This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Gradient Ambient Obstruction Solitons on Homogeneous Manifolds

Erin Griffin 215 Carnegie Building
Dept. of Math, Syracuse University
Syracuse, NY, 13244.
[email protected] https://sites.google.com/view/erin-griffin-math/
Abstract.

We examine homogeneous solitons of the ambient obstruction flow and, in particular, prove that any compact ambient obstruction soliton with constant scalar curvature is trivial. Focusing on dimension 4, we show that any homogeneous gradient Bach soliton that is steady must be Bach flat, and that the only non-Bach-flat shrinking gradient solitons are product metrics on 2×S2\mathbb{R}^{2}\times S^{2} and 2×H2\mathbb{R}^{2}\times H^{2}. We also construct a non-Bach-flat expanding homogeneous gradient Bach soliton. We also establish a number of results for solitons to the geometric flow by a general tensor qq.

Key words and phrases:
homogeneous manifold, gradient soliton, Bach tensor, Bach flow, ambient obstruction tensor, ambient obstruction flow.
The author was partially supported by grant NSF-#1654034.

1. Introduction

The geometric flow for a general tensor q(g)q(g), the qq-flow, is a one parameter family of smooth metrics such that

(1) {tg=qg(0)=h.\begin{cases}\partial_{t}g=q\\ g(0)=h.\end{cases}

The resulting qq-soliton equation is:

(2) 12Xg=cg+12q\frac{1}{2}\operatorname{\mathcal{L}}_{X}g=cg+\frac{1}{2}q

where XX is a vector field. Letting X=fX=\nabla f, a (normalized) gradient soliton has the form:

(3) Hessf=cg+12q.\operatorname{Hess}{f}=cg+\frac{1}{2}q.

The coefficient on qq may differ from other definitions found throughout the literature. We chose this coefficient to show that gradient solitons are self similar solutions to the qq-flow (Theorem 3.13). It is easily shown that this definition aligns with definitions lacking the coefficient. We will use the terms expanding, steady, and shrinking to describe when c<0c<0, c=0c=0, and c>0c>0 respectively. Moreover, a soliton is said to be stationary if it has constant potential function.

The goal of our work is to generalize results for specific flows using the properties of qq, then show that there are examples of these generalizations. One such general result is:

Theorem 1.1.

For a divergence-free, trace-free tensor qq, any compact qq-soliton is qq-flat.

This theorem is a generalization of the well known result for Ricci solitons that any compact Ricci soliton with constant scalar curvature is Einstein (see [PW09b]). By the second Bianchi identity, the Ricci tensor is divergence free if and only if the scalar curvature is constant. Moreover, for the Ricci tensor requiring constant scalar curvature is similar to the trace-free condition.

Two examples of divergence-free and trace free tensors are the Bach tensor, BB, in dimension n=4n=4, and ambient obstruction tensor, 𝒪\mathcal{O}, in even dimension n4n\geq 4. To aid our exposition, we provide detailed definitions of these tensors, their flows, and their solitons in Section 2. Specifically, Definition 2.1 defines ambient obstruction and Bach solitons. In applying Theorem 1.1 to the Bach tensor we get [Ho18, Theorem 3.2]. Moreover, applying Theorem 1.1 to the ambient obstruction tensor yields:

Theorem 1.2.

Any compact ambient obstruction soliton with constant scalar curvature is 𝒪\mathcal{O}-flat. In particular, all compact homogeneous ambient obstruction solitons are 𝒪\mathcal{O}-flat.

The following is a generalization of [PW09b, Theorem 1.1] applied to the ambient obstruction tensor.

Theorem 1.3.

A compact gradient ambient obstruction soliton with non-positive Ricci curvature must be stationary.

Our results are motivated by a recent theorem of Petersen and Wylie in [PW20] that implies that non-flat homogeneous gradient solitons of the qq-flow, where qq is divergence free, are always products of the form k×Nnk\mathbb{R}^{k}\times N^{n-k}. In the case of Ricci solitons, this implies that NN is an Einstein manifold [PW09a, Theorem 1.1]. We apply this theorem to the case of the Bach tensor and find that the possible metrics on NN are more complex. However, we obtain the following classification in the steady and shrinking cases.

Theorem 1.4.

Any homogeneous gradient Bach soliton that is steady must be Bach flat and the only non-Bach-flat shrinking solitons are product metrics on 2×S2\mathbb{R}^{2}\times S^{2} and 2×H2\mathbb{R}^{2}\times H^{2}.

Remark 1.5.

There are non-trivial homogeneous 44-dimensional Bach flat metrics. For example, Einstein metrics and (anti)self-dual metrics are Bach flat. Moreover there is a classification of simply connected homogeneous Bach-flat 44-manifolds. (See [AGS13] and [CnLGMGR+19].)

Remark 1.6.

There are non-Bach-flat expanding homogeneous gradient Bach solitons. We find one such soliton on ×S3\mathbb{R}\times S^{3} with metric g=g0×gSU(2)g=g_{0}\times g_{SU(2)}. We show this is the only expanding soliton on a manifold of the form ×N3\mathbb{R}\times N^{3} where N3N^{3} is a unimodular Lie group.

The paper is organized as follows. In Section 2 we provide a brief background of the Bach and ambient obstruction tensors as well as a background on geometric flows in general. Next, in Section 3 we establish a number of results for a general tensor qq and apply them to the ambient obstruction tensor. Then in Section 4 we begin to classify the gradient Bach tensors of homogeneous 4-manifolds. The results of this partial classification are summarized in Table 1.

2. Background

In dimension 4 the Bach tensor is symmetric, divergence free, trace free, and conformally invariant of weight -2. That is, for a positive, smooth function ρ\rho, if g~=ρ2g\tilde{g}=\rho^{2}g then B~=1ρ2B\tilde{B}=\frac{1}{\rho^{2}}B. The Bach tensor is realized as the negative gradient of the conformally invariant functional given by:

𝒲(g)=M|Wg|2dVg\mathcal{W}(g)=\int_{M}|W_{g}|^{2}\text{d}V_{g}

where WgW_{g} is the Weyl tensor and |Wg|2=gipgjqgkrglsWijklWpqrs|W_{g}|^{2}=g^{ip}g^{jq}g^{kr}g^{ls}W_{ijkl}W_{pqrs}. Since this functional is only conformally invariant in dimension n=4n=4, for n4n\neq 4 the Bach tensor is not conformally invariant either. Moreover, the Bach tensor is not divergence free for n4n\neq 4. For this reason we will only consider the Bach tensor for n=4n=4. Though there is an explicit representation of the Bach tensor for arbitrary nn, provided in [CC13], the Bach tensor for n=4n=4 is given by:

Bij=klWikjl+12RklWijkl.B_{ij}=\nabla^{k}\nabla^{l}W_{ikjl}+\frac{1}{2}R_{kl}W_{i\;\;j}^{\;k\;\,l}.

To find a higher dimensional equivalent, for even nn we examine the gradient of the functional:

Qn(g)=MQ(g)dVg\mathcal{F}_{Q}^{n}(g)=\int_{M}Q(g)\,\text{d}V_{g}

where Q(g)Q(g) is Branson’s QQ-curvature described in [Bra93]. Though QQ lacks some of the conformal properties of WW, the functionals Qn\mathcal{F}_{Q}^{n} are conformally invariant for arbitrary even nn. Moreover, Branson uses the Chern-Gauss-Bonnet theorem to show that, in dimension n=4n=4, Qn\mathcal{F}_{Q}^{n} is related to 𝒲\mathcal{W} by the equation:

Q4=8π2χ(M)14𝒲,\mathcal{F}_{Q}^{4}=8\pi^{2}\chi(M)-\frac{1}{4}\mathcal{W},

thus they have the same critical metrics.

In [FG12], Fefferman and Graham examine the gradient of Qn\mathcal{F}_{Q}^{n} and introduce the resulting symmetric 2-tensor, the ambient obstruction tensor, which is noted 𝒪\mathcal{O}. This tensor can be characterized as the obstruction to an nn-manifold having a formal power series of asymptotically hyperbolic Einstein metric in dimension n+1n+1 [BH11]. Explicitly, the ambient obstruction tensor is given by the equation:

𝒪n=1(2)n22(n22)!(Δn21P12(n1)Δn222S)+Tn1\mathcal{O}_{n}=\frac{1}{(-2)^{\frac{n}{2}-2}\left(\frac{n}{2}-2\right)!}\left(\Delta^{\frac{n}{2}-1}P-\frac{1}{2(n-1)}\Delta^{\frac{n}{2}-2}\nabla^{2}S\right)+T_{n-1}
P=1n2(Ric12(k1)Sg)P=\frac{1}{n-2}\left(\operatorname{Ric}-\frac{1}{2(k-1)}S_{g}\right)

where PP is the Schouten tensor and Tn1T_{n-1} a polynomial natural tensor of order n1n-1. The ambient obstruction tensor is only defined for even nn. Like the Bach tensor in dimension 44, the ambient obstruction tensor is symmetric, trace free, divergence free, and conformally invariant of weight 2n2-n. The ambient obstruction tensor can be viewed as a family of even dimensional tensors, where the dimension 4 ambient obstruction tensor is the Bach tensor. (See [BH11] and [Lop18] for a more detailed background.)

In the last decade Bahuaud-Helliwell, Helliwell, and Lopez have studied flowing a metric by the ambient obstruction tensor. Bahuaud and Helliwell, in [BH11, Theorem C], consider the flow given by:

(4) {tg=𝒪n+cn(1)n2(Δn21S)gg(0)=h\begin{cases}\partial_{t}g=\mathcal{O}_{n}+c_{n}(-1)^{\frac{n}{2}}\left(\Delta^{\frac{n}{2}-1}S\right)g\\ g(0)=h\end{cases}

where hh is a smooth metric on a compact manifold of even dimension n4n\geq 4 and

cn=12n22(n22)!(n2)(n1).c_{n}=\frac{1}{2^{\frac{n}{2}-2}\left(\frac{n}{2}-2\right)!(n-2)(n-1)}.

In [BH11, BH15] Bahuaud and Helliwell show short time existence and uniqueness on compact manifolds for this flow. As Lopez explains in [Lop18], the scalar curvature term “counteracts the invariance of 𝒪\mathcal{O} under the action of the conformal group on the space of metrics on MM.” In [Lop18], Lopez finds pointwise smoothing estimates and uses them to find an obstruction to long-time existence and to prove a compactness theorem for the flow (4).

For n=4n=4 we will call flow (4) the Bach flow, which is given by:

{tg=B+112ΔSgg(0)=h\begin{cases}\partial_{t}g=B+\frac{1}{12}\Delta Sg\\ g(0)=h\end{cases}

Note that this is slightly different than the definition in [Ho18]. Since homogeneous manifolds have constant scalar curvature, the equations for the ambient obstruction flow and Bach flow on homogeneous manifolds are given by:

(5) {tg=𝒪ng(0)=hand{tg=Bg(0)=h\begin{cases}\partial_{t}g=\mathcal{O}_{n}\\ g(0)=h\end{cases}\quad\text{and}\quad\begin{cases}\partial_{t}g=B\\ g(0)=h\end{cases}

respectively. Helliwell uses the latter equation in [Hel20] to study the Bach flow on homogeneous compact product manifolds of the form S1×K3S^{1}\times K^{3}.

The solitons of these flows are defined as follows.

Definition 2.1.

An ambient obstruction soliton is a solution, (M,g)(M,g), to the equation:

12Xg=cg+12(𝒪n+cn(1)n2(Δn21S)g)\frac{1}{2}\operatorname{\mathcal{L}}_{X}g=cg+\frac{1}{2}\left(\mathcal{O}_{n}+c_{n}(-1)^{\frac{n}{2}}\left(\Delta^{\frac{n}{2}-1}S\right)g\right)

where cnc_{n} is defined as above. In dimension n=4n=4, the ambient obstruction soliton is the Bach soliton, given by:

12Xg=cg+12(B+112ΔSg).\frac{1}{2}\operatorname{\mathcal{L}}_{X}g=cg+\frac{1}{2}\left(B+\frac{1}{12}\Delta Sg\right).

These are called gradient if X=fX=\nabla f, and the corresponding equations are

Hessf=cg+12(𝒪n+cn(1)n2(Δn21S)g)and\operatorname{Hess}{f}=cg+\frac{1}{2}\left(\mathcal{O}_{n}+c_{n}(-1)^{\frac{n}{2}}\left(\Delta^{\frac{n}{2}-1}S\right)g\right)\quad\text{and}
Hessf=cg+12(B+112ΔSg).\operatorname{Hess}{f}=cg+\frac{1}{2}\left(B+\frac{1}{12}\Delta Sg\right).

For the reader who is less familiar with geometric flows, we now give a brief background will help motivate gradient solitons.

The primary objective of a first course in differential equations is learning methods to solve differential equations explicitly. Soon thereafter, we see that solvable differential equations are relatively rare. To gain valuable insights about a differential equation, one might examine the fixed points of the flow, classify them as stable or unstable, and even construct a phase diagrams. Applying this idea to geometric flows, we know that self similar solutions to a geometric flow are solitons. As such they act as fixed points. So when examining a new flow it makes sense to try to find and analyze the solitons. To further limit these unknowns, one might choose to examine gradient solitons in particular.

The choice to examine gradient solitons provides one with a more restrictive, more familiar environment. Historically, analyzing gradient solitons has provided a lot of insight into the Ricci flow. The work of Hamilton, Ivey, and Perelman combine to classify 3-dimensional shrinking gradient Ricci solitons.[PW10] Further, in [Per02], Perelman observes that any compact Ricci soliton is a gradient Ricci soliton. Most notably, the study of Ricci solitons was imperative in Perelman’s proof of the Poincaré Conjecture. The study of Ricci solitons has continued to prove a bountiful source of information and is still a very large area of research. It is reasonable to hope that the study of gradient solitons for other flows (specifically the Bach flow and ambient obstruction flow) would prove similarly fruitful in the understanding of the behavior of the flows and consequently the behaviors of the tensors themselves.

3. Results for General Tensor

In this section, we prove a number of statements for a general trace free and/or divergence free tensor qq. Applications of the theorem to the ambient obstruction tensor will follow in subsequent corollaries. For the sake of simplicity, full proofs of these corollaries have been omitted, but appropriate connections will be made.

Recall from Section 2 that the ambient obstruction tensor, 𝒪n\mathcal{O}_{n} nn even, is trace free and divergence-free. However, the reader should note that the tensor affiliated with the general flow (4) does not possess all of these properties.

One fact that proves useful in examining gradient solitons is the following proposition.

Proposition 3.1.

Let qq be a symmetric two tensor and (M,g,f)(M,g,f) a gradient qq-soliton (3). The potential function, ff, has the property that

Ric(f)=divQ12(trQ)\operatorname{Ric}({\nabla f})=\mathrm{div}{Q}-\frac{1}{2}\nabla(\operatorname{tr}{Q})

where QQ is the dual (1,1)-tensor of qq with respect to gg.

Proof.

Consider a gradient soliton of the qq-flow, given by

Hessf=cgij+12qij\operatorname{Hess}{f}=cg_{ij}+\frac{1}{2}q_{ij}

Type changing into (1,1) tensor

f=cI+12Q\nabla\nabla f=cI+\frac{1}{2}Q

If we simply take the trace of each of the terms, we see that then Δf=cn+12trQ\Delta f=cn+\frac{1}{2}\operatorname{tr}{Q}.

