This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Gravitational waves from first-order phase transition in an electroweakly interacting vector dark matter model

Tomohiro Abe [email protected] Department of Physics, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan    Katsuya Hashino [email protected] National Institute of Technology, Fukushima College, Nagao 30, Taira-Kamiarakawa, Iwaki, Fukushima 970–8034, Japan
Abstract

We discuss gravitational waves in an electroweakly interacting vector dark matter model. In the model, the electroweak gauge symmetry is extended to SU(2)×0{}_{0}\times SU(2)×1{}_{1}\timesSU(2)×2{}_{2}\times U(1)Y and spontaneously broken into SU(2)×L{}_{L}\times U(1)Y at TeV scale. The model has an exchange symmetry between SU(2)0 and SU(2)2. This symmetry stabilizes some massive vector bosons associated with the spontaneous symmetry breaking described above, and an electrically neutral one is a dark matter candidate. In the previous study, it was found that the gauge couplings of SU(2)0 and SU(2)1 are relatively large to explain the measured value of the dark matter energy density via the freeze-out mechanism. With the large gauge couplings, the gauge bosons potentially have a sizable effect on the scalar potential. In this paper, we focus on the phase transition of SU(2)×0{}_{0}\times SU(2)×1{}_{1}\times SU(2)2{}_{2}\to SU(2)L. We calculate the effective potential at finite temperature and find that the phase transition is first-order and strong in a wide range of the parameter space. The strong first-order phase transition generates gravitational waves. We calculate the gravitational wave spectrum and find that it is possible to detect the gravitational waves predicted in the model by future space-based gravitational wave interferometers. We explore the regions of the parameter space probed by the gravitational wave detection. We find that the gravitational wave detection can probe the region where the mass of hh^{\prime}, a CP-even scalar in the model, is a few TeV.

1 Introduction

Many astrophysical observations show the existence of dark matter (DM). DM constitutes approximately 26% of the energy in the universe Planck:2018vyg . However, the nature of DM remains unclear. Models beyond the standard model (SM) of particle physics often predict DM candidates. In many particle DM models, the freeze-out mechanism Lee:1977ua is used to explain the measured value of the DM energy density. The mechanism requires a pair of DM particles to annihilate into other particles in the thermal bath in the early Universe. The canonical value of the annihilation cross section, which can explain the measured value of the DM energy density, is σv3×1026\expectationvalue{\sigma v}\simeq 3\times 10^{-26} cm3 s11{}^{-1}\simeq 1 pb cc. This value is of the same order as the cross section of processes by the electroweak interaction and implies that DM particles interact with the SM particles via the electroweak interaction. An example of such DM is the wino DM, which is an SU(2)L triplet spin-12\frac{1}{2} Majorana fermion, and the mass prediction of the thermally produced wino DM is approximately 3 TeV Hisano:2006nn ; Cirelli:2007xd .

The electroweakly interacting vector DM model proposed in Abe:2020mph is one of the attractive DM models. In the model, the electroweak gauge symmetry SU(2)×L{}_{L}\times U(1)Y is extended into SU(2)×0{}_{0}\timesSU(2)×1{}_{1}\timesSU(2)×2{}_{2}\timesU(1)Y. The SU(2)×0{}_{0}\timesSU(2)×1{}_{1}\timesSU(2)2 gauge symmetry is spontaneously broken into SU(2)L by vacuum expectation values of two scalar fields Φ1\Phi_{1} and Φ2\Phi_{2}. An exchange symmetry SU(2)0{}_{0}\leftrightarrowSU(2)2 is imposed, and it stabilizes linear combinations of gauge fields Vμa(W0μaW2μa)/2V^{a}_{\mu}\equiv(W_{0\mu}^{a}-W_{2\mu}^{a})/\sqrt{2}, where WjμaW_{j\mu}^{a} is the gauge field of SU(2)j with j=0,1,2j=0,1,2. After the electroweak symmetry breaking SU(2)×L{}_{L}\timesU(1)Y{}_{Y}\toU(1)em{}_{\text{em}}, quantum corrections make charged component of VaV^{a}, which is denoted as V±V^{\pm}, slightly heavier than the neutral component V0V^{0}. Consequently, V0V^{0} is a DM candidate. Note that VaV^{a} arises from the SU(2)0 and SU(2)2 gauge fields, and the SU(2)L gauge field are linear combination of the SU(2)0, SU(2)1, and SU(2)2 gauge fields. Hence, VaV^{a} directly couples to the SU(2)L gauge bosons and have the electroweak interaction. Therefore, the model predicts electroweakly interacting vector DM.

Through the electroweak interaction, VaV^{a} is in equilibrium with the SM particles in the early universe, and the DM abundance is determined by the freeze-out mechanism. In addition to VaV^{a} and the SM gauge bosons, the model predicts extra heavy gauge bosons, denoted by W±W^{\prime\pm} and ZZ^{\prime}. They are approximately SU(2)L triplet and have common mass, mWmZm_{W^{\prime}}\simeq m_{Z^{\prime}}. Annihilation of a pair of V0V^{0} depend on mZm_{Z^{\prime}}. For example, if mZ2mVmWm_{Z^{\prime}}\lesssim 2m_{V}-m_{W}, V0V0WW+V^{0}V^{0}\to W^{\prime-}W^{+} is open, but otherwise it is kinematically forbidden. Hence, the value of mZm_{Z^{\prime}} affects the DM relic abundance. The mass of the vector DM that reproduces the measured value of the DM energy density varies from 33 TeV to 1919 TeV Abe:2020mph .

Other than relic abundance, direct detection of V0V^{0}, W/ZW^{\prime}/Z^{\prime} search in collider experiments, and indirect detection of DM were studied in Abe:2020mph ; Abe:2021mry . However, these observables are insufficient to probe all the regions of the model parameter space. Other observables are necessary to test the model comprehensively.

