This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Grand canonical partition function of a serial metallic island system

Pipat Harata and Prathan Srivilai Theoretical Condensed Matter Physics Research Unit, Department of Physics, Faculty of Science, Mahasarakham University, Khamriang Sub-District, Kantarawichai District, Mahasarakham 44150, Thailand [email protected]
Abstract

We present a calculation of the grand canonical partition function of a serial metallic island system by the imaginary-time path integral formalism. To this purpose, all electronic excitations in the lead and island electrodes are described using Grassmann numbers. Coulomb charging energy of the system is represented in terms of phase fields conjugate to the island charges. By the large channel approximation, the tunneling action phase dependence can also be determined explicitly. Therefore, we represent the partition function as a path integral over phase fields with a path probability given in an analytically known effective action functional. Using the result, we also propose a calculation of the average electron number of the serial island system in terms of the expectation value of winding numbers. Finally, as an example, we describe the Coulomb blockade effect in the two-island system by the average electron number and propose a method to construct the quantum stability diagram.

  • October 2021

Keywords: Grand canonical partition function, serial island system, Coulomb blockade, average electron number

1 Introduction

Single-electron tunneling devices are standard tools in nano-science[1, 2]. They continue to attract attention because of their nanoscopic scale, low power dissipation, and new functionalities [3]. A single-electron tunneling device allows us to control the tunneling current at the single electron level. Electron transport is strongly affected by the charging effect at temperatures in the sub-Kelvin range [4, 5]. It is, therefore, crucial to include the charging energy into the tunneling processes in the single-electron tunneling devices [6]. The most widely studied device is the single-electron transistor (SET), consisting of a single island, two tunnel junctions, and a gate electrode controlling the electrostatic potential of the island. In theoretical studies, the imaginary-time path integral formalism is a powerful tool for describing the experimental data of the SETs with high accuracy [7, 8, 9]. The findings on the SETs indicate that a close match between the theoretical model and its experimental realization exists for the single-electron transistor. In addition, one can apply the path integral Monte Carlo simulation [10, 11, 12, 13] to study the systems as the SET without the restriction of coupling parameters and temperature as perturbation theory [14, 15, 16] and semiclassical approximation[8, 17], respectively. However, since the complexity of the single-electron tunneling devices depends on the number of the island, it is still unclear whether the theoretical calculation would agree with more complex experiments than that of the SET, i.e., the systems consist of many islands [18, 19, 20].

Due to quantum statistical properties that can be obtained from the system’s partition function, this paper aims to calculate the grand canonical partition function of a finite serial metallic island system by the imaginary-time path integral approach [21, 22, 14]. The paper is organized as follows: Section 2 introduces the Hamiltonian of the serial metallic island system and some basic notations. This section deals with the path integral representation of the grand canonical partition function of the serial island system. To this purpose, we describe all electronic excitation in the lead and island electrodes employing Grassmann numbers and Coulomb charging of the island electrodes in terms of phase fields conjugate to the island charges. The general form of the path integrals over the phase and Grassmann fields is discussed. In Section 3, for further application, we propose a suitable form of the average electron number of the island system for the quantum Monte Carlo simulation and apply it to describe the Coulomb blockade effect in the two-island system as an example. Finally, we conclude and discuss possible extensions in Section 4.

2 Model and the imaginary-time path integral

In this section, the grand canonical partition function and the effective action of a finite serial metallic island are derived. Section 2.1, we first introduce the Hamiltonian model used to describe a serial metallic island system. In Section 2.2 deals with the imaginary-time path integral to represent the partition function of the system. The Coulomb action is then evaluated in Section 2.3. Path integral over Grassmann fields and the integration are discussed in Section 2.4 and Section 2.5, respectively. Finally, in Section 2.6, the tunneling action is evaluated by the large channel approximation [14, 23].

2.1 Hamiltonian model

Refer to caption
Figure 1: This arrangement is biased by the voltage difference VSVDV_{S}-V_{D}, where VSV_{S} and VDV_{D} are the source and drain voltage, respectively. The external gate voltage can tune the electrostatic potential on the island II, i.e., VgIV_{gI}, which couples directly to the island by the capacitance CgIC_{gI}. The average excess electron number on the island II is denoted by nI\left\langle{{n_{I}}}\right\rangle. All tunneling junctions are represented by a conductor connected in parallel with a capacitor.

A circuit diagram of the finite serial island system is depicted in Fig.1. Microscopically, this system can be theoretically modeled by the Hamiltonian [1]

H=HB+HT+HC,\displaystyle H=H_{B}+H_{T}+H_{C}\,, (1)

where the term HBH_{B} describes the conduction electrons of the leads and the islands

HB=JkσϵJkσcJkσcJkσ+IkσϵIkσdIkσdIkσ,\displaystyle H_{B}=\sum_{Jk\sigma}\epsilon_{Jk\sigma}c_{Jk\sigma}^{{\dagger}}c_{Jk\sigma}+\sum_{Ik\sigma}\epsilon_{Ik\sigma}d_{Ik\sigma}^{{\dagger}}d_{Ik\sigma}\,, (2)

respectively. Here ϵJkσ\epsilon_{Jk\sigma} is the energy of an electron with longitudinal wave vector kk in channel σ\sigma of lead JJ, where J{S,D}J\in\{S,D\}. The channel index σ\sigma includes the transversal and spin quantum numbers. cJkσc_{Jk\sigma} and cJkσc_{Jk\sigma}^{{\dagger}} are the corresponding electron annihilation and creation operators, respectively. Likewise, ϵIkσ\epsilon_{Ik\sigma} denotes the energy of an electron with the longitudinal wave vector kk in channel σ\sigma of island II, where I{1,2,,N}I\in\{1,2,...,N\}, and dIkσd_{Ik\sigma} and dIkσd_{Ik\sigma}^{{\dagger}} are the associated electron annihilation and creation operators, respectively.

The second term in Eq.(1) describes the tunneling of electrons across the finite tunneling junctions of the circuit as shown in Fig.1,

HT=kqσ\displaystyle H_{T}=\sum_{kq\sigma} [\displaystyle\Big{[} d1kσt1Skqσeiφ1cSqσ+I=2NdIkσtII1kqσei(φIφI1)cI1qσ\displaystyle d_{1k\sigma}^{{\dagger}}t_{1Skq\sigma}{\rm e}^{-i\varphi_{1}}c_{Sq\sigma}+\sum_{I=2}^{N}d_{Ik\sigma}^{{\dagger}}t_{II-1kq\sigma}{\rm e}^{-i(\varphi_{I}-\varphi_{I-1})}c_{I-1q\sigma}
+cDkσtDNkqσeiφNdNqσ+H.c.],\displaystyle+c_{Dk\sigma}^{{\dagger}}t_{DNkq\sigma}{\rm e}^{i\varphi_{N}}d_{Nq\sigma}+\hbox{H.c.}\Big{]},

where t1Skqσt_{1Skq\sigma}, tII1kqσt_{II-1kq\sigma}, and tDNkqσt_{DNkq\sigma} denote electron tunneling amplitude of the tunneling junctions labeled by 1S,II11S,II-1, and DNDN, respectively. For example, t1Skqσt_{1Skq\sigma} is the amplitude for an electron in state |qσ|q\sigma\rangle on lead SS to tunnel onto island 11 with final state |kσ|k\sigma\rangle. In addition, we have introduced the phase operators φI\varphi_{I} conjugate to the number operators nIn_{I} of excess charges on the islands II, i.e. [nI,φI]=i[n_{I},\varphi_{I}]=i. Accordingly, the charge shift operator eiφI{\rm e}^{-i\varphi_{I}} add one charge to the island II. Here and in the following, we have defined φS=φD=0\varphi_{S}=\varphi_{D}=0 since VS=VD=0V_{S}=V_{D}=0.

The last term in Eq.(1) is Coulomb charging energy expressed as[1, 24]

HC=I=1NEII(nIn0I)2+2I<INEII(nIn0I)(nIn0I),\displaystyle H_{C}=\sum\limits_{I=1}^{N}{{E_{II}}{({n_{I}}-{n_{0I}})}^{2}}+2\sum\limits_{I<I^{\prime}}^{N}{{E_{II^{\prime}}}({n_{I}}-{n_{0I}})({n_{I^{\prime}}}-{n_{0I^{\prime}}})}, (4)

where nIn_{I} is the (excess) electron number in the island II. For the island II the continuous charge induced by the gate voltage II is denoted by n0In_{0I} expressed by n0I=CgIVgI/en_{0I}=C_{gI}V_{gI}/e. The variable n0In_{0I} is non-integer and just a parameter of the external voltage. The coefficients EIIE_{II} and EIIE_{II^{\prime}} are the matrix elements of the matrix 𝐄CN\mathbf{E}_{CN} defined by

𝐄CN=e22𝐂N1,\displaystyle\mathbf{E}_{CN}=\frac{{{e}^{2}}}{2}\mathbf{C}_{N}^{-1}, (5)

where 𝐂N1\mathbf{C}_{N}^{-1} is the inverse matrix of 𝐂N\mathbf{C}_{N}

𝐂N=(C11C12C1NC21C22C2NCN1CNN),\displaystyle\mathbf{C}_{N}=\begin{pmatrix}C_{11}&C_{12}&\cdots&C_{1N}\\ C_{21}&C_{22}&\cdots&C_{2N}\\ \vdots&\vdots&\vdots&\vdots\\ C_{N1}&\cdots&\cdots&C_{NN}\end{pmatrix}, (6)

and the matrix elements of CIIC_{II^{\prime}} are defined by the conditions:

CII={0,if|II|>1CI,ifI=ICI,if|II|=1,\displaystyle C_{II^{\prime}}=\begin{cases}0,&\text{if}\,\,\,\,\,|I-I^{\prime}|>1\\ C_{\sum\nolimits I},&\text{if}\,\,\,\,\,I=I^{\prime}\\ -C_{I^{\prime}},&\text{if}\,\,\,\,\,|I-I^{\prime}|=1,\end{cases} (7)

where CIC_{\sum\nolimits I} is the sum of all capacitors connected with the island II, i.e., CI=CI+CI1+CgIC_{\sum I}=C_{I}+C_{I-1}+C_{gI}. According to the conditions in Eq.(7), one obtains CII=CIIC_{II^{\prime}}=C_{I^{\prime}I}.

2.2 Path integral representation of the partition function

The goal of this section is a path integral representation of the grand partition function

Z=tr{eβ(H^μN^)}\displaystyle Z={\rm tr}\,\{{\rm e}^{-\beta(\hat{H}-\mu\hat{N})}\} (8)

of the island system suitable for the evaluation, where μ\mu denotes the chemical potential of the system and N^\hat{N} is the particle number operator. The Hilbert space of the Hamiltonian in Eqs.(1)–(4) is the product of the space spanned by the state |n\ket{n}, or equivalently the phase state |φ\ket{\varphi}, and the Fock space of the quasi–particles. In order to trace over the quasi–particle excitation, we introduce Grassmann numbers ζJkσ\zeta_{Jk\sigma} and θIkσ\theta_{Ik\sigma} corresponding to the electron annihilators cJkσc_{Jk\sigma} and dIkσd_{Ik\sigma}, respectively. For notation convenience, the Grassmann numbers for electronic lead states are combined to a single vector ζ=(ζSkσ,ζDqσ)T\vec{\zeta}=(\zeta_{Sk\sigma},\zeta_{Dq\sigma})^{T}. Likewise, θ=(θ1qσ,θ2qσ,,θNqσ)T\vec{\theta}=(\theta_{1q\sigma},\theta_{2q\sigma},\ldots,\theta_{Nq\sigma})^{T} combines all Grassmann numbers for electronic island states. To trace over the island charges, we work in the phase representation and introduce the vector φ=(φ1,,φN)T\vec{\varphi}=(\varphi_{1},\ldots,\varphi_{N})^{T}. The partition function in Eq.(8) may then be written as

Z=Dμ(φ)Dμ(ζ)Dμ(θ)eζζθθφ,ζ,θ|eβH|φ,ζ,θ,\displaystyle Z=\int D\mu(\vec{\varphi})\int D\mu(\vec{\zeta})\int D\mu(\vec{\theta}){\rm e}^{-\vec{\zeta}^{\ast}\cdot\vec{\zeta}-\vec{\theta}^{\ast}\cdot\vec{\theta}}\langle\vec{\varphi},-\vec{\zeta},-\vec{\theta}|\,{\rm e}^{-\beta H}\,|\vec{\varphi},\vec{\zeta},\vec{\theta}\rangle\,, (9)

where we have dropped the term (μN^)(\mu\hat{N}) in the partition function. This term is further discussed this term in Section 2.4. Here |φ|\vec{\varphi}\rangle stands for the product of phase states |φI|\varphi_{I}\rangle. The shorthand notations |ζ|\vec{\zeta}\rangle and |θ|\vec{\theta}\rangle stand for the product of fermion coherent states |ζJkσ|\zeta_{Jk\sigma}\rangle and |θIkσ|\theta_{Ik\sigma}\rangle, respectively. The shorthand integration

