-element subset of (X,)\left(X,\bullet\right) is a subgroupoid that is either a left-zero-semigroup or a right-zero-semigroup. Thus, (X,)\left(X,\bullet\right) is an element of the center ZBin(X)ZBin(X) of the semigroup (Bin(X),)(Bin(X),\diamond), defined as follows:

ZBin(X)={(X,)Bin(X) | (X,)(X,)=(X,)(X,), (X,)Bin(X)}.ZBin\left(X\right)=\{\left(X,\bullet\right)\in Bin\left(X\right)\text{ }|\text{ }(X,\bullet)\,\diamond\,(X,\ast)\,=\,(X,\ast)\,\diamond\,(X,\bullet),\text{ }\forall(X,\ast)\in Bin(X)\}\text{.}

In turn, several properties were obtained.

Theorem 2.4 [33] The collection (Bin(X),)(Bin(X),\diamond) of all binary systems (groupoids or algebras) defined on XX is a semigroup, i.e., the operation “\diamond” as defined in general is associative. Furthermore, the left-zero-semigroup is an identity for this operation.

Proposition 2.5 [33] Let (X,)(X,\bullet) be the right-zero-sermigroup on XX. Then (X,)\left(X,\bullet\right)\in Str(X)Str(X), the collection of all strong groupoids on XX.

Proposition 2.6 [11] The left-zero semigroup and right-zero semigroup on X are both in ZBin(X)ZBin(X).

Corollary 2.7. [11] The collection of all locally-zero groupoids on XX forms a subsemigroup of (Bin(X),)(Bin(X),\diamond).

Proposition 2.8 [11] Let (X,)(X,\bullet) be a locally-zero groupoid. Then (X,)(X,)=idBin(X)\left(X,\bullet\right)\diamond\left(X,\bullet\right)=id_{Bin\left(X\right)}, the left-zero-semigroup on XX.

Let (X,)\left(X,\bullet\right) be an element of the semigroup (Bin(X),)(Bin(X),\diamond), we say that (X,)\left(X,\bullet\right) is a unit if and only if there exists an element (X,)Bin(X)\left(X,\ast\right)\in Bin\left(X\right) such that

(2.4) (X,)(X,)=idBin(X)=(X,)(X,).(X,\bullet)\,\diamond\,(X,\ast)=id_{Bin\left(X\right)}=(X,\ast)\,\diamond\,(X,\bullet)\text{.}

Subsequently, by Proposition 2.8, a locally-zero-groupoid is a unit in Bin(X)Bin\left(X\right).

The logic-based BCKBCK/BCIBCI-algebras were introduced by Iséki and Imai in [15] as propositional calculus, but later in [16] developed into the present notion of BCKBCK/BCIBCI which have since then been investigated thoroughly by numerous researchers. J. Neggers and H. S. Kim generalized a BCKBCK-algebra [26] by introducing the notion of a dd-algebra in [32]. They also introduced BB-algebras in [2]. C. B. Kim and H. S. Kim generalized a BB-algebra by defining a BGBG-algebra in [21].

An algebra (X,,0)\left(X,\bullet,0\right) of type (2,0)\left(2,0\right) is a BB-algebra [2] if for all x,y,zXx,y,z\in X, it satisfies the following axioms:

B1:

xx=0x\bullet x=0,

B2:

x0=xx\bullet 0=x, and

B:

(xy)z=x[z(0y)](x\bullet y)\bullet z=x\bullet[z\bullet(0\bullet y)].

An algebra (X,,0)\left(X,\bullet,0\right) of type (2,0)\left(2,0\right) is a BGBG-algebra [21] if for all x,y,zXx,y,z\in X, it satisfies (B1), (B2), and

BG:

x=(xy)(0y)x=\left(x\bullet y\right)\bullet(0\bullet y).

An algebra (X,,0)\left(X,\bullet,0\right) of type (2,0)\left(2,0\right) is a BCIBCI-algebra [36] if for all x,y,zXx,y,z\in X, it satisfies (B2) and:

I:

((xy)(xz))(zy)=0\left(\left(x\bullet y\right)\bullet\left(x\bullet z\right)\right)\bullet\left(z\bullet y\right)=0,

BH:

xy=0x\bullet y=0 and yx=0y\bullet x=0 implies x=yx=y.

Example 2.9 [36] Let X={0,1,a,b}X=\{0,1,a,b\}. Define a binary operation “\bullet” on XX by the following product table:

\bullet 0 1 a b
0 0 0 a a
1 1 0 a a
a a a 0 0
b b a 1 0
  

Then (X,,0)(X,\bullet,0) is a BCIBCI-algebra.

A BCIBCI-algebra (X,,0)\left(X,\bullet,0\right) is a BCKBCK-algebra [26] if it satisfies the next additional axiom:

K:

0x=00\bullet x=0 for all xXx\in X.

An algebra (X,,0)(X,\bullet,0) of type (2,0)\left(2,0\right) is a dd-algebra provided that for all x,x, yXy\in X, it satisfies (B1), (K) and (BH).

A dd-algebra is strong if for all x,x, yy X\in X:

d-3:

xy=yxx\bullet y=y\bullet x implies x=y.x=y.

Otherwise we consider the dd-algebra to be exceptional. For more information on dd-algebras we refer to [5, 6, 32, 31].

Example 2.10 [32] Let (X,)=(5,)(X,\bullet)=(\mathbb{Z}_{5},\bullet) where “\bullet” is defined by the following Cayley table:

\bullet 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 3 0
3 3 3 2 0 3
4 4 4 1 1 0

Then (5,,0)(\mathbb{Z}_{5},\bullet,0) is a dd-algebra which is not a BCKBCK-algebra. For details on BCKBCK-algebras, see [14, 26, 36].

Y. B. Jun, E. H. Roh and H. S. Kim in [18] introduced the notion of a BHBH-algebra which is a generalization of BCK/BCI/BCHBCK/BCI/BCH-algebras. There are many other generalizations of similar algebras. We summarize several properties which are used as axioms to define each algebraic structure . Let (X,,0)(X,\bullet,0) be an algebra of type (2,0)\left(2,0\right), for any x,x, y,y, zXz\in X:

B1:

xx=0x\bullet x=0,

B2:

x0=xx\bullet 0=x,

B:

(xy)z=x(z(0y)),(x\bullet y)\bullet z=x\bullet(z\bullet(0\bullet y)),

BG:

x=(xy)(0y),x=(x\bullet y)\bullet(0\bullet y),

BM:

(zx)(zy)=yx,(z\bullet x)\bullet(z\bullet y)=y\bullet x,

BH:

xy=0x\bullet y=0 and yx=0x=yy\bullet x=0\Rightarrow x=y,

BF:

0(xy)=yx0\bullet(x\bullet y)=y\bullet x,

BN:

(xy)z=(0z)(yx)(x\bullet y)\bullet z=(0\bullet z)\bullet(y\bullet x),

BO:

x(yz)=(xy)(0z)x\bullet(y\bullet z)=(x\bullet y)\bullet(0\bullet z),

BP1:

x(xy)=yx\bullet(x\bullet y)=y,

BP2:

(xz)(yz)=xy(x\bullet z)\bullet(y\bullet z)=x\bullet y,

Q:

(xy)z=(xz)y(x\bullet y)\bullet z=(x\bullet z)\bullet y,

CO:

(xy)z=x(yz)(x\bullet y)\bullet z=x\bullet(y\bullet z),

BZ:

((xz)(yz))(xy)=0((x\bullet z)\bullet(y\bullet z))\bullet(x\bullet y)=0,

K:

0x=00\bullet x=0,

I:

((xy)(xz))(zy)=0((x\bullet y)\bullet(x\bullet z))\bullet(z\bullet y)=0,

BI:

x(yx)=xx\bullet(y\bullet x)=x.

An algebra (X,,0)(X,\bullet,0) of type (2,0)(2,0) is classified according to a combination of the above axioms as noted in “Figure 1” below. For instance, (X,,0)(X,\bullet,0) is a BIBI-algebra [34] if satisfies in (B1) and (BI). For detailed information on each, please see [2-6, 14-26, 31, 32, 34, 36].

Refer to caption
Figure 1. Comparison of Algebras

3. Similar-Signature Factorization

In this section, we present a unique factorization of a given groupoid by “deriving” two factors from it and from the left-zero-semigroup simultaneously.

Let (X,)(X,\bullet) be a groupoid of finite order, i.e., |X|=n\left|X\right|=n. Then dd^{\bullet} is the diagonal function of (X,)(X,\bullet)\ such that d:Xd^{\bullet}:\mathbb{N}\longrightarrow X where d(i)=xixid^{\bullet}(i)=x_{i}\bullet x_{i}, i=1,2,,ni=1,2,...,n for all xix_{i} X\in X.

Example 3.1 Let (X,,0)\left(X,\bullet,0\right) and (X,)\left(X,\ast\right) be a dd-algebra and an idempotent algebra, respectively. Then xx=0x\bullet x=0 and xx=xx\ast x=x; or d=0d^{\bullet}=0 and d=xd^{\ast}=x for all xXx\in X.

Two binary systems (X,)(X,\ast) and (X,)(X,\bullet) are said to be similar if they have the same diagonal function, that is, d=dd^{\ast}=d^{\bullet}.

Two binary systems (X,)(X,\ast) and (X,)(X,\bullet) are said to be signature if

(i) xy=xyx\ast y=x\bullet y when xy;x\neq y; and

(ii) xxxxx\ast x\neq x\bullet x for all xXx\in X.

Let (X,)\left(X,\bullet\right) be a groupoid. Derive groupoids (X,)(X,\ast) and (X,)(X,\circ) from (X,)\left(X,\bullet\right) and idBin(X)id_{Bin\left(X\right)}, simultaneously, such that for all x,yXx,y\in X,

(3.1) xy={xif x=y,xyotherwise. and xy={xxif x=y,xotherwise.x\ast y=\begin{cases}x&\text{if $x=y$,}\\ x\bullet y&\text{otherwise.}\end{cases}\text{\quad and\quad}x\circ y=\begin{cases}x\bullet x&\text{if $x=y$,}\\ x&\text{otherwise.}\end{cases}

The groupoids (X,)\left(X,\ast\right) and (X,)\left(X,\circ\right) are said to be the signature- and the similar-factors of (X,)\left(X,\bullet\right), respectively, denoted by U(X,)U\left(X,\bullet\right) and A(X,)A(X,\bullet). The product “\diamond” is associative but not commutative. Hence, for (X,)Bin(X)\left(X,\bullet\right)\in Bin\left(X\right), we may have a UAUA-factorization such that

(3.2) (X,)=U(X,)A(X,)\left(X,\bullet\right)=U\left(X,\bullet\right)\diamond A\left(X,\bullet\right)

or an AUAU-factorization such that

(3.3) (X,)=A(X,)U(X,).\left(X,\bullet\right)=A\left(X,\bullet\right)\diamond U\left(X,\bullet\right)\text{.}

By the equations in 3.1, it follows that for any given groupoid (X,)\left(X,\bullet\right),

  1. (1)

    U(X,)U\left(X,\bullet\right) is similar to idBin(X)id_{Bin\left(X\right)} while A(X,)A\left(X,\bullet\right) is similar to (X,)\left(X,\bullet\right); and

  2. (2)

    U(X,)U\left(X,\bullet\right) is signature with (X,)\left(X,\bullet\right) while A(X,)A\left(X,\bullet\right) is signature with idBin(X)id_{Bin\left(X\right)}.

Proposition 3.2 The similar-factor of a groupoid is strong.

Proof. Given (X,)\left(X,\bullet\right) Bin(X)\in Bin\left(X\right), let (X,)=A(X,)\left(X,\circ\right)=A\left(X,\bullet\right).

  1. (i)

    If x=yx=y, then xy=xx=xx=yy=yy=yxx\circ y=x\circ x=x\bullet x=y\bullet y=y\circ y=y\circ x.

  2. (ii)

    If xyx\neq y and xy=yxx\circ y=y\circ x for any x,yXx,y\in X. Then xy=xx\circ y=x and yx=yy\circ x=y. Thus, x=yx=y, a contradiction.

Therefore, (X,)\left(X,\circ\right) is strong.

\blacksquare

Example 3.3 Let (X,,0)\left(X,\bullet,0\right) be the BCIBCI-algebra defined in Example 2.9. In accordance with equation 3.1, derive its signature- and similar- factors U(X,,0)U(X,\bullet,0) and A(X,,0)A(X,\bullet,0), respectively. Let groupoids (X,,0):=U(X,,0)\left(X,\ast,0\right):=U(X,\bullet,0) and (X,,0):=A(X,,0)\left(X,\circ,0\right):=A\left(X,\bullet,0\right) be given. We obtain:

\ast 0 1 a b
0 0 0 a a
1 1 1 a a
a a a a 0
b b a 1 b
   and   
\circ 0 1 a b
0 0 0 0 0
1 1 0 1 1
a a a 0 a
b b b b 0

It remains to verify that (X,,0)=(X,,0)(X,,0)\left(X,\bullet,0\right)=\left(X,\ast,0\right)\diamond\left(X,\circ,0\right) and/or (X,,0)=(X,,0)(X,,0)\left(X,\bullet,0\right)=\left(X,\circ,0\right)\diamond\left(X,\ast,0\right). This will be discussed in more detail in the next section. However, there is a very interesting fact in this example: the two factors are distinct from each other, their parent groupoid, and the left-zero-semigroup. In summary:

  1. (1)

    (X,,0)(X,,0)\left(X,\ast,0\right)\neq\left(X,\circ,0\right); (Problem 1.1)

  2. (2)

    (X,,0)(X,,0)(X,,0)\left(X,\ast,0\right)\neq\left(X,\bullet,0\right)\neq\left(X,\circ,0\right); (Problem 1.3)

  3. (3)

    (X,,0)idBin(X)(X,,0)\left(X,\ast,0\right)\neq id_{Bin\left(X\right)}\neq\left(X,\circ,0\right). (Problem 1.4)

This is important since it is not always the case that all three distinctions hold as the following example demonstrates.

Example 3.4 Let (X,)=(3,)(X,\bullet)=(\mathbb{Z}_{3},\bullet) where “\bullet” is defined by the following Cayley table:

\bullet 0 1 2
0 0 0 0
1 1 0 1
2 2 2 0
  

Then (X,,0)\left(X,\bullet,0\right) is a BIBI-algebra. Derive its signature- and similar-factors U(X,,0)U(X,\bullet,0) and A(X,,0)A(X,\bullet,0), respectively, in accordance to the equations in 3.1. Let (X,,0):=U(X,,0)\left(X,\ast,0\right):=U\left(X,\bullet,0\right) and (X,,0):=A(X,,0)\left(X,\circ,0\right):=A\left(X,\bullet,0\right), hence:

\ast 0 1 2
0 0 0 0
1 1 1 1
2 2 2 2
   and   
\circ 0 1 2
0 0 0 0
1 1 0 1
2 2 2 0

Here we observe immediately that the similar-factor (X,,0)\left(X,\circ,0\right) is equal to (X,,0)\left(X,\bullet,0\right) and the signature-factor (X,,0)\left(X,\ast,0\right) is equal to idBin(X)id_{Bin\left(X\right)}. Thus this decomposition is basically a trivial factorization, i.e.,

(X,,0)=(X,,0)(X,,0)=idBin(X)(X,,0)\left(X,\bullet,0\right)=\left(X,\ast,0\right)\diamond\left(X,\circ,0\right)=id_{Bin\left(X\right)}\diamond\left(X,\bullet,0\right)

and

(X,,0)=(X,,0)(X,,0)=(X,,0)idBin(X).\left(X,\bullet,0\right)=\left(X,\circ,0\right)\diamond\left(X,\ast,0\right)=\left(X,\bullet,0\right)\diamond id_{Bin\left(X\right)}\text{.}

3.1. UAUA-Factorization

In this subsection, we explore a UAUA-factorization of a given groupoid (X,)\left(X,\bullet\right) in Bin(X)Bin\left(X\right). In the next subsection, a AUAU-factorization is considered, where the order of the product of the two factors is “reversed”. We emphasize that such factorization is unique and not necessarily reversible. Then, we classify a given groupoid as UAUA- and/or AUAU-composite, uu-composite or uu-normal; and as signature- or similar-prime.

Example 3.1.1 Let X=X=\mathbb{Z} be the set of all integers and let “-” be the usual subtraction on \mathbb{Z}. Then (,)\left(\mathbb{Z},-\right) is a BHBH-algebra since it satisfies axioms B1, B2 and BH as seen from its partial table below:

- \cdots -2 -1 0 1 2 3 4 \cdots
\vdots \ddots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \cdots
-2 1 0 -1 -2 -3 -4 -5 -6 \cdots
-1 2 1 0 -1 -2 -3 -4 -5 \cdots
0 3 2 1 0 -1 -2 -3 -4 \cdots
1 4 3 2 1 0 -1 -2 -3 \cdots
2 5 4 3 2 1 0 -1 -2 \cdots
3 6 5 4 3 2 1 0 -1 \cdots
4 7 6 5 4 3 2 1 0 \cdots
\vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \ddots

Define two binary operations “\ast” and “\circ” on \mathbb{Z} such that for all x,yx,y\in\mathbb{Z},

xy={xif x=y,xyotherwise. andxy={0if x=y,xotherwise.x\ast y=\begin{cases}x&\text{if $x=y$,}\\ x-y&\text{otherwise.}\end{cases}\text{\quad and}\quad x\circ y=\begin{cases}0&\text{if $x=y$,}\\ x&\text{otherwise.}\end{cases}\noindent

Then it is easy to check that (,)=(,)(,)\left(\mathbb{Z},-\right)=(\mathbb{Z},\ast)\diamond(\mathbb{Z},\circ) and (,)=U(,)(\mathbb{Z},\ast)=U(\mathbb{Z},-) and (,)=A(,)(\mathbb{Z},\circ)=A(\mathbb{Z},-). Thus we have a UAUA-factorization of (,).\left(\mathbb{Z},-\right).\vskip 6.0pt plus 2.0pt minus 2.0pt

A groupoid (X,)\left(X,\bullet\right) is said to be signature-prime if U(X,)U\left(X,\bullet\right) =idBin(X)=id_{Bin\left(X\right)}, and is said to be similar-prime if A(X,)A\left(X,\bullet\right) =idBin(X)=id_{Bin\left(X\right)}. Alternatively, if (X,)\left(X,\bullet\right) is neither signature- nor similar-prime, then (X,)\left(X,\bullet\right) is said to be

(1) UA-composite if (X,)=U(X,)A(X,)\left(X,\bullet\right)=U\left(X,\bullet\right)\diamond A\left(X,\bullet\right);

(2) AUAU-composite if (X,)=A(X,)U(X,)\left(X,\bullet\right)=A\left(X,\bullet\right)\diamond U\left(X,\bullet\right).

