This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Global strong solutions and optimal L2L^{2} decay to the compressible FENE dumbbell model

Zhaonan Luo1\mbox{Luo}^{1} 111email: [email protected], Wei Luo1\mbox{Luo}^{1}222E-mail: [email protected]  and Zhaoyang Yin1,2\mbox{Yin}^{1,2}333E-mail: [email protected]
Department1{}^{1}\mbox{Department} of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
Faculty2{}^{2}\mbox{Faculty} of Information Technology,
Macau University of Science and Technology, Macau, China
Abstract

In this paper, we are concerned with the global well-posedness and L2L^{2} decay rate for the strong solutions of the compressible finite extensible nonlinear elastic (FENE) dumbbell model. For d2d\geq 2, we prove that the compressible FENE dumbbell model admits a unique global strong solution provided the initial data are close to equilibrium state. Moreover, by the Littlewood-Paley decomposition theory and the Fourier splitting method, we show optimal L2L^{2} decay rate of global strong solutions for d3d\geq 3.
2010 Mathematics Subject Classification: 35Q30, 76B03, 76D05, 76D99.

Keywords: The compressible FENE dumbbell model; Global strong solutions; Time decay rate.

 

1 Introduction

In this paper we study the compressible finite extensible nonlinear elastic (FENE) dumbbell model [2, 13]:

(1.7) {ϱt+div(ϱu)=0,(ϱu)t+div(ϱuu)divΣ(u)+xP(ϱ)=divτ,ψt+uψ=divR[σ(u)Rψ+Rψ+R𝒰ψ],τij=B(Rij𝒰)ψ𝑑R,ϱ|t=0=ϱ0,u|t=0=u0,ψ|t=0=ψ0,(Rψ+R𝒰ψ)n=0onB(0,R0).\displaystyle\left\{\begin{array}[]{ll}\varrho_{t}+div(\varrho u)=0,\\[4.30554pt] (\varrho u)_{t}+div(\varrho u\otimes u)-div\Sigma{(u)}+\nabla_{x}{P(\varrho)}=div~{}\tau,\\[4.30554pt] \psi_{t}+u\cdot\nabla\psi=div_{R}[-\sigma(u)\cdot{R}\psi+\nabla_{R}\psi+\nabla_{R}\mathcal{U}\psi],\\[4.30554pt] \tau_{ij}=\int_{B}(R_{i}\nabla_{j}\mathcal{U})\psi dR,\\[4.30554pt] \varrho|_{t=0}=\varrho_{0},~{}~{}u|_{t=0}=u_{0},~{}~{}\psi|_{t=0}=\psi_{0},\\[4.30554pt] (\nabla_{R}\psi+\nabla_{R}\mathcal{U}\psi)\cdot{n}=0~{}~{}~{}~{}\text{on}~{}~{}~{}~{}\partial B(0,R_{0}).\\[4.30554pt] \end{array}\right.

In dumbbell model (1.7), ϱ(t,x)\varrho(t,x) denotes the density of the solvent, u(t,x)u(t,x) represents the velocity of the polymeric liquid and ψ(t,x,R)\psi(t,x,R) is the distribution function for the internal configuration. A polymer is described as an ”elastic dumbbell” consisting of two ”beads” joined by a spring which can be modeled by the polymer elongation RR. The finite extensibility of the polymers means that RR satisfies RB=B(0,R0)R\in B=B(0,R_{0}). Let xdx\in\mathbb{R}^{d} and ψ(t,x,R)\psi(t,x,R) satisfy Bψ(t,x,R)𝑑R=1\int_{B}\psi(t,x,R)dR=1. The stress tensor Σ(u)=μ(u+Tu)+μdivuId\Sigma{(u)}=\mu(\nabla u+\nabla^{T}u)+\mu^{\prime}div~{}u\cdot Id satisfies μ>0\mu>0 and 2μ+μ>02\mu+\mu^{\prime}>0. The pressure obeys the so-called γ\gamma-law: P(ϱ)=ϱγP(\varrho)=\varrho^{\gamma} with γ1\gamma\geq 1. τ\tau is an additional stress tensor. Moreover the potential 𝒰(R)=klog(1(|R||R0|)2)\mathcal{U}(R)=-k\log(1-(\frac{|R|}{|R_{0}|})^{2}) for some constant k>0k>0. σ(u)=u\sigma(u)=\nabla u is the drag term. This is a micro-macro model (For more details, one can refer to [27], [28] and [29]).

Without loss of generality, we will take R0=1R_{0}=1 in this paper. One can easily to check that the system (1.7) possesses a trivial solution ϱ=1\varrho=1, u=0u=0 and

ψ(R)=e𝒰(R)Be𝒰(R)𝑑R=(1|R|2)kB(1|R|2)k𝑑R.\psi_{\infty}(R)=\frac{e^{-\mathcal{U}(R)}}{\int_{B}e^{-\mathcal{U}(R)}dR}=\frac{(1-|R|^{2})^{k}}{\int_{B}(1-|R|^{2})^{k}dR}.

By taking the perturbations near the global equilibrium:

ρ=ϱ1,u=u,g=ψψψ,\displaystyle\rho=\varrho-1,~{}~{}u=u,~{}~{}g=\frac{\psi-\psi_{\infty}}{\psi_{\infty}},

we rewrite (1.7) as the following system:

(1.14) {ρt+divu(1+ρ)=uρ,ut11+ρdivΣ(u)+P(1+ρ)1+ρρ=uu+11+ρdivτ,gt+g=ug1ψR(uRgψ)divuuRR𝒰,τij(g)=B(RiRj𝒰)gψ𝑑R,ρ|t=0=ρ0,u|t=0=u0,g|t=0=g0,ψRgn=0onB(0,1),\displaystyle\left\{\begin{array}[]{ll}\rho_{t}+div~{}u(1+\rho)=-u\cdot\nabla\rho,\\[4.30554pt] u_{t}-\frac{1}{1+\rho}div\Sigma{(u)}+\frac{P^{\prime}(1+\rho)}{1+\rho}\nabla\rho=-u\cdot\nabla u+\frac{1}{1+\rho}div~{}\tau,\\[4.30554pt] g_{t}+\mathcal{L}g=-u\cdot\nabla g-\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(\nabla uRg\psi_{\infty})-div~{}u-\nabla uR\nabla_{R}\mathcal{U},\\[4.30554pt] \tau_{ij}(g)=\int_{B}(R_{i}\nabla_{Rj}\mathcal{U})g\psi_{\infty}dR,\\[4.30554pt] \rho|_{t=0}=\rho_{0},~{}~{}u|_{t=0}=u_{0},~{}~{}g|_{t=0}=g_{0},\\[4.30554pt] \psi_{\infty}\nabla_{R}g\cdot{n}=0~{}~{}~{}~{}\text{on}~{}~{}~{}~{}\partial B(0,1),\\[4.30554pt] \end{array}\right.

where g=1ψR(ψRg)\mathcal{L}g=-\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(\psi_{\infty}\nabla_{R}g).

Remark. As in the reference [29], one can deduce that ψ=0\psi=0 on B(0,1)\partial B(0,1).

M. Renardy [36] established the local well-posedness in Sobolev spaces with potential 𝒰(R)=(1|R|2)1σ\mathcal{U}(R)=(1-|R|^{2})^{1-\sigma} for σ>1\sigma>1. Later, B. Jourdain, T. Lelièvre, and C. Le Bris [20] proved local existence of a stochastic differential equation with potential 𝒰(R)=klog(1|R|2)\mathcal{U}(R)=-k\log(1-|R|^{2}) in the case k>3k>3 for a Couette flow. H. Zhang and P. Zhang [44] proved local well-posedness of (1.4) with d=3d=3 in weighted Sobolev spaces. For the co-rotation case, F. Lin, P. Zhang, and Z. Zhang [24] obtained a global existence results with d=2d=2 and k>6k>6. If the initial data is perturbation around equilibrium, N. Masmoudi [28] proved global well-posedness of (1.4) for k>0k>0. In the co-rotation case with d=2d=2, he [28] obtained a global result for k>0k>0 without any small conditions. In the co-rotation case, A. V. Busuioc, I. S. Ciuperca, D. Iftimie and L. I. Palade [5] obtained a global existence result with only the small condition on ψ0\psi_{0}. The global existence of weak solutions in L2L^{2} was proved recently by N. Masmoudi [29] under some entropy conditions. Recently, M. Schonbek [38] studied the L2L^{2} decay of the velocity for the co-rotation FENE dumbbell model, and obtained the decay rate (1+t)d4+12(1+t)^{-\frac{d}{4}+\frac{1}{2}}, d2d\geq 2 with u0L1u_{0}\in L^{1}. Moreover, she conjectured that the sharp decay rate should be (1+t)d4(1+t)^{-\frac{d}{4}}d2d\geq 2. However, she failed to get it because she could not use the bootstrap argument as in [37] due to the additional stress tensor. Recently, W. Luo and Z. Yin [25] improved Schonbek’s result and showed that the decay rate is (1+t)d4(1+t)^{-\frac{d}{4}} with d3d\geq 3 and lnl(1+t)\ln^{-l}(1+t) with d=2d=2 for any l+l\in\mathbb{N^{+}}. This result shows that M. Schonbek’s conjecture is true when d3d\geq 3. More recently, W. Luo and Z. Yin [26] improved the decay rate to (1+t)d4(1+t)^{-\frac{d}{4}} with d=2d=2.

1.1.  Short reviews for the compressible Navier-Stokes (CNS) equations

The system (1.7) reduce to the CNS equations by taking ψ0\psi\equiv 0. In order to study about the (1.7), we cite some reference about the CNS equations. The first local existence and uniqueness results were obtained by J. Nash [34] for smooth initial data without vacuum. Later on, A. Matsumura and T. Nishida [31] proved the global well-posedness and the time decay rate for smooth data close to equilibrium for d=3d=3. In [21], A. V. Kazhikhov and V. V. Shelukhin established the first global existence result with large data in one dimensional space under some suitable condition on μ\mu and λ\lambda. If μ\mu is constant and λ(ρ)=bρβ\lambda(\rho)=b\rho^{\beta}, X. Huang and J. Li[16] obtained a global existence and uniqueness result for large initial data in two dimensional space(See also [19]). In [17], X. Huang, J. Li, and Z. Xin proved the global well-posedness with vacuum. The blow-up phenomenons were studied by Z. Xin et al in [41, 22, 42]. Concerning the global existence of weak solutions for the large initial data, we may refer to [3, 4, 32, 40].

To catch the scaling invariance property of the CNS equations. R. Danchin introduced the ”critical spaces” in his series papers [8, 9, 10, 11, 12] and obtained several important existence and uniqueness results. Recently, Q. Chen, C. Miao and Z. Zhang [6] proved the local existence and uniqueness in critical homogeneous Besov spaces. The ill-posedness result was obtained in [7]. In [14], L. He, J. Huang and C. Wang proved the global stability with d=3d=3 i.e. for any perturbed solutions will remain close to the reference solutions if initially they are close to another one.

The large time behaviour was proved by H. Li and T. Zhang in [23]. They obtain the optimal time decay rate for the CNS equations by spectrum analysis in Sobolev spaces. Recently, J. Xu[43] studied about the large time behaviour in the critical Besov space and obtain the optimal time decay rate.

1.2.  Main results

J. Ning, Y. Liu and T. Zhang [18] proved the first global well-posedness for (1.7) if the initial data is close to the equilibrium. In [18], the authors assume that R3R\in\mathbb{R}^{3} which means that polymer elongation can be infinite. Actually, the polymer elongation RR is usually bounded.

Recently, N. Masmoudi [30] is concerning with the long time behavior for polymeric models. The co-rotation compressible FENE system has been studied in [27]. In the co-rotation case, the drag term σ(u)=uuT2\sigma(u)=\frac{\nabla u-\nabla u^{T}}{2} which leads to some good structure such that the ψψ\psi-\psi_{\infty} is exponential decay in time. To our best knowledge, the same problem for the general case has not been studied yet. This problem is interesting and more difficult than the co-rotation case. In this paper, we firstly study the global well-posedness results for (1.7). The key point is to prove a global priori estimate for (1.14) with small data. Using the energy methods and the cancellation relation between the CNS equations and Fokker-Planck equation, for d2d\geq 2, we obtain a global priori estimate. Moreover, if d3d\geq 3, we study about the large time behaviour and obtain the optimal time decay rate for (ρ,u)(\rho,u) in L2L^{2}. The proof is based on the Fourier splitting method and the Littlewood-Paley decomposition theory. The first difficult is to estimate the additional linear term divτdiv~{}\tau. Motivated by [15] and [45], we can cancel the stress term τ\tau in Fourier space. Then we obtain the time decay rate (1+t)d8(1+t)^{-\frac{d}{8}} for the velocity in L2L^{2} by the Fourier splitting method and the bootstrap argument. The main difficult to get optimal time decay rate is that we can not get any information of uu in L1L^{1} from (1.14). Fortunately, similar to [39], we can prove a slightly weaker conclusion uL(0,;B˙2,d2)C\|u\|_{L^{\infty}(0,\infty;\dot{B}^{-\frac{d}{2}}_{2,\infty})}\leq C from (1.14) by using the time decay rate (1+t)d8(1+t)^{-\frac{d}{8}}. Finally, we obtain optimal time decay rate for the velocity in L2L^{2} by the Littlewood-Paley decomposition theory and the standard Fourier splitting method.

Our main result can be stated as follows.

Using the energy methods in [27], one can deduce that the global existence of strong solutions for (1.14). However, to obtain optimal time decay rate, we need a more precise higher order derivatives estimate for (1.14). We establish the precise higher order derivatives estimate in the proof of the following Theorem.

Theorem 1.1 (Global well-posedness).

Let d2ands>1+d2d\geq 2~{}and~{}s>1+\frac{d}{2}. Assume that (ρ0,u0,g0)Hs×Hs×Hs(2)(\rho_{0},u_{0},g_{0})\in H^{s}\times H^{s}\times H^{s}(\mathcal{L}^{2}), then there exists a sufficiently small constant ϵ0\epsilon_{0} such that if Bg0ψ𝑑R=0\int_{B}g_{0}\psi_{\infty}dR=0 and 1+g0>01+g_{0}>0 and

(1.15) E(0)=ρ0Hs2+u0Hs2+g0Hs(2)2ϵ0,\displaystyle E(0)=\|\rho_{0}\|^{2}_{H^{s}}+\|u_{0}\|^{2}_{H^{s}}+\|g_{0}\|^{2}_{H^{s}(\mathcal{L}^{2})}\leq\epsilon_{0},

then the compressible FENE system (1.14) admits a unique global strong solution (ρ,u,g)(\rho,u,g) satisfying Bgψ𝑑R=0\int_{B}g\psi_{\infty}dR=0 and 1+g>01+g>0 and

(1.16) supt[0,+)E(t)+0D(t)𝑑tC0E(0),\displaystyle\sup_{t\in[0,+\infty)}E(t)+\int_{0}^{\infty}D(t)dt\leq C_{0}E(0),

where C0>1C_{0}>1 is a constant.

Theorem 1.2 (Large time behaviour).

Let d3d\geq 3. Assume that (ρ0,u0,g0)(\rho_{0},u_{0},g_{0}) satisfy the condition in Theorem 1.1, in addition, if (ρ0,u0)B˙2,d2×B˙2,d2(\rho_{0},u_{0})\in\dot{B}^{-\frac{d}{2}}_{2,\infty}\times\dot{B}^{-\frac{d}{2}}_{2,\infty} and g0B˙2,d2(2)g_{0}\in\dot{B}^{-\frac{d}{2}}_{2,\infty}(\mathcal{L}^{2}), then the corresponding solution (ρ,u,g)(\rho,u,g) satisfy

(1.17) ρL2+uL2C(1+t)d4\displaystyle\|\rho\|_{L^{2}}+\|u\|_{L^{2}}\leq C(1+t)^{-\frac{d}{4}}

and

(1.18) gL2(2)C(1+t)d412.\displaystyle\|g\|_{L^{2}(\mathcal{L}^{2})}\leq C(1+t)^{-\frac{d}{4}-\frac{1}{2}}.
Remark 1.3.

Taking ψ0\psi\equiv 0 and combining with the result in [23], we can see that the L2L^{2} decay rate for (ρ,u)(\rho,u) obtained in Theorem 1.2 is optimal.

Remark 1.4.

In previous papers, researchers usually add the condition (ρ0,u0)L1×L1(\rho_{0},u_{0})\in L^{1}\times L^{1} to obtain the optimal time decay rate. Since L1B˙2,d2L^{1}\hookrightarrow\dot{B}^{-\frac{d}{2}}_{2,\infty}, it follows that our condition is weaker and the results still hold true for (ρ0,u0)L1×L1(\rho_{0},u_{0})\in L^{1}\times L^{1}. Moreover, the assumption can be replaced with a weaker assumption supjj02d2jΔ˙j(ρ0,u0,g0)L2×L2×L2(2)<\sup_{j\leq j_{0}}2^{-\frac{d}{2}j}\|\dot{\Delta}_{j}(\rho_{0},u_{0},g_{0})\|_{L^{2}\times L^{2}\times L^{2}(\mathcal{L}^{2})}<\infty, for any j0j_{0}\in\mathbb{Z}.

The paper is organized as follows. In Section 2 we introduce some notations and preliminaries which will be used in the sequel. In Section 3 we prove the global well-posedness of the compressible FENE dumbbell model for d2d\geq 2. In Section 4 we study the optimal L2L^{2} decay of solutions to the compressible FENE model by using the Fourier splitting method, the bootstrap argument and the Littlewood-Paley decomposition theory d3d\geq 3.

2 Preliminaries

For the convenience of readers, we give some notations and useful lemmas in this section .

Let p1p\geq 1. We denote by p\mathcal{L}^{p} the space

p={f|fpp=Bψ|f|p𝑑R<},\mathcal{L}^{p}=\big{\{}f\big{|}\|f\|^{p}_{\mathcal{L}^{p}}=\int_{B}\psi_{\infty}|f|^{p}dR<\infty\big{\}},

and denote by Lxp(q)L^{p}_{x}(\mathcal{L}^{q}) the space

Lxp(q)={f|fLxp(q)=(d(Bψ|f|q𝑑R)pq𝑑x)1p<}.L^{p}_{x}(\mathcal{L}^{q})=\big{\{}f\big{|}\|f\|_{L^{p}_{x}(\mathcal{L}^{q})}=(\int_{\mathbb{R}^{d}}(\int_{B}\psi_{\infty}|f|^{q}dR)^{\frac{p}{q}}dx)^{\frac{1}{p}}<\infty\big{\}}.

The symbol f^=(f)\widehat{f}=\mathcal{F}(f) stands for the Fourier transform of ff. Let Λsf=1(|ξ|sf^)\Lambda^{s}f=\mathcal{F}^{-1}(|\xi|^{s}\widehat{f}). If s0s\geq 0, we denote by Hs(2)H^{s}(\mathcal{L}^{2}) the space

Hs(2)={f|fHs(2)2=dB(|f|2+|Λsf|2)ψ𝑑R𝑑x<}.H^{s}(\mathcal{L}^{2})=\{f\big{|}\|f\|^{2}_{H^{s}(\mathcal{L}^{2})}=\int_{\mathbb{R}^{d}}\int_{B}(|f|^{2}+|\Lambda^{s}f|^{2})\psi_{\infty}dRdx<\infty\}.

