This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Global Smooth Radially Symmetric Solutions to a Multidimensional Radiation Hydrodynamics Model

Huijiang Zhao Corresponding author. Email: [email protected](H. Zhao); [email protected](B. Zhu) School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China Boran Zhu School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
Abstract

The motion of a compressible inviscid radiative flow can be described by the radiative Euler equations, which consists of the Euler system coupled with a Poisson equation for the radiative heat flux through the energy equation. Although solutions of the compressible Euler system will generally develop singularity no matter how smooth and small the initial data are, it is believed that the radiation effect does imply some dissipative mechanism, which can guarantee the global regularity of the solutions of the radiative Euler equations at least for small initial data.

Such an expectation was rigorously justified for the one-dimensional case, as for the multidimensional case, to the best of our knowledge, no result was available up to now. The main purpose of this paper is to show that the initial-boundary value problem of such a radiative Euler equation in a three-dimensional bounded concentric annular domain does admit a unique global smooth radially symmetric solution provided that the initial data is sufficiently small.

Keywords: Multidimensional radiative Euler equation; Global smooth radially symmetric solution; Symmetric hyperbolic system; A priori estimates.

1 introduction

In the modeling of astrophysical flows, reentry problems, or high temperature combustion phenomena, we have to deal with high-temperature fluids and when the temperatures of the fluids are more than 10000K, radiative effect should be taken into consideration ([1], [2]).

In fact, when fluid interacts with radiation through energy exchange, since the momentum caused by the radiation can be neglected, while the radiative flux must be added into the energy equation since the transport of energy carried by the radiation process is more important, we can then use the following radiative Euler equations, which is a compressible Euler system coupled with an elliptic equation for radiation flux, as an approximate system to describe the motion of radiation hydrodynamics (For more Physical background, we refer to Chapter \@slowromancapxi@ and \@slowromancapxii@ in [23], and for derivation of the equation for radiation flux, one can also refer to [9] and [26]):

{ρt+x(ρ𝒖)=0,(ρ𝐮)t+x(ρ(𝐮𝐮)+xP=0,(ρ(e+|𝐮|22))t+x((ρ(e+|𝐮|22)+P)𝐮)+x𝐪=0,x(x𝐪)+a1𝐪+b1x(θ4)=0.\left\{\begin{aligned} &\rho_{t}+\nabla_{x}\cdot(\rho\bm{u})=0,\\ &(\rho{\bf u})_{t}+\nabla_{x}\cdot(\rho({\bf u}\otimes{\bf u})+\nabla_{x}P=0,\\ &\left(\rho\left(e+\frac{|{\bf u}|^{2}}{2}\right)\right)_{t}+\nabla_{x}\cdot\left(\left(\rho\left(e+\frac{|{\bf u}|^{2}}{2}\right)+P\right){\bf u}\right)+\nabla_{x}\cdot{\bf q}=0,\\ &-\nabla_{x}\left(\nabla_{x}\cdot{\bf q}\right)+a_{1}{\bf q}+b_{1}\nabla_{x}\left(\theta^{4}\right)=0.\end{aligned}\right. (1.1)

Here a1>0,b1>0a_{1}>0,b_{1}>0 are positive constants. The primary dependent variables are the fluid density ρ\rho, the fluid velocity 𝐮3{\bf u}\in\mathbb{R}^{3}, the absolute temperature θ\theta, and the radiative heat flux 𝐪3{\bf q}\in\mathbb{R}^{3}. The pressure PP, the internal energy ee, and the other three thermodynamic variables the density ρ\rho, the absolute temperature θ\theta, and the specific entropy ss are related through Gibbs’ equation de=θdsPdρ1de=\theta ds-Pd\rho^{-1}.

Throughout this paper, we consider only ideal, polytropic gases:

P\displaystyle P =\displaystyle= Rρθ=Aρ1+CvCvexp(sCv),\displaystyle R\rho\theta=A\rho^{\frac{1+C_{v}}{C_{v}}}{\rm exp}\left(\frac{s}{C_{v}}\right),
θ\displaystyle\theta =\displaystyle= ARρ1Cvexp(sCv),\displaystyle\frac{A}{R}\rho^{\frac{1}{C_{v}}}{\rm exp}\left(\frac{s}{C_{v}}\right), (1.2)
ρ\displaystyle\rho =\displaystyle= (AR)CvCv+1PCvCv+1exp(sCv+1),\displaystyle\left(\frac{A}{R}\right)^{\frac{C_{v}}{C_{v}+1}}P^{\frac{C_{v}}{C_{v}+1}}{\rm exp}\left(-\frac{s}{C_{v}+1}\right),

where R>0,A>0R>0,A>0 (specific gas constant) and Cv>0C_{v}>0 (specific heat at constant volume) are positive constants. Without loss of generality, we assume in the rest of this paper that a1=b1=R=1a_{1}=b_{1}=R=1.