Consequently, (X,)\left(X,\bullet\right) is said to be uu-composite if both (1)\left(1\right) and (2)\left(2\right) hold.

Example 3.1.2 Let (X,)=(5,)(X,\bullet)=(\mathbb{Z}_{5},\bullet) where the product “\bullet” is defined by the following Cayley table:

\bullet 0 1 2 3 4
0 3 2 2 1 1
1 1 3 3 2 3
2 3 3 0 3 0
3 1 0 1 1 2
4 1 1 2 4 2
  

If we derive its signature- and similar- factors (5,)=U(5,)\left(\mathbb{Z}_{5},\ast\right)=U(\mathbb{Z}_{5},\bullet) and A(5,)=(5,)A(\mathbb{Z}_{5},\bullet)=\left(\mathbb{Z}_{5},\circ\right) as in (3.1), then we have their \diamond product as follows:

030000113111222022333313444442= 032233113123231030330112431242\text{\quad}\begin{tabular}[]{c|ccccc}$\ast$&0&1&2&3&4\\ \hline\cr 0&0&2&2&1&1\\ 1&1&1&3&2&3\\ 2&3&3&2&3&0\\ 3&1&0&1&3&2\\ 4&1&1&2&4&4\end{tabular}\quad\diamond\quad\begin{tabular}[]{c|ccccc}$\circ$&0&1&2&3&4\\ \hline\cr 0&3&0&0&0&0\\ 1&1&3&1&1&1\\ 2&2&2&0&2&2\\ 3&3&3&3&1&3\\ 4&4&4&4&4&2\end{tabular}\quad=\quad\begin{tabular}[]{c|ccccc}$\nabla$&0&1&2&3&4\\ \hline\cr 0&3&2&2&3&3\\ 1&1&3&1&2&3\\ 2&3&1&0&3&0\\ 3&3&0&1&1&2\\ 4&3&1&2&4&2\end{tabular}\quad
 
0 1 2 3 4
0 0 2 2 1 1
1 1 1 3 2 3
2 3 3 2 3 0
3 1 0 1 3 2
4 1 1 2 4 4
0123401234

We can clearly conclude that U(5,)A(5,)(5,)U(\mathbb{Z}_{5},\bullet)\diamond A(\mathbb{Z}_{5},\bullet)\neq\left(\mathbb{Z}_{5},\bullet\right) since (5,)(5,)\left(\mathbb{Z}_{5},\bullet\right)\neq\left(\mathbb{Z}_{5},\nabla\right) and hence such a groupoid does not have a UAUA-factorization. Moreover, (5,)(\mathbb{Z}_{5},\bullet) is not a strong groupoid since 04=400\bullet 4=4\bullet 0. In turn, we have the next theorem.

Theorem 3.1.3 A strong groupoid has a UAUA-factorization.

Proof. Let (X,)(X,\bullet) Str(X)\in Str\left(X\right), the collection of all strong groupoids defined on XX, and let (X,)=(X,)(X,\odot)=(X,\ast) (X,)\diamond(X,\circ) where (X,)=U(X,)(X,\ast)=U(X,\bullet) and (X,)=A(X,)(X,\circ)=A(X,\bullet). Then xy=(xy)(yx)x\odot y=(x\ast y)\circ(y\ast x) for all x,yXx,y\in X. It follows that xx=x,x\ast x=x, xy=xyx\ast y=x\bullet y when xyx\not=y; and xx=xxx\circ x=x\bullet x, xy=xx\circ y=x when xyx\not=y.

Next, we show that (X,)=(X,)(X,\bullet)=(X,\odot). Given x,yXx,y\in X, if x=yx=y, then xx=(xx)(xx)=xx=xxx\odot x=(x\ast x)\circ(x\ast x)=x\circ x=x\bullet x. Assume xyx\not=y, we claim that xy=yxx\ast y=y\ast x is not possible:

(i) If xy=yxx\ast y=y\ast x, then xy=xy=yx=yxx\bullet y=x\ast y=y\ast x=y\bullet x. Since (X,)(X,\bullet) is strong, we obtain x=yx=y, a contradiction.

(ii) If xyyxx\ast y\not=y\ast x, then xy=xy,x\ast y=x\bullet y, yx=yxy\ast x=y\bullet x, since xyx\not=y.

Therefore xy=(xy)(yx)=(xy)(yx)=xyx\odot y=(x\ast y)\circ(y\ast x)=(x\bullet y)\circ(y\bullet x)=x\bullet y, since xyyxx\bullet y\not=y\bullet x. This proves that (X,)=(X,)(X,\odot)=(X,\bullet).

\blacksquare

Corollary 3.1.4 The factorization in Theorem 3.1.3 is unique.

Proof. Let (X,)(X,\bullet) be a strong groupoid with a UAUA-factorization such that (X,)=(X,)(X,\bullet)=(X,\ast) (X,)\diamond(X,\circ) where (X,)=U(X,)(X,\ast)=U(X,\bullet) and (X,)=A(X,)(X,\circ)=A(X,\bullet). Let (X,)=(X,)(X,\bullet)=(X,\bigtriangledown) (X,)\diamond(X,\bigtriangleup) where (X,)=U(X,)(X,\bigtriangledown)=U(X,\bullet) and (X,)=A(X,)(X,\bigtriangleup)=A(X,\bullet). For any xXx\in X, we have xx=x=xxx\ast x=x=x\bigtriangledown x, and xy=xyx\ast y=x\bigtriangledown y when xyx\not=y. Hence (X,)=(X,)(X,\ast)=(X,\bigtriangledown). Similarly, if xXx\in X, then xx=xx=xxx\circ x=x\bullet x=x\bigtriangleup x. When xyx\not=y, we have xy=x=xyx\circ y=x=x\bigtriangleup y, proving that (X,)=(X,)(X,\circ)=(X,\bigtriangleup).

\blacksquare

Example 3.1.5 [32] Consider the dd-algebra (X,,0)\left(X,\bullet,0\right) from Example 2.10. Observe that (X,,0)\left(X,\bullet,0\right) is a strong dd-algebra. Let (X,,0):=U(X,,0)\left(X,\ast,0\right):=U(X,\bullet,0) and (X,,0):=A(X,,0)\left(X,\circ,0\right):=A\left(X,\bullet,0\right), such that U(X,,0)U(X,\bullet,0) and A(X,,0)A(X,\bullet,0) are its derived signature- and similar-factors, respectively, as in (3.1)\left(\text{\ref{Sig-Sim-F's}}\right). Next, verify that (X,,0)(X,,0)=\left(X,\ast,0\right)\diamond\left(X,\circ,0\right)= (X,,0)\left(X,\bullet,0\right):

 
0 1 2 3 4
0 0 0 0 0 0
1 1 1 1 0 1
2 2 2 2 3 0
3 3 3 2 3 3
4 4 4 1 1 4
 
 
0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 1 1
2 2 2 0 2 2
3 3 3 3 0 3
4 4 4 4 4 0
 
= 
0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 3 0
3 3 3 2 0 3
4 4 4 1 1 0
\text{\quad}\begin{tabular}[]{c|ccccc}$\ast$&0&1&2&3&4\\ \hline\cr 0&0&0&0&0&0\\ 1&1&1&1&0&1\\ 2&2&2&2&3&0\\ 3&3&3&2&3&3\\ 4&4&4&1&1&4\end{tabular}\text{\quad}\diamond\text{\quad}\begin{tabular}[]{c|ccccc}$\circ$&0&1&2&3&4\\ \hline\cr 0&0&0&0&0&0\\ 1&1&0&1&1&1\\ 2&2&2&0&2&2\\ 3&3&3&3&0&3\\ 4&4&4&4&4&0\end{tabular}\text{\quad}=\text{\quad}\begin{tabular}[]{c|ccccc}$\bullet$&0&1&2&3&4\\ \hline\cr 0&0&0&0&0&0\\ 1&1&0&1&0&1\\ 2&2&2&0&3&0\\ 3&3&3&2&0&3\\ 4&4&4&1&1&0\end{tabular}

Indeed we can see that xy=(xy)(yx)x\bullet y=\left(x\ast y\right)\circ\left(y\ast x\right) for any x,yXx,y\in X. For instance:

(10)(01)\displaystyle\left(1\ast 0\right)\circ\left(0\ast 1\right) =\displaystyle= 10=1=10,\displaystyle 1\circ 0=1=1\bullet 0\text{,}
(34)(43)\displaystyle\left(3\ast 4\right)\circ\left(4\ast 3\right) =\displaystyle= 34=3=34.\displaystyle 3\circ 4=3=3\bullet 4\text{.}

Moreover, since U(X,,0)idBin(X)U\left(X,\bullet,0\right)\neq id_{Bin\left(X\right)} and A(X,,0)idBin(X)A\left(X,\bullet,0\right)\neq id_{Bin\left(X\right)}, then (X,,0)\left(X,\bullet,0\right) is UAUA-composite.

3.2. AUAU-Factorization

In this subsection we reverse the order of the signature- and similar-factors of any groupoid (X,)\left(X,\bullet\right) in Bin(X)Bin\left(X\right). We conclude that an arbitrary groupoid (X,)\left(X,\bullet\right) will always have an AUAU-factorization. However, this factorization might be trivial and hence the groupoid is either noted as signature- or similar-prime. Otherwise, if the decomposition is not trivial, we say the groupoid is AUAU-composite.

Example 3.2.1 Let (X,,0)\left(X,\bullet,0\right) be the strong dd-algebra defined in Examples 2.10 and 3.1.5 in which we determined that (X,,0)\left(X,\bullet,0\right) is UAUA-composite. Similarly, we can take the product of A(X,,0)A\left(X,\bullet,0\right) and U(X,,0)U\left(X,\bullet,0\right) as follows:

 
0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 1 1
2 2 2 0 2 2
3 3 3 3 0 3
4 4 4 4 4 0
 
 
0 1 2 3 4
0 0 0 0 0 0
1 1 1 1 0 1
2 2 2 2 3 0
3 3 3 2 3 3
4 4 4 1 1 4
 
= 
0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 3 0
3 3 3 2 0 3
4 4 4 1 1 0
\text{\quad}\begin{tabular}[]{c|ccccc}$\circ$&0&1&2&3&4\\ \hline\cr 0&0&0&0&0&0\\ 1&1&0&1&1&1\\ 2&2&2&0&2&2\\ 3&3&3&3&0&3\\ 4&4&4&4&4&0\end{tabular}\text{\quad}\diamond\text{\quad}\begin{tabular}[]{c|ccccc}$\ast$&0&1&2&3&4\\ \hline\cr 0&0&0&0&0&0\\ 1&1&1&1&0&1\\ 2&2&2&2&3&0\\ 3&3&3&2&3&3\\ 4&4&4&1&1&4\end{tabular}\text{\quad}=\text{\quad}\begin{tabular}[]{c|ccccc}$\bullet$&0&1&2&3&4\\ \hline\cr 0&0&0&0&0&0\\ 1&1&0&1&0&1\\ 2&2&2&0&3&0\\ 3&3&3&2&0&3\\ 4&4&4&1&1&0\end{tabular}

By routine checking of (xy)(yx)=xy\left(x\circ y\right)\ast\left(y\circ x\right)=x\bullet y for any x,yXx,y\in X, we conclude that (X,,0)\left(X,\bullet,0\right) has an AUAU-factorization. Moreover, we can see that this particular groupoid has both, a non-trivial UAUA- and AUAU-factorization. Therefore, (X,,0)\left(X,\bullet,0\right) is uu-composite.

Remark 3.2.2 Note that A(X,)U(X,)=U(X,)A(X,)A(X,\bullet)\diamond U(X,\bullet)=U(X,\bullet)\diamond A(X,\bullet) does not imply that (X,)\left(X,\bullet\right) is uu-composite. It simply implies that the factors of (X,)\left(X,\bullet\right) commute. This motivates the next definition.

A groupoid (X,)\left(X,\bullet\right) is said to be uu-normal if it admits a UAUA- and an AUAU-factorization, i.e., if

(i) (X,)=U(X,)A(X,)\left(X,\bullet\right)=U\left(X,\bullet\right)\diamond A\left(X,\bullet\right), and

(ii) (X,)=A(X,)U(X,)\left(X,\bullet\right)=A\left(X,\bullet\right)\diamond U\left(X,\bullet\right).

Theorem 3.2.3 Any given groupoid has an AUAU-factorization, i.e., if (X,)Bin(X)(X,\bullet)\in Bin(X), then

(X,)=A(X,)U(X,).\left(X,\bullet\right)=A(X,\bullet)\diamond U(X,\bullet)\text{.}

Proof. Let (X,)(X,\bullet) Bin(X)\in Bin\left(X\right) and let (X,)=(X,)(X,\odot)=(X,\circ) (X,)\diamond(X,\ast) where (X,)=U(X,)(X,\ast)=U(X,\bullet) and (X,)=A(X,)(X,\circ)=A(X,\bullet). Then xy=(xy)(yx)x\odot y=(x\circ y)\ast(y\circ x) for all x,yXx,y\in X. It follows that xx=x,x\ast x=x, xy=xyx\ast y=x\bullet y when xyx\not=y, and xx=xx,x\circ x=x\bullet x, xy=xx\circ y=x when xyx\not=y. Given x,yXx,y\in X, if x=yx=y, then xx=(xx)(xx)=(xx)(xx)=xxx\odot x=(x\circ x)\ast(x\circ x)=\left(x\bullet x\right)\ast\left(x\bullet x\right)=x\bullet x. Assume xyx\not=y, then xy=(xy)(yx)=xy=xyx\odot y=(x\circ y)\ast(y\circ x)=x\ast y=x\bullet y. This proves that (X,)=(X,)(X,\odot)=(X,\bullet).

\blacksquare

Corollary 3.2.4 The factorization in Theorem 3.2.3 is unique.

Proof. The proof is similar to that of Corollary 3.1.4.

\blacksquare

Corollary 3.2.5 A strong groupoid is uu-normal.

Proof. The proof follows directly from Theorems 3.1.3, 3.2.3 and the definition.

\blacksquare

Example 3.2.6 Let (X,)=({0,1,2},+)\left(X,\bullet\right)=\left(\left\{0,1,2\right\},+\right) be the cyclic group of order 3. Observe that ({0,1,2},+)\left(\left\{0,1,2\right\},+\right) has an AUAU-factorization but fails to have a UAUA-factorization. Take ({0,1,2},)=\left(\left\{0,1,2\right\},\ast\right)= U({0,1,2},+)U\left(\left\{0,1,2\right\},+\right) and ({0,1,2},)=A({0,1,2},+)\left(\left\{0,1,2\right\},\circ\right)=A\left(\left\{0,1,2\right\},+\right) such that:

xy={(x+x) mod 3 if x=y,xotherwise. and xy={x; if x=y,(x+y) mod 3otherwise.x\circ y=\begin{cases}(x+x)\text{ mod }3&\text{ if }x=y,\\ x&\text{otherwise.}\end{cases}\text{\quad and\quad}\ x\ast y=\begin{cases}x;&\text{ if }x=y,\\ (x+y)\text{ mod }3&\text{otherwise.}\end{cases}

Routine checking of the product A({0,1,2},+)U({0,1,2},+)A\left(\left\{0,1,2\right\},+\right)\diamond U\left(\left\{0,1,2\right\},+\right) gives ({0,1,2},+)\left(\left\{0,1,2\right\},+\right):

 
0 1 2
0 0 0 0
1 1 2 1
2 2 2 1
 
 
0 1 2
0 0 1 2
1 1 1 0
2 2 0 2
 
= 
+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1
\text{\quad}\begin{tabular}[]{r|rrr}$\circ$&$0$&$1$&$2$\\ \hline\cr$0$&$0$&$0$&$0$\\ $1$&$1$&$2$&$1$\\ $2$&$2$&$2$&$1$\end{tabular}\text{\quad}\diamond\text{\quad}\begin{tabular}[]{r|rrr}$\ast$&$0$&$1$&$2$\\ \hline\cr$0$&$0$&$1$&$2$\\ $1$&$1$&$1$&$0$\\ $2$&$2$&$0$&$2$\end{tabular}\text{\quad}=\text{\quad}\begin{tabular}[]{r|rrr}$+$&$0$&$1$&$2$\\ \hline\cr$0$&$0$&$1$&$2$\\ $1$&$1$&$2$&$0$\\ $2$&$2$&$0$&$1$\end{tabular}

But, the product U({0,1,2},+)A({0,1,2},+)U\left(\left\{0,1,2\right\},+\right)\diamond A\left(\left\{0,1,2\right\},+\right) does not give ({0,1,2},+)\left(\left\{0,1,2\right\},+\right):

 
0 1 2
0 0 1 2
1 1 1 0
2 2 0 2
 
 
0 1 2
0 0 0 0
1 1 2 1
2 2 2 1
 
= 
0 1 2
0 0 2 1
1 2 2 0
2 1 0 1
\text{\quad}\begin{tabular}[]{r|rrr}$\ast$&$0$&$1$&$2$\\ \hline\cr$0$&$0$&$1$&$2$\\ $1$&$1$&$1$&$0$\\ $2$&$2$&$0$&$2$\end{tabular}\text{\quad}\diamond\text{\quad}\begin{tabular}[]{r|rrr}$\circ$&$0$&$1$&$2$\\ \hline\cr$0$&$0$&$0$&$0$\\ $1$&$1$&$2$&$1$\\ $2$&$2$&$2$&$1$\end{tabular}\text{\quad}=\text{\quad}\begin{tabular}[]{r|rrr}$\nabla$&$0$&$1$&$2$\\ \hline\cr$0$&$0$&$2$&$1$\\ $1$&$2$&$2$&$0$\\ $2$&$1$&$0$&$1$\end{tabular}

Therefore, ({0,1,2},+)\left(\left\{0,1,2\right\},+\right) is not uu-normal, it is simply AUAU-composite.

