This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Gradient-Free Nash Equilibrium Seeking in N-Cluster Games with Uncoordinated Constant Step-Sizes

Yipeng Pang and Guoqiang Hu This research was supported by Singapore Ministry of Education Academic Research Fund Tier 1 RG180/17(2017-T1-002-158).Y. Pang and G. Hu are with the School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore [email protected], [email protected].
Abstract

This work investigates a problem of simultaneous global cost minimization and Nash equilibrium seeking, which commonly exists in NN-cluster non-cooperative games. Specifically, the agents in the same cluster collaborate to minimize a global cost function, being a summation of their individual cost functions, and jointly play a non-cooperative game with other clusters as players. For the problem settings, we suppose that the explicit analytical expressions of the agents’ local cost functions are unknown, but the function values can be measured. We propose a gradient-free Nash equilibrium seeking algorithm by a synthesis of Gaussian smoothing techniques and gradient tracking. Furthermore, instead of using the uniform coordinated step-size, we allow the agents across different clusters to choose different constant step-sizes. When the largest step-size is sufficiently small, we prove a linear convergence of the agents’ actions to a neighborhood of the unique Nash equilibrium under a strongly monotone game mapping condition, with the error gap being propotional to the largest step-size and the smoothing parameter. The performance of the proposed algorithm is validated by numerical simulations.

Index Terms:
Nash equilibrium (NE) seeking, gradient-free methods, non-cooperative games.

I Introduction

The research on cooperation and competition across multiple interacting agents has been extensively studied in recent years, especially on distributed optimization and Nash equilibrium (NE) seeking in non-cooperative games. Specifically, distributed optimization deals with a cooperative minimization problem among a network of agents. On the other hand, NE seeking in non-cooperative games is concerned with a number of agents (also known as players), who are self-interested to minimize their individual cost given the other agents’ decisions.

To simultaneously model the cooperative and competitive behaviors in networked systems, an NN-cluster game is formulated. This game is essentially a non-cooperative game played among NN interacting clusters with each cluster being a virtual player. In each cluster, there are a group of agents who collaboratively minimize a cluster-level cost function given by a summation of their individual local cost functions. With these features, the NN-cluster game naturally accommodates both collaboration and competition in a unified framework, which motivates us to study and propose solutions to find its NE. In this paper, we consider such an NN-cluster non-cooperative game. Moreover, we further suppose that the explicit analytical expressions of the agents’ local cost functions are unknown, but the function values can be measured.

A substantial works on NE seeking algorithms for non-cooperative games have been reported in the recent literature, including [1, 2, 3, 4, 5], to list a few. The focus of the aforementioned works is mainly on the competitive nature in the non-cooperative games. Different from that, the works in [6, 7] considered two sub-networks zero-sum games, where each subnetwork owns an opposing cost function to be cooperatively minimized by the agents in the corresponding subnetwork. Then, an extension of such problems to NN subnetworks was firstly formulated in [8], which is known as an NN-cluster (or coalition) game. Then, this problem has received a high research interest recently, which includes [9, 10, 11, 12, 13, 14, 15, 16]. Most of the above works focus on continuous-time based methods, such as gradient play [9, 10, 11, 12], subgradient dynamics [13], projected primal-dual dynamics [14], and extremum-seeking techniques [15]. Our previous work in [16] introduced a discrete-time NE seeking strategy based on a synthesis of gradient-free and gradient-tracking techniques. This paper revisits the NN-cluster game, and aims to extend the results to uncoordinated step-sizes across different clusters.

Contributions: As compared to the aforementioned relevant works, the contributions of this work can be summarized as follows. 1) In contrast to the problem setups in [9, 10, 11, 12, 13, 14], we limit the agents on the access to the cost functions: no explicit analytical expressions but only the values of the local cost functions can be utilized in the update laws. In this case, no gradient information can be directly utilized in the design of the algorithm. Hence, gradient-free techniques are adopted in this work. 2) As compared to our prior work [16], we extend the gradient-tracking method to allow uncoordinated constant step-sizes across different clusters, which further reduces the coordination among players from different clusters. 3) The technical challenges of the convergence analysis brought by gradient tracking methods in games, and uncoordinated step-sizes are addressed in this work. For the convergence results: we obtain a linear convergence to a neighborhood of the unique NE with the error being proportional to the largest step-size and a smoothing parameter under appropriate settings.

Notations: We use 𝟏m\mathbf{1}_{m} (𝟎m\mathbf{0}_{m}) for an mm-dimensional vector with all elements being 1 (0), and ImI_{m} for an m×mm\times m identity matrix. For a vector π\pi, we use diag(π)\text{diag}(\pi) to denote a diagonal matrix formed by the elements of π\pi. For any two vectors u,vu,v, their inner product is denoted by u,v\langle u,v\rangle. The transpose of uu is denoted by uu^{\top}. Moreover, we use u\|u\| for its standard Euclidean norm, i.e., u=u,u\|u\|=\sqrt{\langle u,u\rangle}. For vector uu, we use [u]i[u]_{i} to denote its ii-th entry. The transpose and spectral norm of a matrix AA are denoted by AA^{\top} and A\|A\|, respectively. We use ρ(A)\rho(A) to represent the spectral radius of a square matrix AA. The expectation operator is denoted by 𝔼[]\mathbb{E}[\cdot].

II Problem Statement

II-A Problem Formulation

An NN-cluster game is defined by Γ(𝒩,{fi},{ni})\Gamma(\mathcal{N},\{f^{i}\},\{\mathbb{R}^{n_{i}}\}), where each cluster, indexed by i𝒩{1,2,,N}i\in\mathcal{N}\triangleq\{1,2,\ldots,N\}, consists of a group of agents, denoted by 𝒱i{1,2,,ni}\mathcal{V}^{i}\triangleq\{1,2,\ldots,n_{i}\}. Denote ni=1Nnin\triangleq\sum_{i=1}^{N}n_{i}. These agents aim to minimize a cluster-level cost function fi:nf^{i}:\mathbb{R}^{n}\to\mathbb{R}, defined as

fi(𝐱i,𝐱i)1nij=1nifji(𝐱i,𝐱i),i𝒩,f^{i}(\mathbf{x}^{i},\mathbf{x}^{-i})\triangleq\frac{1}{n_{i}}\sum_{j=1}^{n_{i}}f^{i}_{j}(\mathbf{x}^{i},\mathbf{x}^{-i}),\quad\forall i\in\mathcal{N},

where fji(𝐱i,𝐱i)f^{i}_{j}(\mathbf{x}^{i},\mathbf{x}^{-i}) is a local cost function of agent jj in cluster ii, 𝐱i[x1i,,xnii]ni\mathbf{x}^{i}\triangleq[x^{i\top}_{1},\ldots,x^{i\top}_{n_{i}}]^{\top}\in\mathbb{R}^{n_{i}} is a collection of all agents’ actions in cluster ii with xjix^{i}_{j}\in\mathbb{R} being the action of agent jj in cluster ii, and 𝐱inni\mathbf{x}^{-i}\in\mathbb{R}^{n-n_{i}} denotes a collection of all agents’ actions except cluster ii. Denote 𝐱(𝐱i,𝐱i)=[𝐱1,,𝐱N]\mathbf{x}\triangleq(\mathbf{x}^{i},\mathbf{x}^{-i})=[\mathbf{x}^{1\top},\ldots,\mathbf{x}^{N\top}]^{\top}.

Definition 1

(NE of NN-Cluster Games). A vector 𝐱(𝐱i,𝐱i)n\mathbf{x}^{*}\triangleq(\mathbf{x}^{i*},\mathbf{x}^{-i*})\in\mathbb{R}^{n} is said to be an NE of the NN-cluster non-cooperative game Γ(𝒩,{fi},{ni})\Gamma(\mathcal{N},\{f^{i}\},\{\mathbb{R}^{n_{i}}\}), if and only if

fi(𝐱i,𝐱i)fi(𝐱i,𝐱i),𝐱in,i𝒩.\displaystyle f^{i}(\mathbf{x}^{i*},\mathbf{x}^{-i*})\leq f^{i}(\mathbf{x}^{i},\mathbf{x}^{-i*}),\quad\forall\mathbf{x}^{i}\in\mathbb{R}^{n},\quad\forall i\in\mathcal{N}.

Within each cluster i𝒩i\in\mathcal{N}, there is an underlying directed communication network, denoted by 𝒢i(𝒱i,i)\mathcal{G}_{i}(\mathcal{V}^{i},\mathcal{E}^{i}) with an adjacency matrix 𝒜i[ajki]ni×ni\mathcal{A}^{i}\triangleq[a^{i}_{jk}]\in\mathbb{R}^{n_{i}\times n_{i}}. In particular, ajki>0a^{i}_{jk}>0 if agent jj can directly pass information to agent kk, and ajki=0a^{i}_{jk}=0 otherwise. We suppose ajji>0,j𝒱ia^{i}_{jj}>0,\forall j\in\mathcal{V}^{i}. Regarding the communication network, the following standard assumption is supposed.

Assumption 1

For i𝒩i\in\mathcal{N}, the digraph 𝒢i(𝒱i,i)\mathcal{G}_{i}(\mathcal{V}^{i},\mathcal{E}^{i}) is strongly connected. The adjacency matrix 𝒜i\mathcal{A}^{i} is doubly-stochastic.

Noting that σ𝒜i𝒜i1ni𝟏ni𝟏ni<1\sigma_{\mathcal{A}^{i}}\triangleq\|\mathcal{A}^{i}-\frac{1}{n_{i}}\mathbf{1}_{n_{i}}\mathbf{1}_{n_{i}}^{\top}\|<1 [17, Lemma 1], we define σ¯maxi𝒩σ𝒜i\bar{\sigma}\triangleq\max_{i\in\mathcal{N}}\sigma_{\mathcal{A}^{i}} and ςmaxi𝒩(1+σ𝒜i2)/(1σ𝒜i2)\varsigma\triangleq\max_{i\in\mathcal{N}}(1+\sigma_{\mathcal{A}^{i}}^{2})/(1-\sigma_{\mathcal{A}^{i}}^{2}).

Moreover, we consider the scenario where the explicit analytical expressions of the agents’ local cost functions are unknown, but the function values can be measured, similar to the settings in [15, 16, 18, 19]. Regarding the cost function, the following standard assumption is supposed.

Assumption 2

For each j𝒱i,i𝒩j\in\mathcal{V}^{i},i\in\mathcal{N}, the local cost function fji(𝐱i,𝐱i)f^{i}_{j}(\mathbf{x}^{i},\mathbf{x}^{-i}) is convex in 𝐱i\mathbf{x}^{i}, and continuously differentiable in 𝐱\mathbf{x}. The total gradient fji(𝐱)\nabla f^{i}_{j}(\mathbf{x}) is LL-Lipschitz continuous in 𝐱\mathbf{x}, i.e., for any 𝐱,𝐱n\mathbf{x},\mathbf{x}^{\prime}\in\mathbb{R}^{n}, fji(𝐱)fji(𝐱)L𝐱𝐱\|\nabla f^{i}_{j}(\mathbf{x})-\nabla f^{i}_{j}(\mathbf{x}^{\prime})\|\leq L\|\mathbf{x}-\mathbf{x}^{\prime}\|.

The game mapping of Γ(𝒩,{fi},{ni})\Gamma(\mathcal{N},\{f^{i}\},\{\mathbb{R}^{n_{i}}\}) is defined as

Φ(𝐱)[𝐱1f1(𝐱),,𝐱NfN(𝐱)].\displaystyle\Phi(\mathbf{x})\triangleq[\nabla_{\mathbf{x}^{1}}f^{1}(\mathbf{x})^{\top},\ldots,\nabla_{\mathbf{x}^{N}}f^{N}(\mathbf{x})^{\top}]^{\top}.

The following standard assumption on the game mapping Φ(𝐱)\Phi(\mathbf{x}) is supposed.

Assumption 3

The game mapping Φ\Phi of game Γ\Gamma is strongly monotone with a constant χ>0\chi>0, i.e., for any 𝐱,𝐱n\mathbf{x},\mathbf{x}^{\prime}\in\mathbb{R}^{n}, we have Φ(𝐱)Φ(𝐱),𝐱𝐱χ𝐱𝐱2\langle\Phi(\mathbf{x})-\Phi(\mathbf{x}^{\prime}),\mathbf{x}-\mathbf{x}^{\prime}\rangle\geq\chi\|\mathbf{x}-\mathbf{x}^{\prime}\|^{2}.

Remark 1

It is known that under Assumptions 2 and 3, game Γ\Gamma admits a unique NE.

II-B Preliminaries

This part presents some preliminary results on gradient-free techniques based on Gaussian smoothing [20].

For j𝒱ij\in\mathcal{V}^{i}, i𝒩i\in\mathcal{N}, a Gaussian-smoothed function of the local cost function fji(𝐱)f^{i}_{j}(\mathbf{x}) can be defined as

fj,μi(𝐱)𝔼ζ𝒩(𝟎n,In)[fji(𝐱+μζ)],\displaystyle f^{i}_{j,\mu}(\mathbf{x})\triangleq\mathbb{E}_{\zeta\sim\mathcal{N}(\mathbf{0}_{n},I_{n})}[f^{i}_{j}(\mathbf{x}+\mu\zeta)], (1)

where ζ\zeta is generated from a Gaussian distribution 𝒩(𝟎n,In)\mathcal{N}(\mathbf{0}_{n},I_{n}), and μ0\mu\geq 0 is a smoothing parameter.