Due to the high nonlinearities of the rariative Euler equations (1.1) and the complex physical phenomena described by it, its mathematical theory is one of the hottest topics in the field of nonlinear partial differential equations. The main observation is that, although solutions of the compressible Euler system will generally develop singularity no matter how smooth and how small the initial data are (one can refer to John [10], Lax [12], Sideris [22] and the book [3]), it is believed that the radiation effect does imply some dissipative mechanism, which can guarantee the global regularity of the solutions to radiative Euler equations at least for small initial data. One of the main mathematical problems concerning the radiative Euler equations (1.1) is to justify the above expectation rigorously.

For such a problem, the results for one-dimensional case are quite complete, one can refer to Kawashima et al. [11] for the global existence of classical solutions and Deng and Yang [4] for pointwise structure. About the stability of elementary waves, one can refer to Lin et al. [15] and [16] respectively for the existence and stability of shock wave, Lin [14] for rarefaction wave and Wang and Xie [27] for viscous contact wave. As for the composite of several elementary waves, there are Fan et al. [6] about two viscous shock waves, Xie [28] about viscous contact wave and rarefaction waves. There are results with respect to some asymptotic limit of the radiation hydrodynamics towards elementary waves, we refer to Huang and Li [8], Wang and Xie [25] and Rohde et al. [20].

While for the multidimensional case, to the best of our knowledge, no result was available up to now. The main purpose of this paper is to show that the initial-boundary value problem of such a radiative Euler equations in a three-dimensional bounded concentric annular domain does admit a unique global smooth radially symmetric solution provided that the initial data is sufficiently small.

Now we transfer the system in our case to a desired form. Since all thermodynamics variables ρ,θ,e,P\rho,\ \theta,\ e,\ P as well as the entropy ss can be written as functions of any two of them, if we take PP and ss as independent variables, the system (1.1) can be rewritten in terms of PP, 𝒖\bm{u}, ss and 𝒒\bm{q} as

{Pt+(𝒖)P+CvCv+1Pdiv𝒖+1Cvdiv𝒒=0,𝒖t+(𝒖)𝒖+Pρ=0,st+(𝒖)s+div𝒒P=0,div𝒒+𝒒+4θ3Cv+1(Pρ+θs)=0.\left\{\begin{aligned} &P_{t}+\left(\bm{u}\cdot\nabla\right)P+\frac{C_{v}}{C_{v}+1}P{\rm div}\bm{u}+\frac{1}{C_{v}}{\rm div}\bm{q}=0,\\ &\bm{u}_{t}+(\bm{u}\cdot\nabla)\bm{u}+\frac{\nabla P}{\rho}=0,\\ &s_{t}+(\bm{u}\cdot\nabla)s+\frac{{\rm div}\bm{q}}{P}=0,\\ &-\nabla{\rm div}\bm{q}+\bm{q}+\frac{4\theta^{3}}{C_{v}+1}\left(\frac{\nabla P}{\rho}+\theta\nabla s\right)=0.\end{aligned}\right. (1.3)

Here to deduce the last equation in (1.3), we have used the fact that

div𝒒+𝒒+4θ3θ\displaystyle-\nabla{\rm div}\bm{q}+\bm{q}+4\theta^{3}\nabla\theta =div𝒒+𝒒+4θ3(1Cv+1θ+CvCv+1θ)\displaystyle=-\nabla{\rm div}\bm{q}+\bm{q}+4\theta^{3}\left(\frac{1}{C_{v}+1}\nabla\theta+\frac{C_{v}}{C_{v}+1}\nabla\theta\right)
=div𝒒+𝒒+4θ3{1Cv+1θ+CvCv+1[Aρ1Cvexp(sCv)]}\displaystyle=-\nabla{\rm div}\bm{q}+\bm{q}+4\theta^{3}\left\{\frac{1}{C_{v}+1}\nabla\theta+\frac{C_{v}}{C_{v}+1}\nabla\left[A\rho^{\frac{1}{C_{v}}}{\rm exp}\left(\frac{s}{C_{v}}\right)\right]\right\}
=div𝒒+𝒒+4θ3(1Cv+1θ+1Cv+1θρρ+θs)\displaystyle=-\nabla{\rm div}\bm{q}+\bm{q}+4\theta^{3}\left(\frac{1}{C_{v}+1}\nabla\theta+\frac{1}{C_{v}+1}\frac{\theta}{\rho}\nabla\rho+\theta\nabla s\right)
=div𝒒+𝒒+4θ3Cv+1(Pρ+θs)=0.\displaystyle=-\nabla{\rm div}\bm{q}+\bm{q}+\frac{4\theta^{3}}{C_{v}+1}\left(\frac{\nabla P}{\rho}+\theta\nabla s\right)=0.