Proposition 3.2.7 Any signature- or similar-prime groupoid is uu-normal.

Proof. The proof is straightforward and we omit it.

\blacksquare

Proposition 3.2.8 The right-zero-semigroup on XX is similar-prime.

Proof. Let (X,)\left(X,\bullet\right) be the right-zero-semigroup on XX. Then xy=yx\bullet y=y for all x,yXx,y\in X. Let (X,)=U(X,)\left(X,\ast\right)=U\left(X,\bullet\right) and (X,)=A(X,)\left(X,\circ\right)=A\left(X,\bullet\right), thus

xy={x if x=y,xy=yotherwiseandxy={xx=x if x=yxy=xotherwisex\ast y=\begin{cases}x&\text{ if }x=y,\\ x\bullet y=y&\text{otherwise}\end{cases}\quad\text{and}\quad x\circ y=\begin{cases}x\bullet x=x&\text{ if }x=y\\ x\circ y=x&\text{otherwise}\end{cases}

Hence for all x,yx,y X\in X, (X,)=(X,)idBin(X)\left(X,\bullet\right)=(X,\bullet)\diamond id_{Bin\left(X\right)}.

\blacksquare

Example 3.2.9 Let (X,)=({a,b,c},)\left(X,\bullet\right)=(\{a,b,c\},\bullet) be the right-zero-semigroup on {a,b,c}\left\{a,b,c\right\}. Its Cayley table together with its associated signature-similar-product tables, respectively, are:

\bullet aa bb cc
aa aa bb cc
bb aa bb cc
cc aa bb cc
 
a b c
a a b c
b a b c
c a b c
 
 
a b c
a a a a
b b b b
c c c c
 
= 
a b c
a a b c
b a b c
c a b c
 
\text{\quad}\begin{tabular}[]{l|lll}$\ast$&$a$&$b$&$c$\\ \hline\cr$a$&$a$&$b$&$c$\\ $b$&$a$&$b$&$c$\\ $c$&$a$&$b$&$c$\end{tabular}\text{\quad}\diamond\text{\quad}\begin{tabular}[]{l|lll}$\circ$&$a$&$b$&$c$\\ \hline\cr$a$&$a$&$a$&$a$\\ $b$&$b$&$b$&$b$\\ $c$&$c$&$c$&$c$\end{tabular}\text{\quad}=\text{\quad}\begin{tabular}[]{l|lll}$\bullet$&$a$&$b$&$c$\\ \hline\cr$a$&$a$&$b$&$c$\\ $b$&$a$&$b$&$c$\\ $c$&$a$&$b$&$c$\end{tabular}\text{\quad}

Therefore, the right-zero-semigroup of order 3 is similar-prime since its similar-factor A({a,b,c},)A(\{a,b,c\},\bullet) is idBin(X)id_{Bin\left(X\right)}, i.e., the left-zero-semigroup for {a,b,c}\left\{a,b,c\right\}.

Proposition 3.2.10 A non-locally-zero strong groupoid is uu-composite.

Proof. Let (X,)\left(X,\bullet\right) Bin(X)ZBin(X)\in Bin(X)-ZBin\left(X\right), then xy{x,y}x\bullet y\neq\{x,y\} for any x,yXx,y\in X. Meaning, (X,)\left(X,\bullet\right) cannot be the left- nor the right-zero-semigroup on XX. By Proposition 3.2.5, (X,)\left(X,\bullet\right) is uu-normal. Let (X,)=U(X,)\left(X,\ast\right)=U\left(X,\bullet\right) and (X,)=A(X,)\left(X,\circ\right)=A\left(X,\bullet\right), then

xy={x if x=y,xyotherwiseandxy={xx if x=yxy=xotherwisex\ast y=\begin{cases}x&\text{ if }x=y,\\ x\bullet y&\text{otherwise}\end{cases}\quad\text{and}\quad x\circ y=\begin{cases}x\bullet x&\text{ if }x=y\\ x\circ y=x&\text{otherwise}\end{cases}

Hence, for all x,yx,y X\in X, (X,)(X,)(X,)\left(X,\ast\right)\neq(X,\bullet)\neq\left(X,\circ\right) and (X,)idBin(X)(X,)\left(X,\ast\right)\neq id_{Bin\left(X\right)}\neq\left(X,\circ\right). Therefore, (X,)\left(X,\bullet\right) is uu-composite.

3.3. Factoring 𝐔(X,)\mathbf{U}\left(X,\bullet\right) and 𝐀(X,)\mathbf{A}\left(X,\bullet\right)

Let Str(X)Str\left(X\right) be the collection of all strong groupoids on a non-empty set XX. Consider a groupoid (X,)Str(X)\left(X,\bullet\right)\in Str\left(X\right), we classify the signature- and similar-factors of (X,)\left(X,\bullet\right) as UAUA-composite, signature- or similar-prime. We conclude that U(X,)U\left(X,\bullet\right) and A(X,)A\left(X,\bullet\right) are similar- and signature-prime, respectively.

Theorem 3.3.1 The signature-factor of a strong groupoid is similar-prime, and the similar-factor is signature-prime.

Proof. Let (X,)Str(X)\left(X,\bullet\right)\in Str\left(X\right). Suppose that (X,)=U(X,)\left(X,\ast\right)=U\left(X,\bullet\right) and (X,)=A(X,)\left(X,\circ\right)=A\left(X,\bullet\right). Let (X,)=U(X,)\left(X,\circledast\right)=U\left(X,\ast\right) and (X,)=A(X,)\left(X,\odot\right)=A\left(X,\ast\right), then “\circledast” and “\odot” are defined as:

xy={x;if x=y,xy=xyotherwise and xy={xx=xif x=y,x;otherwise.x\circledast y=\begin{cases}x;&\text{if $x=y$,}\\ x\ast y=x\bullet y&\text{otherwise}\end{cases}\text{\quad and\quad}x\odot y=\begin{cases}x\ast x=x&\text{if $x=y$,}\\ x;&\text{otherwise.}\end{cases}

Hence A(X,)=idBin(X)A\left(X,\ast\right)=id_{Bin\left(X\right)}, and therefore U(X,)U\left(X,\bullet\right) is similar-prime. Similarly, if we let (X,)=U(X,)\left(X,\boxtimes\right)=U\left(X,\circ\right) and (X,)=A(X,)\left(X,\boxdot\right)=A\left(X,\circ\right), then “\boxtimes” and “\boxdot” are defined as:

xy={xif x=y,xy=xotherwise and xy={xx=xxif x=y,x;otherwise.x\boxtimes y=\begin{cases}x&\text{if $x=y$,}\\ x\circ y=x&\text{otherwise}\end{cases}\text{\quad and\quad}\ x\boxdot y=\begin{cases}x\circ x=x\bullet x&\text{if $x=y$,}\\ x;&\text{otherwise.}\end{cases}

Therefore, U(X,)=idBin(X)U\left(X,\circ\right)=id_{Bin\left(X\right)}, and hence A(X,)A\left(X,\bullet\right) is signature-prime.

\blacksquare

Corollary 3.3.2.  Let (X,)\left(X,\bullet\right) be any groupoid and let (X,)=U(X,)\left(X,\ast\right)=U\left(X,\bullet\right) and (X,)=A(X,)\left(X,\circ\right)=A\left(X,\bullet\right). If (X,)\left(X,\bullet\right) has a UAUA-factorization, i.e., if (X,)=(X,)(X,),\left(X,\bullet\right)=\left(X,\ast\right)\diamond\left(X,\circ\right), then

(X,)=U(X,)A(X,).\left(X,\bullet\right)=U\left(X,\ast\right)\diamond A\left(X,\circ\right).

Proof. This follows immediately from the previous theorem. In fact, suppose (X,)\left(X,\bullet\right) has a UAUA-factorization, then

(X,)\displaystyle\left(X,\bullet\right) =\displaystyle= (X,)(X,)\displaystyle\left(X,\ast\right)\diamond\left(X,\circ\right)
=\displaystyle= (U(X,)A(X,))(U(X,)A(X,))\displaystyle(U\left(X,\ast\right)\diamond A\left(X,\ast\right))\diamond\left(U\left(X,\circ\right)\diamond A\left(X,\circ\right)\right)
=\displaystyle= (U(X,)idBin(X))(idBin(X)A(X,))\displaystyle(U\left(X,\ast\right)\diamond id_{Bin\left(X\right)})\diamond\left(id_{Bin\left(X\right)}\diamond A\left(X,\circ\right)\right)
=\displaystyle= U(X,)A(X,).\displaystyle U\left(X,\ast\right)\diamond A\left(X,\circ\right)\text{.}

\blacksquare

Corollary 3.3.3.  Let (X,)\left(X,\bullet\right) be a groupoid and let (X,)=U(X,)\left(X,\ast\right)=U\left(X,\bullet\right) and (X,)=A(X,)\left(X,\circ\right)=A\left(X,\bullet\right). If (X,)\left(X,\bullet\right) has a AUAU-factorization then

(X,)=A(X,)U(X,).\left(X,\bullet\right)=A\left(X,\circ\right)\diamond U\left(X,\ast\right).

Proof. The proof is very similar to that of the previous Corollary.

\blacksquare

Corollary 3.3.4. Let (X,)\left(X,\bullet\right) be a strong groupoid and let (X,)=U(X,)\left(X,\ast\right)=U\left(X,\bullet\right) and (X,)=A(X,)\left(X,\circ\right)=A\left(X,\bullet\right), then

(X,)=A(X,)U(X,)=U(X,)A(X,).\left(X,\bullet\right)=A\left(X,\circ\right)\diamond U\left(X,\ast\right)=U\left(X,\ast\right)\diamond A\left(X,\circ\right)\text{.}

Proof. This is a direct result of Theorem 3.1.3 and the previous two Corollaries.

\blacksquare

As a final observation, a groupoid is similar-prime if it is similar to the left-zero-semigroup or a locally-zero-groupoid, in other words, if it is idempotent. Hence, we need another method of factorization for idempotent groupoids.

4.
Orient-Skew Factorization

We say a groupoid (X,)\left(X,\ast\right)\, has the orientation property OP [33] if xy{x,y}x\ast y\in\{x,y\} for all x,yXx,y\in X. Moreover, (X,)\left(X,\ast\right) has the twisted orientation property TOP if xy=xx\ast y=x implies yx=xy\ast x=x for all x,yXx,y\in X. In this section, we introduce a unique factorization which can be applied to groupoids with OP. This type of groupoids has proven to be useful in graph theory, where in a directed graph xy=xx\ast y=x can mean there is a path from vertex xx to vertex yy, i.e. xyx\rightarrow y; while xy=yx\ast y=y can mean there is no path from xx to yy, i.e. xyx\nrightarrow y. In fact, if Γ(X,)\Gamma_{\left(X,\ast\right)} is the directed graph on vertex set XX and (X,)TOP(X)\left(X,\ast\right)\in TOP\left(X\right), then Γ(X,)\Gamma_{\left(X,\ast\right)} is a simple graph [1]. For more details on groupoids associated with directed and simple graphs we refer to [1, 35].

Example 4.1 Let X={0,1}X=\{0,1\} and (X,)\left(X,\leq\right) be a linearly ordered set. Define a binary operation “\bullet” on XX such that:

xy={0 if xy,1otherwise.x\bullet y=\begin{cases}0&\text{ if $x\leq y,$}\\ 1&\text{otherwise.}\end{cases}

Then the binary system (X,)\left(X,\bullet\right) has the orientation property.

Example 4.2 Let X={a,b,c}X=\left\{a,b,c\right\}. Define a binary operation “\bullet” on XX by the following table:

\bullet aa bb cc
aa aa bb cc
bb bb bb cc
cc cc bb cc

Then (X,)\left(X,\bullet\right) has the twisted orientation property.

We consider three functions to represent operations on the main diagonal and on the anti-diagonal of the associated Cayley table of a binary operation on a finite set.

Let (X,)(X,\ast) be a groupoid of finite order nn and binary operation “\ast”, i.e., |X|=n|X|=n and :X2X\ast:X^{2}\longrightarrow X. Then for all xix_{i}, xjXx_{j}\in X, i,j=1,2,,ni,j=1,2,...,n, and i+j=n+1i+j=n+1, we call:

diag-1:

d¯\overline{d^{\ast}} the anti-diagonal function of (X,)(X,\ast)\ such that d¯\overline{d^{\ast}} :X:\mathbb{N}\longrightarrow X, defined by d¯\overline{d^{\ast}} (i)=xixj.\left(i\right)=x_{i}\ast x_{j}.

diag-2:

d^\widehat{d^{\ast}} the reverse-diagonal function of (X,)(X,\ast)\ such that d^\widehat{d^{\ast}} :X:\mathbb{N}\longrightarrow X, defined by d^\widehat{d^{\ast}} (i)=xjxj.\left(i\right)=x_{j}\ast x_{j}.

diag-3:

d~\widetilde{d^{\ast}} the skew-diagonal function of (X,)(X,\ast)\ such that d~\widetilde{d^{\ast}} :X:\mathbb{N}\longrightarrow X, defined by d~(i)=d¯^(i)=\widetilde{d^{\ast}}\left(i\right)=\widehat{\overline{d^{\ast}}}(i)= xjxi.x_{j}\ast x_{i}.

Example 4.3 Consider the groupoid ({0,1,2,3},)\left(\left\{0,1,2,3\right\},\ast\right) where “\ast” is given by the following table:

\ast 0 1 2 3
0 0 1 0 3
1 1 1 1 0
2 2 2 2 3
3 0 3 2 3

Observe that n=4n=4 and the main diagonal d={0,1,2,3}d^{\ast}=\{0,1,2,3\}. For instance, d(2)=22=2d^{\ast}(2)=2\ast 2=2. Also, the anti-diagonal d¯={3,1,2,0}\overline{d^{\ast}}=\{3,1,2,0\}. For example, d¯(1)=x1x4=03=3\overline{d^{\ast}}\left(1\right)=x_{1}\ast x_{4}=0\ast 3=3. Moreover, the reverse of the diagonal is d^={3,2,1,0}\widehat{d^{\ast}}=\left\{3,2,1,0\right\}. For instance, d^\widehat{d^{\ast}} (4)=x1x1=00=0\left(4\right)=x_{1}\ast x_{1}=0\ast 0=0. So the skew-diagonal defined here is the reverse of the anti-diagonal, hence, d~\widetilde{d^{\ast}} ={0,2,1,3}=\left\{0,2,1,3\right\}. For example, d~(3)=d¯^(3)=\widetilde{d^{\ast}}\left(3\right)=\widehat{\overline{d^{\ast}}}(3)= x2x3=12=1x_{2}\ast x_{3}=1\ast 2=1.

Given these definitions, we can derive the orient-factor of a groupoid from idBin(X)id_{Bin\left(X\right)}, such that all its elements are the same as those of the left-zero-semigroup except elements belonging to the anti-diagonal, which we construct from the skew-diagonal of idBin(X)id_{Bin\left(X\right)}. Similarly, the skew-factor is derived from the parent groupoid by letting its anti-diagonal be that of the skew-diagonal of the parent groupoid, otherwise all other elements are kept the same as the parent groupoid.

Let (X,)\left(X,\bullet\right) be a groupoid. Let DD^{\diamond} denote the main diagonal of idBin(X)id_{Bin\left(X\right)}. Derive groupoids (X,)(X,\ast) and (X,)\left(X,\circ\right) from idBin(X)id_{Bin\left(X\right)} and (X,)\left(X,\bullet\right), respectively, as follows:

For all x,yXx,y\in X,

(4.1)
(i) d¯=D~\text{(i) }\overline{d^{\ast}}=\widetilde{D^{\diamond}}, and (i) d¯=d~\overline{d^{\circ}}=\widetilde{d^{\bullet}},
(ii) xy=x; otherwise.\text{(ii) }x\ast y=x\text{; otherwise.} (ii) xy=xyx\circ y=x\bullet y; otherwise.

Groupoids (X,)\left(X,\ast\right) and (X,)\left(X,\circ\right) are said to be the orient- and skew-factor of (X,)\left(X,\bullet\right), respectively, denoted by O(X,)O\left(X,\bullet\right) and J(X,)J\left(X,\bullet\right). As previously mentioned, the product “\diamond” is not commutative. Hence, for (X,)Bin(X)\left(X,\bullet\right)\in Bin\left(X\right), we may have an OJOJ-factorization such that

(4.2) (X,)=O(X,)J(X,)\left(X,\bullet\right)=O\left(X,\bullet\right)\diamond J\left(X,\bullet\right)

or a JOJO-factorization such that

(4.3) (X,)=J(X,)O(X,).\left(X,\bullet\right)=J\left(X,\bullet\right)\diamond O\left(X,\bullet\right)\text{.}

Proposition 4.4 The orient-factor of a given groupoid is locally-zero.

