This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: School of Physics and Astronomy, Monash University, Clayton, Australia 22institutetext: Center for Cosmology and Astrophysics, Alikhanian National Laboratory and Yerevan State University, Yerevan, Armenia 33institutetext: SIA, Sapienza Universita di Roma, Rome, Italy

Gravitational waves as waveguides

A.A.Kocharyan 11    M.Samsonyan 22    V.G.Gurzadyan 2233
(Received: date / Revised version: date)
Abstract

We show that gravitational waves can act as waveguides for electromagnetic radiation, that is if the latter is initially aligned with the gravitational waves, then the alignment will survive during the propagation. The analysis is performed using the Hamiltonian formalism and the Jacobi equation for null geodesics and conditions for certain cases of polarization of the waves are obtained. The effect of waveguiding by the gravitational waves can influence the interpretation of associated gravitational and electromagnetic wave events, since the latter cannot necessarily obey the inverse square decay law for intensity.

pacs:
98.80.-kCosmology

1 Introduction

The experimental discovery of the gravitational waves Ligo (GW) opened an entire new window in the study of the Universe. GW data are used to address the key cosmological problems and tensions, constrain fundamental physical parameters, modified gravity theories, complementing the observational and experimental surveys, e.g. Ligo1 ; Mu ; C4 ; Cap ; Mas and references therein. Particular importance have the associated events of both gravitational and electromagnetic (EM) wave pulses, as it was with GW170817 Troja , providing information on the merging details, jets and cosmology Si . In view of the possible observations in future of more counterparts of GW and EM sources, the consideration of effects of their associated propagation becomes important. Let us note, that waveguiding of GW by matter, lensing effects, has been considered earlier (Cap1 ; Cap2 and references therein), while we study the trapping and waveguiding of EM by GW themselves.

We will study the impact of the gravitational wave propagation on the aligned photons by means of the Hamiltonian formalism, null geodesic congruences, the deviation of null geodesics and the hyperbolicity of geodesic flows An ; Arn ; HE . That formalism appears to be efficient in the studying the properties of the Cosmic Microwave Background (CMB), Cold Spot, photon propagation through cosmic voids GK1 ; GK2 ; spot ; S2 , linked to the Hubble tension, e.g. GS7 ; GS8 . We show that, within certain conditions, the photons if initially aligned with the gravitational waves, will continue to propagate keeping their alignment, i.e. staying trapped within the gravitational waves. This is a principal conclusion, since it implies that gravitational waves can possess properties of waveguides, transmitting electromagnetic radiation not determined by the inverse square law decay of intensity.

2 Deviation of null geodesics

We start from the deviation of null geodesics defined via the Jacobi equation An ; HE

d2nadt2+Raubbcdudnc=0,\frac{d^{2}n^{a}}{dt^{2}}+R^{a}{}_{bcd}u^{b}u^{d}n^{c}=0, (1)

where uu and nn denote the velocity and the deviation of geodesics, respectively. This equation shows that the behavior of deviation vector nan^{a} depends explicitly on Riemannian tensor RabcdR_{abcd}. The association of the null geodesics and plane gravitational waves are known since the seminal study by Penrose Pen .

Jacobi equation (1) can be represented as follows HE (Eqs. (4.34)-(4.36) there, we keep the same notations)

θ˙\displaystyle\dot{\theta} =Rabnanb+2ω2σ12σ2212θ2,\displaystyle=-R_{ab}n^{a}n^{b}+2\omega^{2}-\sigma_{1}^{2}-\sigma_{2}^{2}-\tfrac{1}{2}\theta^{2}, (2)
ω˙\displaystyle\dot{\omega} =θω,\displaystyle=-\theta\ \omega, (3)
σ1˙\displaystyle\dot{\sigma_{1}} =θσ1C1010,\displaystyle=-\theta\ \sigma_{1}-C_{1010}, (4)
σ2˙\displaystyle\dot{\sigma_{2}} =θσ2C1020,\displaystyle=-\theta\ \sigma_{2}-C_{1020}, (5)

