This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Global strong solutions and large time behavior to the compressible co-rotation FENE dumbbell model of polymeric flows near equilibrium

Zhaonan Luo1\mbox{Luo}^{1} 111email: [email protected], Wei Luo1\mbox{Luo}^{1}222E-mail: [email protected]  and Zhaoyang Yin1,2\mbox{Yin}^{1,2}333E-mail: [email protected]
Department1{}^{1}\mbox{Department} of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
Faculty2{}^{2}\mbox{Faculty} of Information Technology,
Macau University of Science and Technology, Macau, China
Abstract

In this paper, we mainly study global well-posedness and optimal decay rate for the strong solutions of the compressible co-rotation finite extensible nonlinear elastic (FENE) dumbbell model. This model is a coupling of the isentropic compressible Navier-Stokes equations with a nonlinear Fokker-Planck equation. We first prove that the FENE dumbbell model admits a unique global strong solution provided the initial data are close to equilibrium state for d2d\geq 2. Moreover, for d3d\geq 3, we show that optimal decay rates of global strong solutions by the linear spectral theory and a more precise Hardy type inequality.
2020 Mathematics Subject Classification: 35Q30, 35Q84, 76N10,76D05.

Keywords: The compressible co-rotation FENE dumbbell model; Global strong solutions; optimal decay rate.

 

1 Introduction

In this paper we consider the compressible finite extensible nonlinear elastic (FENE) dumbbell model [1, 12]:

(1.7) {ϱt+div(ϱu)=0,(ϱu)t+div(ϱuu)divΣ(u)+1Ma2P(ϱ)=1Deκrdivτ,ψt+uψ=divR[σ(u)Rψ+σDeRψ+1DerR𝒰ψ],τij=B(RiRj𝒰)ψ𝑑R,ϱ|t=0=ϱ0,u|t=0=u0,ψ|t=0=ψ0,(σRψ+1rR𝒰ψ)n=0onB(0,R0).\displaystyle\left\{\begin{array}[]{ll}\varrho_{t}+{\rm div}(\varrho u)=0,\\[4.30554pt] (\varrho u)_{t}+{\rm div}(\varrho u\otimes u)-{\rm div}\Sigma{(u)}+\frac{1}{Ma^{2}}\nabla{P(\varrho)}=\frac{1}{De}\frac{\kappa}{r}{\rm div}~{}\tau,\\[4.30554pt] \psi_{t}+u\cdot\nabla\psi={\rm div}_{R}[-\sigma(u)\cdot{R}\psi+\frac{\sigma}{De}\nabla_{R}\psi+\frac{1}{De\cdot r}\nabla_{R}\mathcal{U}\psi],\\[4.30554pt] \tau_{ij}=\int_{B}(R_{i}\nabla_{Rj}\mathcal{U})\psi dR,\\[4.30554pt] \varrho|_{t=0}=\varrho_{0},~{}~{}u|_{t=0}=u_{0},~{}~{}\psi|_{t=0}=\psi_{0},\\[4.30554pt] (\sigma\nabla_{R}\psi+\frac{1}{r}\nabla_{R}\mathcal{U}\psi)\cdot{n}=0~{}~{}~{}~{}\text{on}~{}~{}~{}~{}\partial B(0,R_{0}).\\[4.30554pt] \end{array}\right.

In (1.7), ϱ(t,x)\varrho(t,x) is the density of the solvent, u(t,x)u(t,x) stands for the velocity of the polymeric liquid and ψ(t,x,R)\psi(t,x,R) denotes the distribution function for the internal configuration. Here the polymer elongation RR is bounded in ball B=B(0,R0)B=B(0,R_{0}) which means that the extensibility of the polymers is finite and xdx\in\mathbb{R}^{d}. The notation Σ(u)=μ(u+Tu)+μdivuId\Sigma{(u)}=\mu(\nabla u+\nabla^{T}u)+\mu^{\prime}{\rm div}~{}u\cdot Id represents the stress tensor, with the viscosity coefficients μ\mu and μ\mu^{\prime} satisfying μ>0\mu>0 and 2μ+μ>02\mu+\mu^{\prime}>0. σ\sigma is a constant satisfied the relation σ=kBTa\sigma=k_{B}T_{a}, where kBk_{B} is the Boltzmann constant, TaT_{a} stands for the absolute temperature. Moreover, κ>0\kappa>0 denotes the ratio between kinetic and elastic energy and r>0r>0 is related to the linear damping mechanism in dynamics of the microscopic variable RR. The parameter DeDe is the Deborah number, which stands for the ratio of the time scales for elastic stress relaxation. It measures the fluidity of the system. The smaller the Deborah number is, the system behaves more like a Newtonian fluid. Furthermore, the Mach number MaMa denotes the ratio between the fluid velocity and the sound speed, so it characterizes the compressibility of the system. The pressure satisfies the so-called γ\gamma-law: P(ϱ)=aϱγP(\varrho)=a\varrho^{\gamma} with γ1,a>0\gamma\geq 1,a>0. τ\tau is an additional stress tensor. For the compressible FENE dumbbell model, the potential 𝒰(R)=klog(1(|R||R0|)2)\mathcal{U}(R)=-k\log(1-(\frac{|R|}{|R_{0}|})^{2}) for some constant k>0k>0. σ(u)\sigma(u) is the drag term. In the co-rotation case, σ(u)=u(u)T2\sigma(u)=\frac{\nabla u-(\nabla u)^{T}}{2}. In the general case, σ(u)=u\sigma(u)=\nabla u.

This model describes the system coupling fluids and polymers. The system is of great interest in many branches of physics, chemistry, and biology, see [1, 12]. In this model, a polymer is idealized as an ”elastic dumbbell” consisting of two ”beads” joined by a spring that can be modeled by a vector RR. The polymer particles are studied by a probability function ψ(t,x,R)\psi(t,x,R) satisfying that Bψ(t,x,R)𝑑R=1\int_{B}\psi(t,x,R)dR=1, which stands for the distribution of particles elongation vector RBR\in B. At the level of liquid, the system couples the compressible Navier-Stokes equations for the fluid velocity with a Fokker-Planck equation describing the evolution of the polymer density. This is a micro-macro model (For more details, one can refer to [25] and [26]).

In this paper we will take a,σ,κ,r,De,Maa,~{}\sigma,~{}\kappa,~{}r,~{}De,~{}Ma and R0=1R_{0}=1. Notice that (ϱ,u,ψ)(\varrho,u,\psi) with ϱ=1\varrho=1, u=0u=0 and

ψ(R)=e𝒰(R)Be𝒰(R)𝑑R=(1|R|2)kB(1|R|2)k𝑑R,\psi_{\infty}(R)=\frac{e^{-\mathcal{U}(R)}}{\int_{B}e^{-\mathcal{U}(R)}dR}=\frac{(1-|R|^{2})^{k}}{\int_{B}(1-|R|^{2})^{k}dR},

is a trivial solution of (1.7). Then we study the perturbations near the global equilibrium:

ρ=ϱ1,u=u,g=ψψψ.\displaystyle\rho=\varrho-1,~{}~{}u=u,~{}~{}g=\frac{\psi-\psi_{\infty}}{\psi_{\infty}}.

By a simple calculation, we get

(1.8) divR([(u(u)T]Rψ)=i,jRi[(iujjui)Rjψ]\displaystyle{\rm div}_{R}([(\nabla u-(\nabla u)^{T}]R\psi_{\infty})=\sum_{i,j}\partial_{R_{i}}[(\partial_{i}u^{j}-\partial_{j}u^{i})R_{j}\psi_{\infty}]
=i,j(iujjui)δijψ+i,j2k(iujjui)RjRi(1|R|2)k1B(1|R|2)k𝑑R=0.\displaystyle=\sum_{i,j}(\partial_{i}u^{j}-\partial_{j}u^{i})\delta_{ij}\psi_{\infty}+\sum_{i,j}\frac{2k(\partial_{i}u^{j}-\partial_{j}u^{i})R_{j}R_{i}(1-|R|^{2})^{k-1}}{\int_{B}(1-|R|^{2})^{k}dR}=0.

Then we can rewrite (1.7) for the co-rotation case (σ(u)=u(u)T2\sigma(u)=\frac{\nabla u-(\nabla u)^{T}}{2}) as the following system:

(1.15) {ρt+divu(1+ρ)=uρ,ut11+ρdivΣ(u)+P(1+ρ)1+ρρ=uu+11+ρdivτ,gt+g=ug1ψR(σ(u)Rgψ),τij(g)=B(RiRj𝒰)gψ𝑑R,ρ|t=0=ρ0,u|t=0=u0,g|t=0=g0,ψRgn=0onB(0,1),\displaystyle\left\{\begin{array}[]{ll}\rho_{t}+{\rm div}~{}u(1+\rho)=-u\cdot\nabla\rho,\\[4.30554pt] u_{t}-\frac{1}{1+\rho}{\rm div}\Sigma{(u)}+\frac{P^{\prime}(1+\rho)}{1+\rho}\nabla\rho=-u\cdot\nabla u+\frac{1}{1+\rho}{\rm div}~{}\tau,\\[4.30554pt] g_{t}+\mathcal{L}g=-u\cdot\nabla g-\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(\sigma(u)Rg\psi_{\infty}),\\[4.30554pt] \tau_{ij}(g)=\int_{B}(R_{i}\nabla_{Rj}\mathcal{U})g\psi_{\infty}dR,\\[4.30554pt] \rho|_{t=0}=\rho_{0},~{}~{}u|_{t=0}=u_{0},~{}~{}g|_{t=0}=g_{0},\\[4.30554pt] \psi_{\infty}\nabla_{R}g\cdot{n}=0~{}~{}~{}~{}\text{on}~{}~{}~{}~{}\partial B(0,1),\\[4.30554pt] \end{array}\right.

where g=1ψR(ψRg)\mathcal{L}g=-\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(\psi_{\infty}\nabla_{R}g).

Remark. As in the reference [26], one can deduce that ψ=0\psi=0 on B(0,1)\partial B(0,1).

1.1.  Short reviews for the incompressible FENE dumbbell model

We first review some mathematical results about the incompressible FENE dumbbell model. M. Renardy [33] established the local well-posedness in Sobolev spaces with potential 𝒰(R)=(1|R|2)1σ\mathcal{U}(R)=(1-|R|^{2})^{1-\sigma} for σ>1\sigma>1. Later, B. Jourdain, T. Lelièvre, and C. Le Bris [18] proved local existence of a stochastic differential equation with potential 𝒰(R)=klog(1|R|2)\mathcal{U}(R)=-k\log(1-|R|^{2}) in the case k>3k>3 for a Couette flow. H. Zhang and P. Zhang [40] proved local well-posedness for the FENE equation with d=3d=3 in weighted Sobolev spaces. For the co-rotation case, F. Lin, P. Zhang, and Z. Zhang [22] obtained a global existence results with d=2d=2 and k>6k>6. If the initial data is perturbation around equilibrium, N. Masmoudi [25] proved global well-posedness for for the general case and k>0k>0. In the co-rotation case with d=2d=2, he [25] obtained a global result k>0k>0 without any small conditions. In the co-rotation case, A. V. Busuioc, I. S. Ciuperca, D. Iftimie and L. I. Palade [4] obtained a global existence result with only the small condition on ψ0\psi_{0}. The global existence of weak solutions in L2L^{2} for the general case and was proved recently by N. Masmoudi [26] under some entropy conditions. In this paper, he point out that global existence of strong solutions for the general case is an open problem.

M. Schonbek [35] studied the L2L^{2} decay of the weak solutions for the co-rotation FENE dumbbell model, and obtained the decay rate (1+t)d4+12(1+t)^{-\frac{d}{4}+\frac{1}{2}}, d2d\geq 2 with u0L1u_{0}\in L^{1}. Moreover, she conjectured that the sharp decay rate should be (1+t)d4(1+t)^{-\frac{d}{4}}d2d\geq 2. However, she failed to get it because she could not use the bootstrap argument as in [34] due to the additional stress tensor. Recently, W. Luo and Z. Yin [23] improved Schonbek’s result and showed that the decay rate is (1+t)d4(1+t)^{-\frac{d}{4}} with d3d\geq 3 and lnl(1+t)\ln^{-l}(1+t) with d=2d=2 for any l+l\in\mathbb{N^{+}}. This result shows that M. Schonbek’s conjecture is true when d3d\geq 3. More recently, W. Luo and Z. Yin [24] improved the decay rate to (1+t)d4(1+t)^{-\frac{d}{4}} with d=2d=2.

1.2.  Short reviews for the CNS equations

Taking ψ0\psi\equiv 0, the system (1.7) reduce to the compressible Navier-Stokes (CNS) equations. In order to study about the (1.7), we have to cite some reference about the CNS equations. The first local existence and uniqueness results were obtained by J. Nash [31] for smooth initial data without vacuum. Later on, A. Matsumura and T. Nishida [28] proved the global well-posedness for smooth data close to equilibrium in H3×H2H^{3}\times H^{2}. In [19], A. V. Kazhikhov and V. V. Shelukhin established the first global existence result with large data in one dimensional space under some suitable condition on μ\mu and λ\lambda. If μ\mu is constant and λ(ρ)=bρβ\lambda(\rho)=b\rho^{\beta}, X. Huang and J. Li [14] obtained a global existence and uniqueness result for large initial data in two dimensional space(See also [17]). In [15], X. Huang, J. Li, and Z. Xin proved the global well-posedness with vacuum. The blow-up phenomenons were studied by Z. Xin et al in [37, 20, 38]. Concerning the global existence of weak solutions for the large initial data, we may refer to [2, 3, 29, 36].

To catch the scaling invariance property of the CNS equations. R. Danchin introduced the critical spaces in his series papers [7, 8, 9, 10, 11] and obtained several important existence and uniqueness results. Recently, Q. Chen, C. Miao and Z. Zhang [5] proved the local existence and uniqueness in critical homogeneous Besov spaces. The ill-posedness result was obtained in [6]. In [13], L. He, J. Huang and C. Wang proved the global stability with d=3d=3 i.e. for any perturbed solutions will remain close to the reference solutions if initially they are close to another one.

The large time behaviour was proved by A. Matsumura and T. Nishida in [28]. H. Li and T. Zhang [21] obtained the optimal time decay rate for the CNS equations by spectrum analysis in Sobolev spaces. Recently, J. Xu [39] studied about the large time behaviour in the critical Besov space and obtain the optimal time decay rate.

1.3.  Main results

The well-posedness in H3H^{3} with the Hooke type potential and d=3d=3 for the system (1.7) was established by N. Jiang, Y. Liu and T. Zhang [16]. They proved the global well-posedness for (1.7) if the initial data is close to the equilibrium. In [16], the authors assume that R3R\in\mathbb{R}^{3} which means that polymer elongation may be infinite. Actually, the polymer elongation RR is usually bounded.

Recently, N. Masmoudi [27] was concerned with long time behavior for polymeric models. To our best knowledge, well-posedness and large time behaviour for the system (1.7) with finite polymer elongation has not been studied yet. In this paper, we establish global well-posedness result for the compressible co-rotation FENE equation (1.7) if the initial data is close to the equilibrium. The key point is to prove a priori estimate which is global in time for (1.15) with small data. Compared to (1.7) with the Hooke potential 𝒰(R)=12|R|2\mathcal{U}(R)=\frac{1}{2}|R|^{2}, the main difficult for the FENE system is to control the stress tensor τ\tau. That is why many researchers establish different Hardy type inequalities. Taking advantage of dissipative structure of (1.15) and the interpolation method, we obtain the lower order energy estimates. By virtue of the Hardy type inequality [25] and cancellation relation between the compressible Navier-Stokes equations and Fokker-Planck equation, we get the higher order derivatives estimates for (1.15). Combining the lower and higher order estimates, we deduce a closed estimate which is global in time. The result of the global existence of strong solution of the current manuscript is an extension of [25] to the compressible fluid.

Moreover, we study about large time behaviour and obtain optimal decay rate for the velocity in L2L^{2}. The proof is based on the linear spectral theory and L2L^{2} energy estimate method with the conditions (ρ0,u0)L1×L1(\rho_{0},u_{0})\in L^{1}\times L^{1}. The main difficulty is to estimate the additional linear term divτ{\rm div}~{}\tau. To get L2L^{2} decay rate, we prove a more precise Hardy type inequality to control the extra stress tensor τ\tau by improving the method in [26]. Since divτ{\rm div}~{}\tau is a linear term, it follows that we have to estimate the L1L^{1}-norm for τ\tau. For this purpose, we add the condition g0L1(p)g_{0}\in L^{1}(\mathcal{L}^{p}) with (p1)k>1(p-1)k>1 and 2p2\leq p. In the incompressible case, one can prove that τL1C\|\tau\|_{L^{1}}\leq C for any tt (See [25]). However, in the compressible case, we only obtain that τL1Cet\|\tau\|_{L^{1}}\leq Ce^{\sqrt{t}}, which is exponentially growth in time. This is too bad for study about optimal decay rate. Fortunately, in the co-rocation case, we see that the L2(2)L^{2}(\mathcal{L}^{2}) norm gg is exponentially decay in time. Although we can not obtain exponential decay estimate of τ\tau through the new Hardy estimate, we deduce a time weighted estimate, which can control the growth trend of τ\tau in LpL^{p} with p>1p>1. Finally, we obtain optimal time decay rate for the velocity in L2L^{2} by using the time weighted estimate and a different absorption method. The result of optimal decay rate for strong solution of the current manuscript is an extension of [23] to the compressible fluid. Compared to the previous literature [25], the new Hardy type inequality improves the estimate for τ\tau with 0<k10<k\leq 1, which will be useful for the FENE system in the future.

Our main results can be stated as follows:

Theorem 1.1 (Global well-posedness).