Proof. Given (X,)Bin(X)\left(X,\bullet\right)\in Bin\left(X\right), let (X,)=O(X,)(X,\ast)=O\left(X,\bullet\right). Then, d=Dd^{\ast}=D^{\diamond}, i.e. xx=xx\ast x=x, and xy=xx\ast y=x for all x,x, yXy\in X except when x,x, yd¯y\in\overline{d^{\ast}}. In fact, for any xyx\not=y in XX, ({x,y},)(\{x,y\},\bullet) is either a left-zero-semigroup or a right-zero-semigroup. Moreover, xx=xx\bullet x=x for all xXx\in X which implies that O(X,)O\left(X,\bullet\right) is locally-zero.

\blacksquare

Corollary 4.5 The orient-factor of a given groupoid is a unit in Bin(X)Bin\left(X\right).

Proof. This follows immediately from Propositions 2.8 and 4.4.

\blacksquare

Example 4.6 Let X={e,a,b,c}X=\{e,a,b,c\}. Define a binary operation “\bullet” by the following table:

\bullet ee aa bb cc
ee ee aa bb cc
aa aa ee cc bb
bb bb cc aa ee
cc cc bb ee aa
  

Then, clearly (X,,e)\left(X,\bullet,e\right) is a group. Derive its orient-factor (X,,e)=U(X,,e)\left(X,\ast,e\right)=U(X,\bullet,e) as in 4.1 to obtain:

\ast ee aa bb cc
ee ee ee ee cc
aa aa aa bb aa
bb bb aa bb bb
cc ee cc cc cc

Hence, (X,,e)\left(X,\ast,e\right) is locally-zero.

4.1. OJOJ-Factorization

In this subsection, we explore an OJOJ-factorization of any groupoid (X,)\left(X,\bullet\right) in Bin(X)Bin\left(X\right), i.e., into its orient- and skew-factors, respectively. The next subsection discusses a JOJO-factorization where the product of the two factors is “reversed”. Then, we classify (X,)\left(X,\bullet\right) as OJOJ- and/or JOJO-composite, jj-composite or jj-normal; and as orient- or skew-prime.

A groupoid (X,)\left(X,\bullet\right) is bi-diagonal if its anti-diagonal is symmetric, meaning if d¯=d~\overline{d^{\bullet}}=\widetilde{d^{\bullet}}.

Example 4.1.1. Let (,<)\,(\mathbb{Z},<) be a linearly ordered set. Consider groupoid (,)\left(\mathbb{Z},\bullet\right) where xy=x\bullet y= max{x,y}\max\left\{x,y\right\} for all x,yx,y\in\mathbb{Z}. Define two binary operations on \mathbb{Z} such that:

xy={xif x<y,yotherwise. and xy={xif xy,yotherwise.x\ast y=\begin{cases}x&\text{if }x<y,\\ y&\text{otherwise.}\end{cases}\text{\quad and\quad}x\circ y=\begin{cases}x&\text{if $x\leq y$,}\\ y&\text{otherwise.}\end{cases}\noindent

Then clearly (X,)(X,)(X,\ast)\diamond(X,\circ) is an OJOJ-factorization of (X,)\left(X,\bullet\right), where (X,)=O(X,)(X,\ast)=O(X,\bullet) and (X,)=J(X,)(X,\circ)=J(X,\bullet). Moreover, (,(\mathbb{Z}, )\bullet) is bi-diagonal.

A groupoid (X,)\left(X,\bullet\right) is said to be orient-prime if O(X,)O\left(X,\bullet\right) =idBin(X)=id_{Bin\left(X\right)}, and is said to be skew-prime if J(X,)J\left(X,\bullet\right) =idBin(X)=id_{Bin\left(X\right)}. Alternatively, if (X,)\left(X,\bullet\right) is neither orient- nor skew-prime, then (X,)\left(X,\bullet\right) is said to be

(1) OJOJ-composite if (X,)=O(X,)J(X,)\left(X,\bullet\right)=O\left(X,\bullet\right)\diamond J\left(X,\bullet\right);

(2) JOJO-composite if (X,)=J(X,)O(X,)\left(X,\bullet\right)=J\left(X,\bullet\right)\diamond O\left(X,\bullet\right).

Consequently, (X,)\left(X,\bullet\right) is said to be jj-composite if both (1)\left(1\right) and (2)\left(2\right) hold.

Just as with UAUA-factorization, not every groupoid will have a JOJO-factorization. But it is possible to derive an OJOJ-factorization of any given groupoid.

Theorem 4.1.2 Any given groupoid has an OJOJ-factorization, i.e., if (X,)Bin(X)(X,\bullet)\in Bin(X), then

(X,)=O(X,)J(X,).\left(X,\bullet\right)=O(X,\bullet)\diamond J(X,\bullet)\text{.}

Proof. Let (X,)(X,\bullet) Bin(X)\in Bin\left(X\right) such that O(X,)O(X,\bullet) and J(X,)J(X,\bullet) are defined as in 4.1. Let (X,)=(X,)(X,\odot)=(X,\ast) (X,)\diamond(X,\circ) where (X,)=O(X,)(X,\ast)=O(X,\bullet) and (X,)=J(X,)(X,\circ)=J(X,\bullet). Then xy=(xy)(yx)x\odot y=(x\ast y)\circ(y\ast x) for all x,yXx,y\in X. It follows that

  1. (i)

    If x=y,x=y, xx=xx\ast x=x and xx=xxx\circ x=x\bullet x.

  2. (ii)

    If xyx\not=y, then if xyd¯,x\ast y\in\overline{d^{\ast}}, xyx\ast y\in D~\widetilde{D^{\diamond}}, and for xyd¯,x\circ y\in\overline{d^{\circ}}, then xyx\circ y\in d~\widetilde{d^{\bullet}}. Otherwise, xy=xx\ast y=x, and xy=xyx\circ y=x\bullet y.

Next, we show that (X,)=(X,)(X,\bullet)=(X,\odot). Given x,yXx,y\in X,

  1. (i)

    If x=y,x=y, xx=(xx)(xx)=xx=xxx\odot x=(x\circ x)\ast(x\circ x)=x\circ x=x\bullet x.

  2. (ii)

    If xyx\not=y, then if xy=yx,x\ast y=y\ast x, then xy=(xy)(yx)=xy=xyx\odot y=(x\ast y)\circ(y\ast x)=x\circ y=x\bullet y and yx=(yx)(xy)=yx=xyy\odot x=(y\ast x)\circ(x\ast y)=y\circ x=x\bullet y. If xyyx,x\ast y\not=y\ast x, then xy=(xy)(yx)=(xy)(yx){xy, yx}x\odot y=(x\ast y)\circ(y\ast x)=(x\ast y)\bullet(y\ast x)\in\left\{x\bullet y,\text{ }y\bullet x\right\}.

Thus, xy=xyx\odot y=x\bullet y for all x,yXx,y\in X. This proves that (X,)=(X,)(X,\odot)=(X,\bullet).

\blacksquare

Corollary 4.1.3 The factorization in Theorem 4.1.2 is unique.

Proof. Let (X,)(X,\bullet) Bin(X)\in Bin\left(X\right) with an OJOJ-factorization such that (X,)=(X,)(X,\bullet)=(X,\ast) (X,)\diamond(X,\circ) where (X,)=O(X,)(X,\ast)=O(X,\bullet) and (X,)=J(X,)(X,\circ)=J(X,\bullet). Let (X,)=(X,)(X,\bullet)=(X,\bigtriangledown) (X,)\diamond(X,\bigtriangleup) where (X,)=O(X,)(X,\bigtriangledown)=O(X,\bullet) and (X,)=J(X,)(X,\bigtriangleup)=J(X,\bullet). For any xXx\in X, we have xx=x=xxx\ast x=x=x\bigtriangledown x, and xy=xyx\ast y=x\bigtriangledown y when xyx\not=y. Hence (X,)=(X,)(X,\ast)=(X,\bigtriangledown). Similarly, if xXx\in X, then xx=xx=xxx\circ x=x\bullet x=x\bigtriangleup x. When xyx\not=y, we have xy=xy=xyx\circ y=x\bullet y=x\bigtriangleup y, proving that (X,)=(X,)(X,\circ)=(X,\bigtriangleup).

\blacksquare

Example 4.1.4 [32] Consider the groupoid (X,)=({1,2,3,4},)\left(X,\bullet\right)=\left(\left\{1,2,3,4\right\},\bullet\right) where “\bullet” is defined by the following Cayley table:

\bullet 1 2 3 4
1 1 1 3 1
2 2 2 3 2
3 1 2 3 4
4 4 4 3 4
  

By deriving its orient- and skew-factors O(X,)O\left(X,\bullet\right) and J(X,)J\left(X,\bullet\right), respectively, and by letting (X,)=O(X,)\left(X,\ast\right)=O\left(X,\bullet\right) and (X,)=J(X,)\left(X,\circ\right)=J\left(X,\bullet\right) shows that (X,)(X,)=\left(X,\ast\right)\diamond\left(X,\circ\right)= (X,)\left(X,\bullet\right).

Indeed, (X,)\left(X,\bullet\right) has an OJOJ-factorization:

 
1 2 3 4
1 1 1 1 4
2 2 2 3 2
3 3 2 3 3
4 1 4 4 4
 
 
1 2 3 4
1 1 1 3 4
2 2 2 2 2
3 1 3 3 4
4 1 4 3 4
 
= 
1 2 3 4
1 1 1 3 1
2 2 2 3 2
3 1 2 3 4
4 4 4 3 4
\text{\quad}\begin{tabular}[]{c|cccc}$\ast$&1&2&3&4\\ \hline\cr 1&1&1&1&4\\ 2&2&2&3&2\\ 3&3&2&3&3\\ 4&1&4&4&4\end{tabular}\text{\quad}\diamond\text{\quad}\begin{tabular}[]{c|cccc}$\circ$&1&2&3&4\\ \hline\cr 1&1&1&3&4\\ 2&2&2&2&2\\ 3&1&3&3&4\\ 4&1&4&3&4\end{tabular}\text{\quad}=\text{\quad}\begin{tabular}[]{c|cccc}$\bullet$&1&2&3&4\\ \hline\cr 1&1&1&3&1\\ 2&2&2&3&2\\ 3&1&2&3&4\\ 4&4&4&3&4\end{tabular}

Also, since O(X,)idBin(X)J(X,)O\left(X,\bullet\right)\neq id_{Bin\left(X\right)}\neq J\left(X,\bullet\right), then (X,)\left(X,\bullet\right) is OJOJ-composite.

4.2. JOJO-Factorization

In this subsection, we reverse the product of the orient- and skew-factors of a given groupoid (X,)Bin(X)\left(X,\bullet\right)\in Bin\left(X\right). We find that an arbitrary groupoid admits a JOJO-factorization if it has the orientation property.

Example 4.2.1 Consider the groupoid (X,)=({1,2,3,4},)\left(X,\bullet\right)=\left(\left\{1,2,3,4\right\},\bullet\right) defined as in Example 4.1.4:

\bullet 1 2 3 4
1 1 1 3 1
2 2 2 3 2
3 1 2 3 4
4 4 4 3 4
  

Through routine calculations, we find that (X,)\left(X,\bullet\right) admits a JOJO-factorization since J(X,)O(X,)=(X,)(X,)=J\left(X,\bullet\right)\diamond O\left(X,\bullet\right)=\left(X,\circ\right)\diamond\left(X,\ast\right)= (X,).\left(X,\bullet\right). In addition, (X,)OP(X)\left(X,\bullet\right)\in OP\left(X\right).

A groupoid (X,)\left(X,\bullet\right) is said to be jj-normal if it admits an OJOJ- and a JOJO-factorization, i.e., if

(i) (X,)=O(X,)J(X,)\left(X,\bullet\right)=O\left(X,\bullet\right)\diamond J\left(X,\bullet\right) and

(ii) (X,)=J(X,)O(X,)\left(X,\bullet\right)=J\left(X,\bullet\right)\diamond O\left(X,\bullet\right).

Theorem 4.2.3 A groupoid (X,)(X,\bullet) with the orientation property has a JOJO-factorization.

Proof. Let (X,)(X,\bullet) OP(X)\in OP\left(X\right). Define (X,)=(X,)(X,\odot)=(X,\ast) (X,)\diamond(X,\circ) where (X,)=O(X,)(X,\ast)=O(X,\bullet) and (X,)=J(X,)(X,\circ)=J(X,\bullet). Then xy=(xy)(yx)x\odot y=(x\ast y)\circ(y\ast x) for all x,yXx,y\in X. It follows that

  1. (i)

    If x=y,x=y, then xx=xx\ast x=x and xx=xx.x\circ x=x\bullet x.

  2. (ii)

    If xy,x\not=y, the two cases arise: if xyd¯x\ast y\in\overline{d^{\ast}} and xyd¯,x\circ y\in\overline{d^{\circ}}, then xyx\ast y\in D~\widetilde{D^{\diamond}} and xyx\circ y\in d~\widetilde{d^{\bullet}} which also {x, y}\in\left\{x,\text{ }y\right\}. Otherwise, xy=x,x\ast y=x,and xy=xy.x\circ y=x\bullet y.

Next, we show that (X,)=(X,)(X,\bullet)=(X,\odot). Given x,yXx,y\in X,

  1. (i)

    If x=y,x=y, then xx=(xx)(xx)=xx=xxx\odot x=(x\circ x)\ast(x\circ x)=x\ast x=x\bullet x.

  2. (ii)

    If xy,x\not=y, then xy=(xy)(yx)x\odot y=(x\circ y)\ast(y\circ x). If xy=yxx\circ y=y\circ x, then xy=(xy)(xy)=xy=xyx\odot y=(x\circ y)\ast(x\circ y)=x\circ y=x\bullet y. If xyyxx\circ y\not=y\circ x, then xy=(xy)(yx){xy, yx}x\odot y=(x\ast y)\bullet(y\ast x)\in\left\{x\bullet y,\text{ }y\bullet x\right\}.

Thus xy=xyx\odot y=x\bullet y for all x,yXx,y\in X. This proves that (X,)=(X,)(X,\odot)=(X,\bullet).

\blacksquare

Corollary 4.2.4 The factorization in Theorem 4.2.3 is unique.

Proof. The proof is very similar to that of Corollary 4.1.3 so we omit it.

\blacksquare

Proposition 4.2.5 A groupoid with the orientation property is jj-normal.

Proof. The result follows from Theorems 4.1.2, 4.2.3 and the definition.

\blacksquare

Example 4.2.6 Let (X,)\left(X,\bullet\right) be defined as in Example 4.2.1 where we determined that (X,)\left(X,\bullet\right) admits an OJOJ-factorization. It can be verified that J(X,)O(X,)=(X,)J\left(X,\bullet\right)\diamond O\left(X,\bullet\right)=\left(X,\bullet\right), which shows that (X,)\left(X,\bullet\right) admits a JOJO-factorization as well. Therefore, (X,)\left(X,\bullet\right) is jj-normal in (Bin(X),)(Bin\left(X\right),\diamond). Additionally, J(X,)idBin(X)O(X,)J\left(X,\bullet\right)\neq id_{Bin\left(X\right)}\neq O\left(X,\bullet\right) implies that (X,)\left(X,\bullet\right) is jj-composite.

4.3. Factoring 𝐎(X,)\mathbf{O}\left(X,\bullet\right) and 𝐉(X,)\mathbf{J}\left(X,\bullet\right)

In this subsection, the orient- and skew-factors of (X,)OP(X)\left(X,\bullet\right)\in OP\left(X\right) are factored to deduce that O(X,)O\left(X,\bullet\right) is skew-prime while J(X,)J\left(X,\bullet\right) is binary-equivalent to (X,)\left(X,\bullet\right).

Let (X,)\left(X,\bullet\right) and (X,)\left(X,\circ\right) be groupoids in Bin(X)Bin\left(X\right). We say that (X,)\left(X,\circ\right) is binary-equivalent to (X,)\left(X,\bullet\right) if there exists (X,)Bin(X)\left(X,\ast\right)\in Bin\left(X\right) such that

      (i) (X,)=(X,)(X,)\left(X,\bullet\right)=\left(X,\ast\right)\diamond\left(X,\circ\right); and

      (ii) (X,)=(X,)(X,)\left(X,\circ\right)=\left(X,\ast\right)\diamond\left(X,\bullet\right).

Theorem 4.3.1 Given a groupoid (X,)\left(X,\bullet\right) with the orientation property. Its orient-factor is skew-prime, and its skew-factor is binary-equivalent to (X,)\left(X,\bullet\right).

Proof. Let (X,)OP(X)\left(X,\bullet\right)\in OP\left(X\right). Suppose that (X,)=O(X,)\left(X,\ast\right)=O\left(X,\bullet\right) and (X,)=J(X,)\left(X,\circ\right)=J\left(X,\bullet\right). Then by Theorem 4.1.2 (X,)=O(X,)J(X,)=(X,)(X,)\left(X,\bullet\right)=O(X,\bullet)\diamond J(X,\bullet)=\left(X,\ast\right)\diamond\left(X,\circ\right). Let (X,)=O(X,)\left(X,\circledast\right)=O\left(X,\ast\right) and (X,)=J(X,),\left(X,\odot\right)=J\left(X,\ast\right), then for \circledast: (i) d¯=D~\overline{\text{ }d^{\circledast}}=\widetilde{D^{\diamond}}, (ii) xy=xx\circledast y=x, otherwise; and for \odot: (i) d¯=d~=D\overline{d^{\odot}}=\widetilde{d^{\ast}}=D^{\diamond}, (ii) xy=xy=xx\odot y=x\ast y=x, otherwise. Hence,

(X,)=(X,)idBin(X)\left(X,\ast\right)=\left(X,\ast\right)\diamond id_{Bin\left(X\right)}

and O(X,)O\left(X,\bullet\right) is skew-prime. Similarly, if we let (X,)=O(X,)\left(X,\boxtimes\right)=O\left(X,\circ\right) and (X,)=J(X,)\left(X,\boxdot\right)=J\left(X,\circ\right), then for \boxtimes: (i) d¯=D~\overline{\text{ }d^{\boxtimes}}=\widetilde{D^{\diamond}}, (ii) xy=xx\boxtimes y=x, otherwise; and for \boxdot: (i) d¯=d~=d¯\overline{d^{\boxdot}}=\widetilde{d^{\circ}}=\overline{d^{\bullet}}, (ii) xy=xy=xyx\boxdot y=x\circ y=x\bullet y, otherwise. Thus,

(X,)=(X,)(X,)\left(X,\circ\right)=\left(X,\ast\right)\diamond\left(X,\bullet\right)

and the final result follows.