Dμ(ζ)JkσdζJkσdζJkσ,\displaystyle\int D\mu(\vec{\zeta})\equiv\int\prod_{Jk\sigma}d\zeta_{Jk\sigma}^{\ast}\,d\zeta_{Jk\sigma}, (10)

and

Dμ(θ)IqσdθIqσdθIqσ\displaystyle\int D\mu(\vec{\theta})\equiv\int\prod_{Iq\sigma}d\theta_{Iq\sigma}^{\ast}\,d\theta_{Iq\sigma} (11)

are over all Grassmann numbers related with the lead and island states, respectively. The short hand integration

Dμ(φ)(12π)2IdφI\displaystyle\int D\mu(\vec{\varphi})\,\equiv\,\left(\frac{1}{2\pi}\right)^{2}\int\prod_{I}\,d\varphi_{I} (12)

integrates over the phases φI\varphi_{I} that are 2π2\pi-periodic. Further, we have introduced the notations

ζζ=JkσζJkσζJkσ,\displaystyle\vec{\zeta}^{\ast}\cdot\vec{\zeta}=\sum_{Jk\sigma}\zeta^{\ast}_{Jk\sigma}\zeta_{Jk\sigma}, (13)

and

θθ=IqσθIqσθIqσ.\displaystyle\vec{\theta}^{\ast}\cdot\vec{\theta}=\sum_{Iq\sigma}\theta^{\ast}_{Iq\sigma}\theta_{Iq\sigma}\,. (14)

The derivation of the path integral expression can be done as usual by multiple insertions of the closure relation [21]

1=Dμ(φ)Dμ(ζ)Dμ(θ)eζζθθ|φ,ζ,θφ,ζ,θ|,\displaystyle 1=\int D\mu(\vec{\varphi})\int D\mu(\vec{\zeta})\int D\mu(\vec{\theta}){\rm e}^{-\vec{\zeta}^{\ast}\cdot\vec{\zeta}-\vec{\theta}^{\ast}\cdot\vec{\theta}}\,\ket{\vec{\varphi},\vec{\zeta},\vec{\theta}}\bra{\vec{\varphi},\vec{\zeta},\vec{\theta}}, (15)

in the product space. The imaginary–time step is introduced as Δ=β/P\Delta=\beta/P, where we have used =1\hbar=1 through this paper, and PP denotes the Trotter number. For each imaginary time segment Δj=τjτj1,\Delta_{j}=\tau_{j}-\tau_{j-1}, one can calculate the short-time propagator

φj,ζj,θj|eΔjH|φj1,ζj1,θj1\displaystyle\langle\vec{\varphi}_{j},\vec{\zeta}_{j},\vec{\theta}_{j}|\,{\rm e}^{-\Delta_{j}H}\,|\vec{\varphi}_{j-1},\vec{\zeta}_{j-1},\vec{\theta}_{j-1}\rangle =\displaystyle= ζj,θj|eΔj[HB+HT(φj1)]|ζj1,θj1\displaystyle\langle\vec{\zeta}_{j},\vec{\theta}_{j}|\,{\rm e}^{-\Delta_{j}\left[H_{B}+H_{T}(\vec{\varphi}_{j-1})\right]}\,|\vec{\zeta}_{j-1},\vec{\theta}_{j-1}\rangle (16)
×φj|eΔjHC|φj1,\displaystyle\times\langle\vec{\varphi}_{j}|{\rm e}^{-\Delta_{j}H_{C}}|\vec{\varphi}_{j-1}\rangle,

where φj=(φ1(τj),φ2(τj),,φN(τj))T\vec{\varphi}_{j}=(\varphi_{1}(\tau_{j}),\varphi_{2}(\tau_{j}),\ldots,\varphi_{N}(\tau_{j}))^{T} and φj1=(φ1(τj1),φ2(τj1),,φN(τj1))T\vec{\varphi}_{j-1}=(\varphi_{1}(\tau_{j-1}),\varphi_{2}(\tau_{j-1}),\ldots,\varphi_{N}(\tau_{j-1}))^{T} and ζj\vec{\zeta}_{j} and θj\vec{\theta}_{j} are the Grassmann variables at time τj\tau_{j}. Further, HT(φj)H_{T}(\vec{\varphi}_{j}) refers to the Hamiltonian in Eq.(2.1) with the phase operators φI\varphi_{I} replaced by φI(τj)\varphi_{I}(\tau_{j}). Making use of the form in Eq.(16) of the short time propagator in the Trotter break-up for the partition function, we obtain

Z\displaystyle Z =\displaystyle= 02πI=1N[dφI,PdφI,0δ(φI,PφI,0)]\displaystyle\int\limits_{0}^{2\pi}\prod_{I=1}^{N}\Big{[}d\varphi_{I,P}\ldots d\varphi_{I,0}\,\delta(\varphi_{I,P}-\varphi_{I,0})\Big{]}
×φP|eΔPHC|φP1φ1|eΔ1HC|φ0ZBT[φ],\displaystyle\times\langle\vec{\varphi}_{P}|\,{\rm e}^{-\Delta_{P}H_{C}}\,|\vec{\varphi}_{P-1}\rangle\ldots\langle\vec{\varphi}_{1}|\,{\rm e}^{-\Delta_{1}H_{C}}\,|\vec{\varphi}_{0}\rangle\,Z_{BT}[\vec{\varphi}],

where ZBT[φ]Z_{BT}[\vec{\varphi}] is the trace over the Grassmann fields discussed in more detail in Section 2.4.

2.3 Path integral over phase fields and Coulomb action

The representation of the partition function in Eq.(2.2) can be evaluated by inserting the closure relation

1=02π𝑑φ|φφ|=n=|nn|,\displaystyle 1=\int\limits_{0}^{2\pi}{d\varphi\left|\varphi\right\rangle}\left\langle\varphi\right|=\sum\limits_{n=-\infty}^{\infty}{\left|n\right\rangle}\left\langle n\right|, (18)

where nn is an integer number into the short time propagator in the last term in Eq.(16). We have

φj|eΔjHC|φj1\displaystyle\langle\vec{\varphi}_{j}|{\rm e}^{-\Delta_{j}H_{C}}|\vec{\varphi}_{j-1}\rangle =\displaystyle= nφ1,j|n1φN,j|nN\displaystyle\sum_{\vec{n}}\langle\varphi_{1,j}|n_{1}\rangle\,\ldots\langle\varphi_{N,j}|n_{N}\rangle
×eΔjHC(n1,,nN)n1|φ1,j1nN|φN,j1\displaystyle\times{\rm e}^{-\Delta_{j}H_{C}(n_{1},\ldots,n_{N})}\langle n_{1}|\varphi_{1,j-1}\rangle\ldots\langle n_{N}|\varphi_{N,j-1}\rangle
=\displaystyle= 1(2π)NneΔjHC(n1,,nN)eiInI(φI,jφI,j1),\displaystyle\frac{1}{({2\pi})^{N}}\sum_{\vec{n}}{\rm e}^{-\Delta_{j}H_{C}(n_{1},\ldots,n_{N})}{\rm e}^{-i\sum_{I}n_{I}(\varphi_{I,j}-\varphi_{I,j-1})},

where we have defined

nn1=nN=.\displaystyle\sum_{\vec{n}}\equiv\sum_{n_{1}=-\infty}^{\infty}...\sum_{n_{N}=-\infty}^{\infty}. (20)

HC(n1,,nN)H_{C}(n_{1},\ldots,n_{N}) is the Coulomb Hamiltonian in Eq.(4) for given eigenvalues of the electron number operators nIn_{I} and nI|φI,j=(2π)1/2exp(inIφI,j)\left\langle{{{n_{I}}}}\mathrel{\left|{\vphantom{{{n_{I}}}{{\varphi_{I,j}}}}}\right.\kern-1.2pt}{{{\varphi_{I,j}}}}\right\rangle={\left({2\pi}\right)^{-1/2}}\exp\left({i{n_{I}}{\varphi_{I,j}}}\right). By means of the Poisson re-summation formula [21],

n=f(n)=k=𝑑ne2πiknf(n),\displaystyle\sum_{n=-\infty}^{\infty}f(n)=\sum_{k=-\infty}^{\infty}\ \int\limits_{-\infty}^{\infty}\!\!dn\,{\rm e}^{-2\pi ikn}f(n)\,, (21)

and the matrix in Eq.(5) corresponding with HCH_{C}, the short time propagator can be transformed to read

φj|eΔjHC|φj1\displaystyle\langle\vec{\varphi}_{j}|{\rm e}^{-\Delta_{j}H_{C}}|\vec{\varphi}_{j-1}\rangle =\displaystyle= 1(2π)Nkj𝑑n~1𝑑n~N\displaystyle\frac{1}{(2\pi)^{N}}\sum_{\vec{k}_{j}}\int\limits_{-\infty}^{\infty}d\tilde{n}_{1}\ldots\int\limits_{-\infty}^{\infty}d\tilde{n}_{N}
×exp[iΔjI=1Nn~IΔφIΔjn~IT𝐄CNn~I],\displaystyle\times\exp\left[{-i\Delta_{j}\sum_{I=1}^{N}\tilde{n}_{I}\Delta\varphi_{I}}-{\Delta_{j}\vec{\tilde{n}}_{I}^{T}\mathbf{E}_{CN}\vec{\tilde{n}}_{I}}\right]\,,

where we have defined

kjk1,j=kN,j=,\displaystyle\sum_{\vec{k}_{j}}\equiv\sum_{k_{1,j}=-\infty}^{\infty}...\sum_{k_{N,j}=-\infty}^{\infty}, (23)

n~I=(n~1,,n~N)T\vec{\tilde{n}}_{I}={\left({{{\tilde{n}}_{1}},...,{{\tilde{n}}_{N}}}\right)^{T}} with n~I(nInI0)\tilde{n}_{I}\equiv(n_{I}-n_{I0}), and ΔφI=(φI,jφI,j1+2πkI,j)/Δj\Delta{\varphi_{I}}=\left({{\varphi_{I,j}}-{\varphi_{I,j-1}}+2\pi{k_{I,j}}}\right)/{\Delta_{j}}. Evaluating the Gaussian integrals for matrix form [21]

𝑑n1𝑑nNexp[λ(nT𝐄CNn+nTJ)]\displaystyle\int\limits_{-\infty}^{\infty}{d{n_{1}}...d{n_{N}}}\exp[{-\lambda({{\vec{n}^{T}}{\mathbf{E}_{CN}}\vec{n}+{\vec{n}^{T}}\vec{J}})}] =\displaystyle= (πλ)N/2[det(𝐄CN)]12\displaystyle{({\frac{\pi}{\lambda}})^{N/2}}[{\det{\mathbf{E}_{CN}}]^{-\frac{1}{2}}}
×exp[(λ4)JT𝐄CN1J],\displaystyle\times\exp[{({\frac{\lambda}{4}}){\vec{J}}^{T}{\mathbf{E}_{CN}^{-1}}\vec{J}}],

where n=(n~1,,n~N)T\vec{n}={\left({{{\tilde{n}}_{1}},...,{{\tilde{n}}_{N}}}\right)^{T}}, J=(Δφ1,,ΔφN)T\vec{J}={\left({\Delta{\varphi_{1}},...,\Delta{\varphi_{N}}}\right)^{T}}, and λ\lambda is a constant, one obtains

φj|eΔjHC|φj1=𝒩jkjexp[Δj4ΔφjT𝐄CN1ΔφjiΔj𝒏gTΔφj]\displaystyle\langle\vec{\varphi}_{j}|{\rm e}^{-\Delta_{j}H_{C}}|\vec{\varphi}_{j-1}\rangle={\mathcal{N}_{j}}\sum_{\vec{k}_{j}}{\exp\left[{\frac{{-{\Delta_{j}}}}{4}\Delta\vec{\varphi}_{j}^{T}\mathbf{E}_{CN}^{-1}\Delta{\vec{\varphi}_{j}}-i{\Delta_{j}}\vec{\bm{n}}_{g}^{T}\Delta{\vec{\varphi}_{j}}}\right]} (25)

where 𝒩j\mathcal{N}_{j} is the normalization constant for the time segment jj;