Denote that

E(t)=ρHs2+uHs2+gHs(2)2,E(t)=\|\rho\|^{2}_{H^{s}}+\|u\|^{2}_{H^{s}}+\|g\|^{2}_{H^{s}(\mathcal{L}^{2})},

and

D(t)=ρHs12+μuHs2+(μ+μ)divuHs2+RgHs(2)2.D(t)=\|\nabla\rho\|^{2}_{H^{s-1}}+\mu\|\nabla u\|^{2}_{H^{s}}+(\mu+\mu^{\prime})\|div~{}u\|^{2}_{H^{s}}+\|\nabla_{R}g\|^{2}_{H^{s}(\mathcal{L}^{2})}.

We now recall the Littlewood-Paley decomposition theory in the following Proposition.

Proposition 2.1.

[1] Let 𝒞\mathcal{C} be the annulus {ξd:34|ξ|83}\{\xi\in\mathbb{R}^{d}:\frac{3}{4}\leq|\xi|\leq\frac{8}{3}\}. There exist radial function φ\varphi, valued in the interval [0,1][0,1], belonging respectively to 𝒟(𝒞)\mathcal{D}(\mathcal{C}), and such that

ξd\{0},jφ(2jξ)=1,\forall\xi\in\mathbb{R}^{d}\backslash\{0\},\ \sum_{j\in\mathbb{Z}}\varphi(2^{-j}\xi)=1,
|jj|2Suppφ(2j)Suppφ(2j)=.|j-j^{\prime}|\geq 2\Rightarrow\mathrm{Supp}\ \varphi(2^{-j}\cdot)\cap\mathrm{Supp}\ \varphi(2^{-j^{\prime}}\cdot)=\emptyset.

Further, we have

ξd\{0},12jφ2(2jξ)1.\forall\xi\in\mathbb{R}^{d}\backslash\{0\},\ \frac{1}{2}\leq\sum_{j\in\mathbb{Z}}\varphi^{2}(2^{-j}\xi)\leq 1.

Let uu be a tempered distribution in 𝒮h(d)\mathcal{S}^{\prime}_{h}(\mathbb{R}^{d}). For all jj\in\mathbb{Z}, define

Δ˙ju=1(φ(2j)u).\dot{\Delta}_{j}u=\mathcal{F}^{-1}(\varphi(2^{-j}\cdot)\mathcal{F}u).

Then the Littlewood-Paley decomposition is given as follows:

u=jΔ˙juin𝒮(d).u=\sum_{j\in\mathbb{Z}}\dot{\Delta}_{j}u\quad\text{in}\ \mathcal{S}^{\prime}(\mathbb{R}^{d}).

Let s, 1p,r.s\in\mathbb{R},\ 1\leq p,r\leq\infty. The homogeneous Besov space B˙p,rs\dot{B}^{s}_{p,r} and B˙p,rs(q)\dot{B}^{s}_{p,r}(\mathcal{L}^{q}) are defined by

B˙p,rs={u𝒮h:uB˙p,rs=(2jsΔ˙juLp)jlr()<},\dot{B}^{s}_{p,r}=\{u\in\mathcal{S}^{\prime}_{h}:\|u\|_{\dot{B}^{s}_{p,r}}=\Big{\|}(2^{js}\|\dot{\Delta}_{j}u\|_{L^{p}})_{j}\Big{\|}_{l^{r}(\mathbb{Z})}<\infty\},
B˙p,rs(q)={ϕ𝒮h:ϕB˙p,rs(q)=(2jsΔ˙jϕLxp(q))jlr()<}.\dot{B}^{s}_{p,r}(\mathcal{L}^{q})=\{\phi\in\mathcal{S}^{\prime}_{h}:\|\phi\|_{\dot{B}^{s}_{p,r}(\mathcal{L}^{q})}=\Big{\|}(2^{js}\|\dot{\Delta}_{j}\phi\|_{L_{x}^{p}(\mathcal{L}^{q})})_{j}\Big{\|}_{l^{r}(\mathbb{Z})}<\infty\}.

We agree that fgf{\lesssim}g represents fCgf\leq Cg with a constant CC and \nabla stands for x\nabla_{x} and divdiv stands for divxdiv_{x}.

The following lemma is the Gagliardo-Nirenberg inequality of Sobolev type.

Lemma 2.2.

[35] Let d2,p[2,+)d\geq 2,~{}p\in[2,+\infty) and 0s,s1s20\leq s,s_{1}\leq s_{2}, then there exists a constant CC such that

ΛsfLpCΛs1fL21θΛs2fL2θ,\|\Lambda^{s}f\|_{L^{p}}\leq C\|\Lambda^{s_{1}}f\|^{1-\theta}_{L^{2}}\|\Lambda^{s_{2}}f\|^{\theta}_{L^{2}},

where 0θ10\leq\theta\leq 1 and θ\theta satisfy

s+d(121p)=s1(1θ)+θs2.s+d(\frac{1}{2}-\frac{1}{p})=s_{1}(1-\theta)+\theta s_{2}.

Note that we require that 0<θ<10<\theta<1, 0s1s0\leq s_{1}\leq s, when p=p=\infty.

The following lemmas are useful for estimating τ\tau.

Lemma 2.3.

[28] If Bgψ𝑑R=0\int_{B}g\psi_{\infty}dR=0, then there exists a constant CC such that

g2CRg2.\|g\|_{\mathcal{L}^{2}}\leq C\|\nabla_{R}g\|_{\mathcal{L}^{2}}.
Lemma 2.4.

[28] For any δ>0\delta>0, there exists a constant CδC_{\delta} such that

|τ(g)|2δRg22+Cδg22.|\tau(g)|^{2}\leq\delta\|\nabla_{R}g\|^{2}_{\mathcal{L}^{2}}+C_{\delta}\|g\|^{2}_{\mathcal{L}^{2}}.

If (p1)k>1(p-1)k>1, then

|τ(g)|Cgp.|\tau(g)|\leq C\|g\|_{\mathcal{L}^{p}}.

To get the optimal L2L^{2} decay rate, we need a more precise estimate of τ\tau.

Lemma 2.5.

[27] If g2CRg2<\|g\|_{\mathcal{L}^{2}}\leq C\|\nabla_{R}g\|_{\mathcal{L}^{2}}<\infty, there exists a constant C1C_{1} such that

(2.1) |τ(g)|C1g2k+12Rg21k2,for0<k<1,\displaystyle|\tau(g)|\leq C_{1}\|g\|^{\frac{k+1}{2}}_{\mathcal{L}^{2}}\|\nabla_{R}g\|^{\frac{1-k}{2}}_{\mathcal{L}^{2}},~{}~{}for~{}0<k<1,

and

(2.2) |τ(g)|C1g22n2n+1Rg212n+1,fork=1andn1.\displaystyle|\tau(g)|\leq C_{1}\|g\|^{\frac{2n}{2n+1}}_{\mathcal{L}^{2}}\|\nabla_{R}g\|^{\frac{1}{2n+1}}_{\mathcal{L}^{2}},~{}~{}for~{}k=1~{}and~{}\forall n\geq 1.
Corollary 2.6.

According to Lemma 2.3-2.5, if Bgψ𝑑R=0\int_{B}g\psi_{\infty}dR=0, for any k>0k>0, we have |τ(g)|C1g212Rg212|\tau(g)|\leq C_{1}\|g\|^{\frac{1}{2}}_{\mathcal{L}^{2}}\|\nabla_{R}g\|^{\frac{1}{2}}_{\mathcal{L}^{2}}.

Lemma 2.7.

[33] Let s1s\geq 1, p,p1,p4(1,)p,p_{1},p_{4}\in(1,\infty) and 1p=1p1+1p2=1p3+1p4\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{p_{3}}+\frac{1}{p_{4}}, then there exists a constant CC such that

[Λs,f]gLpC(ΛsfLp1gLp2+fLp3Λs1gLp4),\|[\Lambda^{s},f]g\|_{L^{p}}\leq C(\|\Lambda^{s}f\|_{L^{p_{1}}}\|g\|_{L^{p_{2}}}+\|\nabla f\|_{L^{p_{3}}}\|\Lambda^{s-1}g\|_{L^{p_{4}}}),

and

[Λs,f]gL2(2)C(ΛsfL2gL(2)+fLΛs1gL2(2)).\|[\Lambda^{s},f]g\|_{L^{2}(\mathcal{L}^{2})}\leq C(\|\Lambda^{s}f\|_{L^{2}}\|g\|_{L^{\infty}(\mathcal{L}^{2})}+\|\nabla f\|_{L^{\infty}}\|\Lambda^{s-1}g\|_{L^{2}(\mathcal{L}^{2})}).

3 Global strong solutions with small data

In this section, we investigate the global well-posedness for the compressible FENE dumbbell model with d2d\geq 2. We divide the proof of Theorem 1.1 into two Propositions. Using the standard iterating method in [18] and [27], one can easily deduce that the existence of local solutions. Thus we omit the proof here and present the following Proposition.

Proposition 3.1.

Let d2ands>1+d2d\geq 2~{}and~{}s>1+\frac{d}{2}. If E(0)ϵ2E(0)\leq\frac{\epsilon}{2}, then there exist a time T>0T>0 such that (1.14) admits a unique local strong solution (ρ,u,g)L(0,T;Hs×Hs×Hs(2))(\rho_{,}u,g)\in L^{\infty}(0,T;H^{s}\times H^{s}\times H^{s}(\mathcal{L}^{2})) and we get

(3.1) supt[0,T]E(t)+0TH(t)𝑑tϵ,\displaystyle\sup_{t\in[0,T]}E(t)+\int_{0}^{T}H(t)dt\leq\epsilon,

where H(t)=μuHs2+(μ+μ)divuHs2+RgHs(2)2.H(t)=\mu\|\nabla u\|^{2}_{H^{s}}+(\mu+\mu^{\prime})\|div~{}u\|^{2}_{H^{s}}+\|\nabla_{R}g\|^{2}_{H^{s}(\mathcal{L}^{2})}.

Denote that

Eη(t)=n=0,s(h(ρ)12ΛnρL22+(1+ρ)12ΛnuL22)+λgHs(2)2+2ηm=0,s1dΛmuΛmρdx,E_{\eta}(t)=\sum_{n=0,s}(\|h(\rho)^{\frac{1}{2}}\Lambda^{n}\rho\|^{2}_{L^{2}}+\|(1+\rho)^{\frac{1}{2}}\Lambda^{n}u\|^{2}_{L^{2}})+\lambda\|g\|^{2}_{H^{s}(\mathcal{L}^{2})}+2\eta\sum_{m=0,s-1}\int_{\mathbb{R}^{d}}\Lambda^{m}u\nabla\Lambda^{m}\rho dx,

and

Dη(t)=ηγρHs12+μuHs2+(μ+μ)divuHs2+λRgHs(2)2.D_{\eta}(t)=\eta\gamma\|\nabla\rho\|^{2}_{H^{s-1}}+\mu\|\nabla u\|^{2}_{H^{s}}+(\mu+\mu^{\prime})\|div~{}u\|^{2}_{H^{s}}+\lambda\|\nabla_{R}g\|^{2}_{H^{s}(\mathcal{L}^{2})}.

In the following proposition, we prove a key global priori estimate for (1.14).

Proposition 3.2.

Let d2ands>1+d2d\geq 2~{}and~{}s>1+\frac{d}{2}. Assume that (ρ,u,g)L(0,T;Hs×Hs×Hs(2))(\rho_{,}u,g)\in L^{\infty}(0,T;H^{s}\times H^{s}\times H^{s}(\mathcal{L}^{2})) are local strong solutions constructed in Proposition 3.1. If supt[0,T)E(t)ϵ\sup_{t\in[0,T)}E(t)\leq\epsilon, then we have

(3.2) ddtEη(t)+Dη(t)0,\displaystyle\frac{d}{dt}E_{\eta}(t)+D_{\eta}(t)\leq 0,

and there exist a constant C0>1C_{0}>1 such that

(3.3) supt[0,T]E(t)+0TD(t)𝑑tC0E(0).\displaystyle\sup_{t\in[0,T]}E(t)+\int_{0}^{T}D(t)dt\leq C_{0}E(0).
Proof.

By virtue of the coupling effect between (ρ,u,g)(\rho,u,g) and using the energy methods, we can easily deduce that the lower order derivatives estimates for (1.14)\eqref{eq1}, see [27].

Multiplying ψ\psi_{\infty} to (1.14)3\eqref{eq1}_{3} and integrating over BB with RR, we obtain Bgψ𝑑R=Bg0ψ𝑑R=0\int_{B}g\psi_{\infty}dR=\int_{B}g_{0}\psi_{\infty}dR=0. L2(2)L^{2}(\mathcal{L}^{2}) inner product is denoted by f,g=dBfgψ𝑑R𝑑x\langle f,g\rangle=\int_{\mathbb{R}^{d}}\int_{B}fg\psi_{\infty}dRdx. Since uu is independent on RR, it follows that divu,g=0\langle div~{}u,g\rangle=0. Taking the L2(2)L^{2}(\mathcal{L}^{2}) inner product with gg to (1.14)3\eqref{eq1}_{3}, we obtain

(3.4) 12ddtgL2(2)2+RgL2(2)2du:τdx=ug,g1ψR(uRgψ),g.\displaystyle\frac{1}{2}\frac{d}{dt}\|g\|^{2}_{L^{2}(\mathcal{L}^{2})}+\|\nabla_{R}g\|^{2}_{L^{2}(\mathcal{L}^{2})}-\int_{\mathbb{R}^{d}}\nabla u:\tau dx=-\langle u\cdot\nabla g,g\rangle-\langle\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(\nabla uRg\psi_{\infty}),g\rangle.

Integrating by parts, we have

ug,g=12divu,g2uLgL2(2)2,\displaystyle-\langle u\cdot\nabla g,g\rangle=\frac{1}{2}\langle divu,g^{2}\rangle\lesssim\|\nabla u\|_{L^{\infty}}\|g\|^{2}_{L^{2}(\mathcal{L}^{2})},

and

1ψR(uRgψ),g=dB(uRgψ)RgdRdxuLgL2(2)RgL2(2).\displaystyle\langle\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(\nabla uRg\psi_{\infty}),g\rangle=-\int_{\mathbb{R}^{d}}\int_{B}(\nabla uRg\psi_{\infty})\nabla_{R}gdRdx\lesssim\|\nabla u\|_{L^{\infty}}\|g\|_{L^{2}(\mathcal{L}^{2})}\|\nabla_{R}g\|_{L^{2}(\mathcal{L}^{2})}.

Applying Lemma 2.3, we have gL2(2)2RgL2(2)2\|g\|^{2}_{L^{2}(\mathcal{L}^{2})}\lesssim\|\nabla_{R}g\|^{2}_{L^{2}(\mathcal{L}^{2})}, which implies that

(3.5) 12ddtgL2(2)2+RgL2(2)2+du:τdxuLgL2(2)RgL2(2).\displaystyle\frac{1}{2}\frac{d}{dt}\|g\|^{2}_{L^{2}(\mathcal{L}^{2})}+\|\nabla_{R}g\|^{2}_{L^{2}(\mathcal{L}^{2})}+\int_{\mathbb{R}^{d}}\nabla u:\tau dx\lesssim\|\nabla u\|_{L^{\infty}}\|g\|_{L^{2}(\mathcal{L}^{2})}\|\nabla_{R}g\|_{L^{2}(\mathcal{L}^{2})}.

Denote that h(ρ)=P(1+ρ)1+ρh(\rho)=\frac{P^{\prime}(1+\rho)}{1+\rho} and i(ρ)=1ρ+1i(\rho)=\frac{1}{\rho+1}. Multiplying h(ρ)ρh(\rho)\rho to (1.14)1\eqref{eq1}_{1} and integrating over d\mathbb{R}^{d} with xx, we obtain

(3.6) 12ddtdh(ρ)|ρ|2𝑑x+dP(1+ρ)ρ𝑑ivu𝑑x\displaystyle\frac{1}{2}\frac{d}{dt}\int_{\mathbb{R}^{d}}h(\rho)|\rho|^{2}dx+\int_{\mathbb{R}^{d}}P^{\prime}(1+\rho)\rho div~{}udx
=12dth(ρ)|ρ|2dxdh(ρ)ρuρdx.\displaystyle=\frac{1}{2}\int_{\mathbb{R}^{d}}\partial_{t}h(\rho)|\rho|^{2}dx-\int_{\mathbb{R}^{d}}h(\rho)\rho u\cdot\nabla\rho dx.

Multiplying (1+ρ)u(1+\rho)u to (1.14)2(\ref{eq1})_{2} and integrating over d\mathbb{R}^{d} with xx, we deduce that

(3.7) 12ddtd(1+ρ)|u|2𝑑x+dP(1+ρ)uρdxdu𝑑ivΣ(u)𝑑xdu𝑑ivτ𝑑x\displaystyle\frac{1}{2}\frac{d}{dt}\int_{\mathbb{R}^{d}}(1+\rho)|u|^{2}dx+\int_{\mathbb{R}^{d}}P^{\prime}(1+\rho)u\nabla\rho dx-\int_{\mathbb{R}^{d}}udiv\Sigma(u)dx-\int_{\mathbb{R}^{d}}udiv~{}\tau dx
=12dtρ|u|2dxduu(1+ρ)u𝑑x.\displaystyle=\frac{1}{2}\int_{\mathbb{R}^{d}}\partial_{t}\rho|u|^{2}dx-\int_{\mathbb{R}^{d}}u\cdot\nabla u(1+\rho)udx.

Using Lemma 2.2, we get

12dth(ρ)|ρ|2dxρL2(ρL2uLd+uL2ρLd),dh(ρ)ρuρdxρL2(uL2ρLd+ρL2uLd),12dtρ|u|2dx+duu(1+ρ)u𝑑xρL2uL2uLd+uL22uLd.\displaystyle\begin{split}&\frac{1}{2}\int_{\mathbb{R}^{d}}\partial_{t}h(\rho)|\rho|^{2}dx\lesssim\|\nabla\rho\|_{L^{2}}(\|\nabla\rho\|_{L^{2}}\|u\|_{L^{d}}+\|\nabla u\|_{L^{2}}\|\rho\|_{L^{d}}),\\ &\int_{\mathbb{R}^{d}}h(\rho)\rho u\cdot\nabla\rho dx\lesssim\|\nabla\rho\|_{L^{2}}(\|\nabla u\|_{L^{2}}\|\rho\|_{L^{d}}+\|\nabla\rho\|_{L^{2}}\|u\|_{L^{d}}),\\ &\frac{1}{2}\int_{\mathbb{R}^{d}}\partial_{t}\rho|u|^{2}dx+\int_{\mathbb{R}^{d}}u\cdot\nabla u(1+\rho)udx\lesssim\|\nabla\rho\|_{L^{2}}\|\nabla u\|_{L^{2}}\|u\|_{L^{d}}+\|\nabla u\|^{2}_{L^{2}}\|u\|_{L^{d}}.\end{split}

Integrating by parts, we obtain

dP(1+ρ)(uρ+ρdivu)𝑑x=dP′′(1+ρ)ρuρdxρL2uL2ρLd+ρL22uLd.\displaystyle-\int_{\mathbb{R}^{d}}P^{\prime}(1+\rho)(u\nabla\rho+\rho div~{}u)dx=\int_{\mathbb{R}^{d}}P^{\prime\prime}(1+\rho)\rho u\nabla\rho dx\lesssim\|\nabla\rho\|_{L^{2}}\|\nabla u\|_{L^{2}}\|\rho\|_{L^{d}}+\|\nabla\rho\|^{2}_{L^{2}}\|u\|_{L^{d}}.