\blacksquare

Example 4.3.2 Consider the locally-zero groupoid (X,)=({0,1,2,3,4,5},)\left(X,\bullet\right)=\left(\left\{0,1,2,3,4,5\right\},\bullet\right) where “\bullet” is defined by the following Cayley table:

\bullet 0 1 2 3 4 5
0 0 1 0 0 4 0
1 0 1 2 3 1 5
2 2 1 2 3 4 2
3 3 1 2 3 3 3
4 0 4 2 4 4 4
5 5 1 5 5 5 5
  

Since (X,)\left(X,\bullet\right) has the orientation property, then (X,)\left(X,\bullet\right) is jj-normal by Proposition 4.2.5.

Factoring its orient- and skew-factors (X,)=O(X,)\left(X,\ast\right)=O\left(X,\bullet\right) and (X,)=J(X,)\left(X,\circ\right)=J\left(X,\bullet\right) into their respective orient- and skew-factors, O(X,)O\left(X,\ast\right), J(X,)J\left(X,\ast\right) and O(X,)O\left(X,\circ\right), J(X,)J\left(X,\circ\right), is observed through their respective product tables:

\ast 0 1 2 3 4 5
0 0 0 0 0 0 5
1 1 1 1 1 4 1
2 2 2 2 3 2 2
3 3 3 2 3 3 3
4 4 1 4 4 4 4
5 0 5 5 5 5 5
=\displaystyle=  
0 1 2 3 4 5
0 0 0 0 0 0 5
1 1 1 1 1 4 1
2 2 2 2 3 2 2
3 3 3 2 3 3 3
4 4 1 4 4 4 4
5 0 5 5 5 5 5
 
 
0 1 2 3 4 5
0 0 0 0 0 0 0
1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3 3
4 4 4 4 4 4 4
5 5 5 5 5 5 5
\displaystyle\text{\quad}\begin{tabular}[]{c|cccccc}$\ast$&0&1&2&3&4&5\\ \hline\cr 0&0&0&0&0&0&5\\ 1&1&1&1&1&4&1\\ 2&2&2&2&3&2&2\\ 3&3&3&2&3&3&3\\ 4&4&1&4&4&4&4\\ 5&0&5&5&5&5&5\end{tabular}\text{\quad}\diamond\text{\quad}\begin{tabular}[]{c|cccccc}$\odot$&0&1&2&3&4&5\\ \hline\cr 0&0&0&0&0&0&0\\ 1&1&1&1&1&1&1\\ 2&2&2&2&2&2&2\\ 3&3&3&3&3&3&3\\ 4&4&4&4&4&4&4\\ 5&5&5&5&5&5&5\end{tabular}\text{\quad}\vskip 6.0pt plus 2.0pt minus 2.0pt
\circ 0 1 2 3 4 5
0 0 1 0 0 4 5
1 0 1 2 3 4 5
2 2 1 2 2 4 2
3 3 1 3 3 3 3
4 0 1 2 4 4 4
5 0 1 5 5 5 5
=\displaystyle=  
0 1 2 3 4 5
0 0 0 0 0 0 5
1 1 1 1 1 4 1
2 2 2 2 3 2 2
3 3 3 2 3 3 3
4 4 1 4 4 4 4
5 0 5 5 5 5 5
 
 
0 1 2 3 4 5
0 0 1 0 0 4 0
1 0 1 2 3 1 5
2 2 1 2 3 4 2
3 3 1 2 3 3 3
4 0 4 2 4 4 4
5 5 1 5 5 5 5
\displaystyle\text{\quad}\begin{tabular}[]{c|cccccc}$\ast$&0&1&2&3&4&5\\ \hline\cr 0&0&0&0&0&0&5\\ 1&1&1&1&1&4&1\\ 2&2&2&2&3&2&2\\ 3&3&3&2&3&3&3\\ 4&4&1&4&4&4&4\\ 5&0&5&5&5&5&5\end{tabular}\text{\quad}\diamond\text{\quad}\begin{tabular}[]{c|cccccc}$\bullet$&0&1&2&3&4&5\\ \hline\cr 0&0&1&0&0&4&0\\ 1&0&1&2&3&1&5\\ 2&2&1&2&3&4&2\\ 3&3&1&2&3&3&3\\ 4&0&4&2&4&4&4\\ 5&5&1&5&5&5&5\end{tabular}\text{\quad}

Indeed, (X,)=O(X,)J(X,)=(X,)idBin(X)\left(X,\ast\right)=O\left(X,\ast\right)\diamond J\left(X,\ast\right)=\left(X,\ast\right)\diamond id_{Bin\left(X\right)} and (X,)=O(X,)J(X,)=(X,)(X,)\left(X,\circ\right)=O\left(X,\circ\right)\diamond J\left(X,\circ\right)=\left(X,\ast\right)\diamond\left(X,\bullet\right). This clearly shows the results of Theorem 4.3.1.

Theorem 4.3.3 The right-zero-semigroup on X is jj-composite.

Proof. Let (X,)\left(X,\bullet\right) be the right-zero-semigroup on XX. Suppose that (X,)=O(X,)\left(X,\ast\right)=O\left(X,\bullet\right) and (X,)=J(X,)\left(X,\circ\right)=J\left(X,\bullet\right). By applying Proposition 4.2.5, (X,)\left(X,\bullet\right) is jj-normal. Thus, (X,)=(X,)(X,)=(X,)(X,)\left(X,\bullet\right)=\left(X,\ast\right)\diamond\left(X,\circ\right)=\left(X,\circ\right)\diamond\left(X,\ast\right). Consider (X,)\left(X,\ast\right): (i) d¯=D~\overline{\text{ }d^{\ast}}=\widetilde{D^{\diamond}}, (ii) xy=xx\ast y=x, otherwise; and for (X,)\left(X,\circ\right): (i) d¯=d~\overline{d^{\circ}}=\widetilde{d^{\bullet}}, (ii) xy=xy=yx\circ y=x\bullet y=y, otherwise. Since neither one of the factors is the left-zero-semigroup for Bin(X)Bin\left(X\right), (X,)\left(X,\bullet\right) is jj-composite.

\blacksquare

Example 4.3.4 Let (X,)\left(X,\bullet\right) be the right-zero-semigroup as in Example 3.2.9 where X={a,b,c}X=\{a,b,c\}. Let (X,)=O(X,)\left(X,\ast\right)=O\left(X,\bullet\right) and (X,)=J(X,)\left(X,\circ\right)=J\left(X,\bullet\right), we can check that (X,)\left(X,\bullet\right) is in fact OJOJ- and JOJO-composite. Hence, (X,)\left(X,\bullet\right) is jj-composite:

 
a b c
a a a c
b b b b
c a c c
 
 
a b c
a a b a
b a b c
c c b c
 
= 
a b c
a a b c
b a b c
c a b c
 
\text{\quad}\begin{tabular}[]{l|lll}$\ast$&$a$&$b$&$c$\\ \hline\cr$a$&$a$&$a$&$c$\\ $b$&$b$&$b$&$b$\\ $c$&$a$&$c$&$c$\end{tabular}\text{\quad}\diamond\text{\quad}\begin{tabular}[]{l|lll}$\circ$&$a$&$b$&$c$\\ \hline\cr$a$&$a$&$b$&$a$\\ $b$&$a$&$b$&$c$\\ $c$&$c$&$b$&$c$\end{tabular}\text{\quad}=\text{\quad}\begin{tabular}[]{l|lll}$\bullet$&$a$&$b$&$c$\\ \hline\cr$a$&$a$&$b$&$c$\\ $b$&$a$&$b$&$c$\\ $c$&$a$&$b$&$c$\end{tabular}\text{\quad}

Moreover, its orient-factor (X,)\left(X,\ast\right) has the following subtables:

\ast aa bb aa aa aa bb bb bb \ast aa cc aa aa cc cc aa cc \ast bb cc bb bb bb cc cc cc

which implies that (X,)\left(X,\ast\right) is locally-zero.

Given two distinct groupoids (X,)\left(X,\triangleright\right) and (X,)\left(X,\triangleleft\right) in Bin(X)Bin\left(X\right). Suppose that (X,)idBin(X)\left(X,\triangleright\right)\neq id_{Bin\left(X\right)} and (X,)\left(X,\triangleleft\right)\neq idBin(X)id_{Bin\left(X\right)}. Let (X,)\left(X,\bullet\right) be a groupoid such that (X,)(X,)(X,)\left(X,\triangleright\right)\neq\left(X,\bullet\right)\neq\left(X,\triangleleft\right). Then (X,)\left(X,\bullet\right) is said to be:

(i) partially-right-prime, r\partial_{r}-prime, if (X,)=(X,)(X,)\left(X,\bullet\right)=\left(X,\bullet\right)\diamond\left(X,\triangleright\right);

(ii) partially-left-prime, l\partial_{l}-prime, if (X,)=(X,)(X,)\left(X,\bullet\right)=\left(X,\triangleleft\right)\diamond\left(X,\bullet\right).

Whence (X,)\left(X,\triangleright\right) and (X,)\left(X,\triangleleft\right) behave like right- and left-identities respectively. Here, (X,)\left(X,\triangleright\right) and (X,)\left(X,\triangleleft\right) could be either O(X,)O\left(X,\bullet\right), J(X,)J\left(X,\bullet\right), U(X,)U\left(X,\bullet\right), A(X,)A\left(X,\bullet\right) or any other factor of (X,)\left(X,\bullet\right). The next proposition demonstrates one such case.

Proposition 4.3.5 A bi-diagonal groupoid is partially-left-prime.

Proof. Given a bi-diagonal groupoid (X,)\left(X,\bullet\right), then its skew-factor J(X,)=(X,)J(X,\bullet)=\left(X,\bullet\right) since d¯=d~=d¯\overline{d^{\circ}}=\widetilde{d^{\bullet}}=\overline{d^{\bullet}} and xy=xyx\circ y=x\bullet y otherwise. Meanwhile, its orient-factor O(X,)O(X,\bullet) is not affected by the bi-diagonal property. By Theorem 4.1.2, (X,)(X,\bullet) has an OJOJ-factorization,

(X,)\displaystyle(X,\bullet) =\displaystyle= O(X,)J(X,)\displaystyle O(X,\bullet)\diamond J(X,\bullet)
=\displaystyle= O(X,)(X,).\displaystyle O(X,\bullet)\diamond(X,\bullet)\text{.}

Therefore, O(X,)O(X,\bullet) is a left-identity in (Bin(X),)(Bin\left(X\right),\diamond) and the result follows.

\blacksquare

Example 4.3.6 Consider the group (X,,e)\left(X,\bullet,e\right) as defined in Example 4.5. Then clearly (X,,e)\left(X,\bullet,e\right) is bi-diagonal. Recall its orient-factor (X,,e)=O(X,,e)\left(X,\ast,e\right)=O(X,\bullet,e) and derive its skew-factor (X,,e)=J(X,,e)\left(X,\circ,e\right)=J(X,\bullet,e) to obtain:

   
\ast ee aa bb cc
ee ee ee ee cc
aa aa aa bb aa
bb bb aa bb bb
cc ee cc cc cc
   and   
\circ ee aa bb cc
ee ee aa bb cc
aa aa ee cc bb
bb bb cc aa ee
cc cc bb ee aa
   

Then (X,,e)=O(X,,e)(X,,e)(X,\bullet,e)=O(X,\bullet,e)\diamond(X,\bullet,e) and therefore the group (X,,e)(X,\bullet,e) is l\partial_{l}-prime.

5.
Application

Recall some of the algebras described in “Figure 1” of Section 2.

We shall say an algebra (X,,0)(X,\bullet,0) of type (2,0)\left(2,0\right) is a strong B1B1-algebra if it satisfies (B1) and equation 2.1. Meaning, if for all x,yXx,y\in X,

(i) xx=0x\bullet x=0,

(ii) xy=yxx\bullet y=y\bullet x implies x=yx=y.

A groupoid (X,,0)\left(X,\bullet,0\right) is semi-neutral if for all x,yXx,y\in X,

(i) xx=0x\bullet x=0,

(ii) xy=xx\bullet y=x.

A B1B1-algebra (X,,0)\left(X,\bullet,0\right) is semi-neutral if for xyx\neq y, xy=xx\bullet y=x for all x,yX.x,y\in X.

A normal/composite groupoid is semi-normal (resp., semi-composite) if only one of its factors is semi-neutral.

Proposition 5.1 A semi-neutral groupoid is signature-prime and OJOJ-composite.

Proof. Let (X,,0)\left(X,\bullet,0\right) be the semi-neutral groupoid on XX. Then xy=xx\bullet y=x for all x,yXx,y\in X and xx=0x\bullet x=0. Let (X,,0)=U(X,,0)\left(X,\ast,0\right)=U\left(X,\bullet,0\right) and (X,,0)=A(X,,0)\left(X,\circ,0\right)=A\left(X,\bullet,0\right), its signature- and similar-factors, respectively. Deriving them according to 3.1 gives:

xy={x if x=y,xy=xotherwise.andxy={xx=0 if x=y,xotherwise.x\ast y=\begin{cases}x&\text{ if }x=y,\\ x\bullet y=x&\text{otherwise.}\end{cases}\quad\text{and}\quad x\circ y=\begin{cases}x\bullet x=0&\text{ if }x=y,\\ x&\text{otherwise.}\end{cases}

Hence for all x,yx,y X\in X, (X,,0)=idBin(X)(X,,0)\left(X,\bullet,0\right)=id_{Bin\left(X\right)}\diamond\left(X,\bullet,0\right).

By Theorem 4.1.2, (X,,0)\left(X,\bullet,0\right) has an OJOJ-factorization. Let (X,,0)=O(X,,0)\left(X,\circledast,0\right)=O\left(X,\bullet,0\right) and (X,,0)=J(X,,0)\left(X,\odot,0\right)=J\left(X,\bullet,0\right), its orient- and skew-factors, respectively. Deriving them according to 4.1 gives: for \circledast: (i) d¯=D~\overline{\text{ }d^{\circledast}}=\widetilde{D^{\diamond}}, (ii) xy=xx\circledast y=x, otherwise; and for \odot: (i) d¯=d~D\overline{d^{\odot}}=\widetilde{d^{\bullet}}\neq D^{\diamond}, (ii) xy=xyx\odot y=x\bullet y, otherwise. Thus, (X,,0)idBin(X)(X,,0)\left(X,\ast,0\right)\neq id_{Bin\left(X\right)}\neq\left(X,\circ,0\right) and (X,,0)(X,,0)(X,,0)\left(X,\ast,0\right)\neq\left(X,\bullet,0\right)\neq\left(X,\circ,0\right).

\blacksquare

Corollary 5.2 A semi-neutral groupoid is semi-normal.

Proof. This is a direct result of Proposition 5.1 and the definition of a semi-normal groupoid.

\blacksquare

Proposition 5.3 The product of semi-neutral groupoids is semi-neutral.

Proof. Consider semi-netural groupoids (X,,0)\left(X,\ast,0\right) and (X,,0)\left(X,\circ,0\right). Let (X,,0)(X,,0)=\left(X,\ast,0\right)\diamond\left(X,\circ,0\right)= (X,,0)\left(X,\bullet,0\right) such that xy=(xy)(yx)x\bullet y=\left(x\ast y\right)\circ\left(y\ast x\right). Then, xx=(xx)(xx)=0x\bullet x=\left(x\ast x\right)\circ\left(x\ast x\right)=0. If xy,x\neq y,.xy=xyx\bullet y=x\circ y. It follows that (X,,0)=(X,,0)\left(X,\bullet,0\right)=\left(X,\circ,0\right) and therefore is semi-neutral.

\blacksquare

Proposition 5.4 The similar-factor of a B1B1-algebra is semi-neutral.

Proof. Let (X,,0)\left(X,\bullet,0\right) be a B1B1-algebra. Consider the AUAU-factorization (X,,0)=A(X,,0)U(X,,0)\left(X,\bullet,0\right)=A\left(X,\bullet,0\right)\diamond U\left(X,\bullet,0\right). Let (X,,0):=U(X,,0)\left(X,\ast,0\right):=U\left(X,\bullet,0\right) and (X,,0):=A(X,,0)\left(X,\circ,0\right):=A\left(X,\bullet,0\right), its signature- and similar-factors, respectively. Deriving them according to 3.1 gives:

xy={x if x=y,xyotherwise.andxy={xx=0 if x=y,xotherwise.x\ast y=\begin{cases}x&\text{ if }x=y,\\ x\bullet y&\text{otherwise.}\end{cases}\quad\text{and}\quad x\circ y=\begin{cases}x\bullet x=0&\text{ if }x=y,\\ x&\text{otherwise.}\end{cases}

Clearly, (X,,0)\left(X,\circ,0\right) is semi-neutral.

\blacksquare

Corollary 5.5 A strong B1B1-algebra is semi-normal.

Proof. This is a direct result of Corollary 3.2.5, Proposition 5.4 and the definition of a semi-normal algebra.