For each cluster i𝒩i\in\mathcal{N}, the randomized gradient-free oracle of fji(𝐱)f^{i}_{j}(\mathbf{x}) for player jj with respect to agent kk, j,k𝒱ij,k\in\mathcal{V}^{i}, i𝒩i\in\mathcal{N} at time step t0t\geq 0 is developed as

gjki(𝐱t)fji(𝐱t+μζj,ti)fji(𝐱t)μ[ζj,ti]ki,\displaystyle{g}^{i}_{jk}(\mathbf{x}_{t})\triangleq\frac{f^{i}_{j}(\mathbf{x}_{t}+\mu\zeta^{i}_{j,t})-f^{i}_{j}(\mathbf{x}_{t})}{\mu}[\zeta^{i}_{j,t}]^{i}_{k}, (2)

where [ζj,ti]ki[\zeta^{i}_{j,t}]^{i}_{k} denotes the (l=0inl+k)(\sum_{l=0}^{i}n_{l}+k)-th element of ζj,ti\zeta^{i}_{j,t} with n0=0n_{0}=0, and ζj,ti\zeta^{i}_{j,t} being player jj’s own version of ζ\zeta at time step tt, and μ>0\mu>0. The oracle (2) is useful as it can correctly estimate the partial gradient of the Gaussian-smoothed cost function xkifj,μi(𝐱t)\nabla_{x^{i}_{k}}f^{i}_{j,\mu}(\mathbf{x}_{t}). The following results for fj,μi(𝐱)f^{i}_{j,\mu}(\mathbf{x}) and gjki(𝐱){g}^{i}_{jk}(\mathbf{x}) can be readily obtained according to [20].

Lemma 1

(see [20]) Under Assumption 2, for j,k𝒱i,i𝒩\forall j,k\in\mathcal{V}^{i},i\in\mathcal{N}, the following properties hold.

  1. 1.

    The function fj,μi(𝐱)f^{i}_{j,\mu}(\mathbf{x}) is convex in 𝐱i\mathbf{x}^{i} and totally differentiable in 𝐱\mathbf{x}.

  2. 2.

    The total gradient fj,μi(𝐱)\nabla f^{i}_{j,\mu}(\mathbf{x}) is LL-Lipschitz continuous in 𝐱\mathbf{x}, i.e., 𝐱,𝐲n\forall\mathbf{x},\mathbf{y}\in\mathbb{R}^{n}, fj,μi(𝐱)fj,μi(𝐲)L𝐱𝐲\|\nabla f^{i}_{j,\mu}(\mathbf{x})-\nabla f^{i}_{j,\mu}(\mathbf{y})\|\leq L\|\mathbf{x}-\mathbf{y}\|; and satisfies that fj,μi(𝐱)fji(𝐱)12(n+3)32Lμ\|\nabla f^{i}_{j,\mu}(\mathbf{x})-\nabla f^{i}_{j}(\mathbf{x})\|\leq\frac{1}{2}(n+3)^{\frac{3}{2}}L\mu.

  3. 3.

    The randomized gradient-free oracle gjki(𝐱){g}^{i}_{jk}(\mathbf{x}) satisfies that 𝔼[gjki(𝐱)]=xkifj,μi(𝐱)\mathbb{E}[{g}^{i}_{jk}(\mathbf{x})]=\nabla_{x^{i}_{k}}f^{i}_{j,\mu}(\mathbf{x}), and 𝔼[gjki(𝐱)2]4(n+4)fj,μi(𝐱)2+3(n+4)3μ2L2\mathbb{E}[\|{g}^{i}_{jk}(\mathbf{x})\|^{2}]\leq 4(n+4)\|\nabla f^{i}_{j,\mu}(\mathbf{x})\|^{2}+3(n+4)^{3}\mu^{2}L^{2}.

We define a Gaussian-smoothed game associated with the NN-cluster game Γ\Gamma, denoted by Γμ(𝒩,{fμi},{ni})\Gamma_{\mu}(\mathcal{N},\{f^{i}_{\mu}\},\{\mathbb{R}^{n_{i}}\}), having the same set of clusters and action sets as game Γ\Gamma, but the cost function is given by

fμi(𝐱i,𝐱i)1nij=1nifj,μi(𝐱i,𝐱i),i𝒩,\displaystyle f^{i}_{\mu}(\mathbf{x}^{i},\mathbf{x}^{-i})\triangleq\frac{1}{n_{i}}\sum_{j=1}^{n_{i}}f^{i}_{j,\mu}(\mathbf{x}^{i},\mathbf{x}^{-i}),\quad\forall i\in\mathcal{N},

where fj,μif^{i}_{j,\mu} is a Gaussian-smoothed function of fjif^{i}_{j} defined in (1). Similar to the game mapping of Γ\Gamma, we define the game mapping of Γμ\Gamma_{\mu} by Φμ(𝐱)[𝐱1fμ1(𝐱),,𝐱NfμN(𝐱)]\Phi_{\mu}(\mathbf{x})\triangleq[\nabla_{\mathbf{x}^{1}}f^{1}_{\mu}(\mathbf{x})^{\top},\ldots,\nabla_{\mathbf{x}^{N}}f^{N}_{\mu}(\mathbf{x})^{\top}]^{\top}. The following lemma shows the strong monotonicity condition of Φμ(𝐱)\Phi_{\mu}(\mathbf{x}), and quantifies the distance between the NE of the smoothed game Γμ\Gamma_{\mu} and the NE of the original game Γ\Gamma in terms of the smoothing parameter μ\mu.

Lemma 2

(see [16, Lemma 1]) Under Assumptions 2 and 3, for μ0\forall\mu\geq 0, the smoothed game Γμ(𝒩,{fμi},{ni})\Gamma_{\mu}(\mathcal{N},\{f^{i}_{\mu}\},\{\mathbb{R}^{n_{i}}\}) holds that

  1. 1.

    The game mapping Φμ(𝐱)\Phi_{\mu}(\mathbf{x}) is χ\chi-strongly monotone.

  2. 2.

    The smoothed game Γμ\Gamma_{\mu} admits a unique NE (denoted by 𝐱μ\mathbf{x}_{\mu}^{*}) satisfying that

    𝐱μ𝐱n(n+3)32Lγ2(11γχ)μ,\displaystyle\|\mathbf{x}_{\mu}^{*}-\mathbf{x}^{*}\|\leq\frac{n(n+3)^{\frac{3}{2}}L\gamma}{2(1-\sqrt{1-\gamma\chi})}\mu,

    where 𝐱\mathbf{x}^{*} is the unique NE of the original game Γ\Gamma, and γ(0,χn2L2]\gamma\in(0,\frac{\chi}{n^{2}L^{2}}] is a constant.

It follows from Lemma 2 that 𝐱μ\mathbf{x}^{*}_{\mu} is the unique NE of the smoothed game Γμ(𝒩,{fμi},{ni})\Gamma_{\mu}(\mathcal{N},\{f^{i}_{\mu}\},\{\mathbb{R}^{n_{i}}\}), and hence holds that Φμ(𝐱μ)=𝟎n\Phi_{\mu}(\mathbf{x}^{*}_{\mu})=\mathbf{0}_{n}. We define Gmaxj𝒱i,i𝒩fj,μi(𝐱μ)G\triangleq\max_{j\in\mathcal{V}^{i},i\in\mathcal{N}}\|\nabla f^{i}_{j,\mu}(\mathbf{x}^{*}_{\mu})\|.

III NE Seeking Algorithm for N-Cluster Games

III-A Algorithm

In this part, we present an NE seeking strategy for the NN-Cluster Game. Specifically, each agent j𝒱ij\in\mathcal{V}^{i}, i𝒩i\in\mathcal{N} needs to maintain its own action variable xjix^{i}_{j}, and gradient tracker variables φjki\varphi^{i}_{jk} for k𝒱i\forall k\in\mathcal{V}^{i}. Let xj,ti,φjk,tix^{i}_{j,t},\varphi^{i}_{jk,t} denote the values of these variables at time-step tt. The update laws for each agent j𝒱ij\in\mathcal{V}^{i}, i𝒩i\in\mathcal{N} are designed as

yjk,t+1i\displaystyle y^{i}_{jk,t+1} =l=1niajliylk,tiαiφjk,ti,\displaystyle=\sum_{l=1}^{n_{i}}a^{i}_{jl}y^{i}_{lk,t}-\alpha^{i}\varphi^{i}_{jk,t}, (3a)
xj,t+1i\displaystyle x^{i}_{j,t+1} =yjj,t+1i,\displaystyle=y^{i}_{jj,t+1}, (3b)
φjk,t+1i\displaystyle\varphi^{i}_{jk,t+1} =l=1niajliφlk,ti+gjki(𝐱t+1)gjki(𝐱t),\displaystyle=\sum_{l=1}^{n_{i}}a^{i}_{jl}\varphi^{i}_{lk,t}+{g}^{i}_{jk}(\mathbf{x}_{t+1})-{g}^{i}_{jk}(\mathbf{x}_{t}), (3c)

with arbitrary xj,0i,yjk,0ix^{i}_{j,0},y^{i}_{jk,0}\in\mathbb{R} and φjk,0i=gjki(𝐱0)\varphi^{i}_{jk,0}={g}^{i}_{jk}(\mathbf{x}_{0}), where gjki(𝐱t){g}^{i}_{jk}(\mathbf{x}_{t}) is the gradient estimator given by (2). and αi>0\alpha^{i}>0 is a constant step-size sequence adopted by all agents in cluster i𝒩i\in\mathcal{N}. Denote the largest step-size by αmaxmaxi𝒩αi{\alpha}_{\max}\triangleq\max_{i\in\mathcal{N}}\alpha^{i} and the average of all step-sizes by α¯1ni𝒩niαi\bar{\alpha}\triangleq\frac{1}{n}\sum_{i\in\mathcal{N}}n_{i}\alpha^{i}. Define the heterogeneity of the step-size as the following ratio, ϵα𝜶𝜶¯/𝜶¯\epsilon_{\alpha}\triangleq\|\bm{\alpha}-\bar{\bm{\alpha}}\|/\|\bar{\bm{\alpha}}\|, where 𝜶[α1𝟏n1,,αN𝟏nN]\bm{\alpha}\triangleq[\alpha^{1}\mathbf{1}^{\top}_{n_{1}},\ldots,\alpha^{N}\mathbf{1}^{\top}_{n_{N}}]^{\top} and 𝜶¯α¯𝟏n\bar{\bm{\alpha}}\triangleq\bar{\alpha}\mathbf{1}_{n}.

III-B Main Results

This part presents the main results of the proposed algorithm, as stated in the following theorem. Detailed proof is given in Sec. IV-B.

Theorem 1

Suppose Assumptions 1, 2 and 3 hold. Generate the auxiliary variables {yjk,ti}t0\{y^{i}_{jk,t}\}_{t\geq 0}, the agent’s action {xj,ti}t0\{x^{i}_{j,t}\}_{t\geq 0} and gradient tracker {φjk,ti}t0\{\varphi^{i}_{jk,t}\}_{t\geq 0} by (3) with the uncoordinated constant step-size αi\alpha^{i} satisfying ϵα<χ2nL\epsilon_{\alpha}<\frac{\chi}{2\sqrt{n}L} and

0<αmax<min{α1,α2,α3,1χ2nLϵα,1},\displaystyle 0<{\alpha}_{\max}<\min\bigg{\{}\alpha_{1},\alpha_{2},\alpha_{3},\frac{1}{\chi-2\sqrt{n}L\epsilon_{\alpha}},1\bigg{\}},

where α1\alpha_{1}, α2\alpha_{2} and α3\alpha_{3} are defined in Sec. IV-B. Then, all players’ decisions 𝐱t\mathbf{x}_{t} linearly converges to a neighborhood of the unique NE 𝐱\mathbf{x}^{*}, and

lim supt𝔼[𝐱t𝐱2]𝒪(αmax)+𝒪(μ).\displaystyle\limsup_{t\to\infty}\mathbb{E}[\|\mathbf{x}_{t}-\mathbf{x}^{*}\|^{2}]\leq\mathcal{O}({\alpha}_{\max})+\mathcal{O}(\mu).
Remark 2

Theorem 1 characterizes the convergence performance of the proposed algorithm. It shows that the agents’ actions converge to a neighborhood of the NE linearly with the error bounded by two terms: one is proportional to the largest step-size, and the other is proportional to the smoothing parameter due to the gradient estimation.