Let d2ands>1+d2d\geq 2~{}and~{}s>1+\frac{d}{2}. Let (ρ,u,g)(\rho,u,g) be a strong solution of (1.15) with the initial data (ρ0,u0,g0)(\rho_{0},u_{0},g_{0}) satisfying the conditions Bg0ψ𝑑R=0\int_{B}g_{0}\psi_{\infty}dR=0 and 1+g0>01+g_{0}>0. Then, there exists some sufficiently small constant ϵ0\epsilon_{0} such that if

(1.16) E(0)=ρ0Hs2+u0Hs2+g0Hs(2)2ϵ0,\displaystyle E(0)=\|\rho_{0}\|^{2}_{H^{s}}+\|u_{0}\|^{2}_{H^{s}}+\|g_{0}\|^{2}_{H^{s}(\mathcal{L}^{2})}\leq\epsilon_{0},

then the compressible system (1.15) admits a unique global strong solution (ρ,u,g)(\rho,u,g) with Bgψ𝑑R=0\int_{B}g\psi_{\infty}dR=0 and 1+g>01+g>0, and we have

(1.17) supt[0,+)E(t)+0D(t)𝑑tϵ,\displaystyle\sup_{t\in[0,+\infty)}E(t)+\int_{0}^{\infty}D(t)dt\leq\epsilon,

where ϵ\epsilon is a small constant dependent on the viscosity coefficients.

Theorem 1.2 (Large time behaviour).

Let d3d\geq 3. Let (ρ,u,g)(\rho,u,g) be a strong solution of (1.15) with the initial data (ρ0,u0,g0)(\rho_{0},u_{0},g_{0}) under the condition in Theorem 1.1. In addition, if (ρ0,u0)L1×L1(\rho_{0},u_{0})\in L^{1}\times L^{1} and g0L1(p)g_{0}\in L^{1}(\mathcal{L}^{p}) with (p1)k>1(p-1)k>1 and 2p2\leq p, then there exists a constant CC such that

(1.18) ρL2+uL2C(1+t)d4,\displaystyle\|\rho\|_{L^{2}}+\|u\|_{L^{2}}\leq C(1+t)^{-\frac{d}{4}},

and

(1.19) gL2(2)CeCt.\displaystyle\|g\|_{L^{2}(\mathcal{L}^{2})}\leq Ce^{-Ct}.
Remark 1.3.

Taking g0g\equiv 0 and combining with the result in [21], we can see that the L2L^{2} decay rate obtained in Theorem 1.2 is optimal. Optimal decay rate for (u,g)(u,g) is an extension of [23] to the compressible fluid.

The paper is organized as follows. In Section 2 we introduce some notations and give some preliminaries which will be used in the sequel. In Section 3 we prove that the FENE dumbbell model admits a unique global strong solution provided the initial data are close to equilibrium state for d2d\geq 2. In Section 4 we study the L2L^{2} decay of solutions to the compressible co-rotation FENE model for d3d\geq 3 by using the linear spectral theory.

2 Preliminaries

In this section we will introduce some notations and useful lemmas which will be used in the sequel.

If the function spaces are over d\mathbb{R}^{d} and BB with respect to the variable xx and RR, for simplicity, we drop d\mathbb{R}^{d} and BB in the notation of function spaces if there is no ambiguity.

For p1p\geq 1, we denote by p\mathcal{L}^{p} the space

p={f|fpp=Bψ|f|p𝑑R<}.\mathcal{L}^{p}=\big{\{}f\big{|}\|f\|^{p}_{\mathcal{L}^{p}}=\int_{B}\psi_{\infty}|f|^{p}dR<\infty\big{\}}.

We will use the notation Lxp(q)L^{p}_{x}(\mathcal{L}^{q}) to denote Lp[d;q]:L^{p}[\mathbb{R}^{d};\mathcal{L}^{q}]:

Lxp(q)={f|fLxp(q)=(d(Bψ|f|q𝑑R)pq𝑑x)1p<}.L^{p}_{x}(\mathcal{L}^{q})=\big{\{}f\big{|}\|f\|_{L^{p}_{x}(\mathcal{L}^{q})}=(\int_{\mathbb{R}^{d}}(\int_{B}\psi_{\infty}|f|^{q}dR)^{\frac{p}{q}}dx)^{\frac{1}{p}}<\infty\big{\}}.

The symbol f^=(f)\widehat{f}=\mathcal{F}(f) represents the Fourier transform of ff. Let Λsf=1(|ξ|sf^)\Lambda^{s}f=\mathcal{F}^{-1}(|\xi|^{s}\widehat{f}). If s0s\geq 0, we can denote by Hs(2)H^{s}(\mathcal{L}^{2}) the space

Hs(2)={f|fHs(2)2=dB(|f|2+|Λsf|2)ψ𝑑R𝑑x<}.H^{s}(\mathcal{L}^{2})=\{f\big{|}\|f\|^{2}_{H^{s}(\mathcal{L}^{2})}=\int_{\mathbb{R}^{d}}\int_{B}(|f|^{2}+|\Lambda^{s}f|^{2})\psi_{\infty}dRdx<\infty\}.

Then we introduce the energy and energy dissipation functionals for (ρ,u,g)(\rho,u,g) as follows:

E(t)=ρHs2+uHs2+gHs(2)2,E(t)=\|\rho\|^{2}_{H^{s}}+\|u\|^{2}_{H^{s}}+\|g\|^{2}_{H^{s}(\mathcal{L}^{2})},

and

D(t)=ρHs12+μuHs2+(μ+μ)divuHs2+RgHs(2)2.D(t)=\|\nabla\rho\|^{2}_{H^{s-1}}+\mu\|\nabla u\|^{2}_{H^{s}}+(\mu+\mu^{\prime})\|{\rm div}~{}u\|^{2}_{H^{s}}+\|\nabla_{R}g\|^{2}_{H^{s}(\mathcal{L}^{2})}.

Sometimes we write fgf{\lesssim}g instead of fCgf\leq Cg, where CC is a constant. We agree that \nabla stands for x\nabla_{x} and div{\rm div} stands for divx{\rm div}_{x}.

The following lemma is on various Gagliardo-Nirenberg inequalities.

Lemma 2.1.

[32] If d=2,p[2,+)d=2,~{}p\in[2,+\infty), then there exists a constant CC such that

fLpCfL22pfL2p2p.\|f\|_{L^{p}}\leq C\|f\|^{\frac{2}{p}}_{L^{2}}\|\nabla f\|^{\frac{p-2}{p}}_{L^{2}}.

For d3d\geq 3, then there exists a constant CC such that

fLpCfL2\|f\|_{L^{p}}\leq C\|\nabla f\|_{L^{2}}

where p=2dd2p=\frac{2d}{d-2}.

The following lemmas allow us to estimate the extra stress tensor τ\tau.

Lemma 2.2.

[25] If Bgψ𝑑R=0\int_{B}g\psi_{\infty}dR=0, then there exists a constant CC such that

g2CRg2.\|g\|_{\mathcal{L}^{2}}\leq C\|\nabla_{R}g\|_{\mathcal{L}^{2}}.
Lemma 2.3.

[25] For all δ>0\delta>0, there exists a constant CδC_{\delta} such that

|τ(g)|2δRg22+Cδg22.|\tau(g)|^{2}\leq\delta\|\nabla_{R}g\|^{2}_{\mathcal{L}^{2}}+C_{\delta}\|g\|^{2}_{\mathcal{L}^{2}}.

If (p1)k>1(p-1)k>1, then

|τ(g)|Cgp.|\tau(g)|\leq C\|g\|_{\mathcal{L}^{p}}.

To get L2L^{2} decay rate, we prove a more precise estimate of the extra stress tensor τ\tau by improving the method in [26]. Compared to the previous literature [25], the results improve the estimate for τ\tau with 0<k10<k\leq 1.

Lemma 2.4.

If g2CRg2<\|g\|_{\mathcal{L}^{2}}\leq C\|\nabla_{R}g\|_{\mathcal{L}^{2}}<\infty, there exists a constant C1C_{1} such that

(2.1) |τ(g)|C1g2k+12Rg21k2,for0<k<1,\displaystyle|\tau(g)|\leq C_{1}\|g\|^{\frac{k+1}{2}}_{\mathcal{L}^{2}}\|\nabla_{R}g\|^{\frac{1-k}{2}}_{\mathcal{L}^{2}},~{}~{}for~{}0<k<1,

and

(2.2) |τ(g)|C1g22n2n+1Rg212n+1,fork=1andn1.\displaystyle|\tau(g)|\leq C_{1}\|g\|^{\frac{2n}{2n+1}}_{\mathcal{L}^{2}}\|\nabla_{R}g\|^{\frac{1}{2n+1}}_{\mathcal{L}^{2}},~{}~{}for~{}k=1~{}and~{}\forall n\geq 1.
Remark 2.5.

According to Lemmas 2.2-2.4, if Bgψ𝑑R=0\int_{B}g\psi_{\infty}dR=0, for any k>0k>0, then we have |τ(g)|C1g212Rg212|\tau(g)|\leq C_{1}\|g\|^{\frac{1}{2}}_{\mathcal{L}^{2}}\|\nabla_{R}g\|^{\frac{1}{2}}_{\mathcal{L}^{2}}.

Proof.

We first prove the following Hardy type inequality:

(2.3) |τ(ψ)|=|B(RR𝒰)ψ𝑑R|C1(B|ψ|2ψ𝑑R)k+14(Bψ|Rψψ|2𝑑R)1k4,for0<k<1.\displaystyle|\tau(\psi)|=|\int_{B}(R\otimes\nabla_{R}\mathcal{U})\psi dR|\leq C_{1}(\int_{B}\frac{|\psi|^{2}}{\psi_{\infty}}dR)^{\frac{k+1}{4}}(\int_{B}\psi_{\infty}|\nabla_{R}\frac{\psi}{\psi_{\infty}}|^{2}dR)^{\frac{1-k}{4}},~{}~{}for~{}0<k<1.

Denote x=1|R|x=1-|R|. Then the proof is a simple consequence of the following 1-D inequality

(2.4) |01ψx𝑑x|C1(01ψ2xk𝑑x)k+14(01xk|(ψxk)|2𝑑x)1k4,for0<k<1.\displaystyle|\int_{0}^{1}\frac{\psi}{x}dx|\leq C_{1}(\int_{0}^{1}\frac{\psi^{2}}{x^{k}}dx)^{\frac{k+1}{4}}(\int_{0}^{1}x^{k}|\big{(}\frac{\psi}{x^{k}}\big{)}^{\prime}|^{2}dx)^{\frac{1-k}{4}},~{}~{}for~{}0<k<1.

Let α=k1k\alpha=\frac{k}{1-k}. We make the following change of variables y=x1ky=x^{1-k}, then we have dy=(1k)xkdxdy=(1-k)x^{-k}dx. We also denote f(y)=ψ(x)xkf(y)=\frac{\psi(x)}{x^{k}}, F=01y2αf(y)2𝑑yF=\int_{0}^{1}y^{2\alpha}f(y)^{2}dy and G=01f(y)2𝑑yG=\int_{0}^{1}f^{\prime}(y)^{2}dy. Hence

01xk|(ψxk)|2𝑑x=(1k)01f(y)2𝑑y=(1k)G.\displaystyle\int_{0}^{1}x^{k}|\big{(}\frac{\psi}{x^{k}}\big{)}^{\prime}|^{2}dx=(1-k)\int_{0}^{1}f^{\prime}(y)^{2}dy=(1-k)G.

Moreover, we get

01ψx𝑑x=11k01yα1f(y)𝑑yand01ψ2xk𝑑x=11kF.\displaystyle\int_{0}^{1}\frac{\psi}{x}dx=\frac{1}{1-k}\int_{0}^{1}y^{\alpha-1}f(y)dy~{}~{}and~{}~{}\int_{0}^{1}\frac{\psi^{2}}{x^{k}}dx=\frac{1}{1-k}F.

For A(0,1]A\in(0,1] which will be chosen later on, we have

01yα1f(y)𝑑y=0Ayα1f(y)𝑑y+A1yα1f(y)𝑑y.\displaystyle\int_{0}^{1}y^{\alpha-1}f(y)dy=\int_{0}^{A}y^{\alpha-1}f(y)dy+\int_{A}^{1}y^{\alpha-1}f(y)dy.

First of all, we deduce that

A1yα1f(y)𝑑y(A1y2αf(y)2𝑑y)12(A1y2𝑑y)12F12A12.\displaystyle\int_{A}^{1}y^{\alpha-1}f(y)dy\leq(\int_{A}^{1}y^{2\alpha}f(y)^{2}dy)^{\frac{1}{2}}(\int_{A}^{1}y^{-2}dy)^{\frac{1}{2}}\leq F^{\frac{1}{2}}A^{-\frac{1}{2}}.

Since G<G<\infty, we obtain that limy0+yαf(y)=0\lim_{y\rightarrow 0^{+}}y^{\alpha}f(y)=0. Integrating by parts, we get

0Ayα1f(y)𝑑y=0A1α(yα)f(y)𝑑y=1αAαf(A)1α0Ayαf(y)𝑑y.\displaystyle\int_{0}^{A}y^{\alpha-1}f(y)dy=\int_{0}^{A}\frac{1}{\alpha}(y^{\alpha})^{\prime}f(y)dy=\frac{1}{\alpha}A^{\alpha}f(A)-\frac{1}{\alpha}\int_{0}^{A}y^{\alpha}f^{\prime}(y)dy.

Using the Cauchy-Schwarz inequality, we have

0Ayαf(y)𝑑yG12(0Ay2α𝑑y)12CG12Aα+12.\displaystyle\int_{0}^{A}y^{\alpha}f^{\prime}(y)dy\leq G^{\frac{1}{2}}(\int_{0}^{A}y^{2\alpha}dy)^{\frac{1}{2}}\leq CG^{\frac{1}{2}}A^{\alpha+\frac{1}{2}}.

Moreover, we have

Aαf(A)\displaystyle A^{\alpha}f(A) =A10A(yα+1f(y))𝑑y\displaystyle=A^{-1}\int_{0}^{A}(y^{\alpha+1}f(y))^{\prime}dy
=A10A(α+1)yαf(y)𝑑y+A10Ayα+1f(y)𝑑y\displaystyle=A^{-1}\int_{0}^{A}(\alpha+1)y^{\alpha}f(y)dy+A^{-1}\int_{0}^{A}y^{\alpha+1}f^{\prime}(y)dy
CF12A12+CG12Aα+12.\displaystyle\leq CF^{\frac{1}{2}}A^{-\frac{1}{2}}+CG^{\frac{1}{2}}A^{\alpha+\frac{1}{2}}.

Finally, we get

01yα1f(y)𝑑yCF12A12+CG12Aα+12.\displaystyle\int_{0}^{1}y^{\alpha-1}f(y)dy\leq CF^{\frac{1}{2}}A^{-\frac{1}{2}}+CG^{\frac{1}{2}}A^{\alpha+\frac{1}{2}}.

Since FCGF\leq CG, we complete the proof of (2.3) by choosing A=(FCG)1k2(0,1]A=(\frac{F}{CG})^{\frac{1-k}{2}}\in(0,1]. Let ψ=gψ\psi=g\psi_{\infty} in (2.3). We thus get the Hardy type inequality (2.1).
The proof of (2.2) is a simple consequence of the following 1-D inequality

(2.5) |01ψx𝑑x|C1(01ψ2x𝑑x)n2n+1(01x|(ψx)|2𝑑x)14n+2,fork=1andn1.\displaystyle|\int_{0}^{1}\frac{\psi}{x}dx|\leq C_{1}(\int_{0}^{1}\frac{\psi^{2}}{x}dx)^{\frac{n}{2n+1}}(\int_{0}^{1}x|\big{(}\frac{\psi}{x}\big{)}^{\prime}|^{2}dx)^{\frac{1}{4n+2}},~{}~{}for~{}k=1~{}and~{}\forall n\geq 1.

We make the following change of variables x=eyx=e^{-y} hence dx=eydydx=-e^{-y}dy. We also denote f(y)=ψ(x)xf(y)=\frac{\psi(x)}{x}, F=0e2yf(y)2𝑑yF=\int_{0}^{\infty}e^{-2y}f(y)^{2}dy and G=0f(y)2𝑑yG=\int_{0}^{\infty}f^{\prime}(y)^{2}dy. Hence

01x|(ψx)|2𝑑x=0f(y)2𝑑y=G.\displaystyle\int_{0}^{1}x|\big{(}\frac{\psi}{x}\big{)}^{\prime}|^{2}dx=\int_{0}^{\infty}f^{\prime}(y)^{2}dy=G.

Moreover, we get

01ψx𝑑x=0eyf(y)𝑑yand01ψ2x𝑑x=F.\displaystyle\int_{0}^{1}\frac{\psi}{x}dx=\int_{0}^{\infty}e^{-y}f(y)dy~{}~{}and~{}~{}\int_{0}^{1}\frac{\psi^{2}}{x}dx=F.

For A[1,)A\in[1,\infty) which will be chosen later on, we have

0eyf(y)𝑑y=0Aeyf(y)𝑑y+Aeyf(y)𝑑y.\displaystyle\int_{0}^{\infty}e^{-y}f(y)dy=\int_{0}^{A}e^{-y}f(y)dy+\int_{A}^{\infty}e^{-y}f(y)dy.

First of all, we deduce that

0Aeyf(y)𝑑y(0Ae2yf(y)2𝑑y)12(0A𝑑y)12F12A12.\displaystyle\int_{0}^{A}e^{-y}f(y)dy\leq(\int_{0}^{A}e^{-2y}f(y)^{2}dy)^{\frac{1}{2}}(\int_{0}^{A}dy)^{\frac{1}{2}}\leq F^{\frac{1}{2}}A^{\frac{1}{2}}.

Since G<G<\infty, we obtain that f(y)Cyf(y)\leq C\sqrt{y}. Integrating by parts, we get

Aeyf(y)𝑑y=A(ey)f(y)dy=eAf(A)+Aeyf(y)𝑑y.\displaystyle\int_{A}^{\infty}e^{-y}f(y)dy=\int_{A}^{\infty}-(e^{-y})^{\prime}f(y)dy=e^{-A}f(A)+\int_{A}^{\infty}e^{-y}f^{\prime}(y)dy.

Using the Cauchy-Schwarz inequality, we have

Aeyf(y)𝑑yG12(Ae2y𝑑y)12CG12eA.\displaystyle\int_{A}^{\infty}e^{-y}f^{\prime}(y)dy\leq G^{\frac{1}{2}}(\int_{A}^{\infty}e^{-2y}dy)^{\frac{1}{2}}\leq CG^{\frac{1}{2}}e^{-A}.