𝒩j=1(2π)N(πΔj)N/2[det(𝐄CN)]12,\displaystyle{\mathcal{N}_{j}}=\frac{1}{{{{\left({2\pi}\right)}^{N}}}}{\left({\frac{\pi}{{{\Delta_{j}}}}}\right)^{N/2}}{\left[{\det{\mathbf{E}_{CN}}}\right]^{-\frac{1}{2}}}, (26)

that can be incorporated into the path integral measure. We now use the freedom to relabel the summations over the winding numbers kIk_{I} and to transform the integrals over φI\varphi_{I}. Instead of summations over kI,j,,kI,Pk_{I,j},\ldots,k_{I,P}, we sum over

kI,n=j=1nkI,jforn=1,,P,\displaystyle k^{\prime}_{I,n}=\sum_{j=1}^{n}k_{I,j}\quad\mbox{for}\quad n=1,\ldots,P\,, (27)

with the consequence that

ΔφI,j=φI,j+2πkI,jφI,j12πkI,j1Δj.\displaystyle\Delta\varphi_{I,j}=\frac{\varphi_{I,j}+2\pi k^{\prime}_{I,j}-\varphi_{I,j-1}-2\pi k^{\prime}_{I,j-1}}{\Delta_{j}}. (28)

Using φI,j=φI,j+2πkI,j\varphi^{\prime}_{I,j}=\varphi_{I,j}+2\pi k^{\prime}_{I,j} and dropping the primes as a convenient integration variable, we can rewrite the partition function in Eq.(2.2) as

Z\displaystyle Z =\displaystyle= 𝒩I=1N[kI,j=2πkI,P2π(kI,P+1)dφI,P2πkI,12π(kI,1+1)dφI,102πdφI,0\displaystyle\mathcal{N}\prod\limits_{I=1}^{N}\Bigg{[}\sum_{k_{I,j}=-\infty}^{\infty}\int\limits_{2\pi k_{I,P}}^{2\pi(k_{I,P}+1)}d\varphi_{I,P}\ldots\int\limits_{2\pi k_{I,1}}^{2\pi(k_{I,1}+1)}d\varphi_{I,1}\int\limits_{0}^{2\pi}d\varphi_{I,0}
×δ(φI,PφI,02πkI,P)]\displaystyle\times\delta(\varphi_{I,P}-\varphi_{I,0}-2\pi k_{I,P})\Bigg{]}
×exp[j=1PΔj(14ΔφjT𝐄CN1Δφj+ingTΔφj)]ZBT[φ],\displaystyle\times\exp[\sum_{j=1}^{P}\Delta_{j}(\frac{1}{4}\Delta\vec{\varphi}^{T}_{j}\mathbf{E}_{CN}^{-1}\Delta\vec{\varphi}_{j}+i\vec{n}^{T}_{g}\cdot\Delta\vec{\varphi}_{j})]Z_{BT}[\vec{\varphi}],

where we have introduced the vectors

Δφj=(φ1,jφ1,j1Δj,φ2,jφ2,j1Δj,,φN,jφN,j1Δj)T,\displaystyle\Delta\vec{\varphi}_{j}=\left(\frac{\varphi_{1,j}-\varphi_{1,j-1}}{\Delta_{j}},\frac{\varphi_{2,j}-\varphi_{2,j-1}}{\Delta_{j}},...,\frac{\varphi_{N,j}-\varphi_{N,j-1}}{\Delta_{j}}\right)^{T}, (30)

and ng=(n01,n02,n0N)T\vec{n}_{g}=\left(n_{01},n_{02},...n_{0N}\right)^{T}. The normalization factor 𝒩j=1P1𝒩j\mathcal{N}\equiv\prod_{j=1}^{P-1}\mathcal{N}_{j}.

With the exception of kPk_{P}, the sums over kjk_{j} can be incorporated in the integrals over φI,j\varphi_{I,j}. This simplifies the expression in Eq.(2.3) further, and we get in the continuum limit, i.e., (P,Δj0P\rightarrow\infty,\ \Delta_{j}\rightarrow 0) which is a path integral over all imaginary-time paths φ(τ)=(φ1(τ),φ2(τ),,φN(τ))T\vec{\varphi}(\tau)=(\varphi_{1}(\tau),\varphi_{2}(\tau),...,\varphi_{N}(\tau))^{T} in the time interval (0,β)(0,\beta) with arbitrary winding numbers

Z\displaystyle Z =\displaystyle= 𝒩I=1N[kI=φI(0)φI(β)+2πkID[φI(τ)]]eSC[φ(τ)]ZBT[φ],\displaystyle\mathcal{N}\prod\limits_{I=1}^{N}\bigg{[}\sum_{k_{I}=-\infty}^{\infty}\int\limits_{\varphi_{I}(0)}^{\varphi_{I}(\beta)+2\pi k_{I}}D[\varphi_{I}(\tau)]\bigg{]}{\rm e}^{-S_{C}[\vec{\varphi}(\tau)]}\,Z_{BT}[\vec{\varphi}]\,, (31)

and the Coulomb action of the serial island system is expressed by

SC[φ(τ)]=0β𝑑τ[14φ˙T𝐄CN1φ˙+i(ngTφ˙)],\displaystyle S_{C}[\vec{\varphi}(\tau)]=\int_{0}^{\beta}d\tau\left[\frac{1}{4}\dot{\vec{\varphi}}^{T}\mathbf{E}_{CN}^{-1}\,\dot{\vec{\varphi}}+i(\vec{n}^{T}_{g}\cdot\dot{\vec{\varphi}})\right]\,, (32)

where φ˙(τj)=(φ˙1(τj),φ˙2(τj),,φ˙N(τj))T\dot{\vec{\varphi}}(\tau_{j})=\left(\dot{\varphi}_{1}(\tau_{j}\right),\dot{\varphi}_{2}(\tau_{j}),...,\dot{\varphi}_{N}(\tau_{j}))^{T} is the continuum limit of Δφj\Delta\vec{\varphi}_{j} for Δj0\Delta_{j}\rightarrow 0 and 𝐄CN1\mathbf{E}_{CN}^{-1} is the inverse matrix of the matrix 𝐄CN\mathbf{E}_{CN} in Eq.(5).

2.4 Path integral over Grassmann fields

In this section, we have to evaluate the partition function in Eq.(31) wherein ZBTZ_{BT} involves the integration over the Grassmann numbers. In the Trotter break-up discussed in the previous section, the imaginary-time segment Δj\Delta_{j} gives rise to the short time propagator in Eq.(16) with the fermions short time propagator

ζj,θj|eΔj[HB+HT(φj1)]|ζj1,θj1.\displaystyle\langle\vec{\zeta}_{j},\vec{\theta}_{j}|\,{\rm e}^{-\Delta_{j}\left[H_{B}+H_{T}(\vec{\varphi}_{j-1})\right]}\,|\vec{\zeta}_{j-1},\vec{\theta}_{j-1}\rangle. (33)

Within this short time propagator, the electron annihilation (creation) operators in the Hamiltonians HBH_{B} in Eq.(2) and HTH_{T} in Eq.(2.1) can be replaced for small Δj\Delta_{j} by the corresponding (conjugate) Grassmann numbers. Accordingly, one finds

ζj,θj|eΔj[HB+HT(φj1)]|ζj1,θj1\displaystyle\langle\vec{\zeta}_{j},\vec{\theta}_{j}|\,{\rm e}^{-\Delta_{j}\left[H_{B}+H_{T}(\vec{\varphi}_{j-1})\right]}\,|\vec{\zeta}_{j-1},\vec{\theta}_{j-1}\rangle =ζj,θj|ζj1,θj1\displaystyle=\langle\vec{\zeta}_{j},\vec{\theta}_{j}|\vec{\zeta}_{j-1},\vec{\theta}_{j-1}\rangle (34)
×exp{Δj[HB,j,j1+HT,j,j1(φj1)]},\displaystyle\times\exp\{-\Delta_{j}\Big{[}H_{B,j,j-1}+H_{T,j,j-1}(\vec{\varphi}_{j-1})\Big{]}\bigg{\}},

where

HB,j,j1=JkσϵJkσζJkσ,jζJkσ,j1+IkσϵIkσθIkσ,jθIkσ,j1,\displaystyle H_{B,j,j-1}=\sum_{Jk\sigma}\epsilon_{Jk\sigma}\zeta^{*}_{Jk\sigma,j}\zeta_{Jk\sigma,j-1}+\sum_{Ik\sigma}\epsilon_{Ik\sigma}\theta^{*}_{Ik\sigma,j}\theta_{Ik\sigma,j-1}\,, (35)

and

HT,j,j1(φj1)\displaystyle H_{T,j,j-1}(\vec{\varphi}_{j-1}) =\displaystyle= kqσ[θ1kσ,jt1Skqσeiφ1,j1ζSqσ,j1\displaystyle\sum_{kq\sigma}\Big{[}\theta_{1k\sigma,j}^{*}t_{1Skq\sigma}\,{\rm e}^{-i\varphi_{1,j-1}}\zeta_{Sq\sigma,j-1}
+I=2NθIkσ,jtII1kqσei(φI,j1φI1,j1)θI1qσ,j1\displaystyle+\sum_{I=2}^{N}\theta_{Ik\sigma,j}^{*}t_{II-1kq\sigma}\,{\rm e}^{-i(\varphi_{I,j-1}-\varphi_{I-1,j-1})}\theta_{I-1q\sigma,j-1}
+ζDkσ,jtDNkqσeiφN,j1θNqσ,j1+H.c.].\displaystyle+\zeta_{Dk\sigma,j}^{*}t_{DNkq\sigma}\,{\rm e}^{i\varphi_{N,j-1}}\theta_{Nq\sigma,j-1}+\hbox{H.c.}\Big{]}\,.

Combining the exponential factor in Eq.(34) with the factor exp(ζjζjθjθj)\exp\left(-\vec{\zeta}^{*}_{j}\cdot\vec{\zeta}_{j}-\vec{\theta}_{j}^{*}\cdot\vec{\theta}_{j}\right) stemming from the closure relation in Eq.(15), and the scalar product
ζj,θj|ζj1,θj1=exp(ζj.ζj1+θj.θj1)\langle\vec{\zeta}_{j},\vec{\theta}_{j}|\vec{\zeta}_{j-1},\vec{\theta}_{j-1}\rangle=\exp\left(\vec{\zeta}_{j}^{*}.\vec{\zeta}_{j-1}+\vec{\theta}_{j}^{*}.\vec{\theta}_{j-1}\right), we obtain for each time segment Δj\Delta_{j} a factor

exp{Δj[ζjζjζj1Δj+θjθjθj1Δj+HB,j,j1+HT,j,j1(φj1)]}.\exp\{-\Delta_{j}\bigg{[}\vec{\zeta}_{j}^{*}\cdot\frac{\vec{\zeta}_{j}-\vec{\zeta}_{j-1}}{\Delta_{j}}+\vec{\theta}^{*}_{j}\cdot\frac{\vec{\theta}_{j}-\vec{\theta}_{j-1}}{\Delta_{j}}+H_{B,j,j-1}+H_{T,j,j-1}(\vec{\varphi}_{j-1})\bigg{]}\bigg{\}}\,. (37)

In the continuum limit, these factors and the integration over the Grassmann numbers ζj\vec{\zeta}_{j} and θj\vec{\theta}_{j} are combined to the path integral

ZBT[φ]=Dμ(ζ)Dμ(θ)eSBT[ζ,θ,φ],\displaystyle Z_{BT}[\vec{\varphi}]=\int D\mu(\vec{\zeta})\int D\mu(\vec{\theta})\ {\rm e}^{-S_{BT}[\vec{\zeta},\vec{\theta},\vec{\varphi}]}, (38)

where

SBT[ζ,θ,φ]=Slead[ζ]+Sisl[θ]+ST[ζ,θ,φ],\displaystyle S_{BT}[\vec{\zeta},\vec{\theta},\vec{\varphi}]=S_{\rm lead}[\vec{\zeta}]+S_{\rm isl}[\vec{\theta}]+S_{T}[\vec{\zeta},\vec{\theta},\vec{\varphi}], (39)

with the lead action

Slead[ζ(τ)]=0β𝑑τJkσ[ζJkσ(τ)(τμ+ϵJkσ)ζJkσ(τ)]ζgJ1ζ,\displaystyle S_{\rm lead}[\vec{\zeta}(\tau)]=\int_{0}^{\beta}d\tau\sum_{Jk\sigma}\Big{[}\zeta_{Jk\sigma}^{\ast}(\tau)(\partial_{\tau}-\mu+\epsilon_{Jk\sigma})\zeta_{Jk\sigma}(\tau)\Big{]}\equiv\zeta^{\ast}g_{J}^{-1}\zeta\,, (40)

and the island action

Sisl[θ(τ)]=0β𝑑τIqσ[θIqσ(τ)(τμ+ϵIqσ)θIqσ(τ)]θGI1θ,\displaystyle S_{\rm isl}[\vec{\theta}(\tau)]=\int_{0}^{\beta}d\tau\sum_{Iq\sigma}\Big{[}\theta_{Iq\sigma}^{\ast}(\tau)(\partial_{\tau}-\mu+\epsilon_{Iq\sigma})\theta_{Iq\sigma}(\tau)\Big{]}\equiv\theta^{\ast}G_{I}^{-1}\theta\,, (41)

where τ(xjxj1)/Δj\partial_{\tau}\equiv({\vec{x}_{j}-\vec{x}_{j-1}})/{\Delta_{j}} for any variable. We have defined the shorthand notations including the integration over imaginary-time in the vector multiplication. The inverse of the Green’s functions of electrons in the lead (J)(J) and the island (I)(I) are denoted by gJ1g_{J}^{-1} and GI1G_{I}^{-1}, respectively. We will discuss the Green’s functions in more detail in Section 2.5. The tunneling term reads