\blacksquare

Corollary 5.6 A strong B1B1-algebra (X,,0)\left(X,\bullet,0\right) is semi-composite if it is not semi-neutral, i.e., if xyxx\bullet y\neq x for all x,x, yXy\in X.

Proof. Let (X,,0)\left(X,\bullet,0\right) be a strong B1B1-algebra. Let (X,,0):=U(X,,0)\left(X,\ast,0\right):=U\left(X,\bullet,0\right) and (X,,0):=A(X,,0)\left(X,\circ,0\right):=A\left(X,\bullet,0\right), its signature- and similar-factors respectively. Deriving them according to 3.1. Assume that xy=xx\bullet y=x. Then xy=xx\ast y=x for all x,yXx,y\in X. Thus, (X,,0)=idBin(X)(X,,0)\left(X,\bullet,0\right)=id_{Bin\left(X\right)}\diamond(X,\bullet,0) which makes it signature-prime and not uu-composite.

\blacksquare

Example 5.7 Let (X,,0)=({0,1,2},)\left(X,\bullet,0\right)=\left(\left\{0,1,2\right\},\bullet\right) be a strong BCKBCK-algebra of order 3 where “\bullet” is defined by the following Cayley table:

\bullet 0 1 2 0 0 0 0 1 1 0 1 2 2 2 0   

Let ({0,1,2},)=U({0,1,2},)\left(\left\{0,1,2\right\},\ast\right)=U\left(\left\{0,1,2\right\},\bullet\right) and ({0,1,2},)=A({0,1,2},)\left(\left\{0,1,2\right\},\circ\right)=A\left(\left\{0,1,2\right\},\bullet\right). Its UAUA.-factorization is:

000011112222 000011012220= 000011012220\quad\begin{tabular}[]{l|lll}$\ast$&0&1&2\\ \hline\cr 0&0&0&0\\ 1&1&1&1\\ 2&2&2&2\end{tabular}\quad\diamond\quad\begin{tabular}[]{l|lll}$\circ$&0&1&2\\ \hline\cr 0&0&0&0\\ 1&1&0&1\\ 2&2&2&0\end{tabular}\quad=\quad\begin{tabular}[]{l|lll}$\bullet$&0&1&2\\ \hline\cr 0&0&0&0\\ 1&1&0&1\\ 2&2&2&0\end{tabular}\quad
012012012

Therefore, ({0,1,2},)\left(\left\{0,1,2\right\},\bullet\right) is signature-prime and uu-normal. Moreover, ({0,1,2},)\left(\left\{0,1,2\right\},\bullet\right) as defined is semi-neutral. Next, derive its orient- and skew-factors O(X,,0)O\left(X,\bullet,0\right) and J(X,,o)J\left(X,\bullet,o\right), respectively. Let (X,,0)=O(X,,0)\left(X,\circledast,0\right)=O\left(X,\bullet,0\right) and (X,,0)=J(X,,0)\left(X,\odot,0\right)=J\left(X,\bullet,0\right). We have the following product:

 
0 1 2
0 0 0 2
1 1 1 1
2 0 2 2
 
 
0 1 2
0 0 0 2
1 1 0 1
2 0 2 0
 
= 
0 1 2
0 0 0 0
1 1 0 1
2 2 2 0
\text{\quad}\begin{tabular}[]{l|lll}$\ast$&0&1&2\\ \hline\cr 0&0&0&2\\ 1&1&1&1\\ 2&0&2&2\end{tabular}\text{\quad}\diamond\text{\quad}\begin{tabular}[]{l|lll}$\circ$&0&1&2\\ \hline\cr 0&0&0&2\\ 1&1&0&1\\ 2&0&2&0\end{tabular}\text{\quad}=\text{\quad}\begin{tabular}[]{l|lll}$\bullet$&0&1&2\\ \hline\cr 0&0&0&0\\ 1&1&0&1\\ 2&2&2&0\end{tabular}

Hence, O(X,,0)idBin(X)J(X,,0)O\left(X,\bullet,0\right)\neq id_{Bin\left(X\right)}\neq J\left(X,\bullet,0\right) implies that (X,,0)\left(X,\bullet,0\right) is OJOJ-composite.

Example 5.8 Let (X,,0)={(0,1,2),}\left(X,\bullet,0\right)=\left\{(0,1,2),\bullet\right\} be a strong QQ-algebra of order 3 where “\bullet” is given by the following Cayley table:

\bullet 0 1 2 0 0 2 1 1 1 0 2 2 2 1 0

Let ({0,1,2},)=U({0,1,2},)\left(\left\{0,1,2\right\},\ast\right)=U\left(\left\{0,1,2\right\},\bullet\right) and ({0,1,2},)=A({0,1,2},)\left(\left\{0,1,2\right\},\circ\right)=A\left(\left\{0,1,2\right\},\bullet\right). Its UAUA.-factorization is:

002111122212 000011012220= 002111022210\quad\begin{tabular}[]{l|lll}$\ast$&0&1&2\\ \hline\cr 0&0&2&1\\ 1&1&1&2\\ 2&2&1&2\end{tabular}\quad\diamond\quad\begin{tabular}[]{l|lll}$\circ$&0&1&2\\ \hline\cr 0&0&0&0\\ 1&1&0&1\\ 2&2&2&0\end{tabular}\quad=\quad\begin{tabular}[]{l|lll}$\bullet$&0&1&2\\ \hline\cr 0&0&2&1\\ 1&1&0&2\\ 2&2&1&0\end{tabular}\quad
012012012

Since ({0,1,2},,0)\left(\left\{0,1,2\right\},\ast,0\right) IdBin(X)\neq Id_{Bin\left(X\right)} and ({0,1,2},,0)\left(\left\{0,1,2\right\},\circ,0\right) is semi-neutral, we can conclude that ({0,1,2},,0)\left(\left\{0,1,2\right\},\bullet,0\right) is semi-composite.

P.J. Allen, H.S. Kim and Neggers in [4] introduced the notion of Smarandache disjointness in algebras. Two groupoids (algebras) (X,)(X,\bullet) and (X,)(X,\ast) are said to be Smarandache disjoint if we add some axioms of an algebra (X,)(X,\bullet) to an algebra (X,)\left(X,\ast\right), then the algebra (X,)\left(X,\ast\right) becomes a trivial algebra, i.e., |X|=1\left|X\right|=1.

Proposition 5.9 The class of abelian groupoids and the class of uu-normal groupoids are Smarandache disjoint.

Proof. Let (X,)\left(X,\bullet\right) Ab(X)\in Ab(X), the collection of all abelian groupoids defined on XX. Suppose that (X,)=A(X,)(X,\circ)=A(X,\bullet) and (X,)=U(X,\ast)=U (X,)\left(X,\bullet\right). By Theorem 3.2.3, (X)\left(X\bullet\right) admits an AUAU-factorization. Consider (X,)(X,)(X,\ast)\diamond(X,\circ), then for x=yx=y,

xx\displaystyle x\diamond x =\displaystyle= (xx)(xx)\displaystyle\left(x\ast x\right)\circ\left(x\ast x\right)
=\displaystyle= xx\displaystyle x\circ x
=\displaystyle= xx.\displaystyle x\bullet x.

If xyx\neq y,

xy\displaystyle x\diamond y =\displaystyle= (xy)(yx)\displaystyle\left(x\ast y\right)\circ\left(y\ast x\right)
=\displaystyle= (xy)(yx)\displaystyle\left(x\bullet y\right)\circ\left(y\bullet x\right)
=\displaystyle= (xy)(xy).\displaystyle\left(x\bullet y\right)\bullet\left(x\bullet y\right).

Hence, (X)\left(X\bullet\right) admits a UAUA-factorization only if (xy)(xy)=xy.\left(x\bullet y\right)\bullet\left(x\bullet y\right)=x\bullet y. This means that (X,)\left(X,\bullet\right) is uu-normal if it is either the left- or right-zero-semigroup. Since both such groupoids are not abelian, then XX must only have one element and the conclusion follows.

\blacksquare

Suppose that in Bin(X)Bin(X) we consider all those groupoids (X,)(X,\ast) with the orientation property. Thus, xx=xx\ast x=x as a consequence. If (X,)(X,\ast) and (X,)(X,\circ) both have the orientation property, then for xy=(xy)(yx)x\diamond\,\,y=(x\ast y)\circ(y\ast x) we have the possibilities: xx=x,yy=y,xy{x,y}x\ast x=x,\,y\ast y=y,\,x\ast y\in\{x,y\} and yx{x,y}y\ast x\in\{x,y\}, so that xy{x,y}x\,\diamond y\in\{x,y\}. It follows that if OP(X)OP(X) denotes this collection of groupoids, then (OP(X),)(OP(X),\diamond) is a subsemigroup [33] of (Bin(X),(Bin(X), )\diamond).

In a sequence of papers Nebeský ([27], [28], [29]) associated with graphs (V,E)(V,E) groupoids (V,)(V,\ast) with various properties and conversely. He defined a travel groupoid (X,)(X,\ast) as a groupoid satisfying the axioms: (uv)u=u(u\ast v)\ast u=u and (uv)v=u(u\ast v)\ast v=u implies u=vu=v. If one adds these two laws to the orientation property, then (X,)(X,\ast) is an OP-travel-groupoid. In this case uv=vu\ast v=v implies vu=uv\ast u=u, i.e., uvEuv\in E implies vuEvu\in E, i.e., the digraph (X,E)(X,E) is a (simple) graph if uuEuu\not\in E, with uu=uu\ast u=u. Also, if uvu\not=v, then uv=uu\ast v=u implies (uv)v=uv=u(u\ast v)\ast v=u\ast v=u is impossible, whence uv=vu\ast v=v and uvEuv\in E, so that (X,E)(X,E) is a complete (simple) graph.

In a recent paper, Ahn, Kim and Neggers [1] related graphs with binary systems in the center of Bin(X)Bin\left(X\right). Given an element of ZBin(X)ZBin(X), say (X,)(X,\bullet) , they constructed a graph, ΓX\Gamma_{X} by letting V(ΓX)=XV(\Gamma_{X})=X and (x,y)E(ΓX)(x,y)\in E(\Gamma_{X}), the edge set of ΓX\Gamma_{X}, such that xyx\neq y, yx=yy\bullet x=y and xy=xx\bullet y=x. Thus, if (x,y)E(ΓX)(x,y)\in E(\Gamma_{X}), then (y,x)E(ΓX)(y,x)\in E(\Gamma_{X}) as well and they identify (x,y)=(y,x)(x,y)=(y,x) as an undirected edge of ΓX\Gamma_{X}. Then they concluded that if (X,)\left(X,\bullet\right) is the left-zero-semigroup, then ΓX\Gamma_{X} is the complete graph on XX. Also, if (X,)\left(X,\bullet\right) is the right-zero-semigroup, then ΓX\Gamma_{X} is the null graph on XX, since E(ΓX)=E(\Gamma_{X})=\varnothing.

Example 5.10 Let X={a,b,c,d}X=\left\{a,b,c,d\right\} and consider the simple graph on XX:

aabbccdd

Then the associated groupoid table with binary operation “\bullet” is:

\bullet a b c d
a a a c d
b b b b b
c a c c d
d a d c d

By applying Proposition 4.2.5 to (X,)\left(X,\bullet\right), we have the product of O(X,)O\left(X,\bullet\right) and J(X,)J\left(X,\bullet\right) given by their respective tables:

 
a b c d
a a a a d
b b b c b
c c b c c
d a d d d
 
 
a b c d
a a a c a
b b b c b
c a b c d
d d d c d
 
= 
a b c d
a a a c d
b b b b b
c a c c d
d a d c d
 
\text{\quad}\begin{tabular}[]{c|cccc}$\ast$&a&b&c&d\\ \hline\cr a&a&a&a&d\\ b&b&b&c&b\\ c&c&b&c&c\\ d&a&d&d&d\end{tabular}\text{\quad}\diamond\text{\quad}\begin{tabular}[]{c|cccc}$\circ$&a&b&c&d\\ \hline\cr a&a&a&c&a\\ b&b&b&c&b\\ c&a&b&c&d\\ d&d&d&c&d\end{tabular}\text{\quad}=\text{\quad}\begin{tabular}[]{c|cccc}$\bullet$&a&b&c&d\\ \hline\cr a&a&a&c&d\\ b&b&b&b&b\\ c&a&c&c&d\\ d&a&d&c&d\end{tabular}\text{\quad}

We can visualize this product with the associated graphs of groupoids (X,)\left(X,\ast\right) and (X,)\left(X,\circ\right):

 
abcd
 
abcd
 
= 
abcd
 
\text{\quad}\begin{tabular}[]{cc}\text{ \leavevmode\hbox to67.88pt{\vbox to88.29pt{\pgfpicture\makeatletter\hbox{\hskip 5.47884pt\lower-17.01044pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{31.45276pt}{56.90552pt}\pgfsys@curveto{31.45276pt}{58.5624pt}{30.10963pt}{59.90552pt}{28.45276pt}{59.90552pt}\pgfsys@curveto{26.79588pt}{59.90552pt}{25.45276pt}{58.5624pt}{25.45276pt}{56.90552pt}\pgfsys@curveto{25.45276pt}{55.24864pt}{26.79588pt}{53.90552pt}{28.45276pt}{53.90552pt}\pgfsys@curveto{30.10963pt}{53.90552pt}{31.45276pt}{55.24864pt}{31.45276pt}{56.90552pt}\pgfsys@closepath\pgfsys@moveto{28.45276pt}{56.90552pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{56.90552pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.80981pt}{63.63852pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$a$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{3.0pt}{28.45276pt}\pgfsys@curveto{3.0pt}{30.10963pt}{1.65688pt}{31.45276pt}{0.0pt}{31.45276pt}\pgfsys@curveto{-1.65688pt}{31.45276pt}{-3.0pt}{30.10963pt}{-3.0pt}{28.45276pt}\pgfsys@curveto{-3.0pt}{26.79588pt}{-1.65688pt}{25.45276pt}{0.0pt}{25.45276pt}\pgfsys@curveto{1.65688pt}{25.45276pt}{3.0pt}{26.79588pt}{3.0pt}{28.45276pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{28.45276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.14583pt}{35.18576pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$b$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{59.90552pt}{28.45276pt}\pgfsys@curveto{59.90552pt}{30.10963pt}{58.5624pt}{31.45276pt}{56.90552pt}{31.45276pt}\pgfsys@curveto{55.24864pt}{31.45276pt}{53.90552pt}{30.10963pt}{53.90552pt}{28.45276pt}\pgfsys@curveto{53.90552pt}{26.79588pt}{55.24864pt}{25.45276pt}{56.90552pt}{25.45276pt}\pgfsys@curveto{58.5624pt}{25.45276pt}{59.90552pt}{26.79588pt}{59.90552pt}{28.45276pt}\pgfsys@closepath\pgfsys@moveto{56.90552pt}{28.45276pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.90552pt}{28.45276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.74174pt}{35.18576pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$c$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{31.45276pt}{0.0pt}\pgfsys@curveto{31.45276pt}{1.65688pt}{30.10963pt}{3.0pt}{28.45276pt}{3.0pt}\pgfsys@curveto{26.79588pt}{3.0pt}{25.45276pt}{1.65688pt}{25.45276pt}{0.0pt}\pgfsys@curveto{25.45276pt}{-1.65688pt}{26.79588pt}{-3.0pt}{28.45276pt}{-3.0pt}\pgfsys@curveto{30.10963pt}{-3.0pt}{31.45276pt}{-1.65688pt}{31.45276pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.85033pt}{-13.67743pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$d$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}}{}{{}}{}\hbox{\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{26.19002pt}{54.64278pt}\pgfsys@lineto{2.26274pt}{30.7155pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{30.7155pt}{54.64278pt}\pgfsys@lineto{54.64278pt}{30.7155pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{2.26274pt}{26.19002pt}\pgfsys@lineto{26.19002pt}{2.26274pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{54.64278pt}{26.19002pt}\pgfsys@lineto{30.7155pt}{2.26274pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}&\end{tabular}\diamond\text{\quad}\begin{tabular}[]{cc}\text{ \leavevmode\hbox to67.88pt{\vbox to88.29pt{\pgfpicture\makeatletter\hbox{\hskip 5.47884pt\lower-17.01044pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{31.45276pt}{56.90552pt}\pgfsys@curveto{31.45276pt}{58.5624pt}{30.10963pt}{59.90552pt}{28.45276pt}{59.90552pt}\pgfsys@curveto{26.79588pt}{59.90552pt}{25.45276pt}{58.5624pt}{25.45276pt}{56.90552pt}\pgfsys@curveto{25.45276pt}{55.24864pt}{26.79588pt}{53.90552pt}{28.45276pt}{53.90552pt}\pgfsys@curveto{30.10963pt}{53.90552pt}{31.45276pt}{55.24864pt}{31.45276pt}{56.90552pt}\pgfsys@closepath\pgfsys@moveto{28.45276pt}{56.90552pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{56.90552pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.80981pt}{63.63852pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$a$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{3.0pt}{28.45276pt}\pgfsys@curveto{3.0pt}{30.10963pt}{1.65688pt}{31.45276pt}{0.0pt}{31.45276pt}\pgfsys@curveto{-1.65688pt}{31.45276pt}{-3.0pt}{30.10963pt}{-3.0pt}{28.45276pt}\pgfsys@curveto{-3.0pt}{26.79588pt}{-1.65688pt}{25.45276pt}{0.0pt}{25.45276pt}\pgfsys@curveto{1.65688pt}{25.45276pt}{3.0pt}{26.79588pt}{3.0pt}{28.45276pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{28.45276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.14583pt}{35.18576pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$b$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{59.90552pt}{28.45276pt}\pgfsys@curveto{59.90552pt}{30.10963pt}{58.5624pt}{31.45276pt}{56.90552pt}{31.45276pt}\pgfsys@curveto{55.24864pt}{31.45276pt}{53.90552pt}{30.10963pt}{53.90552pt}{28.45276pt}\pgfsys@curveto{53.90552pt}{26.79588pt}{55.24864pt}{25.45276pt}{56.90552pt}{25.45276pt}\pgfsys@curveto{58.5624pt}{25.45276pt}{59.90552pt}{26.79588pt}{59.90552pt}{28.45276pt}\pgfsys@closepath\pgfsys@moveto{56.90552pt}{28.45276pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.90552pt}{28.45276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.74174pt}{35.18576pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$c$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{31.45276pt}{0.0pt}\pgfsys@curveto{31.45276pt}{1.65688pt}{30.10963pt}{3.0pt}{28.45276pt}{3.0pt}\pgfsys@curveto{26.79588pt}{3.0pt}{25.45276pt}{1.65688pt}{25.45276pt}{0.0pt}\pgfsys@curveto{25.45276pt}{-1.65688pt}{26.79588pt}{-3.0pt}{28.45276pt}{-3.0pt}\pgfsys@curveto{30.10963pt}{-3.0pt}{31.45276pt}{-1.65688pt}{31.45276pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.85033pt}{-13.67743pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$d$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}}{}\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{26.19002pt}{54.64278pt}\pgfsys@lineto{2.26274pt}{30.7155pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{28.45276pt}{53.70552pt}\pgfsys@lineto{28.45276pt}{3.2pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{2.26274pt}{26.19002pt}\pgfsys@lineto{26.19002pt}{2.26274pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}&\end{tabular}\text{\quad}=\text{\quad}\begin{tabular}[]{cc}\text{ \leavevmode\hbox to67.88pt{\vbox to88.29pt{\pgfpicture\makeatletter\hbox{\hskip 5.47884pt\lower-17.01044pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{31.45276pt}{56.90552pt}\pgfsys@curveto{31.45276pt}{58.5624pt}{30.10963pt}{59.90552pt}{28.45276pt}{59.90552pt}\pgfsys@curveto{26.79588pt}{59.90552pt}{25.45276pt}{58.5624pt}{25.45276pt}{56.90552pt}\pgfsys@curveto{25.45276pt}{55.24864pt}{26.79588pt}{53.90552pt}{28.45276pt}{53.90552pt}\pgfsys@curveto{30.10963pt}{53.90552pt}{31.45276pt}{55.24864pt}{31.45276pt}{56.90552pt}\pgfsys@closepath\pgfsys@moveto{28.45276pt}{56.90552pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{56.90552pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.80981pt}{63.63852pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$a$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{3.0pt}{28.45276pt}\pgfsys@curveto{3.0pt}{30.10963pt}{1.65688pt}{31.45276pt}{0.0pt}{31.45276pt}\pgfsys@curveto{-1.65688pt}{31.45276pt}{-3.0pt}{30.10963pt}{-3.0pt}{28.45276pt}\pgfsys@curveto{-3.0pt}{26.79588pt}{-1.65688pt}{25.45276pt}{0.0pt}{25.45276pt}\pgfsys@curveto{1.65688pt}{25.45276pt}{3.0pt}{26.79588pt}{3.0pt}{28.45276pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{28.45276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.14583pt}{35.18576pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$b$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{59.90552pt}{28.45276pt}\pgfsys@curveto{59.90552pt}{30.10963pt}{58.5624pt}{31.45276pt}{56.90552pt}{31.45276pt}\pgfsys@curveto{55.24864pt}{31.45276pt}{53.90552pt}{30.10963pt}{53.90552pt}{28.45276pt}\pgfsys@curveto{53.90552pt}{26.79588pt}{55.24864pt}{25.45276pt}{56.90552pt}{25.45276pt}\pgfsys@curveto{58.5624pt}{25.45276pt}{59.90552pt}{26.79588pt}{59.90552pt}{28.45276pt}\pgfsys@closepath\pgfsys@moveto{56.90552pt}{28.45276pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.90552pt}{28.45276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.74174pt}{35.18576pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$c$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{31.45276pt}{0.0pt}\pgfsys@curveto{31.45276pt}{1.65688pt}{30.10963pt}{3.0pt}{28.45276pt}{3.0pt}\pgfsys@curveto{26.79588pt}{3.0pt}{25.45276pt}{1.65688pt}{25.45276pt}{0.0pt}\pgfsys@curveto{25.45276pt}{-1.65688pt}{26.79588pt}{-3.0pt}{28.45276pt}{-3.0pt}\pgfsys@curveto{30.10963pt}{-3.0pt}{31.45276pt}{-1.65688pt}{31.45276pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.85033pt}{-13.67743pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$d$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}}{}\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{26.19002pt}{54.64278pt}\pgfsys@lineto{2.26274pt}{30.7155pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{26.19002pt}{2.26274pt}\pgfsys@lineto{2.26274pt}{26.19002pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{53.70552pt}{28.45276pt}\pgfsys@lineto{3.2pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}&\end{tabular}\text{\quad}