Multiplying ρ\nabla\rho to (1.14)2(\ref{eq1})_{2} and integrating over d\mathbb{R}^{d} with xx, then we get

(3.8) ddtduρdx+γρL22\displaystyle\frac{d}{dt}\int_{\mathbb{R}^{d}}u\nabla\rho dx+\gamma\|\nabla\rho\|^{2}_{L^{2}}
=duρtdx+dρ{i(ρ)divΣ(u)(h(ρ)γ)ρuu+i(ρ)divτ}𝑑x\displaystyle=\int_{\mathbb{R}^{d}}u\nabla\rho_{t}dx+\int_{\mathbb{R}^{d}}\nabla\rho\cdot\{i(\rho)div\Sigma{(u)}-(h(\rho)-\gamma)\nabla\rho-u\cdot\nabla u+i(\rho)div~{}\tau\}dx
=I1+I2.\displaystyle=I_{1}+I_{2}.

By virtue of integration by parts, we have

I1=d𝑑ivuρt𝑑xuL22(1+ρL)+uL2ρL2uL.\displaystyle I_{1}=-\int_{\mathbb{R}^{d}}div~{}u\rho_{t}dx\lesssim\|\nabla u\|^{2}_{L^{2}}(1+\|\rho\|_{L^{\infty}})+\|\nabla u\|_{L^{2}}\|\nabla\rho\|_{L^{2}}\|u\|_{L^{\infty}}.

Applying Lemma 2.3 and Lemma 2.4, we obtain

I2ρL2(2uL2+ρLρL2+uLuL2+RgL2(2)).\displaystyle I_{2}\lesssim\|\nabla\rho\|_{L^{2}}(\|\nabla^{2}u\|_{L^{2}}+\|\rho\|_{L^{\infty}}\|\nabla\rho\|_{L^{2}}+\|u\|_{L^{\infty}}\|\nabla u\|_{L^{2}}+\|\nabla\nabla_{R}g\|_{L^{2}(\mathcal{L}^{2})}).

Let η<1\eta<1, which will be chosen later. Combining (3.5) and the estimates for (3.6)-(3.8), we obtain the lower order derivatives estimates for (1.14)\eqref{eq1}:

(3.9) ddt(h(ρ)12ρL22+(1+ρ)12uL22+gL2(2)2+2ηduρdx)\displaystyle\frac{d}{dt}(\|h(\rho)^{\frac{1}{2}}\rho\|^{2}_{L^{2}}+\|(1+\rho)^{\frac{1}{2}}u\|^{2}_{L^{2}}+\|g\|^{2}_{L^{2}(\mathcal{L}^{2})}+2\eta\int_{\mathbb{R}^{d}}u\nabla\rho dx)
+2(μuL22+(μ+μ)divuL22+ηγρL22+RgL2(2)2)\displaystyle+2(\mu\|\nabla u\|^{2}_{L^{2}}+(\mu+\mu^{\prime})\|divu\|^{2}_{L^{2}}+\eta\gamma\|\nabla\rho\|^{2}_{L^{2}}+\|\nabla_{R}g\|^{2}_{L^{2}(\mathcal{L}^{2})})
(ρL22+uL22)(uLd+ρLd)+uLRgL2(2)2+ηuL22(1+ρL)\displaystyle\lesssim(\|\nabla\rho\|^{2}_{L^{2}}+\|\nabla u\|^{2}_{L^{2}})(\|u\|_{L^{d}}+\|\rho\|_{L^{d}})+\|\nabla u\|_{L^{\infty}}\|\nabla_{R}g\|^{2}_{L^{2}(\mathcal{L}^{2})}+\eta\|\nabla u\|^{2}_{L^{2}}(1+\|\rho\|_{L^{\infty}})
+ηρL2(2uL2+ρLρL2+uLuL2+RgL2(2)).\displaystyle+\eta\|\nabla\rho\|_{L^{2}}(\|\nabla^{2}u\|_{L^{2}}+\|\rho\|_{L^{\infty}}\|\nabla\rho\|_{L^{2}}+\|u\|_{L^{\infty}}\|\nabla u\|_{L^{2}}+\|\nabla\nabla_{R}g\|_{L^{2}(\mathcal{L}^{2})}).

From now on, we establish a precise estimate of the higher order derivatives for (1.14) by interpolation theory. The estimate will play a important role in improving the time decay rate.
Applying Λs\Lambda^{s} to (1.14)3(\ref{eq1})_{3}, we deduce that

(3.10) tΛsg+Λsg+divΛsu+ΛsuRR𝒰\displaystyle\partial_{t}\Lambda^{s}g+\mathcal{L}\Lambda^{s}g+div\Lambda^{s}u+\nabla\Lambda^{s}uR\nabla_{R}\mathcal{U}
=uΛsg[Λs,u]g1ψR(ΛsuRgψ+Rψ[Λs,g]u).\displaystyle=-u\cdot\nabla\Lambda^{s}g-[\Lambda^{s},u]\nabla g-\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(\Lambda^{s}\nabla uRg\psi_{\infty}+R\psi_{\infty}[\Lambda^{s},g]\nabla u).

Taking the L2(2)L^{2}(\mathcal{L}^{2}) inner product with Λsg\Lambda^{s}g to (3.10)(\ref{h3}), we obtain

(3.11) 12ddtΛsgL2(2)2+RΛsgL2(2)2dΛsu:Λsτdx=uΛsg,Λsg\displaystyle\frac{1}{2}\frac{d}{dt}\|\Lambda^{s}g\|^{2}_{L^{2}(\mathcal{L}^{2})}+\|\nabla_{R}\Lambda^{s}g\|^{2}_{L^{2}(\mathcal{L}^{2})}-\int_{\mathbb{R}^{d}}\nabla\Lambda^{s}u:\Lambda^{s}\tau dx=-\langle u\cdot\nabla\Lambda^{s}g,\Lambda^{s}g\rangle
[Λs,u]g,Λsg1ψR(ΛsuRgψ),Λsg1ψR(Rψ[Λs,g]u),Λsg.\displaystyle-\langle[\Lambda^{s},u]\nabla g,\Lambda^{s}g\rangle-\langle\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(\Lambda^{s}\nabla uRg\psi_{\infty}),\Lambda^{s}g\rangle-\langle\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(R\psi_{\infty}[\Lambda^{s},g]\nabla u),\Lambda^{s}g\rangle.

Integrating by part and using Lemma 2.7, we have

uΛsg,Λsg=12divu,(Λsg)2uLΛsgL2(2)2,[Λs,u]g,ΛsguHsgHs1(2)2,1ψR(ΛsuRgψ),Λsg=dB(ΛsuRψg)RΛsgdRdx,gL(2)ΛsuL2RΛsgL2(2),1ψR(Rψ[Λs,g]u),Λsg=R[Λs,g]u,RΛsgRΛsgL2(2)uHsgHs1(2),\displaystyle\begin{split}-\langle u\cdot\nabla\Lambda^{s}g,\Lambda^{s}g\rangle&=\frac{1}{2}\langle div~{}u,(\Lambda^{s}g)^{2}\rangle\lesssim\|\nabla u\|_{L^{\infty}}\|\Lambda^{s}g\|^{2}_{L^{2}(\mathcal{L}^{2})},\\ -\langle[\Lambda^{s},u]\nabla g,\Lambda^{s}g\rangle&\lesssim\|u\|_{H^{s}}\|\nabla g\|^{2}_{H^{s-1}(\mathcal{L}^{2})},\\ \langle\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(\Lambda^{s}\nabla uRg\psi_{\infty}),\Lambda^{s}g\rangle&=-\int_{\mathbb{R}^{d}}\int_{B}(\Lambda^{s}\nabla uR\psi_{\infty}g)\nabla_{R}\Lambda^{s}gdRdx,\\ &\lesssim\|g\|_{L^{\infty}(\mathcal{L}^{2})}\|\nabla\Lambda^{s}u\|_{L^{2}}\|\nabla_{R}\Lambda^{s}g\|_{L^{2}(\mathcal{L}^{2})},\\ -\langle\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(R\psi_{\infty}[\Lambda^{s},g]\nabla u),\Lambda^{s}g\rangle&=\langle R[\Lambda^{s},g]\nabla u,\nabla_{R}\Lambda^{s}g\rangle\\ &\lesssim\|\nabla_{R}\Lambda^{s}g\|_{L^{2}(\mathcal{L}^{2})}\|u\|_{H^{s}}\|\nabla g\|_{H^{s-1}(\mathcal{L}^{2})},\end{split}

from which we can deduce that

(3.12) 12ddtΛsgL2(2)2+RΛsgL2(2)2dΛsu:ΛsτdxgL(2)ΛsuL2RΛsgL2(2)+uHsRgHs1(2)2.\frac{1}{2}\frac{d}{dt}\|\Lambda^{s}g\|^{2}_{L^{2}(\mathcal{L}^{2})}+\|\nabla_{R}\Lambda^{s}g\|^{2}_{L^{2}(\mathcal{L}^{2})}-\int_{\mathbb{R}^{d}}\nabla\Lambda^{s}u:\Lambda^{s}\tau dx\\ \lesssim\|g\|_{L^{\infty}(\mathcal{L}^{2})}\|\nabla\Lambda^{s}u\|_{L^{2}}\|\nabla_{R}\Lambda^{s}g\|_{L^{2}(\mathcal{L}^{2})}+\|u\|_{H^{s}}\|\nabla_{R}\nabla g\|^{2}_{H^{s-1}(\mathcal{L}^{2})}.

Applying Λs\Lambda^{s} to (1.14)1(\ref{eq1})_{1} and applying Λm\Lambda^{m} to (1.14)2(\ref{eq1})_{2}, we get

(3.13) tΛsρ+divΛsu(1+ρ)=uΛsρ[Λs,u]ρ[Λs,ρ]divu,\displaystyle\partial_{t}\Lambda^{s}\rho+div\Lambda^{s}u(1+\rho)=-u\cdot\nabla\Lambda^{s}\rho-[\Lambda^{s},u]\nabla\rho-[\Lambda^{s},\rho]div~{}u,

and

(3.14) tΛmu+h(ρ)Λmρi(ρ)divΛmΣ(u)i(ρ)divΛmτ\displaystyle\partial_{t}\Lambda^{m}u+h(\rho)\nabla\Lambda^{m}\rho-i(\rho)div\Lambda^{m}\Sigma{(u)}-i(\rho)div\Lambda^{m}\tau
=uΛmu[Λm,u]u[Λm,h(ρ)γ]ρ+[Λm,i(ρ)1]divΣ(u)+[Λm,i(ρ)1]divτ.\displaystyle=-u\cdot\nabla\Lambda^{m}u-[\Lambda^{m},u]\nabla u-[\Lambda^{m},h(\rho)-\gamma]\nabla\rho+[\Lambda^{m},i(\rho)-1]div\Sigma{(u)}+[\Lambda^{m},i(\rho)-1]div~{}\tau.

Multiplying h(ρ)Λsρh(\rho)\Lambda^{s}\rho to (3.13)(\ref{h1}) and integrating over d\mathbb{R}^{d} with xx, we obtain

(3.15) 12ddtdh(ρ)|Λsρ|2𝑑x+dP(1+ρ)Λsρ𝑑ivΛsu𝑑x=12dth(ρ)|Λsρ|2dx\displaystyle\frac{1}{2}\frac{d}{dt}\int_{\mathbb{R}^{d}}h(\rho)|\Lambda^{s}\rho|^{2}dx+\int_{\mathbb{R}^{d}}P^{\prime}(1+\rho)\Lambda^{s}\rho div\Lambda^{s}udx=\frac{1}{2}\int_{\mathbb{R}^{d}}\partial_{t}h(\rho)|\Lambda^{s}\rho|^{2}dx
dΛsρh(ρ)uΛsρdxd[Λs,u]ρh(ρ)Λsρ𝑑xd[Λs,(1+ρ)]𝑑ivuh(ρ)Λsρ𝑑x.\displaystyle-\int_{\mathbb{R}^{d}}\Lambda^{s}\rho\cdot h(\rho)u\cdot\nabla\Lambda^{s}\rho dx-\int_{\mathbb{R}^{d}}[\Lambda^{s},u]\nabla\rho\cdot h(\rho)\Lambda^{s}\rho dx-\int_{\mathbb{R}^{d}}[\Lambda^{s},(1+\rho)]div~{}u\cdot h(\rho)\Lambda^{s}\rho dx.

Hölder’s inequality yields that

12dth(ρ)|Λsρ|2dx(uHs+ρHs)ΛsρL22.\displaystyle\frac{1}{2}\int_{\mathbb{R}^{d}}\partial_{t}h(\rho)|\Lambda^{s}\rho|^{2}dx\lesssim(\|u\|_{H^{s}}+\|\rho\|_{H^{s}})\|\Lambda^{s}\rho\|^{2}_{L^{2}}.

By virtue of integration by parts, we get

dΛsρh(ρ)uΛsρdx=12d𝑑iv(h(ρ)u)|Λsρ|2𝑑x(uHs+ρHs)ΛsρL22.\displaystyle-\int_{\mathbb{R}^{d}}\Lambda^{s}\rho\cdot h(\rho)u\cdot\nabla\Lambda^{s}\rho dx=\frac{1}{2}\int_{\mathbb{R}^{d}}div(h(\rho)u)|\Lambda^{s}\rho|^{2}dx\lesssim(\|u\|_{H^{s}}+\|\rho\|_{H^{s}})\|\Lambda^{s}\rho\|^{2}_{L^{2}}.

By Lemma 2.7, we obtain

d[Λs,u]ρh(ρ)Λsρ𝑑xd[Λs,ρ]𝑑ivuh(ρ)Λsρ𝑑x\displaystyle-\int_{\mathbb{R}^{d}}[\Lambda^{s},u]\nabla\rho\cdot h(\rho)\Lambda^{s}\rho dx-\int_{\mathbb{R}^{d}}[\Lambda^{s},\rho]divu\cdot h(\rho)\Lambda^{s}\rho dx
(ΛsuL2ρL+uLΛsρL2)ΛsρL2\displaystyle\lesssim(\|\Lambda^{s}u\|_{L^{2}}\|\nabla\rho\|_{L^{\infty}}+\|\nabla u\|_{L^{\infty}}\|\Lambda^{s}\rho\|_{L^{2}})\|\Lambda^{s}\rho\|_{L^{2}}
(ΛsuL2ρHs+uHsΛsρL2)ΛsρL2.\displaystyle\lesssim(\|\Lambda^{s}u\|_{L^{2}}\|\rho\|_{H^{s}}+\|u\|_{H^{s}}\|\Lambda^{s}\rho\|_{L^{2}})\|\Lambda^{s}\rho\|_{L^{2}}.

Multiplying (1+ρ)Λsu(1+\rho)\Lambda^{s}u to (3.14)(\ref{h2}) with m=sm=s and integrating over d\mathbb{R}^{d} with xx, then we have

(3.16) 12ddt(1+ρ)12ΛsuL22+dP(1+ρ)ΛsρΛsudx\displaystyle\frac{1}{2}\frac{d}{dt}\|(1+\rho)^{\frac{1}{2}}\Lambda^{s}u\|^{2}_{L^{2}}+\int_{\mathbb{R}^{d}}P^{\prime}(1+\rho)\nabla\Lambda^{s}\rho\Lambda^{s}udx
+μΛsuL22+(μ+μ)divΛsuL22d𝑑ivΛsτΛsu𝑑x\displaystyle+\mu\|\nabla\Lambda^{s}u\|^{2}_{L^{2}}+(\mu+\mu^{\prime})\|div\Lambda^{s}u\|^{2}_{L^{2}}-\int_{\mathbb{R}^{d}}div\Lambda^{s}\tau\Lambda^{s}udx
=12dtρ|Λsu|2dxdΛsu(1+ρ)uΛsudx\displaystyle=\frac{1}{2}\int_{\mathbb{R}^{d}}\partial_{t}\rho|\Lambda^{s}u|^{2}dx-\int_{\mathbb{R}^{d}}\Lambda^{s}u\cdot(1+\rho)u\cdot\nabla\Lambda^{s}udx
d[Λs,u]u(1+ρ)Λsu𝑑xd[Λs,h(ρ)γ]ρ(1+ρ)Λsu𝑑x\displaystyle-\int_{\mathbb{R}^{d}}[\Lambda^{s},u]\nabla u(1+\rho)\Lambda^{s}udx-\int_{\mathbb{R}^{d}}[\Lambda^{s},h(\rho)-\gamma]\nabla\rho(1+\rho)\Lambda^{s}udx
+d[Λs,i(ρ)1]𝑑ivΣ(u)(1+ρ)Λsu𝑑x+d[Λs,i(ρ)1]𝑑ivτ(1+ρ)Λsu𝑑x.\displaystyle+\int_{\mathbb{R}^{d}}[\Lambda^{s},i(\rho)-1]div\Sigma{(u)}(1+\rho)\Lambda^{s}udx+\int_{\mathbb{R}^{d}}[\Lambda^{s},i(\rho)-1]div~{}\tau(1+\rho)\Lambda^{s}udx.

By virtue of Lemmas 2.3, 2.4 and 2.7, we obtain

12dtρ|Λsu|2dxdΛsu(1+ρ)uΛsudxd[Λs,u]u(1+ρ)Λsu𝑑xuHsΛsuL2(ΛsuL2+ΛsuL2),d[Λs,h(ρ)γ]ρ(1+ρ)Λsu𝑑x+d[Λs,i(ρ)1]𝑑ivΣ(u)(1+ρ)Λsu𝑑xρHsΛsuL2(ΛsρL2+2uHs1),d[Λs,i(ρ)1]𝑑ivτ(1+ρ)Λsu𝑑xρHsΛsuL2RgHs1(2).\displaystyle\begin{split}&\frac{1}{2}\int_{\mathbb{R}^{d}}\partial_{t}\rho|\Lambda^{s}u|^{2}dx-\int_{\mathbb{R}^{d}}\Lambda^{s}u\cdot(1+\rho)u\cdot\nabla\Lambda^{s}udx-\int_{\mathbb{R}^{d}}[\Lambda^{s},u]\nabla u(1+\rho)\Lambda^{s}udx\\ &\lesssim\|u\|_{H^{s}}\|\Lambda^{s}u\|_{L^{2}}(\|\Lambda^{s}u\|_{L^{2}}+\|\nabla\Lambda^{s}u\|_{L^{2}}),\\ &-\int_{\mathbb{R}^{d}}[\Lambda^{s},h(\rho)-\gamma]\nabla\rho(1+\rho)\Lambda^{s}udx+\int_{\mathbb{R}^{d}}[\Lambda^{s},i(\rho)-1]div\Sigma{(u)}(1+\rho)\Lambda^{s}udx\\ &\lesssim\|\rho\|_{H^{s}}\|\Lambda^{s}u\|_{L^{2}}(\|\Lambda^{s}\rho\|_{L^{2}}+\|\nabla^{2}u\|_{H^{s-1}}),\\ &\int_{\mathbb{R}^{d}}[\Lambda^{s},i(\rho)-1]div~{}\tau(1+\rho)\Lambda^{s}udx\lesssim\|\rho\|_{H^{s}}\|\Lambda^{s}u\|_{L^{2}}\|\nabla_{R}\nabla g\|_{H^{s-1}(\mathcal{L}^{2})}.\end{split}

Integrating by part, we have

dP(1+ρ)(ΛsuΛsρ+ΛsρdivΛsu)𝑑x\displaystyle-\int_{\mathbb{R}^{d}}P^{\prime}(1+\rho)(\Lambda^{s}u\nabla\Lambda^{s}\rho+\Lambda^{s}\rho div\Lambda^{s}u)dx =dP′′(1+ρ)ΛsρΛsuρdx\displaystyle=\int_{\mathbb{R}^{d}}P^{\prime\prime}(1+\rho)\Lambda^{s}\rho\Lambda^{s}u\nabla\rho dx
ρHsΛsuL2ΛsρL2.\displaystyle\lesssim\|\rho\|_{H^{s}}\|\Lambda^{s}u\|_{L^{2}}\|\Lambda^{s}\rho\|_{L^{2}}.