where

θ=(detA)1dds(detA),\displaystyle\theta=(\det A)^{-1}\frac{d}{ds}(\det A), (6)
ω^mn=(0ωω0),σ^mn=(σ1σ2σ2σ1)\displaystyle\hat{\omega}_{mn}=\begin{pmatrix}&0&\omega\\ &-\omega&0\end{pmatrix},\qquad\hat{\sigma}_{mn}=\begin{pmatrix}&\sigma_{1}&\sigma_{2}\\ &\sigma_{2}&-\sigma_{1}\end{pmatrix} (7)

and CabcdC_{abcd} is the Weyl tensor, θ\theta is the expansion scalar as the trace of the expansion tensor, ωmn\omega_{mn} is the vorticity tensor, σmn\sigma_{mn} is the shear tensor, the matrix AA is defining the shape and orientation of the fluid element. Eq.(2) is known as Landau–Raychaudhuri equation for null geodesics HE .

We will consider the case with ωmn=0\omega_{mn}=0 (no vorticity, i.e. no centrifugal forces) to obtain the mutual behavior of θ\theta and σ^\hat{\sigma} vs the affine parameter of the geodesics, and hence, constraints on the alignment of the photon bundle during the propagation.

We consider gravitational waves in empty space-time, hence we have (cf. MTW , Chapter 35)

Rab\displaystyle R_{ab} =0,\displaystyle=0, (8)
Cabcd\displaystyle C_{abcd} =Rabcd.\displaystyle=R_{abcd}. (9)

Denoting a1=R1010a_{1}=R_{1010} and a2=R1020a_{2}=R_{1020}, we have

θ˙\displaystyle\dot{\theta} =2ω2σ12σ2212θ2,\displaystyle=2\omega^{2}-\sigma_{1}^{2}-\sigma_{2}^{2}-\tfrac{1}{2}\theta^{2}, (10)
ω˙\displaystyle\dot{\omega} =θω,\displaystyle=-\theta\ \omega, (11)
σ1˙\displaystyle\dot{\sigma_{1}} =θσ1a1,\displaystyle=-\theta\ \sigma_{1}-a_{1}, (12)
σ2˙\displaystyle\dot{\sigma_{2}} =θσ2a2.\displaystyle=-\theta\ \sigma_{2}-a_{2}. (13)

If θ=2˙/\theta=2\dot{\ell}/\ell, then

θ˙+12θ2\displaystyle\dot{\theta}+\tfrac{1}{2}\theta^{2} =2˙\displaystyle=2\frac{\dot{\ell}}{\ell} (14)

and we get a closed equation for \ell

¨\displaystyle\ddot{\ell} =[ω212(σ12+σ22)],\displaystyle=\left[\omega^{2}-\tfrac{1}{2}(\sigma_{1}^{2}+\sigma_{2}^{2})\right]\ell, (15)

where

ω\displaystyle\omega =ω0022,\displaystyle=\omega_{0}\frac{\ell_{0}^{2}}{\ell^{2}}, (16)
σi\displaystyle\sigma_{i} =(σi,00λai2𝑑s)022,\displaystyle=\left(\sigma_{i,0}-\int_{0}^{\lambda}a_{i}\ell^{2}ds\right)\frac{\ell^{2}_{0}}{\ell^{2}}, (17)

and

¨\displaystyle\ddot{\ell} =(ω0212[(σ1,00λa12𝑑s)2+(σ2,00λa22𝑑s)2])043.\displaystyle=\left(\omega_{0}^{2}-\tfrac{1}{2}\left[\left(\sigma_{1,0}-\int_{0}^{\lambda}a_{1}\ell^{2}ds\right)^{2}+\left(\sigma_{2,0}-\int_{0}^{\lambda}a_{2}\ell^{2}ds\right)^{2}\right]\right)\frac{\ell_{0}^{4}}{\ell^{3}}. (18)

If ω=0\omega=0, then

θ˙\displaystyle\dot{\theta} =σ12σ2212θ2,\displaystyle=-\sigma_{1}^{2}-\sigma_{2}^{2}-\tfrac{1}{2}\theta^{2}, (19)
σi˙\displaystyle\dot{\sigma_{i}} =θσiai.\displaystyle=-\theta\ \sigma_{i}-a_{i}. (20)