We consider the system (1.3) in a bounded concentric annular domain Ω={𝒙|𝒙3,|𝒙|=r, 0<a<r<b<+}\Omega=\{\bm{x}\ \big{|}\ \bm{x}\in\mathbb{R}^{3},\ |\bm{x}|=r,\ 0<a<r<b<+\infty\} with prescribed initial data

(P(0,𝒙),𝒖(0,𝒙),s(0,𝒙))=(P0(𝒙),𝒖0(𝒙),s0(𝒙))for𝒙Ω\displaystyle\big{(}P(0,\bm{x}),\bm{u}(0,\bm{x}),s(0,\bm{x})\big{)}=(P_{0}(\bm{x}),\bm{u}_{0}(\bm{x}),s_{0}(\bm{x}))\quad{\rm for}\ \ \bm{x}\in\Omega (1.4)

and boundary conditions

𝒖(t,𝒙)=0,𝒒(t,𝒙)=0on(t,𝒙)[0,+)×Ω.\bm{u}(t,\bm{x})=0,\quad\bm{q}(t,\bm{x})=0\quad{\rm on}\ (t,\bm{x})\in[0,+\infty)\times\partial\Omega. (1.5)

Now we study the spherically symmetric classical solution to the initial boundary problem (1.3)–(1.5) with the form that

P(t,𝒙)=ρ(t,𝒙)θ(t,𝒙)=ρ~(t,r)θ~(t,r)=P~(t,r),\displaystyle P(t,\bm{x})=\rho(t,\bm{x})\theta(t,\bm{x})=\tilde{\rho}(t,r)\tilde{\theta}(t,r)=\tilde{P}(t,r),
𝒖(t,𝒙)=u~(t,r)r𝒙,s(t,𝒙)=s~(t,r),𝒒(t,𝒙)=q~(t,r)r𝒙.\displaystyle\bm{u}(t,\bm{x})=\frac{\tilde{u}(t,r)}{r}\bm{x},\ s(t,\bm{x})=\tilde{s}(t,r),\ \bm{q}(t,\bm{x})=\frac{\tilde{q}(t,r)}{r}\bm{x}.

The corresponding spherical form of the initial boundary value problem (1.3)–(1.5) reads

{P~t+u~P~r+Cv+1CvP~(r2u~)rr2+1Cv(r2q~)rr2=0,u~t+u~u~r+P~ρ~=0,s~t+u~s~r+(r2q~)rr2P~=0,[(r2q~)rr2]r+q~+4θ~3Cv+1(P~rρ~+θ~s~r)=0\left\{\begin{aligned} &\tilde{P}_{t}+\tilde{u}\tilde{P}_{r}+\frac{C_{v}+1}{C_{v}}\tilde{P}\frac{(r^{2}\tilde{u})_{r}}{r^{2}}+\frac{1}{C_{v}}\frac{(r^{2}\tilde{q})_{r}}{r^{2}}=0,\\ &\tilde{u}_{t}+\tilde{u}\tilde{u}_{r}+\frac{\nabla\tilde{P}}{\tilde{\rho}}=0,\\ &\tilde{s}_{t}+\tilde{u}\tilde{s}_{r}+\frac{(r^{2}\tilde{q})_{r}}{r^{2}\tilde{P}}=0,\\ &-\left[\frac{(r^{2}\tilde{q})_{r}}{r^{2}}\right]_{r}+\tilde{q}+\frac{4\tilde{\theta}^{3}}{C_{v}+1}\left(\frac{\tilde{P}_{r}}{\tilde{\rho}}+\tilde{\theta}\tilde{s}_{r}\right)=0\end{aligned}\right. (1.6)

with the corresponding initial and boundary conditions

(P~(0,r),u~(0,r),s~(0,r))\displaystyle\big{(}\tilde{P}(0,r),\tilde{u}(0,r),\tilde{s}(0,r)\big{)} =(P~0,u~0,s~0)(r),\displaystyle=(\tilde{P}_{0},\tilde{u}_{0},\tilde{s}_{0})(r),\qquad arb,\displaystyle a\leq r\leq b, (1.7)
(u~(t,a),q~(t,a))\displaystyle(\tilde{u}(t,a),\tilde{q}(t,a)) =(u~(t,b),q~(t,b))=0,\displaystyle=(\tilde{u}(t,b),\tilde{q}(t,b))=0,\qquad t0.\displaystyle t\geq 0. (1.8)

Now we interpret the initial boundary value problem (1.3)–(1.8) into Lagrangian coordinates. We now use (1.1)1\eqref{cns1}_{1} to find another set of variables (t,x)(t^{\prime},x) such that

{r=r(t,x)t=t\left\{\begin{aligned} r&=r(t^{\prime},x)\\ t&=t^{\prime}\end{aligned}\right.

and xx is not dependent on tt, which is called Lagrangian coordinate. Define coordinate transformation that

{r(t,x)=r0(x)+0tu~(τ,r(τ,x))dτ,t=t,\left\{\begin{aligned} &r(t^{\prime},x)=r_{0}(x)+\int_{0}^{t^{\prime}}\tilde{u}(\tau,r(\tau,x))\mathrm{d}\tau,\\ &t=t^{\prime},\end{aligned}\right. (1.9)

where r0(x)r_{0}(x) is defined by following way: First, define the function h(z)h(z) as

h(z):=azy2ρ~0(t,y)dy.\displaystyle h(z):=\int_{a}^{z}y^{2}\tilde{\rho}_{0}(t,y)\ \mathrm{d}y.

