This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Gluing non-unique Navier-Stokes solutions

Dallas Albritton School of Mathematics, Institute for Advanced Study, 1 Einstein Dr., Princeton, NJ 08540, USA [email protected] Elia Brué School of Mathematics, Institute for Advanced Study, 1 Einstein Dr., Princeton, NJ 08540, USA [email protected]  and  Maria Colombo Institute of Mathematics, EPFL SB, Station 8, CH-1015 Lausanne, Switzerland [email protected]
Abstract.

We construct non-unique Leray solutions of the forced Navier-Stokes equations in bounded domains via gluing methods. This demonstrates a certain locality and robustness of the non-uniqueness discovered by the authors in [1].

1. Introduction

In the recent work [1], we constructed non-unique Leray solutions of the Navier-Stokes equations in the whole space with forcing:

tu+uuΔu+p\displaystyle\partial_{t}u+u\cdot\nabla u-\Delta u+\nabla p =f\displaystyle=f (NS)
divu\displaystyle\operatorname{div}u =0.\displaystyle=0\,.

The non-unique solutions are driven by the extreme instability of a “background” solution u¯\bar{u}, which has a self-similar structure:

u¯(x,t)=1tU¯(xt).\bar{u}(x,t)=\frac{1}{\sqrt{t}}\bar{U}\left(\frac{x}{\sqrt{t}}\right)\,. (1.1)

In particular, the non-uniqueness “emerges” from the irregularity at the space-time origin and is expected to be local. However, while u¯\bar{u} is compactly supported, the non-uniqueness in [1] involves another solution whose support is 3×[0,T]\mathbb{R}^{3}\times[0,T]. Below, we demonstrate a certain locality and robustness of the non-uniqueness discovered in [1] by gluing it into any smooth, bounded domain Ω3\Omega\subset\mathbb{R}^{3} with no-slip boundary condition u|Ω=0u|_{\partial\Omega}=0 and into the torus 𝕋3:=3/(2π)3\mathbb{T}^{3}:=\mathbb{R}^{3}/(2\pi\mathbb{Z})^{3}, i.e., the fundamental domain [π,π]3[-\pi,\pi]^{3} with periodic boundary conditions.

Theorem 1.1 (Non-uniqueness in bounded domains).

Let Ω\Omega be a smooth, bounded domain in 3\mathbb{R}^{3} or the torus 𝕋3\mathbb{T}^{3}. There exist T>0T>0, fLt1Lx2(Ω×(0,T))f\in L^{1}_{t}L^{2}_{x}(\Omega\times(0,T)), and two distinct suitable Leray–Hopf solutions uu, u¯\bar{u} to the Navier–Stokes equations on Ω×(0,T)\Omega\times(0,T) with body force ff, initial condition u00u_{0}\equiv 0, and no-slip boundary condition.

We assume a certain familiarity with the conventions of [1], although it will be convenient to recall the basics below. For x3x\in\mathbb{R}^{3} and t(0,+)t\in(0,+\infty), define the similarity variables

ξ=xt,τ=logt.\xi=\frac{x}{\sqrt{t}}\,,\quad\tau=\log t\,. (1.2)

A velocity field uu and its similarity profile UU are related via the transformation

u(x,t)=1tU(ξ,τ).u(x,t)=\frac{1}{\sqrt{t}}U(\xi,\tau)\,. (1.3)

The pressure pp, force ff, and their respective profiles PP, FF transform according to

p(x,t)=1tP(ξ,τ),f(x,t)=1t3/2F(ξ,τ).p(x,t)=\frac{1}{t}P(\xi,\tau)\,,\quad f(x,t)=\frac{1}{t^{3/2}}F(\xi,\tau)\,. (1.4)

The Navier-Stokes equations in similarity variables are

τU12(1+ξξ)UΔU+UU+P\displaystyle\partial_{\tau}U-\frac{1}{2}\left(1+\xi\cdot\nabla_{\xi}\right)U-\Delta U+U\cdot\nabla U+\nabla P =F\displaystyle=F (1.5)
divU\displaystyle\operatorname{div}U =0.\displaystyle=0\,.

Then U¯C0(B1)\bar{U}\in C^{\infty}_{0}(B_{1}) constructed in [1] (see (1.1) above) is an unstable steady state of (1.5) with suitable smooth, compactly supported forcing term F¯\bar{F}, and the non-unique solutions are trajectories on the unstable manifold associated to U¯\bar{U}.

In this paper, we take the following perspective. The force ff and one solution u¯\bar{u} are exactly the ones from [1]. They are self-similar, smooth for positive times, and compactly supported inside the domain Ω\Omega, which we assume contains the ball of radius 1/21/2 centered at the origin. Each non-unique solution in [1] constitutes then an “inner solution” which lives at the self-similar scaling |x|t1/2|x|\sim t^{1/2}, and this solution can be glued to an “outer solution” (namely, u0u\equiv 0), which lives at the scaling |x|1|x|\sim 1. The boundary conditions are satisfied by the outer solution. The solutions are glued by truncating on an intermediate scale |x|1/10|x|\sim 1/10. Let η(x)\eta(x) be a suitable cut-off function with η1\eta\equiv 1 on B1/9B_{1/9} and η0\eta\equiv 0 on 3B1/7\mathbb{R}^{3}\setminus B_{1/7}. Our main ansatz is

u=u¯+ϕη+ψ,u=\bar{u}+\phi\eta+\psi\,, (1.6)

where u¯\bar{u} is the compactly supported self-similar solution of the previous work, ϕ\phi is the inner correction defined on the whole 3\mathbb{R}^{3} (although only the values in suppη\mathop{\mathrm{supp}}\eta matter for the definition of uu), and ψ\psi is the outer correction defined on the torus. Since ϕ\phi is the inner correction, it will be natural to track its similarity profile Φ\Phi (we keep the lower and uppercase convention). We likewise decompose the pressure

p=p¯+πη+q,p=\bar{p}+\pi\eta+q\,, (1.7)

although p¯=0\bar{p}=0 from the construction in [1].

The PDE to be satisfied in Ω\Omega by ϕ\phi and ψ\psi is

t(ϕη)Δ(ϕη)+u¯(ϕη)+ηϕu¯+ηdiv(ηϕϕ)+u¯ψ+ψu¯+tψΔψ+ηdiv(ϕψ+ψϕ)+div(ψψ)+ηϕ(ϕη)+ϕ(ψη)+ψ(ϕη)+(πη+q)=0,\begin{split}\partial_{t}(\phi\eta)&-\Delta(\phi\eta)+\bar{u}\cdot\nabla(\phi\eta)+\eta\phi\cdot\nabla\bar{u}+\eta\operatorname{div}(\eta\phi\otimes\phi)+\bar{u}\cdot\nabla\psi+\psi\cdot\nabla\bar{u}\\ &+\partial_{t}\psi-\Delta\psi+\eta\operatorname{div}(\phi\otimes\psi+\psi\otimes\phi)+\operatorname{div}(\psi\otimes\psi)+\eta\phi(\phi\cdot\nabla\eta)\\ &+\phi(\psi\cdot\nabla\eta)+\psi(\phi\cdot\nabla\eta)+\nabla(\pi\eta+q)=0\,,\end{split} (1.8)

together with div(ϕη+ψ)=0\operatorname{div}(\phi\eta+\psi)=0. We distribute the terms into an “inner equation”, which we think of as an equation for ϕ\phi involving some terms in ψ\psi, localized around the origin, and an “outer equation”, thought of as an equation for ψ\psi. The inner and outer equations, when satisfied separately, imply that (1.8) is satisfied.

1.1. Inner equation

The inner equation has to be satisfied on the support of η\eta, which is contained in B1/7B_{1/7}:

tϕΔϕ+u¯ϕ+ϕu¯+div(ηϕϕ)+div(ψϕ+ϕψ)+u¯ψ+ψu¯+π=0,\begin{split}\partial_{t}\phi-\Delta\phi&+\bar{u}\cdot\nabla\phi+\phi\cdot\nabla\bar{u}+\operatorname{div}(\eta\phi\otimes\phi)\\ &\quad+\operatorname{div}(\psi\otimes\phi+\phi\otimes\psi)+\bar{u}\cdot\nabla\psi+\psi\cdot\nabla\bar{u}+\nabla\pi=0\,,\end{split} (1.9)

and it is coupled to the divergence-free condition

divϕ=0.\operatorname{div}\phi=0\,. (1.10)

We introduce the operator 𝑳ss\bm{L}_{\rm ss}, i.e., the linearized operator of (1.5) around U¯\bar{U}:

𝑳ssΦ=12(1+ξξ)ΦΔΦ+(U¯Φ+ΦU¯).-\bm{L}_{\rm ss}\Phi=-\frac{1}{2}\left(1+\xi\cdot\nabla_{\xi}\right)\Phi-\Delta\Phi+\mathbb{P}\left(\bar{U}\cdot\nabla\Phi+\Phi\cdot\nabla\bar{U}\right)\,. (1.11)

In self-similar variables, we rewrite the cut-off η(x)=N(ξ,τ)\eta(x)=N(\xi,\tau). We rewrite the inner equation (1.9) as

τΦ𝑳ssΦ+Φ(ΦN)+div(N~ΨΦ+N~ΦΨ)+U¯Ψ+ΨU¯+Π=0,\begin{split}\partial_{\tau}\Phi-\bm{L}_{\rm ss}&\Phi+\Phi\cdot\nabla(\Phi N)+\operatorname{div}(\widetilde{N}\Psi\otimes\Phi+\widetilde{N}\Phi\otimes\Psi)\\ &\quad+\bar{U}\cdot\nabla\Psi+\Psi\cdot\nabla\bar{U}+\nabla\Pi=0\,,\end{split} (1.12)

where N~(ξ,τ)=N(ξ/3,τ)\widetilde{N}(\xi,\tau)=N(\xi/3,\tau). We now require that it is satisfied in the whole 3\mathbb{R}^{3}, not merely on the support of NN.

1.2. Outer equation

Using that (u¯η)ϕ=0(\bar{u}\cdot\nabla\eta)\phi=0 and tη=0\partial_{t}\eta=0, as a consequence of our choice of η\eta, we deduce the following system for the outer equation:

{tψΔψ+div(ψψ)+(ψη)ϕ+(ϕη)ψϕΔη2ϕη+ηϕ(ϕη)+πη+q=0divψ=ηϕ\begin{cases}&\partial_{t}\psi-\Delta\psi+\operatorname{div}(\psi\otimes\psi)+(\psi\cdot\nabla\eta)\phi+(\phi\cdot\nabla\eta)\psi\\ &\qquad-\phi\Delta\eta-2\nabla\phi\cdot\nabla\eta+\eta\phi(\phi\cdot\nabla\eta)+\pi\nabla\eta+\nabla q=0\\ &\operatorname{div}\psi=-\nabla\eta\cdot\phi\end{cases} (1.13)

The problem (LABEL:eqn:outer) is to be solved in Ω\Omega with the boundary condition ψ|Ω=0\psi|_{\partial\Omega}=0.

We now consider the PDEs (1.9) and (LABEL:eqn:outer) as a system for (Φ,ψ)(\Phi,\psi). The two components will be controlled using two different linear operators, 𝑳ss\bm{L}_{\rm ss} and Δ\mathbb{P}\Delta.

In dividing the terms of (1.8) into the inner and outer equations, we put the “boundary terms”, i.e., terms involving derivatives of η\eta, into the outer equation, whereas the we put the terms U¯Ψ\bar{U}\cdot\nabla\Psi and ΨU¯\Psi\cdot\nabla\bar{U} into the inner equation.

Crucially, we expect that the boundary terms are small because solutions of the inner equation are well localized. Consequently, ψ\psi decouples from ϕ\phi as t0+t\to 0^{+}, and therefore the linear part of the system should be invertible.111One can compare this to the matrix [abεd]\begin{bmatrix}a&b\\ \varepsilon&d\end{bmatrix} where ε\varepsilon represents the boundary terms, bb represents the U¯Ψ+ΨU¯\bar{U}\cdot\nabla\Psi+\Psi\cdot\nabla\bar{U} terms, and the diagonal elements aa and dd are O(1)O(1). In fact, eventually we will see that ψ\psi decays faster than ϕ\phi as t0+t\to 0^{+}, so the terms corresponding to bb are small, and the whole system decouples. For this to work, it is necessary to show that the boundary terms are negligible, which requires knowledge of the inner correction Φ\Phi in weighted spaces.

With this knowledge, we solve the full nonlinear system via a fixed point argument. The details of the scheme will be discussed in Section 3.

Our method is inspired by the parabolic “inner-outer” gluing technique exploited in [3] to analyze bubbling and reverse bubbling in the two-dimensional harmonic map heat flow into 𝕊2\mathbb{S}^{2}. The reverse bubbling in [3] is also an example of gluing techniques applied to non-uniqueness, although its mechanism is quite different. It is worth noting that, in that setting, the harmonic map heat flow actually has a natural uniqueness class [9].

We expect that Theorem 1.1 may be extended in a number of ways. Our techniques extend with minimal effort to non-uniqueness centered at kk points. We expect that the conditionally non-unique solutions of Jia and Šverák [7] can also be glued.222For this, it may be necessary to assume that the self-similar solution is just barely unstable, as is done in the truncation procedure in [7]. Typically, the background solution u¯\bar{u} must be cut in the gluing procedure, but we avoid this because in our setting u¯\bar{u} is already compactly supported. Finally, it would be interesting to glue the two-dimensional Euler constructions of [11, 12] (see also [2]) into the torus or bounded domains. This is likely to be more challenging than the present work, since the Euler equations are quasilinear and the construction of the unstable manifold more involved. We leave these and other extensions to future work.