We can make the following changes

θ˙\displaystyle\dot{\theta} =12(θ+σ1+σ2)2+θ(σ1+σ2)12(σ1σ2)2,\displaystyle=-\tfrac{1}{2}\left(\theta+\sigma_{1}+\sigma_{2}\right)^{2}+\theta(\sigma_{1}+\sigma_{2})-\tfrac{1}{2}\left(\sigma_{1}-\sigma_{2}\right)^{2}, (21)
σ1˙\displaystyle\dot{\sigma_{1}} =θσ1a1,\displaystyle=-\theta\ \sigma_{1}-a_{1}, (22)
σ2˙\displaystyle\dot{\sigma_{2}} =θσ2a2.\displaystyle=-\theta\ \sigma_{2}-a_{2}. (23)

Denoting σ=12(σ1+σ2)\sigma=\frac{1}{2}(\sigma_{1}+\sigma_{2}), μ=θ+2σ\mu=\theta+2\sigma, and δ=σ1σ2\delta=\sigma_{1}-\sigma_{2}, we will get

μ˙\displaystyle\dot{\mu} =12μ212δ2(a1+a2),\displaystyle=-\tfrac{1}{2}\mu^{2}-\tfrac{1}{2}\delta^{2}-(a_{1}+a_{2}), (24)
σ˙\displaystyle\dot{\sigma} =θσ12(a1+a2),\displaystyle=-\theta\ \sigma-\tfrac{1}{2}(a_{1}+a_{2}), (25)
δ˙\displaystyle\dot{\delta} =θδ(a1a2).\displaystyle=-\theta\ \delta-(a_{1}-a_{2}). (26)

Below, we will analyse this set of equations determining the deviation of photon trajectories for certain special cases.

3 Photon motions in special cases

3.1 Special case 1 (σ1=σ2\sigma_{1}=\sigma_{2})

If a1=a2=aa_{1}=a_{2}=a (R1010=R1020R_{1010}=R_{1020}), then our set of equations becomes

μ˙\displaystyle\dot{\mu} =12μ212δ22a,\displaystyle=-\tfrac{1}{2}\mu^{2}-\tfrac{1}{2}\delta^{2}-2a, (27)
σ˙\displaystyle\dot{\sigma} =(μ2σ)σa,\displaystyle=-(\mu-2\sigma)\ \sigma-a, (28)
δ˙\displaystyle\dot{\delta} =(μ2σ)δ.\displaystyle=-(\mu-2\sigma)\ \delta. (29)

and the following solution

θ(t)\displaystyle\theta(t) =a[tanh(a(tt1))tan(a(tt0))],\displaystyle=\sqrt{a}\left[\tanh(\sqrt{a}(t-t_{1}))-\tan(\sqrt{a}(t-t_{0}))\right], (30)
σ(t)\displaystyle\sigma(t) =12a[tanh(a(tt1))+tan(a(tt0))],\displaystyle=-\tfrac{1}{2}\sqrt{a}\left[\tanh(\sqrt{a}(t-t_{1}))+\tan(\sqrt{a}(t-t_{0}))\right], (31)
σ1(t)\displaystyle\sigma_{1}(t) =σ2(t)=σ(t),\displaystyle=\sigma_{2}(t)=\sigma(t), (32)
δ(t)\displaystyle\delta(t) =0.\displaystyle=0. (33)
Figure 1: Photon trapping in gravitational waves indicated by the mutual behavior of θ\theta and σ\sigma during the propagation. The scalar θ\theta determines the rate of the change of volume element in time measured by a comoving observer, while the shear σ\sigma determines the distortion of the shape of an initial ball.
Refer to caption