Multiplying Λs1ρ\nabla\Lambda^{s-1}\rho to (3.14)(\ref{h2}) with m=s1m=s-1 and integrating over d\mathbb{R}^{d} with xx, then we get

(3.17) ddtdΛs1uΛs1ρdx+γΛs1ρL22\displaystyle\frac{d}{dt}\int_{\mathbb{R}^{d}}\Lambda^{s-1}u\cdot\nabla\Lambda^{s-1}\rho dx+\gamma\|\nabla\Lambda^{s-1}\rho\|^{2}_{L^{2}}
=dΛs1ρt𝑑ivΛs1u𝑑xdΛs1ρuΛs1udx\displaystyle=-\int_{\mathbb{R}^{d}}\Lambda^{s-1}\rho_{t}div\Lambda^{s-1}udx-\int_{\mathbb{R}^{d}}\nabla\Lambda^{s-1}\rho\cdot u\cdot\nabla\Lambda^{s-1}udx
d[Λs1,u]uΛs1ρdxdΛs1((h(ρ)γ)ρ)Λs1ρdx\displaystyle-\int_{\mathbb{R}^{d}}[\Lambda^{s-1},u]\nabla u\nabla\Lambda^{s-1}\rho dx-\int_{\mathbb{R}^{d}}\Lambda^{s-1}((h(\rho)-\gamma)\nabla\rho)\nabla\Lambda^{s-1}\rho dx
+dΛs1(i(ρ)divΣ(u))Λs1ρdx+dΛs1(i(ρ)divτ)Λs1ρdx.\displaystyle+\int_{\mathbb{R}^{d}}\Lambda^{s-1}(i(\rho)div\Sigma{(u)})\nabla\Lambda^{s-1}\rho dx+\int_{\mathbb{R}^{d}}\Lambda^{s-1}(i(\rho)div\tau)\nabla\Lambda^{s-1}\rho dx.

Using Lemma 2.7 and Lemma 2.2, we can deduce that

d[Λs1,u]uΛs1ρdx\displaystyle-\int_{\mathbb{R}^{d}}[\Lambda^{s-1},u]\nabla u\nabla\Lambda^{s-1}\rho dx ΛsρL2uLΛs1uL2\displaystyle\lesssim\|\Lambda^{s}\rho\|_{L^{2}}\|\nabla u\|_{L^{\infty}}\|\Lambda^{s-1}u\|_{L^{2}}
ΛsρL2uL211sd2sΛsuL21s+d2suL21sΛsuL211s\displaystyle\lesssim\|\Lambda^{s}\rho\|_{L^{2}}\|u\|^{1-\frac{1}{s}-\frac{d}{2s}}_{L^{2}}\|\Lambda^{s}u\|^{\frac{1}{s}+\frac{d}{2s}}_{L^{2}}\|u\|^{\frac{1}{s}}_{L^{2}}\|\Lambda^{s}u\|^{1-\frac{1}{s}}_{L^{2}}
ΛsρL2uHsΛsuL2,\displaystyle\lesssim\|\Lambda^{s}\rho\|_{L^{2}}\|u\|_{H^{s}}\|\Lambda^{s}u\|_{L^{2}},

and

dΛs1ρt𝑑ivΛs1u𝑑xdΛs1ρuΛs1udx\displaystyle-\int_{\mathbb{R}^{d}}\Lambda^{s-1}\rho_{t}div\Lambda^{s-1}udx-\int_{\mathbb{R}^{d}}\nabla\Lambda^{s-1}\rho\cdot u\cdot\nabla\Lambda^{s-1}udx
uHsΛsuL2ΛsρL2+ΛsuL22(1+ρL)\displaystyle\lesssim\|u\|_{H^{s}}\|\Lambda^{s}u\|_{L^{2}}\|\Lambda^{s}\rho\|_{L^{2}}+\|\Lambda^{s}u\|^{2}_{L^{2}}(1+\|\rho\|_{L^{\infty}})
+ΛsuL2(ρLΛs1uL2+uLΛs1ρL2)\displaystyle+\|\Lambda^{s}u\|_{L^{2}}(\|\nabla\rho\|_{L^{\infty}}\|\Lambda^{s-1}u\|_{L^{2}}+\|\nabla u\|_{L^{\infty}}\|\Lambda^{s-1}\rho\|_{L^{2}})
ΛsuL22+ΛsuL2(ΛsuL2+ΛsρL2)(ρHs+uHs).\displaystyle\lesssim\|\Lambda^{s}u\|^{2}_{L^{2}}+\|\Lambda^{s}u\|_{L^{2}}(\|\Lambda^{s}u\|_{L^{2}}+\|\Lambda^{s}\rho\|_{L^{2}})(\|\rho\|_{H^{s}}+\|u\|_{H^{s}}).

Similar, we get

dΛs1((h(ρ)γ)ρ)Λs1ρdx+dΛs1(i(ρ)divΣ(u))Λs1ρdx\displaystyle-\int_{\mathbb{R}^{d}}\Lambda^{s-1}((h(\rho)-\gamma)\nabla\rho)\nabla\Lambda^{s-1}\rho dx+\int_{\mathbb{R}^{d}}\Lambda^{s-1}(i(\rho)div\Sigma{(u)})\nabla\Lambda^{s-1}\rho dx
ΛsρL2(ρLΛsρL2+ρLΛs1ρL2+2uHs1+2uHs1ρHs1)\displaystyle\lesssim\|\Lambda^{s}\rho\|_{L^{2}}(\|\rho\|_{L^{\infty}}\|\Lambda^{s}\rho\|_{L^{2}}+\|\nabla\rho\|_{L^{\infty}}\|\Lambda^{s-1}\rho\|_{L^{2}}+\|\nabla^{2}u\|_{H^{s-1}}+\|\nabla^{2}u\|_{H^{s-1}}\|\rho\|_{H^{s-1}})
ΛsρL2(ρHsΛsρL2+2uHs1+2uHs1ρHs1).\displaystyle\lesssim\|\Lambda^{s}\rho\|_{L^{2}}(\|\rho\|_{H^{s}}\|\Lambda^{s}\rho\|_{L^{2}}+\|\nabla^{2}u\|_{H^{s-1}}+\|\nabla^{2}u\|_{H^{s-1}}\|\rho\|_{H^{s-1}}).

Using Lemma 2.3 and Lemma 2.4, we have

dΛs1(i(ρ)divτ)Λs1ρdxΛsρL2RgHs1(2)(ρHs1+1).\displaystyle\int_{\mathbb{R}^{d}}\Lambda^{s-1}(i(\rho)div\tau)\nabla\Lambda^{s-1}\rho dx\lesssim\|\Lambda^{s}\rho\|_{L^{2}}\|\nabla_{R}\nabla g\|_{H^{s-1}(\mathcal{L}^{2})}(\|\rho\|_{H^{s-1}}+1).

Combining (3.12) and the estimates for (3.15)-(3.17), we obtain the higher order derivatives estimates for (1.14)\eqref{eq1}:

(3.18) ddt(h(ρ)12ΛsρL22+(1+ρ)12ΛsuL22+ΛsgL2(2)2+2ηdΛs1uΛs1ρdx)\displaystyle\frac{d}{dt}(\|h(\rho)^{\frac{1}{2}}\Lambda^{s}\rho\|^{2}_{L^{2}}+\|(1+\rho)^{\frac{1}{2}}\Lambda^{s}u\|^{2}_{L^{2}}+\|\Lambda^{s}g\|^{2}_{L^{2}(\mathcal{L}^{2})}+2\eta\int_{\mathbb{R}^{d}}\Lambda^{s-1}u\nabla\Lambda^{s-1}\rho dx)
+2(μΛsuL22+(μ+μ)divΛsuL22+ηγΛs1ρL22+RΛsgL2(2)2)\displaystyle+2(\mu\|\nabla\Lambda^{s}u\|^{2}_{L^{2}}+(\mu+\mu^{\prime})\|div\Lambda^{s}u\|^{2}_{L^{2}}+\eta\gamma\|\nabla\Lambda^{s-1}\rho\|^{2}_{L^{2}}+\|\nabla_{R}\Lambda^{s}g\|^{2}_{L^{2}(\mathcal{L}^{2})})
ρHs2uHs1RgHs1(2)+(ρHs+uHs)(2ρHs22+2uHs12)\displaystyle\lesssim\|\rho\|_{H^{s}}\|\nabla^{2}u\|_{H^{s-1}}\|\nabla\nabla_{R}g\|_{H^{s-1}(\mathcal{L}^{2})}+(\|\rho\|_{H^{s}}+\|u\|_{H^{s}})(\|\nabla^{2}\rho\|^{2}_{H^{s-2}}+\|\nabla^{2}u\|^{2}_{H^{s-1}})
+gL(2)ΛsuL2RΛsgL2(2)+uHsRgHs1(2)2\displaystyle+\|g\|_{L^{\infty}(\mathcal{L}^{2})}\|\nabla\Lambda^{s}u\|_{L^{2}}\|\nabla_{R}\Lambda^{s}g\|_{L^{2}(\mathcal{L}^{2})}+\|u\|_{H^{s}}\|\nabla_{R}\nabla g\|^{2}_{H^{s-1}(\mathcal{L}^{2})}
+η(2uHs12+2uHs12ρHs2)+η(ρHs+uHs)(2ρHs22+2uHs12)\displaystyle+\eta(\|\nabla^{2}u\|^{2}_{H^{s-1}}+\|\nabla^{2}u\|_{H^{s-1}}\|\nabla^{2}\rho\|_{H^{s-2}})+\eta(\|\rho\|_{H^{s}}+\|u\|_{H^{s}})(\|\nabla^{2}\rho\|^{2}_{H^{s-2}}+\|\nabla^{2}u\|^{2}_{H^{s-1}})
+η2ρHs2RgHs1(2)(1+ρHs).\displaystyle+\eta\|\nabla^{2}\rho\|_{H^{s-2}}\|\nabla\nabla_{R}g\|_{H^{s-1}(\mathcal{L}^{2})}(1+\|\rho\|_{H^{s}}).

Note that the precise estimate (3.18) will be used in the next section again.

Choosing sufficiently small constant η>0\eta>0, we have E(t)Eη(t)E(t)\sim E_{\eta}(t) and D(t)Dη(t)D(t)\sim D_{\eta}(t). Then combining (3.9) and (3.18) with sufficiently small η>0\eta>0 and ϵ\epsilon, we finally deduce that

ddtEη(t)+Dη(t)0,\frac{d}{dt}E_{\eta}(t)+D_{\eta}(t)\leq 0,

which implies that there exist C0>1C_{0}>1 such that

supt[0,T]E(t)+0TD(t)𝑑tC0E(0).\displaystyle\sup_{t\in[0,T]}E(t)+\int_{0}^{T}D(t)dt\leq C_{0}E(0).

We thus complete the proof of Proposition 3.2. ∎

The proof of Theorem 1.1:

Applying Proposition 3.1 and Proposition 3.2, we prove the global-in-time solutions of the compressible polymeric system (1.14) by using the standard continuum argument. Let E(0)ϵ0E(0)\leq\epsilon_{0} with ϵ0=ϵ2C0\epsilon_{0}=\frac{\epsilon}{2C_{0}} and C0>1C_{0}>1. Applying Proposition 3.1, we get the unique local solution result on the time interval t[0,T]t\in[0,T] with T>0T>0, satisfying supt[0,T]E(t)ϵ\sup_{t\in[0,T]}E(t)\leq\epsilon. Then the global priori estimate in Proposition 3.2 yields

E(T)C0E(0)ϵ2.E(T)\leq C_{0}E(0)\leq\frac{\epsilon}{2}.

Applying Proposition 3.1 again, we have the unique local solution result t[T,2T]t\in[T,2T], satisfying supt[T,2T]E(t)ϵ\sup_{t\in[T,2T]}E(t)\leq\epsilon. So it holds that

supt[0,2T]E(t)ϵ.\sup_{t\in[0,2T]}E(t)\leq\epsilon.

Then the global priori estimate in Proposition 3.2 yields

E(2T)C0E(0)ϵ2.E(2T)\leq C_{0}E(0)\leq\frac{\epsilon}{2}.

Repeating this bootstrap argument, we prove the global existence of strong solution of the compressible polymeric system (1.14). Moreover, we obtain supt[0,)E(t)+0D(t)𝑑tC0E(0).\sup_{t\in[0,\infty)}E(t)+\int_{0}^{\infty}D(t)dt\leq C_{0}E(0). \Box

4 The L2L^{2} decay rate

We investigate the long time behaviour for the compressible FENE dumbbell model in this section. The first difficult for us is that the stress tensor τ\tau does not decay fast enough. Therefore, we failed to use the bootstrap argument as in [37, 25, 27]. To overcome this difficulty, we need to consider the coupling effect between ρ\rho, uu and gg in Fourier space. Motivated by [15] and [45], we obtain the L2L^{2} decay rate by taking Fourier transform in (1.14) and using the Fourier splitting method. By virtue of the standard method, one can not obtain the optimal decay rate. However, we can obtain a weaker result as follow.

Proposition 4.1.

Let (ρ0,u0,g0)(\rho_{0},u_{0},g_{0}) satisfy the same condition in Theorem 1.2. For any t(0,+)t\in(0,+\infty), we have

(4.1) E(t)C(1+t)d4.\displaystyle E(t)\leq C(1+t)^{-\frac{d}{4}}.
Proof.

Firstly, we consider the simple case d5d\geq 5. According to Proposition 3.2, we have

(4.2) ddtEη(t)+Dη(t)0.\displaystyle\frac{d}{dt}E_{\eta}(t)+D_{\eta}(t)\leq 0.

Using Schonbek’s strategy, we consider S(t)={ξ:|ξ|2Cd(1+t)1}S(t)=\{\xi:|\xi|^{2}\leq C_{d}(1+t)^{-1}\} where the constant CdC_{d} will be chosen later on. Then we have

uHs2=S(t)(1+|ξ|2s)|ξ|2|u^(ξ)|2𝑑ξ+S(t)c(1+|ξ|2s)|ξ|2|u^(ξ)|2𝑑ξ.\|\nabla u\|^{2}_{H^{s}}=\int_{S(t)}(1+|\xi|^{2s})|\xi|^{2}|\hat{u}(\xi)|^{2}d\xi+\int_{S(t)^{c}}(1+|\xi|^{2s})|\xi|^{2}|\hat{u}(\xi)|^{2}d\xi.

We deduce that

Cd1+tS(t)c(1+|ξ|2s)|u^(ξ)|2𝑑ξuHs2,\frac{C_{d}}{1+t}\int_{S(t)^{c}}(1+|\xi|^{2s})|\hat{u}(\xi)|^{2}d\xi\leq\|\nabla u\|^{2}_{H^{s}},

and

Cd1+tS(t)c(1+|ξ|2s2)|ρ^(ξ)|2𝑑ξρHs12,\frac{C_{d}}{1+t}\int_{S(t)^{c}}(1+|\xi|^{2s-2})|\hat{\rho}(\xi)|^{2}d\xi\leq\|\nabla\rho\|^{2}_{H^{s-1}},

which implies that

(4.3) ddtEη(t)+μCd1+tuHs2+ηγCd1+tρHs12+RgHs(2)2CCd1+tS(t)|u^(ξ)|2+|ρ^(ξ)|2dξ.\displaystyle\frac{d}{dt}E_{\eta}(t)+\frac{\mu C_{d}}{1+t}\|u\|^{2}_{H^{s}}+\frac{\eta\gamma C_{d}}{1+t}\|\rho\|^{2}_{H^{s-1}}+\|\nabla_{R}g\|^{2}_{H^{s}(\mathcal{L}^{2})}\leq\frac{CC_{d}}{1+t}\int_{S(t)}|\hat{u}(\xi)|^{2}+|\hat{\rho}(\xi)|^{2}d\xi.

From now on, we consider the L2L^{2} estimate to the low frequency part of (ρ,u)(\rho,u). Taking Fourier transform with respect to xx in (1.14), we obtain

(4.7) {ρ^t+iξku^k=F^,u^tj+μ|ξ|2u^j+(μ+μ)ξjξku^k+iξjγρ^iξkτ^jk=G^j,g^t+g^iξku^jRjRk𝒰+iξku^k=H^,\displaystyle\left\{\begin{array}[]{ll}\hat{\rho}_{t}+i\xi_{k}\hat{u}^{k}=\hat{F},\\[4.30554pt] \hat{u}^{j}_{t}+\mu|\xi|^{2}\hat{u}^{j}+(\mu+\mu^{\prime})\xi_{j}\xi_{k}\hat{u}^{k}+i\xi_{j}\gamma\hat{\rho}-i\xi_{k}\hat{\tau}^{jk}=\hat{G}^{j},\\[4.30554pt] \hat{g}_{t}+\mathcal{L}\hat{g}-i\xi_{k}\hat{u}^{j}R_{j}\partial_{R_{k}}\mathcal{U}+i\xi_{k}\hat{u}^{k}=\hat{H},\\[4.30554pt] \end{array}\right.

where F=div(ρu)F=-div(\rho u), G=uu+[i(ρ)1](divΣ(u)+divτ)+[γh(ρ)]ρG=-u\cdot\nabla u+[i(\rho)-1](div\Sigma(u)+div\tau)+[\gamma-h(\rho)]\nabla\rho and H=ug1ψR(uRgψ)H=-u\cdot\nabla g-\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(\nabla uRg\psi_{\infty}).
Multiplying ρ^¯(t,ξ)\bar{\hat{\rho}}(t,\xi) to the first equation of (4.7) and taking the real part, we have

(4.8) 12ddt|ρ^|2+e[iξu^ρ^¯]=e[F^ρ^¯].\displaystyle\frac{1}{2}\frac{d}{dt}|\hat{\rho}|^{2}+\mathcal{R}e[i\xi\cdot\hat{u}\bar{\hat{\rho}}]=\mathcal{R}e[\hat{F}\bar{\hat{\rho}}].

Multiplying u^¯j(t,ξ)\bar{\hat{u}}^{j}(t,\xi) with 1jd1\leq j\leq d to the second equation of (4.7) and considering the real part, we deduce that

(4.9) 12ddt|u^|2+e[γρ^iξu^¯]+μ|ξ|2|u^|2+(μ+μ)|ξu^|2e[iξu^¯(t,ξ):τ^]=e[G^u^¯].\displaystyle\frac{1}{2}\frac{d}{dt}|\hat{u}|^{2}+\mathcal{R}e[\gamma\hat{\rho}i\xi\cdot\bar{\hat{u}}]+\mu|\xi|^{2}|\hat{u}|^{2}+(\mu+\mu^{\prime})|\xi\cdot\hat{u}|^{2}-\mathcal{R}e[i\xi\otimes\bar{\hat{u}}(t,\xi):\hat{\tau}]=\mathcal{R}e[\hat{G}\cdot\bar{\hat{u}}].