Thus, any simple graph constructed in this manner can be decomposed into two or more other factors with the binary product “\diamond”. This fact is further illustrated in the next example.

Example 5.11 Let (X,)=({0,1,2,3,4,5},)\left(X,\bullet\right)=\left(\left\{0,1,2,3,4,5\right\},\bullet\right) be the locally-zero groupoid defined as in Example 4.3.2. Then its associated graph decomposes into its factors (X,)\left(X,\ast\right) and (X,)\left(X,\circ\right):

 
012345
 
= 
012345
 
 
012345
 
\text{\quad}\begin{tabular}[]{cc}\text{ \leavevmode\hbox to97.02pt{\vbox to89.93pt{\pgfpicture\makeatletter\hbox{\hskip 5.83301pt\lower-16.51044pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{31.45276pt}{56.90552pt}\pgfsys@curveto{31.45276pt}{58.5624pt}{30.10963pt}{59.90552pt}{28.45276pt}{59.90552pt}\pgfsys@curveto{26.79588pt}{59.90552pt}{25.45276pt}{58.5624pt}{25.45276pt}{56.90552pt}\pgfsys@curveto{25.45276pt}{55.24864pt}{26.79588pt}{53.90552pt}{28.45276pt}{53.90552pt}\pgfsys@curveto{30.10963pt}{53.90552pt}{31.45276pt}{55.24864pt}{31.45276pt}{56.90552pt}\pgfsys@closepath\pgfsys@moveto{28.45276pt}{56.90552pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{56.90552pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.95276pt}{63.63852pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{3.0pt}{28.45276pt}\pgfsys@curveto{3.0pt}{30.10963pt}{1.65688pt}{31.45276pt}{0.0pt}{31.45276pt}\pgfsys@curveto{-1.65688pt}{31.45276pt}{-3.0pt}{30.10963pt}{-3.0pt}{28.45276pt}\pgfsys@curveto{-3.0pt}{26.79588pt}{-1.65688pt}{25.45276pt}{0.0pt}{25.45276pt}\pgfsys@curveto{1.65688pt}{25.45276pt}{3.0pt}{26.79588pt}{3.0pt}{28.45276pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{28.45276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{35.18576pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{31.45276pt}{0.0pt}\pgfsys@curveto{31.45276pt}{1.65688pt}{30.10963pt}{3.0pt}{28.45276pt}{3.0pt}\pgfsys@curveto{26.79588pt}{3.0pt}{25.45276pt}{1.65688pt}{25.45276pt}{0.0pt}\pgfsys@curveto{25.45276pt}{-1.65688pt}{26.79588pt}{-3.0pt}{28.45276pt}{-3.0pt}\pgfsys@curveto{30.10963pt}{-3.0pt}{31.45276pt}{-1.65688pt}{31.45276pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.95276pt}{-13.17743pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{59.90552pt}{0.0pt}\pgfsys@curveto{59.90552pt}{1.65688pt}{58.5624pt}{3.0pt}{56.90552pt}{3.0pt}\pgfsys@curveto{55.24864pt}{3.0pt}{53.90552pt}{1.65688pt}{53.90552pt}{0.0pt}\pgfsys@curveto{53.90552pt}{-1.65688pt}{55.24864pt}{-3.0pt}{56.90552pt}{-3.0pt}\pgfsys@curveto{58.5624pt}{-3.0pt}{59.90552pt}{-1.65688pt}{59.90552pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{56.90552pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.90552pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.40552pt}{-13.17743pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$3$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{88.35828pt}{28.45276pt}\pgfsys@curveto{88.35828pt}{30.10963pt}{87.01515pt}{31.45276pt}{85.35828pt}{31.45276pt}\pgfsys@curveto{83.7014pt}{31.45276pt}{82.35828pt}{30.10963pt}{82.35828pt}{28.45276pt}\pgfsys@curveto{82.35828pt}{26.79588pt}{83.7014pt}{25.45276pt}{85.35828pt}{25.45276pt}\pgfsys@curveto{87.01515pt}{25.45276pt}{88.35828pt}{26.79588pt}{88.35828pt}{28.45276pt}\pgfsys@closepath\pgfsys@moveto{85.35828pt}{28.45276pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{85.35828pt}{28.45276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{82.85828pt}{35.18576pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$4$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{59.90552pt}{56.90552pt}\pgfsys@curveto{59.90552pt}{58.5624pt}{58.5624pt}{59.90552pt}{56.90552pt}{59.90552pt}\pgfsys@curveto{55.24864pt}{59.90552pt}{53.90552pt}{58.5624pt}{53.90552pt}{56.90552pt}\pgfsys@curveto{53.90552pt}{55.24864pt}{55.24864pt}{53.90552pt}{56.90552pt}{53.90552pt}\pgfsys@curveto{58.5624pt}{53.90552pt}{59.90552pt}{55.24864pt}{59.90552pt}{56.90552pt}\pgfsys@closepath\pgfsys@moveto{56.90552pt}{56.90552pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.90552pt}{56.90552pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.40552pt}{63.63852pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$5$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{28.45276pt}{53.70552pt}\pgfsys@lineto{28.45276pt}{3.2pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{29.8838pt}{54.04337pt}\pgfsys@lineto{55.47447pt}{2.86215pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{31.65276pt}{56.90552pt}\pgfsys@lineto{53.70552pt}{56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{3.2pt}{28.45276pt}\pgfsys@lineto{82.15828pt}{28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{29.8838pt}{2.86215pt}\pgfsys@lineto{55.47447pt}{54.04337pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{59.16826pt}{2.26274pt}\pgfsys@lineto{83.09554pt}{26.19002pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{56.90552pt}{3.2pt}\pgfsys@lineto{56.90552pt}{53.70552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{83.09554pt}{30.7155pt}\pgfsys@lineto{59.16826pt}{54.64278pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}&\end{tabular}\text{\quad}=\text{\quad}\begin{tabular}[]{cc}\text{ \leavevmode\hbox to97.02pt{\vbox to89.93pt{\pgfpicture\makeatletter\hbox{\hskip 5.83301pt\lower-16.51044pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{31.45276pt}{56.90552pt}\pgfsys@curveto{31.45276pt}{58.5624pt}{30.10963pt}{59.90552pt}{28.45276pt}{59.90552pt}\pgfsys@curveto{26.79588pt}{59.90552pt}{25.45276pt}{58.5624pt}{25.45276pt}{56.90552pt}\pgfsys@curveto{25.45276pt}{55.24864pt}{26.79588pt}{53.90552pt}{28.45276pt}{53.90552pt}\pgfsys@curveto{30.10963pt}{53.90552pt}{31.45276pt}{55.24864pt}{31.45276pt}{56.90552pt}\pgfsys@closepath\pgfsys@moveto{28.45276pt}{56.90552pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{56.90552pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.95276pt}{63.63852pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{3.0pt}{28.45276pt}\pgfsys@curveto{3.0pt}{30.10963pt}{1.65688pt}{31.45276pt}{0.0pt}{31.45276pt}\pgfsys@curveto{-1.65688pt}{31.45276pt}{-3.0pt}{30.10963pt}{-3.0pt}{28.45276pt}\pgfsys@curveto{-3.0pt}{26.79588pt}{-1.65688pt}{25.45276pt}{0.0pt}{25.45276pt}\pgfsys@curveto{1.65688pt}{25.45276pt}{3.0pt}{26.79588pt}{3.0pt}{28.45276pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{28.45276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{35.18576pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{31.45276pt}{0.0pt}\pgfsys@curveto{31.45276pt}{1.65688pt}{30.10963pt}{3.0pt}{28.45276pt}{3.0pt}\pgfsys@curveto{26.79588pt}{3.0pt}{25.45276pt}{1.65688pt}{25.45276pt}{0.0pt}\pgfsys@curveto{25.45276pt}{-1.65688pt}{26.79588pt}{-3.0pt}{28.45276pt}{-3.0pt}\pgfsys@curveto{30.10963pt}{-3.0pt}{31.45276pt}{-1.65688pt}{31.45276pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.95276pt}{-13.17743pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{59.90552pt}{0.0pt}\pgfsys@curveto{59.90552pt}{1.65688pt}{58.5624pt}{3.0pt}{56.90552pt}{3.0pt}\pgfsys@curveto{55.24864pt}{3.0pt}{53.90552pt}{1.65688pt}{53.90552pt}{0.0pt}\pgfsys@curveto{53.90552pt}{-1.65688pt}{55.24864pt}{-3.0pt}{56.90552pt}{-3.0pt}\pgfsys@curveto{58.5624pt}{-3.0pt}{59.90552pt}{-1.65688pt}{59.90552pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{56.90552pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.90552pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.40552pt}{-13.17743pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$3$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{88.35828pt}{28.45276pt}\pgfsys@curveto{88.35828pt}{30.10963pt}{87.01515pt}{31.45276pt}{85.35828pt}{31.45276pt}\pgfsys@curveto{83.7014pt}{31.45276pt}{82.35828pt}{30.10963pt}{82.35828pt}{28.45276pt}\pgfsys@curveto{82.35828pt}{26.79588pt}{83.7014pt}{25.45276pt}{85.35828pt}{25.45276pt}\pgfsys@curveto{87.01515pt}{25.45276pt}{88.35828pt}{26.79588pt}{88.35828pt}{28.45276pt}\pgfsys@closepath\pgfsys@moveto{85.35828pt}{28.45276pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{85.35828pt}{28.45276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{82.85828pt}{35.18576pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$4$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{59.90552pt}{56.90552pt}\pgfsys@curveto{59.90552pt}{58.5624pt}{58.5624pt}{59.90552pt}{56.90552pt}{59.90552pt}\pgfsys@curveto{55.24864pt}{59.90552pt}{53.90552pt}{58.5624pt}{53.90552pt}{56.90552pt}\pgfsys@curveto{53.90552pt}{55.24864pt}{55.24864pt}{53.90552pt}{56.90552pt}{53.90552pt}\pgfsys@curveto{58.5624pt}{53.90552pt}{59.90552pt}{55.24864pt}{59.90552pt}{56.90552pt}\pgfsys@closepath\pgfsys@moveto{56.90552pt}{56.90552pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.90552pt}{56.90552pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.40552pt}{63.63852pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$5$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{28.45276pt}{53.70552pt}\pgfsys@lineto{28.45276pt}{3.2pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{26.19002pt}{54.64278pt}\pgfsys@lineto{2.26274pt}{30.7155pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{29.8838pt}{54.04337pt}\pgfsys@lineto{55.47447pt}{2.86215pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{31.31491pt}{55.47447pt}\pgfsys@lineto{82.49612pt}{29.8838pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{2.26274pt}{26.19002pt}\pgfsys@lineto{26.19002pt}{2.26274pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{2.86215pt}{27.02171pt}\pgfsys@lineto{54.04337pt}{1.43105pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{2.86215pt}{29.8838pt}\pgfsys@lineto{54.04337pt}{55.47447pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{31.31491pt}{1.43105pt}\pgfsys@lineto{82.49612pt}{27.02171pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{29.8838pt}{2.86215pt}\pgfsys@lineto{55.47447pt}{54.04337pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{59.16826pt}{2.26274pt}\pgfsys@lineto{83.09554pt}{26.19002pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{56.90552pt}{3.2pt}\pgfsys@lineto{56.90552pt}{53.70552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{83.09554pt}{30.7155pt}\pgfsys@lineto{59.16826pt}{54.64278pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}&\end{tabular}\text{\quad}\diamond\text{\quad}\begin{tabular}[]{cc}\text{ \leavevmode\hbox to97.02pt{\vbox to89.93pt{\pgfpicture\makeatletter\hbox{\hskip 5.83301pt\lower-16.51044pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{31.45276pt}{56.90552pt}\pgfsys@curveto{31.45276pt}{58.5624pt}{30.10963pt}{59.90552pt}{28.45276pt}{59.90552pt}\pgfsys@curveto{26.79588pt}{59.90552pt}{25.45276pt}{58.5624pt}{25.45276pt}{56.90552pt}\pgfsys@curveto{25.45276pt}{55.24864pt}{26.79588pt}{53.90552pt}{28.45276pt}{53.90552pt}\pgfsys@curveto{30.10963pt}{53.90552pt}{31.45276pt}{55.24864pt}{31.45276pt}{56.90552pt}\pgfsys@closepath\pgfsys@moveto{28.45276pt}{56.90552pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{56.90552pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.95276pt}{63.63852pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{3.0pt}{28.45276pt}\pgfsys@curveto{3.0pt}{30.10963pt}{1.65688pt}{31.45276pt}{0.0pt}{31.45276pt}\pgfsys@curveto{-1.65688pt}{31.45276pt}{-3.0pt}{30.10963pt}{-3.0pt}{28.45276pt}\pgfsys@curveto{-3.0pt}{26.79588pt}{-1.65688pt}{25.45276pt}{0.0pt}{25.45276pt}\pgfsys@curveto{1.65688pt}{25.45276pt}{3.0pt}{26.79588pt}{3.0pt}{28.45276pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{28.45276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{35.18576pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{31.45276pt}{0.0pt}\pgfsys@curveto{31.45276pt}{1.65688pt}{30.10963pt}{3.0pt}{28.45276pt}{3.0pt}\pgfsys@curveto{26.79588pt}{3.0pt}{25.45276pt}{1.65688pt}{25.45276pt}{0.0pt}\pgfsys@curveto{25.45276pt}{-1.65688pt}{26.79588pt}{-3.0pt}{28.45276pt}{-3.0pt}\pgfsys@curveto{30.10963pt}{-3.0pt}{31.45276pt}{-1.65688pt}{31.45276pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.95276pt}{-13.17743pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{59.90552pt}{0.0pt}\pgfsys@curveto{59.90552pt}{1.65688pt}{58.5624pt}{3.0pt}{56.90552pt}{3.0pt}\pgfsys@curveto{55.24864pt}{3.0pt}{53.90552pt}{1.65688pt}{53.90552pt}{0.0pt}\pgfsys@curveto{53.90552pt}{-1.65688pt}{55.24864pt}{-3.0pt}{56.90552pt}{-3.0pt}\pgfsys@curveto{58.5624pt}{-3.0pt}{59.90552pt}{-1.65688pt}{59.90552pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{56.90552pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.90552pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.40552pt}{-13.17743pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$3$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{88.35828pt}{28.45276pt}\pgfsys@curveto{88.35828pt}{30.10963pt}{87.01515pt}{31.45276pt}{85.35828pt}{31.45276pt}\pgfsys@curveto{83.7014pt}{31.45276pt}{82.35828pt}{30.10963pt}{82.35828pt}{28.45276pt}\pgfsys@curveto{82.35828pt}{26.79588pt}{83.7014pt}{25.45276pt}{85.35828pt}{25.45276pt}\pgfsys@curveto{87.01515pt}{25.45276pt}{88.35828pt}{26.79588pt}{88.35828pt}{28.45276pt}\pgfsys@closepath\pgfsys@moveto{85.35828pt}{28.45276pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{85.35828pt}{28.45276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{82.85828pt}{35.18576pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$4$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}} {{{}{}{{}}{}}}{{{}}}{{{{}}{{}}}}{{}}{{{ }}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{59.90552pt}{56.90552pt}\pgfsys@curveto{59.90552pt}{58.5624pt}{58.5624pt}{59.90552pt}{56.90552pt}{59.90552pt}\pgfsys@curveto{55.24864pt}{59.90552pt}{53.90552pt}{58.5624pt}{53.90552pt}{56.90552pt}\pgfsys@curveto{53.90552pt}{55.24864pt}{55.24864pt}{53.90552pt}{56.90552pt}{53.90552pt}\pgfsys@curveto{58.5624pt}{53.90552pt}{59.90552pt}{55.24864pt}{59.90552pt}{56.90552pt}\pgfsys@closepath\pgfsys@moveto{56.90552pt}{56.90552pt}\pgfsys@fillstroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.90552pt}{56.90552pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.40552pt}{63.63852pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$5$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{28.45276pt}{53.70552pt}\pgfsys@lineto{28.45276pt}{3.2pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{29.8838pt}{54.04337pt}\pgfsys@lineto{55.47447pt}{2.86215pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{31.65276pt}{0.0pt}\pgfsys@lineto{53.70552pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{29.8838pt}{2.86215pt}\pgfsys@lineto{55.47447pt}{54.04337pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{59.16826pt}{2.26274pt}\pgfsys@lineto{83.09554pt}{26.19002pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{56.90552pt}{3.2pt}\pgfsys@lineto{56.90552pt}{53.70552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{83.09554pt}{30.7155pt}\pgfsys@lineto{59.16826pt}{54.64278pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}&\end{tabular}\text{\quad}