3.2 Special case 2 (σ1/a1=σ2/a2\sigma_{1}/a_{1}=\sigma_{2}/a_{2})

In this case we have

θ˙\displaystyle\dot{\theta} =σ12σ2212θ2,\displaystyle=-\sigma_{1}^{2}-\sigma_{2}^{2}-\tfrac{1}{2}\theta^{2}, (34)
σ1˙\displaystyle\dot{\sigma_{1}} =θσ1a1,\displaystyle=-\theta\ \sigma_{1}-a_{1}, (35)
σ2˙\displaystyle\dot{\sigma_{2}} =θσ2a2,\displaystyle=-\theta\ \sigma_{2}-a_{2}, (36)

and

σ1˙a1\displaystyle\frac{\dot{\sigma_{1}}}{a_{1}} =θσ1a11,\displaystyle=-\theta\ \frac{\sigma_{1}}{a_{1}}-1, (37)
σ2˙a2\displaystyle\frac{\dot{\sigma_{2}}}{a_{2}} =θσ2a21,\displaystyle=-\theta\ \frac{\sigma_{2}}{a_{2}}-1, (38)

hence

σ1˙a1σ2˙a2\displaystyle\frac{\dot{\sigma_{1}}}{a_{1}}-\frac{\dot{\sigma_{2}}}{a_{2}} =θ(σ1a1σ2a2).\displaystyle=-\theta\left(\frac{\sigma_{1}}{a_{1}}-\frac{\sigma_{2}}{a_{2}}\right). (39)

If θ=2˙/\theta=2\dot{\ell}/\ell, then

¨\displaystyle\ddot{\ell} =12(σ12+σ22),\displaystyle=-\tfrac{1}{2}(\sigma_{1}^{2}+\sigma_{2}^{2})\ell, (40)
(σ1a12).\displaystyle\left(\frac{\sigma_{1}}{a_{1}}\ell^{2}\right)^{.} =2,\displaystyle=-\ell^{2}, (41)
(σ2a22).\displaystyle\left(\frac{\sigma_{2}}{a_{2}}\ell^{2}\right)^{.} =2,\displaystyle=-\ell^{2}, (42)
(σ1a1σ2a2)2\displaystyle\left(\frac{\sigma_{1}}{a_{1}}-\frac{\sigma_{2}}{a_{2}}\right)\ell^{2} =S.\displaystyle=S. (43)

For νi=σi/ai\nu_{i}=\sigma_{i}/a_{i} we have

¨\displaystyle\ddot{\ell} =12(a12ν12+a22ν22),\displaystyle=-\tfrac{1}{2}(a_{1}^{2}\nu_{1}^{2}+a_{2}^{2}\nu_{2}^{2})\ell, (44)
(ν12).\displaystyle\left(\nu_{1}\ell^{2}\right)^{.} =2,\displaystyle=-\ell^{2}, (45)
(ν22).\displaystyle\left(\nu_{2}\ell^{2}\right)^{.} =2,\displaystyle=-\ell^{2}, (46)
(ν1ν2)2\displaystyle\left(\nu_{1}-\nu_{2}\right)\ell^{2} =S.\displaystyle=S. (47)

If S=0S=0, then ν1=ν2=ν\nu_{1}=\nu_{2}=\nu and

¨\displaystyle\ddot{\ell} =12(a12+a22)ν2,\displaystyle=-\tfrac{1}{2}(a_{1}^{2}+a_{2}^{2})\nu^{2}\ell, (48)
(ν2).\displaystyle\left(\nu\ell^{2}\right)^{.} =2,\displaystyle=-\ell^{2}, (49)

or

θ˙\displaystyle\dot{\theta} =12θ2(a12+a22)ν2,\displaystyle=-\tfrac{1}{2}\theta^{2}-(a_{1}^{2}+a_{2}^{2})\nu^{2}, (50)
ν˙\displaystyle\dot{\nu} =θν1,\displaystyle=-\theta\nu-1, (51)

and

(θ+2αν).\displaystyle(\theta+2\alpha\nu)^{.} =12((θ+2αν)2+2(a12+a222α2)ν2)2α.\displaystyle=-\tfrac{1}{2}\left((\theta+2\alpha\nu)^{2}+2(a_{1}^{2}+a_{2}^{2}-2\alpha^{2})\nu^{2}\right)-2\alpha. (52)

If α2=12(a12+a22)\alpha^{2}=\tfrac{1}{2}(a_{1}^{2}+a_{2}^{2}), then

(θ+2αν).\displaystyle(\theta+2\alpha\nu)^{.} =12(θ+2αν)22α,\displaystyle=-\tfrac{1}{2}(\theta+2\alpha\nu)^{2}-2\alpha, (53)

which can be solved as in case 1.