ST[ζ,θ,φ]\displaystyle S_{T}[\vec{\zeta},\vec{\theta},\vec{\varphi}] =0βdτ[kqσθ1kσt1Skqσeiφ1ζSqσ+I=2NkqσθIkσtII1kqσei(φIφI1)θI1qσ\displaystyle=\int_{0}^{\beta}d\tau\Bigg{[}\sum_{kq\sigma}\theta_{1k\sigma}^{\ast}t_{1Skq\sigma}\,{\rm e}^{-i\varphi_{1}}\zeta_{Sq\sigma}+\sum_{I=2}^{N}\sum_{kq\sigma}\theta_{Ik\sigma}^{\ast}t_{II-1kq\sigma}\,{\rm e}^{-i(\varphi_{I}-\varphi_{I-1})}\theta_{I-1q\sigma}
+kqσζDkσtDNkqσeiφNθNqσ+H.c.].\displaystyle+\sum_{kq\sigma}\zeta_{Dk\sigma}^{\ast}t_{DNkq\sigma}\,{\rm e}^{i\varphi_{N}}\theta_{Nq\sigma}+\hbox{H.c.}\Bigg{]}. (42)

Inserting the result in Eq.(38) into the representation of the partition function in Eq.(31), we obtain a path integral representation of the partition function which will be the basis for the analysis in the section following. We close this section with a summary of the path integral formulation for the partition function

Z[ζ,θ,φ]=𝒩I=1N[kI=φI(0)φI(β)+2πkID[φI(τ)]]Dμ(ζ)Dμ(θ)eS[ζ,θ,φ],Z[\vec{\zeta},\vec{\theta},\vec{\varphi}]=\mathcal{N}\prod\limits_{I=1}^{N}\bigg{[}\sum_{k_{I}=-\infty}^{\infty}\int\limits_{\varphi_{I}(0)}^{\varphi_{I}(\beta)+2\pi k_{I}}D[\varphi_{I}(\tau)]\bigg{]}\int D\mu(\vec{\zeta})\int D\mu(\vec{\theta})\ {\rm e}^{-S[\vec{\zeta},\vec{\theta},\vec{\varphi}]}\,, (43)

where

S[ζ,θ,φ]=SC[φ]+SBT[ζ,θ,φ].S[\vec{\zeta},\vec{\theta},\vec{\varphi}]=S_{C}[\vec{\varphi}]+S_{BT}[\vec{\zeta},\vec{\theta},\vec{\varphi}]\,. (44)

Introducing vectors ζJ=(,ζJkσ,)T\vec{\zeta}_{J}=(\ldots,\zeta_{Jk\sigma},\ldots)^{T}, θI=(,θIkσ,)T\vec{\theta}_{I}=(\ldots,\theta_{Ik\sigma},\ldots)^{T} and combining Eqs.(39)–(2.4), we found that

SBT[ζ,θ,φ]\displaystyle S_{BT}[\vec{\zeta},\vec{\theta},\vec{\varphi}] =\displaystyle= Slead[ζ]+Sisl[θ]+0βdτ[θ1Λ1SζS\displaystyle S_{\rm lead}[\vec{\zeta}]+S_{\rm isl}[\vec{\theta}]+\int_{0}^{\beta}d\tau\Big{[}\theta_{1}^{*}\,\Lambda_{1S}\zeta_{S}
+I=2N(θIΛII1θI1)+ζDΛDNθN+H.c.],\displaystyle+\sum_{I=2}^{N}(\theta_{I}^{*}\,\Lambda_{II-1}\theta_{I-1})+\zeta_{D}^{*}\,\Lambda_{DN}\theta_{N}+\hbox{H.c.}\Big{]},

where we have introduced the tunneling matrices

Λ1S\displaystyle{{\Lambda}_{1S}} =\displaystyle= t1Skqσeiφ1\displaystyle{{t}_{1Skq\sigma}}{e}^{-i{{\varphi}_{1}}} (46)
ΛII1\displaystyle{{\Lambda}_{II-1}} =\displaystyle= tII1kqσei(φIφI1)\displaystyle{{t}_{II-1kq\sigma}}{{e}^{-i\left({{\varphi}_{I}}-{{\varphi}_{I-1}}\right)}}
ΛDN\displaystyle{{\Lambda}_{DN}} =\displaystyle= tDNkqσeiφN,\displaystyle{{t}_{DNkq\sigma}}{{e}^{i{{\varphi}_{N}}}},

and used φS=φD=0\varphi_{S}=\varphi_{D}=0.

2.5 Integration over Grassmann fields

The Green’s functions of the lead electrons are defined by

(τμ+ϵJkσ)gJkσ(τ,τ)=δ(ττ),\displaystyle(\partial_{\tau}-\mu+\epsilon_{Jk\sigma})g_{Jk\sigma}(\tau,\tau^{\prime})=\delta(\tau-\tau^{\prime}), (47)

and

gJkσ(0,τ)=gJkσ(β,τ),\displaystyle g_{Jk\sigma}(0,\tau^{\prime})=-g_{Jk\sigma}(\beta,\tau^{\prime}), (48)

where μ\mu denotes the chemical potential of the lead JJ. Correspondingly, for the island electrons we have

(τμ+ϵIqσ)GIqσ(τ,τ)=δ(ττ)\displaystyle(\partial_{\tau}-\mu+\epsilon_{Iq\sigma})G_{Iq\sigma}(\tau,\tau^{\prime})=\delta(\tau-\tau^{\prime}) (49)

and

GIqσ(0,τ)=GIqσ(β,τ),\displaystyle G_{Iq\sigma}(0,\tau^{\prime})=-G_{Iq\sigma}(\beta,\tau^{\prime}), (50)

where μ\mu also denotes the chemical potential of the island II. The solution of the inhomogeneous differential equation in Eq.(49) with the boundary condition in Eq.(50) reads [21]

GIqσ(τ,τ)={exp[ϵIqσ(ττ)]1+exp(βϵIqσ)forτ>τ,exp[ϵIqσ(ττ)]1+exp(βϵIqσ)forτ<τ,\displaystyle G_{Iq\sigma}(\tau,\tau^{\prime})=\left\{\begin{array}[]{ccc}{\displaystyle\frac{\exp\left[-\epsilon_{Iq\sigma}(\tau-\tau^{\prime})\right]}{1+\exp\left(-\beta\epsilon_{Iq\sigma}\right)}}&\hbox{for}&\tau>\tau^{\prime}\,,\\ &&\\ -{\displaystyle\frac{\exp\left[-\epsilon_{Iq\sigma}(\tau-\tau^{\prime})\right]}{1+\exp\left(\beta\epsilon_{Iq\sigma}\right)}}&\hbox{for}&\tau<\tau^{\prime}\,,\end{array}\right. (54)

with the analogous expression for gJkσ(τ,τ)g_{Jk\sigma}(\tau,\tau^{\prime}). For convenience, hereafter, we have measured all energies from the chemical potential of the leads and islands.

The action in Eq.(43) is quadratic in the Grassmann fields ζ\vec{\zeta} and θ\vec{\theta} as can be seen explicitly form Eq.(2.4). Hence, the corresponding path integral is Gaussian and can be performed analytically. Thus, we can integrate over the quasi-particle reservoirs in three steps as in the following. The first step, using the general Gaussian’s integral formula as [21]

i=1Ndxidxi2πiexiHijxj+Jixi+xiJi=(det(H))1eJiHij1Ji,\displaystyle\int\prod\limits_{i=1}^{N}{\frac{d{{x}_{i}}^{*}\,d{{x}_{i}}}{2\pi i}}\,{{e}^{-x_{i}^{*}\,{{H}_{ij\,}}{{x}_{j}}+\,J_{i}^{*}{{x}_{i}}+\,x_{i}^{*}{{J}_{i}}}}\,\,\,\,={{\left(\det\left(H\right)\right)}^{-1}}{{e}^{\,J_{i}^{*}\,H_{ij}^{-1}\,{{J}_{i}}}}, (55)

we can integrate over the fermion in the source electrode in Eq.(43) as

Dμ(ζS)eS[ζ,θ,φ]\displaystyle\int{D\mu\left({{\zeta}_{S}}\right)}\,{{e}^{-S[\vec{\zeta},\vec{\theta},\vec{\varphi}]}} =\displaystyle= Dμ(ζS)e(ζSgS1ζS+θ1Λ1SζS+ζSΛ1Sθ1)\displaystyle\int{D\mu\left({{\zeta}_{S}}\right)}\,{{e}^{-\left(\zeta_{S}^{*}g_{S}^{-1}{{\zeta}_{S}}+\theta_{1}^{*}\Lambda_{1S}^{*}{{\zeta}_{S}}+{{\zeta}^{*}}_{S}\Lambda_{1S}\theta_{1}\right)}}
=\displaystyle= ZSeθ1Λ1SgSΛ1Sθ1,\displaystyle Z_{S}\,e^{\theta_{1}^{*}\Lambda_{1S}^{*}g_{S}\Lambda_{1S}\theta_{1}},

where ZS=det(gS1){{Z}_{S}}=\det\left(g_{S}^{-1}\right). The second step, we integrate over θ1{{\theta}_{1}} as

Dμ(θ1)eS[ζ,θ,φ]\displaystyle\int{D\mu\left({{\theta}_{1}}\right)}\,{{e}^{-S[\vec{\zeta},\vec{\theta},\vec{\varphi}]}} =\displaystyle= Dμ(θ1)e(θ1G11θ1+θ2Λ21θ1+θ1Λ21θ2)+θ1Λ1SgSΛ1Sθ1\displaystyle\int{D\mu\left({{\theta}_{1}}\right)}\,{{e}^{-\left(\theta_{1}^{*}G_{1}^{-1}{{\theta}_{1}}+\theta_{2}^{*}\Lambda_{21}^{*}{{\theta}_{1}}+{{\theta}^{*}}_{1}\Lambda_{21}\theta_{2}\right)+\theta_{1}^{*}\Lambda_{1S}^{*}{{g}_{S}}\Lambda_{1S}\theta_{1}}}
=\displaystyle= det(G11Λ1SgSΛ1S)eθ2Λ21G~1Λ21θ2\displaystyle\det\left(G_{1}^{-1}-\Lambda_{1S}^{*}{{g}_{S}}\Lambda_{1S}\right)\,{{e}^{\theta_{2}^{*}\Lambda_{21}^{*}\tilde{G}_{1}\Lambda_{21}\theta_{2}}}
=\displaystyle= Z1det(1G1Λ1SgSΛ1S)eθ2Λ21G~1Λ21θ2,\displaystyle{{Z}_{1}}\det\left(1-G_{1}\Lambda_{1S}^{*}{{g}_{S}}\Lambda_{1S}\right)\,{{e}^{\theta_{2}^{*}\Lambda_{21}^{*}\tilde{G}_{1}\Lambda_{21}\theta_{2}}},

where Z1=det(G11){{Z}_{1}}=\det\left(G_{1}^{-1}\right) and G~11=G11Λ1SgSΛ1S\tilde{G}_{1}^{-1}=G_{1}^{-1}-\Lambda_{1S}^{*}{{g}_{S}}\Lambda_{1S}. We have used the identity matrix properties G11G1=𝕀G_{1}^{-1}G_{1}=\mathbb{I}, and the determinant matrix property, respectively. In the same way, one integrates over θI\theta_{I} variable and then obtains