Multiplying g^¯(t,ξ,R)ψ\bar{\hat{g}}(t,\xi,R)\psi_{\infty} to the third equation of (4.7), integrating over BB with RR and taking the real part, we have

(4.10) 12ddtg^22+Rg^22e[iξu^:τ^¯]=e[BH^g^¯ψdR],\displaystyle\frac{1}{2}\frac{d}{dt}\|\hat{g}\|^{2}_{\mathcal{L}^{2}}+\|\nabla_{R}\hat{g}\|^{2}_{\mathcal{L}^{2}}-\mathcal{R}e[i\xi\otimes\hat{u}:\bar{\hat{\tau}}]=\mathcal{R}e[\int_{B}\hat{H}\bar{\hat{g}}\psi_{\infty}dR],

where we using the fact Biξku^kg^¯ψ𝑑R=0\int_{B}i\xi_{k}\hat{u}^{k}\bar{\hat{g}}\psi_{\infty}dR=0. It is easy to verify that

e[iξu^ρ^¯]+e[ρ^iξu^¯]=e[iξu^¯(t,ξ):τ^]+e[iξu^:τ^¯]=0,\mathcal{R}e[i\xi\cdot\hat{u}\bar{\hat{\rho}}]+\mathcal{R}e[\hat{\rho}i\xi\cdot\bar{\hat{u}}]=\mathcal{R}e[i\xi\otimes\bar{\hat{u}}(t,\xi):\hat{\tau}]+\mathcal{R}e[i\xi\otimes\hat{u}:\bar{\hat{\tau}}]=0,

which implies that

(4.11) 12ddt(γ|ρ^|2+|u^|2+g^22)+μ|ξ|2|u^|2+(μ+μ)|ξu^|2+Rg^22\displaystyle\frac{1}{2}\frac{d}{dt}(\gamma|\hat{\rho}|^{2}+|\hat{u}|^{2}+\|\hat{g}\|^{2}_{\mathcal{L}^{2}})+\mu|\xi|^{2}|\hat{u}|^{2}+(\mu+\mu^{\prime})|\xi\cdot\hat{u}|^{2}+\|\nabla_{R}\hat{g}\|^{2}_{\mathcal{L}^{2}}
=e[γF^ρ^¯]+e[G^u^¯]+e[BH^g^¯ψ𝑑R].\displaystyle=\mathcal{R}e[\gamma\hat{F}\bar{\hat{\rho}}]+\mathcal{R}e[\hat{G}\cdot\bar{\hat{u}}]+\mathcal{R}e[\int_{B}\hat{H}\bar{\hat{g}}\psi_{\infty}dR].

Multiplying iξu^¯i\xi\cdot\bar{\hat{u}} to the first equation of (4.7) and considering the real part, we obtain

(4.12) e[ρ^tiξu^¯]|ξu^|2=e[F^iξu^¯].\displaystyle\mathcal{R}e[\hat{\rho}_{t}i\xi\cdot\bar{\hat{u}}]-|\xi\cdot\hat{u}|^{2}=\mathcal{R}e[\hat{F}i\xi\cdot\bar{\hat{u}}].

Multiplying iξjρ^¯-i\xi_{j}\bar{\hat{\rho}} with 1jd1\leq j\leq d to the second equation of (4.7) and taking the real part, we get

(4.13) e[ρ^iξu^¯t]+γ|ξ|2|ρ^|2+(2μ+μ)|ξ|2e[ρ^iξu^¯]e[ρ^ξξ:τ^¯]=e[G^¯iξρ^].\displaystyle\mathcal{R}e[\hat{\rho}i\xi\cdot\bar{\hat{u}}_{t}]+\gamma|\xi|^{2}|\hat{\rho}|^{2}+(2\mu+\mu^{\prime})|\xi|^{2}\mathcal{R}e[\hat{\rho}i\xi\cdot\bar{\hat{u}}]-\mathcal{R}e[\hat{\rho}\xi\otimes\xi:\bar{\hat{\tau}}]=\mathcal{R}e[\bar{\hat{G}}\cdot i\xi\hat{\rho}].

It follows from (4.11)-(4.13) that

(4.14) 12ddt(γ|ρ^|2+|u^|2+g^22+2(μ+μ)e[ρ^iξu^¯])+μ|ξ|2|u^|2+(μ+μ)γ|ξ|2|ρ^|2+Rg^22\displaystyle\frac{1}{2}\frac{d}{dt}(\gamma|\hat{\rho}|^{2}+|\hat{u}|^{2}+\|\hat{g}\|^{2}_{\mathcal{L}^{2}}+2(\mu+\mu^{\prime})\mathcal{R}e[\hat{\rho}i\xi\cdot\bar{\hat{u}}])+\mu|\xi|^{2}|\hat{u}|^{2}+(\mu+\mu^{\prime})\gamma|\xi|^{2}|\hat{\rho}|^{2}+\|\nabla_{R}\hat{g}\|^{2}_{\mathcal{L}^{2}}
=(μ+μ)(2μ+μ)|ξ|2e[ρ^iξu^¯]+(μ+μ)e[ρ^ξξ:τ^¯]+(μ+μ)e[F^iξu^¯]\displaystyle=-(\mu+\mu^{\prime})(2\mu+\mu^{\prime})|\xi|^{2}\mathcal{R}e[\hat{\rho}i\xi\cdot\bar{\hat{u}}]+(\mu+\mu^{\prime})\mathcal{R}e[\hat{\rho}\xi\otimes\xi:\bar{\hat{\tau}}]+(\mu+\mu^{\prime})\mathcal{R}e[\hat{F}i\xi\cdot\bar{\hat{u}}]
+(μ+μ)e[G^¯iξρ^]+e[γF^ρ^¯]+e[G^u^¯]+e[BH^g^¯ψ𝑑R].\displaystyle+(\mu+\mu^{\prime})\mathcal{R}e[\bar{\hat{G}}\cdot i\xi\hat{\rho}]+\mathcal{R}e[\gamma\hat{F}\bar{\hat{\rho}}]+\mathcal{R}e[\hat{G}\cdot\bar{\hat{u}}]+\mathcal{R}e[\int_{B}\hat{H}\bar{\hat{g}}\psi_{\infty}dR].

Consider ξS(t)\xi\in S(t), we deduce that

(4.15) (μ+μ)e[F^iξu^¯]+(μ+μ)e[G^¯iξρ^]+e[γF^ρ^¯]\displaystyle(\mu+\mu^{\prime})\mathcal{R}e[\hat{F}i\xi\cdot\bar{\hat{u}}]+(\mu+\mu^{\prime})\mathcal{R}e[\bar{\hat{G}}\cdot i\xi\hat{\rho}]+\mathcal{R}e[\gamma\hat{F}\bar{\hat{\rho}}]
C(|ρu^|2+|G^|2)+110(μ|ξ|2|u^|2+(μ+μ)γ|ξ|2|ρ^|2).\displaystyle\leq C(|\widehat{\rho u}|^{2}+|\hat{G}|^{2})+\frac{1}{10}(\mu|\xi|^{2}|\hat{u}|^{2}+(\mu+\mu^{\prime})\gamma|\xi|^{2}|\hat{\rho}|^{2}).

Let tt be sufficiently large, we obtain

(4.16) 2(μ+μ)e[ρ^iξu^¯]110(|u^|2+γ|ρ^|2).\displaystyle 2(\mu+\mu^{\prime})\mathcal{R}e[\hat{\rho}i\xi\cdot\bar{\hat{u}}]\leq\frac{1}{10}(|\hat{u}|^{2}+\gamma|\hat{\rho}|^{2}).

Integrating by part and using Lemmas 2.3, 2.4, we get

(μ+μ)(2μ+μ)|ξ|2e[ρ^iξu^¯]+(μ+μ)e[ρ^ξξ:τ^¯]\displaystyle-(\mu+\mu^{\prime})(2\mu+\mu^{\prime})|\xi|^{2}\mathcal{R}e[\hat{\rho}i\xi\cdot\bar{\hat{u}}]+(\mu+\mu^{\prime})\mathcal{R}e[\hat{\rho}\xi\otimes\xi:\bar{\hat{\tau}}]
110(μ|ξ|2|u^|2+(μ+μ)γ|ξ|2|ρ^|2+Rg^22),\displaystyle\leq\frac{1}{10}(\mu|\xi|^{2}|\hat{u}|^{2}+(\mu+\mu^{\prime})\gamma|\xi|^{2}|\hat{\rho}|^{2}+\|\nabla_{R}\hat{g}\|^{2}_{\mathcal{L}^{2}}),

and

e[BH^g^¯ψ𝑑R]CδBψ|(ug)|2+ψ|(uRg)|2dR+δRg^22,|ξ|2g^22Rg^22.\displaystyle\begin{split}\mathcal{R}e[\int_{B}\hat{H}\bar{\hat{g}}\psi_{\infty}dR]&\leq C_{\delta}\int_{B}\psi_{\infty}|\mathcal{F}(u\cdot\nabla g)|^{2}+\psi_{\infty}|\mathcal{F}(\nabla u\cdot{R}g)|^{2}dR+\delta\|\nabla_{R}\hat{g}\|^{2}_{\mathcal{L}^{2}},\\ |\xi|^{2}\|\hat{g}\|^{2}_{\mathcal{L}^{2}}&\leq\|\nabla_{R}\hat{g}\|^{2}_{\mathcal{L}^{2}}.\end{split}

Combining all the estimates for (4.14), we deduce that

(4.17) |ρ^|2+|u^|2+g^22C(|ρ^0|2+|u^0|2+g^022)+C0t|G^u^¯|+|ρu^|2+|G^|2ds\displaystyle|\hat{\rho}|^{2}+|\hat{u}|^{2}+\|\hat{g}\|^{2}_{\mathcal{L}^{2}}\leq C(|\hat{\rho}_{0}|^{2}+|\hat{u}_{0}|^{2}+\|\hat{g}_{0}\|^{2}_{\mathcal{L}^{2}})+C\int_{0}^{t}|\hat{G}\cdot\bar{\hat{u}}|+|\widehat{\rho u}|^{2}+|\hat{G}|^{2}ds
+Cδ0tBψ|(ug)|2+ψ|(uRg)|2dRds.\displaystyle+C_{\delta}\int_{0}^{t}\int_{B}\psi_{\infty}|\mathcal{F}(u\cdot\nabla g)|^{2}+\psi_{\infty}|\mathcal{F}(\nabla u\cdot{R}g)|^{2}dRds.

Integrating over S(t)S(t) with ξ\xi, then we have

(4.18) S(t)|ρ^|2+|u^|2+g^22dξCS(t)(|ρ^0|2+|u^0|2+g^022)𝑑ξ+CS(t)0t|G^u^¯|+|ρu^|2+|G^|2dsdξ\displaystyle\int_{S(t)}|\hat{\rho}|^{2}+|\hat{u}|^{2}+\|\hat{g}\|^{2}_{\mathcal{L}^{2}}d\xi\leq C\int_{S(t)}(|\hat{\rho}_{0}|^{2}+|\hat{u}_{0}|^{2}+\|\hat{g}_{0}\|^{2}_{\mathcal{L}^{2}})d\xi+C\int_{S(t)}\int_{0}^{t}|\hat{G}\cdot\bar{\hat{u}}|+|\widehat{\rho u}|^{2}+|\hat{G}|^{2}dsd\xi
+CδS(t)0tBψ|(ug)|2+ψ|(uRg)|2dRdsdξ.\displaystyle+C_{\delta}\int_{S(t)}\int_{0}^{t}\int_{B}\psi_{\infty}|\mathcal{F}(u\cdot\nabla g)|^{2}+\psi_{\infty}|\mathcal{F}(\nabla u\cdot{R}g)|^{2}dRdsd\xi.

If E(0)<E(0)<\infty and (ρ0,u0,g0)B˙2,d2×B˙2,d2×B˙2,d2(2)(\rho_{0},u_{0},g_{0})\in\dot{B}^{-\frac{d}{2}}_{2,\infty}\times\dot{B}^{-\frac{d}{2}}_{2,\infty}\times\dot{B}^{-\frac{d}{2}}_{2,\infty}(\mathcal{L}^{2}), using Proposition 2.1, we have

(4.19) S(t)(|ρ^0|2+|u^0|2+g^022)𝑑ξ\displaystyle\int_{S(t)}(|\hat{\rho}_{0}|^{2}+|\hat{u}_{0}|^{2}+\|\hat{g}_{0}\|^{2}_{\mathcal{L}^{2}})d\xi jlog2[43Cd12(1+t)12]d2φ2(2jξ)(|ρ^0|2+|u^0|2+g^022)𝑑ξ\displaystyle\leq\sum_{j\leq\log_{2}[\frac{4}{3}C_{d}^{\frac{1}{2}}(1+t)^{-\frac{1}{2}}]}\int_{\mathbb{R}^{d}}2\varphi^{2}(2^{-j}\xi)(|\hat{\rho}_{0}|^{2}+|\hat{u}_{0}|^{2}+\|\hat{g}_{0}\|^{2}_{\mathcal{L}^{2}})d\xi
jlog2[43Cd12(1+t)12](Δ˙ju0L22+Δ˙jρ0L22+Δ˙jg0L2(2)2)\displaystyle\leq\sum_{j\leq\log_{2}[\frac{4}{3}C_{d}^{\frac{1}{2}}(1+t)^{-\frac{1}{2}}]}(\|\dot{\Delta}_{j}u_{0}\|^{2}_{L^{2}}+\|\dot{\Delta}_{j}\rho_{0}\|^{2}_{L^{2}}+\|\dot{\Delta}_{j}g_{0}\|^{2}_{L^{2}(\mathcal{L}^{2})})
jlog2[43Cd12(1+t)12]2jd(u0B˙2,d22+ρ0B˙2,d22+g0B˙2,d2(2)2)\displaystyle\leq\sum_{j\leq\log_{2}[\frac{4}{3}C_{d}^{\frac{1}{2}}(1+t)^{-\frac{1}{2}}]}2^{jd}(\|u_{0}\|^{2}_{\dot{B}^{-\frac{d}{2}}_{2,\infty}}+\|\rho_{0}\|^{2}_{\dot{B}^{-\frac{d}{2}}_{2,\infty}}+\|g_{0}\|^{2}_{\dot{B}^{-\frac{d}{2}}_{2,\infty}(\mathcal{L}^{2})})
C(1+t)d2(u0B˙2,d22+ρ0B˙2,d22+g0B˙2,d2(2)2).\displaystyle\leq C(1+t)^{-\frac{d}{2}}(\|u_{0}\|^{2}_{\dot{B}^{-\frac{d}{2}}_{2,\infty}}+\|\rho_{0}\|^{2}_{\dot{B}^{-\frac{d}{2}}_{2,\infty}}+\|g_{0}\|^{2}_{\dot{B}^{-\frac{d}{2}}_{2,\infty}(\mathcal{L}^{2})}).

Using Minkowski’s inequality and Theorem 1.1, we obtain

(4.20) S(t)0t|ρu^|2𝑑s𝑑ξ\displaystyle\int_{S(t)}\int_{0}^{t}|\widehat{\rho u}|^{2}dsd\xi =0tS(t)|ρu^|2𝑑ξ𝑑s\displaystyle=\int_{0}^{t}\int_{S(t)}|\widehat{\rho u}|^{2}d\xi ds
CS(t)𝑑ξ0t|ρu^|2L𝑑s\displaystyle\leq C\int_{S(t)}d\xi\int_{0}^{t}\||\widehat{\rho u}|^{2}\|_{L^{\infty}}ds
C(1+t)d20tρL22uL22𝑑s\displaystyle\leq C(1+t)^{-\frac{d}{2}}\int_{0}^{t}\|\rho\|^{2}_{L^{2}}\|u\|^{2}_{L^{2}}ds
C(1+t)d2+1,\displaystyle\leq C(1+t)^{-\frac{d}{2}+1},

and

S(t)0t|G^|2𝑑s𝑑ξ\displaystyle\int_{S(t)}\int_{0}^{t}|\hat{G}|^{2}dsd\xi CS(t)𝑑ξ0t|G^|2L𝑑s\displaystyle\leq C\int_{S(t)}d\xi\int_{0}^{t}\||\hat{G}|^{2}\|_{L^{\infty}}ds
C(1+t)d2.\displaystyle\leq C(1+t)^{-\frac{d}{2}}.

Similarly, we deduce that

(4.21) S(t)0t|G^u^¯|𝑑s𝑑ξ\displaystyle\int_{S(t)}\int_{0}^{t}|\hat{G}\cdot\bar{\hat{u}}|dsd\xi =0tS(t)|G^u^¯|𝑑ξ𝑑s\displaystyle=\int_{0}^{t}\int_{S(t)}|\hat{G}\cdot\bar{\hat{u}}|d\xi ds
C(S(t)𝑑ξ)120tG^u^¯L2𝑑s\displaystyle\leq C(\int_{S(t)}d\xi)^{\frac{1}{2}}\int_{0}^{t}\|\hat{G}\cdot\bar{\hat{u}}\|_{L^{2}}ds
C(1+t)d40t(uL22+ρL22)D(s)12𝑑s\displaystyle\leq C(1+t)^{-\frac{d}{4}}\int_{0}^{t}(\|u\|^{2}_{L^{2}}+\|\rho\|^{2}_{L^{2}})D(s)^{\frac{1}{2}}ds
C(1+t)d4+12.\displaystyle\leq C(1+t)^{-\frac{d}{4}+\frac{1}{2}}.

Using Theorem 1.1 and Lemma 2.3, we get

S(t)0tBψ|(ug)|2+ψ|(uRg)|2dRdsdξ\displaystyle\int_{S(t)}\int_{0}^{t}\int_{B}\psi_{\infty}|\mathcal{F}(u\cdot\nabla g)|^{2}+\psi_{\infty}|\mathcal{F}(\nabla u\cdot{R}g)|^{2}dRdsd\xi
C(1+t)d20tuL22gL2(2)2+uL22gL2(2)2ds\displaystyle\leq C(1+t)^{-\frac{d}{2}}\int_{0}^{t}\|u\|^{2}_{L^{2}}\|\nabla g\|^{2}_{L^{2}(\mathcal{L}^{2})}+\|\nabla u\|^{2}_{L^{2}}\|g\|^{2}_{L^{2}(\mathcal{L}^{2})}ds
C(1+t)d2.\displaystyle\leq C(1+t)^{-\frac{d}{2}}.

Plugging the above estimates into (4.18), we obtain

(4.22) S(t)|ρ^(t,ξ)|2+|u^(t,ξ)|2dξC(1+t)d4+12.\displaystyle\int_{S(t)}|\hat{\rho}(t,\xi)|^{2}+|\hat{u}(t,\xi)|^{2}d\xi\leq C(1+t)^{-\frac{d}{4}+\frac{1}{2}}.

According to (4.3) and (4.22), we deduce that

ddtEη(t)+μCd1+tuHs2+ηγCd1+tρHs12+RgHs(2)2CCd1+t(1+t)d4+12,\displaystyle\frac{d}{dt}E_{\eta}(t)+\frac{\mu C_{d}}{1+t}\|u\|^{2}_{H^{s}}+\frac{\eta\gamma C_{d}}{1+t}\|\rho\|^{2}_{H^{s-1}}+\|\nabla_{R}g\|^{2}_{H^{s}(\mathcal{L}^{2})}\leq\frac{CC_{d}}{1+t}(1+t)^{-\frac{d}{4}+\frac{1}{2}},

If CdC_{d} large enough, according to (4.2), then we have

(4.23) (1+t)d4+12Eη(t)\displaystyle(1+t)^{\frac{d}{4}+\frac{1}{2}}E_{\eta}(t) C(1+t)+C0tΛsρL22(1+s)d412𝑑s\displaystyle\leq C(1+t)+C\int_{0}^{t}\|\Lambda^{s}\rho\|^{2}_{L^{2}}(1+s)^{\frac{d}{4}-\frac{1}{2}}ds
C(1+t)+C0tDη(s)(1+s)d412𝑑s\displaystyle\leq C(1+t)+C\int_{0}^{t}D_{\eta}(s)(1+s)^{\frac{d}{4}-\frac{1}{2}}ds
C(1+t)+C0tEη(s)(1+s)d432𝑑s\displaystyle\leq C(1+t)+C\int_{0}^{t}E_{\eta}(s)(1+s)^{\frac{d}{4}-\frac{3}{2}}ds
C(1+t)+CEη(t)(1+t)d412,\displaystyle\leq C(1+t)+CE_{\eta}(t)(1+t)^{\frac{d}{4}-\frac{1}{2}},

which implies that

(4.24) Eη(t)C(1+t)d4+12.\displaystyle E_{\eta}(t)\leq C(1+t)^{-\frac{d}{4}+\frac{1}{2}}.