Taking the divergence of each term in our soliton equation we see that:

divQ\displaystyle\mathrm{div}Q =div(f)\displaystyle=\mathrm{div}(\nabla\nabla f)
=Ric(f)+(Δf)\displaystyle=\operatorname{Ric}({\nabla f})+\nabla(\Delta f)
=Ric(f)+(cn+12trQ)\displaystyle=\operatorname{Ric}({\nabla f})+\nabla(cn+\frac{1}{2}\operatorname{tr}{Q})
=Ric(f)+12(trQ)\displaystyle=\operatorname{Ric}({\nabla f})+\frac{1}{2}\nabla(\operatorname{tr}{Q})

Thus:

Ric(f)=divQ12(trQ)\operatorname{Ric}({\nabla f})=\mathrm{div}{Q}-\frac{1}{2}\nabla(\operatorname{tr}{Q})

This theorem can be used to generalize [Ho18, Theorem 3.4] as follows.

Corollary 3.2.

For any constant trace, divergence free tensor qq, the gradient solitons of its flow has that property that Ric(f)=0\operatorname{Ric}(\nabla f)=0

For the ambient obstruction flow on a non-homogeneous manifold, we see that a gradient soliton is given by:

Hessf=cg+12(𝒪n+an(Δn21S)g)\operatorname{Hess}{f}=cg+\frac{1}{2}\left(\mathcal{O}_{n}+a_{n}\left(\Delta^{\frac{n}{2}-1}S\right)g\right)

where

an=(1)n22n22(n22)!(n2)(n1).a_{n}=\frac{(-1)^{\frac{n}{2}}}{2^{\frac{n}{2}-2}\left(\frac{n}{2}-2\right)!(n-2)(n-1)}.

Note that ana_{n} simply combines constant terms in our original definition to help with notation. Examining this soliton, we get the following corollary.

Corollary 3.3.

A gradient ambient obstruction soliton with potential function ff satisfies Ric(f)=an(1n)(Δn21S)\operatorname{Ric}(\nabla f)=a_{n}(1-n)\;\nabla\left(\Delta^{\frac{n}{2}-1}S\right).

Proof.

Consider a gradient ambient obstruction soliton with potential function ff. Then q=𝒪n+an(Δn21S)gq=\mathcal{O}_{n}+a_{n}\left(\Delta^{\frac{n}{2}-1}S\right)g and consequently

divq\displaystyle\mathrm{div}{q} =and(Δn21S)\displaystyle=a_{n}d\left(\Delta^{\frac{n}{2}-1}S\right)
trq\displaystyle\operatorname{tr}{q} =nan(Δn21S)\displaystyle=na_{n}\left(\Delta^{\frac{n}{2}-1}S\right)
trq\displaystyle\nabla\operatorname{tr}{q} =nan(Δn21S).\displaystyle=na_{n}\nabla\left(\Delta^{\frac{n}{2}-1}S\right).

Using Proposition 3.1:

Ric(f)=an(1n)(Δn21S)\operatorname{Ric}({\nabla f})=a_{n}(1-n)\nabla\left(\Delta^{\frac{n}{2}-1}S\right)

Remark 3.4.

For a gradient ambient obstruction soliton with constant scalar curvature (specifically for homogeneous manifolds) we see that Δn21S=0\Delta^{\frac{n}{2}-1}S=0, so Ric(f)=0\operatorname{Ric}({\nabla f})=0.

The following lemma appears to be well known, but we include the proof for completeness.

Lemma 3.5.

For any symmetric (0,2)-tensor field ψ\psi and vector field ξ\xi:

ξg,ψ=2div(iξψ)2(divψ)ξ\langle\operatorname{\mathcal{L}}_{\xi}g,\psi\rangle=2\mathrm{div}(i_{\xi}\psi)-2(\mathrm{div}\psi)\xi

where iξψi_{\xi}\psi is a 1-form such that iξψ()=ψ(ξ,)i_{\xi}\psi(\cdot)=\psi(\xi,\cdot)

Proof.

Consider a symmetric (0,2)-tensor field ψ\psi and a vector field ξ\xi. For a (0,2)-tensor AA, we know that A(x,y)=g(A(x),y)A(x,y)=g(A(x),y), so:

A,B=ig(A(ei),B(ei))=iA(ei,B(ei))\langle A,B\rangle=\sum_{i}g(A(e_{i}),B(e_{i}))=\sum_{i}A(e_{i},B(e_{i}))

where BB is a (1,1)-tensor.

Consider the Lie derivative as our (0,2)-tensor, and ψ\psi a (1,1)-tensor. First, examining the type change, consider ψ\psi as a (0,2)-tensor:

ψ(X,Y)=g(ψ(X),Y)ψ(X,Ej)=g(ψ(X),Ej)ψ(X)=jg(ψ(X),Ej)Ej\psi(X,Y)=g(\psi(X),Y)\Longrightarrow\psi(X,E_{j})=g(\psi(X),E_{j})\Longrightarrow\psi(X)=\sum_{j}g(\psi(X),E_{j})E_{j}

Next, we know that:

div(ιξψ)=i(Eiιξψ)(Ei)=iEiψ(ξ,Ei)=iEig(ψ(Ei),ξ)\mathrm{div}(\iota_{\xi}\psi)=\sum_{i}(\nabla_{E_{i}}\iota_{\xi}\psi)(E_{i})=\sum_{i}\nabla_{E_{i}}\psi\left(\xi,E_{i}\right)=\sum_{i}\nabla_{E_{i}}g\left(\psi(E_{i}),\xi\right)
(divψ)(ξ)=ig(ξ,Ei(ψ(Ei)))(\mathrm{div}\psi)(\xi)=\sum_{i}g(\xi,\nabla_{E_{i}}(\psi(E_{i})))

Then

ξg,ψ\displaystyle\langle\operatorname{\mathcal{L}}_{\xi}g,\psi\rangle =iξg(Ei,ψ(Ei))\displaystyle=\sum_{i}\operatorname{\mathcal{L}}_{\xi}g(E_{i},\psi(E_{i}))
=ig(Eiξ,ψ(Ei))+ig(Ei,ψ(Ei)ξ)\displaystyle=\sum_{i}g\left(\nabla_{E_{i}}\xi,\psi(E_{i})\right)+\sum_{i}g\left(E_{i},\nabla_{\psi(E_{i})}\xi\right)
=ig(Eiξ,g(ψ(Ei),Ej)Ej)+ig(Ei,g(ψ(Ei),Ej)Ejξ)\displaystyle=\sum_{i}g\left(\nabla_{E_{i}}\xi,g(\psi(E_{i}),E_{j})E_{j}\right)+\sum_{i}g\left(E_{i},\nabla_{g(\psi(E_{i}),E_{j})E_{j}}\xi\right)
=ig(ψ(Ei),Ej)g(Eiξ,Ej)+ig(ψ(Ei),Ej)g(Ei,Ejξ)\displaystyle=\sum_{i}g(\psi(E_{i}),E_{j})g(\nabla_{E_{i}}\xi,E_{j})+\sum_{i}g(\psi(E_{i}),E_{j})g(E_{i},\nabla_{E_{j}}\xi)
=2g(ψ(Ei),Ej)g(Eiξ,Ej)\displaystyle=2g(\psi(E_{i}),E_{j})g(\nabla_{E_{i}}\xi,E_{j})
=2(g(Eiξ,ψ(Ei))\displaystyle=2(g(\nabla_{E_{i}}\xi,\psi(E_{i}))
=2[Eig(ξ,ψ(Ei))g(X,Ei(ψ(Ei)))]\displaystyle=2\left[\nabla_{E_{i}}g(\xi,\psi(E_{i}))-g(X,\nabla_{E_{i}}(\psi(E_{i})))\right]
=2divιξψ2(divψ)(ξ)\displaystyle=2\mathrm{div}\iota_{\xi}\psi-2(\mathrm{div}\psi)(\xi)

Thus, the identity holds. ∎

We use this fact to prove the following lemma for compact solitons of a general qq-flow.

Lemma 3.6.

Let (M,g,X)(M,g,X) be an nn-dimensional compact soliton to the qq-flow, (2). Then:

  1. a.

    MXg2dvolg=2Mdiv(q)(X)dvolg{\int_{M}||\operatorname{\mathcal{L}}_{X}g||^{2}\;\text{d}vol_{g}=-2\int_{M}\mathrm{div}(q)(X)\;\text{d}vol_{g}}.

  2. b.

    If qq is divergence free, then XX is Killing.

  3. c.

    If qq is divergence free and trace free, then (M,gij)(M,g_{ij}) must be qq-flat.

Proof.
  1. a.

    Consider the gradient qq-soliton, 12Xg=cg+12q\frac{1}{2}\operatorname{\mathcal{L}}_{X}g=cg+\frac{1}{2}q. We know that for any vector field ξ\xi on MM

    ξg,ψ=2div(iξψ)2(divψ)(ξ)\langle\operatorname{\mathcal{L}}_{\xi}g,\psi\rangle=2\mathrm{div}(i_{\xi}\psi)-2(\mathrm{div}\psi)(\xi)

    where iξψ()=ψ(ξ,)i_{\xi}\psi(\cdot)=\psi(\xi,\cdot).

    Note that the soliton can be written as q=X2cgq=\operatorname{\mathcal{L}}_{X}-2cg. Examining the divergence of this equation:

    divqij=div(Xg)2cdiv(gij)=div(Xg)\mathrm{div}q_{ij}=\mathrm{div}(\operatorname{\mathcal{L}}_{X}g)-2c\mathrm{div}(g_{ij})=\mathrm{div}(\operatorname{\mathcal{L}}_{X}g)

    Using Lemma 3.5, we see that letting ψ=Xg\psi=\operatorname{\mathcal{L}}_{X}g and ξ=X\xi=X:

    Xg,Xg=Xg2=2div(iXxg)2div(Xg)(X)=2div(iXxg)2div(q)(X)\langle\operatorname{\mathcal{L}}_{X}g,\operatorname{\mathcal{L}}_{X}g\rangle=||\operatorname{\mathcal{L}}_{X}g||^{2}=2\mathrm{div}(i_{X}\operatorname{\mathcal{L}}_{x}g)-2\mathrm{div}(\operatorname{\mathcal{L}}_{X}g)(X)=2\mathrm{div}(i_{X}\operatorname{\mathcal{L}}_{x}g)-2\mathrm{div}(q)(X)

    Integrating over MM we see that since MM is compact and has no boundary:

    M||Xg||2dvolg=2Mdiv(iXxg)dvolg2Mdiv(q)(X)dvolg=2Mdiv(q)(X))dvolg\int_{M}||\operatorname{\mathcal{L}}_{X}g||^{2}\;\text{d}vol_{g}=2\int_{M}\mathrm{div}(i_{X}\operatorname{\mathcal{L}}_{x}g)\;\text{d}vol_{g}-2\int_{M}\mathrm{div}(q)(X)\;\text{d}vol_{g}=-2\int_{M}\mathrm{div}(q)(X))\;\text{d}vol_{g}
  2. b.

    If qq is divergence free part (a) shows that MXg2dvolg=0\int_{M}||\operatorname{\mathcal{L}}_{X}g||^{2}\;\text{d}vol_{g}=0. Thus, Xg=0\operatorname{\mathcal{L}}_{X}g=0 and consequently XX is Killing.

  3. c.

    Suppose that qq is divergence free and trace free. From (b), this means that qij=cgijq_{ij}=cg_{ij}. Taking the trace of both sides we see that 0=nc0=nc and thus c=0c=0. Thus qij=0q_{ij}=0 and subsequently (M,gij)(M,g_{ij}) is qq-flat.

Corollary 3.7.

Let (M,g,X)(M,g,X) be an nn-dimensional compact soliton to the ambient obstruction flow with constant scalar curvature. Then MXg2dvolg=0\int_{M}||\operatorname{\mathcal{L}}_{X}g||^{2}\;\text{d}vol_{g}=0, XX is Killing, and MM is 𝒪\mathcal{O}-flat.

Proof.

Since MM has constant scalar curvature we know that the flow is given by (5). Thus, we consider q=𝒪nq=\mathcal{O}_{n}. Since 𝒪\mathcal{O} is divergence free and trace free, the conclusion follows directly from Lemma 3.6

In particular, Corollary 3.7 shows that any homogeneous compact ambient obstruction soliton is 𝒪\mathcal{O}-flat. In the non-homogeneous gradient case we have the following inequality.

Theorem 3.8.

For any compact gradient ambient obstruction soliton (M,g,f)(M,g,f)

MRic(f,f)dvolg0,\int_{M}\operatorname{Ric}(\nabla f,\nabla f)\;\text{d}vol_{g}\geq 0,

where the integral is zero if and only if ff is constant.

Proof.

Consider an nn-dimensional compact gradient ambient obstruction soliton, (M,g,f)(M,g,f). Applying Lemma 3.6, let q=𝒪q=\mathcal{O} and let X=fX=\nabla f. From Corollary 3.3:

divQ=an(Δn21S)=an1n(1n)(Δn21S)=11nRic(f).\mathrm{div}{Q}=a_{n}\nabla\left(\Delta^{\frac{n}{2}-1}S\right)=\frac{a_{n}}{1-n}(1-n)\nabla\left(\Delta^{\frac{n}{2}-1}S\right)=\frac{1}{1-n}\operatorname{Ric}({\nabla f}).

By Lemma 3.6:

0M||fg||2dvolg=2Mdiv(q)(f))dvolg=2n1MRic(f,f)dvolg.0\leq\int_{M}||\operatorname{\mathcal{L}}_{\nabla{f}}g||^{2}\;\text{d}vol_{g}=-2\int_{M}\mathrm{div}(q)(\nabla{f}))\;\text{d}vol_{g}=\frac{2}{n-1}\int_{M}\operatorname{Ric}\left(\nabla{f},\nabla{f}\right)\;\text{d}vol_{g}.

Thus MRic(f,f)dvolg0\int_{M}\operatorname{Ric}(\nabla f,\nabla f)\;\text{d}vol_{g}\geq 0.

Suppose MRic(f,f)dvolg=0\int_{M}\operatorname{Ric}(\nabla f,\nabla f)\;\text{d}vol_{g}=0.

Since

Mfg2dvolg=2n1MRic(f,f)dvolg,\int_{M}||\operatorname{\mathcal{L}}_{\nabla{f}}g||^{2}\;\text{d}vol_{g}=\frac{2}{n-1}\int_{M}\operatorname{Ric}\left(\nabla{f},\nabla{f}\right)\;\text{d}vol_{g},

if the right hand side is zero then f(g)=0\operatorname{\mathcal{L}}_{\nabla f}(g)=0 and consequently Hessf=0\operatorname{Hess}f=0. Since MM is compact this implies that ff is constant. If ff is constant f=0\nabla f=0 then clearly Ric(f)=0\operatorname{Ric}(\nabla f)=0. Therefore, the integral is zero if and only if ff is constant ∎

Remark 3.9.

Note that a soliton is defined to be stationary if ff is constant. Thus Theorem 3.8 implies Theorem 1.3.

We note that in general, stationary gradient ambient obstruction solitons are characterized by the following proposition.