Moreover, we have

eAf(A)\displaystyle e^{-A}f(A) =eAA(e2yf(y))𝑑y\displaystyle=e^{A}\int_{A}^{\infty}(e^{-2y}f(y))^{\prime}dy
=2eAAe2yf(y)𝑑y+eAAe2yf(y)𝑑y\displaystyle=-2e^{A}\int_{A}^{\infty}e^{-2y}f(y)dy+e^{A}\int_{A}^{\infty}e^{-2y}f^{\prime}(y)dy
CF12+CG12eA.\displaystyle\leq CF^{\frac{1}{2}}+CG^{\frac{1}{2}}e^{-A}.

Finally, we get

0eyf(y)𝑑yCF12A12+CG12eACF12A12+CG12An.\displaystyle\int_{0}^{\infty}e^{-y}f(y)dy\leq CF^{\frac{1}{2}}A^{\frac{1}{2}}+CG^{\frac{1}{2}}e^{-A}\leq CF^{\frac{1}{2}}A^{\frac{1}{2}}+CG^{\frac{1}{2}}A^{-n}.

Since FCGF\leq CG, we complete the proof of (2.5) by choosing A=(CGF)12n+1[1,)A=(\frac{CG}{F})^{\frac{1}{2n+1}}\in[1,\infty). We thus get the Hardy type inequality (2.2). ∎

Lemma 2.6.

[30] For functions f,gHsLf,g\in H^{s}\cap L^{\infty} and s1s\geq 1, we have

[Λs,f]gL2C(ΛsfL2gL+fLΛs1gL2).\|[\Lambda^{s},f]g\|_{L^{2}}\leq C(\|\Lambda^{s}f\|_{L^{2}}\|g\|_{L^{\infty}}+\|\nabla f\|_{L^{\infty}}\|\Lambda^{s-1}g\|_{L^{2}}).

For functions fHsLf\in H^{s}\cap L^{\infty}, gHs(2)L(2)g\in H^{s}(\mathcal{L}^{2})\cap L^{\infty}(\mathcal{L}^{2}) and s1s\geq 1, we have

[Λs,f]gL2(2)C(ΛsfL2gL(2)+fLΛs1gL2(2)).\|[\Lambda^{s},f]g\|_{L^{2}(\mathcal{L}^{2})}\leq C(\|\Lambda^{s}f\|_{L^{2}}\|g\|_{L^{\infty}(\mathcal{L}^{2})}+\|\nabla f\|_{L^{\infty}}\|\Lambda^{s-1}g\|_{L^{2}(\mathcal{L}^{2})}).

3 Global strong solutions

This section is devoted to investigating global strong solutions for the compressible co-rotation FENE dumbbell model with dimension d2d\geq 2. To prove Theorem 1.1, we divide it into two Propositions. Firstly, we give a key global priori estimate for local solutions in the following proposition.

Proposition 3.1.

Let d2ands>1+d2d\geq 2~{}and~{}s>1+\frac{d}{2}. Let (ρ,u,g)L(0,T;Hs×Hs×Hs(2))(\rho_{,}u,g)\in L^{\infty}(0,T;H^{s}\times H^{s}\times H^{s}(\mathcal{L}^{2})) be local strong solutions constructed in Proposition 3.2. If supt[0,T)E(t)ϵ\sup_{t\in[0,T)}E(t)\leq\epsilon, then there exist C0>1C_{0}>1 such that

(3.1) supt[0,T]E(t)+0TD(t)𝑑tC0E(0).\displaystyle\sup_{t\in[0,T]}E(t)+\int_{0}^{T}D(t)dt\leq C_{0}E(0).
Proof.

Denote L2(2)L^{2}(\mathcal{L}^{2}) inner product by f,g=dBfgψ𝑑R𝑑x\langle f,g\rangle=\int_{\mathbb{R}^{d}}\int_{B}fg\psi_{\infty}dRdx. Taking the L2(2)L^{2}(\mathcal{L}^{2}) inner product with gg to (1.15)3(\ref{eq1})_{3}, then we have

(3.2) 12ddtgL2(2)2+RgL2(2)2=ug,g1ψR(σ(u)Rgψ),g.\displaystyle\frac{1}{2}\frac{d}{dt}\|g\|^{2}_{L^{2}(\mathcal{L}^{2})}+\|\nabla_{R}g\|^{2}_{L^{2}(\mathcal{L}^{2})}=-\langle u\cdot\nabla g,g\rangle-\langle\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(\sigma(u)Rg\psi_{\infty}),g\rangle.

Integrating by part, we get

ug,g=12divu,g2uLgL2(2)2.\displaystyle-\langle u\cdot\nabla g,g\rangle=\frac{1}{2}\langle{\rm div}~{}u,g^{2}\rangle\lesssim\|\nabla u\|_{L^{\infty}}\|g\|^{2}_{L^{2}(\mathcal{L}^{2})}.

Integrating by part and using (1.8), we have

1ψR(σ(u)Rgψ),g=12dBdivR(σ(u)Rψ)g2𝑑R𝑑x=0,\displaystyle\langle\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(\sigma(u)Rg\psi_{\infty}),g\rangle=\frac{1}{2}\int_{\mathbb{R}^{d}}\int_{B}{\rm div}_{R}(\sigma(u)R\psi_{\infty})g^{2}dRdx=0,

which implies that

(3.3) 12ddtgL2(2)2+RgL2(2)2uLgL2(2)2.\displaystyle\frac{1}{2}\frac{d}{dt}\|g\|^{2}_{L^{2}(\mathcal{L}^{2})}+\|\nabla_{R}g\|^{2}_{L^{2}(\mathcal{L}^{2})}\lesssim\|\nabla u\|_{L^{\infty}}\|g\|^{2}_{L^{2}(\mathcal{L}^{2})}.

Multiplying ψ\psi_{\infty} to (1.15)3(\ref{eq1})_{3} and integrating over BB with RR, we deduce that Bgψ𝑑R=Bg0ψ𝑑R=0\int_{B}g\psi_{\infty}dR=\int_{B}g_{0}\psi_{\infty}dR=0. Applying Lemma 2.2, we have

gL2(2)2RgL2(2)2.\|g\|^{2}_{L^{2}(\mathcal{L}^{2})}\lesssim\|\nabla_{R}g\|^{2}_{L^{2}(\mathcal{L}^{2})}.

Let h(ρ)=P(1+ρ)1+ρh(\rho)=\frac{P^{\prime}(1+\rho)}{1+\rho} and i(ρ)=1ρ+1i(\rho)=\frac{1}{\rho+1}. Taking the L2L^{2} inner product with h(ρ)ρh(\rho)\rho to (1.15)1(\ref{eq1})_{1}, then we have

(3.4) 12ddtdh(ρ)|ρ|2𝑑x+dP(1+ρ)ρdivu𝑑x\displaystyle\frac{1}{2}\frac{d}{dt}\int_{\mathbb{R}^{d}}h(\rho)|\rho|^{2}dx+\int_{\mathbb{R}^{d}}P^{\prime}(1+\rho)\rho{\rm div}~{}udx
=12dth(ρ)|ρ|2dxdh(ρ)ρuρdx.\displaystyle=\frac{1}{2}\int_{\mathbb{R}^{d}}\partial_{t}h(\rho)|\rho|^{2}dx-\int_{\mathbb{R}^{d}}h(\rho)\rho u\cdot\nabla\rho dx.

Taking the L2L^{2} inner product with (1+ρ)u(1+\rho)u to (1.15)2(\ref{eq1})_{2}, then we have

(3.5) 12ddtd(1+ρ)|u|2𝑑x+dP(1+ρ)uρdxdudivΣ(u)𝑑x\displaystyle\frac{1}{2}\frac{d}{dt}\int_{\mathbb{R}^{d}}(1+\rho)|u|^{2}dx+\int_{\mathbb{R}^{d}}P^{\prime}(1+\rho)u\nabla\rho dx-\int_{\mathbb{R}^{d}}u{\rm div}\Sigma(u)dx
=dudivτ𝑑x+12dtρ|u|2dxduu(1+ρ)u𝑑x.\displaystyle=\int_{\mathbb{R}^{d}}u~{}{\rm div}~{}\tau dx+\frac{1}{2}\int_{\mathbb{R}^{d}}\partial_{t}\rho|u|^{2}dx-\int_{\mathbb{R}^{d}}u\cdot\nabla u(1+\rho)udx.

Using integration by part, Lemmas 2.2 and 2.3, we get

dudivτ𝑑x=duτdxδuL22+CδRgL2(2)2,\displaystyle\int_{\mathbb{R}^{d}}u~{}{\rm div}~{}\tau dx=-\int_{\mathbb{R}^{d}}\nabla u\tau dx\leq\delta\|\nabla u\|^{2}_{L^{2}}+C_{\delta}\|\nabla_{R}g\|^{2}_{L^{2}(\mathcal{L}^{2})},

where δ\delta is a sufficiently small constant. Using integration by part, Lemma 2.1, we have

dP(1+ρ)(uρ+ρdivu)𝑑x\displaystyle-\int_{\mathbb{R}^{d}}P^{\prime}(1+\rho)(u\nabla\rho+\rho{\rm div}~{}u)dx =dP′′(1+ρ)ρuρdx\displaystyle=\int_{\mathbb{R}^{d}}P^{\prime\prime}(1+\rho)\rho u\nabla\rho dx
ρL2uL2ρLd+ρL22uLd.\displaystyle\lesssim\|\nabla\rho\|_{L^{2}}\|\nabla u\|_{L^{2}}\|\rho\|_{L^{d}}+\|\nabla\rho\|^{2}_{L^{2}}\|u\|_{L^{d}}.

The remaining terms can be treated as follows.

If d3d\geq 3, using Lemma 2.1, we deduce that

12dth(ρ)|ρ|2dx\displaystyle\frac{1}{2}\int_{\mathbb{R}^{d}}\partial_{t}h(\rho)|\rho|^{2}dx ρL2uL2dd2ρLd+uL2ρL2dd2ρLd(1+ρL)\displaystyle\lesssim\|\nabla\rho\|_{L^{2}}\|u\|_{L^{\frac{2d}{d-2}}}\|\rho\|_{L^{d}}+\|\nabla u\|_{L^{2}}\|\rho\|_{L^{\frac{2d}{d-2}}}\|\rho\|_{L^{d}}(1+\|\rho\|_{L^{\infty}})
uL2ρL2ρLd,\displaystyle\lesssim\|\nabla u\|_{L^{2}}\|\nabla\rho\|_{L^{2}}\|\rho\|_{L^{d}},
dh(ρ)ρuρdxρL2uL2dd2ρLduL2ρL2ρLd,\displaystyle\int_{\mathbb{R}^{d}}h(\rho)\rho u\cdot\nabla\rho dx\lesssim\|\nabla\rho\|_{L^{2}}\|u\|_{L^{\frac{2d}{d-2}}}\|\rho\|_{L^{d}}\lesssim\|\nabla u\|_{L^{2}}\|\nabla\rho\|_{L^{2}}\|\rho\|_{L^{d}},
12dtρ|u|2dx\displaystyle\frac{1}{2}\int_{\mathbb{R}^{d}}\partial_{t}\rho|u|^{2}dx ρL2uL2dd2uLd+uL2uL2dd2uLd(1+ρL)\displaystyle\lesssim\|\nabla\rho\|_{L^{2}}\|u\|_{L^{\frac{2d}{d-2}}}\|u\|_{L^{d}}+\|\nabla u\|_{L^{2}}\|u\|_{L^{\frac{2d}{d-2}}}\|u\|_{L^{d}}(1+\|\rho\|_{L^{\infty}})
ρL2uL2uLd+uL22uLd,\displaystyle\lesssim\|\nabla\rho\|_{L^{2}}\|\nabla u\|_{L^{2}}\|u\|_{L^{d}}+\|\nabla u\|^{2}_{L^{2}}\|u\|_{L^{d}},
duu(1+ρ)u𝑑xuL2uL2dd2uLduL22uLd.\displaystyle\int_{\mathbb{R}^{d}}u\cdot\nabla u(1+\rho)udx\lesssim\|\nabla u\|_{L^{2}}\|u\|_{L^{\frac{2d}{d-2}}}\|u\|_{L^{d}}\lesssim\|\nabla u\|^{2}_{L^{2}}\|u\|_{L^{d}}.

If d=2d=2, we verify that

12dth(ρ)|ρ|2dx\displaystyle\frac{1}{2}\int_{\mathbb{R}^{d}}\partial_{t}h(\rho)|\rho|^{2}dx ρL2uL4ρL4+uL2ρL42\displaystyle\lesssim\|\nabla\rho\|_{L^{2}}\|u\|_{L^{4}}\|\rho\|_{L^{4}}+\|\nabla u\|_{L^{2}}\|\rho\|^{2}_{L^{4}}
ρL2(ρL2uL2+uL2ρL2),\displaystyle\lesssim\|\nabla\rho\|_{L^{2}}(\|\nabla\rho\|_{L^{2}}\|u\|_{L^{2}}+\|\nabla u\|_{L^{2}}\|\rho\|_{L^{2}}),
dh(ρ)ρuρdxρL2uL4ρL4ρL2(uL2ρL2+ρL2uL2),\displaystyle\int_{\mathbb{R}^{d}}h(\rho)\rho u\cdot\nabla\rho dx\lesssim\|\nabla\rho\|_{L^{2}}\|u\|_{L^{4}}\|\rho\|_{L^{4}}\lesssim\|\nabla\rho\|_{L^{2}}(\|\nabla u\|_{L^{2}}\|\rho\|_{L^{2}}+\|\nabla\rho\|_{L^{2}}\|u\|_{L^{2}}),
12dtρ|u|2dx+duu(1+ρ)u𝑑x\displaystyle\frac{1}{2}\int_{\mathbb{R}^{d}}\partial_{t}\rho|u|^{2}dx+\int_{\mathbb{R}^{d}}u\cdot\nabla u(1+\rho)udx ρL2uL42+uL2uL42\displaystyle\lesssim\|\nabla\rho\|_{L^{2}}\|u\|^{2}_{L^{4}}+\|\nabla u\|_{L^{2}}\|u\|^{2}_{L^{4}}
ρL2uL2uL2+uL22uL2.\displaystyle\lesssim\|\nabla\rho\|_{L^{2}}\|\nabla u\|_{L^{2}}\|u\|_{L^{2}}+\|\nabla u\|^{2}_{L^{2}}\|u\|_{L^{2}}.

Taking the L2L^{2} inner product with ρ\nabla\rho to (1.15)2(\ref{eq1})_{2}, then we have

(3.6) ddtduρdx+γρL22=duρtdx\displaystyle\frac{d}{dt}\int_{\mathbb{R}^{d}}u\nabla\rho dx+\gamma\|\nabla\rho\|^{2}_{L^{2}}=\int_{\mathbb{R}^{d}}u\nabla\rho_{t}dx
+dρ[i(ρ)divΣ(u)(h(ρ)γ)ρuu+i(ρ)divτ]𝑑x\displaystyle+\int_{\mathbb{R}^{d}}\nabla\rho\cdot[i(\rho){\rm div}\Sigma{(u)}-(h(\rho)-\gamma)\nabla\rho-u\cdot\nabla u+i(\rho){\rm div}~{}\tau]dx
=I1+I2.\displaystyle=I_{1}+I_{2}.

By integration by part, we have

I1=ddivuρt𝑑xuL22(1+ρL)+uL2ρL2uL.\displaystyle I_{1}=-\int_{\mathbb{R}^{d}}{\rm div}~{}u\rho_{t}dx\lesssim\|\nabla u\|^{2}_{L^{2}}(1+\|\rho\|_{L^{\infty}})+\|\nabla u\|_{L^{2}}\|\nabla\rho\|_{L^{2}}\|u\|_{L^{\infty}}.

Applying Lemmas 2.2 and 2.3, we deduce that

I2ρL2(2uL2+ρLρL2+uLuL2+RgL2(2)).\displaystyle I_{2}\lesssim\|\nabla\rho\|_{L^{2}}(\|\nabla^{2}u\|_{L^{2}}+\|\rho\|_{L^{\infty}}\|\nabla\rho\|_{L^{2}}+\|u\|_{L^{\infty}}\|\nabla u\|_{L^{2}}+\|\nabla\nabla_{R}g\|_{L^{2}(\mathcal{L}^{2})}).

Let λ\lambda be a sufficiently large constant and η<1\eta<1, combining all the lower order estimates for (1.15)(\ref{eq1}), we deduce that

(3.7) ddt(h(ρ)12ρL22+(1+ρ)12uL22+λgL2(2)2+2ηduρdx)\displaystyle\frac{d}{dt}(\|h(\rho)^{\frac{1}{2}}\rho\|^{2}_{L^{2}}+\|(1+\rho)^{\frac{1}{2}}u\|^{2}_{L^{2}}+\lambda\|g\|^{2}_{L^{2}(\mathcal{L}^{2})}+2\eta\int_{\mathbb{R}^{d}}u\nabla\rho dx)
+2(μuL22+(μ+μ)divuL22+ηγρL22+λRgL2(2)2)\displaystyle+2(\mu\|\nabla u\|^{2}_{L^{2}}+(\mu+\mu^{\prime})\|{\rm div}~{}u\|^{2}_{L^{2}}+\eta\gamma\|\nabla\rho\|^{2}_{L^{2}}+\lambda\|\nabla_{R}g\|^{2}_{L^{2}(\mathcal{L}^{2})})
ρL2uL2ρLd+(ρL22+uL22)uLd+λuLRgL2(2)2\displaystyle\lesssim\|\nabla\rho\|_{L^{2}}\|\nabla u\|_{L^{2}}\|\rho\|_{L^{d}}+(\|\nabla\rho\|^{2}_{L^{2}}+\|\nabla u\|^{2}_{L^{2}})\|u\|_{L^{d}}+\lambda\|\nabla u\|_{L^{\infty}}\|\nabla_{R}g\|^{2}_{L^{2}(\mathcal{L}^{2})}
+ηuL22(1+ρL)+δuL22+CδRgL2(2)2\displaystyle+\eta\|\nabla u\|^{2}_{L^{2}}(1+\|\rho\|_{L^{\infty}})+\delta\|\nabla u\|^{2}_{L^{2}}+C_{\delta}\|\nabla_{R}g\|^{2}_{L^{2}(\mathcal{L}^{2})}
+ηρL2(2uL2+ρLρL2+uLuL2+RgL2(2)).\displaystyle+\eta\|\nabla\rho\|_{L^{2}}(\|\nabla^{2}u\|_{L^{2}}+\|\rho\|_{L^{\infty}}\|\nabla\rho\|_{L^{2}}+\|u\|_{L^{\infty}}\|\nabla u\|_{L^{2}}+\|\nabla_{R}g\|_{L^{2}(\mathcal{L}^{2})}).