6.
Generalization and Summary

In this final note, we discuss two generalizations which can serve as grounds for future exploration of groupoid factorizations or algebra decompositions via the groupoid product “\diamond”.

6.1. Ψ\Psi-type-Factorization

Let Ψ\Psi be a groupoid operation that interchanges elements of any two given groupoids and produces two other (possibly identical) groupoids. Given groupoid (X,)Bin(X)\left(X,\bullet\right)\in Bin\left(X\right) and the left-zero-semigroup as idBin(X)id_{Bin\left(X\right)}, define Ψ:Bin(X)×Bin(X)Bin(X)×Bin(X)\Psi:Bin\left(X\right)\times Bin\left(X\right)\rightarrow Bin\left(X\right)\times Bin\left(X\right). A Ψ\Psi-type-factorization of (X,)\left(X,\bullet\right) gives a pair of groupoid factors as follows:

Ψ((X,),idBin(X))=((X,)L,(X,)R)\Psi(\left(X,\bullet\right),id_{Bin\left(X\right)})=\left(\left(X,\bullet\right)_{L},\left(X,\bullet\right)_{R}\right)

where (X,)L=Ψα((X,),idBin(X))\left(X,\bullet\right)_{L}=\Psi_{\alpha}(\left(X,\bullet\right),id_{Bin\left(X\right)}) and (X,)R=Ψα(idBin(X),(X,))\left(X,\bullet\right)_{R}=\Psi_{\alpha}(id_{Bin\left(X\right)},\left(X,\bullet\right)), the left- and right-Ψ\Psi-factors of (X,)\left(X,\bullet\right), respectively, such that the maps Ψα\Psi_{\alpha} and α\alpha are defined as Ψα:Bin(X)×Bin(X)Bin(X)\Psi_{\alpha}:Bin\left(X\right)\times Bin\left(X\right)\rightarrow Bin\left(X\right) and α:Bin(X)Bin(X)\alpha:Bin\left(X\right)\rightarrow Bin\left(X\right).

Let (X,):=(X,)L\left(X,\ast\right):=\left(X,\bullet\right)_{L} and (X,):=(X,)R\left(X,\circ\right):=\left(X,\bullet\right)_{R}, then (X,)\left(X,\bullet\right) can be represented as a product of the groupoid pair, i.e.,

(X,)\displaystyle\left(X,\bullet\right) =\displaystyle= (X,)(X,) and/or\displaystyle\left(X,\ast\right)\diamond\left(X,\circ\right)\text{ and/or }
(X,)\displaystyle\left(X,\bullet\right) =\displaystyle= (X,)(X,)\displaystyle\left(X,\circ\right)\diamond\left(X,\ast\right)

thus rendering (X,)\left(X,\bullet\right) as:

(i) Ψ\Psi-prime, if (X,)L=idBin(X)\left(X,\bullet\right)_{L}=id_{Bin\left(X\right)} or (X,)R=idBin(X)\left(X,\bullet\right)_{R}=id_{Bin\left(X\right)}; or

(ii) Ψ\Psi-normal if (X,)(X,)=(X,)(X,)\left(X,\ast\right)\diamond\left(X,\circ\right)=\left(X,\circ\right)\diamond\left(X,\ast\right); or

(iii) Ψ\Psi-composite if (X,)\left(X,\bullet\right) is Ψ\Psi-normal but not Ψ\Psi-prime.

An example of this Ψ\Psi-type-factorization is our first method of similar-signature-factorization where

Ψd((X,),idBin(X))={(X,)|d(X,)=d(idBin(X))}\Psi_{d}(\left(X,\bullet\right),id_{Bin\left(X\right)})=\{\left(X,\bullet\right)|d\left(X,\bullet\right)=d\left(id_{Bin\left(X\right)}\right)\}

and

Ψd(idBin(X),(X,))={idBin(X)|d(idBin(X))=d(X,)}\Psi_{d}(id_{Bin\left(X\right)},\left(X,\bullet\right))=\{id_{Bin\left(X\right)}|d\left(id_{Bin\left(X\right)}\right)=d\left(X,\bullet\right)\}

The Ψ\Psi in that case switched the diagonal dd of the parent groupoid (X,)\left(X,\bullet\right) with that of the left-zero-semigroup, idBin(X)id_{Bin\left(X\right)}, to obtain the signature- and similar-factors (X,)\left(X,\circ\right) and (X,)\left(X,\ast\right), respectively. Hence, the signature- and similar-factors of a groupoid are Ψ\Psi-type-factors.

6.2. τ\tau-type-Factorization

Let τ\tau be a groupoid operation that manipulates elements of any given pair of groupoid in the same fashion. Given groupoid (X,)Bin(X)\left(X,\bullet\right)\in Bin\left(X\right) and the left-zero-semigroup as idBin(X)id_{Bin\left(X\right)}, define τ:Bin(X)×Bin(X)Bin(X)×Bin(X)\tau:Bin\left(X\right)\times Bin\left(X\right)\rightarrow Bin\left(X\right)\times Bin\left(X\right). A τ\tau-type-factorization of (X,)\left(X,\bullet\right) is given as follows:

τ((X,),idBin(X))=((X,)L,(X,)R)\tau\left(\left(X,\bullet\right),id_{Bin\left(X\right)}\right)=\left(\left(X,\bullet\right)_{L},\left(X,\bullet\right)_{R}\right)

where (X,)L=θ(idBin(X))\left(X,\bullet\right)_{L}=\theta(id_{Bin\left(X\right)}) and and (X,)R=θ(X,)\left(X,\bullet\right)_{R}=\theta\left(X,\bullet\right) such that the map θ:Bin(X)Bin(X)\theta:Bin\left(X\right)\rightarrow Bin\left(X\right), the left- and right-τ\tau-factors of (X,)\left(X,\bullet\right), respectively. Let (X,):=(X,)L\left(X,\ast\right):=\left(X,\bullet\right)_{L} and (X,):=(X,)R\left(X,\circ\right):=\left(X,\bullet\right)_{R}, then (X,)\left(X,\bullet\right) could factor into a product of the groupoid pair, i.e.,

(X,)\displaystyle\left(X,\bullet\right) =\displaystyle= (X,)(X,) and/or\displaystyle\left(X,\ast\right)\diamond\left(X,\circ\right)\text{ and/or }
(X,)\displaystyle\left(X,\bullet\right) =\displaystyle= (X,)(X,).\displaystyle\left(X,\circ\right)\diamond\left(X,\ast\right)\text{.}

Once again rendering (X,)\left(X,\bullet\right) as:

(i) τ\tau-prime, if (X,)L=idBin(X)\left(X,\bullet\right)_{L}=id_{Bin\left(X\right)} or (X,)R=idBin(X)\left(X,\bullet\right)_{R}=id_{Bin\left(X\right)}; or

(ii) τ\tau-normal if (X,)(X,)=(X,)(X,)\left(X,\ast\right)\diamond\left(X,\circ\right)=\left(X,\circ\right)\diamond\left(X,\ast\right); or

(iii) τ\tau-composite if (X,)\left(X,\bullet\right) is τ\tau-normal but not τ\tau-prime.

An example of this τ\tau-type-factorization is our second method of orient-skew-factorization where O(X,):=(X,)LO\left(X,\bullet\right):=\left(X,\bullet\right)_{L} and J(X,):=(X,)RJ\left(X,\bullet\right):=\left(X,\bullet\right)_{R}. The τ\tau (indeed, θ\theta) in that scenario reversed the anti-diagonal of a given groupoid. Hence, applying τ\tau to the left-zero-semigroup idBin(X)id_{Bin\left(X\right)} and to the parent groupoid (X,)\left(X,\bullet\right) results in the orient- and skew-factors (X,)\left(X,\ast\right) and (X,)\left(X,\circ\right), respectively. In conclusion, the orient- and skew-factors of a groupoid are τ\tau-type-factors.

6.3. Summary

The goal of this paper was to gain more insight about the dynamics of binary systems, namely groupoids or algebras equipped with a single binary operation. We have shown that a strong groupoid can be represented as a “composite” groupoid of its similar- and signature- derived factors. Moreover, we concluded that an idempotent groupoid with the orientation property, can be decomposed into a product of its orient- and skew- factors. An application into the fields of logic-algebras and graph theory were briefly introduced. We found that a semi-neutral B1B1-algebra is signature-prime, OJOJ-composite and semi-normal. Meanwhile, a strong B1B1-algebra is then semi-composite if it is not semi-neutral. We finished our note with generalizations of our two methods in hopes that other factorizations can be discovered in the near future. It may be interesting to find other conditions for a groupoid to have such decompositions. As a final reminder, factorization can be useful in various applications such as algebraic cryptography and DNA code theory. We intend to extend our investigation in the future to hypergroupoid, semigroups as well as determine other factorizations and explore their applications.


7. Acknowledgment

The author is grateful to J. Neggers, H.S. Kim, C. Odenthal and the referee for their valuable suggestions and help.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.


References

  • [1] Ahn, S.S.; Kim, H.S.; Neggers, J. A method to identify simple graphs by special binary systems, Symmetry 10 (2018), 297.
  • [2] Allen, P. J.; Kim, H. S.; Neggers, J. On BB-algebras, Mat. Vesnik 54 (2002), no. 1-2, 21–29.
  • [3] Allen, P. J.; Kim, H. S.; Neggers, J. BB-algebras and groups, Sci. Math. Jpn. 59 (2004), no. 1, 23–29.
  • [4] Allen, P. J.; Kim, H. S.; Neggers, J. Smarandache disjoint in BCK/dBCK/d-algebras, Sci. Math. Jpn. 61 (2005), no. 3, 447–449.
  • [5] Allen, P. J.; Kim, H. S.; Neggers, J. On companion dd-algebras, Math. Slovaca 57 (2007), 93-106.
  • [6] Allen, P. J.; Kim, H. S.; Neggers, J. Deformations of d/BCKd/BCK-algebras, Bull. Korean Math. Soc. 48 (2011), 315-324.
  • [7] Boru˙\mathrm{{\dot{u}}}vka, O. Foundations of the theory of groupoids and groups, John Wiley & Sons, New York, 1976.
  • [8] Bruck, R. H. A Survey of Binary Systems, Springer-Verlag, New York, 1958.
  • [9] Cho, J. R.; Kim, H. S. On BB-algebras and quasigroups, Quasigroups and Related Systems, 8 (2001), 1-6.
  • [10] Clifford, A. H.; Preston, G. B. The algebraic theory of semigroups, American Mathematical Soc. Providence, 1961.
  • [11] Fayoumi, H. F. Locally-zero groupoids and the center of Bin(X)Bin(X), Comm. Korean Math. Soc. 26 (2011), 163-168.
  • [12] Han, J. S.; Kim, H. S.; Neggers, J. Strong and ordinary dd-algebras, J. Multiple-Valued Logic and Soft Computing 16 (2010), 331-339.
  • [13] Han, J. S.; Kim, H. S.; Neggers, J. The hypergroupoid semigroups as generalizations of the groupoid semigroups, Journal of Applied Math. 2012 (2012), Article ID 717698, 8 pages.
  • [14] Iorgulescu, A. Algebras of logic as BCKBCK-algebras, Editura ASE, Bucharest, 2008.
  • [15] Iséki, K; Tanaka, S. An introduction to theory of BCKBCK -algebras, Math. Japonica 23 (1978), 1-26.
  • [16] Iséki, K. On BCIBCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
  • [17] Iséki, K; Kim, H. S; Neggers, J. On JJ-algebras, Sci. Math. Jpn. 63 (2006), 413-419.
  • [18] Jun, Y. B.;  Roh, E. H.; Kim, H. S. On BHBH-algebras, Sci. Math. 1 (1998), 347-354.
  • [19] Kim, C. B; Kim, H. S. On BNBN-algebras, Kyungpook Math. J. 53 (2013), 175-184.
  • [20] Kim, C. B; Kim, H. S. On BMBM-algebras, Sci. Math. Jpn. 63 (2006), 421-427.
  • [21] Kim, C. B; Kim, H. S. On BGBG-algebras, Demonstratio Math. 41 (2008), 497-505.
  • [22] Kim, C. B; Kim, H. S. On BOBO-algebras, Math. Slovaca 62 (2012), 855-864.
  • [23] Kim, H. S; Kim, Y. H. On BEBE-algebras, Sci. Math. Jpn. 67 (2007), 113–116.
  • [24] Kim, H. S; Kim, Y. H; Neggers, J. Coxeters and pre-Coxeter algebras in Smarandache setting, Honam Math. J. 26 (2004), 471-481.
  • [25] M. Kondo, On the class of QSQS-algebras, Int. Math. & Math. J. Sci. 49 (2004), 2629-2639.
  • [26] Meng, J.; Jun, Y. B. BCKBCK-algebras, Kyungmoon Sa, Seoul, 1994.
  • [27] Nebeský, L. An algebraic characterization of geodetic graphs, Czech. Math. J. 48 (1998), 701-710.
  • [28] Nebeský, L. A tree as a finite nonempty set with a binary operation, Math. Bohem 125 (2000), 455-458.
  • [29] Nebeský, L. Travel groupoids, Czech. Math. J. 56 (2006), 659-675.
  • [30] Neggers, J.; Kim, H. S. Modular posets and semigroups, Semigroup Forum 53 (1996), 57-62.
  • [31] Neggers, J.; Kim, H. S. On dd-algebras, Math. Slovaca 49 (1999), 19-26.
  • [32] Neggers, J.; Jun, Y. B.; Kim, H. S. On dd-ideals in dd-algebras, Math. Slovaca 49 (1999), 243-251.
  • [33] Neggers, J.; Kim, H. S. The semigroups of binary systems and some perspectives, Bull. Korean Math. Soc. 45 (2008), 651-661.
  • [34] Saeid, A. B.; Kim, H. S.; Rezaei, A. On BIBI-algebras, An. St. Univ. Ovidius Constanta 25 (2017), no. 1, 177–194.
  • [35] West, D. B. Introduction to graph theory, Prentice Hall, Upper Saddle River, 2001.
  • [36] Yisheng, H. BCIBCI-algebras, Science Press, Beijing, 2006.