In this work, we focus on gravitational waves (GWs), aiming to extend the region of the parameter space where we can test the electroweakly interacting DM model with future/current experiments. Because the gauge couplings g0g_{0} and g1g_{1} are 1\sim 1 to explain the relic abundance Abe:2020mph , the scalar potential is modified by the gauge boson contributions at the loop level. As a result, the scalar potential can experience a first-order phase transition in the early universe. It is well-known that first-order phase transitions generate GWs Grojean:2006bp . To observe the GW spectra, future space-based GW interferometers, such as LISA LISA , DECIGO DECIGO , and BBO BBO , can be used; thus, DM models with a first-order phase transition can be tested through GW observational experiments Schwaller:2015tja ; Chala:2016ykx ; Baldes:2017rcu ; Chao:2017vrq ; Beniwal:2017eik ; Addazi:2017gpt ; Tsumura:2017knk ; Huang:2017rzf ; Huang:2017kzu ; Hektor:2018esx ; Hashino:2018zsi ; Baldes:2018emh ; Madge:2018gfl ; Beniwal:2018hyi ; Bian:2018mkl ; Bai:2018dxf ; Bian:2018bxr ; Shajiee:2018jdq ; Mohamadnejad:2019vzg ; Bertone:2019irm ; Kannike:2019mzk ; Paul:2019pgt ; Croon:2019rqu ; Hall:2019ank ; Chen:2019ebq ; Hall:2019rld ; Barman:2019oda ; Chiang:2019oms ; Borah:2020wut ; Kang:2020jeg ; Pandey:2020hoq ; Hong:2020est ; Alanne:2020jwx ; Bhoonah:2020oov ; Han:2020ekm ; Wang:2020wrk ; Ghosh:2020ipy ; Huang:2020crf ; Deng:2020dnf ; Chao:2020adk ; Azatov:2021ifm ; Zhang:2021alu ; Davoudiasl:2021ijv ; Reichert:2021cvs ; Mohamadnejad:2021tke ; Bian:2021dmp ; Costa:2022oaa ; Liu:2022jdq ; Shibuya:2022xkj ; Costa:2022lpy ; Kierkla:2022odc ; Morgante:2022zvc ; Chakrabarty:2022yzp ; Arcadi:2022lpp ; Frandsen:2022klh . We investigate the GWs generated by the phase transition from SU(2)×0{}_{0}\timesSU(2)×1{}_{1}\timesSU(2)2 to SU(2)L in the electroweakly interacting vector DM model. As discussed below, it allows us to explore the region of the parameter space where other observables, such as the WW^{\prime} search, cannot probe.

The rest of this paper is organized as follows. In Section 2, we briefly introduce the vector DM model with SU(2)0×SU(2)1×SU(2)2×U(1)Y{\rm SU}(2)_{0}\times{\rm SU}(2)_{1}\times{\rm SU}(2)_{2}\times{\rm U}(1)_{Y} gauge symmetry. In Section LABEL:sec:potential, we show the effective potential with finite-temperature effects for this model. We clarify the parameter region with a first-order phase transition, which can produce a detectable GW spectrum. The formula for the GW spectrum from the first-order phase transition is presented in Section LABEL:sec:GW. We discuss in Section LABEL:sec:numerical the testability of the model at the GW observation experiments, such as the LISA, DECIGO, and BBO experiments. Finally, Section 6 presents the conclusions of this study. In appendix A, we give the explict expression of the effective potential at the zero temperature.

2 The model

In this section, we introduce the electroweakly interacting vector DM model proposed in Abe:2020mph .

The model exhibits gauge symmetry, described as SU(3)c×SU(2)0×SU(2)1×SU(2)2×U(1)Y\text{SU(3)}_{c}\times\text{SU(2)}_{0}\times\text{SU(2)}_{1}\times\text{SU(2)}_{2}\times\text{U(1)}_{Y}. Here, SU(3)c\text{SU(3)}_{c} and U(1)Y\text{U(1)}_{Y} correspond to the gauge symmetries governing the quantum chromodynamics (QCD) and hypercharge, respectively. Because the QCD sector is the same as that in the SM, we focus on the electroweak sector, denoted as SU(2)0×SU(2)1×SU(2)2×U(1)Y\text{SU(2)}_{0}\times\text{SU(2)}_{1}\times\text{SU(2)}_{2}\times\text{U(1)}_{Y}. We use the notation WjμaW^{a}_{j\mu} and BμB_{\mu} for gauge bosons associated with SU(2)j\text{SU(2)}_{j} and U(1)Y\text{U(1)}_{Y}, respectively. Here, jj can take values of 0, 1, or 2, and aa can take values of 1, 2, or 3. gjg_{j} and gg^{\prime} are the gauge couplings for SU(2)j\text{SU(2)}_{j} and U(1)Y\text{U(1)}_{Y}, respectively.

We introduce two scalar fields, Φ1\Phi_{1} and Φ2\Phi_{2}, expressed in two-by-two matrices. They transform under gauge transformation as

Φ1U0Φ1U1,Φ2U2Φ1U1,\displaystyle\Phi_{1}\to U_{0}\Phi_{1}U_{1}^{\dagger},\ \Phi_{2}\to U_{2}\Phi_{1}U_{1}^{\dagger}, (1)

where U0,U1U_{0},U_{1}, and U2U_{2} represent two-by-two unitary matrices for SU(2)0,SU(2)1\text{SU(2)}_{0},\text{SU(2)}_{1}, and SU(2)2\text{SU(2)}_{2}, respectively. In addition, we impose the following conditions for Φj\Phi_{j} to reduce their degrees of freedom,

Φj=ϵΦjϵ,where ϵ=(0110).\Phi_{j}=-\epsilon\Phi_{j}^{*}\epsilon,\ \ \ \text{where }\epsilon=\matrixquantity(0&1\\ -1&0). (2)

Hence, each Φj\Phi_{j} consists of four real scalar fields.

All other fields remain identical to those in the SM, except that they are charged under SU(2)1\text{SU(2)}_{1} instead of SU(2)L\text{SU(2)}_{L}. The charge assignments for the matter fields are summarized in Table 1.

field spin SU(3)c SU(2)0 SU(2)1 SU(2)2 U(1)Y
qLq_{L} 12\frac{1}{2} 3 1 2 1 16\frac{1}{6}
uRu_{R} 12\frac{1}{2} 3 1 1 1 23\frac{2}{3}
dRd_{R} 12\frac{1}{2} 3 1 1 1 -13\frac{1}{3}
L\ell_{L} 12\frac{1}{2} 1 1 2 1 -12\frac{1}{2}
eRe_{R} 12\frac{1}{2} 1 1 1 1 -1
HH 0 1 1 2 1 12\frac{1}{2}
Φ1\Phi_{1} 0 1 2 2 1 0
Φ2\Phi_{2} 0 1 1 2 2 0
Table 1: Charge assignment under the SU(3)×C{}_{C}\timesSU(2)×0{}_{0}\timesSU(2)×1{}_{1}\timesSU(2)2 ×\timesU(1)Y gauge symmetry of the model.