Proposition 3.10.

If (M,g,f)(M,g,f) is a stationary gradient ambient obstruction soliton, then (M,g)(M,g) is 𝒪\mathcal{O}-flat. If (M,g)(M,g) is also compact then SS is constant.

Proof.

Consider a stationary gradient ambient obstruction soliton, (M,g,f)(M,g,f). Since the soliton is stationary, ff is constant. Consequently Hessf=0\operatorname{Hess}f=0 and thus q=2cgq=-2cg. Since q=𝒪n+an(Δn21S)q=\mathcal{O}_{n}+a_{n}\left(\Delta^{\frac{n}{2}-1}S\right),

𝒪n=(an(Δn21S)2c)g.\mathcal{O}_{n}=\left(-a_{n}\left(\Delta^{\frac{n}{2}-1}S\right)-2c\right)g.

Taking the trace of both sides:

0=n(an(Δn21S)2c)0=n\left(-a_{n}\left(\Delta^{\frac{n}{2}-1}S\right)-2c\right)

Thus

0=an(Δn21S)2c0=-a_{n}\left(\Delta^{\frac{n}{2}-1}S\right)-2c

This forces 𝒪n=0\mathcal{O}_{n}=0, so that soliton is 𝒪\mathcal{O}-flat. Furthermore:

Δn21S=2can\Delta^{\frac{n}{2}-1}S=\frac{2c}{a_{n}}

is constant. If MM is compact, this implies that SS is constant. ∎

Remark 3.11.

The converse of Proposition 3.10 is true in the compact case. That is, a compact gradient ambient obstruction soliton that is 𝒪\mathcal{O}-flat and has constant scalar curvature is stationary. Constant scalar curvature and 𝒪\mathcal{O}-flat imply that Hessf=cg\operatorname{Hess}f=cg. Compactness forces the manifold to have a maximum and minimum so Hessf=0\operatorname{Hess}f=0. Appealing once more to compactness, this forces ff to be constant and our soliton to be stationary.

Though the following lemma is not necessary when studying ambient obstruction solitons (this was taken care of in Corollary 3.7), it does give another criteria for when a qq-soliton is stationary.

Proposition 3.12.

For a trace free tensor qq, any compact gradient soliton to the qq-flow must be qq-flat.

Proof.

Generalizing from [Ho18], consider a gradient qq-soliton (3). By assumption tr(q)=0\operatorname{tr}(q)=0, so taking the trace of both sides yields Δf=cn\Delta f=cn. Integrating over MM:

0=McnΔfdvolg=cnVol(M,g)0=\int_{M}cn-\Delta f\;\text{d}vol_{g}=cn\;Vol(M,g)

Thus c=0c=0. Further, Δf=0n+0\Delta f=0n+0 so Δf=0\Delta f=0, that is, ff is harmonic. Since MM is compact, ff must be constant.

Therefore qij=2Hessf2cgij=0q_{ij}=2\operatorname{Hess}{f}-2cg_{ij}=0, so any compact gradient soliton is qq-flat. ∎

Proceeding, we will show that for a general tensor qq with certain scaling properties that a gradient qq-soliton is a self similar solution to the qq-flow. This observation appears to be made first by Lauret [Lau16]. To do so we will follow the proof from [CLN06, Chapter 4] which shows that gradient Ricci solitons are self-similar solutions to the Ricci flow. Following our proof, we will apply the theorem to the ambient obstruction flow in both the homogeneous and non-homogeneous cases. In [Lau19] and [Lau16], Lauret shows that the following theorem is true for general, non-gradient solitons and can be made into an if and only if statement. I have chosen to focus on the case of gradient solitons. Our goal in including the following proof is to motivate our choice to modify the equation for a soliton by including a factor of 12\frac{1}{2} and to show a more explicit proof of this theorem.

Theorem 3.13.

Consider any tensor qq with the property that when the metric is scaled by a constant λ\lambda\in\mathbb{R}:

g~=λgq~=λw2q.\tilde{g}=\lambda g\quad\Longrightarrow\quad\tilde{q}=\lambda^{\frac{w}{2}}q.

Consider a complete gradient qq soliton (Mn,h,f0,c)(M^{n},h,f_{0},c), that is:

Hesshf0=ch+12q(h).\operatorname{Hess}_{h}f_{0}=ch+\frac{1}{2}q(h).

There exists an ε>0\varepsilon>0 such that for all t(ε,ε)t\in(-\varepsilon,\varepsilon) there is a solution gtg_{t} of the qq flow with g0=hg_{0}=h, diffeomorphisms φt\varphi_{t} with φ0=𝟙Mn\varphi_{0}=\mathbbm{1}_{M^{n}}, and functions f(t)=ftf(t)=f_{t} with f(0)=f0f(0)=f_{0}, such that:

  1. (1)

    τ\tau is scales the metric according to the function:

    τt:={e12ctw=2(12c(1w2)t)11w2w2,\tau_{t}:=\begin{cases}e^{1-2ct}&w=2\\ \left(1-2c\left(1-\frac{w}{2}\right)t\right)^{\frac{1}{1-\frac{w}{2}}}&w\neq 2,\end{cases}
  2. (2)

    The vector field Xt:=τtw21hf0X_{t}:=\tau_{t}^{\frac{w}{2}-1}\nabla_{h}f_{0} exists,

  3. (3)

    φt:MnMn\varphi_{t}:M^{n}\to M^{n} is the 1-parameter family of diffeomorphisms generated by XtX_{t}. So:

    tφt(x)=τtw21(hf0)(φt(x)),\frac{\partial}{\partial t}\varphi_{t}(x)=\tau_{t}^{\frac{w}{2}-1}\left(\nabla_{h}f_{0}\right)(\varphi_{t}(x)),
  4. (4)

    gtg_{t} is the pull back by φt\varphi_{t} of hh up to the scale factor τt\tau_{t}:

    gt=τtφth,g_{t}=\tau_{t}\varphi_{t}^{*}h,
  5. (5)

    ftf_{t} is the pull back by φt\varphi_{t} of f0f_{0}:

    ft=f0φt=φt(f0).f_{t}=f_{0}\circ\varphi_{t}=\varphi_{t}^{*}(f_{0}).

Moreover

Hessgtft=cτtgt+12(q(gt))\operatorname{Hess}_{g_{t}}f_{t}=\frac{c}{\tau_{t}}g_{t}+\frac{1}{2}(q(g_{t}))

or equivalently

q(gt)=2cτtgt+2Hessgtftq(g_{t})=-\frac{2c}{\tau_{t}}g_{t}+2\operatorname{Hess}_{g_{t}}f_{t}

and

ft(t)=τw2|gtft|gt2.\frac{\partial f}{\partial t}(t)=\tau^{\frac{w}{2}}\left|\nabla_{g_{t}}f_{t}\right|_{g_{t}}^{2}.
Proof.

Construct a 1-parameter family of diffeomorphisms φt:MnMn\varphi_{t}:M^{n}\to M^{n} generated by vector field Xt=τw21hf0X_{t}=\tau^{\frac{w}{2}-1}\nabla_{h}f_{0} defined for all tt such that t(ε,ε)t\in(-\varepsilon,\varepsilon). Define ft=f0φtf_{t}=f_{0}\circ\varphi_{t} and gt=τtφthg_{t}=\tau_{t}\varphi_{t}^{*}h.

t|t=t0gt=t|t=t0(τtφth)=(tτt)φt0h+τt0t|t=t0φth\left.\frac{\partial}{\partial t}\right|_{t=t_{0}}g_{t}=\left.\frac{\partial}{\partial t}\right|_{t=t_{0}}(\tau_{t}\varphi_{t}^{*}h)=\left(\frac{\partial}{\partial t}\tau_{t}\right)\varphi_{t_{0}}^{*}h+\tau_{t_{0}}\frac{\partial}{\partial t}\big{|}_{t=t_{0}}\varphi_{t}^{*}h

Using Remark 1.24 from [CLN06] we are able to assess the derivative of the pullback:

τt0t|t=t0φth=τt0Y(t)(φt0h)=Y(t)(τt0φt0h)\tau_{t_{0}}\left.\frac{\partial}{\partial t}\right|_{t=t_{0}}\varphi_{t}^{*}h=\tau_{t_{0}}\operatorname{\mathcal{L}}_{Y(t)}\left(\varphi_{t_{0}}^{*}h\right)=\operatorname{\mathcal{L}}_{Y(t)}\left(\tau_{t_{0}}\varphi_{t_{0}}^{*}h\right)

where

Y(t):=t|t=t0(φt01φt)=(φt01)t|t=t0φt.Y(t):=\left.\frac{\partial}{\partial t}\right|_{t=t_{0}}\left(\varphi_{t_{0}}^{-1}\circ\varphi_{t}\right)=(\varphi_{t_{0}}^{-1})_{*}\left.\frac{\partial}{\partial t}\right|_{t=t_{0}}\varphi_{t}.

Note that for g^=λg\hat{g}=\lambda g:

g(gf,X)=df(X)=g~(g^f,X)=λg(g^f,X).g(\nabla_{g}f,X)=df(X)=\tilde{g}(\nabla_{\hat{g}}f,X)=\lambda g(\nabla_{\hat{g}}f,X).

So 1λgf=g^f\frac{1}{\lambda}\nabla_{g}f=\nabla_{\hat{g}}f. Therefore:

gt0ft0=τt0φt0hft0=1τt0φt0hft0=1τt0φt0hφt0f0=1τt0φt0(hf0)=φt0(1τt0hf0).\nabla_{g_{t_{0}}}f_{t_{0}}=\nabla_{\tau_{t_{0}}\varphi_{t_{0}}^{*}h}f_{t_{0}}=\frac{1}{\tau_{t_{0}}}\nabla_{\varphi_{t_{0}}^{*}h}f_{t_{0}}=\frac{1}{\tau_{t_{0}}}\nabla_{\varphi_{t_{0}}^{*}h}\varphi_{t_{0}}^{*}f_{0}=\frac{1}{\tau_{t_{0}}}\varphi_{t_{0}}^{*}(\nabla_{h}f_{0})=\varphi_{t_{0}}^{*}\left(\frac{1}{\tau_{t_{0}}}\nabla_{h}f_{0}\right).

Thus

t|t=t0φt=τt0w21hf0=τt0w2(1τt0hf0)=τt0w2((φt0)(gt0ft0)).\left.\frac{\partial}{\partial t}\right|_{t=t_{0}}\varphi_{t}=\tau_{t_{0}}^{\frac{w}{2}-1}\nabla_{h}f_{0}=\tau_{t_{0}}^{\frac{w}{2}}\left(\frac{1}{\tau_{t_{0}}}\nabla_{h}f_{0}\right)=\tau_{t_{0}}^{\frac{w}{2}}\left((\varphi_{t_{0}})_{*}\left(\nabla_{g_{t_{0}}}f_{t_{0}}\right)\right).

Using this, we are able to evaluate the desired derivative and find one term of our initial sum:

τt0t|t=t0φth=τt0Y(t)(φt0h)=τt0w2gt0ft0(τt0φt0h)=τt0w2gt0ft0gt0\tau_{t_{0}}\left.\frac{\partial}{\partial t}\right|_{t=t_{0}}\varphi_{t}^{*}h=\tau_{t_{0}}\operatorname{\mathcal{L}}_{Y(t)}\left(\varphi_{t_{0}}^{*}h\right)=\operatorname{\mathcal{L}}_{\tau_{t_{0}}^{\frac{w}{2}}\nabla_{g_{t_{0}}}f_{t_{0}}}\left(\tau_{t_{0}}\varphi_{t_{0}}^{*}h\right)=\tau_{t_{0}}^{\frac{w}{2}}\operatorname{\mathcal{L}}_{\nabla_{g_{t_{0}}}f_{t_{0}}}g_{t_{0}}

To evaluate the derivative of τ\tau we must consider each case.

Case 1.

For w=2w=2 define τt=e12ct\tau_{t}=e^{1-2ct}. Then:

(tτt)φt0h\displaystyle\left(\frac{\partial}{\partial t}\tau_{t}\right)\varphi_{t_{0}}^{*}h =2cτφt0h\displaystyle=-2c\tau\varphi_{t_{0}}^{*}h
=2cg(t0)\displaystyle=-2cg(t_{0})
Case 2.

For w2w\neq 2 define τt=(12c(1w2)t)11w2\tau_{t}=\left(1-2c\left(1-\frac{w}{2}\right)t\right)^{\frac{1}{1-\frac{w}{2}}}. We can compute the following:

(tτt)φt0h\displaystyle\left(\frac{\partial}{\partial t}\tau_{t}\right)\varphi_{t_{0}}^{*}h =11w2(12c(1w2)t0)11w21(2c(1w2))(φt0h)\displaystyle=\frac{1}{1-\frac{w}{2}}\left(1-2c\left(1-\frac{w}{2}\right)t_{0}\right)^{\frac{1}{1-\frac{w}{2}}-1}\left(-2c\left(1-\frac{w}{2}\right)\right)\left(\varphi_{t_{0}}^{*}h\right)
=2c(12c(1w2)t0)w/21w2(φt0h)\displaystyle=-2c\left(1-2c\left(1-\frac{w}{2}\right)t_{0}\right)^{\frac{w/2}{1-\frac{w}{2}}}\left(\varphi_{t_{0}}^{*}h\right)
=2cτt0w2(τt0φt0hτt0)\displaystyle=-2c\tau_{t_{0}}^{\frac{w}{2}}\left(\frac{\tau_{t_{0}}\varphi_{t_{0}}^{*}h}{\tau_{t_{0}}}\right)
=2cτt0w21g(t0)\displaystyle=-2c\tau_{t_{0}}^{\frac{w}{2}-1}g(t_{0})

Thus we see that for any ww,

(tτt)φt0h=2cτt0w21g(t0)\left(\frac{\partial}{\partial t}\tau_{t}\right)\varphi_{t_{0}}^{*}h=-2c\tau_{t_{0}}^{\frac{w}{2}-1}g(t_{0})

Returning to our original derivative, we see that for general tt:

tgt=\displaystyle\frac{\partial}{\partial t}g_{t}= 2cτt0w21gt+τt0w2gtftg(t)\displaystyle-2c\tau_{t_{0}}^{\frac{w}{2}-1}g_{t}+\tau_{t_{0}}^{\frac{w}{2}}\operatorname{\mathcal{L}}_{\nabla_{g_{t}}f_{t}}g(t)
=\displaystyle= τt0w2(2cτtg(t)+2gtgtft)\displaystyle\tau_{t_{0}}^{\frac{w}{2}}\left(\frac{-2c}{\tau_{t}}g(t)+2\nabla^{g_{t}}\nabla^{g_{t}}f_{t}\right)

Applying [CLN06] Exercise 1.23 to qq we see:

q(gt)\displaystyle q(g_{t}) =q(τtφth)\displaystyle=q(\tau_{t}\varphi_{t}^{*}h)
=τtw2φt(q(h))\displaystyle=\tau_{t}^{\frac{w}{2}}\varphi_{t}^{*}(q(h))
=τtw2φt(2ch+2Hesshf0)\displaystyle=\tau_{t}^{\frac{w}{2}}\varphi_{t}^{*}\left(-2ch+2\operatorname{Hess}_{h}f_{0}\right)
=τtw2φt(2ch+hf0h)\displaystyle=\tau_{t}^{\frac{w}{2}}\varphi_{t}^{*}\left(-2ch+\operatorname{\mathcal{L}}_{\nabla_{h}f_{0}}h\right)
=τtw2(2cτtgt+gtftg(t))\displaystyle=\tau_{t}^{\frac{w}{2}}\left(\frac{-2c}{\tau_{t}}g_{t}+\operatorname{\mathcal{L}}_{\nabla_{g_{t}}f_{t}}g(t)\right)
=τtw2(2cτtgt+2Hessgtft)\displaystyle=\tau_{t}^{\frac{w}{2}}\left(\frac{-2c}{\tau_{t}}g_{t}+2\operatorname{Hess}_{g_{t}}f_{t}\right)
=tgt\displaystyle=\frac{\partial}{\partial t}g_{t}

Hence, there exists a solution gtg_{t} to the flow with the desired properties.

