This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Gravitational transverse-momentum distributions

Cédric Lorcé [email protected] CPHT, CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France    Qin-Tao Song [email protected] CPHT, CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China
Abstract

We study the energy-momentum tensor of spin-0 and spin-12\frac{1}{2} hadrons in momentum space. We parametrize this object in terms of so-called gravitational transverse-momentum distributions, and we identify in the quark sector the relations between the latter and the usual transverse-momentum distributions. Focusing on particular components of the energy-momentum tensor, we study momentum densities, flux of inertia and stress distribution in momentum space, revealing part of the wealth of physical information that can be gained from higher-twist transverse-momentum distributions.

I Introduction

The QCD energy-momentum tensor (EMT) is a key object for studying and understanding the internal structure of hadrons Burkert:2023wzr . It is indeed directly related to the longstanding questions of the hadron mass Ji:1994av ; Ji:1995sv ; Yang:2018nqn ; Hatta:2018sqd ; Lorce:2017xzd ; Metz:2020vxd ; Lorce:2021xku and spin decompositions Jaffe:1989jz ; Ji:1996ek ; Leader:2013jra ; Wakamatsu:2014zza ; Lorce:2021gxs . Moreover, it allows one to investigate the mechanical properties of hadrons Polyakov:2002yz ; Polyakov:2018zvc ; Burkert:2018bqq ; Lorce:2018egm ; Freese:2021czn . Studying the EMT is therefore of prime importance and stands at the heart of the physics program of the future Electron-Ion Collider in the US AbdulKhalek:2021gbh ; AbdulKhalek:2022hcn .

Direct access to the EMT requires a gravitational probe, and is in practice out of reach owing to the extreme weakness of gravitational interactions at the microscopic level. Fortunately, in QCD the EMT can be probed indirectly via electromagnetic interactions. Matrix elements of the local EMT operator have been parametrized in terms of gravitational form factors Kobzarev:1962wt ; Pagels:1966zza ; Ji:1996ek ; Bakker:2004ib ; Cotogno:2019vjb . The latter can then be related to generalized parton distributions (GPDs) Ji:1996ek and generalized distribution amplitudes Kumano:2017lhr accessible in various experimental processes, see e.g. Diehl:2003ny . This has been generalized to the case of a non-local EMT operator, whose general matrix elements have been parametrized in terms of what can be called gravitational GPDs111Strictly speaking, the scalar functions introduced in Ref. Lorce:2015lna correspond to gravitational GPDs integrated over the parton longitudinal momentum, but the general parametrization is not impacted by this integration since we considered non-local EMT operators. Lorce:2015lna . Similar objects have later been considered in Ref. Guo:2021aik .

While the connection between the EMT and GPDs is well established, the link with another class of non-perturbative functions known as transverse-momentum distributions (TMDs) Boer:1997nt has so far been limited to the longitudinal and transverse momentum sum rules Burkardt:2003yg ; Burkardt:2004ur ; Lorce:2015lna ; Boer:2015vso ; Amor-Quiroz:2020qmw . The aim of the present work is to introduce the notion of EMT distribution in momentum space and to identify the physical information about the EMT that can be accessed via TMDs. The paper is organized as follows. In Section II we define the transverse-momentum dependent EMT and we parametrize the associated matrix elements in terms of gravitational TMDs. We then discuss in Section III the connection with the standard quark TMDs and we study in Section IV part of the physical content that can be accessed from twist-2 and twist-3 TMDs. Finally, we summarize our findings in Section V.

II Gravitational TMDs

II.1 TMD correlator

We start with a reminder on the TMD correlators. The fully unintegrated quark-quark correlator for a spin-12\frac{1}{2} target Meissner:2009ww is defined in the forward limit as

W[Γ](P,k,N,S;η)=12d4z(2π)4eikzP,S|ψ¯(z2)Γ𝒲(z2,z2|n)ψ(z2)|P,S,W^{[\Gamma]}(P,k,N,S;\eta)=\frac{1}{2}\int\frac{\mathrm{d}^{4}z}{(2\pi)^{4}}\,e^{ik\cdot z}\,\langle P,S|\overline{\psi}(-\tfrac{z}{2})\Gamma\mathcal{W}(-\tfrac{z}{2},\tfrac{z}{2}|n)\psi(\tfrac{z}{2})|P,S\rangle, (1)

where Γ\Gamma stands for a generic matrix in Dirac space, e.g. Γ=γμ,γμγ5,\Gamma=\gamma^{\mu},\gamma^{\mu}\gamma_{5},\cdots. For a target of mass MM and four-momentum PP, the covariant spin vector SS defined via u¯(P,S)γμγ5u(P,S)=2MSμ\overline{u}(P,S)\gamma^{\mu}\gamma_{5}u(P,S)=2MS^{\mu} satisfies PS=0P\cdot S=0 and S2=1S^{2}=-1. The quark average four-momentum kk is defined as the Fourier conjugate variable to the space-time distance zz between the two quark operators. Gauge invariance is preserved by the inclusion of a Wilson line 𝒲\mathcal{W} connecting the points z2-\frac{z}{2} and z2\frac{z}{2} via an infinitely long staple-shaped path along the lightlike direction nn. Since the same Wilson line is unchanged under the rescaling nαnn\mapsto\alpha n with α>0\alpha>0, the correlator depends in fact on the rescaling-invariant four-vector

N=M2nPn.N=\frac{M^{2}n}{P\cdot n}. (2)

The parameter η=sign(n0)\eta=\text{sign}(n^{0}) indicates whether the Wilson line is future-pointing (η=+1\eta=+1) or past-pointing (η=1\eta=-1).

For convenience, we choose the coordinate system and the rescaling factor α\alpha such that

Pμ\displaystyle P^{\mu} =[P+,M22P+,𝟎],\displaystyle=\left[P^{+},\frac{M^{2}}{2P^{+}},\bm{0}_{\perp}\right], (3)
kμ\displaystyle k^{\mu} =[xP+,k,𝒌],\displaystyle=\left[xP^{+},k^{-},\bm{k}_{\perp}\right],
nμ\displaystyle n^{\mu} =[0,η,𝟎],\displaystyle=\left[0,\eta,\bm{0}_{\perp}\right],

where vμ=[v+,v,𝒗]v^{\mu}=[v^{+},v^{-},\bm{v}_{\perp}] with the light-front components defined as v±=(v0±v3)/2v^{\pm}=(v^{0}\pm v^{3})/\sqrt{2}. The quark TMD correlator (see e.g. Bacchetta:2006tn ) is then obtained by integration over the quark light-front energy

Φ[Γ](P,x,𝒌,N,S;η)\displaystyle\Phi^{[\Gamma]}(P,x,\bm{k}_{\perp},N,S;\eta) =dkW[Γ](P,k,N,S;η)\displaystyle=\int\mathrm{d}k^{-}\,W^{[\Gamma]}(P,k,N,S;\eta) (4)
=12dzd2z(2π)3eikzP,S|ψ¯(z2)Γ𝒲(z2,z2|n)ψ(z2)|P,S|z+=0.\displaystyle=\frac{1}{2}\int\frac{\mathrm{d}z^{-}\,\mathrm{d}^{2}z_{\perp}}{(2\pi)^{3}}\,e^{ik\cdot z}\,\langle P,S|\overline{\psi}(-\tfrac{z}{2})\Gamma\mathcal{W}(-\tfrac{z}{2},\tfrac{z}{2}|n)\psi(\tfrac{z}{2})|P,S\rangle\Big{|}_{z^{+}=0}.