In addition to gauge symmetry, this model exhibits exchange symmetry. The Lagrangian is invariant under the following field transformations:

W0μaW2μa,W2μaW0μa,Φ1Φ2,Φ2Φ1,\displaystyle W^{a}_{0\mu}\to W^{a}_{2\mu},\ W^{a}_{2\mu}\to W^{a}_{0\mu},\ \Phi_{1}\rightarrow\Phi_{2},\ \Phi_{2}\rightarrow\Phi_{1}, (3)

whereas all other fields remain unchanged. This symmetry is equivalent to the exchange between SU(2)0\text{SU(2)}_{0} and SU(2)2\text{SU(2)}_{2}, implying that the gauge couplings of SU(2)0\text{SU(2)}_{0} and SU(2)2\text{SU(2)}_{2} must be identical. It is important to note that under this symmetry, W0μaW2μa2\frac{W^{a}_{0\mu}-W^{a}_{2\mu}}{\sqrt{2}} and Φ1Φ22\frac{\Phi_{1}-\Phi_{2}}{\sqrt{2}} change sign, whereas W0μa+W2μa2\frac{W^{a}_{0\mu}+W^{a}_{2\mu}}{\sqrt{2}}, Φ1+Φ22\frac{\Phi_{1}+\Phi_{2}}{\sqrt{2}}, and the other fields remain unchanged. Therefore, the symmetry described in Eq. (3) is equivalent to the Z2Z_{2} symmetry commonly used in DM models. The lightest particle among W0μaW2μa2\frac{W^{a}_{0\mu}-W^{a}_{2\mu}}{\sqrt{2}} and Φ1Φ22\frac{\Phi_{1}-\Phi_{2}}{\sqrt{2}} is stable and is a dark matter candidate for this model.

The Lagrangian of the scalar and the electroweak gauge sectors are described as

14j=02WjμνaWjaμν14BμνBμν+j=1212tr(DμΦjDμΦj)Vscalar,\displaystyle-\frac{1}{4}\sum_{j=0}^{2}W^{a}_{j\mu\nu}W^{a\mu\nu}_{j}-\frac{1}{4}B_{\mu\nu}B^{\mu\nu}+\sum_{j=1}^{2}\frac{1}{2}\tr(D^{\mu}\Phi_{j}^{\dagger}D_{\mu}\Phi_{j})-V_{\text{scalar}}, (4)

where

Vscalar=\displaystyle V_{\text{scalar}}= m2HH+mΦ2tr(Φ1Φ1)+mΦ2tr(Φ2Φ2)+λ(HH)2\displaystyle m^{2}H^{\dagger}H+m_{\Phi}^{2}\tr\left(\Phi_{1}^{\dagger}\Phi_{1}\right)+m_{\Phi}^{2}\tr\left(\Phi_{2}^{\dagger}\Phi_{2}\right)+\lambda(H^{\dagger}H)^{2}
+λΦ(tr(Φ1Φ1))2+λΦ(tr(Φ2Φ2))2+λhΦHHtr(Φ1Φ1)\displaystyle+\lambda_{\Phi}\left(\tr\left(\Phi_{1}^{\dagger}\Phi_{1}\right)\right)^{2}+\lambda_{\Phi}\left(\tr\left(\Phi_{2}^{\dagger}\Phi_{2}\right)\right)^{2}+\lambda_{h\Phi}H^{\dagger}H\tr\left(\Phi_{1}^{\dagger}\Phi_{1}\right)
+λhΦHHtr(Φ2Φ2)+λ12tr(Φ1Φ1)tr(Φ2Φ2).\displaystyle+\lambda_{h\Phi}H^{\dagger}H\tr\left(\Phi_{2}^{\dagger}\Phi_{2}\right)+\lambda_{12}\tr\left(\Phi_{1}^{\dagger}\Phi_{1}\right)\tr\left(\Phi_{2}^{\dagger}\Phi_{2}\right). (5)

Some couplings are equal owing to the exchange symmetry described in Eq. (3).

We assume that the scalar fields develop the following vacuum expectation values (VEVs),

These VEVs do not break the exchange symmetry and maintain the Z2Z_{2} symmetry, which stabilizes the DM candidate. We parametrized the component fields of each scalar field as

H=\displaystyle H= (iπ3+v+σ3iπ302),Φj=(vΦ+σj+iπj02iπj+iπjvΦ+σjiπj02).\displaystyle\begin{pmatrix}i\pi_{3}^{+}\\ \frac{v+\sigma_{3}-i\pi_{3}^{0}}{\sqrt{2}}\end{pmatrix},\quad\Phi_{j}=\begin{pmatrix}\frac{v_{\Phi}+\sigma_{j}+i\pi_{j}^{0}}{\sqrt{2}}&i\pi_{j}^{+}\\ i\pi_{j}^{-}&\frac{v_{\Phi}+\sigma_{j}-i\pi_{j}^{0}}{\sqrt{2}}\end{pmatrix}. (6)

where π3±,π30,πj±,πj±\pi^{\pm}_{3},\pi^{0}_{3},\pi^{\pm}_{j},\pi^{\pm}_{j}, and πj0\pi^{0}_{j} are would-be Nambu-Goldstone (NG) bosons. Based on the stationary condition, we obtain the followings:

m2=\displaystyle m^{2}= λv22λhΦvΦ2,\displaystyle-\lambda v^{2}-2\lambda_{h\Phi}v_{\Phi}^{2}, (7)
mΦ2=\displaystyle m_{\Phi}^{2}= λhΦ2v2(λ12+2λΦ)vΦ2.\displaystyle-\frac{\lambda_{h\Phi}}{2}v^{2}-(\lambda_{12}+2\lambda_{\Phi})v_{\Phi}^{2}. (8)