IV Convergence Analysis

Let t\mathcal{H}_{t} denote the σ\sigma-field generated by the entire history of the random variables from time-step 0 to t1t-1. We introduce the following notations. Denote that nsi=1Nni2n_{s}\triangleq\sum_{i=1}^{N}n_{i}^{2} and nci=1Nni3n_{c}\triangleq\sum_{i=1}^{N}n_{i}^{3}. For k𝒱i,i𝒩\forall k\in\mathcal{V}^{i},i\in\mathcal{N}, 𝐲k,ti[y1k,ti,,ynik,ti]ni,y¯k,ti1ni𝟏ni𝐲k,ti,𝐲¯ti[y¯1,ti,,y¯ni,ti]ni,𝐲¯t[𝐲¯t1,,𝐲¯tN]n,φk,ti[φ1k,ti,,φnik,ti]ni,φ¯k,ti1ni𝟏niφk,ti,𝝋¯ti[φ¯1,ti,,φ¯ni,ti]ni,𝐠ki[g1ki,,gniki]ni,g¯ki1ni𝟏ni𝐠ki,xki𝐟μi(𝐱)[xkif1,μi(𝐱),,xkifni,μi(𝐱)]ni\mathbf{y}^{i}_{k,t}\triangleq[y^{i}_{1k,t},\ldots,y^{i}_{n_{i}k,t}]^{\top}\in\mathbb{R}^{n_{i}},\bar{y}^{i}_{k,t}\triangleq\frac{1}{n_{i}}\mathbf{1}_{n_{i}}^{\top}\mathbf{y}^{i}_{k,t}\in\mathbb{R},\bar{\mathbf{y}}^{i}_{t}\triangleq[\bar{y}^{i}_{1,t},\ldots,\bar{y}^{i}_{n_{i},t}]^{\top}\in\mathbb{R}^{n_{i}},\bar{\mathbf{y}}_{t}\triangleq[\bar{\mathbf{y}}^{1\top}_{t},\ldots,\bar{\mathbf{y}}^{N\top}_{t}]^{\top}\in\mathbb{R}^{n},\varphi^{i}_{k,t}\triangleq[\varphi^{i}_{1k,t},\ldots,\varphi^{i}_{n_{i}k,t}]^{\top}\in\mathbb{R}^{n_{i}},\bar{\varphi}^{i}_{k,t}\triangleq\frac{1}{n_{i}}\mathbf{1}_{n_{i}}^{\top}\varphi^{i}_{k,t}\in\mathbb{R},\bar{\bm{\varphi}}^{i}_{t}\triangleq[\bar{\varphi}^{i}_{1,t},\ldots,\bar{\varphi}^{i}_{n_{i},t}]^{\top}\in\mathbb{R}^{n_{i}},\mathbf{g}^{i}_{k}\triangleq[{g}^{i}_{1k},\ldots,{g}^{i}_{n_{i}k}]^{\top}\in\mathbb{R}^{n_{i}},\bar{{g}}^{i}_{k}\triangleq\frac{1}{n_{i}}\mathbf{1}_{n_{i}}^{\top}\mathbf{g}^{i}_{k}\in\mathbb{R},\nabla_{x^{i}_{k}}\mathbf{f}^{i}_{\mu}(\mathbf{x})\triangleq[\nabla_{x^{i}_{k}}f^{i}_{1,\mu}(\mathbf{x}),\ldots,\nabla_{x^{i}_{k}}f^{i}_{n_{i},\mu}(\mathbf{x})]^{\top}\in\mathbb{R}^{n_{i}}. Then, the update laws (3a) and (3c) read:

𝐲k,t+1i\displaystyle\mathbf{y}^{i}_{k,t+1} =𝒜i𝐲k,tiαiφk,ti,\displaystyle=\mathcal{A}^{i}\mathbf{y}^{i}_{k,t}-\alpha^{i}\varphi^{i}_{k,t}, (4a)
φk,t+1i\displaystyle\varphi^{i}_{k,t+1} =𝒜iφk,ti+𝐠ki(𝐱t+1)𝐠ki(𝐱t).\displaystyle=\mathcal{A}^{i}\varphi^{i}_{k,t}+\mathbf{g}^{i}_{k}(\mathbf{x}_{t+1})-\mathbf{g}^{i}_{k}(\mathbf{x}_{t}). (4b)

Pre-multiplying both sides of (4a) by 1ni𝟏ni\frac{1}{n_{i}}\mathbf{1}_{n_{i}}^{\top} and augmenting the relation for k𝒱ik\in\mathcal{V}^{i}, we have

𝐲¯t+1i=𝐲¯tiαi𝝋¯ti,\displaystyle\bar{\mathbf{y}}^{i}_{t+1}=\bar{\mathbf{y}}^{i}_{t}-\alpha^{i}\bar{\bm{\varphi}}^{i}_{t}, (5)

The convergence analysis of the proposed algorithm will be conducted by: 1) constructing a linear system of three terms i=1Nk=1ni𝐲k,ti𝟏niy¯k,ti2\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\|\mathbf{y}^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t}\|^{2}, 𝐲¯𝐱μ2\|\bar{\mathbf{y}}_{\ell}-\mathbf{x}^{*}_{\mu}\|^{2} and i=1Nk=1niφk,ti𝟏niφ¯k,ti2\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\|\varphi^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{\varphi}^{i}_{k,t}\|^{2} in terms of their past iterations and some constants, 2) analyzing the convergence of the established linear system.

IV-A Auxiliary Analysis

We first derive some results for the averaged gradient tracker φ¯k,ti\bar{\varphi}^{i}_{k,t}.

Lemma 3

Under Assumptions 1 and 2, the averaged gradient tracker φ¯k,ti,k𝒱i,i𝒩\bar{\varphi}^{i}_{k,t},\forall k\in\mathcal{V}^{i},i\in\mathcal{N} holds that

  1. 1.

    φ¯k,ti=g¯ki(𝐱t)\bar{\varphi}^{i}_{k,t}=\bar{{g}}^{i}_{k}(\mathbf{x}_{t}),

  2. 2.

    𝔼[φ¯k,ti|t]=xkifμi(𝐱t)\mathbb{E}[\bar{\varphi}^{i}_{k,t}|\mathcal{H}_{t}]=\nabla_{x^{i}_{k}}f^{i}_{\mu}(\mathbf{x}_{t}),

  3. 3.

    𝔼[φ¯k,ti2|t]12(n+4)L2i=1Nk=1ni𝐲k,ti𝟏niy¯k,ti2+12(n+4)L2𝐲¯t𝐱μ2+12(n+4)G2+3(n+4)3μ2L2\mathbb{E}[\|\bar{\varphi}^{i}_{k,t}\|^{2}|\mathcal{H}_{t}]\leq 12(n+4)L^{2}\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\|\mathbf{y}^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t}\|^{2}+12(n+4)L^{2}\|\bar{\mathbf{y}}_{t}-\mathbf{x}^{*}_{\mu}\|^{2}+12(n+4)G^{2}+3(n+4)^{3}\mu^{2}L^{2}.

Proof: For 1), multiplying 1ni𝟏ni\frac{1}{n_{i}}\mathbf{1}_{n_{i}}^{\top} from the left on both sides of (4b), and noting that 𝒜i\mathcal{A}^{i} is doubly stochastic, we have

φ¯k,t+1i=φ¯k,ti+g¯ki(𝐱t+1)g¯ki(𝐱t).\displaystyle\bar{\varphi}^{i}_{k,t+1}=\bar{\varphi}^{i}_{k,t}+\bar{{g}}^{i}_{k}(\mathbf{x}_{t+1})-\bar{{g}}^{i}_{k}(\mathbf{x}_{t}).

Recursively expanding the above relation and noting that φk,0i=𝐠ki(𝐱0)\varphi^{i}_{k,0}=\mathbf{g}^{i}_{k}(\mathbf{x}_{0}) completes the proof.

For 2), following the result of part 1) and Lemma 1-3), we obtain

𝔼[φ¯k,ti|t]=𝔼[g¯ki(𝐱t)|t]=1ni𝟏ni𝔼[𝐠ki|t]=1ni𝟏nixki𝐟μi=xkifμi(𝐱t).\displaystyle\mathbb{E}[\bar{\varphi}^{i}_{k,t}|\mathcal{H}_{t}]=\mathbb{E}[\bar{{g}}^{i}_{k}(\mathbf{x}_{t})|\mathcal{H}_{t}]=\frac{1}{n_{i}}\mathbf{1}_{n_{i}}^{\top}\mathbb{E}[\mathbf{g}^{i}_{k}|\mathcal{H}_{t}]=\frac{1}{n_{i}}\mathbf{1}_{n_{i}}^{\top}\nabla_{x^{i}_{k}}\mathbf{f}^{i}_{\mu}=\nabla_{x^{i}_{k}}f^{i}_{\mu}(\mathbf{x}_{t}).

For 3), it follows that

𝔼[φ¯k,ti2|t]=𝔼[g¯ki(𝐱t)2|t]=1ni2𝔼[𝟏ni𝐠ki(𝐱t)2|t]1nij=1ni𝔼[gjki(𝐱t)2|t].\displaystyle\mathbb{E}[\|\bar{\varphi}^{i}_{k,t}\|^{2}|\mathcal{H}_{t}]=\mathbb{E}[\|\bar{{g}}^{i}_{k}(\mathbf{x}_{t})\|^{2}|\mathcal{H}_{t}]=\frac{1}{n_{i}^{2}}\mathbb{E}[\|\mathbf{1}_{n_{i}}^{\top}\mathbf{g}^{i}_{k}(\mathbf{x}_{t})\|^{2}|\mathcal{H}_{t}]\leq\frac{1}{n_{i}}\sum_{j=1}^{n_{i}}\mathbb{E}[\|{g}^{i}_{jk}(\mathbf{x}_{t})\|^{2}|\mathcal{H}_{t}].

On the other hand, it follows from Lemma 1-3) that

𝔼[gjki(𝐱t)2|t]\displaystyle\mathbb{E}[\|{g}^{i}_{jk}(\mathbf{x}_{t})\|^{2}|\mathcal{H}_{t}] 4(n+4)fj,μi(𝐱t)2+3(n+4)3μ2L2\displaystyle\leq 4(n+4)\|\nabla f^{i}_{j,\mu}(\mathbf{x}_{t})\|^{2}+3(n+4)^{3}\mu^{2}L^{2}
12(n+4)fj,μi(𝐱t)fj,μi(𝐲¯t)2+12(n+4)fj,μi(𝐲¯t)fj,μi(𝐱μ)2\displaystyle\leq 12(n+4)\|\nabla f^{i}_{j,\mu}(\mathbf{x}_{t})-\nabla f^{i}_{j,\mu}(\bar{\mathbf{y}}_{t})\|^{2}+12(n+4)\|\nabla f^{i}_{j,\mu}(\bar{\mathbf{y}}_{t})-\nabla f^{i}_{j,\mu}(\mathbf{x}^{*}_{\mu})\|^{2}
+12(n+4)fj,μi(𝐱μ)2+3(n+4)3μ2L2\displaystyle\quad+12(n+4)\|\nabla f^{i}_{j,\mu}(\mathbf{x}^{*}_{\mu})\|^{2}+3(n+4)^{3}\mu^{2}L^{2}
12(n+4)L2𝐱t𝐲¯t2+12(n+4)L2𝐲¯t𝐱μ2\displaystyle\leq 12(n+4)L^{2}\|\mathbf{x}_{t}-\bar{\mathbf{y}}_{t}\|^{2}+12(n+4)L^{2}\|\bar{\mathbf{y}}_{t}-\mathbf{x}^{*}_{\mu}\|^{2}
+12(n+4)G2+3(n+4)3μ2L2\displaystyle\quad+12(n+4)G^{2}+3(n+4)^{3}\mu^{2}L^{2}
12(n+4)L2i=1Nk=1ni𝐲k,ti𝟏niy¯k,ti2\displaystyle\leq 12(n+4)L^{2}\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\|\mathbf{y}^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t}\|^{2}
+12(n+4)(L2𝐲¯t𝐱μ2+G2)+3(n+4)3μ2L2,\displaystyle\quad+12(n+4)(L^{2}\|\bar{\mathbf{y}}_{t}-\mathbf{x}^{*}_{\mu}\|^{2}+G^{2})+3(n+4)^{3}\mu^{2}L^{2}, (6)

where Gmaxj𝒱i,i𝒩fj,μi(𝐱μ)G\triangleq\max_{j\in\mathcal{V}^{i},i\in\mathcal{N}}\|\nabla f^{i}_{j,\mu}(\mathbf{x}^{*}_{\mu})\| and the last inequality follows from (3b) that

𝐱t𝐲¯t2\displaystyle\|\mathbf{x}_{t}-\bar{\mathbf{y}}_{t}\|^{2} =i=1Nk=1niykk,tiy¯k,ti2i=1Nk=1ni𝐲k,ti𝟏niy¯k,ti2.\displaystyle=\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\|y^{i}_{kk,t}-\bar{y}^{i}_{k,t}\|^{2}\leq\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\|\mathbf{y}^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t}\|^{2}. (7)

The proof is completed by combining the above relations. ∎

Then, we provide a bound on the stacked gradient tracker φk,ti\varphi^{i}_{k,t}.

Lemma 4

Under Assumptions 1 and 2, the stacked gradient tracker {φk,ti}t0,k𝒱i,i𝒩\{\varphi^{i}_{k,t}\}_{t\geq 0},\forall k\in\mathcal{V}^{i},i\in\mathcal{N} holds that

𝔼[φk,ti2|t]\displaystyle\mathbb{E}[\|\varphi^{i}_{k,t}\|^{2}|\mathcal{H}_{t}] 2𝔼[φk,ti𝟏niφ¯k,ti2|t]+24ni2(n+4)L2i=1Nk=1ni𝐲k,ti𝟏niy¯k,ti2\displaystyle\leq 2\mathbb{E}[\|\varphi^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{\varphi}^{i}_{k,t}\|^{2}|\mathcal{H}_{t}]+24n_{i}^{2}(n+4)L^{2}\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\|\mathbf{y}^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t}\|^{2}
+24ni2(n+4)(L2𝐲¯t𝐱μ2+G2)+6ni2(n+4)3μ2L2.\displaystyle\quad+24n_{i}^{2}(n+4)(L^{2}\|\bar{\mathbf{y}}_{t}-\mathbf{x}^{*}_{\mu}\|^{2}+G^{2})+6n_{i}^{2}(n+4)^{3}\mu^{2}L^{2}.