II.2 Transverse-momentum dependent EMT

In QCD, the local gauge-invariant EMT operator for quarks is given by

Tqμν(r)=ψ¯(r)γμi2Dνψ(r)T^{\mu\nu}_{q}(r)=\overline{\psi}(r)\gamma^{\mu}\tfrac{i}{2}\overset{\leftrightarrow}{D}\!\!\!\!\!\phantom{D}^{\nu}\psi(r) (5)

with Dν=νν2igAν(r)\overset{\leftrightarrow}{D}\!\!\!\!\!\phantom{D}^{\nu}=\overset{\rightarrow}{\partial}\!\!\!\!\phantom{\partial}^{\nu}-\overset{\leftarrow}{\partial}\!\!\!\!\phantom{\partial}^{\nu}-2igA^{\nu}(r). In order to define the EMT for a quark with average four-momentum kk, we need to consider a bilocal generalization of this expression. Unfortunately, the covariant derivative does not commute with the Wilson line, making the bilocal generalization of Eq. (5) ambiguous Lorce:2012ce . The problem can be traced back to the fact that [Dμ,Dν]0[D_{\mu},D_{\nu}]\neq 0 whereas [kμ,kν]=0[k_{\mu},k_{\nu}]=0, which implies that kk cannot be identified with the quark kinetic four-momentum. However, if we work in the gauge where the Wilson line reduces to the identity (namely the light-front gauge with appropriate advanced of retarded boundary conditions depending on the value of η\eta Belitsky:2002sm ), the four-vector kμk^{\mu} can be represented by the partial derivatives iμi\partial^{\mu}, and hence be interpreted as the quark canonical four-momentum. Therefore, instead of looking for the bilocal generalization of the kinetic EMT operator (5), we should rather be looking for the bilocal generalization of the light-front gauge-invariant canonical (gic) EMT operator Lorce:2012rr ; Leader:2013jra ; Lorce:2015lna

Tq,gicμν(r)=ψ¯(r)γμi2Dpureνψ(r),T^{\mu\nu}_{q,\text{gic}}(r)=\overline{\psi}(r)\gamma^{\mu}\tfrac{i}{2}\overset{\leftrightarrow}{D}\!\!\!\!\!\phantom{D}^{\nu}_{\text{pure}}\psi(r), (6)

where Dpureμ=μigApureμD^{\mu}_{\text{pure}}=\partial^{\mu}-igA^{\mu}_{\text{pure}} is known as the pure-gauge covariant derivative Chen:2008ag ; Wakamatsu:2010cb , corresponding in the present context to the covariant derivative reducing in the light-front gauge A+=0A^{+}=0 (with appropriate boundary conditions) to μ\partial^{\mu} Hatta:2011zs ; Hatta:2011ku ; Lorce:2012ce . Note that by definition Apure+(r)=A+(r)A^{+}_{\text{pure}}(r)=A^{+}(r), meaning that Tqμ+(r)=Tq,gicμ+(r)T^{\mu+}_{q}(r)=T^{\mu+}_{q,\text{gic}}(r). Therefore, as far as the longitudinal light-front momentum is concerned, there is no difference between the kinetic and the gauge-invariant canonical definitions.

Following the spirit of Refs. Ji:2003ak ; Belitsky:2003nz ; Lorce:2011kd ; Lorce:2011ni , it is natural to define the bilocal gauge-invariant canonical (gic) EMT operator for quarks as Lorce:2012ce

Tq,gicμν(r,k)=kνd4z(2π)4eikzψ¯(rz2)γμ𝒲(rz2,r+z2|n)ψ(r+z2).T^{\mu\nu}_{q,\text{gic}}(r,k)=k^{\nu}\int\frac{\mathrm{d}^{4}z}{(2\pi)^{4}}\,e^{ik\cdot z}\,\overline{\psi}(r-\tfrac{z}{2})\gamma^{\mu}\mathcal{W}(r-\tfrac{z}{2},r+\tfrac{z}{2}|n)\psi(r+\tfrac{z}{2}). (7)

Integrating by parts, we can write

Tq,gicμν(r,k)\displaystyle T^{\mu\nu}_{q,\text{gic}}(r,k) =d4z(2π)4eikzizν[ψ¯(rz2)γμ𝒲(rz2,r+z2|n)ψ(r+z2)]\displaystyle=\int\frac{\mathrm{d}^{4}z}{(2\pi)^{4}}\,e^{ik\cdot z}\,i\partial^{\nu}_{z}\!\left[\overline{\psi}(r-\tfrac{z}{2})\gamma^{\mu}\mathcal{W}(r-\tfrac{z}{2},r+\tfrac{z}{2}|n)\psi(r+\tfrac{z}{2})\right] (8)
=d4z(2π)4eikz[ψ¯(rz2)γμ𝒲(rz2,r+z2|n)i2Dpureν(r+z2)ψ(r+z2)\displaystyle=\int\frac{\mathrm{d}^{4}z}{(2\pi)^{4}}\,e^{ik\cdot z}\left[\overline{\psi}(r-\tfrac{z}{2})\gamma^{\mu}\mathcal{W}(r-\tfrac{z}{2},r+\tfrac{z}{2}|n)\tfrac{i}{2}\overset{\rightarrow}{D}\!\!\!\!\!\phantom{D}^{\nu}_{\text{pure}}(r+\tfrac{z}{2})\psi(r+\tfrac{z}{2})\right.
ψ¯(rz2)i2Dpureν(rz2)γμ𝒲(rz2,r+z2|n)ψ(r+z2)],\displaystyle\qquad\qquad\qquad\quad\left.-\overline{\psi}(r-\tfrac{z}{2})\tfrac{i}{2}\overset{\leftarrow}{D}\!\!\!\!\!\phantom{D}^{\nu}_{\text{pure}}(r-\tfrac{z}{2})\gamma^{\mu}\mathcal{W}(r-\tfrac{z}{2},r+\tfrac{z}{2}|n)\psi(r+\tfrac{z}{2})\right],

where ApureμA^{\mu}_{\text{pure}} is given by

Apureμ(r)=𝒲(r,0|n)igrμ𝒲(0,r|n).A^{\mu}_{\text{pure}}(r)=\mathcal{W}(r,0|n)\tfrac{i}{g}\partial^{\mu}_{r}\mathcal{W}(0,r|n). (9)

Since we obviously have the property

Dpureμ(x)𝒲(x,y|n)=𝒲(x,y|n)Dpureμ(y)D^{\mu}_{\text{pure}}(x)\mathcal{W}(x,y|n)=\mathcal{W}(x,y|n)D^{\mu}_{\text{pure}}(y) (10)

reflecting the commutativity of pure-gauge covariant derivatives, the bilocal operator in Eq. (8) is unambiguous. Moreover, integrating over the quark four-momentum leads to

d4kTq,gicμν(r,k)=Tq,gicμν(r)\int\mathrm{d}^{4}k\,T^{\mu\nu}_{q,\text{gic}}(r,k)=T^{\mu\nu}_{q,\text{gic}}(r) (11)

as expected.