Looking at the derivative of the potential function we see that:

ft(x)t\displaystyle\frac{\partial f_{t}(x)}{\partial t} =tf0(φt(x))\displaystyle=\frac{\partial}{\partial t}f_{0}(\varphi_{t}(x))
=limη0f0(φt+η(x))f0(φt(x))η\displaystyle=\lim_{\eta\to 0}\frac{f_{0}(\varphi_{t+\eta}(x))-f_{0}(\varphi_{t}(x))}{\eta}
=h(hf0,tφt)\displaystyle=h\left(\nabla_{h}f_{0},\;\frac{\partial}{\partial t}\varphi_{t}\right)
=h(hf0,τw21hf0(φt(x)))\displaystyle=h\left(\nabla_{h}f_{0},\;\tau^{\frac{w}{2}-1}\nabla_{h}f_{0}(\varphi_{t}(x))\right)
=τw21h(hft,hft(x))\displaystyle=\tau^{\frac{w}{2}-1}h\left(\nabla_{h}f_{t},\nabla_{h}f_{t}(x)\right)
=τw211τgt(τgtft,τgtft(x))\displaystyle=\tau^{\frac{w}{2}-1}\;\frac{1}{\tau}g_{t}\left(\tau\nabla_{g_{t}}f_{t},\;\tau\nabla_{g_{t}}f_{t}(x)\right)
=τw2|gtft|gt2\displaystyle=\tau^{\frac{w}{2}}\left|\nabla_{g_{t}}f_{t}\right|_{g_{t}}^{2}

Remark 3.14.

If the vector field Xt=τtw21hf0X_{t}=\tau_{t}^{\frac{w}{2}-1}\nabla_{h}f_{0} is complete then the flow exists for all tt such that τt>0\tau_{t}>0.

Remark 3.15.

One such tensor qq with the necessary weighting property is a conformally invariant tensor of weight ww. That is, a tensor TT such that for g~=ρ2g\tilde{g}=\rho^{2}g, then T~=ρwT\tilde{T}=\rho^{w}T for a smooth positive function ρ\rho.

Corollary 3.16.

The gradient solitons of the ambient obstruction flow are self similar solutions to the ambient obstruction flow.

Proof.

Consider the tensor provided by the ambient obstruction flow:

𝒪n+cn(1)n2(Δn21S)g.\mathcal{O}_{n}+c_{n}(-1)^{\frac{n}{2}}\left(\Delta^{\frac{n}{2}-1}S\right)g.

We know that the ambient obstruction tensor is of conformal weight 2n2-n, and is consequently a tensor qq described by Theorem 3.13. In the homogeneous case, or more generally the constant scalar curvature case, we are able to directly apply the theorem.

To examine the non-homogeneous case we must also investigate the scaling properties of the scalar curvature term. A simple calculation shows that for g~=λ2g\tilde{g}=\lambda^{2}g:

Δ~S~g~=1λ2ΔSg.\tilde{\Delta}\tilde{S}\tilde{g}=\frac{1}{\lambda^{2}}\Delta Sg.

Using induction one can show that this generalizes to:

Δ~kS~g~=1λ2kΔkSg\tilde{\Delta}^{k}\tilde{S}\tilde{g}=\frac{1}{\lambda^{2k}}\Delta^{k}Sg

Thus for k=n21k=\frac{n}{2}-1

Δ~n21S~g~=1λn2ΔkSg=λ2nΔkSg.\tilde{\Delta}^{\frac{n}{2}-1}\tilde{S}\tilde{g}=\frac{1}{\lambda^{n-2}}\Delta^{k}Sg=\lambda^{2-n}\Delta^{k}Sg.

That is, the scalar curvature term is scaled by a factor of 2n2-n and consequently has the same scaling properties as the ambient obstruction tensor.

Applying Theorem 3.13 with w=2nw=2-n, we see that this implies that with the appropriate choice of τ\tau and φ\varphi a gradient ambient obstruction soliton is a self-similar solution to the ambient obstruction flow. ∎

As Lauret shows, Corollary 3.16 is also true for non-gradient solitons. Turning our attention to noncompact, homogeneous solitons we consider recent theorem of Petersen and Wylie [PW20]. This theorem is a key part of understanding homogeneous gradient Bach solitons as we see in Section 4.

Theorem 3.17 (Petersen-Wylie).

Let (M,g)(M,g) be a homogeneous manifold and q^\hat{q} an isometry invariant symmetric two-tensor which is divergence free. If there is a non-constant function such that Hessf=q^\mathrm{Hess}f=\hat{q} then (M,g)(M,g) is a product metric N×kN\times\mathbb{R}^{k} and ff is a function on the Euclidean factor.

For a divergence free tensor qq, we apply this theorem to homogeneous gradient qq solitons by simply letting q^=cg+12q\hat{q}=cg+\frac{1}{2}q. Then q^\hat{q} is the sum of isometry invariant symmetric two-tensors that are divergence free and is itself such a tensor. Applying this theorem to homogeneous manifolds, we are able limit the ambient obstruction flow to the flow given by (5). Since 𝒪\mathcal{O} is a divergence free, isometry invariant, symmetric two-tensor, we can let q=𝒪nq=\mathcal{O}_{n} resulting in the following corollary.

Corollary 3.18.

If (M,g)(M,g) is a homogeneous gradient ambient obstruction soliton, then either MM is stationary or it splits as a product k×N\mathbb{R}^{k}\times N and ff is a function on the Euclidean factor.

This theorem informs our approach to classifying homogeneous gradient Bach solitons in the next section.

4. Gradient Bach Solitons

In order to examine and classify the gradient solitons of the Bach flow on homogeneous 4-manifolds, we consider the four configurations of homogeneous 4-manifolds that are found by “pulling off copies of \mathbb{R}”. More explicitly, by Theorem 3.17, the solitons will be of the form 4\mathbb{R}^{4}, 3×N1\mathbb{R}^{3}\times N^{1}, 2×N2\mathbb{R}^{2}\times N^{2}, ×N3\mathbb{R}\times N^{3}, or N4N^{4} (where NkN^{k} is necessarily homogeneous). The first and last case we will call non-split manifolds, the others may be called the 3×13\times 1, 2×22\times 2, and 1×31\times 3 cases respectively. For each of these cases (and for the remainder of the paper) it will be assumed that the product manifolds are equipped with the appropriate product metric g=g0×gNg=g_{0}\times g_{N}. Table 1 summarizes our findings regarding each type and thus proves the general theorem stated in the introduction. Prior to doing so, we set up the conventions used throughout this section.

From (3) we know that for homogeneous manifolds the equation for a gradient Bach soliton is given by:

Hessf=cg+12B\operatorname{Hess}f=cg+\frac{1}{2}B

and can be represented in coordinates as:

ijf=cgij+12Bij.\nabla_{i}\nabla_{j}f=cg_{ij}+\frac{1}{2}B_{ij}.

In order to make the following proofs more clear, we will consider how the above equation can be given by matrices. In order to do this we will establish conventions that will hold for the remainder of the section unless otherwise noted. We will always choose a basis so both the metric and the Bach tensor are diagonal. (This is always possible, per the spectral theorem.) Since the metric and the Bach tensor are diagonal, Hessf\operatorname{Hess}f must also be diagonal so ijf=0\nabla_{i}\nabla_{j}f=0 for iji\neq j. One very important statement in Theorem 3.17 is that the potential function depends on only the Euclidean factor of the product manifold. Let iif=fii\nabla_{i}\nabla_{i}f=f_{ii}. Thus, in general we see that the gradient Bach solitons can be represented by the following equality:

[f000000f110000f220000f33]=c[g000000g110000g220000g33]+12[B000000B110000B220000B33].\begin{bmatrix}f_{00}&0&0&0\\ 0&f_{11}&0&0\\ 0&0&f_{22}&0\\ 0&0&0&f_{33}\end{bmatrix}=c\begin{bmatrix}g_{00}&0&0&0\\ 0&g_{11}&0&0\\ 0&0&g_{22}&0\\ 0&0&0&g_{33}\end{bmatrix}+\frac{1}{2}\begin{bmatrix}B_{00}&0&0&0\\ 0&B_{11}&0&0\\ 0&0&B_{22}&0\\ 0&0&0&B_{33}\end{bmatrix}.

Recall from the introduction the generalization stated as Theorem 1.4. To prove this theorem we will simply examine each type of manifold and assess the solitons. The following table will summarize this investigation with one notable exception: in the ×N3\mathbb{R}\times N^{3} case we are able to prove that non-Bach-flat gradient solitons must be expanding.

Split Manifold Type of Soliton Permissible Metrics Potential Function
N4N^{4} 4\mathbb{R}^{4} Gaussian Bach flat (any) f(x,y,z,w)=c(x2+y2+z2+w2)+ax+by+dz+hw+kf(x,y,z,w)=c(x^{2}+y^{2}+z^{2}+w^{2})+ax+by+dz+hw+k
N4N^{4} Stationary Bach flat f(x,y,z,w)=kf(x,y,z,w)=k
3×N1\mathbb{R}^{3}\times N^{1} Steady Bach flat (any) f(x,y,z)=ax+by+dz+kf(x,y,z)=ax+by+dz+k
2×N2\mathbb{R}^{2}\times N^{2} 2×2\mathbb{R}^{2}\times\mathbb{R}^{2} Steady Bach flat (any) f(x,y)=ax+by+df(x,y)=ax+by+d
2×S2\mathbb{R}^{2}\times S^{2} Shrinking See [Ho18] f(x,y)=c(x2+y2)+ax+by+dz+kf(x,y)=c(x^{2}+y^{2})+ax+by+dz+k
2×H2\mathbb{R}^{2}\times H^{2} Shrinking See [Ho18] f(x,y)=c(x2+y2)+ax+by+dz+kf(x,y)=c(x^{2}+y^{2})+ax+by+dz+k
×N3\mathbb{R}\times N^{3} ×3\mathbb{R}\times\mathbb{R}^{3} Steady Bach flat (any) f(x)=ax+bf(x)=ax+b
×Nil\mathbb{R}\times Nil None
×Solv\mathbb{R}\times Solv None
×SL^(2,)\mathbb{R}\times\widehat{SL}(2,\mathbb{R}) None
×(×H2)\mathbb{R}\times(\mathbb{R}\times H^{2}) None
×(×S2)\mathbb{R}\times(\mathbb{R}\times S^{2}) None
×E(2)\mathbb{R}\times E(2) Steady Bach flat (g11=g22g_{11}=g_{22}) f(x)=ax+bf(x)=ax+b
×H3\mathbb{R}\times H^{3} Steady Bach flat f(x)=ax+bf(x)=ax+b
×S3\mathbb{R}\times S^{3} Steady Bach flat (g11=g22=g33g_{11}=g_{22}=g_{33}) f(x)=ax+bf(x)=ax+b
Expanding g11=g22=4g33g_{11}=g_{22}=4g_{33} f(x)=2cx2+ax+bf(x)=2cx^{2}+ax+b
Table 1. Summary of Results

4.1. Non-split Manifolds

Theorem 4.1.

(4,g0)(\mathbb{R}^{4},g_{0}) is a Gaussian soliton.

Proof.

We know from the equation for the Bach tensor that (4,g0)(\mathbb{R}^{4},g_{0}) is Bach flat, that is, Bij=0B_{ij}=0 for all i,j=0,1,2,3i,j=0,1,2,3, so Hessf=cg\operatorname{Hess}f=cg. By Theorem 3.17, ff is a function on 4\mathbb{R}^{4}. Thus for any orthonormal basis, 4\mathbb{R}^{4} is a gradient Bach soliton with potential function

f(x,y,z,w)=12c(x2+y2+z2+w2)+ax+by+dz+hw+kf(x,y,z,w)=\frac{1}{2}c(x^{2}+y^{2}+z^{2}+w^{2})+ax+by+dz+hw+k

for a,b,d,h,ka,b,d,h,k\in\mathbb{R}.

Since there are no restrictions on cc, we see that this is the Gaussian soliton. ∎

Proposition 4.2.

Consider a non-split, homogeneous 44-manifold N44N^{4}\neq\mathbb{R}^{4} with metric gNg_{N}. Then N4N^{4} is a gradient Bach soliton if and only if it is Bach flat.

Proof.

Consider a non-split, homogeneous 44-manifold N4N^{4} with metric gNg_{N}. By the converse of Theorem 3.17, since N4N^{4} is not a product manifold, it must have constant potential function and is therefore stationary. Since the potential function is constant, Hessf=0\operatorname{Hess}f=0. Consequently, any soliton has the form 12B=cg-\frac{1}{2}B=cg. Taking the trace of each side we see that

0=12trB=trcg=4c0=-\frac{1}{2}\operatorname{tr}{B}=\operatorname{tr}{cg}=4c

and so it is necessarily true that c=0c=0 and the soliton is steady.

Since c=0c=0 always, B=0B=0 always and thus the manifold must be Bach flat. ∎

4.2. Manifolds of the form 3×N1\mathbb{R}^{3}\times N^{1}

Remark 4.3.

For a manifold of the form 3×N1\mathbb{R}^{3}\times N^{1} with metric g=g0×gNg=g_{0}\times g_{N}, we know that N1=1 or S1N^{1}=\mathbb{R}^{1}\text{ or }S^{1}. Thus any manifold of this form is flat and consequently Bach flat.

Proposition 4.4.

Homogeneous manifolds of the form 3×N1\mathbb{R}^{3}\times N^{1} with metric g=g0×gNg=g_{0}\times g_{N} are steady gradient Bach solitons with linear potential functions.

Proof.

Consider a homogeneous manifold of the form 3×N1\mathbb{R}^{3}\times N^{1} with metric g=g0×gNg=g_{0}\times g_{N}. We know from Remark 4.3 that any manifold of this form is Bach flat. So for any gradient Bach soliton Hessf=cg\operatorname{Hess}f=cg. By Theorem 3.17 we know that f(x,y,z):3f(x,y,z):\mathbb{R}^{3}\to\mathbb{R}. So 33f=0=cg33\nabla_{3}\nabla_{3}f=0=cg_{33}. Since the metric is positive definite, c=0c=0. Therefore, the gradient Bach solitons are steady.