2.1 Scalar boson masses

The mass terms for scalar fields other than the would-be NG bosons are described as [Uncaptioned image] [Uncaptioned image] Figure 8: Detectability of the GW in the mhm_{h^{\prime}}-mZm_{Z^{\prime}} plane for mV=m_{V}= 7 TeV and mhD=1.2mVm_{h_{D}}=1.2m_{V}. The upper (lower) two panels are for vb=v_{b}= 0.3 (vb=1v_{b}=1). In the left (right) panels, 𝒯\mathcal{T} = 4 (10) yrs. In the light-red regions, SNR >10>10 in the BBO, DECIGO, and LISA experiments. In the standard-red regions, SNR >10>10 in the DECIGO and LISA experiments. In the dark-red regions, SNR >10>10 only in the LISA experiment. The black-dashed lines indicate the regions where the measured value of the DM energy density is explained by the freeze-out mechanism. In the gray regions, which is to the left of the thick-black lines, the phase transition within the dark sector is not completed in the current universe. The upper (lower) two panels correspond to vb=0.3v_{b}=0.3 (vb=0.1v_{b}=0.1). The colored regions can be tested by the GW detection experiments. In the light-red region, the SNR is larger than ten in the BBO experiment. The standard-red (dark-red) regions can be tested using DECIGO and BBO (LISA, DECIGO, and BBO) experiments. A strong first-order phase transition is not realized in the white regions to the right of the light-red region; thus, detectable GW spectra are not generated. In the gray regions, the phase transition is not completed in the current universe, namely Γ/H4<1\Gamma/H^{4}<1. Along the black-dashed lines, the measured value of the DM energy density is explained by the freeze-out mechanism. We find that if mZ8m_{Z^{\prime}}\simeq 8 TeV and 2.5 TeV mh3.5\lesssim m_{h^{\prime}}\lesssim 3.5 TeV, the model explains the measured value of the DM energy density and predicts the detectable GW simultaneously. It is challenging to produce such a heavy hh^{\prime} in collider experiments. However, we can probe the heavy hh^{\prime} regime using the GW signals.

Next, we discuss the case for mV=5m_{V}=5 TeV, where both the WW^{\prime} search in the HL-LHC and the GW detection can be utilized to test the model. Figure 2.1 shows the result for mVm_{V} = 5 TeV.

[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image][Uncaptioned image]
Figure 9: Detectability of the GW for mV=m_{V}= 5 TeV. The blue-hatched regions are explored using the HL-LHC. The other color notations are the same as in Fig. 2.1.

The HL-LHC can discover WW^{\prime} if the model parameters are within the blue-hatched regions. The red-shaded regions can be probed using the GW. The black-dashed lines correspond to Ωh2=0.12\Omega h^{2}=0.12. Along the black-dashed lines, the blue-hatched and red-shaded regions are overlapped for 1.6 TeVmh2.51.6\text{~{}TeV}\lesssim m_{h^{\prime}}\lesssim 2.5 TeV. Therefore, if we discover WW^{\prime} at the HL-LHC and detect the GW, this mass range of hh^{\prime} is the model prediction. Because it is difficult to produce a heavy hh^{\prime} in collider experiments, the GW signal is a useful tool to determine the range of mhm_{h^{\prime}}.

Finally, we discuss the case for mV=3m_{V}=3 TeV. The result is shown in Fig. 2.1. The direct search of WW^{\prime} in the ATLAS experiment already excludes some regions of the parameter space.

[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image][Uncaptioned image]
Figure 10: Detectability of the GW for mV=m_{V}= 3 TeV. The WW^{\prime} search at the ATLAS experiment excludes the black-hatched region. The other color notation is the same as in Fig. 2.1.

For the parameter points that can explain the measured value of the DM energy density, we find that the WW^{\prime} collider search and the GW observational experiments cover the different regions of the parameter space. The HL-LHC can probe the region for mh4m_{h^{\prime}}\gtrsim 4 TeV, and the GW observational experiments can probe the region for 2.82.8 TeV mh\lesssim m_{h^{\prime}}\lesssim 3.5 TeV. In this sense, the GW detection and the WW^{\prime} search complement each other.

6 Conclusion

We have studied the GWs originating from the phase transition in the dark sector in the electroweakly interacting vector DM model proposed in Abe:2020mph .

We have calculated the effective potential and investigated the phase transition. At the tree level, the potential has negative curvature at the origin. However, the gauge bosons give positive contributions to the potential at the loop level, as shown in Eq. (LABEL:eq:Veff_T=0_around-origin). For the large gauge couplings, which is typically required to obtain the measured value of the DM energy density, the effective potential has positive curvature at the origin, even at T=0T=0. As a result, the phase transition in the dark sector is first order and is strong, φC/TC1\varphi_{C}/T_{C}\gtrsim 1, in a wide range of the parameter space. The curvature at the tree level is proportional to mh2m_{h^{\prime}}^{2}; thus, the loop contributions are significant for smaller mhm_{h^{\prime}}. Consequently, φC/TC\varphi_{C}/T_{C} is larger for smaller mhm_{h^{\prime}} as shown in Fig. LABEL:fig:VCTC. We also have found a lower bound on mhm_{h^{\prime}} for the phase transition. This is because the too small value of mhm_{h^{\prime}} makes the tunneling rate from the origin to the true vacuum too small, and then the phase transition does not occur.

We have studied three benchmarks (mV=7,5m_{V}=7,5, and 3 TeV) and found that the model predicts a GW spectrum that is detectable in the LISA, DECIGO, and BBO experiments. Each benchmark has a different prediction for the WW^{\prime} search in the collider experiments. The heavier V0V^{0} cases cannot be tested by the WW^{\prime} searches at the collider experiments, and thus, the GW detection is important to test the model. For mV=7m_{V}=7 and 3 TeV, we have found that the GW detection can probe the region of the parameter space where the WW^{\prime} searches cannot. For mV=5m_{V}=5 TeV, the region of the parameter space that the GW detection can probe overlaps with the region accessible by the WW^{\prime} searches. However, the former region is narrower, and thus the GW is helpful in specifying the model parameters. Assuming the model explains the measured value of the DM energy density via the freeze-out mechanism, we have found that the model predicts the detectable GW signals if mhm_{h^{\prime}} is a few TeV. Because it is challenging to search heavy hh^{\prime} in collider experiments, utilizing the GW signals in determining mhm_{h^{\prime}} is crucial.

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number 19H04615 and 21K03549 [T.A.]. We would like to thank Editage (www.editage.jp) for English language editing.