Dμ(θI)eS[φ,Λ]\displaystyle\int{D\mu({\theta}_{I}})\,e^{-S[\varphi,\Lambda]} =\displaystyle= ZIdet(1GIΛII1G~I1ΛII1)\displaystyle Z_{I}\det(1-G_{I}\Lambda_{II-1}^{*}\tilde{G}_{I-1}\Lambda_{II-1})
×eθIΛII1G~I1ΛII1θI1,\displaystyle\times e^{\theta_{I}^{*}\Lambda_{II-1}^{*}\tilde{G}_{I-1}\Lambda_{II-1}\theta_{I-1}},

where ZI=det(GI1){{Z}_{I}}=\det\left(G_{I}^{-1}\right), and

G~I1=GI1ΛII1G~I1ΛII1.\displaystyle\tilde{G}_{I}^{-1}=G_{I}^{-1}-\Lambda_{II-1}^{*}{{\tilde{G}}_{I-1}}\Lambda_{II-1}. (59)

The third step, the fermion in drain ζD\zeta_{D} can be integrated as

Dμ(ζD)eS[φ,Λ]=ZDdet(1gDΛDNG~NΛDN),\displaystyle\int{D\mu(\zeta_{D})}\,e^{-S[\varphi,\Lambda]}=Z_{D}\det(1-{g_{D}}\Lambda_{DN}^{*}{\tilde{G}}_{N}\Lambda_{DN})\,, (60)

where ZD=det(gD1)Z_{D}=\det(g_{D}^{-1}) and G~N1=GN1ΛNN1G~N1ΛNN1\tilde{G}_{N}^{-1}=G_{N}^{-1}-\Lambda_{NN-1}^{*}{{\tilde{G}}_{N-1}}\Lambda_{NN-1}. We may rewrite the partition function in Eq.(38) as

ZBT[φ]\displaystyle Z_{BT}\left[\vec{\varphi}\right] =\displaystyle= 𝒩BTdet(1G1Λ1SgSΛ1S)\displaystyle\mathcal{N}_{BT}\,\det\left(1-G_{1}\Lambda_{1S}^{*}g_{S}\Lambda_{1S}\right)\,
×I=2Ndet(1GIΛII1G~I1ΛII1)\displaystyle\times\prod\limits_{I=2}^{N}\det\left(1-G_{I}\Lambda_{II-1}^{*}{\tilde{G}_{I-1}}\Lambda_{II-1}\right)
×det(1gDΛDNG~NΛDN),\displaystyle\times\det\left(1-{{g}_{D}}\Lambda_{DN}^{*}{\tilde{G}_{N}}\Lambda_{DN}\right)\,,

where 𝒩BT=ZSZDZ1Z2ZN\mathcal{N}_{BT}=Z_{S}Z_{D}Z_{1}Z_{2}...Z_{N}. To simplify future, we rewrite the partition function in Eq.(2.5) in term of the trace of matrix as

ZBT[φ]\displaystyle Z_{BT}\left[\vec{\varphi}\right] =\displaystyle= 𝒩BTetr{ln(1G1Λ1SgSΛ1S)}etr{ln(1gDΛDNG~NΛDN)}\displaystyle\mathcal{N}_{BT}{{e}^{tr\big{\{}\ln\left(1-G_{1}\Lambda_{1S}^{*}{{g}_{S}}\Lambda_{1S}\right)\big{\}}}}{{e}^{tr\big{\{}\ln\left(1-{{g}_{D}}\Lambda_{DN}^{*}{{\tilde{G}}}_{N}\Lambda_{DN}\right)\big{\}}}}
×eI=2Ntr{ln(1GIΛII1G~I1ΛII1)}\displaystyle\times{{e}^{\sum\limits_{I=2}^{N}{tr\big{\{}\ln\left(1-G_{I}\Lambda_{II-1}^{*}{{{\tilde{G}}}_{I-1}}\Lambda_{II-1}\right)\big{\}}}}}

where we have used the matrix property as

detA=etr{lnA}.\displaystyle\det A={{e}^{tr\left\{\ln A\right\}}}. (63)

We can therefore rewrite the partition function of the system in term of the effective action as

Z[φ]=𝒩sysI=1N[kI=φI(0)φI(β)+2πkID[φI(τ)]]eSeff[φ,Λ],\displaystyle Z[\vec{\varphi}]=\mathcal{N}_{sys}\prod\limits_{I=1}^{N}\bigg{[}\sum_{k_{I}=-\infty}^{\infty}\int\limits_{\varphi_{I}(0)}^{\varphi_{I}(\beta)+2\pi k_{I}}D[\varphi_{I}(\tau)]\bigg{]}{{e}^{-{{S}_{\text{eff}}\left[\vec{\varphi},\Lambda\right]}}}, (64)

where 𝒩sys=𝒩𝒩BT\mathcal{N}_{sys}=\mathcal{N}\mathcal{N}_{BT} and Seff[φ,Λ]S_{\text{eff}}\left[\vec{\varphi},\Lambda\right] is the effective action of the island system

Seff[φ,Λ]=SC[φ]+ST[φ,Λ],\displaystyle S_{\text{eff}}\left[\vec{\varphi},\Lambda\right]={{S}_{C}}\left[\vec{\varphi}\right]+{{S}_{T}}\left[\vec{\varphi},\Lambda\right], (65)

with the Coulomb action SC[φ]{{S}_{C}}\left[\vec{\varphi}\right] obtains in Eq.(32) and the tunneling action is expressed as

ST[φ,Λ]=\displaystyle S_{T}\left[\vec{\varphi},\Lambda\right]= tr{ln(1G1Λ1SgSΛ1S)}I=2Ntr{ln(1GIΛII1G~I1ΛII1)}\displaystyle-tr\big{\{}\ln\left(1-G_{1}\Lambda_{1S}^{*}{{g}_{S}}\Lambda_{1S}\right)\big{\}}-\sum\limits_{I=2}^{N}{tr\big{\{}\ln\left(1-G_{I}\Lambda_{II-1}^{*}{{{\tilde{G}}}_{I-1}}\Lambda_{II-1}\right)\big{\}}}
tr{ln(1gDΛDNG~NΛDN)}.\displaystyle-tr\big{\{}\ln\left(1-{{g}_{D}}\Lambda_{DN}^{*}{{{\tilde{G}}}_{N}}\Lambda_{DN}\right)\big{\}}. (66)

2.6 The tunneling action

In order to evaluate the tunneling action in Eq.(2.5) explicitly, we have followed the ideas of Ambegaokar et al.[22] and Grabert [14]. We expand the first term in Eq.(2.5) as

tr{ln(1G1Λ1SgSΛ1S)}\displaystyle-tr\big{\{}\ln\left(1-G_{1}\Lambda_{1S}^{*}{{g}_{S}}\Lambda_{1S}\right)\big{\}} =\displaystyle= tr{ln((1G1Λ1SgSΛ1S)1)}\displaystyle tr\bigg{\{}\ln{{\left(1-G_{1}\Lambda_{1S}^{*}{{g}_{S}}\Lambda_{1S}\right)}^{-1}}\bigg{\}}
=\displaystyle= tr{n=1(G1Λ1SgSΛ1S)nn}.\displaystyle tr\bigg{\{}\sum\limits_{n=1}^{\infty}\frac{{{{\left({{G_{1}}\Lambda_{1S}^{*}{g_{S}}{\Lambda_{1S}}}\right)}^{n}}}}{n}\bigg{\}}.

For the metallic oxide-layer tunnel junctions, the tunneling conductance arises from a large number, i.e., M=σ1M=\sum_{\sigma}{1} of available tunneling channels while the tunneling amplitude and, accordingly, the matrix element of the tunneling matrices (Λ)(\Lambda) introduced in Eq.(46) are very small. It is sufficient that one may keep only the first term in the expansion in Eq.(2.6) as

tr{ln(1G1Λ1SgSΛ1S)}tr{G1Λ1SgSΛ1S}.\displaystyle-tr\{\ln(1-G_{1}\Lambda_{1S}^{*}{{g}_{S}}\Lambda_{1S})\}\approx tr\{G_{1}\Lambda_{1S}^{*}{{g}_{S}}\Lambda_{1S}\}. (68)

This approximation is known as the large channel number approximation [14], and will be discussed in more detail later. To evaluate the trace of the matrix in Eq.(68), we substitute Λ1S\Lambda_{1S} and Λ1S\Lambda_{1S}^{*} from (46) into (68) as

tr{G1Λ1SgSΛ1S}=kqσ0β𝑑τ0β𝑑τ|t1Skqσ|2ei(φ1(τ)φ1(τ))G1kq(τ,τ)gSqσ(τ,τ),tr\{G_{1}\Lambda_{1S}^{*}{{g}_{S}}\Lambda_{1S}\}=\sum\limits_{kq\sigma}{\int\limits_{0}^{\beta}{d\tau}\int\limits_{0}^{\beta}{d{\tau}^{\prime}}}{{\left|{{t}_{1Skq\sigma}}\right|}^{2}}{e^{i(\varphi_{1}(\tau)-\varphi_{1}(\tau^{\prime}))}}{{G}_{1kq}}\left(\tau,{\tau}^{\prime}\right){{g}_{Sq\sigma}}\left(\tau,{\tau}^{\prime}\right), (69)

where |t1Skqσ|2=t1Skqσt1Skqσ{\left|{{t_{1Skq\sigma}}}\right|^{2}}=t_{1Skq\sigma}^{*}{t_{1Skq\sigma}}. We introduce the electron-hole-pair propagator as

Π1S(τ,τ)=kqσ|t1Skqσ|2G1kσ(τ,τ)gSqσ(τ,τ).\displaystyle\Pi_{1S}(\tau,\tau^{\prime})=\sum_{kq\sigma}|t_{1Skq\sigma}|^{2}G_{1k\sigma}(\tau,\tau^{\prime})g_{Sq\sigma}(\tau,\tau^{\prime}). (70)

By inserting the Green’s function G1kσ(τ,τ)G_{1k\sigma}(\tau,\tau^{\prime}) in Eq.(54) and the analogous expression for gSqσ(τ,τ)g_{Sq\sigma}(\tau,\tau^{\prime}), the propagator Π1S\Pi_{1S} becomes

Π1S(τ,τ)=kqσ|t1Skqσ|2exp[ϵ1kσ(ττ)]1+exp(βϵ1kσmissing)exp[ϵSqσ(ττ)]1+exp(±βϵSqσmissing),\displaystyle\Pi_{1S}(\tau,\tau^{\prime})=-\sum_{kq\sigma}|t_{1Skq\sigma}|^{2}\frac{\exp\left[-\epsilon_{1k\sigma}(\tau-\tau^{\prime})\right]}{1+\exp\big(\mp\beta\epsilon_{1k\sigma}\big{missing})}\frac{\exp\left[-\epsilon_{Sq\sigma}(\tau^{\prime}-\tau)\right]}{1+\exp\big(\pm\beta\epsilon_{Sq\sigma}\big{missing})}\,, (71)

where the upper and lower sign holds for τ>τ\tau>\tau^{\prime} and τ<τ\tau<\tau^{\prime}, respectively. Here we have measured all energies from the chemical potential of the leads and islands. Clearly, Π1S(τ,τ)=Π1S(ττ)\Pi_{1S}(\tau,\tau^{\prime})=\Pi_{1S}(\tau-\tau^{\prime}) depends only on ττ\tau-\tau^{\prime}.

The tunnel matrix elements may be approximated as a constant in the relevant energy range, closed to the Fermi energy at low temperature. Thus, the energy dependence of the tunneling amplitudes can be neglected for energies near the Fermi energy, which contribute to the energy integrals. The propagator Π1S\Pi_{1S} can be transformed to read

Π1S(ττ)=|t1S|2𝑑ϵ𝑑ϵσρσρσeϵ(ττ)1+eβϵeϵ(ττ)1+e±βϵ,\displaystyle\Pi_{1S}(\tau-\tau^{\prime})=-|t_{1S}|^{2}\int_{-\infty}^{\infty}d\epsilon\int_{-\infty}^{\infty}d\epsilon^{\prime}\sum_{\sigma}\rho_{\sigma}\rho^{\prime}_{\sigma}\frac{{\rm e}^{-\epsilon(\tau-\tau^{\prime})}}{1+{\rm e}^{\mp\beta\epsilon}}\,\frac{{\rm e}^{\epsilon^{\prime}(\tau-\tau^{\prime})}}{1+{\rm e}^{\pm\beta\epsilon^{\prime}}}\,, (72)

where the summation over wave vectors were transformed as the integration over energies. We have used a constant density of state per channel, i.e., ρσρσ(0)\rho_{\sigma}\equiv\rho_{\sigma}(0) and extended the limit of the integration since the metallic bandwidth is much larger than the relevant energy scales, ECE_{C} and kBTk_{B}T [14]. The integration over the energies can be performed [25] and by replacing ρσ\rho_{\sigma} and ρσ\rho^{\prime}_{\sigma} with the average densities of state per channel ρ\rho and ρ\rho^{\prime} of the island and the lead, one gets

Π1S(ττ)=g1Sα(ττ),\displaystyle\Pi_{1S}(\tau-\tau^{\prime})=-g_{1S}\,\alpha(\tau-\tau^{\prime}), (73)

where we have introduced the tunneling kernel

α(ττ)=14β2sin2(πβ(ττ)),\displaystyle\alpha\left({\tau-\tau^{\prime}}\right)=\frac{1}{{4{\beta}^{2}\sin^{2}\left({\frac{\pi}{\beta}(\tau-\tau^{\prime})}\right)}}, (74)

and the dimensionless tunneling conductance

g1S=4π2|t1S|2Mρρ\displaystyle g_{1S}=4\pi^{2}|t_{1S}|^{2}M\rho\rho^{\prime} (75)

of the tunnel junction between the source electrode and the first island. Accordingly, the tunneling conductance g1Sg_{1S} can be treated as a constant and we insert (73) into Eq. (69) to yield

tr{G1Λ1SgSΛ1S}=g1S0β𝑑τ0β𝑑τα(ττ)cos[φ1(τ)φ1(τ)],\displaystyle tr\{G_{1}\Lambda_{1S}^{*}{{g}_{S}}\Lambda_{1S}\}=-g_{1S}\int_{0}^{\beta}d\tau\int_{0}^{\beta}d\tau^{\prime}\,\alpha(\tau-\tau^{\prime})\cos\left[\varphi_{1}(\tau)-\varphi_{1}(\tau^{\prime})\right], (76)

where the imaginary part vanishes because of α(ττ)\alpha(\tau-\tau^{\prime}) is an even function.