2. Preliminaries

Consider p(1,+)p\in(1,+\infty) and Ω=3,𝕋3\Omega=\mathbb{R}^{3},\mathbb{T}^{3}, or a smooth, bounded domain in 3\mathbb{R}^{3}.

We define

Lσp(Ω):={ϕCc(Ω;3):divϕ=0}¯Lp(Ω;3),L^{p}_{\sigma}(\Omega):=\overline{\{\phi\in C^{\infty}_{c}(\Omega;\mathbb{R}^{3})\,:\,\operatorname{div}\phi=0\}}^{L^{p}(\Omega;\mathbb{R}^{3})}\,, (2.1)

which can be understood as the space of LpL^{p} velocity fields with divϕ=0\operatorname{div}\phi=0 on Ω\Omega and ϕν=0\phi\cdot\nu=0 on Ω\partial\Omega, where ν\nu is the exterior normal to Ω\Omega. See [5, Chapter III] or [10, Lemma 1.4]. Notice that the boundary condition is vacuous when Ω=3,𝕋3\Omega=\mathbb{R}^{3},\mathbb{T}^{3}.

There exists a bounded projection :Lp(Ω;3)Lσp(Ω)\mathbb{P}:L^{p}(\Omega;\mathbb{R}^{3})\to L^{p}_{\sigma}(\Omega) satisfying ϕ=ϕΔN1divϕ\mathbb{P}\phi=\phi-\nabla\Delta^{-1}_{N}\operatorname{div}\phi for any ϕCc(Ω;3)\phi\in C^{\infty}_{c}(\Omega;\mathbb{R}^{3}), where ΔN\Delta_{N} is the Neumann Laplacian. This is the Leray projection. By density of divergence-free test fields, it agrees across LpL^{p} spaces and, in particular, with the extension of the L2L^{2}-orthogonal projection onto divergence-free fields; see [5, Chapter III] or [10, Theorem 1.5].

2.1. Linear instability

The following theorem provides an unstable background for the 33D Navier-Stokes equations. We refer the reader to [1] for its proof.

Theorem 2.1 (Linear instability).

There exists a divergence-free vector field U¯C(3;3)\bar{U}\in C^{\infty}(\mathbb{R}^{3};\mathbb{R}^{3}) with suppU¯B1(0)\mathop{\mathrm{supp}}\bar{U}\subset B_{1}(0) such that the linearized operator 𝐋ss:D(𝐋ss)Lσ2(3)Lσ2(3)\bm{L}_{\rm ss}\colon D(\bm{L}_{\rm ss})\subset L^{2}_{\sigma}(\mathbb{R}^{3})\to L^{2}_{\sigma}(\mathbb{R}^{3}) defined by

𝑳ssU=12(1+ξξ)UΔU+(U¯U+UU¯),-\bm{L}_{\rm ss}U=-\frac{1}{2}\left(1+\xi\cdot\nabla_{\xi}\right)U-\Delta U+\mathbb{P}(\bar{U}\cdot\nabla U+U\cdot\nabla\bar{U})\,, (2.2)

where D(𝐋ss):={ULσ2:UH2(3),ξUL2(3)}D(\bm{L}_{\rm ss}):=\{U\in L^{2}_{\sigma}:U\in H^{2}(\mathbb{R}^{3}),\,\xi\cdot\nabla U\in L^{2}(\mathbb{R}^{3})\}, has a maximally unstable eigenvalue λ\lambda with non-trivial smooth eigenfunction ρ\rho belonging to Hk(3)H^{k}(\mathbb{R}^{3}) for all k0k\geq 0:

𝑳ssρ=λρ and a:=Reλ=supzσ(𝑳ss)Rez>0.\bm{L}_{\rm ss}\rho=\lambda\rho\quad\text{ and }\quad a:=\operatorname{Re}\lambda=\sup_{z\in\sigma(\bm{L}_{\rm ss})}\operatorname{Re}z>0\,. (2.3)

The construction in [1] allows U¯\bar{U} to be chosen to make aa arbitrarily large, and it will be convenient, though not strictly necessary, to enforce that a10a\geq 10.

We can now define

Ulin(,τ)=Re(eλτρ),U^{\rm lin}(\cdot,\tau)=\operatorname{Re}(e^{\lambda\tau}\rho)\,, (2.4)

a solution of the linearized PDE τUlin=𝑳ssUlin\partial_{\tau}U^{\rm lin}=\bm{L}_{\rm ss}U^{\rm lin}, with maximal growth rate a10a\geq 10.

The following lemma, borrowed from [1, Lemma 4.4], provides sharp growth estimates on the semigroup eτ𝑳sse^{\tau\bm{L}_{\rm ss}}.

Lemma 2.2.

Let U¯\bar{U} be as in Theorem 2.1. Then, for any σ2σ10\sigma_{2}\geq\sigma_{1}\geq 0 and δ>0\delta>0, it holds

eτ𝑳ssUHσ2σ1,σ2,δτ(σ2σ1)2eτ(a+δ)UHσ1,\|e^{\tau\bm{L}_{\rm ss}}U\|_{H^{\sigma_{2}}}\lesssim_{\sigma_{1},\sigma_{2},\delta}\tau^{-\frac{(\sigma_{2}-\sigma_{1})}{2}}e^{\tau(a+\delta)}\|U\|_{H^{\sigma_{1}}}\,, (2.5)

for any ULσ2Hσ1(3)U\in L^{2}_{\sigma}\cap H^{\sigma_{1}}(\mathbb{R}^{3}).

2.2. Improved space decay

For ζ\zeta\in\mathbb{R} and p[1,+]p\in[1,+\infty], define Lζp(3)L^{p}_{\zeta}(\mathbb{R}^{3}) to be the space of fLlocp(3)f\in L^{p}_{\rm loc}(\mathbb{R}^{3}) satisfying

fLζp:=ζfLp<+,\|f\|_{L^{p}_{\zeta}}:=\|\langle\cdot\rangle^{\zeta}f\|_{L^{p}}<+\infty\,, (2.6)

where ξ=(1+|ξ|2)1/2\langle\xi\rangle=(1+|\xi|^{2})^{1/2} is the Japanese bracket notation. We further define

Lwp(3):=L4p(3).L^{p}_{w}(\mathbb{R}^{3}):=L^{p}_{4}(\mathbb{R}^{3})\,. (2.7)
Lemma 2.3.

Let ζ(3,4]\zeta\in(3,4], p(3,+]p\in(3,+\infty] and δ>0\delta>0. Then

eτ𝑳ssdivLζpLζδ,ζ,pτ(12+32p)e(a+δ)τ.\|e^{\tau\bm{L}_{\rm ss}}\mathbb{P}\operatorname{div}\|_{L^{p}_{\zeta}\to L^{\infty}_{\zeta}}\lesssim_{\delta,\zeta,p}\tau^{-(\frac{1}{2}+\frac{3}{2p})}e^{(a+\delta)\tau}\,. (2.8)
Remark 2.4.

For MLp(3;3×3)M\in L^{p}(\mathbb{R}^{3};\mathbb{R}^{3\times 3}) and p[1,+]p\in[1,+\infty], the solution operator eτ𝐋ssdivMe^{\tau\bm{L}_{\rm ss}}\mathbb{P}\operatorname{div}M is easily shown to be well defined by standard arguments. Namely, consider the solution uu to the following PDE:

tuΔu+div(u¯u+uu¯)=0,u(,1)=divM.\partial_{t}u-\Delta u+\mathbb{P}\operatorname{div}(\bar{u}\otimes u+u\otimes\bar{u})=0\,,\quad u(\cdot,1)=\mathbb{P}\operatorname{div}M\,. (2.9)

The mild solution theory of the above PDE can be developed using properties of the semigroup etΔdive^{t\Delta}\mathbb{P}\operatorname{div} (whose kernel consists of derivatives of the Oseen kernel, see (2.14)-(2.15) below) by considering div(u¯u+uu¯)\mathbb{P}\operatorname{div}(\bar{u}\otimes u+u\otimes\bar{u}) as a perturbation in Duhamel’s formula. In particular, it is standard to demonstrate that, for all T>1T>1 and t(1,T]t\in(1,T], we have

u(,t)LqT,p,q(t1)[12+32(1p1q)]MLp,\|u(\cdot,t)\|_{L^{q}}\lesssim_{T,p,q}(t-1)^{-[\frac{1}{2}+\frac{3}{2}(\frac{1}{p}-\frac{1}{q})]}\|M\|_{L^{p}}\,, (2.10)

for all 1pq+1\leq p\leq q\leq+\infty. Finally, we define eτ𝐋ssdivM:=U:3×[0,+)3e^{\tau\bm{L}_{\rm ss}}\mathbb{P}\operatorname{div}M:=U\colon\mathbb{R}^{3}\times[0,+\infty)\to\mathbb{R}^{3} according to

u(x,t)=1tU(ξ,τ).u(x,t)=\frac{1}{\sqrt{t}}U(\xi,\tau)\,. (2.11)

With this in mind, we focus below on growth estimates for the semigroup.

Proof of Lemma 2.3.

To begin, we establish weighted estimates for the semigroup eτ𝑨dive^{\tau\bm{A}}\mathbb{P}\operatorname{div}, where

𝑨:=12(1+ξ)Δ.-\bm{A}:=-\frac{1}{2}\left(1+\xi\cdot\nabla\right)-\Delta\,. (2.12)

For MLζp(3;3×3)L2M\in L^{p}_{\zeta}(\mathbb{R}^{3};\mathbb{R}^{3\times 3})\subset L^{2}, consider the solution u:3×[1,+)3u:\mathbb{R}^{3}\times[1,+\infty)\to\mathbb{R}^{3} to

tuΔu=0,u(,1)=divM.\partial_{t}u-\Delta u=0\,,\quad u(\cdot,1)=\mathbb{P}\operatorname{div}M\,. (2.13)

We have the representation formula

u(x,t)=g(,t1)M,u(x,t)=g(\cdot,t-1)\ast M\,, (2.14)

where gg is tensor-valued and consists of derivatives of the Oseen kernel (see, e.g., [10, p. 80]),

g=1t2G(xt),g=\frac{1}{t^{2}}G\left(\frac{x}{\sqrt{t}}\right)\,, (2.15)

satisfying the pointwise estimate

|G(ξ)|ξ4.|G(\xi)|\lesssim\langle\xi\rangle^{-4}\,. (2.16)

Define e𝑨divM:=U:3×[0,+)3e^{\cdot\bm{A}}\mathbb{P}\operatorname{div}M:=U\colon\mathbb{R}^{3}\times[0,+\infty)\to\mathbb{R}^{3} according to

u(x,t)=1tU(ξ,τ).u(x,t)=\frac{1}{\sqrt{t}}U(\xi,\tau)\,. (2.17)

Using the representation formula and elementary estimates for convolution (see Lemma 7.1 and Remark 7.2), we have two estimates. First, we have the short-time estimate

uLζζ,p(t1)(12+32p)MLζp,t(1,e],\|u\|_{L^{\infty}_{\zeta}}\lesssim_{\zeta,p}(t-1)^{-(\frac{1}{2}+\frac{3}{2p})}\|M\|_{L^{p}_{\zeta}}\,,\quad t\in(1,e]\,, (2.18)

which implies that

ULζζ,pτ(12+32p)MLζp,τ(0,1].\|U\|_{L^{\infty}_{\zeta}}\lesssim_{\zeta,p}\tau^{-(\frac{1}{2}+\frac{3}{2p})}\|M\|_{L^{p}_{\zeta}}\,,\quad\tau\in(0,1]\,. (2.19)

Moreover, we have the long-time estimate

ULζζ,pMLζp,τ[1,+).\|U\|_{L^{\infty}_{\zeta}}\lesssim_{\zeta,p}\|M\|_{L^{p}_{\zeta}}\,,\quad\tau\in[1,+\infty)\,. (2.20)

This completes the semigroup estimates for eτ𝑨dive^{\tau\bm{A}}\mathbb{P}\operatorname{div}.