We can now define in a natural way the fully unintegrated EMT by considering the forward matrix element222The motivation for the factor 12\frac{1}{2} is the same as for the correlators in Section II.1: the light-front expectation value of an operator OO is P,S|O|P,S2P+\frac{\langle P,S|O|P,S\rangle}{2P^{+}} and switching from a distribution in k+k^{+} to a distribution in xx amounts to a multiplication by the Jacobian P+P^{+}. of the operator in Eq. (8)

Θqμν(P,k,N,S;η)=12P,S|Tq,gicμν(0,k)|P,S,\Theta^{\mu\nu}_{q}(P,k,N,S;\eta)=\frac{1}{2}\,\langle P,S|T^{\mu\nu}_{q,\text{gic}}(0,k)|P,S\rangle, (12)

and the TMD EMT by further integrating over the quark light-front energy

𝒯qμν(P,x,𝒌,N,S;η)\displaystyle\mathcal{T}^{\mu\nu}_{q}(P,x,\bm{k}_{\perp},N,S;\eta) =dkΘqμν(P,k,N,S;η)\displaystyle=\int\mathrm{d}k^{-}\,\Theta^{\mu\nu}_{q}(P,k,N,S;\eta) (13)
=12dzd2z(2π)3eikzizνP,S|ψ¯(z2)γμ𝒲(z2,z2|n)ψ(z2)|P,S|z+=0.\displaystyle=\frac{1}{2}\int\frac{\mathrm{d}z^{-}\,\mathrm{d}^{2}z_{\perp}}{(2\pi)^{3}}\,e^{ik\cdot z}\,i\partial_{z}^{\nu}\langle P,S|\overline{\psi}(-\tfrac{z}{2})\gamma^{\mu}\mathcal{W}(-\tfrac{z}{2},\tfrac{z}{2}|n)\psi(\tfrac{z}{2})|P,S\rangle\Big{|}_{z^{+}=0}.

This last object can be interpreted as the 3D distribution of the quark EMT in momentum space.

II.3 Parametrization in terms of gravitational TMDs

Parity, hermiticity and time-reversal invariance imply that the fully unintegrated EMT satisfies the relations

Θμν(k,P,N,S;η)\displaystyle\Theta^{\mu\nu}(k,P,N,S;\eta) =Θμ¯ν¯(k¯,P¯,N¯,S¯;η),\displaystyle=\Theta^{\bar{\mu}\bar{\nu}}(\bar{k},\bar{P},\bar{N},-\bar{S};\eta), (14)
Θμν(k,P,N,S;η)\displaystyle\Theta^{\mu\nu}(k,P,N,S;\eta) =[Θμν(k,P,N,S;η)],\displaystyle=[\Theta^{\mu\nu}(k,P,N,S;\,\eta)]^{{\dagger}},
Θμν(k,P,N,S;η)\displaystyle\Theta^{\mu\nu}(k,P,N,S;\eta) =[Θμ¯ν¯(k¯,P¯,N¯,S¯;η)],\displaystyle=[\Theta^{\bar{\mu}\bar{\nu}}(\bar{k},\bar{P},\bar{N},\bar{S};-\eta)]^{*},

with the notation vμ¯=v¯μ=(v0,𝒗)v^{\bar{\mu}}=\bar{v}^{\mu}=(v^{0},-\bm{v}). Since the parametrization should be the same for both quark and gluon contributions to the EMT, we drop the label qq in this subsection.

For convenience, we define the transverse part of a four-vector by vTμ=gTμνvνv^{\mu}_{T}=g^{\mu\nu}_{T}v_{\nu} using the projector onto the subspace orthogonal to PP and NN

gTμν=gμνPμNν+PνNμM2+NμNνM2.\displaystyle g_{T}^{\mu\nu}=g^{\mu\nu}-\frac{P^{\mu}N^{\nu}+P^{\nu}N^{\mu}}{M^{2}}+\frac{N^{\mu}N^{\nu}}{M^{2}}. (15)

The covariant spin vector can then be expressed as

Sμ=λM(PμNμ)+STμ,\displaystyle S^{\mu}=\frac{\lambda}{M}(P^{\mu}-N^{\mu})+S_{T}^{\mu}, (16)

where the longitudinal light-front polarization is denoted by the parameter λ\lambda and the transverse light-front polarization by the four-vector STμ=[0,0,𝑺]S^{\mu}_{T}=[0,0,\bm{S}_{\perp}]. We define also the transverse Levi-Civita pseudotensor

ϵTμν=ϵμναβNαPβM2\displaystyle\epsilon_{T}^{\mu\nu}=\frac{\epsilon^{\mu\nu\alpha\beta}N_{\alpha}P_{\beta}}{M^{2}} (17)

with the convention ϵ0123=1\epsilon_{0123}=1 such that ϵT12=1\epsilon_{T}^{12}=1, and we introduce the compact notation ϵTμvTϵTμνvTν\epsilon_{T}^{\mu v_{T}}\equiv\epsilon_{T}^{\mu\nu}v_{T\nu}.

A complete parametrization of the TMD EMT 𝒯μν(P,x,𝒌,N,S;η)\mathcal{T}^{\mu\nu}(P,x,\bm{k}_{\perp},N,S;\eta) for spin-0 and spin-12\frac{1}{2} targets can be obtained by writing down all the independent rank-2 tensors built out of gTμνg_{T}^{\mu\nu}, ϵTμν\epsilon_{T}^{\mu\nu}, PμP^{\mu}, NμN^{\mu}, and kTμk^{\mu}_{T}, which are at most linear in the polarization and which satisfy the constraints in Eq. (14). We find333Note that other possible tensor structures have been discarded thanks to the Schouten identity gαβϵμνρσ+gαμϵνρσβ+gανϵρσβμ+gαρϵσβμν+gασϵβμνρ=0.g^{\alpha\beta}\epsilon^{\mu\nu\rho\sigma}+g^{\alpha\mu}\epsilon^{\nu\rho\sigma\beta}+g^{\alpha\nu}\epsilon^{\rho\sigma\beta\mu}+g^{\alpha\rho}\epsilon^{\sigma\beta\mu\nu}+g^{\alpha\sigma}\epsilon^{\beta\mu\nu\rho}=0.