We now improve the decay rate in (4.24) by estimating (4.20) and (4.21) again. Since d5d\geq 5, it follows that

S(t)0t|ρu^|2𝑑s𝑑ξ\displaystyle\int_{S(t)}\int_{0}^{t}|\widehat{\rho u}|^{2}dsd\xi C(1+t)d20tρL22uL22𝑑s\displaystyle\leq C(1+t)^{-\frac{d}{2}}\int_{0}^{t}\|\rho\|^{2}_{L^{2}}\|u\|^{2}_{L^{2}}ds
C(1+t)d4,\displaystyle\leq C(1+t)^{-\frac{d}{4}},

and

S(t)0t|G^u^¯|𝑑s𝑑ξ\displaystyle\int_{S(t)}\int_{0}^{t}|\hat{G}\cdot\bar{\hat{u}}|dsd\xi C(1+t)d40t(uL22+ρL22)D(s)12𝑑s\displaystyle\leq C(1+t)^{-\frac{d}{4}}\int_{0}^{t}(\|u\|^{2}_{L^{2}}+\|\rho\|^{2}_{L^{2}})D(s)^{\frac{1}{2}}ds
C(1+t)d4,\displaystyle\leq C(1+t)^{-\frac{d}{4}},

which implies that

(4.25) ddtEη(t)+μCd1+tuHs2+ηγCd1+tρHs12+RgHs(2)2CCd1+t(1+t)d4.\displaystyle\frac{d}{dt}E_{\eta}(t)+\frac{\mu C_{d}}{1+t}\|u\|^{2}_{H^{s}}+\frac{\eta\gamma C_{d}}{1+t}\|\rho\|^{2}_{H^{s-1}}+\|\nabla_{R}g\|^{2}_{H^{s}(\mathcal{L}^{2})}\leq\frac{CC_{d}}{1+t}(1+t)^{-\frac{d}{4}}.

Then the proof of (4.24) implies that

(4.26) E(t)CEη(t)C(1+t)d4.\displaystyle E(t)\leq CE_{\eta}(t)\leq C(1+t)^{-\frac{d}{4}}.

For d=3,4d=3,4, we can not obtain the optimal decay rate (1+t)d4(1+t)^{-\frac{d}{4}} directly. Indeed, we can first prove that E(t)(1+t)d4+12E(t)\leq(1+t)^{-\frac{d}{4}+\frac{1}{2}}. By using the standard bootstrap argument, one can improve the decay rate to (1+t)d4(1+t)^{-\frac{d}{4}}. We omit the proof here. ∎

Remark 4.2.

The proposition 4.1 indicates that

ρL2+uL2C(1+t)d8.\|\rho\|_{L^{2}}+\|u\|_{L^{2}}\leq C(1+t)^{-\frac{d}{8}}.

Combining with the incompressible FENE model and CNS system, one can see that this is not the optimal time decay.

In order to improve the decay rate, we have to estimate the high order energy. Denote that

Eη1(t)\displaystyle E^{1}_{\eta}(t) =n=1,s(h(ρ)12ΛnρL22+(1+ρ)12ΛnuL22)\displaystyle=\sum_{n=1,s}(\|h(\rho)^{\frac{1}{2}}\Lambda^{n}\rho\|^{2}_{L^{2}}+\|(1+\rho)^{\frac{1}{2}}\Lambda^{n}u\|^{2}_{L^{2}})
+Λ1gHs1(2)2+2ηm=1,s1dΛmuΛmρdx,\displaystyle+\|\Lambda^{1}g\|^{2}_{H^{s-1}(\mathcal{L}^{2})}+2\eta\sum_{m=1,s-1}\int_{\mathbb{R}^{d}}\Lambda^{m}u\nabla\Lambda^{m}\rho dx,

and

Dη1(t)=ηγΛ1ρHs22+μΛ1uHs12+(μ+μ)divΛ1uHs12+Λ1RgHs1(2)2.D^{1}_{\eta}(t)=\eta\gamma\|\nabla\Lambda^{1}\rho\|^{2}_{H^{s-2}}+\mu\|\nabla\Lambda^{1}u\|^{2}_{H^{s-1}}+(\mu+\mu^{\prime})\|div\Lambda^{1}u\|^{2}_{H^{s-1}}+\|\Lambda^{1}\nabla_{R}g\|^{2}_{H^{s-1}(\mathcal{L}^{2})}.

The following proposition is about the high order energy estimate.

Proposition 4.3.

Under the condition in Theorem 1.2, if t(0,+)t\in(0,+\infty), then we have

(4.27) ddtEη1(t)+Dη1(t)0,and\displaystyle\frac{d}{dt}E^{1}_{\eta}(t)+D^{1}_{\eta}(t)\leq 0,\quad\quad\text{and}\quad\quad Eη1C(1+t)d41.\displaystyle E^{1}_{\eta}\leq C(1+t)^{-\frac{d}{4}-1}.
Proof.

Applying Λ1\Lambda^{1} to (1.14)3(\ref{eq1})_{3}, we obtain

(4.28) tΛ1g+Λ1g+divΛ1u+Λ1uRR𝒰\displaystyle\partial_{t}\Lambda^{1}g+\mathcal{L}\Lambda^{1}g+div\Lambda^{1}u+\nabla\Lambda^{1}uR\nabla_{R}\mathcal{U}
=uΛ1gΛ1ug1ψR(Λ1uRgψ+RψΛ1gu).\displaystyle=-u\cdot\nabla\Lambda^{1}g-\Lambda^{1}u\cdot\nabla g-\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(\Lambda^{1}\nabla uRg\psi_{\infty}+R\psi_{\infty}\Lambda^{1}g\nabla u).

Taking the L2(2)L^{2}(\mathcal{L}^{2}) inner product with Λ1g\Lambda^{1}g to (4.28)(\ref{g1}), then we have

(4.29) 12ddtΛ1gL2(2)2+RΛ1gL2(2)2dΛ1u:Λ1τdx=uΛ1g,Λ1g\displaystyle\frac{1}{2}\frac{d}{dt}\|\Lambda^{1}g\|^{2}_{L^{2}(\mathcal{L}^{2})}+\|\nabla_{R}\Lambda^{1}g\|^{2}_{L^{2}(\mathcal{L}^{2})}-\int_{\mathbb{R}^{d}}\nabla\Lambda^{1}u:\Lambda^{1}\tau dx=-\langle u\cdot\nabla\Lambda^{1}g,\Lambda^{1}g\rangle
Λ1ug,Λ1g1ψR(Λ1uRgψ),Λ1g1ψR(RψΛ1gu),Λ1g.\displaystyle-\langle\Lambda^{1}u\nabla g,\Lambda^{1}g\rangle-\langle\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(\Lambda^{1}\nabla uRg\psi_{\infty}),\Lambda^{1}g\rangle-\langle\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(R\psi_{\infty}\Lambda^{1}g\nabla u),\Lambda^{1}g\rangle.

Integrating by parts, we deduce that

uΛ1g,Λ1gΛ1ug,Λ1guHsgH1(2)2,1ψR(Λ1uRgψ),Λ1g=dB(Λ1uRψg)RΛ1gdRdxgL(2)Λ1uL2RΛ1gL2(2),1ψR(RψΛ1gu),Λsg=RΛ1gu,RΛ1gRΛ1gL2(2)uHsgL2(2),\displaystyle\begin{split}-\langle u\cdot\nabla\Lambda^{1}g,\Lambda^{1}g\rangle-\langle\Lambda^{1}u\nabla g,\Lambda^{1}g\rangle&\lesssim\|u\|_{H^{s}}\|\nabla g\|^{2}_{H^{1}(\mathcal{L}^{2})},\\ \langle\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(\Lambda^{1}\nabla uRg\psi_{\infty}),\Lambda^{1}g\rangle&=-\int_{\mathbb{R}^{d}}\int_{B}(\Lambda^{1}\nabla uR\psi_{\infty}g)\nabla_{R}\Lambda^{1}gdRdx\\ &\lesssim\|g\|_{L^{\infty}(\mathcal{L}^{2})}\|\nabla\Lambda^{1}u\|_{L^{2}}\|\nabla_{R}\Lambda^{1}g\|_{L^{2}(\mathcal{L}^{2})},\\ -\langle\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(R\psi_{\infty}\Lambda^{1}g\nabla u),\Lambda^{s}g\rangle&=\langle R\Lambda^{1}g\nabla u,\nabla_{R}\Lambda^{1}g\rangle\\ &\lesssim\|\nabla_{R}\Lambda^{1}g\|_{L^{2}(\mathcal{L}^{2})}\|u\|_{H^{s}}\|\nabla g\|_{L^{2}(\mathcal{L}^{2})},\end{split}

which implies that

(4.30) 12ddtΛ1gL2(2)2+RΛ1gL2(2)2dΛ1u:Λ1τdxgL(2)Λ1uL2RΛ1gL2(2)+uHsRΛ1gL2(2)2.\frac{1}{2}\frac{d}{dt}\|\Lambda^{1}g\|^{2}_{L^{2}(\mathcal{L}^{2})}+\|\nabla_{R}\Lambda^{1}g\|^{2}_{L^{2}(\mathcal{L}^{2})}-\int_{\mathbb{R}^{d}}\nabla\Lambda^{1}u:\Lambda^{1}\tau dx\\ \lesssim\|g\|_{L^{\infty}(\mathcal{L}^{2})}\|\nabla\Lambda^{1}u\|_{L^{2}}\|\nabla_{R}\Lambda^{1}g\|_{L^{2}(\mathcal{L}^{2})}+\|u\|_{H^{s}}\|\nabla_{R}\Lambda^{1}g\|^{2}_{L^{2}(\mathcal{L}^{2})}.

Applying Λ1\Lambda^{1} to (1.14)1(\ref{eq1})_{1} and applying Λ1\Lambda^{1} to (1.14)2(\ref{eq1})_{2}, we obtain

(4.31) tΛ1ρ+divΛ1u(1+ρ)=uΛ1ρΛ1uρΛ1ρdivu,\displaystyle\partial_{t}\Lambda^{1}\rho+div\Lambda^{1}u(1+\rho)=-u\cdot\nabla\Lambda^{1}\rho-\Lambda^{1}u\nabla\rho-\Lambda^{1}\rho~{}div~{}u,

and

(4.32) tΛ1u+h(ρ)Λ1ρi(ρ)divΛ1Σ(u)i(ρ)divΛ1τ\displaystyle\partial_{t}\Lambda^{1}u+h(\rho)\nabla\Lambda^{1}\rho-i(\rho)div\Lambda^{1}\Sigma{(u)}-i(\rho)div\Lambda^{1}\tau
=uΛ1uΛ1uuΛ1[h(ρ)γ]ρ+Λ1[i(ρ)1]divΣ(u)+Λ1[i(ρ)1]divτ.\displaystyle=-u\cdot\nabla\Lambda^{1}u-\Lambda^{1}u\nabla u-\Lambda^{1}[h(\rho)-\gamma]\nabla\rho+\Lambda^{1}[i(\rho)-1]div\Sigma{(u)}+\Lambda^{1}[i(\rho)-1]div~{}\tau.

Multiplying h(ρ)Λ1ρh(\rho)\Lambda^{1}\rho to (4.31)(\ref{r1}) and integrating over d\mathbb{R}^{d} with xx, then we have

(4.33) 12ddtdh(ρ)|Λ1ρ|2𝑑x+dP(1+ρ)Λ1ρ𝑑ivΛ1u𝑑x=12dth(ρ)|Λ1ρ|2dx\displaystyle\frac{1}{2}\frac{d}{dt}\int_{\mathbb{R}^{d}}h(\rho)|\Lambda^{1}\rho|^{2}dx+\int_{\mathbb{R}^{d}}P^{\prime}(1+\rho)\Lambda^{1}\rho div\Lambda^{1}udx=\frac{1}{2}\int_{\mathbb{R}^{d}}\partial_{t}h(\rho)|\Lambda^{1}\rho|^{2}dx
dΛ1ρh(ρ)uΛ1ρdxdΛ1uρh(ρ)Λ1ρ𝑑xdΛ1ρ𝑑ivuh(ρ)Λ1ρ𝑑x.\displaystyle-\int_{\mathbb{R}^{d}}\Lambda^{1}\rho\cdot h(\rho)u\cdot\nabla\Lambda^{1}\rho dx-\int_{\mathbb{R}^{d}}\Lambda^{1}u\nabla\rho\cdot h(\rho)\Lambda^{1}\rho dx-\int_{\mathbb{R}^{d}}\Lambda^{1}\rho div~{}u\cdot h(\rho)\Lambda^{1}\rho dx.

If d=3d=3, we treat with the first term as follow

12dth(ρ)|Λ1ρ|2dx(uL3+ρL3)Λ1ρL32\displaystyle\frac{1}{2}\int_{\mathbb{R}^{d}}\partial_{t}h(\rho)|\Lambda^{1}\rho|^{2}dx\lesssim(\|\nabla u\|_{L^{3}}+\|\nabla\rho\|_{L^{3}})\|\Lambda^{1}\rho\|^{2}_{L^{3}}
uH213Λ2uL223ρH223Λ2ρL243+ρH2Λ2ρL22\displaystyle\lesssim\|u\|^{\frac{1}{3}}_{H^{2}}\|\Lambda^{2}u\|^{\frac{2}{3}}_{L^{2}}\|\rho\|^{\frac{2}{3}}_{H^{2}}\|\Lambda^{2}\rho\|^{\frac{4}{3}}_{L^{2}}+\|\rho\|_{H^{2}}\|\Lambda^{2}\rho\|^{2}_{L^{2}}
(uHs+ρHs)(Λ2ρL22+Λ2uL22).\displaystyle\lesssim(\|u\|_{H^{s}}+\|\rho\|_{H^{s}})(\|\Lambda^{2}\rho\|^{2}_{L^{2}}+\|\Lambda^{2}u\|^{2}_{L^{2}}).

If d4d\geq 4, we treat with the first term as follow

12dth(ρ)|Λ1ρ|2dx(uLd2+ρLd2)Λ1ρL2dd22\displaystyle\frac{1}{2}\int_{\mathbb{R}^{d}}\partial_{t}h(\rho)|\Lambda^{1}\rho|^{2}dx\lesssim(\|\nabla u\|_{L^{\frac{d}{2}}}+\|\nabla\rho\|_{L^{\frac{d}{2}}})\|\Lambda^{1}\rho\|^{2}_{L^{\frac{2d}{d-2}}}
(uHs+ρHs)Λ2ρL22.\displaystyle\lesssim(\|u\|_{H^{s}}+\|\rho\|_{H^{s}})\|\Lambda^{2}\rho\|^{2}_{L^{2}}.

Similarly, we obtain

dΛ1uρh(ρ)Λ1ρ𝑑xdΛ1ρ𝑑ivuh(ρ)Λ1ρ𝑑x(uHs+ρHs)(Λ2ρL22+Λ2uL22).\displaystyle-\int_{\mathbb{R}^{d}}\Lambda^{1}u\nabla\rho\cdot h(\rho)\Lambda^{1}\rho dx-\int_{\mathbb{R}^{d}}\Lambda^{1}\rho~{}div~{}u\cdot h(\rho)\Lambda^{1}\rho dx\lesssim(\|u\|_{H^{s}}+\|\rho\|_{H^{s}})(\|\Lambda^{2}\rho\|^{2}_{L^{2}}+\|\Lambda^{2}u\|^{2}_{L^{2}}).

Applying integration by parts, we have

dΛ1ρh(ρ)uΛ1ρdx=12d𝑑iv(h(ρ)u)|Λ1ρ|2𝑑x(uHs+ρHs)(Λ2ρL22+Λ2uL22).\displaystyle-\int_{\mathbb{R}^{d}}\Lambda^{1}\rho\cdot h(\rho)u\cdot\nabla\Lambda^{1}\rho dx=\frac{1}{2}\int_{\mathbb{R}^{d}}div(h(\rho)u)|\Lambda^{1}\rho|^{2}dx\lesssim(\|u\|_{H^{s}}+\|\rho\|_{H^{s}})(\|\Lambda^{2}\rho\|^{2}_{L^{2}}+\|\Lambda^{2}u\|^{2}_{L^{2}}).

Multiplying (1+ρ)Λ1u(1+\rho)\Lambda^{1}u to (4.32)(\ref{r2}) and integrating over d\mathbb{R}^{d} with xx, we have

(4.34) 12ddt(1+ρ)12Λ1uL22+dP(1+ρ)Λ1ρΛ1udx\displaystyle\frac{1}{2}\frac{d}{dt}\|(1+\rho)^{\frac{1}{2}}\Lambda^{1}u\|^{2}_{L^{2}}+\int_{\mathbb{R}^{d}}P^{\prime}(1+\rho)\nabla\Lambda^{1}\rho\Lambda^{1}udx
+μΛ1uL22+(μ+μ)divΛ1uL22d𝑑ivΛ1τΛ1u𝑑x\displaystyle+\mu\|\nabla\Lambda^{1}u\|^{2}_{L^{2}}+(\mu+\mu^{\prime})\|div\Lambda^{1}u\|^{2}_{L^{2}}-\int_{\mathbb{R}^{d}}div\Lambda^{1}\tau\Lambda^{1}udx
=12dtρ|Λ1u|2dxdΛ1u(1+ρ)uΛ1udx\displaystyle=\frac{1}{2}\int_{\mathbb{R}^{d}}\partial_{t}\rho|\Lambda^{1}u|^{2}dx-\int_{\mathbb{R}^{d}}\Lambda^{1}u\cdot(1+\rho)u\cdot\nabla\Lambda^{1}udx
dΛ1uu(1+ρ)Λ1u𝑑xdΛ1[h(ρ)γ]ρ(1+ρ)Λ1u𝑑x\displaystyle-\int_{\mathbb{R}^{d}}\Lambda^{1}u\nabla u(1+\rho)\Lambda^{1}udx-\int_{\mathbb{R}^{d}}\Lambda^{1}[h(\rho)-\gamma]\nabla\rho(1+\rho)\Lambda^{1}udx
+dΛ1[i(ρ)1]𝑑ivΣ(u)(1+ρ)Λ1u𝑑x+dΛ1[i(ρ)1]𝑑ivτ(1+ρ)Λ1u𝑑x.\displaystyle+\int_{\mathbb{R}^{d}}\Lambda^{1}[i(\rho)-1]div\Sigma{(u)}(1+\rho)\Lambda^{1}udx+\int_{\mathbb{R}^{d}}\Lambda^{1}[i(\rho)-1]div~{}\tau(1+\rho)\Lambda^{1}udx.