Now we turn to deal with the high order estimates. Applying Λs\Lambda^{s} to (1.15)3(\ref{eq1})_{3}, we infer that

(3.8) tΛsg+Λsg=uΛsg[Λs,u]g1ψR(Λsσ(u)Rgψ+Rψ[Λs,g]σ(u)).\displaystyle\partial_{t}\Lambda^{s}g+\mathcal{L}\Lambda^{s}g=-u\cdot\nabla\Lambda^{s}g-[\Lambda^{s},u]\nabla g-\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(\Lambda^{s}\sigma(u)Rg\psi_{\infty}+R\psi_{\infty}[\Lambda^{s},g]\sigma(u)).

Taking the L2(2)L^{2}(\mathcal{L}^{2}) inner product with Λsg\Lambda^{s}g to (3.8)(\ref{h3}), then we have

(3.9) 12ddtΛsgL2(2)2+RΛsgL2(2)2\displaystyle\frac{1}{2}\frac{d}{dt}\|\Lambda^{s}g\|^{2}_{L^{2}(\mathcal{L}^{2})}+\|\nabla_{R}\Lambda^{s}g\|^{2}_{L^{2}(\mathcal{L}^{2})} =uΛsg,Λsg[Λs,u]g,Λsg\displaystyle=-\langle u\cdot\nabla\Lambda^{s}g,\Lambda^{s}g\rangle-\langle[\Lambda^{s},u]\nabla g,\Lambda^{s}g\rangle
1ψR(Λsσ(u)Rgψ),Λsg\displaystyle-\langle\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(\Lambda^{s}\sigma(u)Rg\psi_{\infty}),\Lambda^{s}g\rangle
1ψR(Rψ[Λs,g]σ(u)),Λsg.\displaystyle-\langle\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(R\psi_{\infty}[\Lambda^{s},g]\sigma(u)),\Lambda^{s}g\rangle.

Integrating by parts and using Lemma 2.6, we have

uΛsg,Λsg=12divu,(Λsg)2uLgHs(2)2,\displaystyle-\langle u\cdot\nabla\Lambda^{s}g,\Lambda^{s}g\rangle=\frac{1}{2}\langle{\rm div}~{}u,(\Lambda^{s}g)^{2}\rangle\lesssim\|\nabla u\|_{L^{\infty}}\|g\|^{2}_{H^{s}(\mathcal{L}^{2})},

and

[Λs,u]g,ΛsguHsgHs(2)2.\displaystyle-\langle[\Lambda^{s},u]\nabla g,\Lambda^{s}g\rangle\lesssim\|u\|_{H^{s}}\|g\|^{2}_{H^{s}(\mathcal{L}^{2})}.

Similarly, we have

1ψR(Λsσ(u)Rgψ),Λsg\displaystyle\langle\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(\Lambda^{s}\sigma(u)Rg\psi_{\infty}),\Lambda^{s}g\rangle =dB(Λsσ(u)Rψg)RΛsgdRdx\displaystyle=-\int_{\mathbb{R}^{d}}\int_{B}(\Lambda^{s}\sigma(u)R\psi_{\infty}g)\nabla_{R}\Lambda^{s}gdRdx
gL(2)uHsRgHs(2),\displaystyle\lesssim\|g\|_{L^{\infty}(\mathcal{L}^{2})}\|\nabla u\|_{H^{s}}\|\nabla_{R}g\|_{H^{s}(\mathcal{L}^{2})},

and

1ψR(Rψ[Λs,g]σ(u)),Λsg\displaystyle-\langle\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(R\psi_{\infty}[\Lambda^{s},g]\sigma(u)),\Lambda^{s}g\rangle =R[Λs,g]σ(u),RΛsg\displaystyle=\langle R[\Lambda^{s},g]\sigma(u),\nabla_{R}\Lambda^{s}g\rangle
RgHs(2)uHsgHs(2).\displaystyle\lesssim\|\nabla_{R}g\|_{H^{s}(\mathcal{L}^{2})}\|u\|_{H^{s}}\|g\|_{H^{s}(\mathcal{L}^{2})}.

Applying Lemma 2.2, we deduce that

(3.10) 12ddtΛsgL2(2)2+RΛsgL2(2)2gL(2)uHsRgHs(2)+uHsRgHs(2)2.\displaystyle\frac{1}{2}\frac{d}{dt}\|\Lambda^{s}g\|^{2}_{L^{2}(\mathcal{L}^{2})}+\|\nabla_{R}\Lambda^{s}g\|^{2}_{L^{2}(\mathcal{L}^{2})}\lesssim\|g\|_{L^{\infty}(\mathcal{L}^{2})}\|\nabla u\|_{H^{s}}\|\nabla_{R}g\|_{H^{s}(\mathcal{L}^{2})}+\|u\|_{H^{s}}\|\nabla_{R}g\|^{2}_{H^{s}(\mathcal{L}^{2})}.

Applying Λs\Lambda^{s} to (1.15)1(\ref{eq1})_{1}, we infer that

(3.11) tΛsρ+divΛsu(1+ρ)=uΛsρ[Λs,u]ρ[Λs,ρ]divu.\displaystyle\partial_{t}\Lambda^{s}\rho+{\rm div}~{}\Lambda^{s}u(1+\rho)=-u\cdot\nabla\Lambda^{s}\rho-[\Lambda^{s},u]\nabla\rho-[\Lambda^{s},\rho]{\rm div}~{}u.

Taking the L2L^{2} inner product with h(ρ)Λsρh(\rho)\Lambda^{s}\rho to (3.11)(\ref{h1}), then we have

(3.12) 12ddtdh(ρ)|Λsρ|2𝑑x+dP(1+ρ)ΛsρdivΛsu𝑑x=12dth(ρ)|Λsρ|2dx\displaystyle\frac{1}{2}\frac{d}{dt}\int_{\mathbb{R}^{d}}h(\rho)|\Lambda^{s}\rho|^{2}dx+\int_{\mathbb{R}^{d}}P^{\prime}(1+\rho)\Lambda^{s}\rho{\rm div}~{}\Lambda^{s}udx=\frac{1}{2}\int_{\mathbb{R}^{d}}\partial_{t}h(\rho)|\Lambda^{s}\rho|^{2}dx
dΛsρh(ρ)uΛsρdxd[Λs,u]ρh(ρ)Λsρ𝑑xd[Λs,(1+ρ)]divuh(ρ)Λsρ𝑑x.\displaystyle-\int_{\mathbb{R}^{d}}\Lambda^{s}\rho\cdot h(\rho)u\cdot\nabla\Lambda^{s}\rho dx-\int_{\mathbb{R}^{d}}[\Lambda^{s},u]\nabla\rho\cdot h(\rho)\Lambda^{s}\rho dx-\int_{\mathbb{R}^{d}}[\Lambda^{s},(1+\rho)]{\rm div}~{}u\cdot h(\rho)\Lambda^{s}\rho dx.

Firstly, we obtain

12dth(ρ)|Λsρ|2dx(uHs+ρHs)ΛsρL22.\displaystyle\frac{1}{2}\int_{\mathbb{R}^{d}}\partial_{t}h(\rho)|\Lambda^{s}\rho|^{2}dx\lesssim(\|u\|_{H^{s}}+\|\rho\|_{H^{s}})\|\Lambda^{s}\rho\|^{2}_{L^{2}}.

By integration by part, we have

dΛsρh(ρ)uΛsρdx=12ddiv(h(ρ)u)|Λsρ|2𝑑x(uHs+ρHs)ΛsρL22.\displaystyle-\int_{\mathbb{R}^{d}}\Lambda^{s}\rho\cdot h(\rho)u\cdot\nabla\Lambda^{s}\rho dx=\frac{1}{2}\int_{\mathbb{R}^{d}}{\rm div}(h(\rho)u)|\Lambda^{s}\rho|^{2}dx\lesssim(\|u\|_{H^{s}}+\|\rho\|_{H^{s}})\|\Lambda^{s}\rho\|^{2}_{L^{2}}.

By the Moser-type inequality in Lemma 2.6, we obtain

d[Λs,u]ρh(ρ)Λsρ𝑑xd[Λs,ρ]divuh(ρ)Λsρ𝑑x\displaystyle-\int_{\mathbb{R}^{d}}[\Lambda^{s},u]\nabla\rho\cdot h(\rho)\Lambda^{s}\rho dx-\int_{\mathbb{R}^{d}}[\Lambda^{s},\rho]{\rm div}~{}u\cdot h(\rho)\Lambda^{s}\rho dx
uHs1ρHsΛsρL2.\displaystyle\lesssim\|\nabla u\|_{H^{s-1}}\|\rho\|_{H^{s}}\|\Lambda^{s}\rho\|_{L^{2}}.

Applying Λm\Lambda^{m} to (1.15)2(\ref{eq1})_{2}, we infer that

(3.13) tΛmu+h(ρ)Λmρi(ρ)divΛmΣ(u)i(ρ)divΛmτ\displaystyle\partial_{t}\Lambda^{m}u+h(\rho)\nabla\Lambda^{m}\rho-i(\rho){\rm div}~{}\Lambda^{m}\Sigma{(u)}-i(\rho){\rm div}~{}\Lambda^{m}\tau
=uΛmu[Λm,u]u[Λm,h(ρ)γ]ρ\displaystyle=-u\cdot\nabla\Lambda^{m}u-[\Lambda^{m},u]\nabla u-[\Lambda^{m},h(\rho)-\gamma]\nabla\rho
+[Λm,i(ρ)1]divΣ(u)+[Λm,i(ρ)1]divτ.\displaystyle+[\Lambda^{m},i(\rho)-1]{\rm div}\Sigma{(u)}+[\Lambda^{m},i(\rho)-1]{\rm div}~{}\tau.

Taking the L2L^{2} inner product with (1+ρ)Λsu(1+\rho)\Lambda^{s}u to (3.13)(\ref{h2}) with m=sm=s, then we have

(3.14) 12ddt(1+ρ)12ΛsuL22+dP(1+ρ)ΛsρΛsudx+μΛsuL22+(μ+μ)divΛsuL22\displaystyle\frac{1}{2}\frac{d}{dt}\|(1+\rho)^{\frac{1}{2}}\Lambda^{s}u\|^{2}_{L^{2}}+\int_{\mathbb{R}^{d}}P^{\prime}(1+\rho)\nabla\Lambda^{s}\rho\Lambda^{s}udx+\mu\|\nabla\Lambda^{s}u\|^{2}_{L^{2}}+(\mu+\mu^{\prime})\|{\rm div}~{}\Lambda^{s}u\|^{2}_{L^{2}}
=ddivΛsτΛsu𝑑x+12dtρ|Λsu|2dxdΛsu(1+ρ)uΛsudx\displaystyle=\int_{\mathbb{R}^{d}}{\rm div}~{}\Lambda^{s}\tau\Lambda^{s}udx+\frac{1}{2}\int_{\mathbb{R}^{d}}\partial_{t}\rho|\Lambda^{s}u|^{2}dx-\int_{\mathbb{R}^{d}}\Lambda^{s}u\cdot(1+\rho)u\cdot\nabla\Lambda^{s}udx
d[Λs,u]u(1+ρ)Λsu𝑑xd[Λs,h(ρ)γ]ρ(1+ρ)Λsu𝑑x\displaystyle-\int_{\mathbb{R}^{d}}[\Lambda^{s},u]\nabla u(1+\rho)\Lambda^{s}udx-\int_{\mathbb{R}^{d}}[\Lambda^{s},h(\rho)-\gamma]\nabla\rho(1+\rho)\Lambda^{s}udx
+d[Λs,i(ρ)1]divΣ(u)(1+ρ)Λsu𝑑x+d[Λs,i(ρ)1]divτ(1+ρ)Λsu𝑑x.\displaystyle+\int_{\mathbb{R}^{d}}[\Lambda^{s},i(\rho)-1]{\rm div}\Sigma{(u)}(1+\rho)\Lambda^{s}udx+\int_{\mathbb{R}^{d}}[\Lambda^{s},i(\rho)-1]{\rm div}~{}\tau(1+\rho)\Lambda^{s}udx.

Integrating by part and using Lemmas 2.2 and 2.3, we get

ddivΛsτΛsu𝑑x=dΛsuΛsτdxδΛsuL22+CδRΛsgL2(2)2,\displaystyle\int_{\mathbb{R}^{d}}{\rm div}~{}\Lambda^{s}\tau\Lambda^{s}udx=-\int_{\mathbb{R}^{d}}\nabla\Lambda^{s}u\Lambda^{s}\tau dx\lesssim\delta\|\nabla\Lambda^{s}u\|^{2}_{L^{2}}+C_{\delta}\|\nabla_{R}\Lambda^{s}g\|^{2}_{L^{2}(\mathcal{L}^{2})},

where δ\delta is a sufficiently small constant. Using Lemma 2.6, we obtain

12dtρ|Λsu|2dxdΛsu(1+ρ)uΛsudxd[Λs,u]u(1+ρ)Λsu𝑑x\displaystyle\frac{1}{2}\int_{\mathbb{R}^{d}}\partial_{t}\rho|\Lambda^{s}u|^{2}dx-\int_{\mathbb{R}^{d}}\Lambda^{s}u\cdot(1+\rho)u\cdot\nabla\Lambda^{s}udx-\int_{\mathbb{R}^{d}}[\Lambda^{s},u]\nabla u(1+\rho)\Lambda^{s}udx
uHsΛsuL2uHs,\displaystyle\lesssim\|u\|_{H^{s}}\|\Lambda^{s}u\|_{L^{2}}\|\nabla u\|_{H^{s}},

and

d[Λs,h(ρ)γ]ρ(1+ρ)Λsu𝑑x+d[Λs,i(ρ)1]divΣ(u)(1+ρ)Λsu𝑑x\displaystyle-\int_{\mathbb{R}^{d}}[\Lambda^{s},h(\rho)-\gamma]\nabla\rho(1+\rho)\Lambda^{s}udx+\int_{\mathbb{R}^{d}}[\Lambda^{s},i(\rho)-1]{\rm div}\Sigma{(u)}(1+\rho)\Lambda^{s}udx
ρHsΛsuL2(ρHs1+uHs).\displaystyle\lesssim\|\rho\|_{H^{s}}\|\Lambda^{s}u\|_{L^{2}}(\|\nabla\rho\|_{H^{s-1}}+\|\nabla u\|_{H^{s}}).

Using Lemmas 2.2, 2.3 and 2.6, we obtain

d[Λs,i(ρ)1]divτ(1+ρ)Λsu𝑑xρHsΛsuL2RgHs(2).\displaystyle\int_{\mathbb{R}^{d}}[\Lambda^{s},i(\rho)-1]{\rm div}~{}\tau(1+\rho)\Lambda^{s}udx\lesssim\|\rho\|_{H^{s}}\|\Lambda^{s}u\|_{L^{2}}\|\nabla_{R}g\|_{H^{s}(\mathcal{L}^{2})}.

Integrating by part, we get

dP(1+ρ)(ΛsuΛsρ+ΛsρdivΛsu)𝑑x\displaystyle-\int_{\mathbb{R}^{d}}P^{\prime}(1+\rho)(\Lambda^{s}u\nabla\Lambda^{s}\rho+\Lambda^{s}\rho{\rm div}~{}\Lambda^{s}u)dx =dP′′(1+ρ)ΛsρΛsuρdx\displaystyle=\int_{\mathbb{R}^{d}}P^{\prime\prime}(1+\rho)\Lambda^{s}\rho\Lambda^{s}u\nabla\rho dx
ρHsΛsuL2ΛsρL2.\displaystyle\lesssim\|\rho\|_{H^{s}}\|\Lambda^{s}u\|_{L^{2}}\|\Lambda^{s}\rho\|_{L^{2}}.

Taking the L2L^{2} inner product with Λs1ρ\nabla\Lambda^{s-1}\rho to (3.13)(\ref{h2}) with m=s1m=s-1, then we have

(3.15) ddtdΛs1uΛs1ρdx+γΛs1ρL22=dΛs1ρtdivΛs1u𝑑x\displaystyle\frac{d}{dt}\int_{\mathbb{R}^{d}}\Lambda^{s-1}u\cdot\nabla\Lambda^{s-1}\rho dx+\gamma\|\nabla\Lambda^{s-1}\rho\|^{2}_{L^{2}}=-\int_{\mathbb{R}^{d}}\Lambda^{s-1}\rho_{t}{\rm div}~{}\Lambda^{s-1}udx
dΛs1ρΛs1(uu)𝑑xdΛs1((h(ρ)γ)ρ)Λs1ρdx\displaystyle-\int_{\mathbb{R}^{d}}\nabla\Lambda^{s-1}\rho\cdot\Lambda^{s-1}(u\cdot\nabla u)dx-\int_{\mathbb{R}^{d}}\Lambda^{s-1}((h(\rho)-\gamma)\nabla\rho)\nabla\Lambda^{s-1}\rho dx
+dΛs1(i(ρ)divΣ(u))Λs1ρdx+dΛs1(i(ρ)divτ)Λs1ρdx.\displaystyle+\int_{\mathbb{R}^{d}}\Lambda^{s-1}(i(\rho){\rm div}\Sigma{(u)})\nabla\Lambda^{s-1}\rho dx+\int_{\mathbb{R}^{d}}\Lambda^{s-1}(i(\rho){\rm div}~{}\tau)\nabla\Lambda^{s-1}\rho dx.