Since that ρ~0(y)>0\tilde{\rho}_{0}(y)>0 (which is assumed in Theorem 1.1), function h(z)h(z) is invertible and h1()h^{-1}(\cdot) is well defined. Then, r0(x)r_{0}(x) is defined as

r0(x)=h1(x).\displaystyle r_{0}(x)=h^{-1}(x). (1.10)

We claim that the coordinate (t,x)(t^{\prime},x) is Lagrangian coordinate. The first thing we want to show is that xx is truly not dependent on tt. So we now prove that tx=0\partial_{t}x=0 and

x=ar(t,x)y2ρ~(t,y)dy=ar(t,x)y2ρ~(t,y)dy.\displaystyle x=\int_{a}^{r(t^{\prime},x)}y^{2}\tilde{\rho}(t,y)\ \mathrm{d}y=\int_{a}^{r(t,x)}y^{2}\tilde{\rho}(t,y)\ \mathrm{d}y. (1.11)

From (1.1)1\eqref{cns1}_{1} and (1.9), we can see that

tar(t,x)y2ρ~(t,y)dy\displaystyle\partial_{t}\int_{a}^{r(t,x)}y^{2}\tilde{\rho}(t,y)\ \mathrm{d}y =r2ρ~(t,r)trar(t,x)y2ρ~t(t,y)dy\displaystyle=r^{2}\tilde{\rho}(t,r)\partial_{t}r-\int_{a}^{r(t,x)}y^{2}\tilde{\rho}_{t}(t,y)\ \mathrm{d}y
=r2ρ~(t,x)trar(t,x)d[y2ρ~u~(t,y)]\displaystyle=r^{2}\tilde{\rho}(t,x)\partial_{t}r-\int_{a}^{r(t,x)}\mathrm{d}\left[y^{2}\tilde{\rho}\tilde{u}(t,y)\right]
=r2ρ~(tru~)=0.\displaystyle=r^{2}\tilde{\rho}\left(\partial_{t}r-\tilde{u}\right)=0. (1.12)

The second equality holds because after spherically symmetric transform, the equation of ρ~(t,r)\tilde{\rho}(t,r) takes the form that

ρ~t+(r2ρ~u~)rr2=0.\displaystyle\tilde{\rho}_{t}+\frac{(r^{2}\tilde{\rho}\tilde{u})_{r}}{r^{2}}=0. (1.13)

We integrate (1.12) over (0,t)(0,t) to get that

ar(t,x)y2ρ~(t,y)dy=ar0(x)y2ρ~0(y)dy=h(r0)=x.\displaystyle\int_{a}^{r(t,x)}y^{2}\tilde{\rho}(t,y)\ \mathrm{d}y=\int_{a}^{r_{0}(x)}y^{2}\tilde{\rho}_{0}(y)\ \mathrm{d}y=h(r_{0})=x.

Without loss of generality, we set h(b)=1h(b)=1, so that x[0,1]x\in[0,1]. Since t=tt^{\prime}=t, without confusion, we still use tt to denote the time variable and we have

P~(t,r)=ρ~(t,r)θ~(t,r)=ρ(t,x)θ(t,x)=P(t,x),u~(t,r)=u(t,x),s~(t,r)=s(t,x),q~(t,r)=q(t,x).\displaystyle\tilde{P}(t,r)=\tilde{\rho}(t,r)\tilde{\theta}(t,r)=\rho(t,x)\theta(t,x)=P(t,x),\ \tilde{u}(t,r)=u(t,x),\ \tilde{s}(t,r)=s(t,x),\ \tilde{q}(t,r)=q(t,x).

The next thing we need to know is that whether this coordinate transformation is well-posed. From the a priori estimates which we are going to derive later , it can be seen that ρ>0\rho>0, so the coordinate transformation is well-posed and identities (1.11), (1.9) imply

rt(t,x)=u(t,x),rx(t,x)=1r2ρ(t,x).\displaystyle r_{t}(t,x)=u(t,x),\quad r_{x}(t,x)=\frac{1}{r^{2}\rho(t,x)}. (1.14)

By virtue of (1.14), the system (1.6) is reformulated to that of (P,u,s,q)(t,x)(P,u,s,q)(t,x), which takes the form

{Pt+Cv+1CvPρ(r2u)x+1Cvρ(r2q)x=0,ut+r2Px=0,st+(r2q)xθ=0,r2ρ[ρ(r2q)x]x+q+4r2θ3Cv+1(Px+Psx)=0,\left\{\begin{aligned} &P_{t}+\frac{C_{v}+1}{C_{v}}P\rho(r^{2}u)_{x}+\frac{1}{C_{v}}\rho(r^{2}q)_{x}=0,\\ &u_{t}+r^{2}P_{x}=0,\\ &s_{t}+\frac{(r^{2}q)_{x}}{\theta}=0,\\ &-r^{2}\rho\left[\rho(r^{2}q)_{x}\right]_{x}+q+\frac{4r^{2}\theta^{3}}{C_{v}+1}\left(P_{x}+Ps_{x}\right)=0,\end{aligned}\right. (1.15)

where t>0t>0, x𝕀:=(0,1)x\in\mathbb{I}:=(0,1). The corresponding initial and boundary conditions are