We now turn our attention to the growth estimate for eτ𝑳ssdive^{\tau\bm{L}_{\rm ss}}\mathbb{P}\operatorname{div}. First, we prove

eτ𝑳ssdivMLδ,pτ(12+32p)eτ(a+δ)MLp,τ>0.\|e^{\tau\bm{L}_{\rm ss}}\mathbb{P}\operatorname{div}M\|_{L^{\infty}}\lesssim_{\delta,p}\tau^{-(\frac{1}{2}+\frac{3}{2p})}e^{\tau(a+\delta)}\|M\|_{L^{p}}\,,\quad\tau>0\,. (2.21)

We already have this estimate for τ(0,2]\tau\in(0,2], see (2.10) in Remark 2.4, so we focus on τ2\tau\geq 2. This is done by splitting eτ𝑳ssdiv=e(τ1)𝑳sse𝑳ssdive^{\tau\bm{L}_{\rm ss}}\mathbb{P}\operatorname{div}=e^{(\tau-1)\bm{L}_{\rm ss}}\mathbb{P}\circ e^{\bm{L}_{\rm ss}}\mathbb{P}\operatorname{div}, using estimate (2.10) (with p=q=2p=q=2) for the operator e𝑳ssdive^{\bm{L}_{ss}}\mathbb{P}\operatorname{div}, and using the growth estimate

eτ𝑳ssL2H2δτ1eτ(a+δ),τ>0,\|e^{\tau\bm{L}_{\rm ss}}\mathbb{P}\|_{L^{2}\to H^{2}}\lesssim_{\delta}\tau^{-1}e^{\tau(a+\delta)}\,,\quad\tau>0\,, (2.22)

from Lemma 2.2, for the operator e(τ1)𝑳sse^{(\tau-1)\bm{L}_{\rm ss}}\mathbb{P}, along with Sobolev embedding H2LH^{2}\subset L^{\infty} in dimension three. With (2.21) in hand, we proceed with the desired LζL^{\infty}_{\zeta} estimate. Define U:=eτ𝑳ssdivMU:=e^{\tau\bm{L}_{\rm ss}}\mathbb{P}\operatorname{div}M and write

U(,τ)=eτ𝑨divM0τe(τs)𝑨div(U¯U+UU¯)𝑑s.U(\cdot,\tau)=e^{\tau\bm{A}}\mathbb{P}\operatorname{div}M-\int_{0}^{\tau}e^{(\tau-s)\bm{A}}\mathbb{P}\operatorname{div}(\bar{U}\otimes U+U\otimes\bar{U})\,ds\,. (2.23)

We will combine the semigroup estimates (2.19) and (2.20) for 𝑨\bm{A} with (2.21) and the fact that U¯\bar{U} is compactly supported. We end up with

ULζ\displaystyle\|U\|_{L^{\infty}_{\zeta}} δ,pmax(τ(12+32p),1)MLζp\displaystyle\lesssim_{\delta,p}\max(\tau^{-(\frac{1}{2}+\frac{3}{2p})},1)\|M\|_{L^{p}_{\zeta}} (2.24)
+0τmax((τs)12,1)(U¯U+UU¯)(,s)Lζ𝑑s\displaystyle\quad+\int_{0}^{\tau}\max((\tau-s)^{-\frac{1}{2}},1)\|(\bar{U}\otimes U+U\otimes\bar{U})(\cdot,s)\|_{L^{\infty}_{\zeta}}\,ds
δ,pmax(τ(12+32p),1)MLζp+0τmax((τs)12,1)U(,s)L𝑑s\displaystyle\lesssim_{\delta,p}\max(\tau^{-(\frac{1}{2}+\frac{3}{2p})},1)\|M\|_{L^{p}_{\zeta}}+\int_{0}^{\tau}\max((\tau-s)^{-\frac{1}{2}},1)\|U(\cdot,s)\|_{L^{\infty}}\,ds
δ,pmax(τ(12+32p),1)MLζp+0τmax((τs)12,1)s(12+32p)es(a+δ)MLp𝑑s\displaystyle\lesssim_{\delta,p}\max(\tau^{-(\frac{1}{2}+\frac{3}{2p})},1)\|M\|_{L^{p}_{\zeta}}+\int_{0}^{\tau}\max((\tau-s)^{-\frac{1}{2}},1)s^{-(\frac{1}{2}+\frac{3}{2p})}e^{s(a+\delta)}\|M\|_{L^{p}}\,ds
δ,pmax(τ(12+32p),1)eτ(a+δ)ds,\displaystyle\lesssim_{\delta,p}\max(\tau^{-(\frac{1}{2}+\frac{3}{2p})},1)e^{\tau(a+\delta)}\,ds\,,

where we used that p>3p>3. This holds for all δ>0\delta>0, completing the proof. ∎

Lemma 2.5.

The eigenfunction ρ\rho in Theorem 2.1 belongs to Lw(3)L^{\infty}_{w}(\mathbb{R}^{3}).

Proof.

The proof is akin to [1, Corollary 3.3]: ρD(𝑳ss)\rho\in D(\bm{L}_{\rm ss}) solves

λρ12(1+ξξ)ρΔρ=divF\lambda\rho-\frac{1}{2}(1+\xi\cdot\nabla_{\xi})\rho-\Delta\rho=\mathbb{P}\operatorname{div}F (2.25)

where F=U¯ρ+ρU¯-F=\bar{U}\otimes\rho+\rho\otimes\bar{U}. Notably, local elliptic regularity implies that ρ\rho is smooth on the support of U¯\bar{U}. Hence, FLwF\in L^{\infty}_{w}. Next, we ‘undo’ the similarity variables by defining

h(x,t)=tλ12ρ(xt),M(x,t)=tλ1F(xt).h(x,t)=t^{\lambda-\frac{1}{2}}\rho\left(\frac{x}{\sqrt{t}}\right)\,,\quad M(x,t)=t^{\lambda-1}F\left(\frac{x}{\sqrt{t}}\right)\,. (2.26)

Then

thΔh=divM,h(,0)=0,\partial_{t}h-\Delta h=\mathbb{P}\operatorname{div}M\,,\quad h(\cdot,0)=0\,, (2.27)

and we have the representation formula

ρ=h(,1)=01eΔ(1s)divM(,s)𝑑s,\rho=h(\cdot,1)=\int_{0}^{1}e^{\Delta(1-s)}\mathbb{P}\operatorname{div}M(\cdot,s)\,ds\,, (2.28)

which yields (see (2.18))

ρLw01(1s)12M(,s)Lw𝑑s01(1s)12sReλ1𝑑sFLw<+\|\rho\|_{L^{\infty}_{w}}\lesssim\int_{0}^{1}(1-s)^{-\frac{1}{2}}\|M(\cdot,s)\|_{L^{\infty}_{w}}\,ds\lesssim\int_{0}^{1}(1-s)^{-\frac{1}{2}}s^{\operatorname{Re}\lambda-1}\,ds\|F\|_{L^{\infty}_{w}}<+\infty (2.29)

since Reλ>0\operatorname{Re}\lambda>0. Here, we used that f(x/)LwfLw\|f(x/\ell)\|_{L^{\infty}_{w}}\leq\|f\|_{L^{\infty}_{w}} for (0,1]\ell\in(0,1]. This completes the proof. ∎

2.3. Stokes equations in bounded domains

We now turn our attention to the linear theory for the outer equation. We begin with semigroup theory for the Stokes equations, see [6, Sections 2 and 5] and [10, Chapter 5].

Lemma 2.6 (Stokes in bounded domains).

Let p(1,+)p\in(1,+\infty) and Ω3\Omega\subset\mathbb{R}^{3} be a smooth, bounded domain. Define

D(A):=W2,pW01,pLσp(Ω)D(A):=W^{2,p}\cap W^{1,p}_{0}\cap L^{p}_{\sigma}(\Omega) (2.30)

and the Stokes operator

A=Δ:D(A)Lσp(Ω).A=\mathbb{P}\Delta:D(A)\to L^{p}_{\sigma}(\Omega)\,. (2.31)

Then the Stokes operator AA generates an analytic semigroup (etA)t0(e^{tA})_{t\geq 0}, and we have, for all p(1,+)p\in(1,+\infty) and q[p,+]q\in[p,+\infty], the smoothing estimates

etALpLq+t12etAdivLpLqt32(1q1p).\|e^{tA}\mathbb{P}\|_{L^{p}\to L^{q}}+t^{\frac{1}{2}}\|e^{tA}\mathbb{P}\operatorname{div}\|_{L^{p}\to L^{q}}\lesssim t^{\frac{3}{2}(\frac{1}{q}-\frac{1}{p})}\,. (2.32)

The function u(x,t)=(etAu0)(x)u(x,t)=(e^{tA}u_{0})(x) solves the Stokes equations with no-slip boundary conditions

tuΔu+π=0,u(,t)=0on Ω,\partial_{t}u-\Delta u+\nabla\pi=0\,,\qquad u(\cdot,t)=0\,\,\,\text{on $\partial\Omega$}\,, (2.33)

for any u0Lσp(Ω)u_{0}\in L^{p}_{\sigma}(\Omega). The boundary conditions are built into the domain of the operator, and etA:LσpD(A)e^{tA}:L^{p}_{\sigma}\to D(A) for any t>0t>0.

To solve the Stokes equations with non-zero divergence, we use the following lemma due to [4, Theorem 4].

Lemma 2.7 (Stokes with inhomogeneous divergence).

Let T>0T>0 and Ω3\Omega\subset\mathbb{R}^{3} be a smooth, bounded domain. For p(3,+)p\in(3,+\infty), and r(1,+)r\in(1,+\infty), consider hLtrLxp(Ω×(0,T))h\in L^{r}_{t}L^{p}_{x}(\Omega\times(0,T)) with zero mean: Ωh(x,t)𝑑x=0\int_{\Omega}h(x,t)\,dx=0 for a.e. t(0,T)t\in(0,T).

Then there exists a unique very weak solution uLtrLxp(Ω×(0,T))u\in L^{r}_{t}L^{p}_{x}(\Omega\times(0,T)) to the following Stokes problem in Ω×(0,T)\Omega\times(0,T):

{tuΔu+π=0divu=hu|Ω×(0,T)=0u(,0)=0;\left\{\begin{aligned} \partial_{t}u-\Delta u+\nabla\pi&=0\\ \operatorname{div}u&=h\\ u|_{\partial\Omega\times(0,T)}&=0\\ u(\cdot,0)&=0\,;\end{aligned}\right. (2.34)

that is, for all divergence-free wCc1([0,T);(C2C0)(Ω¯))w\in C^{1}_{c}([0,T);(C^{2}\cap C_{0})(\bar{\Omega})), we have

0TΩu(tΔ)w𝑑x𝑑t=0\int_{0}^{T}\int_{\Omega}u(-\partial_{t}-\Delta)w\,dx\,dt=0 (2.35)

and divu=h\operatorname{div}u=h in the sense of distributions on Ω×(0,T)\Omega\times(0,T). Moreover, uu satisfies the estimate

uLtrLxp(Ω×(0,T))Ω,r,phLtrLxp(Ω×(0,T)).\|u\|_{L^{r}_{t}L^{p}_{x}(\Omega\times(0,T))}\lesssim_{\Omega,r,p}\|h\|_{L^{r}_{t}L^{p}_{x}(\Omega\times(0,T))}\,. (2.36)
Remark 2.8.

The initial condition u(,0)=0u(\cdot,0)=0 is understood “modulo gradients”. Moreover, it can be proven (cf.  [4, Theorem 4, Remark 3]) that A1uC([0,T);Lσp(Ω))A^{-1}\mathbb{P}u\in C([0,T);L^{p}_{\sigma}(\Omega)) and A1u(,0)=0A^{-1}\mathbb{P}u(\cdot,0)=0. Notably, uniqueness holds in the above class of very weak solutions, which makes the notion a useful generalization.

2.4. Stokes equations in the periodic domain

On the torus 𝕋3:=3/(2π)3\mathbb{T}^{3}:=\mathbb{R}^{3}/(2\pi\mathbb{Z})^{3}, the Stokes equations can be solved by means of the heat semigroup, since the Stokes operator AA in Lσp(𝕋3)L^{p}_{\sigma}(\mathbb{T}^{3}), p(1,+)p\in(1,+\infty), coincides with

Δ:W2,pLσp(𝕋3)Lσp(𝕋3).\Delta:W^{2,p}\cap L^{p}_{\sigma}(\mathbb{T}^{3})\to L^{p}_{\sigma}(\mathbb{T}^{3})\,. (2.37)

Hence, the associated Stokes semigroup (etA)t0(e^{tA})_{t\geq 0} coincides with the heat semigroup and enjoys the smoothing estimates

etALpLq+t12etAdivLpLqt32(1q1p),\|e^{tA}\mathbb{P}\|_{L^{p}\to L^{q}}+t^{\frac{1}{2}}\|e^{tA}\mathbb{P}\operatorname{div}\|_{L^{p}\to L^{q}}\lesssim t^{\frac{3}{2}(\frac{1}{q}-\frac{1}{p})}\,, (2.38)

for all p(1,+)p\in(1,+\infty) and q[p,+]q\in[p,+\infty].

The Stokes equations with non-zero divergence,

{tuΔu+π=0divu=hu(,0)=0,\left\{\begin{aligned} \partial_{t}u-\Delta u+\nabla\pi&=0\\ \operatorname{div}u&=h\\ u(\cdot,0)&=0\,,\end{aligned}\right. (2.39)

admit an explicit solution

u=Δ1h,u=\nabla\Delta^{-1}h\,, (2.40)

provided hh satisfies the compatibility condition 𝕋3h(x,t)𝑑x=0\int_{\mathbb{T}^{3}}h(x,t)\,dx=0 for a.e. t(0,T)t\in(0,T). The solution is in the very weak sense, that is, divu=h\operatorname{div}u=h in the sense of distributions, and, for all wCc1([0,T);C2(𝕋3))w\in C^{1}_{c}([0,T);C^{2}(\mathbb{T}^{3})), we have

0T𝕋3u(twΔw)𝑑x𝑑t=0.\int_{0}^{T}\int_{\mathbb{T}^{3}}u(-\partial_{t}w-\Delta w)\,dx\,dt=0\,. (2.41)

As in Remark 2.8, the initial condition is only “modulo gradients”.

It is immediate to check that

uLtrLxp(𝕋3×(0,T))phLtrLxp(𝕋3×(0,T)),\|u\|_{L^{r}_{t}L^{p}_{x}(\mathbb{T}^{3}\times(0,T))}\lesssim_{p}\|h\|_{L^{r}_{t}L^{p}_{x}(\mathbb{T}^{3}\times(0,T))}\,, (2.42)

for any r[1,]r\in[1,\infty] and p(1,)p\in(1,\infty).

Moreover, there is uniqueness when uLtrLxp(𝕋3×(0,T))u\in L^{r}_{t}L^{p}_{x}(\mathbb{T}^{3}\times(0,T)). That is, necessarily uu is given by (2.40). Indeed, if divu=0\operatorname{div}u=0, then u=uu=\mathbb{P}u, and (2.41) simply asserts that uu solves the heat equation with zero initial condition.

2.5. Weighted pressure estimates

To estimate the boundary term πη\pi\nabla\eta in (LABEL:eqn:outer), where π\pi is the “inner pressure”, we require estimates for the singular integral operator (Δ)1divdiv(-\Delta)^{-1}\operatorname{div}\operatorname{div} in weighted spaces. Notably, (Δ)1divdivF=𝑹𝑹:F(-\Delta)^{-1}\operatorname{div}\operatorname{div}F=\bm{R}\otimes\bm{R}:F, where F:33×3F:\mathbb{R}^{3}\to\mathbb{R}^{3\times 3} is a tensor and 𝑹=(R1,R2,R3)\bm{R}=(R_{1},R_{2},R_{3}) is the vector of Riesz transforms RiR_{i}, whose kernels are c3ξi/|ξ|4c_{3}\xi_{i}/|\xi|^{4}.