If a1=a2=aa_{1}=a_{2}=a, then α=a\alpha=a and aν=σa\nu=\sigma (cf. case 1).

3.3 Solution leading to the case a1=a2a_{1}=a_{2}

Equations that we have to solve can be written in a compact way

σi˙+θσi=ai,\displaystyle\dot{\sigma_{i}}+\theta\ \sigma_{i}=-a_{i}, (54)
θ˙+12θ2+σ12+σ22=0,\displaystyle\dot{\theta}+\tfrac{1}{2}\theta^{2}+\sigma_{1}^{2}+\sigma_{2}^{2}=0, (55)

where the index i=1,2i=1,2

We can refer to σ1\sigma_{1} and σ2\sigma_{2} as a vector (σ1σ2)\left({\sigma_{1}\atop\sigma_{2}}\right), the rotation of which by an angle φ\varphi will not change its length σ12+σ22\sigma_{1}^{2}+\sigma_{2}^{2} appearing in (55). Let us denote the rotated vector by (s1s2)\left({s_{1}\atop s_{2}}\right). Thus

(s1s2)=(cosφsinφsinφcosφ)(σ1σ2).\displaystyle\left({s_{1}\atop s_{2}}\right)=\begin{pmatrix}&\cos\varphi&\sin\varphi\\ &-\sin\varphi&\cos\varphi\end{pmatrix}\left({\sigma_{1}\atop\sigma_{2}}\right). (56)

It follows from (54) that the vector (a1a2)\left({a_{1}\atop a_{2}}\right) is also rotating

(a~1a~2)=(cosφsinφ,sinφcosφ)(a1a2).\displaystyle\left({\tilde{a}_{1}\atop\tilde{a}_{2}}\right)=\begin{pmatrix}&\cos\varphi&\sin\varphi,\\ &-\sin\varphi&\cos\varphi\end{pmatrix}\left({a_{1}\atop a_{2}}\right). (57)

Let us choose the angle φ\varphi such that a~1=a~2\tilde{a}_{1}=\tilde{a}_{2}. Thus, we get

a1cosφ+a2sinφ=a1sinφ+a2cosφ\displaystyle a_{1}\cos\varphi+a_{2}\sin\varphi=-a_{1}\sin\varphi+a_{2}\cos\varphi (58)

And hence

tanφ=a2a1a2+a1.\displaystyle\tan\varphi=\frac{a_{2}-a_{1}}{a_{2}+a_{1}}. (59)

Denote a~1=a~2=a\tilde{a}_{1}=\tilde{a}_{2}=a. In terms of sis_{i} and aa, the equations (54) and (55) become

si˙+θsi=a,\displaystyle\dot{s_{i}}+\theta s_{i}=-a, (60)
θ˙+12θ2+s12+s22=0.\displaystyle\dot{\theta}+\tfrac{1}{2}\theta^{2}+s_{1}^{2}+s_{2}^{2}=0. (61)

When, in addition s1=s2s_{1}=s_{2}, one goes back to a1=a2=aa_{1}=a_{2}=a case (Special case 1;(31), (30)).

s(t)\displaystyle s(t) =a2[tanh(a(tt1))+tan(a(tt0))],\displaystyle=-\frac{\sqrt{a}}{2}\left[\tanh(\sqrt{a}(t-t_{1}))+\tan(\sqrt{a}(t-t_{0}))\right], (62)
θ(t)\displaystyle\theta(t) =a[tanh(a(tt1))tan(a(tt0))].\displaystyle=\sqrt{a}\left[\tanh(\sqrt{a}(t-t_{1}))-\tan(\sqrt{a}(t-t_{0}))\right]. (63)

Then

σ1=(cosφsinφ)s,\displaystyle\sigma_{1}=(\cos\varphi-\sin\varphi)s, (64)
σ2=(cosφ+sinφ)s,\displaystyle\sigma_{2}=(\cos\varphi+\sin\varphi)s, (65)

where φ\varphi is given by (59). Thus

σ1=a1αs,\displaystyle\sigma_{1}=\frac{a_{1}}{\alpha}\,s, (66)
σ2=a2αs,\displaystyle\sigma_{2}=\frac{a_{2}}{\alpha}\,s,\, (67)

where ss is given by (62).