(P(0,x),u(0,x),s(0,x))\displaystyle(P(0,x),u(0,x),s(0,x)) =(P0(x),u0(x),s0(x)),\displaystyle=(P_{0}(x),u_{0}(x),s_{0}(x)),\qquad x𝕀,\displaystyle x\in\mathbb{I}, (1.16)
(u(t,0),q(t,0))\displaystyle(u(t,0),q(t,0)) =(u(t,1),q(t,1))=0,\displaystyle=(u(t,1),q(t,1))=0,\qquad t0,\displaystyle t\geq 0, (1.17)

where (P0,u0,s0):=(P~0,u~0,s~0)r0,(P_{0},u_{0},s_{0}):=(\tilde{P}_{0},\tilde{u}_{0},\tilde{s}_{0})\circ r_{0}, the symbol \circ denotes composition, and r0r_{0} is defined by (1.10).

To state our main result, we first introduce some notations.

Firstly, the initial data (tkP(0,x)\left(\partial_{t}^{k}P(0,x)\right.,tku(0,x)\partial_{t}^{k}u(0,x),tks(0,x)\partial_{t}^{k}s(0,x),tk1q(0,x))\left.\partial_{t}^{k-1}q(0,x)\right) (for any integer k1k\geq 1) are defined inductively by following procedure: first apply tk1\partial_{t}^{k-1} (k=1,2,k=1,2,\cdots) on system (1.15); second obtain tk1q(0,x)\partial_{t}^{k-1}q(0,x) by letting t=0t=0 in the last elliptic equation and solving it; Third obtain (tkP(0,x),tku(0,x),tks(0,x))\left(\partial_{t}^{k}P(0,x),\partial_{t}^{k}u(0,x),\partial_{t}^{k}s(0,x)\right) by solving for (tkP(t,x),tku(t,x),tks(t,x))\left(\partial_{t}^{k}P(t,x),\partial_{t}^{k}u(t,x),\partial_{t}^{k}s(t,x)\right) in the first three equations and evaluating at t=0t=0.

In order to clarify the space of solutions, we introduce the space

Xm([0,T];𝕀):=k=0mCk([0,T];Hmk(𝕀))(for some positive integer m)\displaystyle X_{m}\left([0,T];\mathbb{I}\right):=\bigcap_{k=0}^{m}C^{k}\left([0,T];H^{m-k}\left(\mathbb{I}\right)\right)\quad\left(\ \text{for some positive integer }m\ \right)

with norm

|f|m,T=sup0tT|f(t)|m=sup0tTk=0mtkf(t)Hmk(𝕀).\displaystyle{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|f\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,T}=\sup_{0\leq t\leq T}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|f(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m}=\sup_{0\leq t\leq T}\sum_{k=0}^{m}\left\|\partial_{t}^{k}f(t)\right\|_{H^{m-k}(\mathbb{I})}.

According to the above definitions, the value |(P,u,s,q,qx)(0)|m{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(P,u,s,q,q_{x}\right)(0)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m} is well-defined. Furthermore, if we assume (P01,u0,s01)Hm\|(P_{0}-1,u_{0},s_{0}-1)\|_{H^{m}} is sufficiently small, it holds that

|(P,u,s,q,qx)(0)|m2C1{(P01,u0,s01)Hm2}(P01,u0,s01)Hm2.\displaystyle{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(P,u,s,q,q_{x}\right)(0)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m}\leq C_{1}\left\{\|(P_{0}-1,u_{0},s_{0}-1)\|^{2}_{H^{m}}\right\}\|(P_{0}-1,u_{0},s_{0}-1)\|^{2}_{H^{m}}. (1.18)

Here and in the rest of this paper, we will frequently use C{}C\{\cdot\}, Ci{}C_{i}\{\cdot\}, Gj{}G_{j}\{\cdot\} to denote some positive constants which are continuous nondecreasing functions of the quantities listed in braces.

Especially, m,tan\interleave\cdot\interleave_{m,tan} is the norm when derivatives with respect to xx are not included. That is,

|f(t)|m,tan=k=0mtkf(t)L2(𝕀).\displaystyle{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|f(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,tan}=\sum_{k=0}^{m}\left\|\partial_{t}^{k}f(t)\right\|_{L^{2}(\mathbb{I})}.

Our ultimate goal is to prove the following theorem concerning the global existence of classical solution to the initial boundary problem (1.15)–(1.17) when the initial data is a small perturbation of a constant state which, for simplicity, is taken as (1,0,1). (The corresponding equilibrium state for (ρ,u,θ)(\rho,u,\theta) is (cρ,0,cθ)(c_{\rho},0,c_{\theta}). We can see from (1) that cρc_{\rho} and cθc_{\theta} are some positive constants.)

Theorem 1.1.