Consequently Hessf=0\operatorname{Hess}f=0, so fxx=fyy=fzz=0f_{xx}=f_{yy}=f_{zz}=0. Thus f(x,y,z)=ax+by+cz+df(x,y,z)=ax+by+cz+d. ∎

4.3. Manifolds of the form 2×N2\mathbb{R}^{2}\times N^{2}

In his 2018 paper, [Ho18], Ho finds homogeneous gradient solitons of the form 2×N2\mathbb{R}^{2}\times N^{2}. Ho proves that both 2×S2\mathbb{R}^{2}\times S^{2} and 2×H2\mathbb{R}^{2}\times H^{2} is a nontrivial soliton of the form:

Hessf=B+112g\operatorname{Hess}f=B+\frac{1}{12}g

for any function ff of the form f(x,y)=112(x2+y2)+kf(x,y)=\frac{1}{12}(x^{2}+y^{2})+k. Note the difference between Ho’s definition of a gradient Bach soliton and that of this paper. Ho has chosen to place the metric term on the right hand side of the equation switching the conventions of shrinking/ expanding. We will prove that Ho’s examples are the only examples of this type.

Theorem 4.5.

If a manifold of the form 2×N2\mathbb{R}^{2}\times N^{2} equipped with product metric g0×gNg_{0}\times g_{N} is a non-Bach-flat gradient Bach soliton, then it is a shrinking soliton. Furthermore, the soliton is steady if and only if it is Bach flat.

Proof.

Consider a homogeneous manifold of 2×N2\mathbb{R}^{2}\times N^{2}. Using the following equations from [DK12], [Ho18]

(6) Bμν=13μνSM13gμνM[ααSM12kkSN+14((SM)2(SN))2] in M\displaystyle B_{\mu\nu}=\frac{1}{3}\nabla_{\mu}\nabla_{\nu}S_{M}-\frac{1}{3}g^{M}_{\mu\nu}\left[\nabla_{\alpha}\nabla_{\alpha}S_{M}-\frac{1}{2}\nabla_{k}\nabla_{k}S_{N}+\frac{1}{4}\left(\left(S_{M}\right)^{2}-\left(S_{N}\right)\right)^{2}\right]\text{ in }M
Bij=13ijSN13gijN[kkSN12ααSM+14((SN)2(SM))2] in N\displaystyle B_{ij}=\frac{1}{3}\nabla_{i}\nabla_{j}S_{N}-\frac{1}{3}g^{N}_{ij}\left[\nabla_{k}\nabla_{k}S_{N}-\frac{1}{2}\nabla_{\alpha}\nabla_{\alpha}S_{M}+\frac{1}{4}\left(\left(S_{N}\right)^{2}-\left(S_{M}\right)\right)^{2}\right]\text{ in }N

where M=2M=\mathbb{R}^{2}, N=N2N=N^{2}, SMS_{M} and SNS_{N} are the respective scalar curvatures, and g0g_{0} and gNg_{N} are their respective metrics. Recall that homogeneous 2-manifolds have constant scalar curvature, thus we see that:

B00=112(SN)2g00B11=112(SN)2g11B22=112(SN)2g22B33=112(SN)2g33.B_{00}=\frac{1}{12}(S_{N})^{2}g_{00}\quad B_{11}=\frac{1}{12}(S_{N})^{2}g_{11}\quad B_{22}=-\frac{1}{12}(S_{N})^{2}g_{22}\quad B_{33}=-\frac{1}{12}(S_{N})^{2}g_{33}.

Since 2×N2\mathbb{R}^{2}\times N^{2} is a gradient Bach soliton, the following system must hold.

[fxxg000000fyyg110000000000]=[(124(SN)2+c)g000000(124(SN)2+c)g110000(124(SN)2+c)g220000(124(SN)2+c)g33]\begin{bmatrix}f_{xx}g_{00}&0&0&0\\ 0&f_{yy}g_{11}&0&0\\ 0&0&0&0\\ 0&0&0&0\end{bmatrix}=\begin{bmatrix}\left(\frac{1}{24}(S_{N})^{2}+c\right)g_{00}&0&0&0\\ 0&\left(\frac{1}{24}(S_{N})^{2}+c\right)g_{11}&0&0\\ 0&0&\left(\frac{-1}{24}(S_{N})^{2}+c\right)g_{22}&0\\ 0&0&0&\left(\frac{-1}{24}(S_{N})^{2}+c\right)g_{33}\end{bmatrix}

Thus 0=(124(SN)2+c)gii0=\left(\frac{-1}{24}(S_{N})^{2}+c\right)g_{ii} for i=2,3i=2,3. Since the metric is positive definite, we know that c=124(SN)2c=\frac{1}{24}(S_{N})^{2}. Thus c0c\geq 0 and the soliton must be steady or shrinking.

The soliton is steady if and only if SN=0S_{N}=0 which happens if and only if the manifold is Bach flat.

If the manifold is non-Bach-flat, then c>0c>0 and soliton must be shrinking. ∎

Scaling S2S^{2} and H2H^{2} so that SS2=1=SH2S_{S^{2}}=1=-S_{H^{2}}, we see that c=124c=\frac{1}{24} and the potential function is of the form f(x,y)=124(x+y)2+ax+by+df(x,y)=\frac{1}{24}(x+y)^{2}+ax+by+d. Again, this differs slightly from Ho because of our initial definition of a gradient Bach soliton. This confirms that the gradient solitons found by Ho are in fact the only gradient solitons on 2×S2\mathbb{R}^{2}\times S^{2} and 2×H2\mathbb{R}^{2}\times H^{2} up to scaling.

Corollary 4.6.

The potential function of a steady gradient Bach soliton of the form 2×N2\mathbb{R}^{2}\times N^{2} equipped with product metric g0×gNg_{0}\times g_{N} must be linear.

Proof.

Since 2×N2\mathbb{R}^{2}\times N^{2} must be steady, we know that fxx=fyy=0f_{xx}=f_{yy}=0. Using calculus, it is clear that f(x,y)=ax+by+df(x,y)=ax+by+d. ∎

Corollary 4.7.

The manifold 2×2\mathbb{R}^{2}\times\mathbb{R}^{2} with metric g=g0×gNg=g_{0}\times g_{N}, where gNg_{N} is a flat metric, is a steady gradient Bach soliton with linear potential function.

Proof.

Consider a homogeneous manifold of 2×2\mathbb{R}^{2}\times\mathbb{R}^{2}. Using (6), we know that 2×2\mathbb{R}^{2}\times\mathbb{R}^{2} is Bach flat. By Theorem 4.5 we know that the soliton is steady. By Corollary 4.6 the potential function must be linear. ∎

4.4. Manifolds of the form ×N3\mathbb{R}\times N^{3}

We begin by stating and proving statements that apply to all homogeneous manifolds of the form ×N3\mathbb{R}\times N^{3}, then we will examine specific manifolds of this form.

A few notes before stating the theorem. We will look at a potential function f:f:\mathbb{R}\to\mathbb{R}. Since I use xx in later computations to mean something else, I have chosen to make ff a function of rr\in\mathbb{R}. Furthermore, note that in this potential function cc\in\mathbb{R} is the same cc such that Hessf=cg+12B\operatorname{Hess}f=cg+\frac{1}{2}B. Thus, is we have a steady soliton, the potential function necessarily lacks that term.

Lemma 4.8.

A gradient Bach soliton of the form ×N3\mathbb{R}\times N^{3} with metric g=g0×gNg=g_{0}\times g_{N} has potential function of the form f(r)=2cr2+ar+bf(r)=2cr^{2}+ar+b for a,ba,b\in\mathbb{R}.

Proof.

Since the manifold is a soliton, we know that Hessf=cg+12B\operatorname{Hess}f=cg+\frac{1}{2}B. By Theorem 3.17 that ff is a function on rr\in\mathbb{R} and consequently trHessf=f′′(r)\operatorname{tr}\operatorname{Hess}f=f^{\prime\prime}(r). Since the Bach tensor is trace free:

trHessf=tr(cg)+trBf′′(r)=4c\operatorname{tr}\operatorname{Hess}f=\operatorname{tr}(cg)+\operatorname{tr}B\Longrightarrow f^{\prime\prime}(r)=4c

Using calculus we see that this implies that f(r)=2cr2+ar+bf(r)=2cr^{2}+ar+b for a,ba,b\in\mathbb{R}. ∎

In order to examine specific manifolds, we will need the following theorem. This theorem enables us to use algebra to determine which metrics will produce solitons.

Theorem 4.9.

Consider a manifold of the form ×N3\mathbb{R}\times N^{3} equipped with metric g=g0×gNg=g_{0}\times g_{N}. The manifold is a gradient Bach soliton if and only if

(7) B11g11=B22g22=B33g33=2cfor c\frac{B_{11}}{g_{11}}=\frac{B_{22}}{g_{22}}=\frac{B_{33}}{g_{33}}=-2c\quad\quad\text{for }c\in\mathbb{R}
Proof.

Consider a manifold of the form ×N3\mathbb{R}\times N^{3} equipped with metric g=g0×gNg=g_{0}\times g_{N}. Suppose that this manifold is a gradient Bach soliton. Then:

Hessf=cg+12B\operatorname{Hess}f=cg+\frac{1}{2}B

where f:f:\mathbb{R}\to\mathbb{R}. Examining the components of the flow:

[f′′g00000000000000000]=c[g000000g110000g220000g33]+12[B000000B110000B220000B33].\begin{bmatrix}f^{\prime\prime}g_{00}&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0\end{bmatrix}=c\begin{bmatrix}g_{00}&0&0&0\\ 0&g_{11}&0&0\\ 0&0&g_{22}&0\\ 0&0&0&g_{33}\end{bmatrix}+\frac{1}{2}\begin{bmatrix}B_{00}&0&0&0\\ 0&B_{11}&0&0\\ 0&0&B_{22}&0\\ 0&0&0&B_{33}\end{bmatrix}.

This system yields the following equalities.

f′′g0012B00=cg0012B11=cg1112B22=cg2212B33=cg33f^{\prime\prime}g_{00}-\frac{1}{2}B_{00}=cg_{00}\quad\quad-\frac{1}{2}B_{11}=cg_{11}\quad\quad-\frac{1}{2}B_{22}=cg_{22}\quad\quad-\frac{1}{2}B_{33}=cg_{33}

It follows that:

B11g11=B22g22=B33g33=2cfor c\frac{B_{11}}{g_{11}}=\frac{B_{22}}{g_{22}}=\frac{B_{33}}{g_{33}}=-2c\quad\quad\text{for }c\in\mathbb{R}

Thus the desired equality holds.

Further, Since B00=2cg00+2f′′(r)g00=6cg00B_{00}=-2cg_{00}+2f^{\prime\prime}(r)g_{00}=6cg_{00}, we see that B00g00=6c\frac{B_{00}}{g_{00}}=6c.

Suppose, on the other hand, that

B11g11=B22g22=B33g33=2cfor c\frac{B_{11}}{g_{11}}=\frac{B_{22}}{g_{22}}=\frac{B_{33}}{g_{33}}=-2c\quad\quad\text{for }c\in\mathbb{R}

Then 12B11=cg11-\frac{1}{2}B_{11}=cg_{11}, 12B22=cg22-\frac{1}{2}B_{22}=cg_{22}, and 12B33=cg33-\frac{1}{2}B_{33}=cg_{33}. Taking the trace of the Bach tensor:

trB\displaystyle\operatorname{tr}B =gijBij\displaystyle=g^{ij}B_{ij}
=g00B00+g11B11+g22B22+g33B33\displaystyle=g^{00}B_{00}+g^{11}B_{11}+g^{22}B_{22}+g^{33}B_{33}
=g00B002g11cg112g22cg222g33cg33\displaystyle=g^{00}B_{00}-2g^{11}cg_{11}-2g^{22}cg_{22}-2g^{33}cg_{33}
=g00B006c\displaystyle=g^{00}B_{00}-6c

Since BB is trace free, we see that B00=6cg00B_{00}=6cg_{00}. By Lemma 4.8 f′′(r)=4cf^{\prime\prime}(r)=4c, so:

f′′g0012B00=4cg0012(6cg00)=cg00f^{\prime\prime}g_{00}-\frac{1}{2}B_{00}=4cg_{00}-\frac{1}{2}(6cg_{00})=cg_{00}

Thus, ijf12Bij=cgij\nabla_{i}\nabla_{j}f-\frac{1}{2}B_{ij}=cg_{ij} for all i,j=0,1,2,3i,j=0,1,2,3, so Hessf=cg+12B\operatorname{Hess}f=cg+\frac{1}{2}B. Therefore, ×N3\mathbb{R}\times N^{3} is a gradient Bach soliton. ∎

From this theorem we are able to classify the resulting solitons of the form ×N3\mathbb{R}\times N^{3}. To do so we will need the find components of the Bach tensor using the following equation from [Hel20] and [DK12].

(8) B00=\displaystyle B_{00}= (112(Δ(2)S(2))14[(|Ric|(2))213(S(2))2])g00\displaystyle\left(-\frac{1}{12}(\Delta^{(2)}S^{(2)})-\frac{1}{4}\left[(|\operatorname{Ric}|^{(2)})^{2}-\frac{1}{3}(S^{(2)})^{2}\right]\right)g_{00}
Bjk=\displaystyle B_{jk}= 12Δ(2)Ricjk(2)112Δ(2)S(2)gjk16S;jk(2)2tr(2)(Ric(2)Ric(2))jk\displaystyle\frac{1}{2}\Delta^{(2)}\operatorname{Ric}_{jk}^{(2)}-\frac{1}{12}\Delta^{(2)}S^{(2)}g_{jk}-\frac{1}{6}S_{;jk}^{(2)}-2\operatorname{tr}^{(2)}(\operatorname{Ric}^{(2)}\otimes\operatorname{Ric}^{(2)})_{jk}
+76S(2)Ricjk(2)+34(|Ric|(2))2gjk512(S(2))2gjk\displaystyle\;\;+\frac{7}{6}S^{(2)}\operatorname{Ric}_{jk}^{(2)}+\frac{3}{4}(|\operatorname{Ric}|^{(2)})^{2}g_{jk}-\frac{5}{12}(S^{(2)})^{2}g_{jk}

where M(1)=M^{(1)}=\mathbb{R} and M(2)=N3M^{(2)}=N^{3}.

Corollary 4.10.

If a manifold of the form ×N3\mathbb{R}\times N^{3} equipped with metric g=g0×gNg=g_{0}\times g_{N} is a non-Bach-flat gradient Bach soliton, then it is an expanding soliton. The soliton is steady if and only if it is Bach flat.

Proof.

Consider a manifold of the form ×N3\mathbb{R}\times N^{3} equipped with metric g=g0×gNg=g_{0}\times g_{N}.