For FL1(3)F\in L^{1}(\mathbb{R}^{3}) compactly supported in BRB_{R} with R>0R>0, we evidently have

|(Δ)1divdivF|ξ3FL1(BR),|ξ|2R.|(-\Delta)^{-1}\operatorname{div}\operatorname{div}F|\lesssim\langle\xi\rangle^{-3}\|F\|_{L^{1}(B_{R})}\,,\quad|\xi|\geq 2R\,. (2.43)

For FLwp(3)F\in L^{p}_{w}(\mathbb{R}^{3}) with p(1,+)p\in(1,+\infty) and R2R\geq 2, we require the estimate

(Δ)1divdivFLp(B10RBR)pR3+3pFLwp.\|(-\Delta)^{-1}\operatorname{div}\operatorname{div}F\|_{L^{p}(B_{10R}\setminus B_{R})}\lesssim_{p}R^{-3+\frac{3}{p}}\|F\|_{L^{p}_{w}}\,. (2.44)

We split F=F𝟏B20RBR/2+F(1𝟏B20RBR/2)F=F\mathbf{1}_{B_{20R}\setminus B_{R/2}}+F(1-\mathbf{1}_{B_{20R}\setminus B_{R/2}}). Then, in the near field, we have

(Δ)1divdivF𝟏B20RBR/2Lp(B10RBR)pR4FLwp,\|(-\Delta)^{-1}\operatorname{div}\operatorname{div}F\mathbf{1}_{B_{20R}\setminus B_{R/2}}\|_{L^{p}(B_{10R}\setminus B_{R})}\lesssim_{p}R^{-4}\|F\|_{L^{p}_{w}}\,, (2.45)

whereas, whenever ξB10RBR\xi\in B_{10R}\setminus B_{R}, we have the contribution

|(Δ)1divdivF(1𝟏B20RBR/2)|(3|F|)(ξ)pξ3FLwp,|(-\Delta)^{-1}\operatorname{div}\operatorname{div}F(1-\mathbf{1}_{B_{20R}\setminus B_{R/2}})|\lesssim(\langle\cdot\rangle^{-3}\ast|F|)(\xi)\lesssim_{p}\langle\xi\rangle^{-3}\|F\|_{L^{p}_{w}}\,, (2.46)

as in Remark 7.2, from the far field. Hence,

(Δ)1divdivF(1𝟏B20RBR/2)Lp(B10RBR)pR3+3pFLwp,\|(-\Delta)^{-1}\operatorname{div}\operatorname{div}F(1-\mathbf{1}_{B_{20R}\setminus B_{R/2}})\|_{L^{p}(B_{10R}\setminus B_{R})}\lesssim_{p}R^{-3+\frac{3}{p}}\|F\|_{L^{p}_{w}}\,, (2.47)

and the estimate follows by combining (2.45) and (2.47). In practice, this estimate will sometimes be coupled with the embedding L8(3)Lwp(3)L^{\infty}_{8}(\mathbb{R}^{3})\subset L^{p}_{w}(\mathbb{R}^{3}).

3. The integral equations

In what follows Ω\Omega is either a smooth, bounded domain or the periodic box 𝕋3\mathbb{T}^{3}. For τ¯\bar{\tau}\in\mathbb{R}, t¯>0\bar{t}>0, and α,β>0\alpha,\beta>0, we define the norms

ΦXτ¯α:=supττ¯eταΦ(,τ)Lw\|\Phi\|_{X^{\alpha}_{\bar{\tau}}}:=\sup_{\tau\leq\bar{\tau}}e^{-\tau\alpha}\|\Phi(\cdot,\tau)\|_{L^{\infty}_{w}} (3.1)
ψYt¯β:=sups(0,t¯)sβψLtrLxp(Ω×(0,s)),\|\psi\|_{Y^{\beta}_{\bar{t}}}:=\sup_{s\in(0,\bar{t})}s^{-\beta}\|\psi\|_{L^{r}_{t}L^{p}_{x}(\Omega\times(0,s))}\,, (3.2)

where r,p1r,p\gg 1 will be fixed later. The function spaces Xτ¯αX^{\alpha}_{\bar{\tau}} and Yt¯βY^{\beta}_{\bar{t}} consist of C((,τ¯];Lw(3))C((-\infty,\bar{\tau}];L^{\infty}_{w}(\mathbb{R}^{3})) and measurable functions, respectively, with finite norm. Let

Zt¯α,β:=Xτ¯α×Yt¯βZ^{\alpha,\beta}_{\bar{t}}:=X^{\alpha}_{\bar{\tau}}\times Y^{\beta}_{\bar{t}} (3.3)

endowed with the norm

(Φ,ψ)Zt¯α,β=ΦXτ¯α+ψYt¯β.\|(\Phi,\psi)\|_{Z^{\alpha,\beta}_{\bar{t}}}=\|\Phi\|_{X^{\alpha}_{\bar{\tau}}}+\|\psi\|_{Y^{\beta}_{\bar{t}}}\,. (3.4)

We drop the dependence on τ¯\bar{\tau} from Zt¯α,βZ^{\alpha,\beta}_{\bar{t}} since we always assume that τ¯=logt¯\bar{\tau}=\log\bar{t}.

We use the decomposition

Φ=Φlin+Φper,\Phi=\Phi^{\rm lin}+\Phi^{\rm per}\,, (3.5)

where

Φlin(,τ)=Ulin(,τ)=Re(eλτρ)\Phi^{\rm lin}(\cdot,\tau)=U^{\rm lin}(\cdot,\tau)={\rm Re}(e^{\lambda\tau}\rho) (3.6)

was defined in (2.4).

Our goal is to solve a set of integral equations for Φper\Phi^{\rm per} and ψ\psi:

(Φper,ψ)=L[(Φper,ψ)]+B[(Φper,ψ)]+G(\Phi^{\rm per},\psi)=L[(\Phi^{\rm per},\psi)]+B[(\Phi^{\rm per},\psi)]+G (3.7)

where L=(Li,Lo)L=(L_{i},L_{o}), B=(Bi,Bo)B=(B_{i},B_{o}), and G=(Gi,Go)G=(G_{i},G_{o}) will be specified below. The integral equations will be a reformulation of the inner and outer equations introduced in Section 1.

We want to show that, for an appropriate choice of the parameters α\alpha and β\beta, defined in (4.3), and r,p1r,p\gg 1, there exists t¯>0\bar{t}>0 such that the integral equations admit a unique solution (Φper,ψ)Zt¯α,β(\Phi^{\rm per},\psi)\in Z^{\alpha,\beta}_{\bar{t}}. In what follows, we allow the implied constants to depend on rr, pp, and aa.

We now determine the above operators, beginning with the inner integral equation.

3.1. Inner integral equation

Recall that the inner PDE is

τΦ𝑳ssΦ+Φ(ΦN)+div(N~ΦΨ+N~ΨΦ)+U¯Ψ+ΨU¯+Π=0,\begin{split}\partial_{\tau}\Phi-\bm{L}_{\rm ss}&\Phi+\Phi\cdot\nabla(\Phi N)+\operatorname{div}(\widetilde{N}\Phi\otimes\Psi+\widetilde{N}\Psi\otimes\Phi)\\ &\quad+\bar{U}\cdot\nabla\Psi+\Psi\cdot\nabla\bar{U}+\nabla\Pi=0\,,\end{split} (3.8)

which must be satisfied on the support of NN, and which we seek to solve in the whole space. With the decomposition (3.5), we can derive an equation for Φper\Phi^{\rm per}. The equation is

τΦper𝑳ssΦper=div𝑳[(Φper,ψ)]+div𝑩[(Φper,ψ)]+div𝑮,\partial_{\tau}\Phi^{\rm per}-\bm{L}_{\rm ss}\Phi^{\rm per}=\mathbb{P}\operatorname{div}\bm{L}[(\Phi^{\rm per},\psi)]+\mathbb{P}\operatorname{div}\bm{B}[(\Phi^{\rm per},\psi)]+\mathbb{P}\operatorname{div}\bm{G}\,, (3.9)

where 𝑳\bm{L} is a linear operator in (Φper,ψ)(\Phi^{\rm per},\psi) given by

𝑳[(Φper,ψ)]=NΦlinΦper+NΦperΦlin=:𝑳1[(Φper,ψ)]+N~ΦlinΨ+N~ΨΦlin=:𝑳2[(Φper,ψ)]+U¯Ψ+ΨU¯=:𝑳3[(Φper,ψ)].\begin{split}-\bm{L}[(\Phi^{\rm per},\psi)]&=\underbrace{N\Phi^{\rm lin}\otimes\Phi^{\rm per}+N\Phi^{\rm per}\otimes\Phi^{\rm lin}}_{=:-\bm{L}_{1}[(\Phi^{\rm per},\psi)]}+\underbrace{\widetilde{N}\Phi^{\rm lin}\otimes\Psi+\widetilde{N}\Psi\otimes\Phi^{\rm lin}}_{=:-\bm{L}_{2}[(\Phi^{\rm per},\psi)]}\\ &\qquad+\underbrace{\bar{U}\otimes\Psi+\Psi\otimes\bar{U}}_{=:-\bm{L}_{3}[(\Phi^{\rm per},\psi)]}\,.\end{split} (3.10)

The operator 𝑩[(Φper,ψ)]=𝑩[(Φper,ψ),(Φper,ψ)]\bm{B}[(\Phi^{\rm per},\psi)]=\bm{B}[(\Phi^{\rm per},\psi),(\Phi^{\rm per},\psi)] is induced by the bilinear form

𝑩[(Φ1per,ψ1),(Φ2per,ψ2)]=NΦ2perΦ1per=:𝑩1[Φ1per,Φ2per]+N~Φ1perΨ2+N~Ψ2Φ1per=:𝑩2[(Φ1per,ψ1),(Φ2per,ψ2)].-\bm{B}[(\Phi^{\rm per}_{1},\psi_{1}),(\Phi^{\rm per}_{2},\psi_{2})]=\underbrace{N\Phi^{\rm per}_{2}\otimes\Phi^{\rm per}_{1}}_{=:-\bm{B}_{1}[\Phi^{\rm per}_{1},\Phi^{\rm per}_{2}]}+\underbrace{\widetilde{N}\Phi^{\rm per}_{1}\otimes\Psi_{2}+\widetilde{N}\Psi_{2}\otimes\Phi^{\rm per}_{1}}_{=:-\bm{B}_{2}[(\Phi^{\rm per}_{1},\psi_{1}),(\Phi^{\rm per}_{2},\psi_{2})]}\,. (3.11)

We finally have

𝑮=NΦlinΦlin.-\bm{G}=N\Phi^{\rm lin}\otimes\Phi^{\rm lin}\,. (3.12)

The associated integral operators are

Li[(Φper,ψ)]=τe(τs)𝑳ssdiv𝑳[(Φper,ψ)](,s)𝑑sL_{i}[(\Phi^{\rm per},\psi)]=\int_{-\infty}^{\tau}e^{(\tau-s)\bm{L}_{\rm ss}}\mathbb{P}\operatorname{div}\bm{L}[(\Phi^{\rm per},\psi)](\cdot,s)\,ds (3.13)
Bi[(Φper,ψ)]=τe(τs)𝑳ssdiv𝑩[(Φper,ψ)](,s)𝑑sB_{i}[(\Phi^{\rm per},\psi)]=\int_{-\infty}^{\tau}e^{(\tau-s)\bm{L}_{\rm ss}}\mathbb{P}\operatorname{div}\bm{B}[(\Phi^{\rm per},\psi)](\cdot,s)\,ds (3.14)
Gi=τe(τs)𝑳ssdiv𝑮(,s)𝑑s.G_{i}=\int_{-\infty}^{\tau}e^{(\tau-s)\bm{L}_{\rm ss}}\mathbb{P}\operatorname{div}\bm{G}(\cdot,s)\,ds\,. (3.15)

3.2. Outer integral equation

Let ψdiv[Φ]\psi^{\rm div}[\Phi] be the solution of the Stokes equations with inhomogeneous divergence: When Ω\Omega is a smooth, bounded domain, we define ψdiv[Φ]\psi^{\rm div}[\Phi] as in Lemma 2.7 with h=ηϕh=-\nabla\eta\cdot\phi. In the periodic setting, we set

ψdiv[Φ]=Δ1(ηϕ),\psi^{\rm div}[\Phi]=-\nabla\Delta^{-1}(\nabla\eta\cdot\phi)\,, (3.16)

see the discussion in Section 2.4.