If there exists a small enough constant ϵ0>0\epsilon_{0}>0 such that the initial data satisfies

(P01,u0,s01)Hm2ϵ0(m2)\|(P_{0}-1,u_{0},s_{0}-1)\|^{2}_{H^{m}}\leq\epsilon_{0}\qquad(m\geq 2) (1.19)

with the corresponding compatibility conditions

tku(0,x)=0on𝕀(0km)\displaystyle\partial_{t}^{k}u(0,x)=0\ \text{on}\ \partial\mathbb{I}\qquad(0\leq k\leq m) (1.20)

Then the initial boundary problem (1.15)–(1.17) admits a unique global-in-time solution satisfying

(P(t,x)1,u(t,x),s(t,x)1,q(t,x),qx(t,x))Xm([0,);𝕀).\displaystyle(P(t,x)-1,u(t,x),s(t,x)-1,q(t,x),q_{x}(t,x))\in X_{m}\left([0,\infty);\mathbb{I}\right).

Moreover, there exist constants C0C_{0} (independent of tt) such that for any t>0t>0,

|(P1,u,s1,q,qx)(t)|m2+0t|(DP,Ds)(s)|m12+|(u,q,qx)(s)|m2dsC0|(P1,u,s1)(0)|m2(1.18)C0C1(P01,u0,s01)Hm2.{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(P-1,u,s-1,q,q_{x})(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m}+\int_{0}^{t}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(DP,Ds)(s)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m-1}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(u,q,q_{x})(s)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m}{\rm d}s\\[-5.69054pt] \leq C_{0}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(P-1,u,s-1\right)(0)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m}^{2}\ \ \mathrel{\overset{\makebox[0.0pt]{\mbox{\scriptsize\eqref{XmHm}}}}{\leq}}\ \ C_{0}C_{1}\|(P_{0}-1,u_{0},s_{0}-1)\|^{2}_{H^{m}}.

Here DP=(Pt,Px),Ds=(st,sx)DP=(P_{t},P_{x}),Ds=(s_{t},s_{x}) and the constant C1C_{1} is defined in (1.18).

Remark 1.1.

Some remarks are listed below:

  • In our main result, we ask the initial data is a small perturbation near the equilibrium state where (P,u,s)=(1,0,1)(P,u,s)=(1,0,1). For the corresponding global solvability results with large initial data, it is shown in [13] for its one-dimensional Cauchy problem that its solution will develop singularity for a class of state equations and a class of large initial data even the thermal conductivity is taken into account, while the result obtained in [29] shows that, for the initial-boundary value problem of the radiative Euler equations in a one-dimensional periodic box, if both viscosity and thermal conductivity are introduced, such an initial-boundary value problem does exists a unique global smooth solution for any large initial data.

  • Although global smooth solutions are construceted in this paper, its large time behavior is not clear. Moreover, it would be interesting to consider the exterior problem, i.e., the case with b=+b=+\infty. Such problems are under our current research.

We can see it from the a priori estimates in Section 2 that the main difficulty to obtain the global solvability results from the high-dimensional space variable rr, because the spatial derivative of rr (referring to (1.14)2\eqref{r_eq}_{2}) is not small even with small initial data. Furthermore, we can see rr comes from the Lagrangian coordinate transformation, which gives us a beautiful structure of system (1.15). However, rr as a function of ρ\rho and uu, its definition closely related to the nonlinear structure of mass-conservation equation (1.13). This dependency will cause troubles when we try to obtain the local solution of linearized system. (One can refer to the comments under (3.6), (3.8) and (3.36).)

As usual, the main proof of Theorem 1.1 can be divided into two parts, the a priori estimates and the local existence result, which are established respectively in Section 2 and 3. If these two results stand, then with the method of continuity (see for an example that [24, p. 5972-5973]), Theorem 1.1 holds.

2 A Priori Estimates

To simplify the a priori estimates, we reformulate our system around the equilibrium state by taking change of variables as that (P,u,s,q)(P+1,u,s+1,q)(P,u,s,q)\rightarrow(P+1,u,s+1,q) and the system (1.15) is reformulated as

{Pt+Cv+1Cv(P+1)ρ(r2u)x+1Cvρ(r2q)x=0,(r2u)t+r4Px=2ru2,st+(r2q)xθ=0,qr2ρ2(r2q)xx+4r2θ3Cv+1(Px+sx)=12r2(ρ2)x(r2q)x4r2θ3Cv+1Psx,\left\{\begin{aligned} &P_{t}+\frac{C_{v}+1}{C_{v}}(P+1)\rho(r^{2}u)_{x}+\frac{1}{C_{v}}\rho(r^{2}q)_{x}=0,\\[5.69054pt] &(r^{2}u)_{t}+r^{4}P_{x}=2ru^{2},\\[5.69054pt] &s_{t}+\frac{(r^{2}q)_{x}}{\theta}=0,\\ &q-r^{2}\rho^{2}(r^{2}q)_{xx}+\frac{4r^{2}\theta^{3}}{C_{v}+1}\left(P_{x}+s_{x}\right)=\frac{1}{2}r^{2}(\rho^{2})_{x}(r^{2}q)_{x}-\frac{4r^{2}\theta^{3}}{C_{v}+1}Ps_{x},\end{aligned}\right. (2.1)