References

  • (1) N. Aghanim et al., Astron. Astrophys., 641, A6, [Erratum: Astron.Astrophys. 652, C4 (2021)] (2020), arXiv:1807.06209.
  • (2) Benjamin W. Lee and Steven Weinberg, Phys. Rev. Lett., 39, 165–168 (1977).
  • (3) Junji Hisano, Shigeki Matsumoto, Minoru Nagai, Osamu Saito, and Masato Senami, Phys. Lett. B, 646, 34–38 (2007), hep-ph/0610249.
  • (4) Marco Cirelli, Alessandro Strumia, and Matteo Tamburini, Nucl. Phys. B, 787, 152–175 (2007), arXiv:0706.4071.
  • (5) Tomohiro Abe, Motoko Fujiwara, Junji Hisano, and Kohei Matsushita, JHEP, 07, 136 (2020), arXiv:2004.00884.
  • (6) Tomohiro Abe, Motoko Fujiwara, Junji Hisano, and Kohei Matsushita, JHEP, 10, 163 (2021), arXiv:2107.10029.
  • (7) Christophe Grojean and Geraldine Servant, Phys. Rev. D, 75, 043507 (2007), hep-ph/0607107.
  • (8) Pau Amaro-Seoane et al. (2 2017), arXiv:1702.00786.
  • (9) Naoki Seto, Seiji Kawamura, and Takashi Nakamura, Phys. Rev. Lett., 87, 221103 (2001), astro-ph/0108011.
  • (10) G. M. Harry, P. Fritschel, D. A. Shaddock, W. Folkner, and E. S. Phinney, Class. Quant. Grav., 23, 4887–4894, [Erratum: Class.Quant.Grav. 23, 7361 (2006)] (2006).
  • (11) Pedro Schwaller, Phys. Rev. Lett., 115(18), 181101 (2015), arXiv:1504.07263.
  • (12) Mikael Chala, Germano Nardini, and Ivan Sobolev, Phys. Rev. D, 94(5), 055006 (2016), arXiv:1605.08663.
  • (13) Iason Baldes, JCAP, 05, 028 (2017), arXiv:1702.02117.
  • (14) Wei Chao, Huai-Ke Guo, and Jing Shu, JCAP, 09, 009 (2017), arXiv:1702.02698.
  • (15) Ankit Beniwal, Marek Lewicki, James D. Wells, Martin White, and Anthony G. Williams, JHEP, 08, 108 (2017), arXiv:1702.06124.
  • (16) Andrea Addazi and Antonino Marciano, Chin. Phys. C, 42(2), 023107 (2018), arXiv:1703.03248.
  • (17) Koji Tsumura, Masatoshi Yamada, and Yuya Yamaguchi, JCAP, 07, 044 (2017), arXiv:1704.00219.
  • (18) Fa Peng Huang and Jiang-Hao Yu, Phys. Rev. D, 98(9), 095022 (2018), arXiv:1704.04201.
  • (19) Fa Peng Huang and Chong Sheng Li, Phys. Rev. D, 96(9), 095028 (2017), arXiv:1709.09691.
  • (20) Andi Hektor, Kristjan Kannike, and Ville Vaskonen, Phys. Rev. D, 98(1), 015032 (2018), arXiv:1801.06184.
  • (21) Katsuya Hashino, Mitsuru Kakizaki, Shinya Kanemura, Pyungwon Ko, and Toshinori Matsui, JHEP, 06, 088 (2018), arXiv:1802.02947.
  • (22) Iason Baldes and Camilo Garcia-Cely, JHEP, 05, 190 (2019), arXiv:1809.01198.
  • (23) Eric Madge and Pedro Schwaller, JHEP, 02, 048 (2019), arXiv:1809.09110.
  • (24) Ankit Beniwal, Marek Lewicki, Martin White, and Anthony G. Williams, JHEP, 02, 183 (2019), arXiv:1810.02380.
  • (25) Ligong Bian and Yi-Lei Tang, JHEP, 12, 006 (2018), arXiv:1810.03172.
  • (26) Yang Bai, Andrew J. Long, and Sida Lu, Phys. Rev. D, 99(5), 055047 (2019), arXiv:1810.04360.
  • (27) Ligong Bian and Xuewen Liu, Phys. Rev. D, 99(5), 055003 (2019), arXiv:1811.03279.
  • (28) Vahid Reza Shajiee and Ali Tofighi, Eur. Phys. J. C, 79(4), 360 (2019), arXiv:1811.09807.
  • (29) Ahmad Mohamadnejad, Eur. Phys. J. C, 80(3), 197 (2020), arXiv:1907.08899.
  • (30) Gianfranco Bertone et al., SciPost Phys. Core, 3, 007 (2020), arXiv:1907.10610.
  • (31) Kristjan Kannike, Kaius Loos, and Martti Raidal, Phys. Rev. D, 101(3), 035001 (2020), arXiv:1907.13136.
  • (32) Avik Paul, Biswajit Banerjee, and Debasish Majumdar, JCAP, 10, 062 (2019), arXiv:1908.00829.
  • (33) Djuna Croon, Alexander Kusenko, Anupam Mazumdar, and Graham White, Phys. Rev. D, 101(8), 085010 (2020), arXiv:1910.09562.
  • (34) Eleanor Hall, Thomas Konstandin, Robert McGehee, Hitoshi Murayama, and Géraldine Servant, JHEP, 04, 042 (2020), arXiv:1910.08068.
  • (35) Ning Chen, Tong Li, Yongcheng Wu, and Ligong Bian, Phys. Rev. D, 101(7), 075047 (2020), arXiv:1911.05579.
  • (36) Eleanor Hall, Thomas Konstandin, Robert McGehee, and Hitoshi Murayama, Phys. Rev. D, 107(5), 055011 (2023), arXiv:1911.12342.
  • (37) Basabendu Barman, Amit Dutta Banik, and Avik Paul, Phys. Rev. D, 101(5), 055028 (2020), arXiv:1912.12899.
  • (38) Cheng-Wei Chiang and Bo-Qiang Lu, JHEP, 07, 082 (2020), arXiv:1912.12634.
  • (39) Debasish Borah, Arnab Dasgupta, Kohei Fujikura, Sin Kyu Kang, and Devabrat Mahanta, JCAP, 08, 046 (2020), arXiv:2003.02276.
  • (40) Zhaofeng Kang and Jiang Zhu, Phys. Rev. D, 102(5), 053011 (2020), arXiv:2003.02465.
  • (41) Madhurima Pandey and Avik Paul (3 2020), arXiv:2003.08828.
  • (42) Jeong-Pyong Hong, Sunghoon Jung, and Ke-Pan Xie, Phys. Rev. D, 102(7), 075028 (2020), arXiv:2008.04430.
  • (43) Tommi Alanne, Nico Benincasa, Matti Heikinheimo, Kristjan Kannike, Venus Keus, Niko Koivunen, and Kimmo Tuominen, JHEP, 10, 080 (2020), arXiv:2008.09605.
  • (44) Amit Bhoonah, Joseph Bramante, Simran Nerval, and Ningqiang Song, JCAP, 04, 043 (2021), arXiv:2008.12306.
  • (45) Xiao-Fang Han, Lei Wang, and Yang Zhang, Phys. Rev. D, 103(3), 035012 (2021), arXiv:2010.03730.
  • (46) Yan Wang, Chong Sheng Li, and Fa Peng Huang, Phys. Rev. D, 104(5), 053004 (2021), arXiv:2012.03920.
  • (47) Tathagata Ghosh, Huai-Ke Guo, Tao Han, and Hongkai Liu, JHEP, 07, 045 (2021), arXiv:2012.09758.