Recall that the outer PDE is posed on Ω\Omega and reads

{tψΔψ+div(ψψ)+(ψη)ϕ+(ϕη)ψϕΔη2ϕη+(ϕη)ηϕ+πη+q=0divψ=ηϕ.\begin{cases}&\partial_{t}\psi-\Delta\psi+\operatorname{div}(\psi\otimes\psi)+(\psi\cdot\nabla\eta)\phi+(\phi\cdot\nabla\eta)\psi\\ &\qquad-\phi\Delta\eta-2\nabla\phi\cdot\nabla\eta+(\phi\cdot\nabla\eta)\eta\phi+\pi\nabla\eta+\nabla q=0\\ &\operatorname{div}\psi=-\nabla\eta\cdot\phi\,.\end{cases} (3.17)

It will be convenient to rewrite, for each component ϕi\phi_{i} of the vector field ϕ\phi,

ϕiη=div(ϕiη)ϕiΔη,\nabla\phi_{i}\cdot\nabla\eta=\operatorname{div}(\phi_{i}\nabla\eta)-\phi_{i}\Delta\eta\,, (3.18)

to keep everything in divergence form:

{tψΔψ+div(ψψ)+(ψη)ϕ+(ϕη)ψ+ϕΔη2div(ϕη)+(ϕη)ηϕ+πη+q=0divψ=ηϕ.\begin{cases}&\partial_{t}\psi-\Delta\psi+\operatorname{div}(\psi\otimes\psi)+(\psi\cdot\nabla\eta)\phi+(\phi\cdot\nabla\eta)\psi\\ &\qquad+\phi\Delta\eta-2\operatorname{div}(\phi\otimes\nabla\eta)+(\phi\cdot\nabla\eta)\eta\phi+\pi\nabla\eta+\nabla q=0\\ &\operatorname{div}\psi=-\nabla\eta\cdot\phi\,.\end{cases} (3.19)

The PDE is supplemented with the boundary condition ψ|Ω=0\psi|_{\partial\Omega}=0. The inner pressure π\pi, which appears in the boundary term πη\pi\nabla\eta, is given by its similarity profile

Π=(Δ)1divdiv(U¯Φper+ΦperU¯𝑳[(Φper,ψ)]𝑩[(Φper,ψ)]𝑮).\Pi=(-\Delta)^{-1}\operatorname{div}\operatorname{div}(\bar{U}\otimes\Phi^{\rm per}+\Phi^{\rm per}\otimes\bar{U}-\bm{L}[(\Phi^{\rm per},\psi)]-\bm{B}[(\Phi^{\rm per},\psi)]-\bm{G})\,. (3.20)

Hence, we can rewrite it in physical variables as

π=(Δ)1divdiv(u¯ϕper+ϕperu¯[(Φper,ψ)]𝒃[(Φper,ψ)]𝒈),\pi=(-\Delta)^{-1}\operatorname{div}\operatorname{div}(\bar{u}\otimes\phi^{\rm per}+\phi^{\rm per}\otimes\bar{u}-{\bm{\ell}}[(\Phi^{\rm per},\psi)]-{\bm{b}}[(\Phi^{\rm per},\psi)]-{\bm{g}})\,, (3.21)

where \bm{\ell}, 𝒃\bm{b}, and 𝒈\bm{g} will represent 𝑳\bm{L}, 𝑩\bm{B}, and 𝑮\bm{G} in physical variables as opposed to similarity variables.

The integral equation for ψ\psi is

ψ=ψdiv[Φ]0te(ts)A[ϕΔη2div(ϕη)+(ϕη)ηϕ+πη](,s)𝑑s0te(ts)A[div(ψψ)+(ψη)ϕ+(ϕη)ψ](,s)𝑑s.\begin{split}\psi=\psi^{\rm div}[\Phi]&-\int_{0}^{t}e^{(t-s)A}\mathbb{P}[\phi\Delta\eta-2\operatorname{div}(\phi\otimes\nabla\eta)+(\phi\cdot\nabla\eta)\eta\phi+\pi\nabla\eta](\cdot,s)\,ds\\ &-\int_{0}^{t}e^{(t-s)A}\mathbb{P}[\operatorname{div}(\psi\otimes\psi)+(\psi\cdot\nabla\eta)\phi+(\phi\cdot\nabla\eta)\psi](\cdot,s)\,ds\,.\end{split} (3.22)

We rewrite it as

ψ=Lo[(Φper,ψ)]+Bo[(Φper,ψ)]+Go,\psi=L_{o}[(\Phi^{\rm per},\psi)]+B_{o}[(\Phi^{\rm per},\psi)]+G_{o}\,, (3.23)

where LoL_{o} acts linearly on (Φper,ψ)(\Phi^{\rm per},\psi) according to

Lo[(Φper,ψ)]=ψdiv[Φper]0te(ts)A[ϕperΔη2div(ϕperη)](,s)𝑑s0te(ts)A[(ϕlinη)(ηϕper+ψ)+((ηϕper+ψ)η)ϕlin](,s)𝑑s0te(ts)A[(Δ)1divdiv(u¯ϕper+ϕperu¯[(Φper,ψ)])(,s)η]𝑑s.\begin{split}&L_{o}[(\Phi^{\rm per},\psi)]=\psi^{\rm div}[\Phi^{\rm per}]-\int_{0}^{t}e^{(t-s)A}\mathbb{P}[\phi^{\rm per}\Delta\eta-2\operatorname{div}(\phi^{\rm per}\otimes\nabla\eta)](\cdot,s)\,ds\\ &\quad-\int_{0}^{t}e^{(t-s)A}\mathbb{P}[(\phi^{\rm lin}\cdot\nabla\eta)(\eta\phi^{\rm per}+\psi)+((\eta\phi^{\rm per}+\psi)\cdot\nabla\eta)\phi^{\rm lin}](\cdot,s)\,ds\\ &\quad-\int_{0}^{t}e^{(t-s)A}\mathbb{P}[(-\Delta)^{-1}\operatorname{div}\operatorname{div}(\bar{u}\otimes\phi^{\rm per}+\phi^{\rm per}\otimes\bar{u}-\bm{\ell}[(\Phi^{\rm per},\psi)])(\cdot,s)\nabla\eta]\,ds\,.\end{split} (3.24)

The operator BoB_{o} is induced by the bilinear form

Bo[(Φ1per,ψ1),(Φ2per,ψ2)]=0te(ts)A[ηϕ1per(ϕ2perη)+div(ψ1ψ2)](,s)𝑑s0te(ts)A[(ψ1η)ϕ2per+(ϕ1perη)ψ2](,s)𝑑s0te(ts)A[(Δ)1divdiv(𝒃[(Φ1per,ψ1),(Φ2per,ψ2)])(,s)η]𝑑s.\begin{split}&B_{o}[(\Phi^{\rm per}_{1},\psi_{1}),(\Phi^{\rm per}_{2},\psi_{2})]=-\int_{0}^{t}e^{(t-s)A}\mathbb{P}[\eta\phi_{1}^{\rm per}(\phi^{\rm per}_{2}\cdot\nabla\eta)+\operatorname{div}(\psi_{1}\otimes\psi_{2})](\cdot,s)\,ds\\ &\quad-\int_{0}^{t}e^{(t-s)A}\mathbb{P}[(\psi_{1}\cdot\nabla\eta)\phi^{\rm per}_{2}+(\phi_{1}^{\rm per}\cdot\nabla\eta)\psi_{2}](\cdot,s)\,ds\\ &\quad-\int_{0}^{t}e^{(t-s)A}\mathbb{P}[(-\Delta)^{-1}\operatorname{div}\operatorname{div}(-\bm{b}[(\Phi^{\rm per}_{1},\psi_{1}),(\Phi^{\rm per}_{2},\psi_{2})])(\cdot,s)\nabla\eta]\,ds\,.\end{split} (3.25)

and finally,

Go=ψdiv[Φlin]0te(ts)A[ϕlinΔη2div(ϕlinη)+ηϕlin(ϕlinη)](,s)𝑑s0te(ts)A[(Δ)1divdiv(𝒈(,s))η]𝑑s.\begin{split}G_{o}=\psi^{\rm div}[\Phi^{\rm lin}]&-\int_{0}^{t}e^{(t-s)A}\mathbb{P}[\phi^{\rm lin}\Delta\eta-2\operatorname{div}(\phi^{\rm lin}\otimes\nabla\eta)+\eta\phi^{\rm lin}(\phi^{\rm lin}\cdot\nabla\eta)](\cdot,s)\,ds\\ &-\int_{0}^{t}e^{(t-s)A}\mathbb{P}[(-\Delta)^{-1}\operatorname{div}\operatorname{div}(-\bm{g}(\cdot,s))\nabla\eta]\,ds\,.\end{split} (3.26)

3.3. Elementary estimates

We have the following elementary estimate for every ψYt¯β\psi\in Y^{\beta}_{\bar{t}}. From now on, suppose that t¯1\bar{t}\leq 1. Let β(0,β)\beta^{\prime}\in(0,\beta). Then (extending ψ\psi by zero in time as necessary)

tβψLtrLxp(Ω×(0,t¯))(k02kβr𝟏(2k1,2k)ψLtrLxp(Ω×(0,t¯))r)1r(k02(ββ)kr)1rψYt¯βψYt¯β,\begin{split}\|t^{-\beta^{\prime}}\psi\|_{L^{r}_{t}L^{p}_{x}(\Omega\times(0,\bar{t}))}&\lesssim\left(\sum_{k\leq 0}2^{-k\beta^{\prime}r}\|\mathbf{1}_{(2^{k-1},2^{k})}\psi\|_{L^{r}_{t}L^{p}_{x}(\Omega\times(0,\bar{t}))}^{r}\right)^{\frac{1}{r}}\\ &\lesssim\left(\sum_{k\leq 0}2^{(\beta-\beta^{\prime})kr}\right)^{\frac{1}{r}}\|\psi\|_{Y^{\beta}_{\bar{t}}}\\ &\lesssim\|\psi\|_{Y^{\beta}_{\bar{t}}}\,,\end{split} (3.27)

where the implied constants depend on β,β,r\beta,\beta^{\prime},r. Hence,

eτ(β12+32p+1r)ΨN~LτrLξp(3×(,τ¯))ψYt¯β,\|e^{\tau(-\beta^{\prime}-\frac{1}{2}+\frac{3}{2p}+\frac{1}{r})}\Psi\widetilde{N}\|_{L^{r}_{\tau}L^{p}_{\xi}(\mathbb{R}^{3}\times(-\infty,\bar{\tau}))}\lesssim\|\psi\|_{Y^{\beta}_{\bar{t}}}\,, (3.28)

where the 1/r1/r arises from the change of measure eτdτ=dte^{\tau}\,d\tau=dt.

Meanwhile, we have

ϕ(,t)L=t12Φ(,τ)L.\|\phi(\cdot,t)\|_{L^{\infty}}=t^{-\frac{1}{2}}\|\Phi(\cdot,\tau)\|_{L^{\infty}}\,. (3.29)

Since suppη{19|x|17}\mathop{\mathrm{supp}}\nabla\eta\subset\{\frac{1}{9}\leq|x|\leq\frac{1}{7}\},

ϕ(,t)L(suppη)t32Φ(,τ)Lw.\|\phi(\cdot,t)\|_{L^{\infty}(\mathop{\mathrm{supp}}\nabla\eta)}\lesssim t^{\frac{3}{2}}\|\Phi(\cdot,\tau)\|_{L^{\infty}_{w}}\,. (3.30)

4. Outer estimates

We begin with the outer estimates. Crucially, we will see that the boundary terms from Φlin\Phi^{\rm lin} will limit the decay rate β\beta of ψ\psi.

Except in the ψdiv\psi^{\rm div} terms which correct the divergence, it will be convenient to work with pointwise estimates in time and use the observation that, for functions ff,

fLr(0,t)t1rfL(0,t).\|f\|_{L^{r}(0,t)}\leq t^{\frac{1}{r}}\|f\|_{L^{\infty}(0,t)}\,. (4.1)

Let

κ:=κ(r)=1r+32.\kappa:=\kappa(r)=\frac{1}{r}+\frac{3}{2}\,. (4.2)

This exponent will appear in the decay rates α\alpha and β\beta. The 1/r1/r term will be seen to come from (4.1). We recognize the exponent in (3.30) as κ1/r\kappa-1/r.

We then define

β:=κ+a18,α:=κ+a.\beta:=\kappa+a-\frac{1}{8}\,,\quad\alpha:=\kappa+a\,. (4.3)

Finally, we recall the estimate from Lemma 2.5,

Φlin(,τ)Lweτa,for any τ.\|\Phi^{\rm lin}(\cdot,\tau)\|_{L^{\infty}_{w}}\lesssim e^{\tau a}\,,\quad\text{for any $\tau\in\mathbb{R}$}\,. (4.4)

4.1. Estimate on GoG_{o} (3.26)

We begin with the divergence term, which will already have the worst contribution. It is estimated using Lemma 2.7, (2.42) (depending on whether Ω\Omega is a bounded or a periodic domain), (3.30) and (4.4):

ψdiv[Φlin]LtrLxp(Ω×(0,t))\displaystyle\|\psi^{\rm div}[\Phi^{\rm lin}]\|_{L^{r}_{t}L^{p}_{x}(\Omega\times(0,t))} ηϕlinLtrLxp(Ω×(0,t))\displaystyle\lesssim\|\nabla\eta\cdot\phi^{\rm lin}\|_{L^{r}_{t}L^{p}_{x}(\Omega\times(0,t))} (4.5)
tκΦlinLτLw(3×(,logt))\displaystyle\lesssim t^{\kappa}\|\Phi^{\rm lin}\|_{L^{\infty}_{\tau}L^{\infty}_{w}(\mathbb{R}^{3}\times(-\infty,\log t))}
tκ+a.\displaystyle\lesssim t^{\kappa+a}\,.