We can deduce that

dΛs1ρtdivΛs1u𝑑xdΛs1ρΛs1(uu)𝑑x\displaystyle-\int_{\mathbb{R}^{d}}\Lambda^{s-1}\rho_{t}{\rm div}~{}\Lambda^{s-1}udx-\int_{\mathbb{R}^{d}}\nabla\Lambda^{s-1}\rho\cdot\Lambda^{s-1}(u\cdot\nabla u)dx
uHsuHs1ρHs1+uHs12,\displaystyle\lesssim\|u\|_{H^{s}}\|\nabla u\|_{H^{s-1}}\|\nabla\rho\|_{H^{s-1}}+\|\nabla u\|^{2}_{H^{s-1}},

and

dΛs1((h(ρ)γ)ρ)Λs1ρdx+dΛs1(i(ρ)divΣ(u))Λs1ρdx\displaystyle-\int_{\mathbb{R}^{d}}\Lambda^{s-1}((h(\rho)-\gamma)\nabla\rho)\nabla\Lambda^{s-1}\rho dx+\int_{\mathbb{R}^{d}}\Lambda^{s-1}(i(\rho){\rm div}~{}\Sigma{(u)})\nabla\Lambda^{s-1}\rho dx
ρHs1(ρHs1ρHs1+uHs+uHsρHs1).\displaystyle\lesssim\|\nabla\rho\|_{H^{s-1}}(\|\nabla\rho\|_{H^{s-1}}\|\rho\|_{H^{s-1}}+\|\nabla u\|_{H^{s}}+\|\nabla u\|_{H^{s}}\|\rho\|_{H^{s-1}}).

Using Lemmas 2.2 and 2.3, we have

dΛs1(i(ρ)divτ)Λs1ρdxρHs1RgHs1(2)(ρHs1+1).\displaystyle\int_{\mathbb{R}^{d}}\Lambda^{s-1}(i(\rho){\rm div}~{}\tau)\nabla\Lambda^{s-1}\rho dx\lesssim\|\nabla\rho\|_{H^{s-1}}\|\nabla_{R}g\|_{H^{s-1}(\mathcal{L}^{2})}(\|\rho\|_{H^{s-1}}+1).

Combining all the higher order derivatives estimates for (1.15)(\ref{eq1}), we deduce that

(3.16) ddt(h(ρ)12ΛsρL22+(1+ρ)12ΛsuL22+λΛsgL2(2)2+2ηdΛs1uΛs1ρdx)\displaystyle\frac{d}{dt}(\|h(\rho)^{\frac{1}{2}}\Lambda^{s}\rho\|^{2}_{L^{2}}+\|(1+\rho)^{\frac{1}{2}}\Lambda^{s}u\|^{2}_{L^{2}}+\lambda\|\Lambda^{s}g\|^{2}_{L^{2}(\mathcal{L}^{2})}+2\eta\int_{\mathbb{R}^{d}}\Lambda^{s-1}u\nabla\Lambda^{s-1}\rho dx)
+2(μΛsuL22+(μ+μ)divΛsuL22+ηγΛs1ρL22+λRΛsgL2(2)2)\displaystyle+2(\mu\|\nabla\Lambda^{s}u\|^{2}_{L^{2}}+(\mu+\mu^{\prime})\|{\rm div}~{}\Lambda^{s}u\|^{2}_{L^{2}}+\eta\gamma\|\nabla\Lambda^{s-1}\rho\|^{2}_{L^{2}}+\lambda\|\nabla_{R}\Lambda^{s}g\|^{2}_{L^{2}(\mathcal{L}^{2})})
ρHsuHsRgHs(2)+(ρHs+uHs)(ρHs12+uHs2)\displaystyle\lesssim\|\rho\|_{H^{s}}\|\nabla u\|_{H^{s}}\|\nabla_{R}g\|_{H^{s}(\mathcal{L}^{2})}+(\|\rho\|_{H^{s}}+\|u\|_{H^{s}})(\|\nabla\rho\|^{2}_{H^{s-1}}+\|\nabla u\|^{2}_{H^{s}})
+λ(gL(2)uHsRgHs(2)+uHsRgHs(2)2)\displaystyle+\lambda(\|g\|_{L^{\infty}(\mathcal{L}^{2})}\|\nabla u\|_{H^{s}}\|\nabla_{R}g\|_{H^{s}(\mathcal{L}^{2})}+\|u\|_{H^{s}}\|\nabla_{R}g\|^{2}_{H^{s}(\mathcal{L}^{2})})
+η(uHs2+uHsρHs1)+δΛsuL22+CδRΛsgL2(2)2\displaystyle+\eta(\|\nabla u\|^{2}_{H^{s}}+\|\nabla u\|_{H^{s}}\|\nabla\rho\|_{H^{s-1}})+\delta\|\nabla\Lambda^{s}u\|^{2}_{L^{2}}+C_{\delta}\|\nabla_{R}\Lambda^{s}g\|^{2}_{L^{2}(\mathcal{L}^{2})}
+ηρHs1RgHs(2)(1+ρHs).\displaystyle+\eta\|\nabla\rho\|_{H^{s-1}}\|\nabla_{R}g\|_{H^{s}(\mathcal{L}^{2})}(1+\|\rho\|_{H^{s}}).

Denote that

Eη(t)=n=0,s(h(ρ)12ΛnρL22+(1+ρ)12ΛnuL22)+λgHs(2)2+2ηm=0,s1dΛmuΛmρdx,E_{\eta}(t)=\sum_{n=0,s}(\|h(\rho)^{\frac{1}{2}}\Lambda^{n}\rho\|^{2}_{L^{2}}+\|(1+\rho)^{\frac{1}{2}}\Lambda^{n}u\|^{2}_{L^{2}})+\lambda\|g\|^{2}_{H^{s}(\mathcal{L}^{2})}+2\eta\sum_{m=0,s-1}\int_{\mathbb{R}^{d}}\Lambda^{m}u\nabla\Lambda^{m}\rho dx,

and

Dη(t)=ηγρHs12+μuHs2+(μ+μ)divuHs2+λRgHs(2)2.D_{\eta}(t)=\eta\gamma\|\nabla\rho\|^{2}_{H^{s-1}}+\mu\|\nabla u\|^{2}_{H^{s}}+(\mu+\mu^{\prime})\|{\rm div}~{}u\|^{2}_{H^{s}}+\lambda\|\nabla_{R}g\|^{2}_{H^{s}(\mathcal{L}^{2})}.

For some sufficiently small constant η>0\eta>0, we obtain E(t)Eη(t)E(t)\sim E_{\eta}(t) and D(t)Dη(t)D(t)\sim D_{\eta}(t). Therefore, the small assumption E(t)ϵE(t)\leq\epsilon implies that Eη(t)ϵE_{\eta}(t)\lesssim\epsilon. Then combining the estimates (3.7) and (3.16), we finally infer that

ddtEη(t)+2Dη(t)(ϵ12+δ+η12)Dη(t)+CδRΛsgL2(2)2.\frac{d}{dt}E_{\eta}(t)+2D_{\eta}(t)\lesssim(\epsilon^{\frac{1}{2}}+\delta+\eta^{\frac{1}{2}})D_{\eta}(t)+C_{\delta}\|\nabla_{R}\Lambda^{s}g\|^{2}_{L^{2}(\mathcal{L}^{2})}.

Choosing some sufficiently small fixed δ,η>0\delta,\eta>0 and sufficiently large λ>Cδ\lambda>C_{\delta}, if ϵ\epsilon is small enough, then we have

supt[0,T]Eη(t)+0TDη(t)𝑑tEη(0).\displaystyle\sup_{t\in[0,T]}E_{\eta}(t)+\int_{0}^{T}D_{\eta}(t)dt\leq E_{\eta}(0).

Using the equivalence of E(t)Eη(t)E(t)\sim E_{\eta}(t) and D(t)Dη(t)D(t)\sim D_{\eta}(t), then there exist C0>1C_{0}>1 such that

supt[0,T]E(t)+0TD(t)𝑑tC0E(0).\displaystyle\sup_{t\in[0,T]}E(t)+\int_{0}^{T}D(t)dt\leq C_{0}E(0).

We thus complete the proof of Proposition 3.1. ∎

Now, we need to prove the existence of local solutions in some appropriate spaces by a standard iterating method.

Proposition 3.2.

Let d2ands>1+d2d\geq 2~{}and~{}s>1+\frac{d}{2}. Assume E(0)ϵ2E(0)\leq\frac{\epsilon}{2}. Then there exist a time T>0T>0 such that the FENE polymeric system (1.15) admits a unique local strong solution (ρ,u,g)L(0,T;Hs×Hs×Hs(2))(\rho_{,}u,g)\in L^{\infty}(0,T;H^{s}\times H^{s}\times H^{s}(\mathcal{L}^{2})) and we have

(3.17) supt[0,T]E(t)+0TH(t)𝑑tϵ,\displaystyle\sup_{t\in[0,T]}E(t)+\int_{0}^{T}H(t)dt\leq\epsilon,

where H(t)=μuHs2+(μ+μ)divuHs2+RgHs(2)2.H(t)=\mu\|\nabla u\|^{2}_{H^{s}}+(\mu+\mu^{\prime})\|{\rm div}~{}u\|^{2}_{H^{s}}+\|\nabla_{R}g\|^{2}_{H^{s}(\mathcal{L}^{2})}.

Proof.

First, we consider the iterating approximating sequence as follows:

(3.21) {ρtn+1+(1+ρn)divun+1=unρn+1,utn+111+ρndivΣ(un+1)+P(1+ρn)1+ρnρn+1=unun+1+11+ρndivτn+1,gtn+1+gn+1=ungn+11ψR(σ(un)Rgn+1ψ),\displaystyle\left\{\begin{array}[]{ll}\rho^{n+1}_{t}+(1+\rho^{n}){\rm div}~{}u^{n+1}=-u^{n}\cdot\nabla\rho^{n+1},\\[4.30554pt] u^{n+1}_{t}-\frac{1}{1+\rho^{n}}{\rm div}\Sigma{(u^{n+1})}+\frac{P^{\prime}(1+\rho^{n})}{1+\rho^{n}}\nabla\rho^{n+1}=-u^{n}\cdot\nabla u^{n+1}+\frac{1}{1+\rho^{n}}{\rm div}~{}\tau^{n+1},\\[4.30554pt] g^{n+1}_{t}+\mathcal{L}g^{n+1}=-u^{n}\cdot\nabla g^{n+1}-\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(\sigma(u^{n})Rg^{n+1}\psi_{\infty}),\\[4.30554pt] \end{array}\right.

with the initial data (ρn+1,un+1,gn+1)|t=0=(ρ0(x),u0(x),g0(x,R))(\rho^{n+1},u^{n+1},g^{n+1})|_{t=0}=(\rho_{0}(x),u_{0}(x),g_{0}(x,R)). Furthermore, start with
(ρ0(t,x),u0(t,x),g0(t,x,R))=(0,0,0)(\rho^{0}(t,x),u^{0}(t,x),g^{0}(t,x,R))=(0,0,0), we obtain the approximate sequence (ρn,un,gn)(\rho^{n},u^{n},g^{n}).

Let En(t)=E(ρn,un,gn)(t)E^{n}(t)=E(\rho^{n},u^{n},g^{n})(t) and Hn(t)=H(ρn,un,gn)(t)H^{n}(t)=H(\rho^{n},u^{n},g^{n})(t). We claim that: there exist ϵ>0\epsilon>0 and T>0T>0 such that for any nNn\in N, if E(0)ϵ2E(0)\leq\frac{\epsilon}{2} and supt[0,T]En(t)+0THn(t)𝑑tϵ\sup_{t\in[0,T]}E^{n}(t)+\int_{0}^{T}H^{n}(t)dt\leq\epsilon, then

(3.22) supt[0,T]En+1(t)+0THn+1(t)𝑑tϵ.\displaystyle\sup_{t\in[0,T]}E^{n+1}(t)+\int_{0}^{T}H^{n+1}(t)dt\leq\epsilon.

Similar to the estimates (3.7) and (3.16), using Lemmas 2.1-2.3 and 2.6, we obtain

12ddtρn+1Hs2\displaystyle\frac{1}{2}\frac{d}{dt}\|\rho^{n+1}\|^{2}_{H^{s}} unHsρn+1Hs2+un+1Hsρn+1Hs\displaystyle\lesssim\|u^{n}\|_{H^{s}}\|\rho^{n+1}\|^{2}_{H^{s}}+\|\nabla u^{n+1}\|_{H^{s}}\|\rho^{n+1}\|_{H^{s}}
+ρnHsρn+1Hs(un+1Hs+un+1Hs),\displaystyle+\|\rho^{n}\|_{H^{s}}\|\rho^{n+1}\|_{H^{s}}(\|\nabla u^{n+1}\|_{H^{s}}+\|u^{n+1}\|_{H^{s}}),

and

12ddtun+1Hs2+μun+1Hs2+(μ+μ)divun+1Hs2\displaystyle\frac{1}{2}\frac{d}{dt}\|u^{n+1}\|^{2}_{H^{s}}+\mu\|\nabla u^{n+1}\|^{2}_{H^{s}}+(\mu+\mu^{\prime})\|{\rm div}~{}u^{n+1}\|^{2}_{H^{s}}
unHsun+1Hs2+un+1HsρnHs+ρnHsun+1Hsρn+1Hs\displaystyle\lesssim\|u^{n}\|_{H^{s}}\|u^{n+1}\|^{2}_{H^{s}}+\|\nabla u^{n+1}\|_{H^{s}}\|\rho^{n}\|_{H^{s}}+\|\rho^{n}\|_{H^{s}}\|u^{n+1}\|_{H^{s}}\|\rho^{n+1}\|_{H^{s}}
+ρnHsun+1Hs(un+1Hs+Rgn+1Hs(2))\displaystyle+\|\rho^{n}\|_{H^{s}}\|\nabla u^{n+1}\|_{H^{s}}(\|u^{n+1}\|_{H^{s}}+\|\nabla_{R}g^{n+1}\|_{H^{s}(\mathcal{L}^{2})})
+δun+1HsRgn+1Hs(2)+Cδun+1Hsgn+1Hs(2).\displaystyle+\delta\|\nabla u^{n+1}\|_{H^{s}}\|\nabla_{R}g^{n+1}\|_{H^{s}(\mathcal{L}^{2})}+C_{\delta}\|\nabla u^{n+1}\|_{H^{s}}\|g^{n+1}\|_{H^{s}(\mathcal{L}^{2})}.

We can infer from (3.21)3(\ref{approximate})_{3} that

12ddtgn+1Hs(2)2+Rgn+1Hs(2)2\displaystyle\frac{1}{2}\frac{d}{dt}\|g^{n+1}\|^{2}_{H^{s}(\mathcal{L}^{2})}+\|\nabla_{R}g^{n+1}\|^{2}_{H^{s}(\mathcal{L}^{2})} (unHs+unHs)gn+1Hs(2)2\displaystyle\lesssim(\|u^{n}\|_{H^{s}}+\|\nabla u^{n}\|_{H^{s}})\|g^{n+1}\|^{2}_{H^{s}(\mathcal{L}^{2})}
+unHsgn+1Hs(2)Rgn+1Hs(2).\displaystyle+\|\nabla u^{n}\|_{H^{s}}\|g^{n+1}\|_{H^{s}(\mathcal{L}^{2})}\|\nabla_{R}g^{n+1}\|_{H^{s}(\mathcal{L}^{2})}.

Adding up the above estimates, we obtain

12ddtEn+1(t)+Hn+1(t)\displaystyle\frac{1}{2}\frac{d}{dt}E^{n+1}(t)+H^{n+1}(t) C[(En)12En+1+((En)12+(En+1)12)(Hn+1)12\displaystyle\leq C[(E^{n})^{\frac{1}{2}}E^{n+1}+((E^{n})^{\frac{1}{2}}+(E^{n+1})^{\frac{1}{2}})(H^{n+1})^{\frac{1}{2}}
+(En)12(En+1)12(Hn+1)12+(En)12Hn+1+δHn+1\displaystyle+(E^{n})^{\frac{1}{2}}(E^{n+1})^{\frac{1}{2}}(H^{n+1})^{\frac{1}{2}}+(E^{n})^{\frac{1}{2}}H^{n+1}+\delta H^{n+1}
+(Hn)12En+1+(En+1)12(Hn)12(Hn+1)12].\displaystyle+(H^{n})^{\frac{1}{2}}E^{n+1}+(E^{n+1})^{\frac{1}{2}}(H^{n})^{\frac{1}{2}}(H^{n+1})^{\frac{1}{2}}].

Using the induction assumptions supt[0,T]En(t)+0THn(t)𝑑tϵ\sup_{t\in[0,T]}E^{n}(t)+\int_{0}^{T}H^{n}(t)dt\leq\epsilon, we get

((En)12+(En+1)12)(Hn+1)1218CHn+1+2C(En+1+ϵ),((E^{n})^{\frac{1}{2}}+(E^{n+1})^{\frac{1}{2}})(H^{n+1})^{\frac{1}{2}}\leq\frac{1}{8C}H^{n+1}+2C(E^{n+1}+\epsilon),
(En)12(En+1)12(Hn+1)12ϵ12Hn+1+ϵ12En+1,(E^{n})^{\frac{1}{2}}(E^{n+1})^{\frac{1}{2}}(H^{n+1})^{\frac{1}{2}}\leq\epsilon^{\frac{1}{2}}H^{n+1}+\epsilon^{\frac{1}{2}}E^{n+1},
(En)12Hn+1ϵ12Hn+1,(E^{n})^{\frac{1}{2}}H^{n+1}\leq\epsilon^{\frac{1}{2}}H^{n+1},
(Hn)12En+1(1+Hn)En+1,(H^{n})^{\frac{1}{2}}E^{n+1}\leq(1+H^{n})E^{n+1},
(En+1)12(Hn)12(Hn+1)1218CHn+1+2CEn+1Hn.(E^{n+1})^{\frac{1}{2}}(H^{n})^{\frac{1}{2}}(H^{n+1})^{\frac{1}{2}}\leq\frac{1}{8C}H^{n+1}+2CE^{n+1}H^{n}.