Analogous to the calculation of the first term above, one can evaluate the second and third terms in Eq.(2.5) with the approximation of G~I\tilde{G}_{I} as

G~I=(1+GIΛII1GI1ΛII1)GI,\displaystyle{\tilde{G}}_{I}={(1+G_{I}\Lambda_{II-1}^{*}G_{I-1}\Lambda_{II-1})}G_{I}, (77)

where we have approximated G~I1\tilde{G}_{I}^{-1} in Eq.(59) by the inverse matrix property and

11x=n=0xn(1+x).\displaystyle\frac{1}{1-x}=\sum\limits_{n=0}^{\infty}{{{x}^{n}}}\approx(1+x). (78)

Using the definition of ΛII1\Lambda_{II-1} in Eq.(46) and (77), one can obtain the propagators

ΠII1(ττ)=gII1α(ττ),\displaystyle{\Pi_{II-1}}\left(\tau-\tau^{\prime}\right)=-g_{II-1}\,\alpha(\tau-\tau^{\prime}), (79)

and

ΠDN(ττ)=gDNα(ττ),\displaystyle{\Pi_{DN}}\left(\tau-\tau^{\prime}\right)=-g_{DN}\,\alpha(\tau-\tau^{\prime}), (80)

with

gII1=4π2|tII1|2Mρρ,\displaystyle g_{II-1}=4\pi^{2}|t_{II-1}|^{2}M\rho\rho^{\prime}, (81)

and

gDN=4π2|tDN|2Mρρ.\displaystyle g_{DN}=4\pi^{2}|t_{DN}|^{2}M\rho\rho^{\prime}\,. (82)

At this point, we will explain the large channel number approximation in more detail, clarifying why the higher order terms in the expansion of the logarithm in Eq.(2.5) may be neglected in the limit of M1M\gg 1. The form the definitions in Eq.(73), (79), and (80) shows that by keeping only the first order of the expansion, the dimensionless conductance is proportional to M|tII1|2M|t_{II-1}|^{2}. It is easy to see that for the higher order terms, the term M|tII1|nM|t_{II-1}|^{n} is proportional to gII1nM(n1)g_{II-1}^{n}M^{-(n-1)} for any integer number n2n\geq 2, which is negligible for the large MM [23]. The dimensionless conductance can be related to the conductance of the tunnel junction between two conductors II and I1I-1 as

gII1=2πe2GNN1,\displaystyle{g}_{II-1}=\frac{2\pi}{{{e}^{2}}}{{G}_{NN-1}}, (83)

with g1Sg_{1S} and gDNg_{DN} are related to G1S{G}_{1S} and GDN{G}_{DN}, respectively.

By the large channel number approximation, the tunneling action in Eq.(2.5) can be rewritten as

ST[φ]\displaystyle S_{T}[\vec{\varphi}] =\displaystyle= 0βdτ0βdτα(ττ){g1Scos[φ1(τ)φ1(τ)]\displaystyle-\int\limits_{0}^{\beta}{d\tau}\int\limits_{0}^{\beta}{d{\tau}^{\prime}}\alpha(\tau-{\tau}^{\prime})\bigg{\{}g_{1S}\cos[\varphi_{1}(\tau)-\varphi_{1}({\tau}^{\prime})]
+I=2NgII1cos[(φI1(τ)φI1(τ))(φI(τ)φI(τ))]\displaystyle+\sum\limits_{I=2}^{N}{g_{II-1}\cos[(\varphi_{I-1}(\tau)-\varphi_{I-1}({\tau}^{\prime}))-(\varphi_{I}(\tau)-\varphi_{I}({\tau}^{\prime}))]}
+gDNcos[φN(τ)φN(τ)]},\displaystyle+g_{DN}\cos[\varphi_{N}(\tau)-\varphi_{N}({\tau}^{\prime})]\bigg{\}},

where the imaginary parts were vanished due to the integrands being odd functions. We close this section with the expressed of the partition function as

Z[φ]=𝒩sysI=1N[kI=φI(0)φI(β)+2πkID[φI(τ)]]eSeff[φ],\displaystyle Z[\vec{\varphi}]=\mathcal{N}_{sys}\prod\limits_{I=1}^{N}\bigg{[}\sum_{k_{I}=-\infty}^{\infty}\int\limits_{\varphi_{I}(0)}^{\varphi_{I}(\beta)+2\pi k_{I}}D[\varphi_{I}(\tau)]\bigg{]}{{e}^{-{{S}_{\text{eff}}\left[\vec{\varphi}\right]}}}, (85)

where the effective action reads

Seff[φ]\displaystyle S_{\text{eff}}[\vec{\varphi}] =\displaystyle= 0β𝑑τ{14φ˙T𝐄CN1φ˙ingTφ˙}\displaystyle\int\limits_{0}^{\beta}{d\tau}\bigg{\{}\frac{1}{4}{{{\dot{\vec{\varphi}}^{T}}}}\mathbf{E}_{CN}^{-1}\dot{\vec{\varphi}}-i\vec{n}_{g}^{T}\cdot\dot{\vec{\varphi}}\bigg{\}}
0βdτ0βdτα(ττ){g1Scos[φ1(τ)φ1(τ)]\displaystyle-\int\limits_{0}^{\beta}{d\tau}\int\limits_{0}^{\beta}{d{\tau}^{\prime}}\alpha(\tau-{\tau}^{\prime})\bigg{\{}g_{1S}\cos[{{\varphi}_{1}}(\tau)-{{\varphi}_{1}}({{\tau}^{\prime}})]
+I=2NgII1cos[(φI1(τ)φI1(τ))(φI(τ)φI(τ))]\displaystyle+\sum\limits_{I=2}^{N}{g_{II-1}\cos[({{\varphi}_{I-1}}(\tau)-{\varphi_{I-1}}({\tau}^{\prime}))-(\varphi_{I}(\tau)-\varphi_{I}({\tau}^{\prime}))]}
+gDNcos[φN(τ)φN(τ)]},\displaystyle+{{g}_{DN}}\cos[{{\varphi}_{N}}(\tau)-{{\varphi}_{N}}({{\tau}^{\prime}})]\bigg{\}},

with 𝐄CN1\mathbf{E}_{CN}^{-1} is related to the matrix defined in Eq.(5).

3 Applications

The previous section found that the partition function corresponding to the path integral is a non-Gaussian integral and cannot be performed analytically. However, since all possible paths are expressed in imaginary time, the quantum mechanical propagator turns into a quantum statistical density matrix to perform the quantum Monte Carlo method [13, 21, 26, 27]. Therefore, to show an application of the partition function in Eq.(85) with the effective action in Eq.(2.6), we will propose the calculation of average electron numbers of the serial island system and its application in the following.

3.1 Dimensionless Energies

For more convenience in numerical calculations, such as the quantum Monte Carlo simulation of the single-electron transistor [9], one may measure all energies in the relevant charging energy scale unit. Thus, in principle, one is free to choose the reference energy scale. However, this paper will use the charging energy that may be defined as

EC=GclI=1N+1EII1GII1,\displaystyle{E_{C}}={G^{cl}}\sum\limits_{I=1}^{N+1}{\frac{{E_{II-1}}}{{{G_{II-1}}}}}, (87)

for the serial island system in Fig 1. Gcl{G^{cl}} denotes the total of high-temperature conductance of all tunneling junctions, i.e.,

Gcl=(I=1N+11GII1)1,\displaystyle{G^{cl}}={\left({\sum\limits_{I=1}^{N+1}{\frac{1}{{{G_{II-1}}}}}}\right)^{-1}}, (88)

where GII1G_{II-1} stands for the high-temperature conductance between island Iand(I1)I\,\text{and}\,(I-1) with G10=G1SG_{10}=G_{1S} and GN+1N=GDNG_{N+1N}=G_{DN}. The coefficient EIIE_{II} is the element of the matrix ENE_{N} defined in Eq.(5). In the unit of the charging energy (ECE_{C}) given in Eq.(87), one can rewrite the Coulomb action in Eq.(32) as

SC[φ(τ)]=0βEC𝑑τ{14φ˙T𝔼Nφ˙+i(ngTφ˙)},\displaystyle S_{C}[\vec{\varphi}(\tau)]=\int_{0}^{\beta E_{C}}d\tau\bigg{\{}\frac{1}{4}\dot{\vec{\varphi}}^{T}\mathbb{E}_{N}\,\dot{\vec{\varphi}}+i(\vec{n}^{T}_{g}\cdot\dot{\vec{\varphi}})\bigg{\}}, (89)

where

𝔼N=2ECe2𝐂N(𝔼11𝔼12𝔼1N𝔼21𝔼22𝔼2N𝔼N1𝔼NN),\displaystyle\mathbb{E}_{N}=\frac{2E_{C}}{e^{2}}\mathbf{C}_{N}\equiv\begin{pmatrix}\mathbb{E}_{11}&\mathbb{E}_{12}&\cdots&\mathbb{E}_{1N}\\ \mathbb{E}_{21}&\mathbb{E}_{22}&\cdots&\mathbb{E}_{2N}\\ \vdots&\vdots&\vdots&\vdots\\ \mathbb{E}_{N1}&\cdots&\cdots&\mathbb{E}_{NN}\end{pmatrix}, (90)

and the matrix 𝐂N\mathbf{C}_{N} is defined in Eq.(6). The tunneling action in Eq.(2.6) can be rewritten as

ST[φ(τ)]\displaystyle S_{T}[\vec{\varphi}(\tau)] =\displaystyle= 0βECdτ0βECdτα(ττ){g1Scos[φ1(τ)φ1(τ)]\displaystyle-\int\limits_{0}^{\beta E_{C}}{d\tau}\int\limits_{0}^{\beta E_{C}}{d\tau^{\prime}}\alpha(\tau-\tau^{\prime})\bigg{\{}g_{1S}\cos[\varphi_{1}(\tau)-\varphi_{1}(\tau^{\prime})]
+I=2NgII1cos[(φI1(τ)φI1(τ))(φI(τ)φI(τ))]\displaystyle+\sum\limits_{I=2}^{N}{g_{II-1}\cos[(\varphi_{I-1}(\tau)-\varphi_{I-1}(\tau^{\prime}))-(\varphi_{I}(\tau)-\varphi_{I}(\tau^{\prime}))]}
+gDNcos(φN(τ)φN(τ))},\displaystyle+g_{DN}\cos(\varphi_{N}(\tau)-\varphi_{N}({\tau}^{\prime}))\bigg{\}},

with the tunneling kernel

α(ττ)=14(βEC)2sin2(πβEC(ττ)).\displaystyle\alpha\left({\tau-\tau^{\prime}}\right)=\frac{1}{{4({\beta}E_{C})^{2}\sin^{2}\left({\frac{\pi}{\beta E_{C}}(\tau-\tau^{\prime})}\right)}}. (92)

3.2 Winding Numbers

The partition function in Eq.(85) is expressed as the sum over paths with different boundary conditions. Instead of evaluating each path integral separately up to a certain cutoff and adding them up. In numerical calculations, it is more convenient to make the transformation