The remaining non-pressure terms are estimated using either Lemma 2.6 or (2.38):

0te(ts)A[ϕlinΔη2div(ϕlinη)+ηϕlin(ϕlinη)](,s)𝑑sLp(Ω)\displaystyle\left\|\int_{0}^{t}e^{(t-s)A}\mathbb{P}[\phi^{\rm lin}\Delta\eta-2\operatorname{div}(\phi^{\rm lin}\otimes\nabla\eta)+\eta\phi^{\rm lin}(\phi^{\rm lin}\cdot\nabla\eta)](\cdot,s)\,ds\right\|_{L^{p}(\Omega)} (4.6)
0t[ϕlinΔη](,s)Lp(Ω)+(ts)12ϕlinη(,s)Lp(Ω)\displaystyle\quad\lesssim\int_{0}^{t}\|[\phi^{\rm lin}\Delta\eta](\cdot,s)\|_{L^{p}(\Omega)}+(t-s)^{-\frac{1}{2}}\|\phi^{\rm lin}\otimes\nabla\eta(\cdot,s)\|_{L^{p}(\Omega)}
+ϕlin(,s)L(suppη)2ds\displaystyle\quad\quad\quad+\|\phi^{\rm lin}(\cdot,s)\|_{L^{\infty}(\mathop{\mathrm{supp}}\nabla\eta)}^{2}\,ds
0tsa+κ1r+(ts)12sa+κ1r+s2(a+κ1r)ds\displaystyle\quad\lesssim\int_{0}^{t}s^{a+\kappa-\frac{1}{r}}+(t-s)^{-\frac{1}{2}}s^{a+\kappa-\frac{1}{r}}+s^{2(a+\kappa-\frac{1}{r})}\,ds
ta+κ1r+12.\displaystyle\quad\lesssim t^{a+\kappa-\frac{1}{r}+\frac{1}{2}}\,.

To estimate the pressure terms, we observe from (2.44) that

(Δ)1divdiv(NΦlinΦlin)(,s)Lp(suppN)s2a+12(33p).\|(-\Delta)^{-1}\operatorname{div}\operatorname{div}(N\Phi^{\rm lin}\otimes\Phi^{\rm lin})(\cdot,s)\|_{L^{p}(\mathop{\mathrm{supp}}\nabla N)}\lesssim s^{2a+\frac{1}{2}(3-\frac{3}{p})}\,. (4.7)

Therefore, after changing variables,

0te(ts)A[(Δ)1divdiv(ηϕlinϕlin)(,s)η]𝑑sLp(Ω)\displaystyle\left\|\int_{0}^{t}e^{(t-s)A}\mathbb{P}[(-\Delta)^{-1}\operatorname{div}\operatorname{div}(\eta\phi^{\rm lin}\otimes\phi^{\rm lin})(\cdot,s)\nabla\eta]\,ds\right\|_{L^{p}(\Omega)} (4.8)
0ts2a1+κ1r𝑑s\displaystyle\quad\lesssim\int_{0}^{t}s^{2a-1+\kappa-\frac{1}{r}}\,ds
t2a+κ1r.\displaystyle\quad\lesssim t^{2a+\kappa-\frac{1}{r}}\,.

Notice that the 1/r-1/r factors in (4.6) and (4.8) will drop after applying (4.1). Combining (4.5) and (4.6), We conclude that for all t(0,t¯)t\in(0,\bar{t}),

GoLtrLxp(Ω×(0,t))tκ+a.\|G_{o}\|_{L^{r}_{t}L^{p}_{x}(\Omega\times(0,t))}\lesssim t^{\kappa+a}\,. (4.9)

Hence, (4.3) gives

GoYt¯βt¯κ+aβ=t¯18.\|G_{o}\|_{Y^{\beta}_{\bar{t}}}\lesssim\bar{t}^{\kappa+a-\beta}=\bar{t}^{\frac{1}{8}}\,. (4.10)

4.2. Estimate on LoL_{o} (3.24)

The terms in the first line of (3.24) are estimated similarly to the GoG_{o} estimate except that aa is replaced by α\alpha and Φlin\Phi^{\rm lin} by Φper\Phi^{\rm per}. We employ either Lemma 2.6 or (2.38) to estimate the remaining non-pressure terms:

0te(ts)A[(ψη)ϕlin](,s)𝑑sLp(Ω)0tψ(,s)Lpϕlin(,s)L(suppη)𝑑st32+a+11r+βψYt¯βtκ+a+β+1ψYt¯β,\begin{split}&\left\|\int_{0}^{t}e^{(t-s)A}\mathbb{P}[(\psi\cdot\nabla\eta)\phi^{\rm lin}](\cdot,s)\,ds\right\|_{L^{p}(\Omega)}\\ &\quad\lesssim\int_{0}^{t}\|\psi(\cdot,s)\|_{L^{p}}\|\phi^{\rm lin}(\cdot,s)\|_{L^{\infty}(\mathop{\mathrm{supp}}\nabla\eta)}\,ds\\ &\quad\lesssim t^{\frac{3}{2}+a+1-\frac{1}{r}+\beta}\|\psi\|_{Y^{\beta}_{\bar{t}}}\\ &\quad\lesssim t^{\kappa+a+\beta+1}\|\psi\|_{Y^{\beta}_{\bar{t}}}\,,\end{split} (4.11)

and

0te(ts)A[(ϕlinη)(ηϕper+ψ)+((ηϕper+ψ)η)ϕlin](,s)𝑑sLp(Ω)0tϕlin(,s)|AL(Ω)(ϕper(,s)Lp(suppη)+ψ(,s)Lp(Ω))ds0ts32+a(s32+αΦperXτ¯α+ψ(,s)Lp(Ω))𝑑st3+a+αΦperXτ¯α+t32+a+β+11rψYt¯β.\begin{split}&\left\|\int_{0}^{t}e^{(t-s)A}\mathbb{P}[(\phi^{\rm lin}\cdot\nabla\eta)(\eta\phi^{\rm per}+\psi)+((\eta\phi^{\rm per}+\psi)\cdot\nabla\eta)\phi^{\rm lin}](\cdot,s)\,ds\right\|_{L^{p}(\Omega)}\\ &\lesssim\int_{0}^{t}\|\phi^{\rm lin}(\cdot,s)|_{A}\|_{L^{\infty}(\Omega)}(\|\phi^{\rm per}(\cdot,s)\|_{L^{p}(\mathop{\mathrm{supp}}\nabla\eta)}+\|\psi(\cdot,s)\|_{L^{p}(\Omega)})\,ds\\ &\lesssim\int_{0}^{t}s^{\frac{3}{2}+a}(s^{\frac{3}{2}+\alpha}\|\Phi^{\rm per}\|_{X^{\alpha}_{\bar{\tau}}}+\|\psi(\cdot,s)\|_{L^{p}(\Omega)})\,ds\\ &\lesssim t^{3+a+\alpha}\|\Phi^{\rm per}\|_{X^{\alpha}_{\bar{\tau}}}+t^{\frac{3}{2}+a+\beta+1-\frac{1}{r}}\|\psi\|_{Y^{\beta}_{\bar{t}}}\,.\end{split} (4.12)

For the pressure terms, whenever sτ¯s\leq\bar{\tau}, we have

(Δ)1divdiv(NΦlinΦper+NΦperΦlin)(,s)Lp(suppN)sa+α+12(33p)ΦperXτ¯α,\begin{split}\|(-\Delta)^{-1}\operatorname{div}\operatorname{div}(N\Phi^{\rm lin}\otimes\Phi^{\rm per}&+N\Phi^{\rm per}\otimes\Phi^{\rm lin})(\cdot,s)\|_{L^{p}(\mathop{\mathrm{supp}}\nabla N)}\\ &\lesssim s^{a+\alpha+\frac{1}{2}(3-\frac{3}{p})}\|\Phi^{\rm per}\|_{X^{\alpha}_{\bar{\tau}}}\,,\end{split} (4.13)
(Δ)1divdiv(U¯Φper+ΦperU¯)(,s)Lp(suppN)sα+12(33p)ΦperXτ¯α,\begin{split}\|(-\Delta)^{-1}\operatorname{div}\operatorname{div}(\bar{U}\otimes\Phi^{\rm per}&+\Phi^{\rm per}\otimes\bar{U})(\cdot,s)\|_{L^{p}(\mathop{\mathrm{supp}}\nabla N)}\\ &\lesssim s^{\alpha+\frac{1}{2}(3-\frac{3}{p})}\|\Phi^{\rm per}\|_{X^{\alpha}_{\bar{\tau}}}\,,\end{split} (4.14)
(Δ)1divdiv(U¯Ψ+ΨU¯)(,s)Lp(suppN)s12(33p)Ψ(,s)Lp(suppU¯),\begin{split}\|(-\Delta)^{-1}\operatorname{div}\operatorname{div}(\bar{U}\otimes\Psi+&\Psi\otimes\bar{U})(\cdot,s)\|_{L^{p}(\mathop{\mathrm{supp}}\nabla N)}\\ &\lesssim s^{\frac{1}{2}(3-\frac{3}{p})}\|\Psi(\cdot,s)\|_{L^{p}(\mathop{\mathrm{supp}}\bar{U})}\,,\end{split} (4.15)
(Δ)1divdiv(N~ΦlinΨ+N~ΨΦlin)(,s)Lp(suppN)sa+12(33p)N~Ψ(,s)Lp.\begin{split}\|(-\Delta)^{-1}\operatorname{div}\operatorname{div}(\widetilde{N}\Phi^{\rm lin}\otimes\Psi+&\widetilde{N}\Psi\otimes\Phi^{\rm lin})(\cdot,s)\|_{L^{p}(\mathop{\mathrm{supp}}\nabla N)}\\ &\lesssim s^{a+\frac{1}{2}(3-\frac{3}{p})}\|\widetilde{N}\Psi(\cdot,s)\|_{L^{p}}\,.\end{split} (4.16)

The terms (4.13) and (4.14) lead to an estimate similar to the pressure term in GoG_{o} but with powers t¯a+α+κ\bar{t}^{a+\alpha+\kappa} and t¯α+κ\bar{t}^{\alpha+\kappa} when measured in LtrLxp(Ω×(0,t¯))L^{r}_{t}L^{p}_{x}(\Omega\times(0,\bar{t})). For the term (4.15), we have

0te(ts)A[(Δ)1divdiv(u¯ψ+ψu¯)(,s)η]𝑑sLp(Ω)\displaystyle\left\|\int_{0}^{t}e^{(t-s)A}\mathbb{P}[(-\Delta)^{-1}\operatorname{div}\operatorname{div}(\bar{u}\otimes\psi+\psi\otimes\bar{u})(\cdot,s)\nabla\eta]\,ds\right\|_{L^{p}(\Omega)} (4.17)
0ts1+κ1rψ(,s)Lp(Ω)𝑑s\displaystyle\quad\lesssim\int_{0}^{t}s^{-1+\kappa-\frac{1}{r}}\|\psi(\cdot,s)\|_{L^{p}(\Omega)}\,ds
tκ2r+βψYt¯β.\displaystyle\quad\lesssim t^{\kappa-\frac{2}{r}+\beta}\|\psi\|_{Y^{\beta}_{\bar{t}}}\,.

The contribution of the term (4.16) is similar but with exponent ta+κ2r+βt^{a+\kappa-\frac{2}{r}+\beta}.

We conclude that

Lo[(Φper,ψ)]Yt¯βt¯κ+αβΦperXτ¯α+t¯κ2rψYt¯βt¯12(Φper,ψ)Zt¯α,β.\|L_{o}[(\Phi^{\rm per},\psi)]\|_{Y^{\beta}_{\bar{t}}}\lesssim\bar{t}^{\kappa+\alpha-\beta}\|\Phi^{\rm per}\|_{X^{\alpha}_{\bar{\tau}}}+\bar{t}^{\kappa-\frac{2}{r}}\|\psi\|_{Y_{\bar{t}}^{\beta}}\lesssim\bar{t}^{\frac{1}{2}}\|(\Phi^{\rm per},\psi)\|_{Z^{\alpha,\beta}_{\bar{t}}}\,. (4.18)

4.3. Estimate on BoB_{o} (3.25)

By the semigroup estimates in Lemma 2.6 (or (2.38), in the periodic setting), for all t(0,t¯)t\in(0,\bar{t}), we have

0te(ts)Adiv[ψ1ψ2](,s)𝑑sLp(Ω)\displaystyle\left\|\int_{0}^{t}e^{(t-s)A}\mathbb{P}\operatorname{div}[\psi_{1}\otimes\psi_{2}](\cdot,s)\,ds\right\|_{L^{p}(\Omega)} (4.19)
0t(ts)1232pψ1(,s)Lpψ2(,s)Lp𝑑s\displaystyle\quad\lesssim\int_{0}^{t}(t-s)^{-\frac{1}{2}-\frac{3}{2p}}\|\psi_{1}(\cdot,s)\|_{L^{p}}\|\psi_{2}(\cdot,s)\|_{L^{p}}\,ds
(0t(ts)(1232p)(2r)𝑑s)1(2r)ψ1LtrLxp(Ω×(0,t))ψ2LtrLxp(Ω×(0,t))\displaystyle\quad\lesssim\left(\int_{0}^{t}(t-s)^{(-\frac{1}{2}-\frac{3}{2p})(2r)^{\prime}}\,ds\right)^{\frac{1}{(2r)^{\prime}}}\|\psi_{1}\|_{L^{r}_{t}L^{p}_{x}(\Omega\times(0,t))}\|\psi_{2}\|_{L^{r}_{t}L^{p}_{x}(\Omega\times(0,t))}
t2βψ1Yt¯βψ2Yt¯β,\displaystyle\quad\lesssim t^{2\beta}\|\psi_{1}\|_{Y^{\beta}_{\bar{t}}}\|\psi_{2}\|_{Y^{\beta}_{\bar{t}}}\,,

where we choose p,r1p,r\gg 1 such that the first term is time integrable. Moreover,