Proof: It is noted that

φk,ti2\displaystyle\|\varphi^{i}_{k,t}\|^{2} 2φk,ti𝟏niφ¯k,ti2+2𝟏niφ¯k,ti2=2φk,ti𝟏niφ¯k,ti2+2ni2φ¯k,ti2.\displaystyle\leq 2\|\varphi^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{\varphi}^{i}_{k,t}\|^{2}+2\|\mathbf{1}_{n_{i}}\bar{\varphi}^{i}_{k,t}\|^{2}=2\|\varphi^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{\varphi}^{i}_{k,t}\|^{2}+2n_{i}^{2}\|\bar{\varphi}^{i}_{k,t}\|^{2}.

The proof is completed by taking the conditional expectation on t\mathcal{H}_{t} on both sides and substituting Lemma 3-3). ∎

Now, we are ready to establish an inequality relation for the first term, i=1Nk=1ni𝐲k,ti𝟏niy¯k,ti2\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\|\mathbf{y}^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t}\|^{2} in Lemma 5.

Lemma 5

Under Assumptions 1, 2 and 3, the total consensus error of the auxiliary variables i=1Nk=1ni𝐲k,ti𝟏niy¯k,ti2\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\|\mathbf{y}^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t}\|^{2} satisfies that

i=1Nk=1ni𝔼[𝐲k,t+1i𝟏niy¯k,t+1i2|t](1+σ¯22+24(n+4)ncςL2αmax2)i=1Nk=1ni𝐲k,ti𝟏niy¯k,ti2\displaystyle\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\mathbb{E}[\|\mathbf{y}^{i}_{k,t+1}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t+1}\|^{2}|\mathcal{H}_{t}]\leq\bigg{(}\frac{1+\bar{\sigma}^{2}}{2}+24(n+4)n_{c}\varsigma L^{2}\alpha_{\max}^{2}\bigg{)}\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\|\mathbf{y}^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t}\|^{2}
+24(n+4)ncςL2αmax2𝐲¯t𝐱μ2+2ςαmax2i=1Nk=1ni𝔼[φk,ti𝟏niφ¯k,ti2|t]\displaystyle\quad+24(n+4)n_{c}\varsigma L^{2}\alpha_{\max}^{2}\|\bar{\mathbf{y}}_{t}-\mathbf{x}^{*}_{\mu}\|^{2}+2\varsigma\alpha_{\max}^{2}\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\mathbb{E}[\|\varphi^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{\varphi}^{i}_{k,t}\|^{2}|\mathcal{H}_{t}]
+24(n+4)ncςG2αmax2+6(n+4)3ncςμ2L2αmax2.\displaystyle\quad+24(n+4)n_{c}\varsigma G^{2}\alpha_{\max}^{2}+6(n+4)^{3}n_{c}\varsigma\mu^{2}L^{2}\alpha_{\max}^{2}.

Proof: It follows from (4a) that for i𝒩i\in\mathcal{N}

𝐲k,t+1i𝟏niy¯k,t+1i2\displaystyle\|\mathbf{y}^{i}_{k,t+1}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t+1}\|^{2} =𝒜i𝐲k,tiαiφk,ti1ni𝟏ni𝟏ni(𝒜i𝐲k,tiαiφk,ti)2\displaystyle=\|\mathcal{A}^{i}\mathbf{y}^{i}_{k,t}-\alpha^{i}\varphi^{i}_{k,t}-\frac{1}{n_{i}}\mathbf{1}_{n_{i}}\mathbf{1}_{n_{i}}^{\top}(\mathcal{A}^{i}\mathbf{y}^{i}_{k,t}-\alpha^{i}\varphi^{i}_{k,t})\|^{2}
𝒜i𝐲k,ti𝟏niy¯k,ti2+αi(Ini1ni𝟏ni𝟏ni)φk,ti2\displaystyle\leq\|\mathcal{A}^{i}\mathbf{y}^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t}\|^{2}+\|\alpha^{i}(I_{n_{i}}-\frac{1}{n_{i}}\mathbf{1}_{n_{i}}\mathbf{1}_{n_{i}}^{\top})\varphi^{i}_{k,t}\|^{2}
2αi𝒜i𝐲k,ti𝟏niy¯k,ti,(Ini1ni𝟏ni𝟏ni)φk,ti,\displaystyle\quad-2\alpha^{i}\langle\mathcal{A}^{i}\mathbf{y}^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t},(I_{n_{i}}-\frac{1}{n_{i}}\mathbf{1}_{n_{i}}\mathbf{1}_{n_{i}}^{\top})\varphi^{i}_{k,t}\rangle,

Taking the conditional expectation on t\mathcal{H}_{t} and noting that Ini1ni𝟏ni𝟏ni=1\|I_{n_{i}}-\frac{1}{n_{i}}\mathbf{1}_{n_{i}}\mathbf{1}_{n_{i}}^{\top}\|=1, we obtain

𝔼[𝐲k,t+1i𝟏niy¯k,t+1i2|t]σ𝒜i2𝐲k,ti𝟏niy¯k,ti2+αmax2𝔼[φk,ti2|t]\displaystyle\mathbb{E}[\|\mathbf{y}^{i}_{k,t+1}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t+1}\|^{2}|\mathcal{H}_{t}]\leq\sigma_{\mathcal{A}^{i}}^{2}\|\mathbf{y}^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t}\|^{2}+\alpha_{\max}^{2}\mathbb{E}[\|\varphi^{i}_{k,t}\|^{2}|\mathcal{H}_{t}]
+1σ𝒜i22σ𝒜i2𝔼[𝒜i𝐲k,ti𝟏niy¯k,ti2|t]+2σ𝒜i21σ𝒜i2αmax2𝔼[φk,ti2|t]\displaystyle\quad\quad+\frac{1-\sigma_{\mathcal{A}^{i}}^{2}}{2\sigma_{\mathcal{A}^{i}}^{2}}\mathbb{E}[\|\mathcal{A}^{i}\mathbf{y}^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t}\|^{2}|\mathcal{H}_{t}]+\frac{2\sigma_{\mathcal{A}^{i}}^{2}}{1-\sigma_{\mathcal{A}^{i}}^{2}}\alpha_{\max}^{2}\mathbb{E}[\|\varphi^{i}_{k,t}\|^{2}|\mathcal{H}_{t}]
1+σ𝒜i22𝔼[𝐲k,ti𝟏niy¯k,ti2|t]+1+σ𝒜i21σ𝒜i2αmax2𝔼[φk,ti2|t]\displaystyle\quad\leq\frac{1+\sigma_{\mathcal{A}^{i}}^{2}}{2}\mathbb{E}[\|\mathbf{y}^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t}\|^{2}|\mathcal{H}_{t}]+\frac{1+\sigma_{\mathcal{A}^{i}}^{2}}{1-\sigma_{\mathcal{A}^{i}}^{2}}\alpha_{\max}^{2}\mathbb{E}[\|\varphi^{i}_{k,t}\|^{2}|\mathcal{H}_{t}]
1+σ¯22𝐲k,ti𝟏niy¯k,ti2+ςαmax2𝔼[φk,ti2|t].\displaystyle\quad\leq\frac{1+\bar{\sigma}^{2}}{2}\|\mathbf{y}^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t}\|^{2}+\varsigma\alpha_{\max}^{2}\mathbb{E}[\|\varphi^{i}_{k,t}\|^{2}|\mathcal{H}_{t}].

Applying Lemma 4 and summing over k=1k=1 to nin_{i}, i=1i=1 to NN complete the proof. ∎

Then, we proceed to build the inequality relation for the second term, 𝐲¯t𝐱μ2\|\bar{\mathbf{y}}_{t}-\mathbf{x}^{*}_{\mu}\|^{2} in Lemma 6.

Lemma 6

Under Assumptions 1, 2 and 3, the gap between the stacked averaged auxiliary variable and the NE of game Γμ\Gamma_{\mu}, 𝐲¯t𝐱μ2\|\bar{\mathbf{y}}_{t}-\mathbf{x}^{*}_{\mu}\|^{2} holds that

𝔼[𝐲¯t+1𝐱2|t]\displaystyle\mathbb{E}[\|\bar{\mathbf{y}}_{t+1}-\mathbf{x}^{*}\|^{2}|\mathcal{H}_{t}] (1(χ2nLϵα)α¯+12n(n+4)L2αmax2)𝐲¯t𝐱μ2\displaystyle\leq(1-(\chi-2\sqrt{n}L\epsilon_{\alpha})\bar{\alpha}+12n(n+4)L^{2}\alpha_{\max}^{2})\|\bar{\mathbf{y}}_{t}-\mathbf{x}^{*}_{\mu}\|^{2}
+(12n(n+4)L2αmax2+n2L2αmaxχ)i=1Nk=1ni𝐲k,ti𝟏niy¯k,ti2\displaystyle\quad+\bigg{(}12n(n+4)L^{2}\alpha_{\max}^{2}+\frac{n^{2}L^{2}\alpha_{\max}}{\chi}\bigg{)}\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\|\mathbf{y}^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t}\|^{2}
+12n(n+4)G2αmax2+3n(n+4)3μ2L2αmax2.\displaystyle\quad+12n(n+4)G^{2}\alpha_{\max}^{2}+3n(n+4)^{3}\mu^{2}L^{2}\alpha_{\max}^{2}.

Proof: From (5), we know

𝐲¯t+1𝐱μ2\displaystyle\|\bar{\mathbf{y}}_{t+1}-\mathbf{x}^{*}_{\mu}\|^{2} =i=1Nk=1niy¯k,tixk,μiαiφ¯k,ti2\displaystyle=\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\|\bar{y}^{i}_{k,t}-x^{i*}_{k,\mu}-\alpha^{i}\bar{\varphi}^{i}_{k,t}\|^{2}
𝐲¯t𝐱μ2+αmax2i=1Nk=1niφ¯k,ti2\displaystyle\leq\|\bar{\mathbf{y}}_{t}-\mathbf{x}^{*}_{\mu}\|^{2}+\alpha_{\max}^{2}\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\|\bar{\varphi}^{i}_{k,t}\|^{2} (8a)
2i=1Nk=1niαiy¯k,tixk,μi,φ¯k,tixkifμi(𝐱t)\displaystyle\quad-2\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\alpha^{i}\langle\bar{y}^{i}_{k,t}-x^{i*}_{k,\mu},\bar{\varphi}^{i}_{k,t}-\nabla_{x^{i}_{k}}f^{i}_{\mu}(\mathbf{x}_{t})\rangle (8b)
2i=1Nk=1niαiy¯k,tixk,μi,xkifμi(𝐱t)xkifμi(𝐲¯t)\displaystyle\quad-2\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\alpha^{i}\langle\bar{y}^{i}_{k,t}-x^{i*}_{k,\mu},\nabla_{x^{i}_{k}}f^{i}_{\mu}(\mathbf{x}_{t})-\nabla_{x^{i}_{k}}f^{i}_{\mu}(\bar{\mathbf{y}}_{t})\rangle (8c)
2i=1Nk=1niαiy¯k,tixk,μi,xkifμi(𝐲¯t)xkifμi(𝐱μ).\displaystyle\quad-2\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\alpha^{i}\langle\bar{y}^{i}_{k,t}-x^{i*}_{k,\mu},\nabla_{x^{i}_{k}}f^{i}_{\mu}(\bar{\mathbf{y}}_{t})-\nabla_{x^{i}_{k}}f^{i}_{\mu}(\mathbf{x}^{*}_{\mu})\rangle. (8d)

For the second term in (8a), applying Lemma 3-(3)

αmax2i=1Nk=1ni𝔼[φ¯k,ti2|t]αmax2i=1Nk=1ni(12(n+4)L2i=1Nk=1ni𝐲k,ti𝟏niy¯k,ti2\displaystyle\alpha_{\max}^{2}\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\mathbb{E}[\|\bar{\varphi}^{i}_{k,t}\|^{2}|\mathcal{H}_{t}]\leq\alpha_{\max}^{2}\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\bigg{(}12(n+4)L^{2}\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\|\mathbf{y}^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t}\|^{2}
+12(n+4)(L2𝐲¯t𝐱μ2+G2)+3(n+4)3μ2L2)\displaystyle\quad\quad+12(n+4)(L^{2}\|\bar{\mathbf{y}}_{t}-\mathbf{x}^{*}_{\mu}\|^{2}+G^{2})+3(n+4)^{3}\mu^{2}L^{2}\bigg{)}
12n(n+4)L2αmax2i=1Nk=1ni𝐲k,ti𝟏niy¯k,ti2+12n(n+4)L2αmax2𝐲¯t𝐱μ2\displaystyle\quad\leq 12n(n+4)L^{2}\alpha_{\max}^{2}\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\|\mathbf{y}^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t}\|^{2}+12n(n+4)L^{2}\alpha_{\max}^{2}\|\bar{\mathbf{y}}_{t}-\mathbf{x}^{*}_{\mu}\|^{2}
+12n(n+4)G2αmax2+3n(n+4)3μ2L2αmax2.\displaystyle\quad\quad+12n(n+4)G^{2}\alpha_{\max}^{2}+3n(n+4)^{3}\mu^{2}L^{2}\alpha_{\max}^{2}. (9)