Using Lemmas 2.2-2.4, we deduce that

12dtρ|Λ1u|2dxdΛ1[h(ρ)γ]ρ(1+ρ)Λ1u𝑑xdΛ1uu(1+ρ)Λ1u𝑑x\displaystyle\frac{1}{2}\int_{\mathbb{R}^{d}}\partial_{t}\rho|\Lambda^{1}u|^{2}dx-\int_{\mathbb{R}^{d}}\Lambda^{1}[h(\rho)-\gamma]\nabla\rho(1+\rho)\Lambda^{1}udx-\int_{\mathbb{R}^{d}}\Lambda^{1}u\nabla u(1+\rho)\Lambda^{1}udx
(uHs+ρHs)(Λ2ρL22+Λ2uL22),\displaystyle\lesssim(\|u\|_{H^{s}}+\|\rho\|_{H^{s}})(\|\Lambda^{2}\rho\|^{2}_{L^{2}}+\|\Lambda^{2}u\|^{2}_{L^{2}}),

and

dΛ1[i(ρ)1]𝑑ivτ(1+ρ)Λ1u𝑑x+dΛ1[i(ρ)1]𝑑ivΣ(u)(1+ρ)Λ1u𝑑x\displaystyle\int_{\mathbb{R}^{d}}\Lambda^{1}[i(\rho)-1]div~{}\tau(1+\rho)\Lambda^{1}udx+\int_{\mathbb{R}^{d}}\Lambda^{1}[i(\rho)-1]div\Sigma{(u)}(1+\rho)\Lambda^{1}udx
(uHs+ρHs)(Λ2ρL22+Λ2uL22+RgL2(2)2).\displaystyle\lesssim(\|u\|_{H^{s}}+\|\rho\|_{H^{s}})(\|\Lambda^{2}\rho\|^{2}_{L^{2}}+\|\Lambda^{2}u\|^{2}_{L^{2}}+\|\nabla_{R}\nabla g\|^{2}_{L^{2}(\mathcal{L}^{2})}).

Integrating by part, we get

dΛ1u(1+ρ)uΛ1udx=12d𝑑iv[(1+ρ)u]|Λ1u|2𝑑x\displaystyle-\int_{\mathbb{R}^{d}}\Lambda^{1}u\cdot(1+\rho)u\cdot\nabla\Lambda^{1}udx=\frac{1}{2}\int_{\mathbb{R}^{d}}div[(1+\rho)u]|\Lambda^{1}u|^{2}dx
(uHs+ρHs)(Λ2ρL22+Λ2uL22),\displaystyle\lesssim(\|u\|_{H^{s}}+\|\rho\|_{H^{s}})(\|\Lambda^{2}\rho\|^{2}_{L^{2}}+\|\Lambda^{2}u\|^{2}_{L^{2}}),

and

dP(1+ρ)(Λ1uΛ1ρ+Λ1ρdivΛ1u)𝑑x=dP′′(1+ρ)Λ1ρΛ1uρdx\displaystyle-\int_{\mathbb{R}^{d}}P^{\prime}(1+\rho)(\Lambda^{1}u\nabla\Lambda^{1}\rho+\Lambda^{1}\rho div\Lambda^{1}u)dx=\int_{\mathbb{R}^{d}}P^{\prime\prime}(1+\rho)\Lambda^{1}\rho\Lambda^{1}u\nabla\rho dx
(uHs+ρHs)(Λ2ρL22+Λ2uL22).\displaystyle\lesssim(\|u\|_{H^{s}}+\|\rho\|_{H^{s}})(\|\Lambda^{2}\rho\|^{2}_{L^{2}}+\|\Lambda^{2}u\|^{2}_{L^{2}}).

Multiplying Λ1ρ\nabla\Lambda^{1}\rho to (4.32)(\ref{r2}) and integrating over d\mathbb{R}^{d} with xx, we get

(4.35) ddtdΛ1uΛ1ρdx+γΛ1ρL22=dΛ1ρt𝑑ivΛ1u𝑑x\displaystyle\frac{d}{dt}\int_{\mathbb{R}^{d}}\Lambda^{1}u\cdot\nabla\Lambda^{1}\rho dx+\gamma\|\nabla\Lambda^{1}\rho\|^{2}_{L^{2}}=-\int_{\mathbb{R}^{d}}\Lambda^{1}\rho_{t}div\Lambda^{1}udx
dΛ1ρuΛ1udxdΛ1uuΛ1ρdxdΛ1((h(ρ)γ)ρ)Λ1ρdx\displaystyle-\int_{\mathbb{R}^{d}}\nabla\Lambda^{1}\rho\cdot u\cdot\nabla\Lambda^{1}udx-\int_{\mathbb{R}^{d}}\Lambda^{1}u\nabla u\nabla\Lambda^{1}\rho dx-\int_{\mathbb{R}^{d}}\Lambda^{1}((h(\rho)-\gamma)\nabla\rho)\nabla\Lambda^{1}\rho dx
+dΛ1(i(ρ)divΣ(u))Λ1ρdx+dΛ1(i(ρ)divτ)Λ1ρdx.\displaystyle+\int_{\mathbb{R}^{d}}\Lambda^{1}(i(\rho)div\Sigma{(u)})\nabla\Lambda^{1}\rho dx+\int_{\mathbb{R}^{d}}\Lambda^{1}(i(\rho)div\tau)\nabla\Lambda^{1}\rho dx.

Using Lemma 2.2, we deduce that

dΛ1ρt𝑑ivΛ1u𝑑xdΛ1ρuΛ1udxdΛ1uuΛ1ρdx\displaystyle-\int_{\mathbb{R}^{d}}\Lambda^{1}\rho_{t}div\Lambda^{1}udx-\int_{\mathbb{R}^{d}}\nabla\Lambda^{1}\rho\cdot u\cdot\nabla\Lambda^{1}udx-\int_{\mathbb{R}^{d}}\Lambda^{1}u\nabla u\nabla\Lambda^{1}\rho dx
(uHs+ρHs)(Λ2ρL22+Λ2uL22)+Λ1uL22,\displaystyle\lesssim(\|u\|_{H^{s}}+\|\rho\|_{H^{s}})(\|\Lambda^{2}\rho\|^{2}_{L^{2}}+\|\Lambda^{2}u\|^{2}_{L^{2}})+\|\nabla\Lambda^{1}u\|^{2}_{L^{2}},

and

dΛ1((h(ρ)γ)ρ)Λ1ρdx+dΛ1(i(ρ)divΣ(u))Λ1ρdx\displaystyle-\int_{\mathbb{R}^{d}}\Lambda^{1}((h(\rho)-\gamma)\nabla\rho)\nabla\Lambda^{1}\rho dx+\int_{\mathbb{R}^{d}}\Lambda^{1}(i(\rho)div\Sigma{(u)})\nabla\Lambda^{1}\rho dx
ρHsΛ1ρL22+Λ1ρL2(2uH1+2uL2ρHs).\displaystyle\lesssim\|\rho\|_{H^{s}}\|\nabla\Lambda^{1}\rho\|^{2}_{L^{2}}+\|\nabla\Lambda^{1}\rho\|_{L^{2}}(\|\nabla^{2}u\|_{H^{1}}+\|\nabla^{2}u\|_{L^{2}}\|\rho\|_{H^{s}}).

Using Lemma 2.3 and Lemma 2.4, we have

dΛ1(i(ρ)divτ)Λ1ρdxΛ1ρL2RgH1(2)(ρHs+1).\displaystyle\int_{\mathbb{R}^{d}}\Lambda^{1}(i(\rho)div\tau)\nabla\Lambda^{1}\rho dx\lesssim\|\nabla\Lambda^{1}\rho\|_{L^{2}}\|\nabla_{R}\nabla g\|_{H^{1}(\mathcal{L}^{2})}(\|\rho\|_{H^{s}}+1).

Combining (4.30) and the estimates for (4.33)-(4.35), we deduce that

(4.36) ddt(h(ρ)12Λ1ρL22+(1+ρ)12Λ1uL22+Λ1gL2(2)2+2ηdΛ1uΛ1ρdx)\displaystyle\frac{d}{dt}(\|h(\rho)^{\frac{1}{2}}\Lambda^{1}\rho\|^{2}_{L^{2}}+\|(1+\rho)^{\frac{1}{2}}\Lambda^{1}u\|^{2}_{L^{2}}+\|\Lambda^{1}g\|^{2}_{L^{2}(\mathcal{L}^{2})}+2\eta\int_{\mathbb{R}^{d}}\Lambda^{1}u\nabla\Lambda^{1}\rho dx)
+2(μΛ1uL22+(μ+μ)divΛ1uL22+ηγΛ1ρL22+RΛ1gH1(2)2)\displaystyle+2(\mu\|\nabla\Lambda^{1}u\|^{2}_{L^{2}}+(\mu+\mu^{\prime})\|div\Lambda^{1}u\|^{2}_{L^{2}}+\eta\gamma\|\nabla\Lambda^{1}\rho\|^{2}_{L^{2}}+\|\nabla_{R}\Lambda^{1}g\|^{2}_{H^{1}(\mathcal{L}^{2})})
(ρHs+uHs+gHs(2))(2ρL22+2uH12+RΛ1gL2(2)2)\displaystyle\lesssim(\|\rho\|_{H^{s}}+\|u\|_{H^{s}}+\|g\|_{H^{s}(\mathcal{L}^{2})})(\|\nabla^{2}\rho\|^{2}_{L^{2}}+\|\nabla^{2}u\|^{2}_{H^{1}}+\|\nabla_{R}\Lambda^{1}g\|^{2}_{L^{2}(\mathcal{L}^{2})})
+η(2uL22+2uH12ρL2+2ρL2RgH1(2)).\displaystyle+\eta(\|\nabla^{2}u\|^{2}_{L^{2}}+\|\nabla^{2}u\|_{H^{1}}\|\nabla^{2}\rho\|_{L^{2}}+\|\nabla^{2}\rho\|_{L^{2}}\|\nabla\nabla_{R}g\|_{H^{1}(\mathcal{L}^{2})}).

Choosing ϵ\epsilon and η\eta small enough, the estimates (4.36) and (3.18) ensure that

(4.37) ddtEη1(t)+Dη1(t)0.\displaystyle\frac{d}{dt}E^{1}_{\eta}(t)+D^{1}_{\eta}(t)\leq 0.

From the above inequality, we deduce that

(4.38) ddtEη1+Cd1+t(μΛ1uHs12+ηγΛ1ρHs22)+Λ1RgHs1(2)2CCd1+tS(t)|ξ|2(|u^(ξ)|2+|ρ^(ξ)|2)𝑑ξ.\displaystyle\begin{split}&\frac{d}{dt}E^{1}_{\eta}+\frac{C_{d}}{1+t}(\mu\|\Lambda^{1}u\|^{2}_{H^{s-1}}+\eta\gamma\|\Lambda^{1}\rho\|^{2}_{H^{s-2}})+\|\Lambda^{1}\nabla_{R}g\|^{2}_{H^{s-1}(\mathcal{L}^{2})}\\ &\leq\frac{CC_{d}}{1+t}\int_{S(t)}|\xi|^{2}(|\hat{u}(\xi)|^{2}+|\hat{\rho}(\xi)|^{2})d\xi.\end{split}

According to (4.26), we have

CCd1+tS(t)|ξ|2(|u^(ξ)|2+|ρ^(ξ)|2)𝑑ξCCd2(1+t)2(ρL22+uL22)C(1+t)d42.\displaystyle\frac{CC_{d}}{1+t}\int_{S(t)}|\xi|^{2}(|\hat{u}(\xi)|^{2}+|\hat{\rho}(\xi)|^{2})d\xi\leq C{C_{d}}^{2}(1+t)^{-2}(\|\rho\|^{2}_{L^{2}}+\|u\|^{2}_{L^{2}})\leq C(1+t)^{-\frac{d}{4}-2}.

Then the proof of (4.24) implies that Eη1C(1+t)d41E^{1}_{\eta}\leq C(1+t)^{-\frac{d}{4}-1}. We thus complete the proof of Proposition 4.3. ∎

By virtue of the decay rate for E(t)E(t) and Eη1(t)E^{1}_{\eta}(t), we can show that the solution of (1.14) belongs to some Besov space with negative index.

Proposition 4.4.

Let (ρ0,u0,g0)(\rho_{0},u_{0},g_{0}) satisfy the same condition in Theorem 1.2. Then the corresponding solution

(4.39) (ρ,u,g)L(0,;B˙2,d2)×L(0,;B˙2,d2)×L(0,;B˙2,d2(2)).\displaystyle(\rho,u,g)\in L^{\infty}(0,\infty;\dot{B}^{-\frac{d}{2}}_{2,\infty})\times L^{\infty}(0,\infty;\dot{B}^{-\frac{d}{2}}_{2,\infty})\times L^{\infty}(0,\infty;\dot{B}^{-\frac{d}{2}}_{2,\infty}(\mathcal{L}^{2})).
Proof.

Applying Δ˙j\dot{\Delta}_{j} to the system (1.14), we get

(4.43) {Δ˙jρt+divΔ˙ju=Δ˙jF,Δ˙jutdivΣ(Δ˙ju)+γΔ˙jρdivΔ˙jτ=Δ˙jG,Δ˙jgt+Δ˙jgΔ˙juRjRk𝒰+divΔ˙ju=Δ˙jH,\displaystyle\left\{\begin{array}[]{ll}\dot{\Delta}_{j}\rho_{t}+div~{}\dot{\Delta}_{j}u=\dot{\Delta}_{j}F,\\[4.30554pt] \dot{\Delta}_{j}u_{t}-div\Sigma(\dot{\Delta}_{j}u)+\gamma\nabla\dot{\Delta}_{j}\rho-div\dot{\Delta}_{j}\tau=\dot{\Delta}_{j}G,\\[4.30554pt] \dot{\Delta}_{j}g_{t}+\mathcal{L}\dot{\Delta}_{j}g-\nabla\dot{\Delta}_{j}uR_{j}\partial_{R_{k}}\mathcal{U}+div\dot{\Delta}_{j}u=\dot{\Delta}_{j}H,\\[4.30554pt] \end{array}\right.

where F=div(ρu)F=-div(\rho u), G=uu+[i(ρ)1](divΣ(u)+divτ)+[γh(ρ)]ρG=-u\cdot\nabla u+[i(\rho)-1](div\Sigma(u)+div\tau)+[\gamma-h(\rho)]\nabla\rho and H=ug1ψR(uRgψ)H=-u\cdot\nabla g-\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(\nabla uRg\psi_{\infty}).

Using the fact that BΔ˙jgψ𝑑R=0\int_{B}\dot{\Delta}_{j}g\psi_{\infty}dR=0 and integrating by parts, we obtain

(4.44) 12ddt(γΔ˙jρL22+Δ˙juL22+Δ˙jgL2(2)2)\displaystyle\frac{1}{2}\frac{d}{dt}(\gamma\|\dot{\Delta}_{j}\rho\|^{2}_{L^{2}}+\|\dot{\Delta}_{j}u\|^{2}_{L^{2}}+\|\dot{\Delta}_{j}g\|^{2}_{L^{2}(\mathcal{L}^{2})})
+μΔ˙juL22+(μ+μ)divΔ˙juL22+RΔ˙jgL2(2)2\displaystyle+\mu\|\nabla\dot{\Delta}_{j}u\|^{2}_{L^{2}}+(\mu+\mu^{\prime})\|div\dot{\Delta}_{j}u\|^{2}_{L^{2}}+\|\nabla_{R}\dot{\Delta}_{j}g\|^{2}_{L^{2}(\mathcal{L}^{2})}
=dγΔ˙jFΔ˙jρ𝑑x+dΔ˙jGΔ˙ju𝑑x+dBΔ˙jHΔ˙jgψ𝑑x𝑑R\displaystyle=\int_{\mathbb{R}^{d}}\gamma\dot{\Delta}_{j}F\dot{\Delta}_{j}\rho dx+\int_{\mathbb{R}^{d}}\dot{\Delta}_{j}G\dot{\Delta}_{j}udx+\int_{\mathbb{R}^{d}}\int_{B}\dot{\Delta}_{j}H\dot{\Delta}_{j}g\psi_{\infty}dxdR
C(Δ˙jFL2Δ˙jρL2+Δ˙jGL2Δ˙juL2)\displaystyle\leq C(\|\dot{\Delta}_{j}F\|_{L^{2}}\|\dot{\Delta}_{j}\rho\|_{L^{2}}+\|\dot{\Delta}_{j}G\|_{L^{2}}\|\dot{\Delta}_{j}u\|_{L^{2}})
+C(Δ˙j(ug)L2(2)2)+Δ˙j(uRg)L2(2)2)+12RΔ˙jg2L2(2).\displaystyle+C(\|\dot{\Delta}_{j}(u\nabla g)\|^{2}_{L^{2}(\mathcal{L}^{2})})+\|\dot{\Delta}_{j}(\nabla uRg)\|^{2}_{L^{2}(\mathcal{L}^{2})})+\frac{1}{2}\|\nabla_{R}\dot{\Delta}_{j}g\|^{2}_{L^{2}(\mathcal{L}^{2})}.

Multiplying both sides of (4.44) by 2jd2^{-jd} and taking ll^{\infty}-norm, we get

(4.45) ddt(γρB˙2,d22+uB˙2,d22+gB˙2,d2(2)2)\displaystyle\frac{d}{dt}(\gamma\|\rho\|^{2}_{\dot{B}^{-\frac{d}{2}}_{2,\infty}}+\|u\|^{2}_{\dot{B}^{-\frac{d}{2}}_{2,\infty}}+\|g\|^{2}_{\dot{B}^{-\frac{d}{2}}_{2,\infty}(\mathcal{L}^{2})})
C(FB˙2,d2ρB˙2,d2+GB˙2,d2uB˙2,d2+ugB˙2,d2(2)2+uRgB˙2,d2(2)2).\displaystyle\leq C(\|F\|_{\dot{B}^{-\frac{d}{2}}_{2,\infty}}\|\rho\|_{\dot{B}^{-\frac{d}{2}}_{2,\infty}}+\|G\|_{\dot{B}^{-\frac{d}{2}}_{2,\infty}}\|u\|_{\dot{B}^{-\frac{d}{2}}_{2,\infty}}+\|u\nabla g\|^{2}_{\dot{B}^{-\frac{d}{2}}_{2,\infty}(\mathcal{L}^{2})}+\|\nabla uRg\|^{2}_{\dot{B}^{-\frac{d}{2}}_{2,\infty}(\mathcal{L}^{2})}).

Define M(t)=sups[0,t]ρ(s)B˙2,d2+u(s)B˙2,d2+g(s)B˙2,d2(2)M(t)=\sup_{s\in[0,t]}\|\rho(s)\|_{\dot{B}^{-\frac{d}{2}}_{2,\infty}}+\|u(s)\|_{\dot{B}^{-\frac{d}{2}}_{2,\infty}}+\|g(s)\|_{\dot{B}^{-\frac{d}{2}}_{2,\infty}(\mathcal{L}^{2})}. According to (4.45), we deduce that

(4.46) M2(t)\displaystyle M^{2}(t) CM2(0)+M(t)0tFB˙2,d2+GB˙2,d2ds\displaystyle\leq CM^{2}(0)+M(t)\int_{0}^{t}\|F\|_{\dot{B}^{-\frac{d}{2}}_{2,\infty}}+\|G\|_{\dot{B}^{-\frac{d}{2}}_{2,\infty}}ds
+0tugB˙2,d2(2)2+uRgB˙2,d2(2)2ds.\displaystyle+\int_{0}^{t}\|u\nabla g\|^{2}_{\dot{B}^{-\frac{d}{2}}_{2,\infty}(\mathcal{L}^{2})}+\|\nabla uRg\|^{2}_{\dot{B}^{-\frac{d}{2}}_{2,\infty}(\mathcal{L}^{2})}ds.