From Theorem 4.9 we know that:

B11g11=B22g22=B33g33=2c\frac{B_{11}}{g_{11}}=\frac{B_{22}}{g_{22}}=\frac{B_{33}}{g_{33}}=-2c

Since the Bach tensor is trace free we know that:

B00\displaystyle-B_{00} =B11g11g11+B22g22g22+B33g33g33\displaystyle=\frac{B_{11}}{g_{11}}g_{11}+\frac{B_{22}}{g_{22}}g_{22}+\frac{B_{33}}{g_{33}}g_{33}
=2c(g11+g22+g33)\displaystyle=-2c(g_{11}+g_{22}+g_{33})
B00\displaystyle B_{00} =2c(g11+g22+g33)\displaystyle=2c(g_{11}+g_{22}+g_{33})

Using (8), since SS is constant:

B00=14[(|Ric|(2))213(S(2))2]g00B_{00}=-\frac{1}{4}\left[(|\operatorname{Ric}|^{(2)})^{2}-\frac{1}{3}(S^{(2)})^{2}\right]g_{00}

By Cauchy-Schwartz, we know

|Ric(2)|2tr(Ric(2))3=13(S(2))2,|\operatorname{Ric}^{(2)}|^{2}\geq\frac{\operatorname{tr}\left(\operatorname{Ric}^{(2)}\right)}{3}=\frac{1}{3}(S^{(2)})^{2},

and thus B000B_{00}\leq 0. Since the metric is positive definite, this implies c0c\leq 0, where c=0c=0 if and only if B00=0B_{00}=0. By definition a soliton is expanding if c<0c<0.

If c=0c=0, B00=0B_{00}=0 then:

[f00000000000000000]=12[00000B110000B220000B33]\begin{bmatrix}f_{00}&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0\end{bmatrix}=\frac{1}{2}\begin{bmatrix}0&0&0&0\\ 0&B_{11}&0&0\\ 0&0&B_{22}&0\\ 0&0&0&B_{33}\end{bmatrix}

Clearly, this implies that Bii=0B_{ii}=0 for i=1,2,3i=1,2,3. Thus, if the soliton is steady, the manifold is Bach flat.

If the soliton is Bach flat then Hessf=cg\operatorname{Hess}f=cg, so 0=cgii0=cg_{ii} for i=1,2,3i=1,2,3 so c=0c=0 and the soliton is steady. ∎

Remark 4.11.

Recall that rescaling is a diffeomorphism of \mathbb{R}. Consequently, shrinking and expanding are diffeomorphic to one another. That is, contracting is the same as stretching after diffeomorphism. Applying this to our soliton, we see that though tg00<0\frac{\partial}{\partial t}g_{00}<0 under the Bach flow ([Hel20, Proposition 2.2]), ×N3\mathbb{R}\times N^{3} is expanding as a soliton.

In order to use this theorem to find metrics that produce solitons, we will need explicit representations of the Bach tensor. These can be found using (8). The Bach tensor for solitons of the form ×N3\mathbb{R}\times N^{3} where N3N^{3} 3-dimensional unimodular Lie group is given in [Hel20]. For other Lie groups, one can find the necessary information using the structure constants (see [Mil76] [RS75] [IJ92]) and the equations in [Hel20] to find the necessary information for (8). It should be noted that the calculations involved in finding the components of the Bach tensor are non-trivial and require the use of mathematical software.

We will begin investigating manifolds of the form ×N3\mathbb{R}\times N^{3} by examining the covering spaces for the nine manifolds with compact quotient. The qualitative behavior of the compact quotients is examined in [Hel20]. The gradient solitons of the compact quotients themselves are easily classified by Corollary 3.7. We, however, are interested in the solitons on the covering spaces themselves.

Proceeding, we will examine the 9 manifolds in [Hel20] to see if there is a metric that produces a gradient Bach solitons. The Lie groups with compact quotient are given by the unimodular, solvable Bianchi classes. That is, Bianchi classes I, II, VI0, VII0, VIII, and IX. There are three additional cases which are not Lie groups, but have compact quotient.

By Theorem 4.9 we need only show that a metric satisfies (7). If there are no metrics that satisfy the string of equalities, then the manifold produces no solitons. The general methodology is to use the explicit representation for the Bach tensor in the above equality, then see what conditions must be placed on the metric to produce a soliton. For ease of notation in calculations, we will let:

x=g11,y=g22,z=g33,β=16(detg)2.x=g_{11},\quad y=g_{22},\quad z=g_{33},\quad\beta=\frac{1}{6(\det g)^{2}}.

To clarify the consequences of each example, the metric notations will be used. These proofs heavily rely on the fact that Reimannian metrics are positive definite. That is, gii>0g_{ii}>0 is a strict inequality. This allows us the use the quotients in (7) and to rule out potential solitons. A summary of our results is as follows. The proofs will be in subsequent sections.

Theorem 4.12.

For a homogeneous manifold of type M=1×N3M=\mathbb{R}^{1}\times N^{3} equipped with the metric g=g0×gNg=g_{0}\times g_{N} the following hold:

  1. a.

    If N3=3N^{3}=\mathbb{R}^{3}, then a metric g=g0×gNg=g_{0}\times g_{N}, where gNg_{N} is a flat metric, produces a gradient Bach soliton with linear potential function.

  2. b.

    If N3=Nil,Solv,SL^(2,),×S2,×H2N^{3}=Nil,\;Solv,\;\widehat{SL}(2,\mathbb{R}),\;\mathbb{R}\times S^{2},\;\mathbb{R}\times H^{2} then gg is not a gradient Bach soliton

  3. c.

    If N3=E(2),H3N^{3}=E(2),H^{3}, then gg produces a Bach soliton if and only if it is Bach flat.

  4. d.

    If N3=S3N^{3}=S^{3}, then a gradient Bach soliton is produced if and only if the metric is of the from g11=g22=g33g_{11}=g_{22}=g_{33} or if it is isometric to g11=g22=4g33g_{11}=g_{22}=4g_{33}. These solitons are categorized in Theorems 4.23 and 4.25 respectively.

4.4.1. ×3\mathbb{R}\times\mathbb{R}^{3}

Proposition 4.13.

The manifold ×3\mathbb{R}\times\mathbb{R}^{3} with metric g=g0×gNg=g_{0}\times g_{N}, where gNg_{N} is a flat metric, is a gradient Bach soliton with potential function f(r)=ar+bf(r)=ar+b or some aa\in\mathbb{R}.

Proof.

We know from (8) that Bii=0B_{ii}=0 for i=0,1,2,3i=0,1,2,3. By Corollary 4.10 we know that the soliton is steady, so c=0c=0. So by Lemma 4.8 f(r)=ar+bf(r)=ar+b for a,ba,b\in\mathbb{R}. ∎

4.4.2. ×Nil\mathbb{R}\times Nil

We know from [Hel20]

B00=β(g00)3(g11)4\displaystyle B_{00}=-\beta(g_{00})^{3}(g_{11})^{4} B11=5β(g00)2(g11)5\displaystyle\quad B_{11}=-5\beta(g_{00})^{2}(g_{11})^{5}
B22=3β(g00)2(g11)4g22\displaystyle B_{22}=3\beta(g_{00})^{2}(g_{11})^{4}g_{22} B33=3β(g00)2(g11)4g33.\displaystyle\quad B_{33}=3\beta(g_{00})^{2}(g_{11})^{4}g_{33}.
Proposition 4.14.

The manifold ×Nil\mathbb{R}\times Nil with metric g=g0×gNilg=g_{0}\times g_{Nil} is not a gradient Bach soliton.

Proof.

Proceeding by contradiction, suppose ×Nil\mathbb{R}\times Nil with metric g=g0×gNilg=g_{0}\times g_{Nil} is a gradient Bach soliton. Then using (7) we see that:

B11g11=B22g225β(g00)2(g11)4=3β(g00)2(g11)4.\frac{B_{11}}{g_{11}}=\frac{B_{22}}{g_{22}}\quad\Longrightarrow\quad-5\beta(g_{00})^{2}(g_{11})^{4}=3\beta(g_{00})^{2}(g_{11})^{4}.

However, this implies that 5=3-5=3. Thus ×Nil\mathbb{R}\times Nil is not a gradient Bach soliton. ∎

4.4.3. ×Solv\mathbb{R}\times Solv

We know from [Hel20]

B00=βp(g11,g22)(g00)3\displaystyle B_{00}=-\beta p(g_{11},g_{22})(g_{00})^{3} B11=βq(g11,g22)(g00)2g11\displaystyle\quad B_{11}=-\beta q(g_{11},g_{22})(g_{00})^{2}g_{11}
B22=βq(g22,g11)(g00)2g22\displaystyle B_{22}=-\beta q(g_{22},g_{11})(g_{00})^{2}g_{22} B33=3βp(g11,g22)(g00)2g33\displaystyle\quad B_{33}=3\beta p(g_{11},g_{22})(g_{00})^{2}g_{33}

where

p(x,y)=x4+x3y+xy3+y4q(x,y)=5x4+3x3yxy33y4.p(x,y)=x^{4}+x^{3}y+xy^{3}+y^{4}\quad\quad q(x,y)=5x^{4}+3x^{3}y-xy^{3}-3y^{4}.
Proposition 4.15.

The manifold ×Solv\mathbb{R}\times Solv with metric g=g0×gSolvg=g_{0}\times g_{Solv} is not a gradient Bach soliton.

Proof.

Proceeding by contradiction, suppose ×Solv\mathbb{R}\times Solv with metric g=g0×gSolvg=g_{0}\times g_{Solv} is a gradient Bach soliton. Using (7) we see that:

B11g11=B33g33βq(g11,g22)(g00)2=3βp(g11,g22)(g00)2\frac{B_{11}}{g_{11}}=\frac{B_{33}}{g_{33}}\quad\Longrightarrow\quad-\beta\;q(g_{11},g_{22})(g_{00})^{2}=3\beta\;p(g_{11},g_{22})(g_{00})^{2}

Letting x=g11x=g_{11} and y=g22y=g_{22}:

q(x,y)\displaystyle-q(x,y) =3p(x,y)\displaystyle=3p(x,y)
5x43x3y+xy3+3y4\displaystyle-5x^{4}-3x^{3}y+xy^{3}+3y^{4} =3x4+3x3y+3xy3+3y4\displaystyle=3x^{4}+3x^{3}y+3xy^{3}+3y^{4}
2x(4x3+6x2y+y3)\displaystyle-2x(4x^{3}+6x^{2}y+y^{3}) =0\displaystyle=0

Then either x=0x=0 or 4x3+6x2y+y3=04x^{3}+6x^{2}y+y^{3}=0. The first statement is not possible because the metric is positive definite. The latter statement holds if and only if x=y=0x=y=0 forcing either g11=0g_{11}=0 or g11=g22=0g_{11}=g_{22}=0, contradicting positive definiteness. Thus ×Solv\mathbb{R}\times Solv is not a gradient Bach soliton. ∎

4.4.4. ×SL^(2,)\mathbb{R}\times\widehat{SL}(2,\mathbb{R})

We know from [Hel20]

B00=βp(g11,g22,g33)(g00)3\displaystyle B_{00}=-\beta p(-g_{11},g_{22},g_{33})(g_{00})^{3} B11=βq(g11,g22,g33)(g00)2g11\displaystyle\quad B_{11}=-\beta q(-g_{11},g_{22},g_{33})(g_{00})^{2}g_{11}
B22=βq(g22,g11,g33)(g00)2g22\displaystyle B_{22}=-\beta q(g_{22},-g_{11},g_{33})(g_{00})^{2}g_{22} B33=βq(g33,g11,g22)(g00)2g33\displaystyle\quad B_{33}=-\beta q(g_{33},-g_{11},g_{22})(g_{00})^{2}g_{33}

where

p(x,y,z)\displaystyle p(x,y,z) =x4x3(y+z)+x2yz+x(y3+y2z+yz2z3)+y4y3zyz3+z4\displaystyle=x^{4}-x^{3}(y+z)+x^{2}yz+x(-y^{3}+y^{2}z+yz^{2}-z^{3})+y^{4}-y^{3}z-yz^{3}+z^{4}
q(x,y,z)\displaystyle q(x,y,z) =5x43x3(y+z)+x2yz+x(y3y2zyz2+z3)3y4+3y3z+3yz33z4.\displaystyle=5x^{4}-3x^{3}(y+z)+x^{2}yz+x(y^{3}-y^{2}z-yz^{2}+z^{3})-3y^{4}+3y^{3}z+3yz^{3}-3z^{4}.
Proposition 4.16.

The manifold ×SL^(2,)\mathbb{R}\times\widehat{SL}(2,\mathbb{R}) with metric g=g0×gSL^(2,)g=g_{0}\times g_{\widehat{SL}(2,\mathbb{R})} cannot be a gradient Bach soliton.

Proof.

Proceeding by contradiction, suppose ×SL^(2,)\mathbb{R}\times\widehat{SL}(2,\mathbb{R}) with metric g=g0×gSL^(2,)g=g_{0}\times g_{\widehat{SL}(2,\mathbb{R})} is a gradient Bach soliton. Using (7) we see that:

B22g22\displaystyle\frac{B_{22}}{g_{22}} =B33g33\displaystyle=\frac{B_{33}}{g_{33}}
q(y,x,z)\displaystyle q(y,-x,z) =q(z,x,y)\displaystyle=q(z,-x,y)
5y4+3xy33y3zxy2zx3yx2yz+xyz2+yz33x43x3z3xz33z4\displaystyle\begin{array}[]{r}5y^{4}+3xy^{3}-3y^{3}z-xy^{2}z-x^{3}y-x^{2}yz\\ +xyz^{2}+yz^{3}-3x^{4}-3x^{3}z-3xz^{3}-3z^{4}\end{array} =5z4+3xz33yz3xyz2x3zx2yz+xzy2+y3z3x43x3y3xy33y4\displaystyle=\quad\begin{array}[]{l}5z^{4}+3xz^{3}-3yz^{3}-xyz^{2}-x^{3}z-x^{2}yz\\ +xzy^{2}+y^{3}z-3x^{4}-3x^{3}y-3xy^{3}-3y^{4}\end{array}
2(yz)(x3+3xy2+2xyz+3xz2+4y3+2y2z+2yz2+4z3)\displaystyle\begin{array}[]{r}2(y-z)(x^{3}+3xy^{2}+2xyz+3xz^{2}\\ +4y^{3}+2y^{2}z+2yz^{2}+4z^{3})\end{array} =0\displaystyle=\quad 0

The only potential real solution is that y=zy=z. As above, because the metric is positive definite, the last term in the product is nonzero. Examining the consequences of this using the other equations in (7) we see that the following must hold.