For (8b),

𝔼[2αiy¯k,tixk,μi,φ¯k,tixkifμi(𝐱t)|t]=0.\displaystyle\mathbb{E}[-2\alpha^{i}\langle\bar{y}^{i}_{k,t}-x^{i*}_{k,\mu},\bar{\varphi}^{i}_{k,t}-\nabla_{x^{i}_{k}}f^{i}_{\mu}(\mathbf{x}_{t})\rangle|\mathcal{H}_{t}]=0. (10)

For (8c),

2i=1Nk=1niαiy¯k,tixk,μi,xkifμi(𝐱t)xkifμi(𝐲¯t)\displaystyle-2\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\alpha^{i}\langle\bar{y}^{i}_{k,t}-x^{i*}_{k,\mu},\nabla_{x^{i}_{k}}f^{i}_{\mu}(\mathbf{x}_{t})-\nabla_{x^{i}_{k}}f^{i}_{\mu}(\bar{\mathbf{y}}_{t})\rangle
2αmaxi=1Nk=1niy¯k,tixk,μixkifμi(𝐱t)xkifμi(𝐲¯t)\displaystyle\quad\leq 2\alpha_{\max}\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\|\bar{y}^{i}_{k,t}-x^{i*}_{k,\mu}\|\|\nabla_{x^{i}_{k}}f^{i}_{\mu}(\mathbf{x}_{t})-\nabla_{x^{i}_{k}}f^{i}_{\mu}(\bar{\mathbf{y}}_{t})\|
2Lαmaxi=1Nk=1niy¯k,tixk,μi𝐱t𝐲¯t2nLαmax𝐲¯t𝐱μ𝐱t𝐲¯t\displaystyle\quad\leq 2L\alpha_{\max}\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\|\bar{y}^{i}_{k,t}-x^{i*}_{k,\mu}\|\|\mathbf{x}_{t}-\bar{\mathbf{y}}_{t}\|\leq 2\sqrt{n}L\alpha_{\max}\|\bar{\mathbf{y}}_{t}-\mathbf{x}^{*}_{\mu}\|\|\mathbf{x}_{t}-\bar{\mathbf{y}}_{t}\|
χα¯𝐲¯t𝐱μ2+nL2αmax2χα¯𝐱t𝐲¯t2\displaystyle\quad\leq\chi\bar{\alpha}\|\bar{\mathbf{y}}_{t}-\mathbf{x}^{*}_{\mu}\|^{2}+\frac{nL^{2}\alpha_{\max}^{2}}{\chi\bar{\alpha}}\|\mathbf{x}_{t}-\bar{\mathbf{y}}_{t}\|^{2}
χα¯𝐲¯t𝐱μ2+nL2αmax2χα¯i=1Nk=1ni𝐲k,ti𝟏niy¯k,ti2\displaystyle\quad\leq\chi\bar{\alpha}\|\bar{\mathbf{y}}_{t}-\mathbf{x}^{*}_{\mu}\|^{2}+\frac{nL^{2}\alpha_{\max}^{2}}{\chi\bar{\alpha}}\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\|\mathbf{y}^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t}\|^{2}
χα¯𝐲¯t𝐱μ2+n2L2αmaxχi=1Nk=1ni𝐲k,ti𝟏niy¯k,ti2,\displaystyle\quad\leq\chi\bar{\alpha}\|\bar{\mathbf{y}}_{t}-\mathbf{x}^{*}_{\mu}\|^{2}+\frac{n^{2}L^{2}\alpha_{\max}}{\chi}\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\|\mathbf{y}^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t}\|^{2}, (11)

where the last inequality is due to αmaxα¯<n\frac{{\alpha}_{\max}}{\bar{\alpha}}<n. For (8d),

2i=1Nk=1niαiy¯k,tixk,μi,xkifμi(𝐲¯t)xkifμi(𝐱μ)\displaystyle-2\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\alpha^{i}\langle\bar{y}^{i}_{k,t}-x^{i*}_{k,\mu},\nabla_{x^{i}_{k}}f^{i}_{\mu}(\bar{\mathbf{y}}_{t})-\nabla_{x^{i}_{k}}f^{i}_{\mu}(\mathbf{x}^{*}_{\mu})\rangle
=2i=1Nk=1ni(αiα¯)y¯k,tixk,μi,xkifμi(𝐲¯t)xkifμi(𝐱μ)\displaystyle\quad=-2\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}(\alpha^{i}-\bar{\alpha})\langle\bar{y}^{i}_{k,t}-x^{i*}_{k,\mu},\nabla_{x^{i}_{k}}f^{i}_{\mu}(\bar{\mathbf{y}}_{t})-\nabla_{x^{i}_{k}}f^{i}_{\mu}(\mathbf{x}^{*}_{\mu})\rangle (12a)
2α¯i=1Nk=1niy¯k,tixk,μi,xkifμi(𝐲¯t)xkifμi(𝐱μ).\displaystyle\quad\quad-2\bar{\alpha}\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\langle\bar{y}^{i}_{k,t}-x^{i*}_{k,\mu},\nabla_{x^{i}_{k}}f^{i}_{\mu}(\bar{\mathbf{y}}_{t})-\nabla_{x^{i}_{k}}f^{i}_{\mu}(\mathbf{x}^{*}_{\mu})\rangle. (12b)

For (12a),

2i=1Nk=1ni(αiα¯)y¯k,tixk,μi,xkifμi(𝐲¯t)xkifμi(𝐱μ)\displaystyle-2\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}(\alpha^{i}-\bar{\alpha})\langle\bar{y}^{i}_{k,t}-x^{i*}_{k,\mu},\nabla_{x^{i}_{k}}f^{i}_{\mu}(\bar{\mathbf{y}}_{t})-\nabla_{x^{i}_{k}}f^{i}_{\mu}(\mathbf{x}^{*}_{\mu})\rangle
2i=1Nk=1ni|αiα¯|y¯k,tixk,μixkifμi(𝐲¯t)xkifμi(𝐱μ)\displaystyle\quad\leq 2\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}|\alpha^{i}-\bar{\alpha}|\|\bar{y}^{i}_{k,t}-x^{i*}_{k,\mu}\|\|\nabla_{x^{i}_{k}}f^{i}_{\mu}(\bar{\mathbf{y}}_{t})-\nabla_{x^{i}_{k}}f^{i}_{\mu}(\mathbf{x}^{*}_{\mu})\|
2L𝐲¯t𝐱μi=1N|αiα¯|k=1niy¯k,tixk,μi\displaystyle\quad\leq 2L\|\bar{\mathbf{y}}_{t}-\mathbf{x}^{*}_{\mu}\|\sum_{i=1}^{N}|\alpha^{i}-\bar{\alpha}|\sum_{k=1}^{n_{i}}\|\bar{y}^{i}_{k,t}-x^{i*}_{k,\mu}\|
2L𝐲¯t𝐱μi=1Nni|αiα¯|𝐲¯ti𝐱μi2nLϵαα¯𝐲¯t𝐱μ2.\displaystyle\quad\leq 2L\|\bar{\mathbf{y}}_{t}-\mathbf{x}^{*}_{\mu}\|\sum_{i=1}^{N}\sqrt{n_{i}}|\alpha^{i}-\bar{\alpha}|\|\bar{\mathbf{y}}^{i}_{t}-\mathbf{x}^{i*}_{\mu}\|\leq 2\sqrt{n}L\epsilon_{\alpha}\bar{\alpha}\|\bar{\mathbf{y}}_{t}-\mathbf{x}^{*}_{\mu}\|^{2}. (13)

For (12b),

2α¯i=1Nk=1niy¯k,tixk,μi,xkifμi(𝐲¯t)xkifμi(𝐱μ)\displaystyle-2\bar{\alpha}\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\langle\bar{y}^{i}_{k,t}-x^{i*}_{k,\mu},\nabla_{x^{i}_{k}}f^{i}_{\mu}(\bar{\mathbf{y}}_{t})-\nabla_{x^{i}_{k}}f^{i}_{\mu}(\mathbf{x}^{*}_{\mu})\rangle
=2α¯𝐲¯t𝐱μ,Φμ(𝐲¯t)Φμ(𝐱μ)2χα¯𝐲¯t𝐱μ2.\displaystyle\quad=-2\bar{\alpha}\langle\bar{\mathbf{y}}_{t}-\mathbf{x}^{*}_{\mu},\Phi_{\mu}(\bar{\mathbf{y}}_{t})-\Phi_{\mu}(\mathbf{x}^{*}_{\mu})\rangle\leq-2\chi\bar{\alpha}\|\bar{\mathbf{y}}_{t}-\mathbf{x}^{*}_{\mu}\|^{2}. (14)

Combining (13) and (14), we obtain for (8d) that

2i=1Nk=1niαiy¯k,tixk,μi,xkifμi(𝐲¯t)xkifμi(𝐱μ)2(nLϵαχ)α¯𝐲¯t𝐱μ2.\displaystyle-2\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\alpha^{i}\langle\bar{y}^{i}_{k,t}-x^{i*}_{k,\mu},\nabla_{x^{i}_{k}}f^{i}_{\mu}(\bar{\mathbf{y}}_{t})-\nabla_{x^{i}_{k}}f^{i}_{\mu}(\mathbf{x}^{*}_{\mu})\rangle\leq 2(\sqrt{n}L\epsilon_{\alpha}-\chi)\bar{\alpha}\|\bar{\mathbf{y}}_{t}-\mathbf{x}^{*}_{\mu}\|^{2}. (15)

Finally, taking the conditional expectation for (8) on t\mathcal{H}_{t}, and substituting (9), (10), (11) and (15) into it, we obtain the desired result. ∎

Finally, we derive an inequality relation for the third term, i=1Nk=1niφk,t+1i𝟏niφ¯k,ti2\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\|\varphi^{i}_{k,t+1}-\mathbf{1}_{n_{i}}\bar{\varphi}^{i}_{k,t}\|^{2} in Lemma 7.

Lemma 7

Under Assumptions 1 and 2, the total gradient tracking error i=1Nk=1niφk,ti𝟏niφ¯k,ti2\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\|\varphi^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{\varphi}^{i}_{k,t}\|^{2} satisfies

i=1Nk=1ni𝔼[φk,t+1i𝟏niφ¯k,t+1i2|t]24(n+4)nsςL2(3+σ¯22+n2L2αmaxχ\displaystyle\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\mathbb{E}[\|\varphi^{i}_{k,t+1}-\mathbf{1}_{n_{i}}\bar{\varphi}^{i}_{k,t+1}\|^{2}|\mathcal{H}_{t}]\leq 24(n+4)n_{s}\varsigma L^{2}\bigg{(}\frac{3+\bar{\sigma}^{2}}{2}+\frac{n^{2}L^{2}\alpha_{\max}}{\chi}
+24(n+4)ncςL2αmax2+12n(n+4)L2αmax2)i=1Nk=1ni𝐲ik,t𝟏niy¯ik,t2\displaystyle\quad\quad+24(n+4)n_{c}\varsigma L^{2}\alpha_{\max}^{2}+12n(n+4)L^{2}\alpha_{\max}^{2}\bigg{)}\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\|\mathbf{y}^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t}\|^{2}
+(1+σ¯22+48(n+4)nsς2L2αmax2)i=1Nk=1ni𝔼[φk,ti𝟏niφ¯k,ti2|t]\displaystyle\quad+\bigg{(}\frac{1+\bar{\sigma}^{2}}{2}+48(n+4)n_{s}\varsigma^{2}L^{2}\alpha_{\max}^{2}\bigg{)}\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\mathbb{E}[\|\varphi^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{\varphi}^{i}_{k,t}\|^{2}|\mathcal{H}_{t}]
+24(n+4)nsςL2[2+12n(n+4)L2αmax2+24(n+4)ncςL2αmax2]𝐲¯t𝐱μ2\displaystyle\quad+24(n+4)n_{s}\varsigma L^{2}[2+12n(n+4)L^{2}\alpha_{\max}^{2}+24(n+4)n_{c}\varsigma L^{2}\alpha_{\max}^{2}]\|\bar{\mathbf{y}}_{t}-\mathbf{x}^{*}_{\mu}\|^{2}
+24(n+4)nsςL2[24(n+4)ncςG2+6(n+4)3ncςμ2L2+12n(n+4)G2\displaystyle\quad+24(n+4)n_{s}\varsigma L^{2}[24(n+4)n_{c}\varsigma G^{2}+6(n+4)^{3}n_{c}\varsigma\mu^{2}L^{2}+12n(n+4)G^{2}
+3n(n+4)3μ2L2]αmax2+12(n+4)3nsςμ2L2+48(n+4)nsςG2.\displaystyle\quad\quad+3n(n+4)^{3}\mu^{2}L^{2}]\alpha_{\max}^{2}+12(n+4)^{3}n_{s}\varsigma\mu^{2}L^{2}+48(n+4)n_{s}\varsigma G^{2}.