4 Hamiltonian motion

We will now use the Hamiltonian formalism to determine the behavior of the photon beams propagating within the gravitational waves defined by the linearized metric (weak-field approximation) MTW ; W

𝐠\displaystyle\mathbf{g} =𝐝t2+𝐝z2+γij𝐝xi𝐝xj=𝐝u𝐝v+(δij+hij(u))𝐝xi𝐝xj(hij(u)=A(u)eij),\displaystyle=-\mathbf{d}t^{2}+\mathbf{d}z^{2}+\gamma_{ij}\mathbf{d}x^{i}\mathbf{d}x^{j}=-\mathbf{d}u\mathbf{d}v+(\delta_{ij}+h_{ij}(u))\mathbf{d}x^{i}\mathbf{d}x^{j}\qquad(h_{ij}(u)=A(u)e_{ij}), (68)

or

𝐠\displaystyle\mathbf{g} =(01/2001/2000001+h11(u)h12(u)00h21(u)1+h22(u)).\displaystyle=\begin{pmatrix}0&-1/2&0&0\\ -1/2&0&0&0\\ 0&0&1+h_{11}(u)&h_{12}(u)\\ 0&0&h_{21}(u)&1+h_{22}(u)\end{pmatrix}. (69)

The Hamiltonian is defined as

\displaystyle\mathcal{H} =2pupv+12(δij+A(u)eij)pipj=0,\displaystyle=-2p_{u}p_{v}+\tfrac{1}{2}(\delta^{ij}+A(u)e^{ij})p_{i}p_{j}=0, (70)

where

A(u)\displaystyle A(u) =A0cos(ωu).\displaystyle=A_{0}\cos(\omega u). (71)

Then

h11\displaystyle h_{11} =h22=Re(A+eiωu),\displaystyle=-h_{22}=Re(A_{+}e^{-i\omega u}), (72)
h21\displaystyle h_{21} =h12=Re(A×eiωu),\displaystyle=h_{12}=Re(A_{\times}e^{-i\omega u}), (73)

where eije^{ij} is the polarization tensor of the gravitational waves, and u=tzu=t-z and v=t+zv=t+z.

The Hamiltonian equations then have the form, with the defined momentum pip_{i}

{dudλ=pu=2pv,dvdλ=pv=2pu,dxidλ=pi=γijpj,\displaystyle\begin{cases}\frac{du}{d\lambda}=\frac{\partial\mathcal{H}}{\partial p_{u}}=-2p_{v},\\ \frac{dv}{d\lambda}=\frac{\partial\mathcal{H}}{\partial p_{v}}=-2p_{u},\\ \frac{dx^{i}}{d\lambda}=\frac{\partial\mathcal{H}}{\partial p_{i}}=\gamma^{ij}p_{j},\end{cases} (74)

and

{dpudλ=u=12A(u)eijpipj,dpvdλ=v=0,dpidλ=xi=0,\displaystyle\begin{cases}\frac{dp_{u}}{d\lambda}=-\frac{\partial\mathcal{H}}{\partial u}=-\tfrac{1}{2}A^{\prime}(u)e^{ij}p_{i}p_{j},\\ \frac{dp_{v}}{d\lambda}=-\frac{\partial\mathcal{H}}{\partial v}=0,\\ \frac{dp_{i}}{d\lambda}=-\frac{\partial\mathcal{H}}{\partial x^{i}}=0,\end{cases} (75)

thus pv=pv(0)0p_{v}=p_{v}(0)\neq 0, pi=pi(0)p_{i}=p_{i}(0), and du=2pv(0)dλdu=-2p_{v}(0)d\lambda, and