  • (48) Wei-Chih Huang, Manuel Reichert, Francesco Sannino, and Zhi-Wei Wang, Phys. Rev. D, 104(3), 035005 (2021), arXiv:2012.11614.
  • (49) Xin Deng, Xuewen Liu, Jing Yang, Ruiyu Zhou, and Ligong Bian, Phys. Rev. D, 103(5), 055013 (2021), arXiv:2012.15174.
  • (50) Wei Chao, Xiu-Fei Li, and Lei Wang, JCAP, 06, 038 (2021), arXiv:2012.15113.
  • (51) Aleksandr Azatov, Miguel Vanvlasselaer, and Wen Yin, JHEP, 03, 288 (2021), arXiv:2101.05721.
  • (52) Zhao Zhang, Chengfeng Cai, Xue-Min Jiang, Yi-Lei Tang, Zhao-Huan Yu, and Hong-Hao Zhang, JHEP, 05, 160 (2021), arXiv:2102.01588.
  • (53) Hooman Davoudiasl, Peter B. Denton, and Julia Gehrlein, Phys. Rev. Lett., 128(8), 081101 (2022), arXiv:2109.01678.
  • (54) Manuel Reichert, Francesco Sannino, Zhi-Wei Wang, and Chen Zhang, JHEP, 01, 003 (2022), arXiv:2109.11552.
  • (55) Ahmad Mohamadnejad, JHEP, 03, 188 (2022), arXiv:2111.04342.
  • (56) Ligong Bian, Yi-Lei Tang, and Ruiyu Zhou, Phys. Rev. D, 106(3), 035028 (2022), arXiv:2111.10608.
  • (57) Francesco Costa, Sarif Khan, and Jinsu Kim, JHEP, 06, 026 (2022), arXiv:2202.13126.
  • (58) Xuewen Liu, Shu-Yuan Guo, Bin Zhu, and Ying Li, Sci. Bull., 67, 1437–1442 (2022), arXiv:2204.04834.
  • (59) Hiroto Shibuya and Takashi Toma, JHEP, 11, 064 (2022), arXiv:2207.14662.
  • (60) Francesco Costa, Sarif Khan, and Jinsu Kim, JHEP, 12, 165 (2022), arXiv:2209.13653.
  • (61) Maciej Kierkla, Alexandros Karam, and Bogumila Swiezewska, JHEP, 03, 007 (2023), arXiv:2210.07075.
  • (62) Enrico Morgante, Nicklas Ramberg, and Pedro Schwaller, Phys. Rev. D, 107(3), 036010 (2023), arXiv:2210.11821.
  • (63) Nabarun Chakrabarty, Himadri Roy, and Tripurari Srivastava, Nucl. Phys. B, 998, 116392 (2024), arXiv:2212.09659.
  • (64) Giorgio Arcadi, Nico Benincasa, Abdelhak Djouadi, and Kristjan Kannike, Phys. Rev. D, 108(5), 055010 (2023), arXiv:2212.14788.
  • (65) Mads T. Frandsen, Matti Heikinheimo, Mattias E. Thing, Kimmo Tuominen, and Martin Rosenlyst, Phys. Rev. D, 108(1), 015033 (2023), arXiv:2301.00041.
  • (66) Georges Aad et al., Nature, 607(7917), 52–59, [Erratum: Nature 612, E24 (2022)] (2022), arXiv:2207.00092.
  • (67) Armen Tumasyan et al., Nature, 607(7917), 60–68 (2022), arXiv:2207.00043.
  • (68) Georges Aad et al., Phys. Rev. D, 101(1), 012002 (2020), arXiv:1909.02845.
  • (69) E. Aprile et al., JCAP, 04, 027 (2016), arXiv:1512.07501.
  • (70) Georges Aad et al., Phys. Rev. D, 100(5), 052013 (2019), arXiv:1906.05609.
  • (71) Albert M Sirunyan et al., JHEP, 06, 128 (2018), arXiv:1803.11133.
  • (72) (2018).
  • (73) Christophe Grojean, Geraldine Servant, and James D. Wells, Phys. Rev. D, 71, 036001 (2005), hep-ph/0407019.
  • (74) Katsuya Hashino and Daiki Ueda, Phys. Rev. D, 107(9), 095022 (2023), arXiv:2210.11241.
  • (75) Greg W. Anderson and Lawrence J. Hall, Phys. Rev. D, 45, 2685–2698 (1992).
  • (76) Cedric Delaunay, Christophe Grojean, and James D. Wells, JHEP, 04, 029 (2008), arXiv:0711.2511.
  • (77) Thomas Hahn, Comput. Phys. Commun., 140, 418–431 (2001), hep-ph/0012260.
  • (78) T. Hahn and M. Perez-Victoria, Comput. Phys. Commun., 118, 153–165 (1999), hep-ph/9807565.
  • (79) L. Dolan and R. Jackiw, Phys. Rev. D, 9, 3320–3341 (1974).
  • (80) Rajesh R. Parwani, Phys. Rev. D, 45, 4695, [Erratum: Phys.Rev.D 48, 5965 (1993)] (1992), hep-ph/9204216.
  • (81) Peter Brockway Arnold and Olivier Espinosa, Phys. Rev. D, 47, 3546, [Erratum: Phys.Rev.D 50, 6662 (1994)] (1993), hep-ph/9212235.
  • (82) Amine Ahriche, Katsuya Hashino, Shinya Kanemura, and Salah Nasri, Phys. Lett. B, 789, 119–126 (2019), arXiv:1809.09883.
  • (83) Andrei D. Linde, Nucl. Phys. B, 216, 421, [Erratum: Nucl.Phys.B 223, 544 (1983)] (1983).
  • (84) Sidney R. Coleman, Phys. Rev. D, 15, 2929–2936, [Erratum: Phys.Rev.D 16, 1248 (1977)] (1977).
  • (85) Li Li, Shao-Jiang Wang, and Zi-Yan Yuwen, Phys. Rev. D, 108(9), 096033 (2023), arXiv:2302.10042.
  • (86) Dietrich Bodeker and Guy D. Moore, JCAP, 05, 009 (2009), arXiv:0903.4099.
  • (87) Dietrich Bodeker and Guy D. Moore, JCAP, 05, 025 (2017), arXiv:1703.08215.
  • (88) Arthur Kosowsky, Andrew Mack, and Tinatin Kahniashvili, Phys. Rev. D, 66, 024030 (2002), astro-ph/0111483.
  • (89) Mark Hindmarsh, Stephan J. Huber, Kari Rummukainen, and David J. Weir, Phys. Rev. D, 92(12), 123009 (2015), arXiv:1504.03291.
  • (90) Chiara Caprini et al., JCAP, 03, 024 (2020), arXiv:1910.13125.
  • (91) Mark Hindmarsh, Stephan J. Huber, Kari Rummukainen, and David J. Weir, Phys. Rev. D, 96(10), 103520, [Erratum: Phys.Rev.D 101, 089902 (2020)] (2017), arXiv:1704.05871.
  • (92) Jose R. Espinosa, Thomas Konstandin, Jose M. No, and Geraldine Servant, JCAP, 06, 028 (2010), arXiv:1004.4187.
  • (93) Naoki Seto, Phys. Rev. D, 73, 063001 (2006), gr-qc/0510067.
  • (94) Kent Yagi and Naoki Seto, Phys. Rev. D, 83, 044011, [Erratum: Phys.Rev.D 95, 109901 (2017)] (2011), arXiv:1101.3940.
  • (95) Antoine Klein et al., Phys. Rev. D, 93(2), 024003 (2016), arXiv:1511.05581.
  • (96) Chiara Caprini et al., JCAP, 04, 001 (2016), arXiv:1512.06239.
  • (97) Astrid Eichhorn, Johannes Lumma, Jan M. Pawlowski, Manuel Reichert, and Masatoshi Yamada, JCAP, 05, 006 (2021), arXiv:2010.00017.