as well as the linearized form that

{Pt+Cv+1Cvcρ(r2u)x+1Cv(r2q)x=𝕊1,ut+r2Px=0,st+1cθ(r2q)x=𝕊3,qr2cρ2(r2q)xx+4r2cθ3Cv+1(Px+sx)=𝕊4,\left\{\begin{aligned} &P_{t}+\frac{C_{v}+1}{C_{v}}c_{\rho}(r^{2}u)_{x}+\frac{1}{C_{v}}(r^{2}q)_{x}=\mathbb{S}_{1},\\ &u_{t}+r^{2}P_{x}=0,\\[5.69054pt] &s_{t}+\frac{1}{c_{\theta}}(r^{2}q)_{x}=\mathbb{S}_{3},\\ &q-r^{2}c_{\rho}^{2}(r^{2}q)_{xx}+\frac{4r^{2}c_{\theta}^{3}}{C_{v}+1}\left(P_{x}+s_{x}\right)=\mathbb{S}_{4},\end{aligned}\right. (2.2)

where

𝕊1=Cv+1Cv(cρρ)(r2u)x+Cv+1CvρP(r2u)x+1Cv(1ρ)(r2q)x,\displaystyle\mathbb{S}_{1}=\frac{C_{v}+1}{C_{v}}(c_{\rho}-\rho)(r^{2}u)_{x}+\frac{C_{v}+1}{C_{v}}\rho P(r^{2}u)_{x}+\frac{1}{C_{v}}(1-\rho)(r^{2}q)_{x},
𝕊3=(1cθ1θ)(r2q)x,\displaystyle\mathbb{S}_{3}=\left(\frac{1}{c_{\theta}}-\frac{1}{\theta}\right)(r^{2}q)_{x},
𝕊4=r2(ρ2cρ2)(r2q)xx+4r2Cv+1(cθ3θ3)(Px+sx)+12r2(ρ2)x(r2q)x4r2θ3Cv+1Psx.\displaystyle\mathbb{S}_{4}=r^{2}(\rho^{2}-c_{\rho}^{2})(r^{2}q)_{xx}+\frac{4r^{2}}{C_{v}+1}(c_{\theta}^{3}-\theta^{3})\left(P_{x}+s_{x}\right)+\frac{1}{2}r^{2}(\rho^{2})_{x}(r^{2}q)_{x}-\frac{4r^{2}\theta^{3}}{C_{v}+1}Ps_{x}.

The corresponding initial and boundary conditions are given by that

(P(0,x),u(0,x),s(0,x))\displaystyle(P(0,x),u(0,x),s(0,x)) =(P01,u0,s01)(x),\displaystyle=(P_{0}-1,u_{0},s_{0}-1)(x),\qquad x𝕀,\displaystyle x\in\mathbb{I}, (2.3)
(u(t,0),q(t,0))\displaystyle(u(t,0),q(t,0)) =(u(t,1),q(t,1))=0,\displaystyle=(u(t,1),q(t,1))=0,\qquad t0,\displaystyle t\geq 0, (2.4)

For later use, we list some Sobolev inequalities refined with respect to norm m\interleave\cdot\interleave_{m} as follows

Lemma 2.1 (refined version of Appendix B in [21]).

Let f,gXk([0,),𝕀)f,g\in X_{k}([0,\infty),\mathbb{I}). Then

  • (1)(1)

    |fg|1|f|1|g|1{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|fg\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{1}\lesssim{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|f\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{1}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|g\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{1}, with k=1k=1; |fg|k|f|k|g|k1+|f|k|g|k1{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|fg\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}\lesssim{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|f\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|g\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k-1}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|f\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|g\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k-1}, with k2k\geq 2; (From now on, that XYX\lesssim Y means XCYX\leq CY for some trivial constant CC.)

  • (2)(2)

    DαfDβg|f|s1a1|f|s111a1|g|s2a2|g|s211a2\|D^{\alpha}fD^{\beta}g\|\lesssim{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|f\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{s_{1}}^{a_{1}}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|f\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{s_{1}-1}^{1-a_{1}}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|g\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{s_{2}}^{a_{2}}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|g\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{s_{2}-1}^{1-a_{2}}, with 0<a1,a2<10<a_{1},a_{2}<1, provided |α|s11,|β|s21,|α|+|β|+1s1+s2, 1s1,s2k|\alpha|\leq s_{1}-1,\ |\beta|\leq s_{2}-1,\ |\alpha|+|\beta|+1\leq s_{1}+s_{2},\ 1\leq s_{1},s_{2}\leq k;

  • (3)(3)