|0te(ts)A[ηϕ1per(ϕ2perη)(,s)]𝑑s|Lp(Ω)0tϕ1per(,s)Lp(suppη)ϕ2per(,s)L(suppη)𝑑st4+2αΦ1perXτ¯αΦ2perXτ¯α,\begin{split}&\left|\int_{0}^{t}e^{(t-s)A}\mathbb{P}[\eta\phi_{1}^{\rm per}(\phi_{2}^{\rm per}\cdot\nabla\eta)(\cdot,s)]\,ds\right|_{L^{p}(\Omega)}\\ &\lesssim\int_{0}^{t}\|\phi_{1}^{\rm per}(\cdot,s)\|_{L^{p}(\mathop{\mathrm{supp}}\nabla\eta)}\|\phi_{2}^{\rm per}(\cdot,s)\|_{L^{\infty}(\mathop{\mathrm{supp}}\nabla\eta)}\,ds\\ &\lesssim t^{4+2\alpha}\|\Phi_{1}^{\rm per}\|_{X^{\alpha}_{\bar{\tau}}}\|\Phi_{2}^{\rm per}\|_{X^{\alpha}_{\bar{\tau}}}\,,\end{split} (4.20)

and

0te(ts)A[(ψ1η)ϕ2per+(ϕ1perη)ψ2](,s)𝑑sLp(Ω)\displaystyle\left\|\int_{0}^{t}e^{(t-s)A}\mathbb{P}[(\psi_{1}\cdot\nabla\eta)\phi_{2}^{\rm per}+(\phi_{1}^{\rm per}\cdot\nabla\eta)\psi_{2}](\cdot,s)\,ds\right\|_{L^{p}(\Omega)} (4.21)
0tsκ1r(ψ1LpΦ2perLw+ψ2LpΦ1perLw)𝑑s\displaystyle\lesssim\int_{0}^{t}s^{\kappa-\frac{1}{r}}(\|\psi_{1}\|_{L^{p}}\|\Phi_{2}^{\rm per}\|_{L^{\infty}_{w}}+\|\psi_{2}\|_{L^{p}}\|\Phi_{1}^{\rm per}\|_{L^{\infty}_{w}})\,ds
(0ts(κ1r+α)r𝑑s)1r(ψ1LtrLxp(Ω×(0,t))Φ2perXτ¯α+ψ2LtrLxp(Ω×(0,t))Φ1perXτ¯α)\displaystyle\lesssim\left(\int_{0}^{t}s^{(\kappa-\frac{1}{r}+\alpha)r^{\prime}}\,ds\right)^{\frac{1}{r^{\prime}}}(\|\psi_{1}\|_{L^{r}_{t}L^{p}_{x}(\Omega\times(0,t))}\|\Phi_{2}^{\rm per}\|_{X^{\alpha}_{\bar{\tau}}}+\|\psi_{2}\|_{L^{r}_{t}L^{p}_{x}(\Omega\times(0,t))}\|\Phi_{1}^{\rm per}\|_{X^{\alpha}_{\bar{\tau}}})
tκ+α+β(ψ1Yt¯βΦ2perXτ¯α+ψ2Yt¯βΦ1perXτ¯α).\displaystyle\lesssim t^{\kappa+\alpha+\beta}(\|\psi_{1}\|_{Y^{\beta}_{\bar{t}}}\|\Phi_{2}^{\rm per}\|_{X^{\alpha}_{\bar{\tau}}}+\|\psi_{2}\|_{Y^{\beta}_{\bar{t}}}\|\Phi_{1}^{\rm per}\|_{X^{\alpha}_{\bar{\tau}}})\,.

Finally, the pressure terms are estimated similarly to the GoG_{o} term and the term (4.16) except with Φper\Phi^{\rm per} replacing Φlin\Phi^{\rm lin}.

Combining (4.19) and (4.21) with (4.1) (also, αβ\alpha\geq\beta), we have

Bo[(Φ1per,ψ1),(Φ2per,ψ2)]Yt¯βt¯β(Φ1per,ψ1)Zt¯α,β(Φ2per,ψ2)Zt¯α,β.\|B_{o}[(\Phi^{\rm per}_{1},\psi_{1}),(\Phi^{\rm per}_{2},\psi_{2})]\|_{Y^{\beta}_{\bar{t}}}\lesssim\bar{t}^{\beta}\|(\Phi^{\rm per}_{1},\psi_{1})\|_{Z^{\alpha,\beta}_{\bar{t}}}\|(\Phi^{\rm per}_{2},\psi_{2})\|_{Z^{\alpha,\beta}_{\bar{t}}}\,. (4.22)

5. Inner estimates

We now turn to the inner estimates, for which our main tool is Lemma 2.3.

5.1. Estimate on GiG_{i} (3.15), (3.12)

For all τ(,τ¯)\tau\in(-\infty,\bar{\tau}), we have (with δ=a/2\delta=a/2, in Lemma 2.3),

Gi(,τ)Lw\displaystyle\|G_{i}(\cdot,\tau)\|_{L^{\infty}_{w}} =τe(τs)𝑳ssdiv𝑮(,s)𝑑sLw\displaystyle=\left\|\int_{-\infty}^{\tau}e^{(\tau-s)\bm{L}_{\rm ss}}\mathbb{P}\operatorname{div}\bm{G}(\cdot,s)\,ds\right\|_{L^{\infty}_{w}} (5.1)
τe(τs)(3a2)(τs)12e2as𝑑se2aτ,\displaystyle\lesssim\int_{-\infty}^{\tau}e^{(\tau-s)(\frac{3a}{2})}(\tau-s)^{-\frac{1}{2}}e^{2as}\,ds\lesssim e^{2a\tau}\,,

that is,

GiXτ¯αe(2aα)τ¯.\|G_{i}\|_{X^{\alpha}_{\bar{\tau}}}\lesssim e^{(2a-\alpha)\bar{\tau}}\,. (5.2)

Notice that 2aα=aκ12a-\alpha=a-\kappa\geq 1 provided r1r\gg 1 and a5a\geq 5.

5.2. Estimate on BiB_{i} (3.14), (3.11)

The estimate for the 𝑩1\bm{B}_{1} terms is analogous to the GiG_{i} estimate. For all τ(,τ¯)\tau\in(-\infty,\bar{\tau}), we have

τe(τs)𝑳ssdiv𝑩1[Φ1per,Φ2per](,s)𝑑sLwe2ατΦ1perXτ¯αΦ2perXτ¯α.\left\|\int_{-\infty}^{\tau}e^{(\tau-s)\bm{L}_{\rm ss}}\mathbb{P}\operatorname{div}\bm{B}_{1}[\Phi^{\rm per}_{1},\Phi^{\rm per}_{2}](\cdot,s)\,ds\right\|_{L^{\infty}_{w}}\lesssim e^{2\alpha\tau}\|\Phi_{1}^{\rm per}\|_{X^{\alpha}_{\bar{\tau}}}\|\Phi_{2}^{\rm per}\|_{X^{\alpha}_{\bar{\tau}}}\,. (5.3)

For the 𝑩2\bm{B}_{2} terms, we apply Lemma 2.3 and (3.28) to get

τe(τs)𝑳ssdiv𝑩2[(Φ1per,ψ1),(Φ2per,ψ2)](,s)𝑑sLw\displaystyle\left\|\int_{-\infty}^{\tau}e^{(\tau-s)\bm{L}_{\rm ss}}\mathbb{P}\operatorname{div}\bm{B}_{2}[(\Phi^{\rm per}_{1},\psi_{1}),(\Phi^{\rm per}_{2},\psi_{2})](\cdot,s)\,ds\right\|_{L^{\infty}_{w}} (5.4)
δτe(τs)(a+δ)(τs)1232pΦ1per(,s)LwΨ2N~(,s)Lp𝑑s\displaystyle\quad\lesssim_{\delta}\int_{-\infty}^{\tau}e^{(\tau-s)(a+\delta)}(\tau-s)^{-\frac{1}{2}-\frac{3}{2p}}\|\Phi_{1}^{\rm per}(\cdot,s)\|_{L^{\infty}_{w}}\|\Psi_{2}\widetilde{N}(\cdot,s)\|_{L^{p}}\,ds
δτe(τs)(a+δ)(τs)1232pesαe(β+1232p1r)s\displaystyle\quad\lesssim_{\delta}\int_{-\infty}^{\tau}e^{(\tau-s)(a+\delta)}(\tau-s)^{-\frac{1}{2}-\frac{3}{2p}}e^{s\alpha}e^{(\beta^{\prime}+\frac{1}{2}-\frac{3}{2p}-\frac{1}{r})s}
×e(β12+32p+1r)sΨ2N~(,s)LpdsΦ1perXτ¯α\displaystyle\quad\quad\quad\quad\quad\quad\times\|e^{(-\beta^{\prime}-\frac{1}{2}+\frac{3}{2p}+\frac{1}{r})s}\Psi_{2}\widetilde{N}(\cdot,s)\|_{L^{p}}\,ds\;\|\Phi_{1}^{\rm per}\|_{X^{\alpha}_{\bar{\tau}}}
δ,β(3.28)eτ(α+β+1232p1r)Φ1perXτ¯αΨ2Yt¯β\displaystyle\quad\overset{\eqref{eq:weightoninside}}{\lesssim_{\delta,\beta^{\prime}}}e^{\tau(\alpha+\beta^{\prime}+\frac{1}{2}-\frac{3}{2p}-\frac{1}{r})}\|\Phi_{1}^{\rm per}\|_{X^{\alpha}_{\bar{\tau}}}\|\Psi_{2}\|_{Y^{\beta}_{\bar{t}}}
δ,βe(α+β)τΦ1perXτ¯αΨ2Yt¯β\displaystyle\quad\lesssim_{\delta,\beta^{\prime}}e^{(\alpha+\beta)\tau}\|\Phi_{1}^{\rm per}\|_{X^{\alpha}_{\bar{\tau}}}\|\Psi_{2}\|_{Y^{\beta}_{\bar{t}}}

where β+1/23/(2p)1/r=β\beta^{\prime}+1/2-3/(2p)-1/r=\beta and δ=β/2\delta=\beta/2. Combining the above two estimates, we conclude

Bi[(Φ1per,ψ1),(Φ2per,ψ2)]Xτ¯αeβτ¯(Φ1per,ψ1)Zt¯α,β(Φ2per,ψ2)Zt¯α,β.\|B_{i}[(\Phi^{\rm per}_{1},\psi_{1}),(\Phi^{\rm per}_{2},\psi_{2})]\|_{X^{\alpha}_{\bar{\tau}}}\lesssim e^{\beta\bar{\tau}}\|(\Phi^{\rm per}_{1},\psi_{1})\|_{Z^{\alpha,\beta}_{\bar{t}}}\|(\Phi^{\rm per}_{2},\psi_{2})\|_{Z^{\alpha,\beta}_{\bar{t}}}\,. (5.5)

5.3. Estimate on LiL_{i} (3.13), (3.10)

The estimate for the 𝑳1\bm{L}_{1} terms is analogous to the GiG_{i} and 𝑩1\bm{B}_{1} estimates. For all τ(0,τ¯)\tau\in(0,\bar{\tau}), we have

τe(τs)𝑳ssdiv𝑳1[(Φper,ψ)](,s)𝑑sLweτ(a+α)ΦperXτ¯α.\left\|\int_{-\infty}^{\tau}e^{(\tau-s)\bm{L}_{\rm ss}}\mathbb{P}\operatorname{div}\bm{L}_{1}[(\Phi^{\rm per},\psi)](\cdot,s)\,ds\right\|_{L^{\infty}_{w}}\lesssim e^{\tau(a+\alpha)}\|\Phi^{\rm per}\|_{X^{\alpha}_{\bar{\tau}}}\,. (5.6)

The estimates for the 𝑳2\bm{L}_{2} terms is analogous to the 𝑩2\bm{B}_{2} estimate:

τe(τs)𝑳ssdiv𝑳2[(Φper,ψ)](,s)𝑑sLwe(a+β)τΨ2Yt¯β.\left\|\int_{-\infty}^{\tau}e^{(\tau-s)\bm{L}_{\rm ss}}\mathbb{P}\operatorname{div}\bm{L}_{2}[(\Phi^{\rm per},\psi)](\cdot,s)\,ds\right\|_{L^{\infty}_{w}}\lesssim e^{(a+\beta)\tau}\|\Psi_{2}\|_{Y^{\beta}_{\bar{t}}}\,. (5.7)

Finally, we have

τe(τs)𝑳ssdiv𝑳3[(Φper,ψ)](,s)𝑑sLw\displaystyle\left\|\int_{-\infty}^{\tau}e^{(\tau-s)\bm{L}_{\rm ss}}\mathbb{P}\operatorname{div}\bm{L}_{3}[(\Phi^{\rm per},\psi)](\cdot,s)\,ds\right\|_{L^{\infty}_{w}} (5.8)
δτe(τs)(a+δ)(τs)1232pU¯LwΨLp𝑑s\displaystyle\quad\lesssim_{\delta}\int_{-\infty}^{\tau}e^{(\tau-s)(a+\delta)}(\tau-s)^{-\frac{1}{2}-\frac{3}{2p}}\|\bar{U}\|_{L^{\infty}_{w}}\|\Psi\|_{L^{p}}\,ds
δ,βe(β+1232p1r)τψYt¯β\displaystyle\quad\lesssim_{\delta,\beta^{\prime}}e^{(\beta^{\prime}+\frac{1}{2}-\frac{3}{2p}-\frac{1}{r})\tau}\|\psi\|_{Y^{\beta}_{\bar{t}}}
δ,βe(β+14)τψYt¯β,\displaystyle\quad\lesssim_{\delta,\beta^{\prime}}e^{(\beta+\frac{1}{4})\tau}\|\psi\|_{Y^{\beta}_{\bar{t}}}\,,

where β+1/43/(2p)1/r=β\beta^{\prime}+1/4-3/(2p)-1/r=\beta and δ=(a+β)/2a\delta=(a+\beta)/2-a. Combining the above three estimates and a10a\geq 10, we have