𝒯μν=1P+{\displaystyle\mathcal{T}^{\mu\nu}=\frac{1}{P^{+}}\Big{\{} PμPνa1+NμNνa2+kTμkTνa3+PμNνa4+NμPνa5\displaystyle P^{\mu}P^{\nu}a_{1}+N^{\mu}N^{\nu}a_{2}+k_{T}^{\mu}k_{T}^{\nu}a_{3}+P^{\mu}N^{\nu}a_{4}+N^{\mu}P^{\nu}a_{5} (18)
+PμkTνa6+kTμPνa7+NμkTνa8+kTμNνa9+M2gTμνa0\displaystyle+P^{\mu}k_{T}^{\nu}a_{6}+k_{T}^{\mu}P^{\nu}a_{7}+N^{\mu}k_{T}^{\nu}a_{8}+k_{T}^{\mu}N^{\nu}a_{9}+M^{2}g^{\mu\nu}_{T}a_{0}
ϵTkTSTM[PμPνa1T+NμNνa2T+kTμkTνa3T+PμNνa4T+NμPνa5T\displaystyle-\frac{\epsilon_{T}^{k_{T}S_{T}}}{M}\left[P^{\mu}P^{\nu}a_{1T}^{\perp}+N^{\mu}N^{\nu}a_{2T}^{\perp}+k_{T}^{\mu}k_{T}^{\nu}a_{3T}^{\perp}+P^{\mu}N^{\nu}a_{4T}^{\perp}+N^{\mu}P^{\nu}a_{5T}^{\perp}\right.
+PμkTνa6T+kTμPνa7T+NμkTνa8T+kTμNνa9T+M2gTμνa0T]\displaystyle\qquad\qquad\quad\left.+P^{\mu}k_{T}^{\nu}a_{6T}^{\perp}+k_{T}^{\mu}P^{\nu}a_{7T}^{\perp}+N^{\mu}k_{T}^{\nu}a_{8T}^{\perp}+k_{T}^{\mu}N^{\nu}a_{9T}^{\perp}+M^{2}g^{\mu\nu}_{T}a_{0T}^{\perp}\right]
M[PμϵTνSTa1T+PνϵTμSTa2T+NμϵTνSTa3T+NνϵTμSTa4T+kTμϵTνSTa5T+kTνϵTμSTa6T]\displaystyle-M\left[P^{\mu}\epsilon_{T}^{\nu S_{T}}a_{1T}+P^{\nu}\epsilon_{T}^{\mu S_{T}}a_{2T}+N^{\mu}\epsilon_{T}^{\nu S_{T}}a_{3T}+N^{\nu}\epsilon_{T}^{\mu S_{T}}a_{4T}+k_{T}^{\mu}\epsilon_{T}^{\nu S_{T}}a_{5T}+k_{T}^{\nu}\epsilon_{T}^{\mu S_{T}}a_{6T}\right]
λ[PμϵTνkTa1L+PνϵTμkTa2L+NμϵTνkTa3L+NνϵTμkTa4L+kTμϵTνkTa5L+kTνϵTμkTa6L]},\displaystyle-\lambda\left[P^{\mu}\epsilon_{T}^{\nu k_{T}}a_{1L}+P^{\nu}\epsilon_{T}^{\mu k_{T}}a_{2L}+N^{\mu}\epsilon_{T}^{\nu k_{T}}a_{3L}+N^{\nu}\epsilon_{T}^{\mu k_{T}}a_{4L}+k_{T}^{\mu}\epsilon_{T}^{\nu k_{T}}a_{5L}+k_{T}^{\nu}\epsilon_{T}^{\mu k_{T}}a_{6L}\right]\Big{\}},

where the real-valued coefficients ai(x,𝒌2)a_{i}(x,\bm{k}_{\perp}^{2}) will be referred to as gravitational TMDs. There are 10 polarization-independent gravitational TMDs (viz. a09a_{0-9}). For a spin-0 target, that is all we have. For a spin-12\frac{1}{2} target, there are in addition 22 polarization-dependent gravitational TMDs: 6 associated with the longitudinal polarization (viz. a16La_{1-6L}) and 16 associated with the transverse polarization (viz. a16Ta_{1-6T} and a09Ta_{0-9T}^{\perp}). As a result of the discrete symmetries (14), the polarization-independent gravitational TMDs are naive T-even (i.e. independent of η\eta) whereas the polarization-dependent ones are naive T-odd (i.e. they change sign under ηη\eta\mapsto-\eta). Interestingly, the same total numbers of gravitational GPDs for spin-0 and spin-12\frac{1}{2} targets have been obtained in Ref. Lorce:2015lna . Since d2k𝒯μν\int\mathrm{d}^{2}k_{\perp}\,\mathcal{T}^{\mu\nu} can not depend on kTμk^{\mu}_{T}, one may naively think by eliminating all the kTμk^{\mu}_{T}-dependent tensors in Eq. (18) that there are only 9 gravitational PDFs. Note however that the combination kTμϵTνkTkTνϵTμkT=𝒌2ϵTμνk_{T}^{\mu}\epsilon_{T}^{\nu k_{T}}-k_{T}^{\nu}\epsilon_{T}^{\mu k_{T}}=\bm{k}_{\perp}^{2}\epsilon_{T}^{\mu\nu} does survive integration over 𝒌\bm{k}_{\perp}, meaning that there are in total 10 gravitational PDFs, in agreement with the results in Section 4.4 of Ref. Lorce:2015lna .

III Relations between TMDs and gravitational TMDs

In practice, gravitational TMDs cannot be accessed directly in experiments for the scattering amplitudes between hadrons and gravitons are extremely small. Part of them can however be obtained indirectly through their relations with ordinary TMDs. It is easy to see from Eqs. (1), (7) and (12) that at the level of the fully unintegrated matrix elements we have the simple relation

Θqμν(P,k,N,S;η)=kνW[γμ](P,k,N,S;η).\Theta^{\mu\nu}_{q}(P,k,N,S;\eta)=k^{\nu}W^{[\gamma^{\mu}]}(P,k,N,S;\eta). (19)

Integrating over kk^{-} leads us to

𝒯qμν(P,x,𝒌,N,S;η)=kνΦ[γμ](P,x,𝒌,N,S;η)for ν.\mathcal{T}^{\mu\nu}_{q}(P,x,\bm{k}_{\perp},N,S;\eta)=k^{\nu}\Phi^{[\gamma^{\mu}]}(P,x,\bm{k}_{\perp},N,S;\eta)\qquad\text{for }\nu\neq-. (20)

Let us therefore consider the quark vector TMD correlator, obtained from Eq. (4) using Γ=γμ\Gamma=\gamma^{\mu},

Φ[γμ](P,x,𝒌,N,S;η)=12dzd2z(2π)3eikzP,S|ψ¯(z2)γμ𝒲(z2,z2|n)ψ(z2)|P,S|z+=0.\Phi^{[\gamma^{\mu}]}(P,x,\bm{k}_{\perp},N,S;\eta)=\frac{1}{2}\int\frac{\mathrm{d}z^{-}\,\mathrm{d}^{2}z_{\perp}}{(2\pi)^{3}}\,e^{ik\cdot z}\,\langle P,S|\overline{\psi}(-\tfrac{z}{2})\gamma^{\mu}\mathcal{W}(-\tfrac{z}{2},\tfrac{z}{2}|n)\psi(\tfrac{z}{2})|P,S\rangle\Big{|}_{z^{+}=0}. (21)

Its parametrization in terms of canonical twist-2, twist-3 and twist-4 quark TMDs reads Goeke:2005hb ; Bacchetta:2006tn