Let n(t)=En(t)+0tHn(s)𝑑s\mathcal{E}_{n}(t)=E^{n}(t)+\int_{0}^{t}H^{n}(s)ds. Then we deduce that

12En+1(t)+(34CδCϵ12)0tHn+1(s)𝑑s\displaystyle\frac{1}{2}E^{n+1}(t)+(\frac{3}{4}-C\delta-C\epsilon^{\frac{1}{2}})\int_{0}^{t}H^{n+1}(s)ds
12En+1(0)+Ctϵ+Ct(1+ϵ12)sups[0,t]n+1(s)+Cϵsups[0,t]n+1(s).\displaystyle\leq\frac{1}{2}E^{n+1}(0)+Ct\epsilon+Ct(1+\epsilon^{\frac{1}{2}})\sup_{s\in[0,t]}\mathcal{E}_{n+1}(s)+C\epsilon\sup_{s\in[0,t]}\mathcal{E}_{n+1}(s).

If constant δ,ϵ12132C\delta,~{}\epsilon^{\frac{1}{2}}\leq\frac{1}{32C}, for tTt\leq T, then

(12CT(1+ϵ12)Cϵ)sups[0,t]n+1(s)14ϵ+CTϵ,\displaystyle(\frac{1}{2}-CT(1+\epsilon^{\frac{1}{2}})-C\epsilon)\sup_{s\in[0,t]}\mathcal{E}_{n+1}(s)\leq\frac{1}{4}\epsilon+CT\epsilon,

which implies that

supt[0,T]n+1(t)ϵ,\displaystyle\sup_{t\in[0,T]}\mathcal{E}_{n+1}(t)\leq\epsilon,

where Tϵ12132CT\leq\epsilon^{\frac{1}{2}}\leq\frac{1}{32C}. The claim (3.22) is true. We thus complete the proof of uniform bound for (ρn,un,gn)(\rho^{n},u^{n},g^{n}).

We now prove the convergence in a low norm by using (3.22) with n0n\geq 0. Let ρ~n+1=ρn+1ρn\tilde{\rho}^{n+1}=\rho^{n+1}-\rho^{n}, u~n+1=un+1un\tilde{u}^{n+1}=u^{n+1}-u^{n} and g~n+1=gn+1gn\tilde{g}^{n+1}=g^{n+1}-g^{n} , then it follows from (3.21) that

(3.29) {ρ~tn+1+(1+ρn)divu~n+1=unρ~n+1u~nρnρ~ndivun,u~tn+1i(ρn)divΣ(u~n+1)(i(ρn)i(ρn1))divΣ(un)+h(ρn)ρ~n+1+(h(ρn)h(ρn1))ρn=unu~n+1u~nun+i(ρn)divτ~n+1+(i(ρn)i(ρn1))divτn,g~tn+1+g~n+1=ung~n+1u~ngn1ψR(σ(un)Rg~n+1ψ)1ψR(σ(u~n)Rgnψ).\displaystyle\left\{\begin{array}[]{ll}\tilde{\rho}^{n+1}_{t}+(1+\rho^{n}){\rm div}~{}\tilde{u}^{n+1}=-u^{n}\cdot\nabla\tilde{\rho}^{n+1}-\tilde{u}^{n}\cdot\nabla\rho^{n}-\tilde{\rho}^{n}{\rm div}~{}u^{n},\\ \tilde{u}^{n+1}_{t}-i(\rho^{n}){\rm div}\Sigma{(\tilde{u}^{n+1})}-(i(\rho^{n})-i(\rho^{n-1})){\rm div}\Sigma{(u^{n})}\\[4.30554pt] +h(\rho^{n})\nabla\tilde{\rho}^{n+1}+(h(\rho^{n})-h(\rho^{n-1}))\nabla\rho^{n}\\[4.30554pt] =-u^{n}\cdot\nabla\tilde{u}^{n+1}-\tilde{u}^{n}\cdot\nabla u^{n}+i(\rho^{n}){\rm div}~{}\tilde{\tau}^{n+1}+(i(\rho^{n})-i(\rho^{n-1})){\rm div}~{}\tau^{n},\\[4.30554pt] \tilde{g}^{n+1}_{t}+\mathcal{L}\tilde{g}^{n+1}=-u^{n}\cdot\nabla\tilde{g}^{n+1}-\tilde{u}^{n}\cdot\nabla g^{n}\\[4.30554pt] -\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(\sigma(u^{n})R\tilde{g}^{n+1}\psi_{\infty})-\frac{1}{\psi_{\infty}}\nabla_{R}\cdot(\sigma(\tilde{u}^{n})Rg^{n}\psi_{\infty}).\\[4.30554pt] \end{array}\right.

By the standard energy estimate, we get

12ddtρ~n+1L22\displaystyle\frac{1}{2}\frac{d}{dt}\|\tilde{\rho}^{n+1}\|^{2}_{L^{2}} unLρ~n+1L22+(1+ρnL)u~n+1L2ρ~n+1L2\displaystyle\lesssim\|\nabla u^{n}\|_{L^{\infty}}\|\tilde{\rho}^{n+1}\|^{2}_{L^{2}}+(1+\|\rho^{n}\|_{L^{\infty}})\|\nabla\tilde{u}^{n+1}\|_{L^{2}}\|\tilde{\rho}^{n+1}\|_{L^{2}}
+ρnLu~nL2ρ~n+1L2+unLρ~nL2ρ~n+1L2\displaystyle+\|\nabla\rho^{n}\|_{L^{\infty}}\|\tilde{u}^{n}\|_{L^{2}}\|\tilde{\rho}^{n+1}\|_{L^{2}}+\|\nabla u^{n}\|_{L^{\infty}}\|\tilde{\rho}^{n}\|_{L^{2}}\|\tilde{\rho}^{n+1}\|_{L^{2}}
ϵ12ρ~n+1L22+u~n+1L2ρ~n+1L2+ϵ12ρ~n+1L2(u~nL2+ρ~nL2),\displaystyle\lesssim\epsilon^{\frac{1}{2}}\|\tilde{\rho}^{n+1}\|^{2}_{L^{2}}+\|\nabla\tilde{u}^{n+1}\|_{L^{2}}\|\tilde{\rho}^{n+1}\|_{L^{2}}+\epsilon^{\frac{1}{2}}\|\tilde{\rho}^{n+1}\|_{L^{2}}(\|\tilde{u}^{n}\|_{L^{2}}+\|\tilde{\rho}^{n}\|_{L^{2}}),

and

12ddtu~n+1L22+μu~n+1L22+(μ+μ)divu~n+1L22\displaystyle\frac{1}{2}\frac{d}{dt}\|\tilde{u}^{n+1}\|^{2}_{L^{2}}+\mu\|\nabla\tilde{u}^{n+1}\|^{2}_{L^{2}}+(\mu+\mu^{\prime})\|{\rm div}~{}\tilde{u}^{n+1}\|^{2}_{L^{2}}
unLu~n+1L22+u~n+1L2ρ~n+1L2+unLu~nL2u~n+1L2\displaystyle\lesssim\|\nabla u^{n}\|_{L^{\infty}}\|\tilde{u}^{n+1}\|^{2}_{L^{2}}+\|\nabla\tilde{u}^{n+1}\|_{L^{2}}\|\tilde{\rho}^{n+1}\|_{L^{2}}+\|\nabla u^{n}\|_{L^{\infty}}\|\tilde{u}^{n}\|_{L^{2}}\|\tilde{u}^{n+1}\|_{L^{2}}
+ρnLu~n+1L2(ρ~n+1L2+ρ~nL2)+divΣ(un)Lu~n+1L2ρ~nL2\displaystyle+\|\nabla\rho^{n}\|_{L^{\infty}}\|\tilde{u}^{n+1}\|_{L^{2}}(\|\tilde{\rho}^{n+1}\|_{L^{2}}+\|\tilde{\rho}^{n}\|_{L^{2}})+\|{\rm div}\Sigma{(u^{n})}\|_{L^{\infty}}\|\tilde{u}^{n+1}\|_{L^{2}}\|\tilde{\rho}^{n}\|_{L^{2}}
+ρnLu~n+1L2(u~n+1L2+Rg~n+1L2(2))+RgnL(2)u~n+1L2ρ~nL2\displaystyle+\|\nabla\rho^{n}\|_{L^{\infty}}\|\tilde{u}^{n+1}\|_{L^{2}}(\|\nabla\tilde{u}^{n+1}\|_{L^{2}}+\|\nabla_{R}\tilde{g}^{n+1}\|_{L^{2}(\mathcal{L}^{2})})+\|\nabla\nabla_{R}g^{n}\|_{L^{\infty}(\mathcal{L}^{2})}\|\tilde{u}^{n+1}\|_{L^{2}}\|\tilde{\rho}^{n}\|_{L^{2}}
+δu~n+1L2Rg~n+1L2(2)+Cδu~n+1L2g~n+1L2(2)\displaystyle+\delta\|\nabla\tilde{u}^{n+1}\|_{L^{2}}\|\nabla_{R}\tilde{g}^{n+1}\|_{L^{2}(\mathcal{L}^{2})}+C_{\delta}\|\nabla\tilde{u}^{n+1}\|_{L^{2}}\|\tilde{g}^{n+1}\|_{L^{2}(\mathcal{L}^{2})}
ϵ12(ρ~n+1L22+u~n+1L22+ρ~nL22+u~nL22)+u~n+1L2(ρ~n+1L2+g~n+1L2(2))\displaystyle\lesssim\epsilon^{\frac{1}{2}}(\|\tilde{\rho}^{n+1}\|^{2}_{L^{2}}+\|\tilde{u}^{n+1}\|^{2}_{L^{2}}+\|\tilde{\rho}^{n}\|^{2}_{L^{2}}+\|\tilde{u}^{n}\|^{2}_{L^{2}})+\|\nabla\tilde{u}^{n+1}\|_{L^{2}}(\|\tilde{\rho}^{n+1}\|_{L^{2}}+\|\tilde{g}^{n+1}\|_{L^{2}(\mathcal{L}^{2})})
+(divΣ(un)L+RgnL(2))u~n+1L2ρ~nL2+δu~n+1L2Rg~n+1L2(2)\displaystyle+(\|{\rm div}\Sigma{(u^{n})}\|_{L^{\infty}}+\|\nabla\nabla_{R}g^{n}\|_{L^{\infty}(\mathcal{L}^{2})})\|\tilde{u}^{n+1}\|_{L^{2}}\|\tilde{\rho}^{n}\|_{L^{2}}+\delta\|\nabla\tilde{u}^{n+1}\|_{L^{2}}\|\nabla_{R}\tilde{g}^{n+1}\|_{L^{2}(\mathcal{L}^{2})}
+ϵ12u~n+1L2(u~n+1L2+Rg~n+1L2(2)).\displaystyle+\epsilon^{\frac{1}{2}}\|\tilde{u}^{n+1}\|_{L^{2}}(\|\nabla\tilde{u}^{n+1}\|_{L^{2}}+\|\nabla_{R}\tilde{g}^{n+1}\|_{L^{2}(\mathcal{L}^{2})}).

We can infer from (3.29)3(\ref{convergence})_{3} that

12ddtg~n+1L2(2)2+Rg~n+1L2(2)2\displaystyle\frac{1}{2}\frac{d}{dt}\|\tilde{g}^{n+1}\|^{2}_{L^{2}(\mathcal{L}^{2})}+\|\nabla_{R}\tilde{g}^{n+1}\|^{2}_{L^{2}(\mathcal{L}^{2})} unLg~n+1L2(2)2\displaystyle\lesssim\|\nabla u^{n}\|_{L^{\infty}}\|\tilde{g}^{n+1}\|^{2}_{L^{2}(\mathcal{L}^{2})}
+u~nL2gnL(2)g~n+1L2(2)\displaystyle+\|\tilde{u}^{n}\|_{L^{2}}\|\nabla g^{n}\|_{L^{\infty}(\mathcal{L}^{2})}\|\tilde{g}^{n+1}\|_{L^{2}(\mathcal{L}^{2})}
+u~nL2gnL(2)Rg~n+1L2(2)\displaystyle+\|\nabla\tilde{u}^{n}\|_{L^{2}}\|g^{n}\|_{L^{\infty}(\mathcal{L}^{2})}\|\nabla_{R}\tilde{g}^{n+1}\|_{L^{2}(\mathcal{L}^{2})}
ϵ12(g~n+1L2(2)2+u~nL22+u~nL2Rg~n+1L2(2)).\displaystyle\lesssim\epsilon^{\frac{1}{2}}(\|\tilde{g}^{n+1}\|^{2}_{L^{2}(\mathcal{L}^{2})}+\|\tilde{u}^{n}\|^{2}_{L^{2}}+\|\nabla\tilde{u}^{n}\|_{L^{2}}\|\nabla_{R}\tilde{g}^{n+1}\|_{L^{2}(\mathcal{L}^{2})}).

Then we introduce some functionals for (ρ,u,g)(\rho,u,g) as follows:

E1(t)=ρL22+uL22+gL2(2)2,E_{1}(t)=\|\rho\|^{2}_{L^{2}}+\|u\|^{2}_{L^{2}}+\|g\|^{2}_{L^{2}(\mathcal{L}^{2})},

and

H1(t)=μuL22+(μ+μ)divuL22+RgL2(2)2.H_{1}(t)=\mu\|\nabla u\|^{2}_{L^{2}}+(\mu+\mu^{\prime})\|{\rm div}~{}u\|^{2}_{L^{2}}+\|\nabla_{R}g\|^{2}_{L^{2}(\mathcal{L}^{2})}.

Denote E~n(t)=E1(ρ~n,u~n,g~n)(t)\widetilde{E}^{n}(t)=E_{1}(\tilde{\rho}^{n},\tilde{u}^{n},\tilde{g}^{n})(t), H~n(t)=H1(ρ~n,u~n,g~n)(t)\widetilde{H}^{n}(t)=H_{1}(\tilde{\rho}^{n},\tilde{u}^{n},\tilde{g}^{n})(t) and ~n(t)=E~n(t)+0tH~n(s)𝑑s\widetilde{\mathcal{E}}^{n}(t)=\widetilde{E}^{n}(t)+\int_{0}^{t}\widetilde{H}^{n}(s)ds. Combining the above estimates, we have

12ddtE~n+1+H~n+1\displaystyle\frac{1}{2}\frac{d}{dt}\widetilde{E}^{n+1}+\widetilde{H}^{n+1} Cϵ12(E~n+1+H~n+1+E~n+H~n)\displaystyle\leq C\epsilon^{\frac{1}{2}}(\widetilde{E}^{n+1}+\widetilde{H}^{n+1}+\widetilde{E}^{n}+\widetilde{H}^{n})
+(14+δ)H~n+1+CE~n+1+(Hn)12(E~n+1+E~n),\displaystyle+(\frac{1}{4}+\delta)\widetilde{H}^{n+1}+C\widetilde{E}^{n+1}+(H^{n})^{\frac{1}{2}}(\widetilde{E}^{n+1}+\widetilde{E}^{n}),

where Hn(t)=μunHs2+(μ+μ)divunHs2+RgnHs(2)2.H^{n}(t)=\mu\|\nabla u^{n}\|^{2}_{H^{s}}+(\mu+\mu^{\prime})\|{\rm div}~{}u^{n}\|^{2}_{H^{s}}+\|\nabla_{R}g^{n}\|^{2}_{H^{s}(\mathcal{L}^{2})}. Since E~n(0)=0\widetilde{E}^{n}(0)=0, we have

(12CTCϵ12)supt[0,T]~n+1(t)(Cϵ12T+Cϵ12)supt[0,T]~n(t)+0T(Hn)12(E~n+1+E~n)𝑑t,\displaystyle(\frac{1}{2}-CT-C\epsilon^{\frac{1}{2}})\sup_{t\in[0,T]}\widetilde{\mathcal{E}}^{n+1}(t)\leq(C\epsilon^{\frac{1}{2}}T+C\epsilon^{\frac{1}{2}})\sup_{t\in[0,T]}\widetilde{\mathcal{E}}^{n}(t)+\int_{0}^{T}(H^{n})^{\frac{1}{2}}(\widetilde{E}^{n+1}+\widetilde{E}^{n})dt,

which implies that

(12CTCT12ϵ12Cϵ12)supt[0,T]~n+1(t)(Cϵ12T+CT12ϵ12+Cϵ12)supt[0,T]~n(t).\displaystyle(\frac{1}{2}-CT-CT^{\frac{1}{2}}\epsilon^{\frac{1}{2}}-C\epsilon^{\frac{1}{2}})\sup_{t\in[0,T]}\widetilde{\mathcal{E}}^{n+1}(t)\leq(C\epsilon^{\frac{1}{2}}T+CT^{\frac{1}{2}}\epsilon^{\frac{1}{2}}+C\epsilon^{\frac{1}{2}})\sup_{t\in[0,T]}\widetilde{\mathcal{E}}^{n}(t).

Choosing sufficiently small ϵ\epsilon, TT and using a standard compactness argument, we finally get a unique local solution of the compressible FENE system (1.15) with supt[0,T]E(t)+0TH(t)𝑑tϵ\sup_{t\in[0,T]}E(t)+\int_{0}^{T}H(t)dt\leq\epsilon. We thus complete the proof of Proposition 3.2. ∎

The proof of Theorem 1.1:

Combining Propositions 3.1 and 3.2, we prove the global-in-time solutions of (1.15) by using the bootstrap argument. We assume that the initial datum satisfies E(0)ϵ0E(0)\leq\epsilon_{0} with ϵ0=ϵ2C0\epsilon_{0}=\frac{\epsilon}{2C_{0}} and C0>1C_{0}>1. Applying Proposition 3.2, we have the unique local solution on [0,T][0,T] with T>0T>0, and supt[0,T]E(t)ϵ\sup_{t\in[0,T]}E(t)\leq\epsilon. Using global priori estimate stared in Proposition 3.1, we obtain

E(T)C0E(0)ϵ2.E(T)\leq C_{0}E(0)\leq\frac{\epsilon}{2}.

Applying Proposition 3.2 again, we get the unique local solution result on the time interval t[T,2T]t\in[T,2T], satisfying supt[T,2T]E(t)ϵ\sup_{t\in[T,2T]}E(t)\leq\epsilon. So we have

supt[0,2T]E(t)ϵ.\sup_{t\in[0,2T]}E(t)\leq\epsilon.

Then global priori estimate stared in Proposition 3.1 yields

E(2T)C0E(0)ϵ2.E(2T)\leq C_{0}E(0)\leq\frac{\epsilon}{2}.