φI(τ)=ξI(τ)+νkIτ,\displaystyle{\varphi_{I}}\left(\tau\right)={\xi_{I}}\left(\tau\right)+\nu_{k_{I}}\tau, (93)

where νkI=2πkI/(βEC)\nu_{k_{I}}={{2\pi{k_{I}}}\mathord{\left/{\vphantom{{2\pi{k_{I}}}{\left({\beta{E_{C}}}\right)}}}\right.\kern-1.2pt}{\left({\beta{E_{C}}}\right)}} with all periodic paths obey the condition,

ξI(0)=ξI(βEC).\displaystyle{\xi_{I}}\left(0\right)={\xi_{I}}\left({\beta{E_{C}}}\right). (94)

Using this transformation, one can rewrite the partition function in Eq.(85) in suitable form as

Z[ξ,k]\displaystyle Z[\vec{\xi},\vec{k}] =\displaystyle= 𝒩sysI=1N[kI=ξI(0)ξI(βEC)D[ξI(τ)]]eSeff[ξ,k],\displaystyle\mathcal{N}_{sys}\prod\limits_{I=1}^{N}\bigg{[}\sum_{{k_{I}}=-\infty}^{\infty}\int\limits_{\xi_{I}(0)}^{\xi_{I}(\beta{E_{C}})}D[\xi_{I}(\tau)]\bigg{]}{\rm e}^{-S_{\rm eff}[\vec{\xi},\vec{k}]}, (95)

where the effective action can be expressed in term of the winding numbers as

Seff[ξ,k]=SC[ξ,k]+ST[ξ,k].\displaystyle S_{\rm eff}[\vec{\xi},\vec{k}]=S_{C}[\vec{\xi},\vec{k}]+S_{T}[\vec{\xi},\vec{k}]. (96)

The Coulomb action in Eq.(89) can be rewritten as

SC[ξ,k]=ξ(0)ξ(βEC)𝑑τ14ξ˙T𝔼Nξ˙+4π2βECkT𝔼Nk+2πi(ngTk),\displaystyle S_{C}[\vec{\xi},\vec{k}]=\int_{\xi(0)}^{\xi({\beta E_{C}})}d\tau\,\frac{1}{4}\vec{\dot{\xi}}^{T}\mathbb{E}_{N}\,\vec{\dot{\xi}}+\frac{4\pi^{2}}{\beta E_{C}}\vec{k}^{T}\mathbb{E}_{N}\,\vec{k}+2\pi i(\vec{n}^{T}_{g}\cdot\vec{k}), (97)

where ξ(τ)=(ξ1(τ),,ξN(τ))T\vec{\xi}(\tau)=(\xi_{1}(\tau),...,\xi_{N}(\tau))^{T} with given winding numbers, k=(k1,,kN)T\vec{k}=(k_{1},...,k_{N})^{T}. The tunneling action in Eq.(3.1) can be rewritten as

ST[ξ,k]\displaystyle S_{T}[{\vec{\xi}},\vec{k}] =\displaystyle= ξ(0)ξ(βEC)dτξ(0)ξ(βEC)dτα(ττ){g1Scos[ξ1(τ)ξ1(τ)+νk1k1]\displaystyle-\int\limits_{\xi(0)}^{\xi(\beta{E_{C}})}{d\tau}\int\limits_{\xi(0)}^{\xi(\beta{E_{C}})}{d\tau^{\prime}}\alpha\left({\tau-\tau^{\prime}}\right)\bigg{\{}{g_{1S}}\cos\left[{{\xi_{1}}\left(\tau\right)-{\xi_{1}}\left({\tau^{\prime}}\right)+{\nu_{k_{1}}}{k_{1}}}\right]
+I=2NgII1cos[(ξI1(τ)ξI1(τ))(ξI(τ)ξI(τ))\displaystyle+\sum\limits_{I=2}^{N}{g_{II-1}}\cos\left[({\xi_{I-1}}(\tau)-{\xi_{I-1}}(\tau^{\prime}))-({\xi_{I}}({\tau})-{\xi_{I}}({\tau^{\prime}}))\right.\hfill
+(νkI1νkI)(ττ)]\displaystyle\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+(\nu_{k_{I-1}}-\nu_{k_{I}})(\tau-\tau^{\prime})]
+gDNcos[ξN(τ)ξN(τ)+νkNkN]}.\displaystyle+{g_{DN}}\cos\left[{{\xi_{N}}\left(\tau\right)-{\xi_{N}}\left({\tau^{\prime}}\right)+{\nu_{k_{N}}}{k_{N}}}\right]\hfill\bigg{\}}.

3.3 Average electron number

In this section, we apply the partition and the effective action in Eqs.(95)–(3.2) to calculate average electron numbers in the serial island system. The total electron number of the serial island system may be defined as

nTotal=I=1NnI,\displaystyle\left\langle{{n}_{Total}}\right\rangle=\sum\limits_{I=1}^{N}{\left\langle{{n}_{I}}\right\rangle}, (99)

where nT\left\langle{{n}_{T}}\right\rangle denotes the total average electron number of the system and nI\left\langle{{n}_{I}}\right\rangle denotes the average electron number of the island II. Analogous to the definition of charge fluctuations in the single electron box [14, 15], the average electron number on island II can be expressed as

nI=n0I+12βEC(lnZn0I).\displaystyle\langle{{n_{I}}}\rangle={n_{0I}}+\frac{{1}}{{2\beta E_{C}}}\Big{(}\frac{\partial\ln Z}{\partial n_{0I}}\Big{)}. (100)

By inserting the partition function in Eq.(95) into (100), we can express the average electron number on islands into three cases, i.e.,

n1=n014πiβEC(𝔼11k1+𝔼12k2),\displaystyle\left\langle{{n}_{1}}\right\rangle={n_{01}}-\frac{{4\pi}i}{{\beta E_{C}}}\left({{\mathbb{E}_{11}}\left\langle{{{k}_{1}}}\right\rangle+{\mathbb{E}_{12}}\left\langle{{{k}_{2}}}\right\rangle}\right), (101)
nI=n0I4πiβEC(𝔼IIkI+𝔼II1kI1+𝔼II+1kI+1),\displaystyle\left\langle{{n}_{I}}\right\rangle={n_{0I}}-\frac{{4\pi}i}{{\beta E_{C}}}\left({\mathbb{E}_{II}}\left\langle{{{k}_{I}}}\right\rangle+{{\mathbb{E}_{II-1}}\left\langle{{{k}_{I-1}}}\right\rangle+{\mathbb{E}_{II+1}}\left\langle{{{k}_{I+1}}}\right\rangle}\right), (102)

and

nN=n0N4πiβEC(𝔼NNkN+𝔼NN1kN1),\displaystyle\left\langle{{n}_{N}}\right\rangle={n_{0N}}-\frac{{4\pi}i}{{\beta E_{C}}}\left({{\mathbb{E}_{NN}}\left\langle{k_{N}}\right\rangle+{\mathbb{E}_{NN-1}}\left\langle{{{k}_{N-1}}}\right\rangle}\right), (103)

for the first, intermediate, and last island, respectively. The coefficients in Eqs.(101)-(103) are elements of the matrix obtained in Eq.(90). The expectation value of the winding numbers k\left\langle k\right\rangle in Eqs.(101)-(103) is defined as

kI=I=1N[kI=ξI(0)ξI(βEC)D[ξI(τ)]]kIeSeff[ξ,k]I=1N[kI=ξI(0)ξI(βEC)D[ξI(τ)]]eSeff[ξ,k],\displaystyle\left\langle k_{I}\right\rangle=\frac{\prod\limits_{I=1}^{N}\bigg{[}\sum_{{k_{I}}=-\infty}^{\infty}\int\limits_{\xi_{I}(0)}^{\xi_{I}(\beta E_{C})}D[\xi_{I}(\tau)]\bigg{]}{{{k_{I}\,{e^{-{S_{{\rm{eff}}}}\left[\vec{\xi},\vec{k}\right]}}}}}}{\prod\limits_{I=1}^{N}\bigg{[}\sum_{{k_{I}}=-\infty}^{\infty}\int\limits_{\xi_{I}(0)}^{\xi_{I}(\beta E_{C})}D[\xi_{I}(\tau)]\bigg{]}{{{{e^{-{S_{{\rm{eff}}}}\left[\vec{\xi},\vec{k}\right]}}}}}}, (104)

where the effective action is obtained in Eqs.(96)-(3.2). In analytical calculation, one cannot obtain an exact solution of the expectation value of the winding number in Eq.(104) because it is a non-Gaussian integral. However, by quantum Monte Carlo calculation, one can evaluate the expectation value of the winding number and the average electron number of the island system, as an example in the following section. Moreover, in the Monte Carlo calculation of the expectation value in Eq.(104), the fermionic sign problem [13] would arise from the imaginary part of the Coulomb action in Eq.(97). To reduce the influence of the fermionic sign problem, one can apply the idea in Ref. [27] to perform the quantum Monte Carlo simulation.

3.4 Two-island system

In this section, we focus on the two-metallic island system [18, 28] and calculate average electron numbers of the system by the Monte Carlo method. Limbach et al. [18] reported the experimental results of two-metallic island systems, usually called the single electron-pump (the SEP), which can be represented by the circuit diagram in Fig. 2. This arrangement is biased by the voltage difference VDVSV_{D}-V_{S} denoted by VDSV_{DS}. Two gate voltages can tune the electrostatic potentials on two islands, i.e., Vg1V_{g1} and Vg2V_{g2}, which couple directly to the islands by the capacitance Cg1C_{g1} and Cg2C_{g2}. The experimentally unavoidable stray capacitors are represented by C2LC_{2L} and C1RC_{1R}. We conclude this experiment with Table 1 containing all parameters that one needs to simulate the average electron number of the SEP.

Refer to caption
Figure 2: The equivalent circuit diagram of the two-island system [18].
Parameters CSC_{S} C1C_{1} CDC_{D} Cg1C_{g1} C1RC_{1R} C2LC_{2L} Cg2C_{g2} g1Sg_{1S} g21g_{21} gD2g_{D2} G2clG^{cl}_{2}
Values 181 173 236 50.5 18.0 21.5 58.6 0.52 1.32 0.83 10.0
Units (aF) (aF) (aF) (aF) (aF) (aF) (aF) - - - (μS)(\mu S)
Table 1: Parameters of the SEP [28]. A dimensionless conductance of the individual tunneling junction is defined as gj=Gj/GKg_{j}=G_{j}/G_{K} where j{1S,21,D2}j\in\{1S,21,D2\}, GK=e2/hG_{K}=e^{2}/h, and G2clG^{cl}_{2} stands for the high-temperature conductance of the SEP. The charging energy ECE_{C} defined as in Eq.(87) is equal to 0.184meV0.184\,meV.

From the definition of the total average electron number in Eq.(99), we can rewrite the total average electron number for the two-island system as

nTotal=n1+n2,\displaystyle\left\langle{{n_{Total}}}\right\rangle=\left\langle{{n_{1}}}\right\rangle+\left\langle{{n_{2}}}\right\rangle, (105)

where the average electron number of the first and second island can be obtained by

n1=n014πiβEC(𝔼11k1+𝔼12k2),\displaystyle\langle{{n_{1}}}\rangle={n_{01}}-\frac{{4\pi}i}{{\beta E_{C}}}({{\mathbb{E}_{11}}\langle{{{k}_{1}}}\rangle+{\mathbb{E}_{12}}\langle{{{k}_{2}}}\rangle}), (106)

and

n2=n024πiβEC(𝔼22k2+𝔼21k1),\displaystyle\langle{{n_{2}}}\rangle={n_{02}}-\frac{{4\pi}i}{{\beta}E_{C}}({{\mathbb{E}_{22}}\langle{{{k}_{2}}}\rangle+{\mathbb{E}_{21}}\langle{{{k}_{1}}}\rangle}), (107)

where the induced charges on the first and second islands are generally denoted by n01=(CSVS+C1V1+Cg1Vg1+C2LVg2)/en_{01}=(C_{S}V_{S}+C_{1}V_{1}+C_{g1}V_{g1}+C_{2L}V_{g2})/e, and n02=(C1V1+CDVD+Cg2Vg2+C1RVg1)/en_{02}=(C_{1}V_{1}+C_{D}V_{D}+C_{g2}V_{g2}+C_{1R}V_{g1})/e, respectively. The expectation value of the winding number kI\left\langle{{k_{I}}}\right\rangle of the two-island system is expressed as