Φ[γ+]\displaystyle\Phi^{[\gamma^{+}]} =f1ϵTkTSTMf1T,\displaystyle=f_{1}-\frac{\epsilon_{T}^{k_{T}S_{T}}}{M}\,f^{\perp}_{1T}, (22)
Φ[γTα]\displaystyle\Phi^{[\gamma^{\alpha}_{T}]} =MP+[kTαMfϵTαSTfTλϵTαkTMfLkTαkTβ12kT2gTαβM2ϵTβSTfT],\displaystyle=\frac{M}{P^{+}}\left[\frac{k_{T}^{\alpha}}{M}\,f^{\perp}-\epsilon_{T}^{\alpha S_{T}}f_{T}-\lambda\,\frac{\epsilon_{T}^{\alpha k_{T}}}{M}\,f^{\perp}_{L}-\frac{k_{T}^{\alpha}k_{T}^{\beta}-\frac{1}{2}k_{T}^{2}g_{T}^{\alpha\beta}}{M^{2}}\,\epsilon_{T\beta S_{T}}f^{\perp}_{T}\right],
Φ[γ]\displaystyle\Phi^{[\gamma^{-}]} =(MP+)2[f3ϵTkTSTMf3T],\displaystyle=\left(\frac{M}{P^{+}}\right)^{\!2}\left[f_{3}-\frac{\epsilon_{T}^{k_{T}S_{T}}}{M}\,f^{\perp}_{3T}\right],

reminding that kT2=𝒌2k^{2}_{T}=-\bm{k}_{\perp}^{2}. TMDs are scale-dependent objects444Beyond canonical twist-2, the renormalization of TMDs is troublesome and the evolution equations are not closed, see Ref. Rodini:2022wki . that are extracted from fits to experimental data. Their QCD evolution has been a major focus of the past decade and is expected to play a significant role at the future Electron-Ion Collider Angeles-Martinez:2015sea . Note that the twist-2 functions f1f_{1} and f1Tf_{1T}^{\perp} are often referred to as the “unpolarized” TMDs in the literature.

Setting ν=+\nu=+ in Eq. (20), we find

a1\displaystyle a_{1} =xf1,\displaystyle=xf_{1}, a1T\displaystyle a_{1T}^{\perp} =xf1T,\displaystyle=xf^{\perp}_{1T}, (23)
12a1+a5\displaystyle\tfrac{1}{2}a_{1}+a_{5} =xf3,\displaystyle=xf_{3}, 12a1T+a5T\displaystyle\qquad\tfrac{1}{2}a_{1T}^{\perp}+a_{5T}^{\perp} =xf3T,\displaystyle=xf_{3T}^{\perp},
a7\displaystyle a_{7} =xf,\displaystyle=xf^{\perp}, a7T\displaystyle a_{7T}^{\perp} =xfT,\displaystyle=xf^{\perp}_{T},
a2L\displaystyle a_{2L} =xfL,\displaystyle=xf^{\perp}_{L}, a2T\displaystyle a_{2T} =xfT+,\displaystyle=xf^{+}_{T},

where fT±=fT±𝒌22M2fTf^{\pm}_{T}=f_{T}\pm\tfrac{\bm{k}_{\perp}^{2}}{2M^{2}}\,f^{\perp}_{T}. Similarly, setting ν=i{1,2}\nu=i\in\{1,2\} in Eq. (20) gives

a3\displaystyle a_{3} =f,\displaystyle=f^{\perp}, a3T\displaystyle a_{3T}^{\perp} =fT,\displaystyle=f^{\perp}_{T}, (24)
a6\displaystyle a_{6} =f1,\displaystyle=f_{1}, a6T\displaystyle a_{6T}^{\perp} =f1T,\displaystyle=f^{\perp}_{1T},
12a6+a8\displaystyle\tfrac{1}{2}a_{6}+a_{8} =f3,\displaystyle=f_{3}, 12a6T+a8T\displaystyle\tfrac{1}{2}a_{6T}^{\perp}+a_{8T}^{\perp} =f3T,\displaystyle=f^{\perp}_{3T},
a6L\displaystyle a_{6L} =fL,\displaystyle=f^{\perp}_{L}, a6T\displaystyle a_{6T} =fT+,\displaystyle=f^{+}_{T},
a0\displaystyle a_{0} =a1L=a3L=a5L=0,\displaystyle=a_{1L}=a_{3L}=a_{5L}=0, a0T\displaystyle\qquad a_{0T}^{\perp} =a1T=a3T=a5T=0.\displaystyle=a_{1T}=a_{3T}=a_{5T}=0.

These relations imply that the quark TMD EMT involves only 16 independent functions

𝒯qμν=1P+{\displaystyle\mathcal{T}^{\mu\nu}_{q}=\frac{1}{P^{+}}\Bigg{\{} [P~μf1+kTμf+Nμf3ϵTkTSTM(P~μf1T+kTμfT+Nμf3T)MϵTμSTfT+λϵTμkTfL]k~ν\displaystyle\left[\tilde{P}^{\mu}f_{1}+k_{T}^{\mu}f^{\perp}+N^{\mu}f_{3}-\frac{\epsilon_{T}^{k_{T}S_{T}}}{M}\left(\tilde{P}^{\mu}f_{1T}^{\perp}+k_{T}^{\mu}f_{T}^{\perp}+N^{\mu}f^{\perp}_{3T}\right)-M\epsilon_{T}^{\mu S_{T}}f^{+}_{T}-\lambda\epsilon_{T}^{\mu k_{T}}f_{L}^{\perp}\right]\tilde{k}^{\nu} (25)
+[P~μfˇ1+kTμfˇ+Nμfˇ3ϵTkTSTM(P~μfˇ1T+kTμfˇT+Nμfˇ3T)MϵTμSTfˇT+λϵTμkTfˇL]Nν},\displaystyle+\left[\tilde{P}^{\mu}\check{f}_{1}+k_{T}^{\mu}\check{f}^{\perp}+N^{\mu}\check{f}_{3}-\frac{\epsilon_{T}^{k_{T}S_{T}}}{M}\left(\tilde{P}^{\mu}\check{f}_{1T}^{\perp}+k_{T}^{\mu}\check{f}_{T}^{\perp}+N^{\mu}\check{f}_{3T}^{\perp}\right)-M\epsilon_{T}^{\mu S_{T}}\check{f}^{+}_{T}-\lambda\epsilon_{T}^{\mu k_{T}}\check{f}_{L}^{\perp}\right]N^{\nu}\Bigg{\}},

where we introduce for convenience P~μ=[P+,0,𝟎]\tilde{P}^{\mu}=[P^{+},0,\bm{0}_{\perp}] and k~μ=[xP+,0,𝒌]\tilde{k}^{\mu}=[xP^{+},0,\bm{k}_{\perp}]. The combinations