Appendix A VCW+δVV_{\text{CW}}+\delta V

Defining φ=φ12+φ22\varphi=\sqrt{\varphi_{1}^{2}+\varphi_{2}^{2}}, then the renormalized effective potential at T=0T=0 as a function of φ\varphi can be expressed as follows:

Veff|T=0=\displaystyle\evaluated{V_{\text{eff}}}_{T=0}= mh2ΔΣhh16vΦ2((φ22vΦ2)24vΦ4)\displaystyle\frac{m_{h^{\prime}}^{2}-\Delta\Sigma_{h^{\prime}h^{\prime}}}{16v_{\Phi}^{2}}\left((\varphi^{2}-2v_{\Phi}^{2})^{2}-4v_{\Phi}^{4}\right)
+9mV432π2φ22vΦ2+9mZ432π2φ22vΦ2\displaystyle+9\frac{m_{V}^{4}}{32\pi^{2}}\frac{\varphi^{2}}{2v_{\Phi}^{2}}+9\frac{m_{Z^{\prime}}^{4}}{32\pi^{2}}\frac{\varphi^{2}}{2v_{\Phi}^{2}}
+9mV464π2φ44vΦ4(lnφ22vΦ232)+9mZ464π2φ44vΦ4(lnφ22vΦ232)\displaystyle+9\frac{m_{V}^{4}}{64\pi^{2}}\frac{\varphi^{4}}{4v_{\Phi}^{4}}\left(\ln\frac{\varphi^{2}}{2v_{\Phi}^{2}}-\frac{3}{2}\right)+9\frac{m_{Z^{\prime}}^{4}}{64\pi^{2}}\frac{\varphi^{4}}{4v_{\Phi}^{4}}\left(\ln\frac{\varphi^{2}}{2v_{\Phi}^{2}}-\frac{3}{2}\right)
+164π2mh22(lnmh2mh232)+132π2mh2mh2\displaystyle+\frac{1}{64\pi^{2}}\expectationvalue*{m_{h^{\prime}}^{2}}^{2}\left(\ln\frac{\expectationvalue*{{m}_{h^{\prime}}^{2}}}{m_{h^{\prime}}^{2}}-\frac{3}{2}\right)+\frac{1}{32\pi^{2}}\expectationvalue{{m}_{h^{\prime}}^{2}}m_{h^{\prime}}^{2}
+164π2mhD22(lnmhD2mhD232)+132π2mhD2mhD2\displaystyle+\frac{1}{64\pi^{2}}\expectationvalue{{m}_{h_{D}}^{2}}^{2}\left(\ln\frac{\expectationvalue{{m}_{h_{D}}^{2}}}{m_{h_{D}}^{2}}-\frac{3}{2}\right)+\frac{1}{32\pi^{2}}\expectationvalue{{m}_{h_{D}}^{2}}m_{h_{D}}^{2}
6(λ12+2λΦ)2128π23φ2(4vΦ2+φ2)\displaystyle-6\frac{(\lambda_{12}+2\lambda_{\Phi})^{2}}{128\pi^{2}}3\varphi^{2}(-4v_{\Phi}^{2}+\varphi^{2})
+6(λ12+2λΦ)2(φ22vΦ2)264π2ln(λ12+2λΦ)(φ22vΦ2)mG2\displaystyle+6\frac{(\lambda_{12}+2\lambda_{\Phi})^{2}(\varphi^{2}-2v_{\Phi}^{2})^{2}}{64\pi^{2}}\ln\frac{(\lambda_{12}+2\lambda_{\Phi})(\varphi^{2}-2v_{\Phi}^{2})}{m_{G}^{2}}
+(φ-independent terms),\displaystyle+\text{($\varphi$-independent terms)}, (88)