B11g11\displaystyle\frac{B_{11}}{g_{11}} =B22g22\displaystyle=\frac{B_{22}}{g_{22}}
q(x,y,z)\displaystyle q(-x,y,z) =q(y,x,z)\displaystyle=q(y,-x,z)
5x4+3x3y+3x3z+x2yzxy3+xy2z+xyz2xz33y4+3y3z+3yz33z4\displaystyle\begin{array}[]{r}5x^{4}+3x^{3}y+3x^{3}z+x^{2}yz-xy^{3}+xy^{2}z\\ +xyz^{2}-xz^{3}-3y^{4}+3y^{3}z+3yz^{3}-3z^{4}\end{array} =5y4+3xy33y3zxy2zx3yx2yz+xyz2+yz33x43x3z3xz33z4\displaystyle=\quad\begin{array}[]{l}5y^{4}+3xy^{3}-3y^{3}z-xy^{2}z-x^{3}y-x^{2}yz\\ +xyz^{2}+yz^{3}-3x^{4}-3x^{3}z-3xz^{3}-3z^{4}\end{array}
8x4+4x3y+6x3z+2x2yz4xy3+2xy2z+2xz38y4+6y3z+2yz3\displaystyle\begin{array}[]{r}8x^{4}+4x^{3}y+6x^{3}z+2x^{2}yz-4xy^{3}\\ +2xy^{2}z+2xz^{3}-8y^{4}+6y^{3}z+2yz^{3}\end{array} =0\displaystyle=\quad 0

However, if y=zy=z then:

8x4+4x3y+6x3z+2x2yz4xy3+2xy2z+2xz38y4+6y3z+2yz3\displaystyle\begin{array}[]{r}8x^{4}+4x^{3}y+6x^{3}z+2x^{2}yz-4xy^{3}\\ +2xy^{2}z+2xz^{3}-8y^{4}+6y^{3}z+2yz^{3}\end{array} =8x4+4x3y+6x3y+2x2y24xy3+2xy3+2xy38y4+6y4+2y4\displaystyle=\quad\begin{array}[]{l}8x^{4}+4x^{3}y+6x^{3}y+2x^{2}y^{2}-4xy^{3}\\ +2xy^{3}+2xy^{3}-8y^{4}+6y^{4}+2y^{4}\end{array}
=8x4+10x3y+2x2y2\displaystyle=\quad 8x^{4}+10x^{3}y+2x^{2}y^{2}
0\displaystyle\neq 0

Therefore if y=zy=z, then B11/g11B22/g22B_{11}\;/\;g_{11}\neq B_{22}\;/\;g_{22}. Thus yzy\neq z. Therefore, ×SL^(2,)\mathbb{R}\times\widehat{SL}(2,\mathbb{R}) is not a gradient Bach soliton. ∎

4.4.5. ×(×S2)\mathbb{R}\times(\mathbb{R}\times S^{2})

Proposition 4.17.

There are no gradient Bach solitons on ×(×S2)\mathbb{R}\times(\mathbb{R}\times S^{2}) with metric g=g0×(g×gS2)g=g_{0}\times(g_{\mathbb{R}}\times g_{S^{2}}).

Proof.

Consider the manifold ×(×S2)\mathbb{R}\times(\mathbb{R}\times S^{2}) with metric g=g0×(g×gS2)g=g_{0}\times(g_{\mathbb{R}}\times g_{S^{2}}). Rescaling the sphere to have scalar curvature SS2=1S_{S^{2}}=1, from Theorem 4.5 we know:

B00=112g00B11=112g11B22=112g22B33=112g33.B_{00}=\frac{1}{12}g_{00}\quad\quad B_{11}=\frac{1}{12}g_{11}\quad\quad B_{22}=-\frac{1}{12}g_{22}\quad\quad B_{33}=-\frac{1}{12}g_{33}.

This contradicts Theorem 4.9. Therefore, there are no gradient Bach solitons on ×(×S2)\mathbb{R}\times(\mathbb{R}\times S^{2}) with potential function on \mathbb{R}.

4.4.6. ×(×H2)\mathbb{R}\times(\mathbb{R}\times H^{2})

Proposition 4.18.

There are no gradient Bach solitons on ×(×H2)\mathbb{R}\times(\mathbb{R}\times H^{2}) with metric g=g0×(g×gH2)g=g_{0}\times(g_{\mathbb{R}}\times g_{H^{2}}).

Proof.

Rescaling the H2H^{2} to have scalar curvature SH2=1S_{H^{2}}=-1, from Theorem 4.5 we know:

B00=112g00B11=112g11B22=112g22B33=112g33,B_{00}=\frac{1}{12}g_{00}\quad\quad B_{11}=\frac{1}{12}g_{11}\quad\quad B_{22}=-\frac{1}{12}g_{22}\quad\quad B_{33}=-\frac{1}{12}g_{33},

and thus the proof follows exactly as in the proof for ××S2\mathbb{R}\times\mathbb{R}\times S^{2} above. ∎

4.4.7. ×E(2)\mathbb{R}\times E(2)

We know from [Hel20]

B00=βp(g11,g22)(g00)3\displaystyle B_{00}=-\beta p(-g_{11},g_{22})(g_{00})^{3} B11=βq(g11,g22)(g00)2g11\displaystyle\quad B_{11}=-\beta q(-g_{11},g_{22})(g_{00})^{2}g_{11}
B22=βq(g22,g11)(g00)2g22\displaystyle B_{22}=-\beta q(g_{22},-g_{11})(g_{00})^{2}g_{22} B33=3βp(g11,g22)(g00)2g33\displaystyle\quad B_{33}=3\beta p(-g_{11},g_{22})(g_{00})^{2}g_{33}

where p(x,y)p(x,y) and q(x,y)q(x,y) are as above.

Proposition 4.19.

The manifold ×E(2)\mathbb{R}\times E(2) with metric g=g0×gE(2)g=g_{0}\times g_{E(2)} is a gradient Bach soliton if and only if it is Bach flat.

Proof.

Consider the manifold ×E(2)\mathbb{R}\times E(2) with metric g=g0×gE(2)g=g_{0}\times g_{E(2)}. Using (7) we see that:

B11g11\displaystyle\frac{B_{11}}{g_{11}} =B22g22\displaystyle=\frac{B_{22}}{g_{22}}
q(x,y)\displaystyle q(-x,y) =q(y,x)\displaystyle=q(y,-x)
5x43x3y+xy33y4\displaystyle 5x^{4}-3x^{3}y+xy^{3}-3y^{4} =5y43y3x+yx33x4\displaystyle=5y^{4}-3y^{3}x+yx^{3}-3x^{4}
(xy)(x+y)(2x2xy+2y2)\displaystyle(x-y)(x+y)(2x^{2}-xy+2y^{2}) =0\displaystyle=0

The only two real, nonzero solutions are that x=yx=y or x=yx=-y. Since our metric is positive definite xyx\neq-y. Thus x=yx=y is the only candidate. Proceeding, we will see that the equalities from (7) are satisfied if and only if x=yx=y.

B11g11\displaystyle\frac{B_{11}}{g_{11}} =B33g33\displaystyle=\frac{B_{33}}{g_{33}}
q(x,y)\displaystyle-q(-x,y) =3p(x,y)\displaystyle=3p(-x,y)
5x4+3x3yxy3+3y4\displaystyle-5x^{4}+3x^{3}y-xy^{3}+3y^{4} =3x43x3y3xy3+3y4\displaystyle=3x^{4}-3x^{3}y-3xy^{3}+3y^{4}
2x(4x33x2yy3)\displaystyle-2x(4x^{3}-3x^{2}y-y^{3}) =0\displaystyle=0

Since x0x\neq 0, 4x33x2yy3=04x^{3}-3x^{2}y-y^{3}=0. We see that x=yx=y holds.

B22g22\displaystyle\frac{B_{22}}{g_{22}} =B33g33\displaystyle=\frac{B_{33}}{g_{33}}
q(y,x)\displaystyle-q(y,-x) =3p(x,y)\displaystyle=3p(-x,y)
5y4+3xy3x3y+3x4\displaystyle-5y^{4}+3xy^{3}-x^{3}y+3x^{4} =3x43x3y3xy3+3y4\displaystyle=3x^{4}-3x^{3}y-3xy^{3}+3y^{4}
2y(4y33xy2x3)\displaystyle-2y(4y^{3}-3xy^{2}-x^{3}) =0\displaystyle=0

Since y0y\neq 0, 4y33xy22x3=04y^{3}-3xy^{2}-2x^{3}=0. Again, we see that x=yx=y holds.

Thus, g11=g22g_{11}=g_{22}. This condition is equivalent to being Bach flat by the following lemma. Therefore, by Theorem 4.9 and Lemma 4.20, ×E(2)\mathbb{R}\times E(2) is a gradient Bach soliton if and only if it is Bach flat. ∎

Lemma 4.20.

The manifold ×E(2)\mathbb{R}\times E(2) with metric g=g0×gE(2)g=g_{0}\times g_{E(2)} is Bach flat if and only if g11=g22g_{11}=g_{22}.

Proof.

Factoring the components of the Bach tensor for ×E(2)\mathbb{R}\times E(2):

B00\displaystyle B_{00} =β(g11g22)2((g11)2+g11g22+(g22)2)(g00)3\displaystyle=-\beta\;(g_{11}-g_{22})^{2}\left((g_{11})^{2}+g_{11}g_{22}+(g_{22})^{2}\right)(g_{00})^{3}
B11\displaystyle B_{11} =β(g11g22)(5(g11)3+2(g11)2(g22)+2(g11)(g22)2+3(g22)3)(g00)2g11\displaystyle=-\beta\;(g_{11}-g_{22})\left(5(g_{11})^{3}+2(g_{11})^{2}(g_{22})+2(g_{11})(g_{22})^{2}+3(g_{22})^{3}\right)(g_{00})^{2}g_{11}
B22\displaystyle B_{22} =β(g22g11)(3(g11)3+2(g11)2(g22)+2(g11)(g22)2+3(g22)3)(g00)2g22\displaystyle=-\beta\;(g_{22}-g_{11})\left(3(g_{11})^{3}+2(g_{11})^{2}(g_{22})+2(g_{11})(g_{22})^{2}+3(g_{22})^{3}\right)(g_{00})^{2}g_{22}
B33\displaystyle B_{33} =3β(g11g22)2((g11)2+g11g22+(g22)2)(g00)2g11\displaystyle=3\beta\;(g_{11}-g_{22})^{2}\left((g_{11})^{2}+g_{11}g_{22}+(g_{22})^{2}\right)(g_{00})^{2}g_{11}

Since our metric is positive definite Bii=0B_{ii}=0 if and only if g11g22=0g_{11}-g_{22}=0 if and only if g11=g22g_{11}=g_{22}. ∎

4.4.8. ×H3\mathbb{R}\times H^{3}

Proposition 4.21.

The manifold ×H3\mathbb{R}\times H^{3} with metric g=g0×gH3g=g_{0}\times g_{H^{3}} is the trivial gradient Bach soliton. That is, ×H3\mathbb{R}\times H^{3} is a Bach soliton if and only if it is Bach-flat.

Proof.

Following the explanation from [Hel20], we know that H3H^{3} is a one parameter family of homogeneous metrics. Consequently all metrics are Einstein since they are scalar multiples of the standard metric. Thus, as Helliwell concludes, the flat metric remains flat in the Bach flow. Therefore, the Bach flat metric produces a gradient soliton. ∎

4.4.9. ×S3\mathbb{R}\times S^{3}

Before delving into this case, it is important that the reader note that I am S3S^{3} to be synonymous with SU(2)SU(2). That is, the manifold does NOT necessarily have the round metric, but rather has any left invariant metric on Lie group SU(2)SU(2). My choice to call this S3S^{3} was motivated by wanting to maintain consistency between the cases presented by Helliwell in [Hel20] and this paper.

We know from [Hel20]

B00=βp(g11,g22,g33)(g00)3\displaystyle B_{00}=-\beta\;p(g_{11},g_{22},g_{33})(g_{00})^{3} B11=βq(g11,g22,g33)(g00)2g11\displaystyle\quad B_{11}=-\beta\;q(g_{11},g_{22},g_{33})(g_{00})^{2}g_{11}
B22=βq(g22,g33,g11)(g00)2g22\displaystyle B_{22}=-\beta\;q(g_{22},g_{33},g_{11})(g_{00})^{2}g_{22} B33=βq(g33,g11,g22)(g00)2g33\displaystyle\quad B_{33}=-\beta\;q(g_{33},g_{11},g_{22})(g_{00})^{2}g_{33}

where

p(x,y,z)\displaystyle p(x,y,z) =x4x3(y+z)+x2yz+x(y3+y2z+yz2z3)+y4y3zyz3+z4\displaystyle=x^{4}-x^{3}(y+z)+x^{2}yz+x(-y^{3}+y^{2}z+yz^{2}-z^{3})+y^{4}-y^{3}z-yz^{3}+z^{4}
q(x,y,z)\displaystyle q(x,y,z) =5x43x3(y+z)+x2yz+x(y3y2zyz2+z3)3y4+3y3z+3yz33z4\displaystyle=5x^{4}-3x^{3}(y+z)+x^{2}yz+x(y^{3}-y^{2}z-yz^{2}+z^{3})-3y^{4}+3y^{3}z+3yz^{3}-3z^{4}
Proposition 4.22.

The manifold ×S3\mathbb{R}\times S^{3} with metric g=g0×gSU(2)g=g_{0}\times g_{SU(2)} is a gradient Bach soliton if and only if our metric is g11=g22=g33g_{11}=g_{22}=g_{33} or if it is isometric to g11=g22=4g33g_{11}=g_{22}=4g_{33}.

Proof.

Proceeding, consider ×S3\mathbb{R}\times S^{3} with metric g=g0×gSU(2)g=g_{0}\times g_{SU(2)}. We will show that the (7) holds if and only if x=y=zx=y=z, x=y=4zx=y=4z, x=4y=zx=4y=z, or 4x=y=z4x=y=z.

We will first consider that case where x=y=zx=y=z:

B11g11=B22g22=B33g33=βq(g11,g11,g11)(g00)2\frac{B_{11}}{g_{11}}=\frac{B_{22}}{g_{22}}=\frac{B_{33}}{g_{33}}=-\beta\;q(g_{11},g_{11},g_{11})(g_{00})^{2}

This clearly satisfies (7).

Proceeding to examine the equalities in general we see that:

(9) B11g11\displaystyle\frac{B_{11}}{g_{11}} =B22g22\displaystyle=\frac{B_{22}}{g_{22}}
q(x,y,z)\displaystyle q(x,y,z) =q(y,z,x)\displaystyle=q(y,z,x)
5x43x3y3x3z+x2yz+xy3xy2zxyz2+xz33y4+3y3z+3yz33z4\displaystyle\begin{array}[]{r}5x^{4}-3x^{3}y-3x^{3}z+x^{2}yz+xy^{3}-xy^{2}z\\ -xyz^{2}+xz^{3}-3y^{4}+3y^{3}z+3yz^{3}-3z^{4}\end{array} =5y43y3z3xy3+xy2z+yz3xyz2x2yz+x3y3z4+3xz3+3x3z3x4\displaystyle=\begin{array}[]{l}5y^{4}-3y^{3}z-3xy^{3}+xy^{2}z+yz^{3}-xyz^{2}\\ -x^{2}yz+x^{3}y-3z^{4}+3xz^{3}+3x^{3}z-3x^{4}\end{array}
2(xy)(4x3+2x2y3x2z+2xy22xyz+4y33y2zz3)\displaystyle\begin{array}[]{r}2(x-y)(4x^{3}+2x^{2}y-3x^{2}z+2xy^{2}\\ -2xyz+4y^{3}-3y^{2}z-z^{3})\end{array} =0\displaystyle=\quad 0
(10) B11g11\displaystyle\frac{B_{11}}{g_{11}} =B33g33\displaystyle=\frac{B_{33}}{g_{33}}
q(x,y,z)\displaystyle q(x,y,z) =q(y,z,x)\displaystyle=q(y,z,x)
5x43x3y3x3z+x2yz+xy3xy2zxyz2+xz33y4+3y3z+3yz33z4\displaystyle\begin{array}[]{l}5x^{4}-3x^{3}y-3x^{3}z+x^{2}yz+xy^{3}-xy^{2}z\\ -xyz^{2}+xz^{3}-3y^{4}+3y^{3}z+3yz^{3}-3z^{4}\end{array} =5z43xz33yz3+xyz2+x3zx2yzxy2z+y3z3x4+3x3y+3xy33y4\displaystyle=\begin{array}[]{l}5z^{4}-3xz^{3}-3yz^{3}+xyz^{2}+x^{3}z-x^{2}yz\\ -xy^{2}z+y^{3}z-3x^{4}+3x^{3}y+3xy^{3}-3y^{4}\end{array}
2(xz)(4x33x2y+2x2z2xyz+2xz2y33yz2+4z3)\displaystyle\begin{array}[]{r}2(x-z)(4x^{3}-3x^{2}y+2x^{2}z-2xyz\\ +2xz^{2}-y^{3}-3yz^{2}+4z^{3})\end{array} =0\displaystyle=\quad 0
(11) B22g22\displaystyle\frac{B_{22}}{g_{22}} =B33g33\displaystyle=\frac{B_{33}}{g_{33}}
q(y,z,x)\displaystyle q(y,z,x) =q(y,z,x)\displaystyle=q(y,z,x)
5y43y3z3xy3+xy2z+yz3xyz2x2yz+x3y3z4+3xz3+3x3z3x4\displaystyle\begin{array}[]{r}5y^{4}-3y^{3}z-3xy^{3}+xy^{2}z+yz^{3}-xyz^{2}\\ -x^{2}yz+x^{3}y-3z^{4}+3xz^{3}+3x^{3}z-3x^{4}\end{array} =5z43xz33yz3+xyz2+x3zx2yzxy2z+y3z3x4+3x3y+3xy33y4\displaystyle=\begin{array}[]{l}5z^{4}-3xz^{3}-3yz^{3}+xyz^{2}+x^{3}z-x^{2}yz\\ -xy^{2}z+y^{3}z-3x^{4}+3x^{3}y+3xy^{3}-3y^{4}\end{array}
2(yz)(x3+3xy2+2xyz+3xz24y32y2z2yz24z3)\displaystyle\begin{array}[]{r}-2(y-z)(x^{3}+3xy^{2}+2xyz+3xz^{2}\\ -4y^{3}-2y^{2}z-2yz^{2}-4z^{3})\end{array} =0\displaystyle=\quad 0
Case 3.