fˇ1\displaystyle\check{f}_{1} =a4+x2f1,\displaystyle=a_{4}+\tfrac{x}{2}f_{1}, fˇ1T\displaystyle\check{f}_{1T}^{\perp} =a4T+x2f1T,\displaystyle=a_{4T}^{\perp}+\tfrac{x}{2}f_{1T}^{\perp}, (26)
fˇ\displaystyle\check{f}^{\perp} =a9+x2f,\displaystyle=a_{9}+\tfrac{x}{2}f^{\perp}, f~T\displaystyle\tilde{f}_{T}^{\perp} =a9T+x2fT,\displaystyle=a_{9T}^{\perp}+\tfrac{x}{2}f_{T}^{\perp},
fˇ3\displaystyle\check{f}_{3} =a2+12a4+x2f3,\displaystyle=a_{2}+\tfrac{1}{2}a_{4}+\tfrac{x}{2}f_{3}, fˇ3T\displaystyle\qquad\check{f}^{\perp}_{3T} =a2T+12a4T+x2f3T,\displaystyle=a_{2T}^{\perp}+\tfrac{1}{2}a_{4T}^{\perp}+\tfrac{x}{2}f^{\perp}_{3T},
fˇL\displaystyle\check{f}^{\perp}_{L} =a4L+x2fL,\displaystyle=a_{4L}+\tfrac{x}{2}f_{L}^{\perp}, fˇT+\displaystyle\check{f}^{+}_{T} =a4T+x2fT+,\displaystyle=a_{4T}+\tfrac{x}{2}f^{+}_{T},

parametrize the information that cannot be accessed with the ordinary quark vector TMDs.

IV Mechanical properties

The interpretation of the light-front components of the EMT and the associated distributions in impact-parameter space have been discussed in Refs. Lorce:2018egm ; Freese:2021czn . We investigate here their momentum-space counterparts.

IV.1 Densities of longitudinal and transverse momentum

Since the TMD correlator Φ[γ+](P,x,𝒌,N,S;η)\Phi^{[\gamma^{+}]}(P,x,\bm{k}_{\perp},N,S;\eta) is interpreted as the probability density of finding a quark with three-momentum [xP+,𝒌][xP^{+},\bm{k}_{\perp}], it is natural to interpret

𝒯q++\displaystyle\mathcal{T}^{++}_{q} =xP+Φ[γ+]=(f1ϵTkTSTMf1T)xP+,\displaystyle=xP^{+}\Phi^{[\gamma^{+}]}=\left(f_{1}-\frac{\epsilon_{T}^{k_{T}S_{T}}}{M}\,f^{\perp}_{1T}\right)xP^{+}, (27)
𝒯q+i\displaystyle\mathcal{T}^{+i}_{q} =kTiΦ[γ+]=(f1ϵTkTSTMf1T)kTi,i=1,2\displaystyle=k^{i}_{T}\Phi^{[\gamma^{+}]}=\left(f_{1}-\frac{\epsilon_{T}^{k_{T}S_{T}}}{M}\,f^{\perp}_{1T}\right)k^{i}_{T},\qquad\quad i=1,2

as the quark longitudinal and transverse momentum densities in momentum space. The average quark longitudinal momentum is then obtained by integration over the quark momentum

k+q=xqP+=dxd2k𝒯q++=P+dxd2kxf1.\langle k^{+}\rangle_{q}=\langle x\rangle_{q}P^{+}=\int\mathrm{d}x\,\mathrm{d}^{2}k_{\perp}\,\mathcal{T}^{++}_{q}=P^{+}\int\mathrm{d}x\,\mathrm{d}^{2}k_{\perp}\,xf_{1}. (28)

Similarly, the average quark transverse momentum Boer:2003cm ; Burkardt:2003yg ; Meissner:2007rx ; Amor-Quiroz:2020qmw is given by

kiq=dxd2k𝒯q+i=ϵTiSTdxd2k𝒌22Mf1T.\langle k^{i}_{\perp}\rangle_{q}=\int\mathrm{d}x\,\mathrm{d}^{2}k_{\perp}\,\mathcal{T}^{+i}_{q}=\epsilon_{T}^{iS_{T}}\int\mathrm{d}x\,\mathrm{d}^{2}k_{\perp}\,\frac{\bm{k}^{2}_{\perp}}{2M}\,f_{1T}^{\perp}. (29)

We illustrate in Fig. 1 the two contributions to the transverse momentum density at some fixed value of xx using a simple gaussian model for the transverse momentum dependence f(𝒌2)e𝒌2/𝒌2f(\bm{k}^{2}_{\perp})\propto e^{-\bm{k}_{\perp}^{2}/\langle\bm{k}^{2}_{\perp}\rangle} with the typical value 𝒌20.6\langle\bm{k}^{2}_{\perp}\rangle\approx 0.6 GeV2 for the gaussian width Anselmino:2013lza . Since 𝒯q+ikTi\mathcal{T}^{+i}_{q}\propto k^{i}_{T}, it is natural that the transverse momentum density looks like a hedgehog. The unpolarized contribution driven by f1f_{1} is necessarily axially symmetric for there is no preferred transverse direction. However, the combination of target transverse polarization and initial/final state interactions breaks axial symmetry. The magnitude of this effect is quantified by the Sivers function f1Tf^{\perp}_{1T} Sivers:1989cc .

Refer to caption
Refer to caption
Figure 1: Illustration of the contributions to the quark transverse momentum density inside a nucleon polarized along the xx-axis, using a simple gaussian model for the transverse momentum dependence.

IV.2 Transverse flux of inertia

Because of the Galilean subgroup exhibited by the light-front coordinates, the light-front longitudinal momentum plays the role of inertia in the transverse plane Susskind:1967rg . The transverse flux of longitudinal momentum 𝒯i+\mathcal{T}^{i+} can therefore be thought of as the transverse flux of inertia, suggesting the definition of an effective quark transverse velocity via the ratio

vi=𝒯qi+𝒯q++.v^{i}_{\perp}=\frac{\mathcal{T}^{i+}_{q}}{\mathcal{T}^{++}_{q}}. (30)

It is often thought that the EMT is symmetric, and hence that momentum density 𝒯q+i\mathcal{T}^{+i}_{q} equals flux of inertia 𝒯qi+\mathcal{T}^{i+}_{q}. In that case, the quark transverse velocity is simply given by 𝒗=𝒌/(xP+)\bm{v}_{\perp}=\bm{k}_{\perp}/(xP^{+}). In a gauge theory, velocity and canonical momentum are however usually not parallel and we should expect in general555Quark spin may also make the EMT asymmetric, but the antisymmetric contribution vanishes when initial and final target momenta are the same Leader:2013jra . 𝒯qi+𝒯q+i\mathcal{T}^{i+}_{q}\neq\mathcal{T}^{+i}_{q}. Indeed, we find that

𝒯qi+=xP+Φ[γTi]=(xfϵTkTSTMxfT)kTiMϵTiSTxfT+λϵTikTxfL.\mathcal{T}^{i+}_{q}=xP^{+}\Phi^{[\gamma^{i}_{T}]}=\left(xf^{\perp}-\frac{\epsilon_{T}^{k_{T}S_{T}}}{M}\,xf^{\perp}_{T}\right)k^{i}_{T}-M\epsilon_{T}^{iS_{T}}xf^{+}_{T}-\lambda\epsilon_{T}^{ik_{T}}xf^{\perp}_{L}. (31)

In the case of a symmetric TMD EMT, we should have

xf\displaystyle xf^{\perp} =f1,\displaystyle=f_{1}, (32)
xfT\displaystyle xf^{\perp}_{T} =f1T,\displaystyle=f^{\perp}_{1T},
fT+\displaystyle f^{+}_{T} =fL=0.\displaystyle=f^{\perp}_{L}=0.