Repeating this process, we show global existence of strong solution for (1.15) near equilibrium. Furthermore, we obtain supt[0,)E(t)+0D(t)𝑑tC0E(0).\sup_{t\in[0,\infty)}E(t)+\int_{0}^{\infty}D(t)dt\leq C_{0}E(0). \Box

4 Optimal decay rate

This section is devoted to investigating optimal decay rate of global strong solutions for the compressible co-rotation FENE dumbbell model with dimension d3d\geq 3. In order to obtain the optimal L2L^{2} decay rate, we will use the linear spectral theory. For this purpose, we rewrite the first two equations of (1.15) so that all the nonlinear terms F(U)F(U) and the external term i(ρ)divτi(\rho){\rm div}~{}\tau appear at the right hand side of equations:

(4.3) {ρt+divu=uρρdivu,utdivΣ(u)+γρ=uu+(i(ρ)1)divΣ(u)+(γh(ρ))ρ+i(ρ)divτ,\displaystyle\left\{\begin{array}[]{ll}\rho_{t}+{\rm div}~{}u=-u\cdot\nabla\rho-\rho{\rm div}~{}u,\\[4.30554pt] u_{t}-{\rm div}\Sigma{(u)}+\gamma\nabla\rho=-u\cdot\nabla u+(i(\rho)-1){\rm div}\Sigma{(u)}+(\gamma-h(\rho))\nabla\rho+i(\rho){\rm div}~{}\tau,\end{array}\right.

where h(ρ)=P(1+ρ)1+ρh(\rho)=\frac{P^{\prime}(1+\rho)}{1+\rho} and i(ρ)=1ρ+1i(\rho)=\frac{1}{\rho+1}. Taking the Fourier transform to system (4.3), we have

(4.4) U^tA(ξ)U^=F(U)^+x(0,div(i(ρ)τ))Tx(0,τi(ρ))T,\displaystyle\hat{U}_{t}-A(\xi)\hat{U}=\widehat{F(U)}+\mathcal{F}_{x}(0,{\rm div}(i(\rho)\tau))^{T}-\mathcal{F}_{x}(0,\tau\nabla i(\rho))^{T},

where A(ξ)A(\xi) is defined as

(4.5) (0iξTiξγμ|ξ|2Id(μ+μ)ξξ).\left(\begin{array}[]{cc}0&-i\xi^{T}\\ -i\xi\gamma&-\mu|\xi|^{2}Id-(\mu+\mu^{\prime})\xi\otimes\xi\\ \end{array}\right).

By some simple calculation, we get the determinant

det(AλId)=(λ+μ|ξ|2)d1(λ2+(2μ+μ)|ξ|2λ+γ|ξ|2).det(A-\lambda Id)=(\lambda+\mu|\xi|^{2})^{d-1}(\lambda^{2}+(2\mu+\mu^{\prime})|\xi|^{2}\lambda+\gamma|\xi|^{2}).

The eigenvalues λj\lambda_{j} of A(ξ)A(\xi) and their projections PjP_{j} are analyzed by

Lemma 4.1.

[28, 21] (1) λj\lambda_{j} depends on i|ξ|i|\xi| only and if |ξ|=0|\xi|=0, then λj=0\lambda_{j}=0.
(2)The eigenvalues λj\lambda_{j} of A(ξ)A(\xi) can be computed as

(4.9) {λ0=μ|ξ|2,λ+=(μ+12μ)|ξ|2+12i4γ|ξ|2(2μ+μ)2|ξ|4,λ=(μ+12μ)|ξ|212i4γ|ξ|2(2μ+μ)2|ξ|4.\displaystyle\left\{\begin{array}[]{ll}\lambda_{0}=-\mu|\xi|^{2},\\[4.30554pt] \lambda_{+}=-(\mu+\frac{1}{2}\mu^{\prime})|\xi|^{2}+\frac{1}{2}i\sqrt{4\gamma|\xi|^{2}-(2\mu+\mu^{\prime})^{2}|\xi|^{4}},\\[4.30554pt] \lambda_{-}=-(\mu+\frac{1}{2}\mu^{\prime})|\xi|^{2}-\frac{1}{2}i\sqrt{4\gamma|\xi|^{2}-(2\mu+\mu^{\prime})^{2}|\xi|^{4}}.\end{array}\right.

For a.e.a.e. |ξ|>0|\xi|>0, we have rank(λ0IdA(ξ))=2rank(\lambda_{0}Id-A(\xi))=2.
(3)The semigroup etAe^{tA} is expressed as

etA=etλ0P0+etλ+P++etλP,e^{tA}=e^{t\lambda_{0}}P_{0}+e^{t\lambda_{+}}P_{+}+e^{t\lambda_{-}}P_{-},

where the project PjP_{j} can be computed as

Pj=ijA(ξ)λiIλjλi.P_{j}=\prod_{i\neq j}\frac{A(\xi)-\lambda_{i}I}{\lambda_{j}-\lambda_{i}}.

(4)If |ξ|r1|\xi|\leq r_{1}, for a positive constant βj\beta_{j}, we have PjLC\|P_{j}\|_{L^{\infty}}\leq C and etλjeβjt|ξ|2e^{t\lambda_{j}}\sim e^{-\beta_{j}t|\xi|^{2}}.
If |ξ|>r1|\xi|>r_{1}, for a positive constant β2\beta_{2}, we deduce that etALCeβ2t\|e^{tA}\|_{L^{\infty}}\leq Ce^{-\beta_{2}t}.

From (4.4), we see that there is a linear term x(0,div(i(ρ)τ))Tx(0,divτ)T\mathcal{F}_{x}(0,{\rm div}(i(\rho)\tau))^{T}\sim\mathcal{F}_{x}(0,{\rm div}~{}\tau)^{T} in the right hand side. Therefore, we need to estimate the L1L^{1}-norm of the stress tensor τ\tau.

Proposition 4.2.

Under the condition in Theorem 1.2. There exists a constant CC such that for any t>0t>0, we have

(4.10) τL1gLx1(p)eCtg0Lx1(p).\displaystyle\|\tau\|_{L^{1}}\lesssim\|g\|_{L^{1}_{x}(\mathcal{L}^{p})}\lesssim e^{C\sqrt{t}}\|g_{0}\|_{L^{1}_{x}(\mathcal{L}^{p})}.
Proof.

Multiplying p|g|p2gψp|g|^{p-2}g\psi_{\infty} by both sides of (1.15) and integrating over BB with RR, we obtain

ddtB|g|pψ𝑑R+4(p1)pBψ|R(gp2)|2𝑑R\displaystyle\frac{d}{dt}\int_{B}|g|^{p}\psi_{\infty}dR+\frac{4(p-1)}{p}\int_{B}\psi_{\infty}|\nabla_{R}(g^{\frac{p}{2}})|^{2}dR
=uxB|g|pψ𝑑R+(p1)Bσ(u)RψR|g|pdR.\displaystyle=-u\cdot\nabla_{x}\int_{B}|g|^{p}\psi_{\infty}dR+(p-1)\int_{B}\sigma(u)R\psi_{\infty}\nabla_{R}|g|^{p}dR.

Using integration by parts and (1.8), we have

ddtB|g|pψ𝑑R+4(p1)pBψ|R(gp2)|2𝑑R=uxB|g|pψ𝑑R,\displaystyle\frac{d}{dt}\int_{B}|g|^{p}\psi_{\infty}dR+\frac{4(p-1)}{p}\int_{B}\psi_{\infty}|\nabla_{R}(g^{\frac{p}{2}})|^{2}dR=-u\cdot\nabla_{x}\int_{B}|g|^{p}\psi_{\infty}dR,

which implies that

ddtB|g|pψ𝑑RuxB|g|pψ𝑑R.\displaystyle\frac{d}{dt}\int_{B}|g|^{p}\psi_{\infty}dR\leq-u\cdot\nabla_{x}\int_{B}|g|^{p}\psi_{\infty}dR.

Multiplying gp1p\|g\|^{1-p}_{\mathcal{L}^{p}} by both sides of the above inequality, integrating over d\mathbb{R}^{d} with xx and applying Gronwall’s inequality, we obtain

gLx1(p)eC0tuL𝑑sg0Lx1(p)eCtg0Lx1(p).\|g\|_{L^{1}_{x}(\mathcal{L}^{p})}\lesssim e^{C\int_{0}^{t}\|\nabla u\|_{L^{\infty}}ds}\|g_{0}\|_{L^{1}_{x}(\mathcal{L}^{p})}\lesssim e^{C\sqrt{t}}\|g_{0}\|_{L^{1}_{x}(\mathcal{L}^{p})}.

Applying Lemma 2.3 and using the fact that (p1)k>1(p-1)k>1,

τL1gLx1(p)eCtg0Lx1(p).\displaystyle\|\tau\|_{L^{1}}\lesssim\|g\|_{L^{1}_{x}(\mathcal{L}^{p})}\lesssim e^{C\sqrt{t}}\|g_{0}\|_{L^{1}_{x}(\mathcal{L}^{p})}.

Remark 4.3.

For the incompressible FENE model, one can show that τL1C\|\tau\|_{L^{1}}\leq C. However, in the compressible case, the L1L^{1}-norm of τ\tau has a exponential growth. This is the main difference between the incompressible and compressible model.

The proof of Theorem 1.2: Observe that (3.3) and Theorem 1.1 ensures

(4.11) ddtgL2(2)2+RgL2(2)20.\displaystyle\frac{d}{dt}\|g\|^{2}_{L^{2}(\mathcal{L}^{2})}+\|\nabla_{R}g\|^{2}_{L^{2}(\mathcal{L}^{2})}\leq 0.

Using Lemma 2.2, we deduce that

(4.12) gL2(2)g0L2(2)eCt.\displaystyle\|g\|_{L^{2}(\mathcal{L}^{2})}\leq\|g_{0}\|_{L^{2}(\mathcal{L}^{2})}e^{-Ct}.

According to (4.4), we obtain

(4.13) U^=etAU^(0,ξ)+0te(ts)A(F(U)^+x(0,div(i(ρ)τ))T+x(0,τi(ρ))T)𝑑s.\displaystyle\hat{U}=e^{tA}\hat{U}(0,\xi)+\int_{0}^{t}e^{(t-s^{\prime})A}(\widehat{F(U)}+\mathcal{F}_{x}(0,{\rm div}(i(\rho)\tau))^{T}+\mathcal{F}_{x}(0,\tau\nabla i(\rho))^{T})ds^{\prime}.

Under the additional assumption U(0,x)(L1)2U(0,x)\in(L^{1})^{2}, using Lemma 4.1, we get

(4.14) etAU^(0,ξ)L2\displaystyle\|e^{tA}\hat{U}(0,\xi)\|_{L^{2}} (|ξ|r1e2tA|U^(0,ξ)|2𝑑ξ)12+(|ξ|>r1e2tA|U^(0,ξ)|2𝑑ξ)12\displaystyle\leq(\int_{|\xi|\leq r_{1}}e^{2tA}|\hat{U}(0,\xi)|^{2}d\xi)^{\frac{1}{2}}+(\int_{|\xi|>r_{1}}e^{2tA}|\hat{U}(0,\xi)|^{2}d\xi)^{\frac{1}{2}}
(|ξ|r1e2βjt|ξ|2𝑑ξ)12U^(0,ξ)L+Ceβ2tU^(0,ξ)L2\displaystyle\leq(\int_{|\xi|\leq r_{1}}e^{-2\beta_{j}t|\xi|^{2}}d\xi)^{\frac{1}{2}}\|\hat{U}(0,\xi)\|_{L^{\infty}}+Ce^{-\beta_{2}t}\|\hat{U}(0,\xi)\|_{L^{2}}
C(1+t)d4(U(0,x)L1+U(0,x)L2).\displaystyle\leq C(1+t)^{-\frac{d}{4}}(\|U(0,x)\|_{L^{1}}+\|U(0,x)\|_{L^{2}}).

For the nonlinear terms F(U)F(U) and δ=12(s1d2)>0\delta=\frac{1}{2}(s-1-\frac{d}{2})>0, we can easily deduce that

(4.15) 0te(ts)AF(U)^𝑑sL2\displaystyle\|\int_{0}^{t}e^{(t-s^{\prime})A}\widehat{F(U)}ds^{\prime}\|_{L^{2}} C0t(1+ts)d4(F(U)L1+F(U)L2)𝑑s\displaystyle\leq C\int_{0}^{t}(1+t-s^{\prime})^{-\frac{d}{4}}(\|F(U)\|_{L^{1}}+\|F(U)\|_{L^{2}})ds^{\prime}
C0t(1+ts)d4(UL2UH1+ULUH1)𝑑s\displaystyle\leq C\int_{0}^{t}(1+t-s^{\prime})^{-\frac{d}{4}}(\|U\|_{L^{2}}\|\nabla U\|_{H^{1}}+\|U\|_{L^{\infty}}\|\nabla U\|_{H^{1}})ds^{\prime}
Cϵ12(0t(1+ts)d2UHs1δ2𝑑s)12.\displaystyle\leq C\epsilon^{\frac{1}{2}}(\int_{0}^{t}(1+t-s^{\prime})^{-\frac{d}{2}}\|U\|^{2}_{H^{s-1-\delta}}ds^{\prime})^{\frac{1}{2}}.

Using Lemma 4.1, Remark 2.5 and Theorem 1.1, we get

(4.16) 0te(ts)Ax(0,τi(ρ))T𝑑sL2\displaystyle\|\int_{0}^{t}e^{(t-s^{\prime})A}\mathcal{F}_{x}(0,\tau\nabla i(\rho))^{T}ds^{\prime}\|_{L^{2}} C0t(1+ts)d4(τi(ρ)L1+τi(ρ)L2)𝑑s\displaystyle\leq C\int_{0}^{t}(1+t-s^{\prime})^{-\frac{d}{4}}(\|\tau\nabla i(\rho)\|_{L^{1}}+\|\tau\nabla i(\rho)\|_{L^{2}})ds^{\prime}
C0t(1+ts)d4τL2ρHs1𝑑s\displaystyle\leq C\int_{0}^{t}(1+t-s^{\prime})^{-\frac{d}{4}}\|\tau\|_{L^{2}}\|\nabla\rho\|_{H^{s-1}}ds^{\prime}
C(0t(1+ts)d2gL2(2)RgL2(2)𝑑s)12\displaystyle\leq C(\int_{0}^{t}(1+t-s^{\prime})^{-\frac{d}{2}}\|g\|_{L^{2}(\mathcal{L}^{2})}\|\nabla_{R}g\|_{L^{2}(\mathcal{L}^{2})}ds^{\prime})^{\frac{1}{2}}
C(0t(1+ts)dgL2(2)2𝑑s)14\displaystyle\leq C(\int_{0}^{t}(1+t-s^{\prime})^{-d}\|g\|^{2}_{L^{2}(\mathcal{L}^{2})}ds^{\prime})^{\frac{1}{4}}
C(1+t)d4.\displaystyle\leq C(1+t)^{-\frac{d}{4}}.

Using (4.10), (4.16), Remark 2.5 and Theorem 1.1, we have

(4.17) 0te(ts)Ax(0,div(i(ρ)τ))T𝑑sL2\displaystyle\|\int_{0}^{t}e^{(t-s^{\prime})A}\mathcal{F}_{x}(0,{\rm div}(i(\rho)\tau))^{T}ds^{\prime}\|_{L^{2}}
C0t(|ξ|r1e2(ts)A|ξ|2|x(i(ρ)τ)|2𝑑ξ)12+(|ξ|>r1e2(ts)A|ξ|2|x(i(ρ)τ)|2𝑑ξ)12ds\displaystyle\leq C\int_{0}^{t}(\int_{|\xi|\leq r_{1}}e^{2(t-s^{\prime})A}|\xi|^{2}|\mathcal{F}_{x}(i(\rho)\tau)|^{2}d\xi)^{\frac{1}{2}}+(\int_{|\xi|>r_{1}}e^{2(t-s^{\prime})A}|\xi|^{2}|\mathcal{F}_{x}(i(\rho)\tau)|^{2}d\xi)^{\frac{1}{2}}ds^{\prime}
C0t(1+ts)d4x(i(ρ)τ)Ld+τi(ρ)L2+τL2)ds\displaystyle\leq C\int_{0}^{t}(1+t-s^{\prime})^{-\frac{d}{4}}\|\mathcal{F}_{x}(i(\rho)\tau)\|_{L^{d}}+\|\tau\nabla i(\rho)\|_{L^{2}}+\|\nabla\tau\|_{L^{2}})ds^{\prime}
C0t(1+ts)d4(τLdd1+τL2ρHs1+τL211sτHs1s)𝑑s\displaystyle\leq C\int_{0}^{t}(1+t-s^{\prime})^{-\frac{d}{4}}(\|\tau\|_{L^{\frac{d}{d-1}}}+\|\tau\|_{L^{2}}\|\nabla\rho\|_{H^{s-1}}+\|\tau\|_{L^{2}}^{1-\frac{1}{s}}\|\tau\|_{H^{s}}^{\frac{1}{s}})ds^{\prime}
C(1+t)d4+C0t(1+ts)d4(τL22dτL112d+τL211sRgHs(2)1s)𝑑s\displaystyle\leq C(1+t)^{-\frac{d}{4}}+C\int_{0}^{t}(1+t-s^{\prime})^{-\frac{d}{4}}(\|\tau\|^{\frac{2}{d}}_{L^{2}}\|\tau\|^{1-\frac{2}{d}}_{L^{1}}+\|\tau\|_{L^{2}}^{1-\frac{1}{s}}\|\nabla_{R}g\|^{\frac{1}{s}}_{H^{s}(\mathcal{L}^{2})})ds^{\prime}
C(1+t)d4+C0t(1+ts)d4(τL22deCs+τL211sRgHs(2)1s)𝑑s\displaystyle\leq C(1+t)^{-\frac{d}{4}}+C\int_{0}^{t}(1+t-s^{\prime})^{-\frac{d}{4}}(\|\tau\|^{\frac{2}{d}}_{L^{2}}e^{C\sqrt{s^{\prime}}}+\|\tau\|^{1-\frac{1}{s}}_{L^{2}}\|\nabla_{R}g\|^{\frac{1}{s}}_{H^{s}(\mathcal{L}^{2})})ds^{\prime}
C(1+t)d4+C0t(1+ts)d4eCs(RgL2(2)1d+RgHs(2)12+12s)𝑑s\displaystyle\leq C(1+t)^{-\frac{d}{4}}+C\int_{0}^{t}(1+t-s^{\prime})^{-\frac{d}{4}}e^{-Cs^{\prime}}(\|\nabla_{R}g\|^{\frac{1}{d}}_{L^{2}(\mathcal{L}^{2})}+\|\nabla_{R}g\|^{\frac{1}{2}+\frac{1}{2s}}_{H^{s}(\mathcal{L}^{2})})ds^{\prime}
C(1+t)d4.\displaystyle\leq C(1+t)^{-\frac{d}{4}}.