Proof: It is obtained from (4b) that

φk,t+1i𝟏niφ¯k,t+1i2\displaystyle\|\varphi^{i}_{k,t+1}-\mathbf{1}_{n_{i}}\bar{\varphi}^{i}_{k,t+1}\|^{2} =𝒜iφk,ti𝟏niφ¯k,ti2+(Ini1ni𝟏ni𝟏ni)(𝐠ki(𝐱t+1)𝐠ki(𝐱t))2\displaystyle=\|\mathcal{A}^{i}\varphi^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{\varphi}^{i}_{k,t}\|^{2}+\bigg{\|}\bigg{(}I_{n_{i}}-\frac{1}{n_{i}}\mathbf{1}_{n_{i}}\mathbf{1}_{n_{i}}^{\top}\bigg{)}(\mathbf{g}^{i}_{k}(\mathbf{x}_{t+1})-\mathbf{g}^{i}_{k}(\mathbf{x}_{t}))\bigg{\|}^{2}
+2𝒜iφk,ti𝟏niφ¯k,ti,(Ini1ni𝟏ni𝟏ni)(𝐠ki(𝐱t+1)𝐠ki(𝐱t)).\displaystyle\quad+2\bigg{\langle}\mathcal{A}^{i}\varphi^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{\varphi}^{i}_{k,t},\bigg{(}I_{n_{i}}-\frac{1}{n_{i}}\mathbf{1}_{n_{i}}\mathbf{1}_{n_{i}}^{\top}\bigg{)}(\mathbf{g}^{i}_{k}(\mathbf{x}_{t+1})-\mathbf{g}^{i}_{k}(\mathbf{x}_{t}))\bigg{\rangle}.

It is noted that Ini1ni𝟏ni𝟏ni=1\|I_{n_{i}}-\frac{1}{n_{i}}\mathbf{1}_{n_{i}}\mathbf{1}_{n_{i}}^{\top}\|=1. Taking the conditional expectation on t\mathcal{H}_{t} yields

𝔼[φk,t+1i𝟏niφ¯k,t+1i2|t]σ𝒜i2𝔼[φk,ti𝟏niφ¯k,ti2|t]+𝔼[𝐠ki(𝐱t+1)𝐠ki(𝐱t)2|t]\displaystyle\mathbb{E}[\|\varphi^{i}_{k,t+1}-\mathbf{1}_{n_{i}}\bar{\varphi}^{i}_{k,t+1}\|^{2}|\mathcal{H}_{t}]\leq\sigma_{\mathcal{A}^{i}}^{2}\mathbb{E}[\|\varphi^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{\varphi}^{i}_{k,t}\|^{2}|\mathcal{H}_{t}]+\mathbb{E}[\|\mathbf{g}^{i}_{k}(\mathbf{x}_{t+1})-\mathbf{g}^{i}_{k}(\mathbf{x}_{t})\|^{2}|\mathcal{H}_{t}]
+2𝔼[𝒜iφk,ti𝟏niφ¯k,ti𝐠ki(𝐱t+1)𝐠ki(𝐱t)|t]\displaystyle\quad\quad+2\mathbb{E}[\|\mathcal{A}^{i}\varphi^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{\varphi}^{i}_{k,t}\|\|\mathbf{g}^{i}_{k}(\mathbf{x}_{t+1})-\mathbf{g}^{i}_{k}(\mathbf{x}_{t})\||\mathcal{H}_{t}]
σ𝒜i2𝔼[φk,ti𝟏niφ¯k,ti2|t]+𝔼[𝐠ki(𝐱t+1)𝐠ki(𝐱t)2|t]\displaystyle\quad\leq\sigma_{\mathcal{A}^{i}}^{2}\mathbb{E}[\|\varphi^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{\varphi}^{i}_{k,t}\|^{2}|\mathcal{H}_{t}]+\mathbb{E}[\|\mathbf{g}^{i}_{k}(\mathbf{x}_{t+1})-\mathbf{g}^{i}_{k}(\mathbf{x}_{t})\|^{2}|\mathcal{H}_{t}]
+1σ𝒜i22𝔼[φk,ti𝟏niφ¯k,ti2|t]+2σ𝒜i21σ𝒜i2𝔼[𝐠ki(𝐱t+1)𝐠ki(𝐱t)2|t]\displaystyle\quad\quad+\frac{1-\sigma_{\mathcal{A}^{i}}^{2}}{2}\mathbb{E}[\|\varphi^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{\varphi}^{i}_{k,t}\|^{2}|\mathcal{H}_{t}]+\frac{2\sigma_{\mathcal{A}^{i}}^{2}}{1-\sigma_{\mathcal{A}^{i}}^{2}}\mathbb{E}[\|\mathbf{g}^{i}_{k}(\mathbf{x}_{t+1})-\mathbf{g}^{i}_{k}(\mathbf{x}_{t})\|^{2}|\mathcal{H}_{t}]
1+σ¯22𝔼[φk,ti𝟏niφ¯k,ti2|t]+ς𝔼[𝐠ki(𝐱t+1)𝐠ki(𝐱t)2|t].\displaystyle\quad\leq\frac{1+\bar{\sigma}^{2}}{2}\mathbb{E}[\|\varphi^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{\varphi}^{i}_{k,t}\|^{2}|\mathcal{H}_{t}]+\varsigma\mathbb{E}[\|\mathbf{g}^{i}_{k}(\mathbf{x}_{t+1})-\mathbf{g}^{i}_{k}(\mathbf{x}_{t})\|^{2}|\mathcal{H}_{t}]. (16)

The last term of (16) follows from (6) that

𝔼[𝐠ki(𝐱t+1)𝐠ki(𝐱t)2|t]2j=1ni(𝔼[gjki(𝐱t+1)2|t]+𝔼[gjki(𝐱t)2|t])\displaystyle\mathbb{E}[\|\mathbf{g}^{i}_{k}(\mathbf{x}_{t+1})-\mathbf{g}^{i}_{k}(\mathbf{x}_{t})\|^{2}|\mathcal{H}_{t}]\leq 2\sum_{j=1}^{n_{i}}(\mathbb{E}[\|g^{i}_{jk}(\mathbf{x}_{t+1})\|^{2}|\mathcal{H}_{t}]+\mathbb{E}[\|g^{i}_{jk}(\mathbf{x}_{t})\|^{2}|\mathcal{H}_{t}])
24ni(n+4)L2i=1Nk=1ni𝔼[𝐲k,t+1i𝟏niy¯k,t+1i2|t]+24ni(n+4)L2𝔼[𝐲¯t+1𝐱μ2|t]\displaystyle\quad\leq 24n_{i}(n+4)L^{2}\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\mathbb{E}[\|\mathbf{y}^{i}_{k,t+1}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t+1}\|^{2}|\mathcal{H}_{t}]+24n_{i}(n+4)L^{2}\mathbb{E}[\|\bar{\mathbf{y}}_{t+1}-\mathbf{x}^{*}_{\mu}\|^{2}|\mathcal{H}_{t}]
+24ni(n+4)L2i=1Nk=1ni𝐲k,ti𝟏niy¯k,ti2+24ni(n+4)L2𝐲¯t𝐱μ2+12ni(n+4)3μ2L2\displaystyle\quad\quad+24n_{i}(n+4)L^{2}\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\|\mathbf{y}^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t}\|^{2}+24n_{i}(n+4)L^{2}\|\bar{\mathbf{y}}_{t}-\mathbf{x}^{*}_{\mu}\|^{2}+12n_{i}(n+4)^{3}\mu^{2}L^{2}
+48ni(n+4)G2.\displaystyle\quad\quad+48n_{i}(n+4)G^{2}.

Invoking Lemmas 5 and 6 in the above relation, and summing (16) over k𝒱i,i𝒩k\in\mathcal{V}^{i},i\in\mathcal{N} complete the proof. ∎

IV-B Proof of Theorem 1

Now, we proceed to the proof of Theorem 1. Based on the results in Lemmas 5, 6 and 7, we can construct a linear system by taking the total expectation on the corresponding relations.

Ψt+1𝐌Ψt+Υ,\displaystyle\Psi_{t+1}\leq\mathbf{M}\Psi_{t}+\Upsilon, (17)

where

Ψt\displaystyle\Psi_{t} [i=1Nk=1ni𝔼[𝐲k,ti𝟏niy¯k,ti𝝂ri2]𝔼[𝐲¯t𝐱μ2]i=1Nk=1ni𝔼[φk,ti𝟏niφ¯k,ti2]],Υ[m12αmax2m13αmax2m14+m15αmax2],\displaystyle\triangleq\begin{bmatrix}\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\mathbb{E}[\|\mathbf{y}^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t}\|_{\bm{\nu}^{i}_{r}}^{2}]\\ \mathbb{E}[\|\bar{\mathbf{y}}_{t}-\mathbf{x}^{*}_{\mu}\|^{2}]\\ \sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\mathbb{E}[\|\varphi^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{\varphi}^{i}_{k,t}\|^{2}]\end{bmatrix},\Upsilon\triangleq\begin{bmatrix}m_{12}{\alpha}_{\max}^{2}\\ m_{13}{\alpha}_{\max}^{2}\\ m_{14}+m_{15}{\alpha}_{\max}^{2}\end{bmatrix},
𝐌\displaystyle\mathbf{M} [1m1+m2αmax2m2αmax2m3αmax2m4αmax+m5αmax21m6α¯+m5αmax20m7+m8αmax+m9αmax2m10+m9αmax21m1+m11αmax2],\displaystyle\triangleq\begin{bmatrix}1-m_{1}+m_{2}{\alpha}_{\max}^{2}&m_{2}{\alpha}_{\max}^{2}&m_{3}{\alpha}_{\max}^{2}\\ m_{4}{\alpha}_{\max}+m_{5}{\alpha}_{\max}^{2}&1-m_{6}\bar{\alpha}+m_{5}{\alpha}_{\max}^{2}&0\\ m_{7}+m_{8}{\alpha}_{\max}+m_{9}{\alpha}_{\max}^{2}&m_{10}+m_{9}{\alpha}_{\max}^{2}&1-m_{1}+m_{11}{\alpha}_{\max}^{2}\end{bmatrix},

m11σ¯22m_{1}\triangleq\frac{1-\bar{\sigma}^{2}}{2}, m224(n+4)ncςL2m_{2}\triangleq 24(n+4)n_{c}\varsigma L^{2}, m32ςm_{3}\triangleq 2\varsigma, m4n2L2/χm_{4}\triangleq n^{2}L^{2}/\chi, m512n(n+4)L2m_{5}\triangleq 12n(n+4)L^{2}, m6χ2nLϵαm_{6}\triangleq\chi-2\sqrt{n}L\epsilon_{\alpha}, m712(n+4)nsςL2(3+σ¯2)m_{7}\triangleq 12(n+4)n_{s}\varsigma L^{2}(3+\bar{\sigma}^{2}), m824(n+4)nsςL2m4m_{8}\triangleq 24(n+4)n_{s}\varsigma L^{2}m_{4}, m924(n+4)nsςL2(m2+m5)m_{9}\triangleq 24(n+4)n_{s}\varsigma L^{2}(m_{2}+m_{5}), m1048(n+4)nsςL2m_{10}\triangleq 48(n+4)n_{s}\varsigma L^{2}, m11ςm10m_{11}\triangleq\varsigma m_{10}, m1224(n+4)ncςG2+6(n+4)3ncςμ2L2m_{12}\triangleq 24(n+4)n_{c}\varsigma G^{2}+6(n+4)^{3}n_{c}\varsigma\mu^{2}L^{2}, m1312n(n+4)G2+3n(n+4)3μ2L2m_{13}\triangleq 12n(n+4)G^{2}+3n(n+4)^{3}\mu^{2}L^{2}, m1448(n+4)nsςG2+12(n+4)3nsςμ2L2m_{14}\triangleq 48(n+4)n_{s}\varsigma G^{2}+12(n+4)^{3}n_{s}\varsigma\mu^{2}L^{2} and m1524(n+4)nsςL2(m12+m13)m_{15}\triangleq 24(n+4)n_{s}\varsigma L^{2}(m_{12}+m_{13}).

For the linear system (17), we aim to prove ρ(𝐌)<1\rho(\mathbf{M})<1 such that each component of Ψt\Psi_{t} can linearly converge to a neighborhood of 0 [21].

We adopt the following result to guarantee ρ(𝐌)<1\rho(\mathbf{M})<1:

Lemma 8

(see [21, Cor. 8.1.29]) Let Am×mA\in\mathbb{R}^{m\times m} be a matrix with non-negative entries and 𝛎m\bm{\nu}\in\mathbb{R}^{m} be a vector with positive entries. If there exists a constant λ0\lambda\geq 0 such that A𝛎<λ𝛎A\bm{\nu}<\lambda\bm{\nu}, then ρ(A)<λ\rho(A)<\lambda.

To apply Lemma 8, each element of 𝐌\mathbf{M} should be non-negative. Hence, we may set m6>0m_{6}>0 and αmax<1m6{\alpha}_{\max}<\frac{1}{m_{6}}, i.e.,

αmax<1m6,ϵα<χ2nL.\displaystyle{\alpha}_{\max}<\frac{1}{m_{6}},\epsilon_{\alpha}<\frac{\chi}{2\sqrt{n}L}.