{dvdu=pupv(0),dxidu=γij(u)pj(0)2pu(0),dpudu=14A(u)eijpi(0)pj(0)pv(0),\displaystyle\begin{cases}\frac{dv}{du}=\frac{p_{u}}{p_{v}(0)},\\ \frac{dx^{i}}{du}=-\frac{\gamma^{ij}(u)p_{j}(0)}{2p_{u}(0)},\\ \frac{dp_{u}}{du}=\tfrac{1}{4}A^{\prime}(u)e^{ij}\frac{p_{i}(0)p_{j}(0)}{p_{v}(0),}\end{cases} (76)

and

\displaystyle\mathcal{H} =2pupv+12(δij+A(u)eij)pipj=0,\displaystyle=-2p_{u}p_{v}+\tfrac{1}{2}(\delta^{ij}+A(u)e^{ij})p_{i}p_{j}=0, (77)
pu\displaystyle p_{u} =14(δij+A(u)eij)pi(0)pj(0)pv(0),\displaystyle=\tfrac{1}{4}(\delta^{ij}+A(u)e^{ij})\frac{p_{i}(0)p_{j}(0)}{p_{v}(0),} (78)

therefore

{u=u(0)2pv(0)λ,dvdu=pupv(0),dxidu=12(δij+A(u)eij)pj(0)pv(0),pu=14(δij+A(u)eij)pi(0)pj(0)pv(0),\displaystyle\begin{cases}u=u(0)-2p_{v}(0)\lambda,\\ \frac{dv}{du}=\frac{p_{u}}{p_{v}(0)},\\ \frac{dx^{i}}{du}=-\tfrac{1}{2}(\delta^{ij}+A(u)e^{ij})\frac{p_{j}(0)}{p_{v}(0)},\\ p_{u}=\tfrac{1}{4}(\delta^{ij}+A(u)e^{ij})\frac{p_{i}(0)p_{j}(0)}{p_{v}(0)},\end{cases} (79)
{u=u(0)2pv(0)λ,v(u)=v(0)+14(δiju+B(u)eij)pi(0)pj(0)pv(0)pv(0),xi(u)=xi(0)12(δiju+B(u)eij)pj(0)pv(0),pu=14(δij+A(u)eij)pi(0)pj(0)pv(0),B(u)=0uA(s)𝑑s.\displaystyle\begin{cases}u=u(0)-2p_{v}(0)\lambda,\\ v(u)=v(0)+\tfrac{1}{4}(\delta^{ij}u+B(u)e^{ij})\frac{p_{i}(0)p_{j}(0)}{p_{v}(0)p_{v}(0)},\\ x^{i}(u)=x^{i}(0)-\tfrac{1}{2}(\delta^{ij}u+B(u)e^{ij})\frac{p_{j}(0)}{p_{v}(0)},\\ p_{u}=\tfrac{1}{4}(\delta^{ij}+A(u)e^{ij})\frac{p_{i}(0)p_{j}(0)}{p_{v}(0)},\\ B(u)=\int_{0}^{u}A(s)ds.\end{cases} (80)

From

pu\displaystyle p_{u} =12(ptpz)\displaystyle=\tfrac{1}{2}(p_{t}-p_{z}) (81)
pv\displaystyle p_{v} =12(pt+pz)\displaystyle=\tfrac{1}{2}(p_{t}+p_{z}) (82)

for photons with pt(0)=pz(0)p_{t}(0)=p_{z}(0), p1(0)=p2(0)=0p_{1}(0)=p_{2}(0)=0 we have pt(λ)=pz(λ)p_{t}(\lambda)=p_{z}(\lambda) for all λ0\lambda\geq 0.

Therefore, if photons are aligned with gravitational waves initially, then they will stay aligned during the propagation, trapped by the gravitational waves.