Li[(Φper,ψ)]Xτ¯αe(β+14α)τ¯(Φper,ψ)Zt¯α,β(4.3)e18τ¯(Φper,ψ)Zt¯α,β.\|L_{i}[(\Phi^{\rm per},\psi)]\|_{X^{\alpha}_{\bar{\tau}}}\lesssim e^{(\beta+\frac{1}{4}-\alpha)\bar{\tau}}\|(\Phi^{\rm per},\psi)\|_{Z^{\alpha,\beta}_{\bar{t}}}\overset{\eqref{eq:betadef}}{\lesssim}e^{\frac{1}{8}\bar{\tau}}\|(\Phi^{\rm per},\psi)\|_{Z^{\alpha,\beta}_{\bar{t}}}\,. (5.9)

6. Conclusion

We now collect the estimates (4.10), (4.18), (4.22), (5.2), (5.5), (5.9), which yield that

LZt¯α,βZt¯α,β+BZt¯α,β×Zt¯α,βZt¯α,β+GZt¯α,β0 as t¯0+,\|L\|_{Z^{\alpha,\beta}_{\bar{t}}\to Z^{\alpha,\beta}_{\bar{t}}}+\|B\|_{Z^{\alpha,\beta}_{\bar{t}}\times Z^{\alpha,\beta}_{\bar{t}}\to Z^{\alpha,\beta}_{\bar{t}}}+\|G\|_{Z^{\alpha,\beta}_{\bar{t}}}\to 0\text{ as }\bar{t}\to 0^{+}\,, (6.1)

with the appropriate choices of α\alpha and β\beta in (4.3), p,r1p,r\gg 1, and a10a\geq 10. In particular, there exists t¯1\bar{t}\ll 1 such that

L+B+G:{(Φper,ψ)Zt¯α,β1}{(Φper,ψ)Zt¯α,β1}L+B+G:\{\|(\Phi^{\rm per},\psi)\|_{Z^{\alpha,\beta}_{\bar{t}}}\leq 1\}\to\{\|(\Phi^{\rm per},\psi)\|_{Z^{\alpha,\beta}_{\bar{t}}}\leq 1\} (6.2)

is a contraction, cf. [1, Subsection 4.2.2]. Hence, there exists a unique solution (Φper,ψ)(\Phi^{\rm per},\psi) to the integral equation (3.7) in the above ball. By the ansatz (1.6) and decomposition (3.5), the solution (Φper,ψ)(\Phi^{\rm per},\psi) determines a mild Navier-Stokes solution u:Ω×(0,t¯)3u\colon\Omega\times(0,\bar{t})\to\mathbb{R}^{3} with forcing ff and satisfying

uLtrLxp(Ω×(ε,t¯)),u\in L^{r}_{t}L^{p}_{x}(\Omega\times(\varepsilon,\bar{t}))\,, (6.3)

for all ε(0,t¯)\varepsilon\in(0,\bar{t}).

That the solution is indeed mild is a technical point, which we now justify. Initially, we know that, for all divergence-free wCc1((0,T);C2C0(Ω))w\in C^{1}_{c}((0,T);C^{2}\cap C_{0}(\Omega)), we have

0t¯Ωu(twΔw)𝑑x𝑑t=0t¯Ωuu:w+fwdxdt,\int_{0}^{\bar{t}}\int_{\Omega}u(-\partial_{t}w-\Delta w)\,dx\,dt=\int_{0}^{\bar{t}}\int_{\Omega}u\otimes u:\nabla w+f\cdot w\,dx\,dt\,, (6.4)

and u(,t)Lσp(Ω)u(\cdot,t)\in L^{p}_{\sigma}(\Omega) for a.e. t(0,t¯)t\in(0,\bar{t}). In particular, u=uu=\mathbb{P}u, and it is weakly continuous in (0,t¯)(0,\bar{t}) due to (6.4). Consider ε(0,t¯)\varepsilon\in(0,\bar{t}) such that u(,ε)Lσp(Ω)u(\cdot,\varepsilon)\in L^{p}_{\sigma}(\Omega). Let vv be the mild solution to the Stokes equations on Ω×(ε,t¯)\Omega\times(\varepsilon,\bar{t}) with initial data v(,ε)=u(,ε)v(\cdot,\varepsilon)=u(\cdot,\varepsilon) and right-hand side divuu+f-\operatorname{div}u\otimes u+f. Then uvu-v is a very weak solution in the sense of Lemma 2.7 with zero initial data, zero right-hand side, and zero divergence. By uniqueness, uvu\equiv v on Ω×(ε,t¯)\Omega\times(\varepsilon,\bar{t}).

We begin by justifying that uu¯u\neq\bar{u}, which is necessary for non-uniqueness. Recall that ΦlinN(,τ)Lpeτa\|\Phi^{\rm lin}N(\cdot,\tau)\|_{L^{p}}\gtrsim e^{\tau a} and Φper(,τ)Lweτα\|\Phi^{\rm per}(\cdot,\tau)\|_{L^{\infty}_{w}}\lesssim e^{\tau\alpha} for all sufficiently negative τ\tau. Additionally, due to (3.28), we have that, for all β<β\beta^{\prime}<\beta, Ψ(,τk)Lpeτk(β12+32p1r)\|\Psi(\cdot,\tau_{k})\|_{L^{p}}\lesssim e^{\tau_{k}(\beta^{\prime}-\frac{1}{2}+\frac{3}{2p}-\frac{1}{r})} along a sequence τk\tau_{k}\to-\infty; in particular, the exponent on the right-hand side can be made strictly greater than aa. Hence, ΦN(,τk)+Ψ(,τk)Lpeτka\|\Phi N(\cdot,\tau_{k})+\Psi(\cdot,\tau_{k})\|_{L^{p}}\gtrsim e^{\tau_{k}a} for large enough kk, which justifies the claim.

We now justify that the above solution is a Leray-Hopf solution with right-hand side. Since LtrLxp(Ω×(ε,t¯))L^{r}_{t}L^{p}_{x}(\Omega\times(\varepsilon,\bar{t})) is a subcritical space when 2/r+3/p<12/r+3/p<1 and ff is smooth away from t=0t=0, it is classical that uLt(W01,q)x(Ω×(ε,t¯))u\in L^{\infty}_{t}(W^{1,q}_{0})_{x}(\Omega\times(\varepsilon,\bar{t})) for all q(1,+)q\in(1,+\infty) (bootstrap using the mild formulation and the linear estimates in Lemma 2.6) and, moreover, satisfies energy equality on Ω×(ε,t¯)\Omega\times(\varepsilon,\bar{t}), for all ε(0,t¯)\varepsilon\in(0,\bar{t}) (see [8, Theorem 1.4.1, p. 272], for example). It remains to show that u(,tk)L20\|u(\cdot,t_{k})\|_{L^{2}}\to 0 as k+k\to+\infty for some sequence of times tk0+t_{k}\to 0^{+}. We have u¯(,t)L2+ϕη(,t)L2t1/4\|\bar{u}(\cdot,t)\|_{L^{2}}+\|\phi\eta(\cdot,t)\|_{L^{2}}\lesssim t^{1/4}, and ψ(,tk)L20\|\psi(\cdot,t_{k})\|_{L^{2}}\to 0 follows from (3.27). This completes the proof of Theorem 1.1.

Acknowledgments

DA was supported by NSF Postdoctoral Fellowship Grant No. 2002023 and Simons Foundation Grant No. 816048. EB was supported by Giorgio and Elena Petronio Fellowship. MC was supported by the SNSF Grant 182565.

7. Appendix

Lemma 7.1 (A convolution inequality).

Let dd\in\mathbb{N}, α,β(d,+)\alpha,\beta\in(d,+\infty) and δ(0,1]\delta\in(0,1]. Then

Id,α,β(δ):=dxyαyδβ𝑑yd,α,βxmin(α,β)δd.I_{d,\alpha,\beta}(\delta):=\int_{\mathbb{R}^{d}}\langle x-y\rangle^{-\alpha}\left\langle\frac{y}{\delta}\right\rangle^{-\beta}\,dy\lesssim_{d,\alpha,\beta}\langle x\rangle^{-\min(\alpha,\beta)}\delta^{d}\,. (7.1)
Proof.

We will suppress dependence on d,α,βd,\alpha,\beta when convenient.

For |x|1|x|\leq 1, we have

Idyδβ𝑑yδd,I\lesssim\int_{\mathbb{R}^{d}}\left\langle\frac{y}{\delta}\right\rangle^{-\beta}\,dy\lesssim\delta^{d}\,, (7.2)

so we restrict our attention to |x|1|x|\geq 1.

In the region R1:={|y||x|/2}R_{1}:=\{|y|\leq|x|/2\}, we have |xy||x||x-y|\approx|x| and

R1xyαyδβ𝑑yxα|y||x|/2yδβ𝑑yxαδd.\int_{R_{1}}\langle x-y\rangle^{-\alpha}\left\langle\frac{y}{\delta}\right\rangle^{-\beta}\,dy\lesssim\langle x\rangle^{-\alpha}\int_{|y|\leq|x|/2}\left\langle\frac{y}{\delta}\right\rangle^{-\beta}\,dy\lesssim\langle x\rangle^{-\alpha}\delta^{d}\,. (7.3)

In the region R2:={|xy||x|/2}R_{2}:=\{|x-y|\leq|x|/2\}, we have |y||x||y|\approx|x| and

R2xyαyδβ𝑑yxδβ|xy||x|/2xyα𝑑yxβδβ,\int_{R_{2}}\langle x-y\rangle^{-\alpha}\left\langle\frac{y}{\delta}\right\rangle^{-\beta}\,dy\lesssim\left\langle\frac{x}{\delta}\right\rangle^{-\beta}\int_{|x-y|\leq|x|/2}\langle x-y\rangle^{-\alpha}\,dy\lesssim\left\langle x\right\rangle^{-\beta}\delta^{\beta}\,, (7.4)

where |x|1|x|\geq 1 and δ(0,1]\delta\in(0,1] ensure that x/δxδ\langle x/\delta\rangle\approx\langle x\rangle\delta.

In the region R3:=d(R1R2)R_{3}:=\mathbb{R}^{d}\setminus(R_{1}\cup R_{2}), we have |y||xy||y|\approx|x-y| and

R3xyαyδβ𝑑yr|x|/2rαrβδβrd1𝑑rxαβ+dδβ,\int_{R_{3}}\langle x-y\rangle^{-\alpha}\left\langle\frac{y}{\delta}\right\rangle^{-\beta}\,dy\lesssim\int_{r\geq|x|/2}r^{-\alpha}r^{-\beta}\delta^{\beta}r^{d-1}\,dr\lesssim\langle x\rangle^{-\alpha-\beta+d}\delta^{\beta}\,, (7.5)

where we again use that |x|1|x|\geq 1 and δ(0,1]\delta\in(0,1] to make simplifications.

Finally, we sum the above estimates to complete the proof when |x|1|x|\geq 1. ∎

Remark 7.2.

As a consequence, we have the following variant, which is useful in the proof of Lemma 2.3. Let ζ,β>d\zeta,\beta>d, p[1,+]p\in[1,+\infty], and pp^{\prime} be its Hölder conjugate. Then, for all fLζpf\in L^{p}_{\zeta}, we have

d|f(xy)|yδβ\displaystyle\int_{\mathbb{R}^{d}}|f(x-y)|\left\langle\frac{y}{\delta}\right\rangle^{-\beta} fLζp×[Id,ζp,βp(δ)]1p\displaystyle\leq\|f\|_{L^{p}_{\zeta}}\times[I_{d,\zeta p^{\prime},\beta p^{\prime}}(\delta)]^{\frac{1}{p^{\prime}}} (7.6)
d,α,β,pfLζpxmin(ζ,β)δdp.\displaystyle\lesssim_{d,\alpha,\beta,p}\|f\|_{L^{p}_{\zeta}}\langle x\rangle^{-\min(\zeta,\beta)}\delta^{\frac{d}{p^{\prime}}}\,.

with obvious adjustments when p=+p=+\infty.

References

  • [1] D. Albritton, E. Brué, and M. Colombo. Non-uniqueness of Leray solutions of the forced Navier-Stokes equations. Annals of Mathematics, 196(1):415 – 455, 2022.
  • [2] D. Albritton, E. Brué, M. Colombo, C. D. Lellis, V. Giri, M. Janisch, and H. Kwon. Instability and nonuniqueness for the 2d2d Euler equations in vorticity form, after M. Vishik, 2021.
  • [3] J. Dávila, M. Del Pino, and J. Wei. Singularity formation for the two-dimensional harmonic map flow into S2{S}^{2}. Inventiones mathematicae, 219(2):345–466, 2020.
  • [4] R. Farwig, G. P. Galdi, and H. Sohr. A new class of weak solutions of the Navier–Stokes equations with nonhomogeneous data. Journal of Mathematical Fluid Mechanics, 8(3):423–444, 2006.
  • [5] G. P. Galdi. An introduction to the mathematical theory of the Navier-Stokes equations. Springer Monographs in Mathematics. Springer, New York, second edition, 2011. Steady-state problems.
  • [6] M. Hieber and J. Saal. The Stokes Equation in the LpL^{p}-setting: Well Posedness and Regularity Properties, pages 1–88. Springer International Publishing, Cham, 2016.
  • [7] H. Jia and V. Šverák. Are the incompressible 3d Navier-Stokes equations locally ill-posed in the natural energy space? J. Funct. Anal., 268(12):3734–3766, 2015.
  • [8] H. Sohr. The Navier-Stokes equations. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 2001. An elementary functional analytic approach, [2013 reprint of the 2001 original] [MR1928881].
  • [9] M. Struwe. On the evolution of harmonic mappings of Riemannian surfaces. Commentarii Mathematici Helvetici, 60(1):558–581, Dec. 1985.
  • [10] T.-P. Tsai. Lectures on Navier-Stokes equations, volume 192 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2018.
  • [11] M. Vishik. Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part I, 2018.
  • [12] M. Vishik. Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part II, 2018.