Next, based on Lemma 8, it suffices to find a vector 𝝂[ν1,ν2,ν3]\bm{\nu}\triangleq[\nu_{1},\nu_{2},\nu_{3}]^{\top} with ν1,ν2,ν3>0\nu_{1},\nu_{2},\nu_{3}>0 such that 𝐌α𝝂<𝝂\mathbf{M}_{\alpha}\bm{\nu}<\bm{\nu}, i.e.,

(1m1+m2αmax2)ν1+(m2αmax2)ν2+(m3αmax2)ν3<ν1,\displaystyle(1-m_{1}+m_{2}{\alpha}_{\max}^{2})\nu_{1}+(m_{2}{\alpha}_{\max}^{2})\nu_{2}+(m_{3}{\alpha}_{\max}^{2})\nu_{3}<\nu_{1},
(m4αmax+m5αmax2)ν1+(1m6α¯+m5αmax2)ν2<ν2,\displaystyle(m_{4}{\alpha}_{\max}+m_{5}{\alpha}_{\max}^{2})\nu_{1}+(1-m_{6}\bar{\alpha}+m_{5}{\alpha}_{\max}^{2})\nu_{2}<\nu_{2},
(m7+m8αmax+m9αmax2)ν1+(m10+m9αmax2)ν2+(1m1+m11αmax2)ν3<ν3.\displaystyle(m_{7}+m_{8}{\alpha}_{\max}+m_{9}{\alpha}_{\max}^{2})\nu_{1}+(m_{10}+m_{9}{\alpha}_{\max}^{2})\nu_{2}+(1-m_{1}+m_{11}{\alpha}_{\max}^{2})\nu_{3}<\nu_{3}.

Without loss of generality, we may set ν3=1\nu_{3}=1. It remains to find ν1\nu_{1} and ν2\nu_{2} such that the following inequalities hold

(m2ν1+m2ν2+m3)αmax2<m1ν1,\displaystyle(m_{2}\nu_{1}+m_{2}\nu_{2}+m_{3}){\alpha}_{\max}^{2}<m_{1}\nu_{1}, (18a)
(m5ν1+m5ν2)αmax<m6ν2nm4ν1,\displaystyle(m_{5}\nu_{1}+m_{5}\nu_{2}){\alpha}_{\max}<\frac{m_{6}\nu_{2}}{n}-m_{4}\nu_{1}, (18b)
(m9ν1+m9ν2+m11)αmax2<m1(m7+m8)ν1m10ν2,\displaystyle(m_{9}\nu_{1}+m_{9}\nu_{2}+m_{11}){\alpha}_{\max}^{2}<m_{1}-(m_{7}+m_{8})\nu_{1}-m_{10}\nu_{2}, (18c)

where we have applied α¯αmax>1n\frac{\bar{\alpha}}{{\alpha}_{\max}}>\frac{1}{n} in (18b), and forced αmax<1{\alpha}_{\max}<1 in (18c).

To ensure the existence of αmax{\alpha}_{\max}, the RHS of (18) has to be positive. Hence, we may set

ν1=m1m64nm4m10+2m6m7+2m6m8,ν2=nm1m42nm4m10+m6m7+m6m8.\displaystyle\nu_{1}=\frac{m_{1}m_{6}}{4nm_{4}m_{10}+2m_{6}m_{7}+2m_{6}m_{8}},\nu_{2}=\frac{nm_{1}m_{4}}{2nm_{4}m_{10}+m_{6}m_{7}+m_{6}m_{8}}.

Then, the three inequalities in (18) can be solved, which gives

αmax<α1,αmax<α2,αmax<α3,\displaystyle{\alpha}_{\max}<\alpha_{1},{\alpha}_{\max}<\alpha_{2},{\alpha}_{\max}<\alpha_{3},

where

α1m12m6m1m2m6+2nm1m2m4+4nm3m4m10+2m3m6m7+2m3m6m8,\displaystyle\alpha_{1}\triangleq\sqrt{\frac{m_{1}^{2}m_{6}}{m_{1}m_{2}m_{6}+2nm_{1}m_{2}m_{4}+4nm_{3}m_{4}m_{10}+2m_{3}m_{6}m_{7}+2m_{3}m_{6}m_{8}}},
α2m1m4m6m1m5m6+2nm1m4m5,\displaystyle\alpha_{2}\triangleq\frac{m_{1}m_{4}m_{6}}{m_{1}m_{5}m_{6}+2nm_{1}m_{4}m_{5}},
α3m1(2nm4m10+m6m7+m6m8)m1m6m9+2nm1m4m9+m11(4nm4m10+2m6m7+2m6m8).\displaystyle\alpha_{3}\triangleq\sqrt{\frac{m_{1}(2nm_{4}m_{10}+m_{6}m_{7}+m_{6}m_{8})}{m_{1}m_{6}m_{9}+2nm_{1}m_{4}m_{9}+m_{11}(4nm_{4}m_{10}+2m_{6}m_{7}+2m_{6}m_{8})}}.

Therefore, the range of the step-size is given by

0<αmax<min{α1,α2,α3,1m6,1},ϵα<χ2nL.\displaystyle 0<{\alpha}_{\max}<\min\bigg{\{}\alpha_{1},\alpha_{2},\alpha_{3},\frac{1}{m_{6}},1\bigg{\}},\epsilon_{\alpha}<\frac{\chi}{2\sqrt{n}L}.

Furthermore, taking the limsup on both sides of (17)

lim suptΨt𝐌lim suptΨt+Υ,\displaystyle\limsup_{t\to\infty}\Psi_{t}\leq\mathbf{M}\limsup_{t\to\infty}\Psi_{t}+\Upsilon,

which gives

(I3𝐌)lim suptΨtΥ,\displaystyle(I_{3}-\mathbf{M})\limsup_{t\to\infty}\Psi_{t}\leq\Upsilon,

where

I3𝐌=[m1m2αmax2m2αmax2m3αmax2m4αmaxm5αmax2m6α¯m5αmax20m7m8αmaxm9αmax2m10m9αmax2m1m11αmax2].\displaystyle I_{3}-\mathbf{M}=\begin{bmatrix}m_{1}-m_{2}{\alpha}_{\max}^{2}&-m_{2}{\alpha}_{\max}^{2}&-m_{3}{\alpha}_{\max}^{2}\\ -m_{4}{\alpha}_{\max}-m_{5}{\alpha}_{\max}^{2}&m_{6}\bar{\alpha}-m_{5}{\alpha}_{\max}^{2}&0\\ -m_{7}-m_{8}{\alpha}_{\max}-m_{9}{\alpha}_{\max}^{2}&-m_{10}-m_{9}{\alpha}_{\max}^{2}&m_{1}-m_{11}{\alpha}_{\max}^{2}\end{bmatrix}.

It can be obtained that

det(I3𝐌)\displaystyle det(I_{3}-\mathbf{M}) (m1m11αmax2)[(m1m2αmax2)(m6α¯m5αmax2)\displaystyle\triangleq(m_{1}-m_{11}{\alpha}_{\max}^{2})[(m_{1}-m_{2}{\alpha}_{\max}^{2})(m_{6}\bar{\alpha}-m_{5}{\alpha}_{\max}^{2})
m2αmax2(m4αmax+m5αmax2)]\displaystyle\quad-m_{2}{\alpha}_{\max}^{2}(m_{4}{\alpha}_{\max}+m_{5}{\alpha}_{\max}^{2})]
>(m1m11αmax2)[(m1m2αmax2)(m6αmaxnm5αmax2)\displaystyle>(m_{1}-m_{11}{\alpha}_{\max}^{2})\bigg{[}(m_{1}-m_{2}{\alpha}_{\max}^{2})\bigg{(}\frac{m_{6}{\alpha}_{\max}}{n}-m_{5}{\alpha}_{\max}^{2}\bigg{)}
m2αmax2(m4αmax+m5αmax2)]\displaystyle\quad-m_{2}{\alpha}_{\max}^{2}(m_{4}{\alpha}_{\max}+m_{5}{\alpha}_{\max}^{2})\bigg{]}
=αmax(m1m2αmax2)[m1m6nm1m5αmaxm2(m4+m6n)αmax2],\displaystyle={\alpha}_{\max}(m_{1}-m_{2}{\alpha}_{\max}^{2})\bigg{[}\frac{m_{1}m_{6}}{n}-m_{1}m_{5}{\alpha}_{\max}-m_{2}\bigg{(}m_{4}+\frac{m_{6}}{n}\bigg{)}{\alpha}_{\max}^{2}\bigg{]},
adj(I3𝐌)11\displaystyle adj(I_{3}-\mathbf{M})_{11} (m1m11αmax2)(m6α¯m5αmax2)αmax(m1m11αmax2)(m6m5αmax),\displaystyle\triangleq(m_{1}-m_{11}{\alpha}_{\max}^{2})(m_{6}\bar{\alpha}-m_{5}{\alpha}_{\max}^{2})\leq{\alpha}_{\max}(m_{1}-m_{11}{\alpha}_{\max}^{2})(m_{6}-m_{5}{\alpha}_{\max}),
adj(I3𝐌)12\displaystyle adj(I_{3}-\mathbf{M})_{12} αmax2[m2(m1m11αmax2)+m3(m10+m9αmax2)],\displaystyle\triangleq{\alpha}_{\max}^{2}[m_{2}(m_{1}-m_{11}{\alpha}_{\max}^{2})+m_{3}(m_{10}+m_{9}{\alpha}_{\max}^{2})],
adj(I3𝐌)13\displaystyle adj(I_{3}-\mathbf{M})_{13} m3αmax2(m6α¯m5αmax2)m3αmax3(m6m5αmax),\displaystyle\triangleq m_{3}{\alpha}_{\max}^{2}(m_{6}\bar{\alpha}-m_{5}{\alpha}_{\max}^{2})\leq m_{3}{\alpha}_{\max}^{3}(m_{6}-m_{5}{\alpha}_{\max}),
adj(I3𝐌)21\displaystyle adj(I_{3}-\mathbf{M})_{21} αmax(m1m11αmax2)(m4+m5αmax),\displaystyle\triangleq{\alpha}_{\max}(m_{1}-m_{11}{\alpha}_{\max}^{2})(m_{4}+m_{5}{\alpha}_{\max}),
adj(I3𝐌)22\displaystyle adj(I_{3}-\mathbf{M})_{22} (m1m2αmax2)(m1m11αmax2)m3αmax2(m7+m8αmax+m9αmax2),\displaystyle\triangleq(m_{1}-m_{2}{\alpha}_{\max}^{2})(m_{1}-m_{11}{\alpha}_{\max}^{2})-m_{3}{\alpha}_{\max}^{2}(m_{7}+m_{8}{\alpha}_{\max}+m_{9}{\alpha}_{\max}^{2}),
adj(I3𝐌)23\displaystyle adj(I_{3}-\mathbf{M})_{23} m3αmax3(m4+m5αmax)\displaystyle\triangleq m_{3}{\alpha}_{\max}^{3}(m_{4}+m_{5}{\alpha}_{\max})

Then, we have

lim supti=1Nk=1ni𝔼[𝐲k,ti𝟏niy¯k,ti2][(I3𝐌)1Υ]1\displaystyle\limsup_{t\to\infty}\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\mathbb{E}[\|\mathbf{y}^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t}\|^{2}]\leq[(I_{3}-\mathbf{M})^{-1}\Upsilon]_{1}
=adj(I3𝐌)11[Υ]1det(I3𝐌)+adj(I3𝐌)12[Υ]2det(I3𝐌)+adj(I3𝐌)13[Υ]3det(I3𝐌)=𝒪(αmax2),\displaystyle\quad=\frac{adj(I_{3}-\mathbf{M})_{11}[\Upsilon]_{1}}{det(I_{3}-\mathbf{M})}+\frac{adj(I_{3}-\mathbf{M})_{12}[\Upsilon]_{2}}{det(I_{3}-\mathbf{M})}+\frac{adj(I_{3}-\mathbf{M})_{13}[\Upsilon]_{3}}{det(I_{3}-\mathbf{M})}=\mathcal{O}({\alpha}_{\max}^{2}),

and

lim supt𝔼[𝐲¯t𝐱μ2][(I3𝐌)1Υ]2\displaystyle\limsup_{t\to\infty}\mathbb{E}[\|\bar{\mathbf{y}}_{t}-\mathbf{x}^{*}_{\mu}\|^{2}]\leq[(I_{3}-\mathbf{M})^{-1}\Upsilon]_{2}
=adj(I3𝐌)21[Υ]1det(I3𝐌)+adj(I3𝐌)22[Υ]2det(I3𝐌)+adj(I3𝐌)23[Υ]3det(I3𝐌)=𝒪(αmax).\displaystyle\quad=\frac{adj(I_{3}-\mathbf{M})_{21}[\Upsilon]_{1}}{det(I_{3}-\mathbf{M})}+\frac{adj(I_{3}-\mathbf{M})_{22}[\Upsilon]_{2}}{det(I_{3}-\mathbf{M})}+\frac{adj(I_{3}-\mathbf{M})_{23}[\Upsilon]_{3}}{det(I_{3}-\mathbf{M})}=\mathcal{O}({\alpha}_{\max}).