kI=k1,k2ξ1(0)ξ1(βEC)D[ξ1(τ)]ξ2(0)ξ2(βEC)D[ξ2(τ)]kIeSeff[ξ,k]k1,k2ξ1(0)ξ1(βEC)D[ξ1(τ)]ξ2(0)ξ2(βEC)D[ξ2(τ)]eSeff[ξ,k],\displaystyle\left\langle{{k_{I}}}\right\rangle=\frac{{{\sum_{{k_{1}},{k_{2}}}\int\limits_{\xi_{1}(0)}^{\xi_{1}(\beta E_{C})}\!\!\!\!D[\xi_{1}(\tau)]\!\!\int\limits_{\xi_{2}(0)}^{\xi_{2}(\beta E_{C})}\!\!\!\!D[\xi_{2}(\tau)]{k_{I}}{e^{-{S_{{\rm{eff}}}}\left[\vec{\xi},\vec{k}\right]}}}}}{{{\sum_{{k_{1}},{k_{2}}}\int\limits_{\xi_{1}(0)}^{\xi_{1}(\beta E_{C})}\!\!\!\!D[\xi_{1}(\tau)]\!\!\int\limits_{\xi_{2}(0)}^{\xi_{2}(\beta E_{C})}\!\!\!\!D[\xi_{2}(\tau)]{e^{-{S_{{\rm{eff}}}}\left[\vec{\xi},\vec{k}\right]}}}}}, (108)

where the effective action reads

Seff[ξ,k]=SC[ξ,k]+ST[ξ,k],\displaystyle S_{{\rm{eff}}}\left[\vec{\xi},\vec{k}\right]=S_{C}[\vec{\xi},\vec{k}]+S_{T}[{\vec{\xi}},\vec{k}], (109)

and the Coulomb action

SC[ξ,k]=ξ(0)ξ(βEC)𝑑τ14ξ˙T𝔼2ξ˙+4π2βECkT𝔼2k+2πi(ngTk),\displaystyle S_{C}[\vec{\xi},\vec{k}]=\int_{\xi(0)}^{\xi({\beta E_{C}})}d\tau\,\frac{1}{4}\vec{\dot{\xi}}^{T}\mathbb{E}_{2}\,\vec{\dot{\xi}}+\frac{4\pi^{2}}{\beta E_{C}}\vec{k}^{T}\mathbb{E}_{2}\,\vec{k}+2\pi i(\vec{n}^{T}_{g}\cdot\vec{k}), (110)

where ξ=(ξ1,ξ2)T\vec{\xi}=(\xi_{1},\xi_{2})^{T}, k=(k1,k2)T\vec{k}=(k_{1},k_{2})^{T}, and ngT=(n01,n02)\vec{n}^{T}_{g}=(n_{01},n_{02}). For the two-island system, the matrix in Eq.(90) is reduced to be

𝔼2=2ECe2𝐂2(𝔼11𝔼12𝔼21𝔼22),\displaystyle{\mathbb{E}_{2}}=\frac{2E_{C}}{e^{2}}\mathbf{C}_{2}\equiv\begin{pmatrix}{{\mathbb{E}_{11}}}&{{\mathbb{E}_{12}}}\\ {{\mathbb{E}_{21}}}&{{\mathbb{E}_{22}}}\\ \end{pmatrix}, (111)

with the capacitance matrix

𝐂2=(C1C1C1C2,),\displaystyle\mathbf{C}_{2}=\begin{pmatrix}C_{\sum 1}&-C_{1}\\ -C_{1}&C_{\sum 2},\end{pmatrix}, (112)

where C1=CS+C1+Cg1+C2LC_{\sum 1}=C_{S}+C_{1}+C_{g1}+C_{2L} and C1=C1+CD+Cg2+C1RC_{\sum 1}=C_{1}+C_{D}+C_{g2}+C_{1R}. The tunneling action of the two-island system reads

ST[ξ,k]=\displaystyle S_{T}[{\vec{\xi}},\vec{k}]= ξ(0)ξ(βEC)dτξ(0)ξ(βEC)dτα(ττ){g1Scos[ξ1(τ)ξ1(τ)+νk1k1]\displaystyle-\int\limits_{\xi(0)}^{\xi(\beta{E_{C}})}{d\tau}\int\limits_{\xi(0)}^{\xi(\beta{E_{C}})}{d\tau^{\prime}}\alpha({\tau-\tau^{\prime}})\bigg{\{}{g_{1S}}\cos[{\xi_{1}}(\tau)-{\xi_{1}}({\tau^{\prime}})+{\nu_{k_{1}}}{k_{1}}]
+g21cos[(ξ1(τ)ξ1(τ))(ξ2(τ)ξ2(τ))+(νk1νk2)(ττ)]\displaystyle+{g_{21}}\cos[({\xi_{1}}(\tau)-{\xi_{1}}(\tau^{\prime}))-({\xi_{2}}({\tau})-{\xi_{2}}({\tau^{\prime}}))+(\nu_{k_{1}}-\nu_{k_{2}})(\tau-\tau^{\prime})]
+gD2cos[ξ2(τ)ξ2(τ)+νk2k2]}.\displaystyle+{g_{D2}}\cos[{\xi_{2}}(\tau)-{\xi_{2}}({\tau^{\prime}})+{\nu_{k_{2}}}{k_{2}}]\bigg{\}}. (113)
Refer to caption
Figure 3: The average electron numbers of the first, second, and two islands are shown in Figures 3a, 3b, and 3c, respectively, were calculated by the quantum Monte Carlo method for βEC=20.0\beta E_{C}=20.0, corresponding temperature T=0.1KT=0.1\,K. The projection of the total average electron number on the dimensionless gate voltage plane (n01,n02n_{01},n_{02}) shows that the hexagonal domains mark regions indicated by the electron state (n1,n2)(n_{1},n_{2}).

Using the parameters in Table 1, we have calculated the average electron numbers in Eqs.(105)-(107) by the quantum Monte Carlo method. Fig.3a and 3b show that the average electron number on the first and second islands are step functions of two dimensionless gate voltage variables. For the condition VDS=0V_{DS}=0, when two gate voltages are increased, the total average electron rises. This situation is well known as the Coulomb staircase and the essential behavior of a single-electron box [14, 15]. The total average electron number of the system is also the Coulomb staircase shown in Fig.3c. In this case, therefore, the single-electron pump behaves like a single-electron box consisting of two coupling islands. Then, electrons can propagate between the two islands, controlling with the two gates.

Furthermore, we found that the projection of the total average electron number on the dimensionless gate voltage plane shows hexagonal domains as in Fig.3d. The average electron numbers on each island take a fixed value indicated by the numbers in the hexagonal domains. Let us consider the triple point in the black circle, shown in Fig.3d, where three adjacent states can be occupied. Circling the triple point counter-clockwise corresponds to the sequence (1,1)(2,1)(1,2)(1,1)\rightarrow(2,1)\rightarrow(1,2), which describes an electron that can transfer from left to right. Therefore, in the presence of VDSV_{DS}, current can flow through the two islands from the source lead to the drain lead by applying the gate voltages corresponding to the position of the triple point in the (n01,n02)(n_{01},n_{02}) plane. According to the experimental results, the maximum conductance peaks of the SEP occurred near the triple points [18].

To verify the hexagonal domains, we have calculated the charge stability diagram of the two-island system by the method in Ref.[24], which is called the traditional stability diagram. This stability diagram was calculated by concerning only the charging energy of the system, in which the degeneracy lines between the stable charge regions depend on two dimensionless gate voltages parameters, as shown by the doted lines in Fig. 3d. We emphasize that the tunneling effect and temperature dependence were neglected in calculating the traditional stability diagram [24]. As a result, we found that the doted lines overlap the borders of the hexagonal domains for low temperatures. In other words, it showed that we could construct the stability diagram of the two-island system using the average electron numbers, including the tunneling effect, which is then called the quantum stability diagram. Since single-electron transport in the island systems includes the tunneling process, the quantum stability diagram could become a powerful tool to study the island systems beyond the classical picture.

4 Conclusions

In this paper, we have calculated the grand canonical partition function of the serial metallic island system by the imaginary-time path integral formalism. By the large channel approximation, the partition function as a path integral over phase fields with a path probability given the effective action functional. Furthermore, we have proposed calculating average electron numbers of the metallic island system and rewritten them in suitable forms for the quantum Monte Carlo simulation. For the demonstration, we have calculated the average electron numbers for the SEP. The results show that the average electron numbers increase with the two gate voltage variables as a step function. Therefore, the single-electron pump behaved like the single-electron box consisting of two coupling islands, wherein electrons can propagate between the two islands, controlling by the two gates. In addition, we have proposed the method to construct the stability diagram for a finite temperature, including the tunneling effect, by a projection image of the total average electron number on the dimensionless gate voltage variables plane. As a result, the stability diagram could describe the occurrence of the Coulomb blockade regions in agreement with the traditional stability diagram, in the limit of low temperature. Finally, we anticipate that the partition function will be helpful as a starting point for a further theoretical investigation into the serial island system. It would also be interesting to use the approaches described in this paper to describe single-electron device’s experiments.

Acknowledgments

We would like to acknowledge financial support from the Theoretical Condensed Matter Physics Research Unit(TCMPRU), Maha-Sarakham University, and Thailand Research Fund (Grant no.TRG5680021). Especially, we thank A.R. Plant for critical reading of the manuscript.

References

References

  • [1] van Houten H, Beenakker C W J and Staring A A M 1992 Coulomb–blockade oscillations in semiconductor nanostructures Single Charge Tunnling: Coulomb Blockade Phenomena in Nanostructures (NATO ASI series B: Physics vol 294) ed Grabert H and Devoret M H (New York: Plenum Press)
  • [2] Devoret M H, Esteve D and Urbina C 1992 Nature 360 547–553
  • [3] Likharev K 1999 Proceedings of the IEEE 87 606–632
  • [4] Dittrich T, Hänggi P, Ingold G L, Kramer B, Schön G and Zwerger W 1998 Quantum Transport and Dissipation (WILEY-VCH) ISBN 3-527-29261-6
  • [5] Alhassid Y 2000 Rev. Mod. Phys. 72(4) 895–968
  • [6] Kastner M A 1992 Rev. Mod. Phys. 64 849–858
  • [7] Joyez P, Bouchiat V, Esteve D, Urbina C and Devoret M H 1997 Phys. Rev. Lett. 79(7) 1349–1352
  • [8] Göppert G, Hüpper B and Grabert H 2000 Phys. Rev. B 62(15) 9955–9958
  • [9] Wallisser C, Limbach B, vom Stein P, Schäfer R, Theis C, Göppert G and Grabert H 2002 Phys. Rev. B 66 125314
  • [10] Herrero C P, Schön G and Zaikin A D 1999 Phys. Rev. B 59(8) 5728–5737
  • [11] Werner P and Troyer M 2005 Journal of Statistical Mechanics: Theory and Experiment 2005 P01003
  • [12] Lukyanov S L and Werner P 2006 Journal of Statistical Mechanics: Theory and Experiment 2006 P11002–P11002
  • [13] Ceperley D M 1995 Rev. Mod. Phys. 67(2) 279–355
  • [14] Grabert H 1994 Phys. Rev. B 50(23) 17364–17377
  • [15] Göppert G and Grabert H 2001 Phys. Rev. B 63(12) 125307
  • [16] Altland A, Glazman L, Kamenev A and Meyer J 2006 Annals of Physics 321 2566–2603 ISSN 0003-4916
  • [17] Göppert G and Grabert H 2000 The European Physical Journal B - Condensed Matter and Complex Systems 16(4) 687–704
  • [18] Limbach B, vom Stein P, Wallisser C and Schäfer R 2005 Phys. Rev. B. 72 045319
  • [19] Gaudreau L, Kam A, Granger G, Studenikin S A, Zawadzki P and Sachrajda A S 2009 Applied Physics Letters 95 193101 (Preprint https://doi.org/10.1063/1.3258663)
  • [20] Granger G, Gaudreau L, Kam A, Pioro-Ladrière M, Studenikin S A, Wasilewski Z R, Zawadzki P and Sachrajda A S 2010 Phys. Rev. B 82(7) 075304
  • [21] Negele J W and Orland H 1987 Quantum Many-Particle Systems (Frontier in Physics) (AddisonWesley)
  • [22] Ambegaokar V, Eckern U and Schön G 1982 Phys. Rev. Lett. 48(25) 1745–1748
  • [23] Göppert G, Grabert H and Beck C 1999 Europhys. Lett. 45 249–255
  • [24] van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2002 Rev. Mod. Phys. 75(1) 1–22
  • [25] Gradshteyn I and Ryzhik I 1994 Table of integrals, series, and products 5th ed (Boston: Academic Press Inc.)
  • [26] Grotendorst J, Marx D and Muramatsu A (eds) 2002 Quantum simulations of complex many-body systems (NIC series vol 10) (Jülich: John von Neumann Institute for Computing) ISBN 3-00-009057-6
  • [27] Troyer M and Wiese U J 2005 Phys. Rev. Lett. 94(17) 170201
  • [28] Limbach B 2002 Strong tunneling in metallic double island structure Ph.D. thesis University Karlsruhe (TH) Karlsruhe