It follows from (4.13)-(4.17) that

(4.18) UL2C(1+t)d4+Cϵ12(0t(1+ts)d2UHs1δ2𝑑s)12.\displaystyle\|U\|_{L^{2}}\leq C(1+t)^{-\frac{d}{4}}+C\epsilon^{\frac{1}{2}}(\int_{0}^{t}(1+t-s^{\prime})^{-\frac{d}{2}}\|U\|^{2}_{H^{s-1-\delta}}ds^{\prime})^{\frac{1}{2}}.

Multiplying |ξ|s1δ|\xi|^{s-1-\delta} to (4.13), using Lemma 4.1, we obtain the higher order derivative estimates:

(4.19) etA|ξ|s1δU^(0,ξ)L2\displaystyle\|e^{tA}|\xi|^{s-1-\delta}\hat{U}(0,\xi)\|_{L^{2}} (|ξ|r1|ξ|2(s1δ)e2βjt|ξ|2𝑑ξ)12U0^L+Ceβ2tU0Hs\displaystyle\leq(\int_{|\xi|\leq r_{1}}|\xi|^{2(s-1-\delta)}e^{-2\beta_{j}t|\xi|^{2}}d\xi)^{\frac{1}{2}}\|\widehat{U_{0}}\|_{L^{\infty}}+Ce^{-\beta_{2}t}\|U_{0}\|_{H^{s}}
C(1+t)κ(U0L1+U0Hs),\displaystyle\leq C(1+t)^{-\kappa}(\|U_{0}\|_{L^{1}}+\|U_{0}\|_{H^{s}}),

where 2κ=s1δ+d22\kappa=s-1-\delta+\frac{d}{2}. Using Theorem 1.1, then we have

(4.20) 0te(ts)A|ξ|s1δF(U)^𝑑sL2\displaystyle\|\int_{0}^{t}e^{(t-s^{\prime})A}|\xi|^{s-1-\delta}\widehat{F(U)}ds^{\prime}\|_{L^{2}}
C0t(1+ts)κ(F(U)L1+F(U)Hs1δ)𝑑s\displaystyle\leq C\int_{0}^{t}(1+t-s^{\prime})^{-\kappa}(\|F(U)\|_{L^{1}}+\|F(U)\|_{H^{s-1-\delta}})ds^{\prime}
C0t(1+ts)κ(UL2UH1+UHs1δ(ρ,u)THs1δ×Hsδ)ds\displaystyle\leq C\int_{0}^{t}(1+t-s^{\prime})^{-\kappa}(\|U\|_{L^{2}}\|\nabla U\|_{H^{1}}+\|U\|_{H^{s-1-\delta}}\|\nabla(\rho,u)^{T}\|_{H^{s-1-\delta}\times H^{s-\delta}})ds^{\prime}
Cϵ12(0t(1+ts)2κUHs1δ2𝑑s)12.\displaystyle\leq C\epsilon^{\frac{1}{2}}(\int_{0}^{t}(1+t-s^{\prime})^{-2\kappa}\|U\|^{2}_{H^{s-1-\delta}}ds^{\prime})^{\frac{1}{2}}.

Using Lemma 4.1, Remark 2.5 and Theorem 1.1, we get

(4.21) 0te(ts)A|ξ|s1δx(0,τi(ρ))T𝑑sL2\displaystyle\|\int_{0}^{t}e^{(t-s^{\prime})A}|\xi|^{s-1-\delta}\mathcal{F}_{x}(0,\tau\nabla i(\rho))^{T}ds^{\prime}\|_{L^{2}}
C0t(1+ts)κ(τi(ρ)L1+τi(ρ)Hs1δ)𝑑s\displaystyle\leq C\int_{0}^{t}(1+t-s^{\prime})^{-\kappa}(\|\tau\nabla i(\rho)\|_{L^{1}}+\|\tau\nabla i(\rho)\|_{H^{s-1-\delta}})ds^{\prime}
C0t(1+ts)κ(τL2ρL2+τHs1δρHs1δ)𝑑s\displaystyle\leq C\int_{0}^{t}(1+t-s^{\prime})^{-\kappa}(\|\tau\|_{L^{2}}\|\nabla\rho\|_{L^{2}}+\|\tau\|_{H^{s-1-\delta}}\|\nabla\rho\|_{H^{s-1-\delta}})ds^{\prime}
C(0t(1+ts)2κgHs1δ(2)RgHs1δ(2)𝑑s)12\displaystyle\leq C(\int_{0}^{t}(1+t-s^{\prime})^{-2\kappa}\|g\|_{H^{s-1-\delta}(\mathcal{L}^{2})}\|\nabla_{R}g\|_{H^{s-1-\delta}(\mathcal{L}^{2})}ds^{\prime})^{\frac{1}{2}}
C(0t(1+ts)4κgHs1δ(2)2𝑑s)14\displaystyle\leq C(\int_{0}^{t}(1+t-s^{\prime})^{-4\kappa}\|g\|^{2}_{H^{s-1-\delta}(\mathcal{L}^{2})}ds^{\prime})^{\frac{1}{4}}
C(0t(1+ts)4κ(gL22+gL221+δsgHs(2)221+δs)𝑑s)14\displaystyle\leq C(\int_{0}^{t}(1+t-s^{\prime})^{-4\kappa}(\|g\|^{2}_{L^{2}}+\|g\|^{2\frac{1+\delta}{s}}_{L^{2}}\|g\|^{2-2\frac{1+\delta}{s}}_{H^{s}(\mathcal{L}^{2})})ds^{\prime})^{\frac{1}{4}}
C(1+t)κ.\displaystyle\leq C(1+t)^{-\kappa}.

Using (4.10), Remark 2.5 and Theorem 1.1, we have

(4.22) 0te(ts)A|ξ|s1δx(0,div(i(ρ)τ))T𝑑sL2\displaystyle\|\int_{0}^{t}e^{(t-s^{\prime})A}|\xi|^{s-1-\delta}\mathcal{F}_{x}(0,{\rm div}(i(\rho)\tau))^{T}ds^{\prime}\|_{L^{2}}
C0t(|ξ|r1e2(ts)A|ξ|2s2δ|(i(ρ)τ)^|2𝑑ξ)12+(|ξ|>r1e2(ts)A|ξ|2s2δ|i(ρ)τ^|2𝑑ξ)12ds\displaystyle\leq C\int_{0}^{t}(\int_{|\xi|\leq r_{1}}e^{2(t-s^{\prime})A}|\xi|^{2s-2\delta}|\widehat{(i(\rho)\tau)}|^{2}d\xi)^{\frac{1}{2}}+(\int_{|\xi|>r_{1}}e^{2(t-s^{\prime})A}|\xi|^{2s-2\delta}|\widehat{i(\rho)\tau}|^{2}d\xi)^{\frac{1}{2}}ds^{\prime}
C0t(1+ts)κ((i(ρ)τ)^Ld+(i(ρ)1)τHsδ+τHsδ)𝑑s\displaystyle\leq C\int_{0}^{t}(1+t-s^{\prime})^{-\kappa}(\|\widehat{(i(\rho)\tau)}\|_{L^{d}}+\|(i(\rho)-1)\tau\|_{H^{s-\delta}}+\|\tau\|_{H^{s-\delta}})ds^{\prime}
C0t(1+ts)κ(τLdd1+τHsδ)𝑑s\displaystyle\leq C\int_{0}^{t}(1+t-s^{\prime})^{-\kappa}(\|\tau\|_{L^{\frac{d}{d-1}}}+\|\tau\|_{H^{s-\delta}})ds^{\prime}
C0t(1+ts)κ(τL22dτL112d+τL2+τL2δsRgHs(2)1δs)𝑑s\displaystyle\leq C\int_{0}^{t}(1+t-s^{\prime})^{-\kappa}(\|\tau\|^{\frac{2}{d}}_{L^{2}}\|\tau\|^{1-\frac{2}{d}}_{L^{1}}+\|\tau\|_{L^{2}}+\|\tau\|^{\frac{\delta}{s}}_{L^{2}}\|\nabla_{R}g\|^{1-\frac{\delta}{s}}_{H^{s}(\mathcal{L}^{2})})ds^{\prime}
C0t(1+ts)κeCs(RgL2(2)1d+RgL2(2)12+RgHs(2)1δ2s)𝑑s\displaystyle\leq C\int_{0}^{t}(1+t-s^{\prime})^{-\kappa}e^{-Cs^{\prime}}(\|\nabla_{R}g\|^{\frac{1}{d}}_{L^{2}(\mathcal{L}^{2})}+\|\nabla_{R}g\|^{\frac{1}{2}}_{L^{2}(\mathcal{L}^{2})}+\|\nabla_{R}g\|^{1-\frac{\delta}{2s}}_{H^{s}(\mathcal{L}^{2})})ds^{\prime}
C(1+t)κ.\displaystyle\leq C(1+t)^{-\kappa}.

It follows from (4.19)-(4.22) that

(4.23) |ξ|s1δU^L2C(1+t)κ+Cϵ12(0t(1+ts)2κUHs1δ2𝑑s)12.\displaystyle\||\xi|^{s-1-\delta}\widehat{U}\|_{L^{2}}\leq C(1+t)^{-\kappa}+C\epsilon^{\frac{1}{2}}(\int_{0}^{t}(1+t-s^{\prime})^{-2\kappa}\|U\|^{2}_{H^{s-1-\delta}}ds^{\prime})^{\frac{1}{2}}.

Define M(t)=sup0st(1+s)d4U(s)Hs1δM(t)=\sup_{0\leq s^{\prime}\leq t}(1+s^{\prime})^{\frac{d}{4}}\|U(s^{\prime})\|_{H^{s-1-\delta}}. According to (4.18) and (4.23), if d3d\geq 3, then we have

M(t)C+Cϵ12M(t).M(t)\leq C+C\epsilon^{\frac{1}{2}}M(t).

Finally, we get M(t)CM(t)\leq C, which means that we obtain optimal decay rate (1.18) of ρ\rho and uu. We thus complete the proof the Theorem 1.2. \Box

Remark 4.4.

In Theorem 1.2, we only obtain optimal decay rate with d3d\geq 3. The decay rate for d=2d=2 is an interesting problem. Global existence of the strong solutions for the FENE dumbbell model with large data is a challenging problem. However, the technique in this paper fails to deal with the problems. We are going to study about these problems in the future.

Acknowledgments This work was partially supported by the National Natural Science Foundation of China (No.12171493 and No.11671407), the Macao Science and Technology Development Fund (No. 0091/2018/A3), Guangdong Province of China Special Support Program (No. 8-2015), the key project of the Natural Science Foundation of Guangdong province (No. 2016A030311004), and National Key R&\&D Program of China (No. 2021YFA1002100).

Data Availability. The data that support the findings of this study are available on citation. The data that support the findings of this study are also available from the corresponding author upon reasonable request.

References

  • [1] R. B. Bird, R. C. Armstrong, and O. Hassager. Dynamics of Polymeric Liquids, volume 1. Wiley, New York, 1977.
  • [2] D. Bresch and B. Desjardins. Existence of global weak solutions for a 2d viscous shallow water equations and convergence to the quasi-geostrophic model. Comm. Math. Phys., 238(1-2):211–233, 2003.
  • [3] D. Bresch, B. Desjardins, and C. K. Lin. On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Comm. Partial Differential Equations, 28(3-4):843–868, 2003.
  • [4] A. V. Busuioc, I. S. Ciuperca, D. Iftimie, and L. I. Palade. The FENE dumbbell polymer model: existence and uniqueness of solutions for the momentum balance equation. J. Dynam. Differential Equations, 26(2):217–241, 2014.
  • [5] Q. Chen, C. Miao, and Z. Zhang. Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities. Rev. Mat. Iberoamericana, 26(3):915–946, 2010.
  • [6] Q. Chen, C. Miao, and Z. Zhang. On the ill-posedness of the compressible Navier-Stokes equations in the critical besov spaces. Rev. Mat. Iberoamericana., 31(4):165–186, 2011.
  • [7] R. Danchin. Global existence in critical spaces for compressible Navier-Stokes equations. Invent. Math., 141(3):579–614, 2000.
  • [8] R. Danchin. Local theory in critical spaces for compressible viscous and heat-conductive gases. Comm. Partial Differential Equations, 141(26):1183–1233, 2001.
  • [9] R. Danchin. On the uniqueness in critical spaces for compressible Navier-Stokes equations. Nonlinear Differential Equations Appl. Nodea, 12(1):111–128, 2005.
  • [10] R. Danchin. Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density. Comm. Partial Differential Equations, 32(9):111–128, 2007.
  • [11] R. Danchin and P. B. Mucha. A lagrangian approach for the incompressible Navier-Stokes equations with variable density. Comm. Pure Appl. Math., 65(10), 2012.
  • [12] M. Doi and S. F. Edwards. The Theory of Polymer Dynamics. Oxford University Press, Oxford, 1988.
  • [13] L. He, J. Huang, and C. Wang. Global stability of large solutions to the 3d compressible Navier-Stokes equations. Arch. Ration. Mech. Anal., 234(3):1167–1222, 2019.
  • [14] X. Huang and J. Li. Existence and blowup behavior of global strong solutions to the two-dimensional barotrpic compressible Navier-Stokes system with vacuum and large initial data. J. Math. Pures Appl. (9), 106(1):123–154, 2016.
  • [15] X. Huang, J. Li, and Z. Xin. Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations. Comm. Pure Appl. Math., 234(4):549–585, 2011.
  • [16] N. Jiang, Y. Liu, and T.-F. Zhang. Global classical solutions to a compressible model for micro-macro polymeric fluids near equilibrium. SIAM J. Math. Anal., 50(4):4149–4179, 2018.
  • [17] Q. Jiu, Y. Wang, and Z. Xin. Global well-posedness of 2d compressible Navier-Stokes equations with large data and vacuum. J. Math. Fluid Mech., 16(3):483–521, 2014.
  • [18] B. Jourdain, T. Lelièvre, and C. Le Bris. Existence of solution for a micro-macro model of polymeric fluid: the FENE model. J. Funct. Anal., 209(1):162–193, 2004.
  • [19] A. V. Kazhikhov and V. V. Shelukhin. Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas. J. Appl. Math. Mech., 41(2):273–282., 1977.
  • [20] H. Li, J. Li, and Z. Xin. Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations. Comm. Math. Phys., 281(2):401–444, 2008.
  • [21] H.-L. Li and T. Zhang. Large time behavior of isentropic compressible Navier-Stokes system in 3\mathbb{R}^{3}. Math. Methods Appl. Sci., 34(6):670–682, 2011.
  • [22] F. Lin, P. Zhang, and Z. Zhang. On the global existence of smooth solution to the 2-D FENE dumbbell model. Comm. Math. Phys., 277(2):531–553, 2008.
  • [23] W. Luo and Z. Yin. The Liouville Theorem and the L2L^{2} Decay for the FENE Dumbbell Model of Polymeric Flows. Arch. Ration. Mech. Anal., 224(1):209–231, 2017.
  • [24] W. Luo and Z. Yin. The L2L^{2} decay for the 2D co-rotation FENE dumbbell model of polymeric flows. Adv. Math., 343:522–537, 2019.
  • [25] N. Masmoudi. Well-posedness for the FENE dumbbell model of polymeric flows. Comm. Pure Appl. Math., 61(12):1685–1714, 2008.
  • [26] N. Masmoudi. Global existence of weak solutions to the FENE dumbbell model of polymeric flows. Invent. Math., 191(2):427–500, 2013.
  • [27] N. Masmoudi. Equations for Polymeric Materials. Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 2016.
  • [28] A. Matsumura and T. Nishida. The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Japan Acad. Ser. A Math. Sci., 55:337–342, 1979.
  • [29] A. Mellet and A. Vasseur. On the barotropic compressible Navier-Stokes equations. Proc. Japan Acad. Ser. A Math. Sci., 32(3):431–452, 2007.
  • [30] J. Moser. A rapidly convergent iteration method and non-linear partial differential equations. I. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 20:265–315, 1966.
  • [31] J. Nash. Le probleme de cauchy pour les equations differentielles d’un fluide general. Bull. Soc. Math. France., 90(4):487–497, 1962.
  • [32] L. Nirenberg. On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa, 13(2):115–162, 1959.
  • [33] M. Renardy. An existence theorem for model equations resulting from kinetic theories of polymer solutions. SIAM J. Math. Anal., 22(2):313–327, 1991.
  • [34] M. E. Schonbek. L2L^{2} decay for weak solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal., 88(3):209–222, 1985.
  • [35] M. E. Schonbek. Existence and decay of polymeric flows. SIAM J. Math. Anal., 41(2):564–587, 2009.
  • [36] A. F. Vasseur and C. Yu. Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations. Invent. Math., 206(3):935–974, 2016.
  • [37] Z. Xin. Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density. Comm. Pure Appl. Math., 51(3):229–240, 1998.
  • [38] Z. Xin and W. Yan. On blow-up of classical solutions to the compressible Navier-Stokes equations. Comm. Math. Phys., 321(2):529–541, 2013.
  • [39] J. Xu. A low-frequency assumption for optimal time-decay estimates to the compressible Navier-Stokes equations. Comm. Math. Phys., 371(2):525–560, 2019.
  • [40] H. Zhang and P. Zhang. Local existence for the FENE-dumbbell model of polymeric fluids. Arch. Ration. Mech. Anal., 181(2):373–400, 2006.