Thus, it follows from (7) that

lim supt𝔼[𝐱t𝐱μ2]2lim supt𝔼[𝐱t𝐲¯t2]+2lim supt𝔼[𝐲¯t𝐱μ2]\displaystyle\limsup_{t\to\infty}\mathbb{E}[\|\mathbf{x}_{t}-\mathbf{x}^{*}_{\mu}\|^{2}]\leq 2\limsup_{t\to\infty}\mathbb{E}[\|\mathbf{x}_{t}-\bar{\mathbf{y}}_{t}\|^{2}]+2\limsup_{t\to\infty}\mathbb{E}[\|\bar{\mathbf{y}}_{t}-\mathbf{x}^{*}_{\mu}\|^{2}]
2lim supti=1Nk=1ni𝔼[𝐲k,ti𝟏niy¯k,ti2]+2lim supt𝔼[𝐲¯t𝐱μ2]=𝒪(αmax).\displaystyle\quad\leq 2\limsup_{t\to\infty}\sum_{i=1}^{N}\sum_{k=1}^{n_{i}}\mathbb{E}[\|\mathbf{y}^{i}_{k,t}-\mathbf{1}_{n_{i}}\bar{y}^{i}_{k,t}\|^{2}]+2\limsup_{t\to\infty}\mathbb{E}[\|\bar{\mathbf{y}}_{t}-\mathbf{x}^{*}_{\mu}\|^{2}]=\mathcal{O}({\alpha}_{\max}).

Invoking Lemma 2 yields

lim supt𝔼[𝐱t𝐱2]2lim supt𝔼[𝐱t𝐱μ2]+2𝐱μ𝐱2=𝒪(αmax)+𝒪(μ),\displaystyle\limsup_{t\to\infty}\mathbb{E}[\|\mathbf{x}_{t}-\mathbf{x}^{*}\|^{2}]\leq 2\limsup_{t\to\infty}\mathbb{E}[\|\mathbf{x}_{t}-\mathbf{x}^{*}_{\mu}\|^{2}]+2\|\mathbf{x}^{*}_{\mu}-\mathbf{x}^{*}\|^{2}=\mathcal{O}({\alpha}_{\max})+\mathcal{O}(\mu),

which completes the proof.

V Numerical Simulations

We illustrate the proposed NE seeking strategy on a connectivity control game [22], played among a number of sensor networks. Specifically, there are NN sensor networks, where each sensor network contains nin_{i} sensors. Let xji=[xj,1i,xj,2i]2x^{i}_{j}=[x^{i}_{j,1},x^{i}_{j,2}]^{\top}\in\mathbb{R}^{2} denote the position of sensor jj (referred to as an agent) from a sensor network ii (referred to as a cluster). Then, this sensor aims to seek a tradeoff between a local cost, lji(𝐱i)l^{i}_{j}(\mathbf{x}^{i}) (e.g., source seeking and positioning) and the global cost, hji(𝐱)h^{i}_{j}(\mathbf{x}) (e.g., connectivity preservation with other sensor networks). Hence, the cost function to be minimized by this sensor is given by

fji(𝐱)=lji(𝐱i)+hji(𝐱),f^{i}_{j}(\mathbf{x})=l^{i}_{j}(\mathbf{x}^{i})+h^{i}_{j}(\mathbf{x}),

where

lji(𝐱i)\displaystyle l^{i}_{j}(\mathbf{x}^{i}) =𝐱iaji𝐱i+bji𝐱i+cji,\displaystyle=\mathbf{x}^{i\top}a^{i}_{j}\mathbf{x}^{i}+b^{i\top}_{j}\mathbf{x}^{i}+c^{i}_{j},
hji(𝐱)\displaystyle h^{i}_{j}(\mathbf{x}) =k𝒩idjiejkixji𝐱k2,\displaystyle=\sum_{k\in\mathcal{N}_{i}}d^{i}_{j}\|e^{i}_{jk}x^{i}_{j}-\mathbf{x}^{k}\|^{2},

and aji,bji,cji,dji,ejkia^{i}_{j},b^{i}_{j},c^{i}_{j},d^{i}_{j},e^{i}_{jk} are constant matrices or vectors of appropriate dimensions, and 𝒩i\mathcal{N}_{i} stands for the set of neighbors of sensor network ii in a connected graph characterizing their position dependence. Specifically, if k𝒩ik\in\mathcal{N}_{i}, then the corresponding term ejkixji𝐱k2\|e^{i}_{jk}x^{i}_{j}-\mathbf{x}^{k}\|^{2} represents the intention of sensor jj from a sensor network ii to preserve the connectivity with the sensors from sensor network kk.

Refer to caption
Figure 1: Communication network.

In this simulation, we consider N=3N=3 and ni=4n_{i}=4. The local and global costs are set as lji=i[xji2+𝟏2xji+j]l^{i}_{j}=i[\|x^{i}_{j}\|^{2}+\mathbf{1}^{\top}_{2}x^{i}_{j}+j] for j=1,,4j=1,\ldots,4, i=1,2,3i=1,2,3 and hj1=xj1xj22h^{1}_{j}=\|x^{1}_{j}-x^{2}_{j}\|^{2}, hj2=xj2xj32h^{2}_{j}=\|x^{2}_{j}-x^{3}_{j}\|^{2}, hj3=xj3xj12h^{3}_{j}=\|x^{3}_{j}-x^{1}_{j}\|^{2} for j=1,,4j=1,\ldots,4. Then, it is readily verified that Assumptions 2 and 3 hold. The directed communication graph for each sensor network ii is as shown in Fig. 1. For the algorithm parameters, we let the smoothing parameter be μ=104\mu=10^{-4}, and the constant step-sizes for sensors of network ii be αi=0.1\alpha^{i}=0.1, 0.080.08, 0.060.06, respectively. Thus, ϵα=0.2041\epsilon_{\alpha}=0.2041. We initialize the algorithm with arbitrary xj,0ix^{i}_{j,0}, yjk,0iy^{i}_{jk,0} and φjk,0i=gjki(𝐱0)\varphi^{i}_{jk,0}={g}^{i}_{jk}(\mathbf{x}_{0}). The trajectories of the sensors’ positions for the three sensor networks are plotted in Fig. 2. It can be seen that the positions of all sensors can almost converge to the NE. Also, more ‘zigzags’ can be observed for the case of a larger step-size, since the update is more aggressive.

Refer to caption
(a) Network 1
Refer to caption
(b) Network 2
Refer to caption
(c) Network 3
Figure 2: Trajectories of sensors’ positions in different networks.

Next, we illustrate the convergence rate results. First, we set the constant step-sizes for sensors of network ii be αji=0.1a\alpha^{i}_{j}=0.1a, 0.08a0.08a and 0.06a0.06a, respectively, and let a=1.2a=1.2, 11 and 0.60.6, respectively. Hence, we fix the heterogeneity of the step-size ϵα=0.2041\epsilon_{\alpha}=0.2041, and set the largest step-size to αmax=0.12{\alpha}_{\max}=0.12, 0.10.1 and 0.060.06, respectively. The trajectories of the error gap 𝐱t𝐱\|\mathbf{x}_{t}-\mathbf{x}^{*}\| with these settings are plotted in Fig. 3a. Then, we fix the largest step-size to αmax=0.1{\alpha}_{\max}=0.1 and the averaged step-size α¯=0.06\bar{\alpha}=0.06, and set the heterogeneity of the step-size ϵα=0.2041\epsilon_{\alpha}=0.2041, 0.47140.4714, 0.49070.4907 and 0.54430.5443, respectively. The trajectories of the error gap 𝐱t𝐱\|\mathbf{x}_{t}-\mathbf{x}^{*}\| with these settings are plotted in Fig. 3b. As can be seen from both figures, the error gap descends linearly for all cases. Moreover, the convergence speed is faster with larger step-sizes and smaller heterogeneity, which verifies the derived results in Theorem 1.

Refer to caption
(a) Fixed heterogeneity
Refer to caption
(b) Fixed largest step-size
Figure 3: Trajectories of the error gap 𝐱t𝐱\|\mathbf{x}_{t}-\mathbf{x}^{*}\|.

VI Conclusions

This work has studied an NN-cluster non-cooperative game problem, where the agents’ cost functions are possibly non-smooth and the explicit expressions are unknown. By integrating the Gaussian smoothing techniques with the gradient tracking, a gradient-free NE seeking algorithm has been developed, in which the agents are allowed to select their own preferred constant step-sizes. We have shown that, when the largest step-size is sufficiently small, the agents’ actions approximately converge to the unique NE under a strongly monotone game mapping condition, and the error gap is proportional to the largest step-size and the smoothing parameter. Finally, the derived results have been verified by numerical simulations.

References

  • [1] M. Ye and G. Hu, “Distributed nash equilibrium seeking in multiagent games under switching communication topologies,” IEEE Transactions on Cybernetics, vol. 48, no. 11, pp. 3208–3217, 2018.
  • [2] K. Lu, G. Jing, and L. Wang, “Distributed Algorithms for Searching Generalized Nash Equilibrium of Noncooperative Games,” IEEE Transactions on Cybernetics, vol. 49, no. 6, pp. 2362–2371, 2019.
  • [3] P. Yi and L. Pavel, “An operator splitting approach for distributed generalized Nash equilibria computation,” Automatica, vol. 102, pp. 111–121, 2019.
  • [4] C. De Persis and S. Grammatico, “Continuous-Time Integral Dynamics for a Class of Aggregative Games With Coupling Constraints,” IEEE Transactions on Automatic Control, vol. 65, no. 5, pp. 2171–2176, 2020.
  • [5] Y. Zhang, S. Liang, X. Wang, and H. Ji, “Distributed Nash Equilibrium Seeking for Aggregative Games With Nonlinear Dynamics Under External Disturbances,” IEEE Transactions on Cybernetics, pp. 1–10, 2019.
  • [6] B. Gharesifard and J. Cortes, “Distributed convergence to Nash equilibria in two-network zero-sum games,” Automatica, vol. 49, no. 6, pp. 1683–1692, 2013.
  • [7] Y. Lou, Y. Hong, L. Xie, G. Shi, and K. H. Johansson, “Nash Equilibrium Computation in Subnetwork Zero-Sum Games With Switching Communications,” IEEE Transactions on Automatic Control, vol. 61, no. 10, pp. 2920–2935, 2016.
  • [8] M. Ye, G. Hu, and F. Lewis, “Nash equilibrium seeking for N-coalition noncooperative games,” Automatica, vol. 95, pp. 266–272, 2018.
  • [9] M. Ye and G. Hu, “Simultaneous social cost minimization and nash equilibrium seeking in non-cooperative games,” in Chinese Control Conference, CCC.   IEEE Computer Society, 2017, pp. 3052–3059.
  • [10] M. Ye and G. Hu, “A distributed method for simultaneous social cost minimization and nash equilibrium seeking in multi-agent games,” in IEEE International Conference on Control and Automation, ICCA, 2017, pp. 799–804.
  • [11] M. Ye, G. Hu, F. L. Lewis, and L. Xie, “A Unified Strategy for Solution Seeking in Graphical N-Coalition Noncooperative Games,” IEEE Transactions on Automatic Control, vol. 64, no. 11, pp. 4645–4652, 2019.
  • [12] X. Nian, F. Niu, and Z. Yang, “Distributed Nash Equilibrium Seeking for Multicluster Game Under Switching Communication Topologies,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021.
  • [13] X. Zeng, J. Chen, S. Liang, and Y. Hong, “Generalized Nash equilibrium seeking strategy for distributed nonsmooth multi-cluster game,” Automatica, vol. 103, pp. 20–26, 2019.
  • [14] C. Sun and G. Hu, “Distributed Generalized Nash Equilibrium Seeking of N-Coalition Games with Full and Distributive Constraints,” arXiv preprint arXiv:2109.12515, sep 2021.
  • [15] M. Ye, G. Hu, and S. Xu, “An extremum seeking-based approach for Nash equilibrium seeking in N-cluster noncooperative games,” Automatica, vol. 114, p. 108815, 2020.
  • [16] Y. Pang and G. Hu, “Nash Equilibrium Seeking in N-Coalition Games via a Gradient-Free Method,” Automatica, vol. 136, p. 110013, 2022.
  • [17] S. Pu and A. Nedić, “Distributed stochastic gradient tracking methods,” Mathematical Programming, pp. 1–49, 2020.
  • [18] Y. Pang and G. Hu, “Distributed Nash Equilibrium Seeking with Limited Cost Function Knowledge via A Consensus-Based Gradient-Free Method,” IEEE Transactions on Automatic Control, vol. 66, no. 4, pp. 1832–1839, 2021.
  • [19] Y. Pang and G. Hu, “A Gradient-Free Distributed Nash Equilibrium Seeking Method with Uncoordinated Step-Sizes,” in 2020 IEEE 59th Conference on Decision and Control(CDC), 2020, pp. 2291–2296.
  • [20] Y. Nesterov and V. Spokoiny, “Random Gradient-Free Minimization of Convex Functions,” Foundations of Computational Mathematics, vol. 17, no. 2, pp. 527–566, 2017.
  • [21] R. A. Horn and C. R. Johnson, Matrix Analysis.   Cambridge university press, 1990.
  • [22] M. S. Stankovic, K. H. Johansson, and D. M. Stipanovic, “Distributed Seeking of Nash Equilibria With Applications to Mobile Sensor Networks,” IEEE Transactions on Automatic Control, vol. 57, no. 4, pp. 904–919, 2012.