Interestingly, the first relation was found in Ref. Lorce:2014hxa using the free quark equation of motion. In QCD, these relations are not expected to hold in general and their violations are a direct measure of the interaction between quarks and gluons.

Decomposing ϵTiST\epsilon_{T}^{iS_{T}} onto components parallel and orthogonal to kik^{i}_{\perp}, we can rewrite Eq. (31) as

𝒯qi+=(xfMϵTkTSTkT2xfT)kTi(λxfL+M(kTST)kT2xfT+)ϵTikT.\mathcal{T}^{i+}_{q}=\left(xf^{\perp}-\frac{M\epsilon_{T}^{k_{T}S_{T}}}{k^{2}_{T}}\,xf^{-}_{T}\right)k^{i}_{T}-\left(\lambda\,xf^{\perp}_{L}+\frac{M(k_{T}\cdot S_{T})}{k^{2}_{T}}\,xf^{+}_{T}\right)\epsilon_{T}^{ik_{T}}. (33)

The first two terms have the same structure as 𝒯q+i\mathcal{T}^{+i}_{q} in Eq. (27) and lead to similar hedgehog distributions as in Fig. 1. The last two terms indicate that besides modifying the magnitude of the quark velocity, QCD interactions can also modify its direction relative to 𝒌\bm{k}_{\perp}. The corresponding distributions are illustrated in Fig. 2 using the same simple gaussian model as for 𝒯q+i\mathcal{T}^{+i}_{q}.

Refer to caption
Refer to caption
Figure 2: Illustration of two contributions to the quark transverse flux of inertia inside a nucleon polarized along the zz-axis (left panel) or the xx-axis (right panel), using a simple gaussian model for the transverse momentum dependence. The other two contributions are similar to those given in Fig. 1.

IV.3 Transverse pressure and shear forces

The notions of 2D spatial distributions of pressure (or isotropic stress) σ\sigma and shear forces (or pressure anisotropy) Π\Pi have been introduced in Ref. Lorce:2018egm . Similarly, we introduce here the distributions of transverse pressure and shear forces in momentum space

𝒯ij=gTijσ+(12gTijkTikTjkT2)Π+kTiϵjkT+kTjϵikT2kT2ΠS+ϵTijΠA.\mathcal{T}^{ij}=-g^{ij}_{T}\,\sigma+\left(\frac{1}{2}\,g^{ij}_{T}-\frac{k^{i}_{T}k^{j}_{T}}{k^{2}_{T}}\right)\Pi+\frac{k^{i}_{T}\epsilon^{jk_{T}}+k^{j}_{T}\epsilon^{ik_{T}}}{2k^{2}_{T}}\,\Pi^{S}+\epsilon^{ij}_{T}\,\Pi^{A}. (34)

The first two transverse tensors are similar to those found in position space, with transverse momentum 𝒌\bm{k}_{\perp} replacing impact parameter 𝒃\bm{b}_{\perp}. The last two transverse tensors are new, and are allowed provided that ΠS\Pi_{S} and ΠA\Pi_{A} are linear in the target polarization and naive T-odd. Using the particular structure of the quark EMT

𝒯qij=kTjΦ[γTi]\displaystyle\mathcal{T}^{ij}_{q}=k^{j}_{T}\Phi^{[\gamma^{i}_{T}]} =kTjxP+𝒯qi+\displaystyle=\tfrac{k^{j}_{T}}{xP^{+}}\,\mathcal{T}^{i+}_{q} (35)
=1P+[(fMϵTkTSTkT2fT)kTikTj(λfL+M(kTST)kT2fT+)ϵTikTkTj],\displaystyle=\frac{1}{P^{+}}\left[\left(f^{\perp}-\frac{M\epsilon_{T}^{k_{T}S_{T}}}{k^{2}_{T}}\,f^{-}_{T}\right)k^{i}_{T}k^{j}_{T}-\left(\lambda\,f^{\perp}_{L}+\frac{M(k_{T}\cdot S_{T})}{k^{2}_{T}}\,f^{+}_{T}\right)\epsilon_{T}^{ik_{T}}k^{j}_{T}\right],

we find

σq\displaystyle\sigma_{q} =12Πq=12P+[kT2fMϵkTSTfT],\displaystyle=\tfrac{1}{2}\Pi_{q}=-\frac{1}{2P^{+}}\left[k^{2}_{T}f^{\perp}-M\epsilon^{k_{T}S_{T}}f^{-}_{T}\right], (36)
ΠqA\displaystyle\Pi^{A}_{q} =12ΠqS=12P+[λkT2fL+M(kTST)fT+].\displaystyle=\tfrac{1}{2}\Pi^{S}_{q}=-\frac{1}{2P^{+}}\left[\lambda\,k^{2}_{T}f^{\perp}_{L}+M(k_{T}\cdot S_{T})f^{+}_{T}\right].

This is to be compared with the free quark case given by 𝒯q,freeij=f1kTikTj/(xP+)\mathcal{T}^{ij}_{q,\text{free}}=f_{1}\,k^{i}_{T}k^{j}_{T}/(xP^{+}).

V Summary

The energy-momentum tensor is a fundamental object in any relativistic field theory. In hadronic physics, it provides key information about quark and gluon contributions to the nucleon mass and spin, and is therefore at the heart of the physics program of the forthcoming Electron-Ion Collider in the US.

In this work we introduced the concept of energy-momentum tensor distribution in momentum space. In the case of a spin-0 target, we found that this distribution can be parametrized in terms of 10 independent gravitational transverse-momentum distributions. For a spin-12\frac{1}{2} target, we obtained in general 32 independent functions. Due to the particular structure of the gauge-invariant canonical energy-momentum tensor for quarks, this number reduces to 16, half of which can directly be expressed in terms of the usual quark vector transverse-momentum distributions. A similar analysis can in principle be applied to the gluon energy-momentum tensor, but is left for a future dedicated investigation. We discussed the physical interpretation of various components of the energy-momentum tensor and we used a simple gaussian model for illustration. We observed in particular that the stress tensor distribution in momentum space is expected to be asymmetric due to spin-dependent contributions associated with initial/final-state interactions.

At the present stage, only a few gravitational transverse-momentum distributions can be extracted from actual experiments. Our work provides however new motivations for studying and measuring higher-twist transverse-momentum distributions. In the meantime, it will be interesting to investigate these gravitational transverse-momentum distributions within other approaches, such as Lattice QCD and model calculations.

Acknowledgements

We thank Simone Rodini for drawing our attention to recent developments regarding the status of higher-twist transverse-momentum distributions. Qin-Tao Song was supported by the National Natural Science Foundation of China under Grant Number 12005191 and the China Scholarship Council for visiting École polytechnique.