where

mG2=\displaystyle m_{G}^{2}= limφ2vΦ(φ22vΦ2),\displaystyle\lim_{\varphi\to\sqrt{2}v_{\Phi}}(\varphi^{2}-2v_{\Phi}^{2}), (89)
mΦ2=\displaystyle m_{\Phi}^{2}= vΦ2(λ12+2λΦ),\displaystyle-v_{\Phi}^{2}(\lambda_{12}+2\lambda_{\Phi}), (90)
mh2=\displaystyle\expectationvalue{m_{h^{\prime}}^{2}}= 2vΦ2(λ12+2λΦ)+(λ122λ122+6λΦ)φ2,\displaystyle-2v_{\Phi}^{2}(\lambda_{12}+2\lambda_{\Phi})+(\lambda_{12}-2\sqrt{\lambda_{12}^{2}}+6\lambda_{\Phi})\varphi^{2}, (91)
mhD2=\displaystyle\expectationvalue{m_{h_{D}}^{2}}= 2vΦ2(λ12+2λΦ)+(λ12+2λ122+6λΦ)φ2,\displaystyle-2v_{\Phi}^{2}(\lambda_{12}+2\lambda_{\Phi})+(\lambda_{12}+2\sqrt{\lambda_{12}^{2}}+6\lambda_{\Phi})\varphi^{2}, (92)
ΔΣhh=\displaystyle\Delta\Sigma_{h^{\prime}h^{\prime}}= 3mh232π2vΦ2(A0(mV2)+A0(mZ2))\displaystyle\frac{3m_{h^{\prime}}^{2}}{32\pi^{2}v_{\Phi}^{2}}\left(A_{0}(m_{V}^{2})+A_{0}(m_{Z^{\prime}}^{2})\right)
+3mΦ42π2vΦ2B0(0,0,0)+(λ126λΦ)2vΦ24π2B0(0,mhD2,mhD2)\displaystyle+\frac{3m_{\Phi}^{4}}{2\pi^{2}v_{\Phi}^{2}}B_{0}(0,0,0)+\frac{(\lambda_{12}-6\lambda_{\Phi})^{2}v_{\Phi}^{2}}{4\pi^{2}}B_{0}(0,m_{h_{D}}^{2},m_{h_{D}}^{2})
+9mΦ44π2vΦ2B0(0,mh2,mh2)+9mV416π2vΦ2B0(0,mV2,mV2)\displaystyle+\frac{9m_{\Phi}^{4}}{4\pi^{2}v_{\Phi}^{2}}B_{0}(0,m_{h^{\prime}}^{2},m_{h^{\prime}}^{2})+\frac{9m_{V}^{4}}{16\pi^{2}v_{\Phi}^{2}}B_{0}(0,m_{V}^{2},m_{V}^{2})
+9mZ416π2vΦ2B0(0,mZ2,mZ2)\displaystyle+\frac{9m_{Z^{\prime}}^{4}}{16\pi^{2}v_{\Phi}^{2}}B_{0}(0,m_{Z^{\prime}}^{2},m_{Z^{\prime}}^{2})
3(mh4+16mΦ4)32π2vΦ2B0(mh2,0,0)(λ126λΦ)2vΦ24π2B0(mh2,mhD2,mhD2)\displaystyle-\frac{3(-m_{h^{\prime}}^{4}+16m_{\Phi}^{4})}{32\pi^{2}v_{\Phi}^{2}}B_{0}(m_{h^{\prime}}^{2},0,0)-\frac{(\lambda_{12}-6\lambda_{\Phi})^{2}v_{\Phi}^{2}}{4\pi^{2}}B_{0}(m_{h^{\prime}}^{2},m_{h_{D}}^{2},m_{h_{D}}^{2})
9mΦ44π2vΦ2B0(mh2,mh2,mh2)\displaystyle-\frac{9m_{\Phi}^{4}}{4\pi^{2}v_{\Phi}^{2}}B_{0}(m_{h^{\prime}}^{2},m_{h^{\prime}}^{2},m_{h^{\prime}}^{2})
3(mh44mh2mV2+12mV4)64π2vΦ2B0(mh2,mV2,mV2)\displaystyle-\frac{3(m_{h^{\prime}}^{4}-4m_{h^{\prime}}^{2}m_{V}^{2}+12m_{V}^{4})}{64\pi^{2}v_{\Phi}^{2}}B_{0}(m_{h^{\prime}}^{2},m_{V}^{2},m_{V}^{2})
3(mh44mh2mZ2+12mZ4)64π2vΦ2B0(mh2,mZ2,mZ2)\displaystyle-\frac{3(m_{h^{\prime}}^{4}-4m_{h^{\prime}}^{2}m_{Z^{\prime}}^{2}+12m_{Z^{\prime}}^{4})}{64\pi^{2}v_{\Phi}^{2}}B_{0}(m_{h^{\prime}}^{2},m_{Z^{\prime}}^{2},m_{Z^{\prime}}^{2})
mh2δZ.\displaystyle-m_{h^{\prime}}^{2}\delta_{Z}. (93)

Here,

A0(m2)=\displaystyle A_{0}(m^{2})= (4π)2idd(2π)d1m12,\displaystyle\frac{(4\pi)^{2}}{i}\int\frac{\differential[d]{\ell}}{(2\pi)^{d}}\frac{1}{\ell-m_{1}^{2}}, (94)
B0(p2,m12,m22)=\displaystyle B_{0}(p^{2},m_{1}^{2},m_{2}^{2})= (4π)2idd(2π)d1(m12)((+p)2m22),\displaystyle\frac{(4\pi)^{2}}{i}\int\frac{\differential[d]{\ell}}{(2\pi)^{d}}\frac{1}{(\ell-m_{1}^{2})((\ell+p)^{2}-m_{2}^{2})}, (95)

and δZ\delta_{Z} is the counter term for the wave-function renormalization. We choose the MS-bar renormalization condition for δZ\delta_{Z}. The IR divergences originated from the would-be NG boson contributions in VCWV_{\text{CW}} and ΔΣhh\Delta\Sigma_{h^{\prime}h^{\prime}} cancel each other. After the cancelation, the dominant contribution of ΔΣhh\Delta\Sigma_{h^{\prime}h^{\prime}} to the potential comes from the terms depending on the gauge couplings, described as

ΔΣhh\displaystyle\Delta\Sigma_{h^{\prime}h^{\prime}}\simeq 9mh232π2vΦ2(mV2lnμ2mV2+mZ2lnμ2mZ2).\displaystyle\frac{9m_{h^{\prime}}^{2}}{32\pi^{2}v_{\Phi}^{2}}\left(m_{V}^{2}\ln\frac{\mu^{2}}{m_{V}^{2}}+m_{Z^{\prime}}^{2}\ln\frac{\mu^{2}}{m_{Z^{\prime}}^{2}}\right). (96)