Suppose that x=yx=y. Then (9) is satisfied. Moreover this means that in order for (10) to be satisfied:

0\displaystyle 0 =4x33x3+2x2z2x2z+2xz2x33xz2+4z3\displaystyle=4x^{3}-3x^{3}+2x^{2}z-2x^{2}z+2xz^{2}-x^{3}-3xz^{2}+4z^{3}
=z2(4zx)\displaystyle=z^{2}(4z-x)

Consequently x=4zx=4z. We see that this equality not only holds in 11, but is forced:

0\displaystyle 0 =x3+3x3+2x2z+3xz24x32x2z2xz24z3\displaystyle=x^{3}+3x^{3}+2x^{2}z+3xz^{2}-4x^{3}-2x^{2}z-2xz^{2}-4z^{3}
=z2(x4z)\displaystyle=z^{2}(x-4z)

Thus x=y=4zx=y=4z maintains all three equalities.

Case 4.

Suppose that x=zx=z. Then (10) is satisfied. Moreover this means that in order for (9) to be satisfied:

0\displaystyle 0 =4x3+2x2y3x3+2xy22x2y+4y33y2xx3\displaystyle=4x^{3}+2x^{2}y-3x^{3}+2xy^{2}-2x^{2}y+4y^{3}-3y^{2}x-x^{3}
=y2(4yx)\displaystyle=y^{2}(4y-x)

Consequently x=4yx=4y. We see that this equality not only holds in (11), but is forced:

0\displaystyle 0 =x3+3xy2+2x2y+3x34y32xy22x2y4x3\displaystyle=x^{3}+3xy^{2}+2x^{2}y+3x^{3}-4y^{3}-2xy^{2}-2x^{2}y-4x^{3}
=y2(x4y)\displaystyle=y^{2}(x-4y)

Thus x=4y=zx=4y=z maintains all three equalities.

Case 5.

Suppose that y=zy=z. Then (11) is satisfied. Moreover this means that in order for (9) to be satisfied:

0\displaystyle 0 =4x3+2x2y3x2y+2xy22xy2+4y33y3y3\displaystyle=4x^{3}+2x^{2}y-3x^{2}y+2xy^{2}-2xy^{2}+4y^{3}-3y^{3}-y^{3}
=x2(4xy)\displaystyle=x^{2}(4x-y)

Consequently 4x=y4x=y. We see that this equality not only holds in (11), but is forced:

0\displaystyle 0 =4x33x2y+2x2y2xy2+2xy2y33y3+4y3\displaystyle=4x^{3}-3x^{2}y+2x^{2}y-2xy^{2}+2xy^{2}-y^{3}-3y^{3}+4y^{3}
=x2(4xy)\displaystyle=x^{2}(4x-y)

Thus 4x=y=z4x=y=z maintains all three equalities.

Case 6.

Suppose that xyx\neq y, xzx\neq z, yzy\neq z. Then only other permissible metric would need to satisfy the system of equations:

{4x3+2x2y3x2z+2xy22xyz+4y33y2zz3=04x33x2y+2x2z2xyz+2xz2y33yz2+4z3=0x3+3xy2+2xyz+3xz24y32y2z2yz24z3=0\begin{cases}4x^{3}+2x^{2}y-3x^{2}z+2xy^{2}-2xyz+4y^{3}-3y^{2}z-z^{3}=0\\ 4x^{3}-3x^{2}y+2x^{2}z-2xyz+2xz^{2}-y^{3}-3yz^{2}+4z^{3}=0\\ x^{3}+3xy^{2}+2xyz+3xz^{2}-4y^{3}-2y^{2}z-2yz^{2}-4z^{3}=0\end{cases}

Subtracting the first equation from the second yields:

5x2y5x2z+2xy22xz2+5y33y2z+3yz25z3\displaystyle 5x^{2}y-5x^{2}z+2xy^{2}-2xz^{2}+5y^{3}-3y^{2}z+3yz^{2}-5z^{3} =0\displaystyle=0
(yz)(5x2+2xy+2xz+5y2+2yz+5z2)\displaystyle(y-z)(5x^{2}+2xy+2xz+5y^{2}+2yz+5z^{2}) =0\displaystyle=0

Thus y=zy=z contradicting the original assertion. Moreover, the metric is positive definite. Thus, this case yields no potential metrics.

Therefore, by Theorem 4.9, ×S3\mathbb{R}\times S^{3} is a Bach soliton if and only if g11=g22=g33g_{11}=g_{22}=g_{33}, g11=g22=4g33g_{11}=g_{22}=4g_{33}, g11=4g22=g33g_{11}=4g_{22}=g_{33}, or 4g11=g22=g334g_{11}=g_{22}=g_{33}. ∎

Theorem 4.23.

If g11=g22=g33g_{11}=g_{22}=g_{33} then the soliton produced by ×S3\mathbb{R}\times S^{3} is Bach flat and steady.

Proof.

Suppose g11=g22=g33g_{11}=g_{22}=g_{33}. We know by Theorem 4.22 that this is the metric of a soliton on ×S3\mathbb{R}\times S^{3}. Then:

B11g11=B22g22=B33g33=βq(g11,g11,g11)(g00)2=β(0)(g00)2=0\frac{B_{11}}{g_{11}}=\frac{B_{22}}{g_{22}}=\frac{B_{33}}{g_{33}}=-\beta\;q(g_{11},g_{11},g_{11})(g_{00})^{2}=-\beta(0)(g_{00})^{2}=0

Thus c=0c=0, so the soliton is steady.

Moreover, since

p(x,x,x)\displaystyle p(x,x,x) =x4x3(2x)+x4+x(x3+x3+x3x3)+x4x4x4+x4=0\displaystyle=x^{4}-x^{3}(2x)+x^{4}+x(-x^{3}+x^{3}+x^{3}-x^{3})+x^{4}-x^{4}-x^{4}+x^{4}=0
q(x,x,x)\displaystyle q(x,x,x) =5x43x3(2x)+x4+x(x3x3x3+x3)3x4+3x4+3x43x4=0\displaystyle=5x^{4}-3x^{3}(2x)+x^{4}+x(x^{3}-x^{3}-x^{3}+x^{3})-3x^{4}+3x^{4}+3x^{4}-3x^{4}=0

We know that Bii=0B_{ii}=0 for all i=0,1,2,3i=0,1,2,3. Therefore the metric is Bach flat. ∎

Remark 4.24.

Note that in the previous proof, one could have referenced Corollary 4.10 instead of calculating the Bach tensor. The calculation was included to demonstrate an alternate method in that works when you know the components of the Bach tensor.

Theorem 4.25.

If g11=g22=4g33g_{11}=g_{22}=4g_{33} then the soliton produced by ×S3\mathbb{R}\times S^{3} is expanding and immortal.

Proof.

Without loss of generality, suppose g11g22g33g_{11}\leq g_{22}\leq g_{33}. Consider g11=g22=4g33g_{11}=g_{22}=4g_{33}. We know by Theorem 4.22 that this is the metric of a soliton on ×S3\mathbb{R}\times S^{3}. Then:

B11g11=B22g22=B33g33=βq(g11,g11,4g11)(g00)2=2c\frac{B_{11}}{g_{11}}=\frac{B_{22}}{g_{22}}=\frac{B_{33}}{g_{33}}=-\beta\;q(g_{11},g_{11},4g_{11})(g_{00})^{2}=-2c

Observe that:

q(x,x,14x)\displaystyle q\left(x,x,\frac{1}{4}x\right) =5x43x3(54x)+14x4+x(x314x3116x3+164x3)3x4+34x4+364x43256x4\displaystyle=5x^{4}-3x^{3}\left(\frac{5}{4}x\right)+\frac{1}{4}x^{4}+x\left(x^{3}-\frac{1}{4}x^{3}-\frac{1}{16}x^{3}+\frac{1}{64}x^{3}\right)-3x^{4}+\frac{3}{4}x^{4}+\frac{3}{64}x^{4}-\frac{3}{256}x^{4}
=x4(5154+14+114116+1643+34+3643256)\displaystyle=x^{4}\left(5-\frac{15}{4}+\frac{1}{4}+1-\frac{1}{4}-\frac{1}{16}+\frac{1}{64}-3+\frac{3}{4}+\frac{3}{64}-\frac{3}{256}\right)
=3256x4\displaystyle=-\frac{3}{256}x^{4}

Thus β3256(g11)4(g00)2>0\beta\frac{3}{256}(g_{11})^{4}(g_{00})^{2}>0. Since

2c=β3256(g11)4(g00)2-2c=\beta\frac{3}{256}(g_{11})^{4}(g_{00})^{2}

we see that c<0c<0. Recall the soliton is of the form Hessf12B=cg\operatorname{Hess}f-\frac{1}{2}B=cg. Thus, the soliton with the given metric is expanding.

Using Theorem 3.13. The Bach tensor is conformally invariant of weight w=2w=-2, so τt=14ct\tau_{t}=\sqrt{1-4ct}. Since c<0c<0, we see that τt\tau_{t} is defined for t(14c,)t\in\left(\frac{1}{4c},\infty\right). Thus the soliton is immortal. ∎

Remark 4.26.

This result aligns with the analysis of the Bach flow of ×S3\mathbb{R}\times S^{3} in [Hel20].

Acknowledgements

The author would like to thank Professor Dylan Helliwell of Seattle University and Professor Peter Petersen of UCLA for their interest and helpful discussions when writing this paper. Thank you also to my thesis advisor, Professor William Wylie of Syracuse University, for his guidance, support, and insight into this topic.

References

  • [AGS13] Elsa Abbena, Sergio Garbiero, and Simon Salamon. Bach-flat Lie groups in dimension 4. C. R. Math. Acad. Sci. Paris, 351(7-8):303–306, 2013.
  • [BH11] Eric Bahuaud and Dylan Helliwell. Short-time existence for some higher-order geometric flows. Comm. Partial Differential Equations, 36(12):2189–2207, 2011.
  • [BH15] Eric Bahuaud and Dylan Helliwell. Uniqueness for some higher-order geometric flows. Bull. Lond. Math. Soc., 47(6):980–995, 2015.
  • [Bra93] Thomas P. Branson. The functional determinant, volume 4 of Lecture Notes Series. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1993.
  • [CC13] Huai-Dong Cao and Qiang Chen. On Bach-flat gradient shrinking Ricci solitons. Duke Math. J., 162(6):1149–1169, 2013.
  • [CLN06] Bennett Chow, Peng Lu, and Lei Ni. Hamilton’s Ricci flow, volume 77 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI; Science Press Beijing, New York, 2006.
  • [CnLGMGR+19] E. Calviño Louzao, X. García-Martínez, E. García-Río, I. Gutiérrez-Rodríguez, and R. Vázquez-Lorenzo. Conformally Einstein and Bach-flat four-dimensional homogeneous manifolds. J. Math. Pures Appl. (9), 130:347–374, 2019.
  • [DK12] Sanjit Das and Sayan Kar. Bach flows of product manifolds. Int. J. Geom. Methods Mod. Phys., 9(5):1250039, 18, 2012.
  • [FG12] Charles Fefferman and C. Robin Graham. The ambient metric. 178:x+113, 2012.
  • [Hel20] Dylan Helliwell. Bach flow on homogeneous products. SIGMA Symmetry Integrability Geom. Methods Appl., 16:Paper No. 027, 35, 2020.
  • [Ho18] Pak Tung Ho. Bach flow. J. Geom. Phys., 133:1–9, 2018.
  • [IJ92] James Isenberg and Martin Jackson. Ricci flow of locally homogeneous geometries on closed manifolds. J. Differential Geom., 35(3):723–741, 1992.
  • [Lau16] J. Lauret. Geometric flows and their solitons on homogeneous spaces. Rend. Semin. Mat. Univ. Politec. Torino, 74(1):55–93, 2016.
  • [Lau19] Jorge Lauret. The search for solitons on homogeneous spaces. arXiv preprint arXiv:1912.10117, 2019.
  • [Lop18] Christopher Lopez. Ambient obstruction flow. Trans. Amer. Math. Soc., 370(6):4111–4145, 2018.
  • [Mil76] John Milnor. Curvatures of left invariant metrics on Lie groups. Advances in Math., 21(3):293–329, 1976.
  • [Per02] Grisha Perelman. The entropy formula for the ricci flow and its geometric applications. arXiv preprint math/0211159, 2002.
  • [PW09a] Peter Petersen and William Wylie. On gradient Ricci solitons with symmetry. Proc. Amer. Math. Soc., 137(6):2085–2092, 2009.
  • [PW09b] Peter Petersen and William Wylie. Rigidity of gradient Ricci solitons. Pacific J. Math., 241(2):329–345, 2009.
  • [PW10] Peter Petersen and William Wylie. On the classification of gradient Ricci solitons. Geom. Topol., 14(4):2277–2300, 2010.
  • [PW20] Peter Petersen and William Wylie. Rigidity of homogeneous gradient soliton metrics and related equations. arXiv preprint arXiv:2007.11058, 2020.
  • [RS75] Michael P. Ryan, Jr. and Lawrence C. Shepley. Homogeneous relativistic cosmologies. Princeton University Press, Princeton, N.J., 1975. Princeton Series in Physics.