References

  • (1) V. D. Burkert, L. Elouadrhiri, F. X. Girod, C. Lorcé, P. Schweitzer and P. E. Shanahan, [arXiv:2303.08347 [hep-ph]].
  • (2) X. D. Ji, Phys. Rev. Lett. 74, 1071-1074 (1995).
  • (3) X. D. Ji, Phys. Rev. D 52, 271-281 (1995).
  • (4) Y. B. Yang, J. Liang, Y. J. Bi, Y. Chen, T. Draper, K. F. Liu and Z. Liu, Phys. Rev. Lett. 121, no.21, 212001 (2018).
  • (5) Y. Hatta, A. Rajan and K. Tanaka, JHEP 12, 008 (2018).
  • (6) C. Lorcé, Eur. Phys. J. C 78, no.2, 120 (2018).
  • (7) A. Metz, B. Pasquini and S. Rodini, Phys. Rev. D 102, 114042 (2020).
  • (8) C. Lorcé, A. Metz, B. Pasquini and S. Rodini, JHEP 11, 121 (2021).
  • (9) R. L. Jaffe and A. Manohar, Nucl. Phys. B 337, 509-546 (1990).
  • (10) X. D. Ji, Phys. Rev. Lett. 78, 610-613 (1997).
  • (11) E. Leader and C. Lorcé, Phys. Rept. 541, no.3, 163-248 (2014).
  • (12) M. Wakamatsu, Int. J. Mod. Phys. A 29, 1430012 (2014).
  • (13) C. Lorcé, Eur. Phys. J. C 81, no.5, 413 (2021).
  • (14) M. V. Polyakov, Phys. Lett. B 555, 57-62 (2003).
  • (15) M. V. Polyakov and P. Schweitzer, Int. J. Mod. Phys. A 33, no.26, 1830025 (2018).
  • (16) V. D. Burkert, L. Elouadrhiri and F. X. Girod, Nature 557, no.7705, 396-399 (2018).
  • (17) C. Lorcé, H. Moutarde and A. P. Trawiński, Eur. Phys. J. C 79, no.1, 89 (2019).
  • (18) A. Freese and G. A. Miller, Phys. Rev. D 103, 094023 (2021).
  • (19) R. Abdul Khalek, A. Accardi, J. Adam, D. Adamiak, W. Akers, M. Albaladejo, A. Al-bataineh, M. G. Alexeev, F. Ameli and P. Antonioli, et al. Nucl. Phys. A 1026, 122447 (2022).
  • (20) R. Abdul Khalek, U. D’Alesio, M. Arratia, A. Bacchetta, M. Battaglieri, M. Begel, M. Boglione, R. Boughezal, R. Boussarie and G. Bozzi, et al. [arXiv:2203.13199 [hep-ph]].
  • (21) I. Y. Kobzarev and L. B. Okun, Zh. Eksp. Teor. Fiz. 43, 1904-1909 (1962).
  • (22) H. Pagels, Phys. Rev. 144, 1250-1260 (1966).
  • (23) B. L. G. Bakker, E. Leader and T. L. Trueman, Phys. Rev. D 70, 114001 (2004).
  • (24) S. Cotogno, C. Lorcé, P. Lowdon and M. Morales, Phys. Rev. D 101, no.5, 056016 (2020).
  • (25) S. Kumano, Q. T. Song and O. V. Teryaev, Phys. Rev. D 97, no.1, 014020 (2018).
  • (26) M. Diehl, Phys. Rept. 388, 41-277 (2003).
  • (27) C. Lorcé, JHEP 08, 045 (2015).
  • (28) Y. Guo, X. Ji and K. Shiells, Nucl. Phys. B 969, 115440 (2021).
  • (29) D. Boer and P. J. Mulders, Phys. Rev. D 57, 5780-5786 (1998).
  • (30) M. Burkardt, Phys. Rev. D 69, 057501 (2004).
  • (31) M. Burkardt, Phys. Rev. D 69, 091501 (2004).
  • (32) D. Boer, C. Lorcé, C. Pisano and J. Zhou, Adv. High Energy Phys. 2015, 371396 (2015).
  • (33) D. A. Amor-Quiroz, M. Burkardt, W. Focillon and C. Lorcé, Eur. Phys. J. C 81, no.7, 589 (2021).
  • (34) S. Meissner, A. Metz and M. Schlegel, JHEP 08, 056 (2009).
  • (35) A. Bacchetta, M. Diehl, K. Goeke, A. Metz, P. J. Mulders and M. Schlegel, JHEP 02, 093 (2007).
  • (36) C. Lorcé, Phys. Lett. B 719, 185-190 (2013).
  • (37) A. V. Belitsky, X. Ji and F. Yuan, Nucl. Phys. B 656, 165-198 (2003).
  • (38) C. Lorcé, Phys. Rev. D 87, no.3, 034031 (2013).
  • (39) X. S. Chen, X. F. Lu, W. M. Sun, F. Wang and T. Goldman, Phys. Rev. Lett. 100, 232002 (2008).
  • (40) M. Wakamatsu, Phys. Rev. D 83, 014012 (2011).
  • (41) Y. Hatta, Phys. Rev. D 84, 041701 (2011).
  • (42) Y. Hatta, Phys. Lett. B 708, 186-190 (2012).
  • (43) X. d. Ji, Phys. Rev. Lett. 91, 062001 (2003).
  • (44) A. V. Belitsky, X. d. Ji and F. Yuan, Phys. Rev. D 69, 074014 (2004).
  • (45) C. Lorcé and B. Pasquini, Phys. Rev. D 84, 014015 (2011).
  • (46) C. Lorcé, B. Pasquini, X. Xiong and F. Yuan, Phys. Rev. D 85, 114006 (2012).
  • (47) K. Goeke, A. Metz and M. Schlegel, Phys. Lett. B 618, 90-96 (2005).
  • (48) S. Rodini and A. Vladimirov, JHEP 08, 031 (2022) [erratum: JHEP 12, 048 (2022)].
  • (49) R. Angeles-Martinez, A. Bacchetta, I. I. Balitsky, D. Boer, M. Boglione, R. Boussarie, F. A. Ceccopieri, I. O. Cherednikov, P. Connor and M. G. Echevarria, et al. Acta Phys. Polon. B 46, no.12, 2501-2534 (2015).
  • (50) D. Boer, P. J. Mulders and F. Pijlman, Nucl. Phys. B 667, 201-241 (2003).
  • (51) S. Meissner, A. Metz and K. Goeke, Phys. Rev. D 76, 034002 (2007).
  • (52) M. Anselmino, M. Boglione, J. O. Gonzalez Hernandez, S. Melis and A. Prokudin, JHEP 04, 005 (2014).
  • (53) D. W. Sivers, Phys. Rev. D 41, 83 (1990).
  • (54) L. Susskind, Phys. Rev. 165, 1535-1546 (1968).
  • (55) C. Lorcé, B. Pasquini and P. Schweitzer, JHEP 01, 103 (2015).