It is interesting that, for small pi(0)p_{i}(0), ptpzp_{t}\approx p_{z}

ptpz\displaystyle p_{t}-p_{z} =(δij+A(u)eij)pi(0)pj(0)pv(0).\displaystyle=(\delta^{ij}+A(u)e^{ij})\frac{p_{i}(0)p_{j}(0)}{p_{v}(0)}. (83)
Figure 2: Schematic view of the gravitational waves acting as waveguides for the aligned photons.
Refer to caption

5 Conclusions

Using the Hamiltonian formalism and the Jacobi equation of the divergence of null geodesics (analog of Landau–Raychaudhuri equation), we analysed the propagation of electromagnetic radiation in the metric of the gravitational waves. Particular cases of parameters of both waves are considered, and the conditions are obtained when the photons aligned with the gravitational wave initially, will continue to remain aligned, i.e. being trapped by the gravitational wave metric.

If the gravitational waves act as waveguides to transmit the electromagnetic waves, then the intensity of the latter will not decay by distance according to the inverse square law. This effect can be important especially at the interpretation of the optical or X-ray counterparts associated to the gravitational wave signals Troja . Namely, then the detected intensity of electromagnetic radiation can indicate a lower integral power of its pulse, as compared to the power evaluated by the inverse square law.

The considered gravitational waves’ waveguiding effect can be particularly relevant at the accurate determination of the cosmological distance scale and the Hubble tension, as the detection of the first electromagnetic counterpart of the binary neutron star GW170817 already enabled such direct measurement of the Hubble constant Ligo2 ; Ligo3 . Further detection of such counterparts will provide an independent ruler for the cosmic ladder, complementing those of SN Ia, Baryonic Acoustic Oscillation (BAO), light element abundance measurements from Big Bang Nucleosynthesis (BBN) for low and high redshift samples BAO .

6 Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  • (1) B. P. Abbott, et al. (LIGO Scientific Collaboration, Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016)
  • (2) R. Abbott, et al. (LIGO Scientific Collaboration, Virgo Collaboration, KAGRA Collaboration), Phys. Rev. D 104, 022004 (2021)
  • (3) T. W. Murphy, Rep. Prog. Phys. 76, 076901 (2013)
  • (4) I. Ciufolini, et al, Eur. Phys. J. C, 76, 120 (2016)
  • (5) S. Capozziello, M. Capriolo, Class. Quantum Grav. 38 175008 (2021)
  • (6) S. Mastrogiovanni et al, Ann. Phys. (Berlin), 2200180 (2022)
  • (7) E. Troja et al, Nature, 551, 71 (2017)
  • (8) A. Singhal et al, J. Astrophys. Astron., 43, 53 (2022)
  • (9) S. Capozziello, et al, Phys. Scr. 56, 315 (1997)
  • (10) G. Bimonte, S. Capozziello, V. Man’ko, G. Marmo, Phys.Rev. D58, 104009 (1998)
  • (11) D.V. Anosov, Commun. Steklov Math. Inst. 90, 1 (1967)
  • (12) V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer, Berlin (1989)
  • (13) S. W. Hawking, G. F. R. Ellis, The large scale structure of space-time, Cambridge University Press (1973)
  • (14) R. Penrose, Rev. Mod. Phys. 37, 215 (1965)
  • (15) C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation, W.H. Freeman, New York (1973)
  • (16) V.G. Gurzadyan, A.A. Kocharyan, A & A 492, L33 (2008)
  • (17) V.G. Gurzadyan, A.A. Kocharyan, A & A 493, L61 (2009)
  • (18) V.G. Gurzadyan, et al, A & A, 566, A135 (2014)
  • (19) M. Samsonyan, et al, Eur. Phys. J. Plus, 136, 350 (2021)
  • (20) V.G. Gurzadyan A. Stepanian, Eur. Phys. J. C, 79, 169 (2019)
  • (21) V.G. Gurzadyan, A. Stepanian, A & A, 653, A145 (2021)
  • (22) S. Weinberg, Gravitation and Cosmology, John Wiley (1972)
  • (23) B. P. Abbott, et al, Nature, 551, 85, (2017)
  • (24) B. P. Abbott, et al, ApJ, 909, 218 (2021)
  • (25) N. Schoneberg, et al, arXiv:2209.14330