Using the fact that L1B˙2,d2L^{1}\hookrightarrow\dot{B}^{-\frac{d}{2}}_{2,\infty} and the decay rates for EE and Eη1E^{1}_{\eta}, we obtain

0tugB˙2,d2(2)2+uRgB˙2,d2(2)2ds\displaystyle\int_{0}^{t}\|u\nabla g\|^{2}_{\dot{B}^{-\frac{d}{2}}_{2,\infty}(\mathcal{L}^{2})}+\|\nabla uRg\|^{2}_{\dot{B}^{-\frac{d}{2}}_{2,\infty}(\mathcal{L}^{2})}ds C0tugL1(2)2+uRgL1(2)2ds\displaystyle\leq C\int_{0}^{t}\|u\nabla g\|^{2}_{L^{1}(\mathcal{L}^{2})}+\|\nabla uRg\|^{2}_{L^{1}(\mathcal{L}^{2})}ds
C0tuL22gL2(2)2+uL22gL2(2)2dsC,\displaystyle\leq C\int_{0}^{t}\|\nabla u\|^{2}_{L^{2}}\|g\|^{2}_{L^{2}(\mathcal{L}^{2})}+\|u\|^{2}_{L^{2}}\|\nabla g\|^{2}_{L^{2}(\mathcal{L}^{2})}ds\leq C,

and

0tFB˙2,d2𝑑s\displaystyle\int_{0}^{t}\|F\|_{\dot{B}^{-\frac{d}{2}}_{2,\infty}}ds C0tFL1𝑑sC0tuL2ρL2+divuL2ρL2ds\displaystyle\leq C\int_{0}^{t}\|F\|_{L^{1}}ds\leq C\int_{0}^{t}\|u\|_{L^{2}}\|\nabla\rho\|_{L^{2}}+\|divu\|_{L^{2}}\|\rho\|_{L^{2}}ds
C0t(1+s)d8d812𝑑sC.\displaystyle\leq C\int_{0}^{t}(1+s)^{-\frac{d}{8}-\frac{d}{8}-\frac{1}{2}}ds\leq C.

By virtue of remark 2.6, we get

(4.47) 0tGL1𝑑s\displaystyle\int_{0}^{t}\|G\|_{L^{1}}ds C0t(1+s)d8d812𝑑s+C0tdivτL2ρL2𝑑s\displaystyle\leq C\int_{0}^{t}(1+s)^{-\frac{d}{8}-\frac{d}{8}-\frac{1}{2}}ds+C\int_{0}^{t}\|div~{}\tau\|_{L^{2}}\|\rho\|_{L^{2}}ds
C+C0tρL2gL2(2)12RgL2(2)12𝑑s\displaystyle\leq C+C\int_{0}^{t}\|\rho\|_{L^{2}}\|\nabla g\|^{\frac{1}{2}}_{L^{2}(\mathcal{L}^{2})}\|\nabla\nabla_{R}g\|^{\frac{1}{2}}_{L^{2}(\mathcal{L}^{2})}ds
C+C(0tρL243gL2(2)23𝑑s)34(0tRgL2(2)2𝑑s)12\displaystyle\leq C+C(\int_{0}^{t}\|\rho\|^{\frac{4}{3}}_{L^{2}}\|\nabla g\|^{\frac{2}{3}}_{L^{2}(\mathcal{L}^{2})}ds)^{\frac{3}{4}}(\int_{0}^{t}\|\nabla\nabla_{R}g\|^{2}_{L^{2}(\mathcal{L}^{2})}ds)^{\frac{1}{2}}
C+C(0t(1+s)d8×43(d8+12)×23𝑑s)34C.\displaystyle\leq C+C(\int_{0}^{t}(1+s)^{-\frac{d}{8}\times\frac{4}{3}-(\frac{d}{8}+\frac{1}{2})\times\frac{2}{3}}ds)^{\frac{3}{4}}\leq C.

From (4.46), we have M2(t)CM2(0)+M(t)C+C,M^{2}(t)\leq CM^{2}(0)+M(t)C+C, which implies that M(t)CM(t)\leq C. We thus complete the proof. ∎

From now on, we are going to finish the proof of theorem 1.2.

Proof.

Using (4.26), we obtain

S(t)0t|ρu^|2𝑑s𝑑ξ\displaystyle\int_{S(t)}\int_{0}^{t}|\widehat{\rho u}|^{2}dsd\xi C(1+t)d20tρL22uL22𝑑s\displaystyle\leq C(1+t)^{-\frac{d}{2}}\int_{0}^{t}\|\rho\|^{2}_{L^{2}}\|u\|^{2}_{L^{2}}ds
C(1+t)d2.\displaystyle\leq C(1+t)^{-\frac{d}{2}}.

Using (4.47), by Propositions 2.1 and 4.4, we have

S(t)0t|G^u^¯|𝑑s𝑑ξ\displaystyle\int_{S(t)}\int_{0}^{t}|\hat{G}\cdot\bar{\hat{u}}|dsd\xi C0tGL1S(t)|u^|𝑑ξ𝑑s\displaystyle\leq C\int_{0}^{t}\|G\|_{L^{1}}\int_{S(t)}|\hat{u}|d\xi ds
C(1+t)d40tGL1(S(t)|u^|2𝑑ξ)12𝑑s\displaystyle\leq C(1+t)^{-\frac{d}{4}}\int_{0}^{t}\|G\|_{L^{1}}(\int_{S(t)}|\hat{u}|^{2}d\xi)^{\frac{1}{2}}ds
C(1+t)d2M(t)0tGL1𝑑s\displaystyle\leq C(1+t)^{-\frac{d}{2}}M(t)\int_{0}^{t}\|G\|_{L^{1}}ds
C(1+t)d2.\displaystyle\leq C(1+t)^{-\frac{d}{2}}.

Similar to the proof of Proposition 4.1, we have

(4.48) ddtEη(t)+μCd1+tuHs2+ηγCd1+tρHs12+RgHs(2)2CCd1+t(1+t)d2.\displaystyle\frac{d}{dt}E_{\eta}(t)+\frac{\mu C_{d}}{1+t}\|u\|^{2}_{H^{s}}+\frac{\eta\gamma C_{d}}{1+t}\|\rho\|^{2}_{H^{s-1}}+\|\nabla_{R}g\|^{2}_{H^{s}(\mathcal{L}^{2})}\leq\frac{CC_{d}}{1+t}(1+t)^{-\frac{d}{2}}.

Then the proof of (4.24) implies that

(4.49) E(t)CEη(t)C(1+t)d2.\displaystyle E(t)\leq CE_{\eta}(t)\leq C(1+t)^{-\frac{d}{2}}.

We now consider the faster decay rate for Eη1(t)E^{1}_{\eta}(t). Recall that

ddtEη1+Cd1+t(μΛ1uHs12+ηγΛ1ρHs22)+Λ1RgHs1(2)2\displaystyle\frac{d}{dt}E^{1}_{\eta}+\frac{C_{d}}{1+t}(\mu\|\Lambda^{1}u\|^{2}_{H^{s-1}}+\eta\gamma\|\Lambda^{1}\rho\|^{2}_{H^{s-2}})+\|\Lambda^{1}\nabla_{R}g\|^{2}_{H^{s-1}(\mathcal{L}^{2})}
CCd1+tS(t)|ξ|2(|u^(ξ)|2+|ρ^(ξ)|2)𝑑ξ.\displaystyle\leq\frac{CC_{d}}{1+t}\int_{S(t)}|\xi|^{2}(|\hat{u}(\xi)|^{2}+|\hat{\rho}(\xi)|^{2})d\xi.

According to (4.49), we have

CCd1+tS(t)|ξ|2(|u^(ξ)|2+|ρ^(ξ)|2)𝑑ξCCd2(1+t)2(ρL22+uL22)C(1+t)d22.\displaystyle\frac{CC_{d}}{1+t}\int_{S(t)}|\xi|^{2}(|\hat{u}(\xi)|^{2}+|\hat{\rho}(\xi)|^{2})d\xi\leq C{C_{d}}^{2}(1+t)^{-2}(\|\rho\|^{2}_{L^{2}}+\|u\|^{2}_{L^{2}})\leq C(1+t)^{-\frac{d}{2}-2}.

Then the proof of (4.24) implies that Eη1C(1+t)d21E^{1}_{\eta}\leq C(1+t)^{-\frac{d}{2}-1}. Using (3.5), we get

12ddtgL2(2)2+RgL2(2)2du:τdx+uLgL2(2)RgL2(2).\displaystyle\frac{1}{2}\frac{d}{dt}\|g\|^{2}_{L^{2}(\mathcal{L}^{2})}+\|\nabla_{R}g\|^{2}_{L^{2}(\mathcal{L}^{2})}\lesssim-\int_{\mathbb{R}^{d}}\nabla u:\tau dx+\|\nabla u\|_{L^{\infty}}\|g\|_{L^{2}(\mathcal{L}^{2})}\|\nabla_{R}g\|_{L^{2}(\mathcal{L}^{2})}.

By Lemmas 2.3,2.4 and Theorem 1.1, we deduce that

ddtgL2(2)2+gL2(2)2CuL22,\displaystyle\frac{d}{dt}\|g\|^{2}_{L^{2}(\mathcal{L}^{2})}+\|g\|^{2}_{L^{2}(\mathcal{L}^{2})}\leq C\|\nabla u\|^{2}_{L^{2}},

from which we deduce that

gL2(2)2\displaystyle\|g\|^{2}_{L^{2}(\mathcal{L}^{2})} g0L2(2)2et+C0te(ts)uL22𝑑s\displaystyle\leq\|g_{0}\|^{2}_{L^{2}(\mathcal{L}^{2})}e^{-t}+C\int_{0}^{t}e^{-(t-s)}\|\nabla u\|^{2}_{L^{2}}ds
C(et+0te(ts)(1+s)d21𝑑s)\displaystyle\leq C(e^{-t}+\int_{0}^{t}e^{-(t-s)}(1+s)^{-\frac{d}{2}-1}ds)
C(1+t)d21,\displaystyle\leq C(1+t)^{-\frac{d}{2}-1},

where in the last inequality we have used the fact that

limt(1+t)d2+10te(ts)(1+s)d21𝑑s=limt(1+t)d2+10tes(1+s)d21𝑑set\displaystyle\lim_{t\rightarrow\infty}(1+t)^{\frac{d}{2}+1}\int_{0}^{t}e^{-(t-s)}(1+s)^{-\frac{d}{2}-1}ds=\lim_{t\rightarrow\infty}\frac{(1+t)^{\frac{d}{2}+1}\int_{0}^{t}e^{s}(1+s)^{-\frac{d}{2}-1}ds}{e^{t}}
=1+limt(d2+1)(1+t)d20tes(1+s)d21𝑑set\displaystyle=1+\lim_{t\rightarrow\infty}\frac{(\frac{d}{2}+1)(1+t)^{\frac{d}{2}}\int_{0}^{t}e^{s}(1+s)^{-\frac{d}{2}-1}ds}{e^{t}}
=1.\displaystyle=1.

We thus complete the proof of Theorem 1.2. ∎

Remark 4.5.

One can see that the decay rate for the H˙1\dot{H}^{1}-norm obtained in Proposition 4.3 is not optimal. However, in the proof of Theorem 1.2, we improve the decay rate to (1+t)d412(1+t)^{-\frac{d}{4}-\frac{1}{2}}.

Remark 4.6.

In Theorem 1.2, we only obtain the optimal decay rate with d3d\geq 3. The decay rate for d2d\leq 2 is an interesting problem. However, the technique in this paper fail to obtain the optimal decay rate when d2d\leq 2. We are going to study about this problem in the future.

Acknowledgments This work was partially supported by the National Natural Science Foundation of China (No.11671407 and No.11701586), the Macao Science and Technology Development Fund (No. 098/2013/A3), and Guangdong Province of China Special Support Program (No. 8-2015), and the key project of the Natural Science Foundation of Guangdong province (No. 2016A030311004).

References

  • [1] H. Bahouri, J.-Y. Chemin, and R. Danchin. Fourier analysis and nonlinear partial differential equations, volume 343 of Grundlehren der Mathematischen Wissenschaften. Springer, Heidelberg, 2011.
  • [2] R. B. Bird, R. C. Armstrong, and O. Hassager. Dynamics of Polymeric Liquids, volume 1. Wiley, New York, 1977.
  • [3] D. Bresch and B. Desjardins. Existence of global weak solutions for a 2d viscous shallow water equations and convergence to the quasi-geostrophic model. Communications in Mathematical Physics., 238(1-2):211–233, 2003.
  • [4] D. Bresch, B. Desjardins, and C. K. Lin. On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Communications in Partial Differential Equationss., 28(3-4):843–868, 2003.
  • [5] A. V. Busuioc, I. S. Ciuperca, D. Iftimie, and L. I. Palade. The FENE dumbbell polymer model: existence and uniqueness of solutions for the momentum balance equation. J. Dynam. Differential Equations, 26(2):217–241, 2014.
  • [6] Q. Chen, C. Miao, and Z. Zhang. Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities. Revista Matematica Iberoamericana., 26(3):915–946, 2010.
  • [7] Q. Chen, C. Miao, and Z. Zhang. On the ill-posedness of the compressible Navier-Stokes equations in the critical besov spaces. Revista Matematica Iberoamericana., 31(4):165–186, 2011.
  • [8] R. Danchin. Global existence in critical spaces for compressible Navier-Stokes equations. Inventiones Mathematicae., 141(3):579–614, 2000.
  • [9] R. Danchin. Local theory in critical spaces for compressible viscous and heat-conductive gases. Comm Partial Differential Equations., 141(26):1183–1233, 2001.
  • [10] R. Danchin. On the uniqueness in critical spaces for compressible Navier-Stokes equations. Nonlinear Differential Equations Applications Nodea., 12(1):111–128, 2005.
  • [11] R. Danchin. Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density. Communications in Partial Differential Equations., 32(9):111–128, 2007.
  • [12] R. Danchin and P. B. Mucha. A lagrangian approach for the incompressible Navier-Stokes equations with variable density. Communications on Pure and Applied Mathematics., 65(10), 2012.
  • [13] M. Doi and S. F. Edwards. The Theory of Polymer Dynamics. Oxford University Press, Oxford, 1988.
  • [14] L. He, J. Huang, and C. Wang. Global stability of large solutions to the 3d compressible Navier-Stokes equations. Archive for Rational Mechanics and Analysis., 234(3):1167–1222, 2019.
  • [15] L. He and P. Zhang. L2L^{2} Decay of Solutions to a Micro-Macro Model for Polymeric Fluids Near Equilibrium. Siam Journal on Mathematical Analysis, 40(5):1905–1922, 2009.
  • [16] X. Huang and J. Li. Existence and blowup behavior of global strong solutions to the two-dimensional barotrpic compressible Navier-Stokes system with vacuum and large initial data. J. Math. Pures Appl. (9), 106(1):123–154, 2016.
  • [17] X. Huang, J. Li, and Z. Xin. Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations. Communications on Pure Applied Mathematics., 234, 2011.
  • [18] N. Jiang, Y. Liu, and T.-F. Zhang. Global classical solutions to a compressible model for micro-macro polymeric fluids near equilibrium. SIAM J. Math. Anal., 50(4):4149–4179, 2018.
  • [19] Q. Jiu, Y. Wang, and Z. Xin. Global well-posedness of 2d compressible Navier-Stokes equations with large data and vacuum. Journal of Mathematical Fluid Mechanics., 16(3):483–521, 2014.
  • [20] B. Jourdain, T. Lelièvre, and C. Le Bris. Existence of solution for a micro-macro model of polymeric fluid: the FENE model. J. Funct. Anal., 209(1):162–193, 2004.
  • [21] A. V. Kazhikhov and V. V. Shelukhin. Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas. J. Appl. Math. Mech., 41(2):273–282., 1977.
  • [22] H. Li, J. Li, and Z. Xin. Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations. Communications in Mathematical Physics., 281(2):401, 2008.
  • [23] H.-L. Li and T. Zhang. Large time behavior of isentropic compressible Navier-Stokes system in 3\mathbb{R}^{3}. Math. Methods Appl. Sci., 34(6):670–682, 2011.
  • [24] F. Lin, P. Zhang, and Z. Zhang. On the global existence of smooth solution to the 2-D FENE dumbbell model. Comm. Math. Phys., 277(2):531–553, 2008.
  • [25] W. Luo and Z. Yin. The Liouville Theorem and the L2L^{2} Decay for the FENE Dumbbell Model of Polymeric Flows. Arch. Ration. Mech. Anal., 224(1):209–231, 2017.
  • [26] W. Luo and Z. Yin. The L2L^{2} decay for the 2D co-rotation FENE dumbbell model of polymeric flows. Adv. Math., 343:522–537, 2019.
  • [27] Z. Luo, W. Luo, and Z. Yin. Global strong solutions and large time behavior to the compressible co-rotation FENE dumbbell model of polymeric flows near equilibrium. arXiv:2104.10844.
  • [28] N. Masmoudi. Well-posedness for the FENE dumbbell model of polymeric flows. Comm. Pure Appl. Math., 61(12):1685–1714, 2008.
  • [29] N. Masmoudi. Global existence of weak solutions to the FENE dumbbell model of polymeric flows. Invent. Math., 191(2):427–500, 2013.
  • [30] N. Masmoudi. Equations for Polymeric Materials. Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 2016.
  • [31] A. Matsumura and T. Nishida. The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Japan Acad. Ser. A Math. Sci., 55:337–342, 1979.
  • [32] A. Mellet and A. Vasseur. On the barotropic compressible Navier-Stokes equations. Proc. Japan Acad. Ser. A Math. Sci., 32(3):431–452, 2007.
  • [33] J. Moser. A rapidly convergent iteration method and non-linear partial differential equations. I. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 20:265–315, 1966.
  • [34] J. Nash. Le probleme de cauchy pour les equations differentielles d’un fluide general. Bull.soc.math.france., 90(4):487–497, 1962.
  • [35] L. Nirenberg. On elliptic partial differential equations. Ann.scuola Norm.sup.pisa, 1959.
  • [36] M. Renardy. An existence theorem for model equations resulting from kinetic theories of polymer solutions. SIAM J. Math. Anal., 22(2):313–327, 1991.
  • [37] M. E. Schonbek. L2L^{2} decay for weak solutions of the Navier-Stokes equations. Arch. Rational Mech. Anal., 88(3):209–222, 1985.
  • [38] M. E. Schonbek. Existence and decay of polymeric flows. SIAM J. Math. Anal., 41(2):564–587, 2009.
  • [39] L. Tong, Z. Tan, and Y. Wang. The asymptotic behavior of globally smooth solutions to the compressible magnetohydrodynamic equations with Coulomb force. Analysis and Applications, 2017.
  • [40] A. F. Vasseur and C. Yu. Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations. Invent. Math., 206(3):935–974, 2016.
  • [41] Z. Xin. Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density. Communications on Pure Applied Mathematics., 1998.
  • [42] Z. Xin and W. Yan. On blow-up of classical solutions to the compressible Navier-Stokes equations. Communications in Mathematical Physics., 321(2):529–541, 2013.
  • [43] J. Xu. A low-frequency assumption for optimal time-decay estimates to the compressible Navier-Stokes equations. Comm. Math. Phys., 371(2):525–560, 2019.
  • [44] H. Zhang and P. Zhang. Local existence for the FENE-dumbbell model of polymeric fluids. Arch. Ration. Mech. Anal., 181(2):373–400, 2006.
  • [45] Z. Zhou, C. Zhu, and R. Zi. Global well-posedness and decay rates for the three dimensional compressible Oldroyd-B model. Journal of Differential Equations, 265(4), 2018.