    F(f,g)F(f,g) is a Ck(k2)C^{k}\ (k\geq 2) function with respect to (f,g)(f,g), then

    |F|k\displaystyle{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|F\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k} |γ|=0kDγ(F)|γ|=0k(figjF)Dα1fDαifDβ1gDβjg\displaystyle\leq\sum_{|\gamma|=0}^{k}\|D^{\gamma}(F)\|\leq\sum_{|\gamma|=0}^{k}\sum\left\|\left(\partial^{i}_{f}\partial^{j}_{g}F\right)D^{\alpha^{1}}f\cdots D^{\alpha^{i}}fD^{\beta^{1}}g\cdots D^{\beta^{j}}g\right\|
    |F|LC{𝕀}+|γ|=1k|figjF|LDγ(figj)\displaystyle\leq\left|F\right|_{L^{\infty}}C\{\mathbb{I}\}+\sum_{|\gamma|=1}^{k}\sum\left|\partial^{i}_{f}\partial^{j}_{g}F\right|_{L^{\infty}}\left\|D^{\gamma}\left(f^{i}g^{j}\right)\right\|
    |γ|=0k|figjF|L(1+|f|k1i1|g|k1j|f|k+|f|k1i|g|k1j1|g|k)\displaystyle\lesssim\sum_{|\gamma|=0}^{k}\sum\left|\partial^{i}_{f}\partial^{j}_{g}F\right|_{L^{\infty}}\left(1+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|f\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k-1}^{i-1}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|g\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k-1}^{j}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|f\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|f\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k-1}^{i}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|g\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k-1}^{j-1}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|g\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}\right)
    C{𝕀,FCk}[(1+|||f|||k1)k1(1+|||g|||k1)k1(1+|||f|||k)\displaystyle\leq C\left\{\mathbb{I},\left\|F\right\|_{C^{k}}\right\}\left[\left(1+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|f\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k-1}\right)^{k-1}\left(1+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|g\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k-1}\right)^{k-1}\left(1+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|f\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}\right)\right.
    +(1+|||f|||k1)k1(1+|||g|||k1)k1(1+|||g|||k)].\displaystyle\qquad\qquad\qquad\qquad\qquad\quad\left.+\left(1+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|f\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k-1}\right)^{k-1}\left(1+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|g\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k-1}\right)^{k-1}\left(1+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|g\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}\right)\right].

    Here α1,,αi,,β1,,βj,γ\alpha^{1},\cdots,\alpha^{i},\cdots,\beta^{1},\cdots,\beta^{j},\ \gamma are two-dimensional multi-index ((For an instance, Let αi=(α1i,α2i)\alpha^{i}=\left(\alpha^{i}_{1},\alpha^{i}_{2}\right), then Dα=tα1ixα2iD^{\alpha}=\partial_{t}^{\alpha^{i}_{1}}\partial_{x}^{\alpha^{i}_{2}}.)); 0i+j|γ|;|α1|++|αi|+|β1|++|βj|=|γ|0\leq i+j\leq|\gamma|;\ |\alpha^{1}|+\cdots+|\alpha^{i}|+|\beta^{1}|+\cdots+|\beta^{j}|=|\gamma|; C{𝕀,FCk}C\left\{\mathbb{I},\left\|F\right\|_{C^{k}}\right\} is a positive nondecreasing constant with respect to 𝕀\mathbb{I} and FCk\left\|F\right\|_{C^{k}}.

We define the solution spaces with parameters T>0T>0 and N>0N>0 that

Am([0,T];𝕀;N)={f(t,x)|(t,x)[0,T]×𝕀,|f|m,tan2+|f|m12N},\displaystyle A_{m}\left([0,T];\mathbb{I};N\right)=\left\{f(t,x)\ \Big{|}\ (t,x)\in[0,T]\times\mathbb{I},\ {\left|\kern-0.96873pt\left|\kern-0.96873pt\left|f\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m,tan}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|f\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m-1}\leq N\right\},
Bm([0,T];𝕀;N)={fXm([0,T];𝕀)||f|mN}.\displaystyle B_{m}\left([0,T];\mathbb{I};N\right)=\left\{f\in X_{m}\left([0,T];\mathbb{I}\right)\Big{|}\ {\left|\kern-0.96873pt\left|\kern-0.96873pt\left|f\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m}\leq N\right\}.

The a priori estimates (P,u,s,q)(P,u,s,q) in a certain solution space are derived in this subsection as follows.

Proposition 2.2 (A priori estimate).

Suppose that the initial data (P01,u0,s01)(P_{0}-1,u_{0},s_{0}-1) satisfy the conditions in Theorem 1.1 and the initial value problem (1.3) has a unique solution (P,u,s,q)(P,u,s,q) satisfying (P,u,s,q,qx)Bm([0,T];𝕀;ϵ)(P,u,s,q,q_{x})\in B_{m}([0,T];\mathbb{I};\epsilon), where m is an integer satisfying m2m\geq 2, TT, ϵ\epsilon are some positive constants and ϵ\epsilon is small enough. Then there exists a constant C0>0C_{0}>0 , which is independent of TT, such that

|(P,u,s,q,qx)(t)|m2+0t|(DP,Ds)(s)|m12+|(u,q,qx)(s)|m2dsC0|(P1,u,s1)(0)|m2(1.18)C0C1(P01,u0,s01)Hm2:=V0.{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(P,u,s,q,q_{x})(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m}+\int_{0}^{t}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(DP,Ds)(s)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m-1}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(u,q,q_{x})(s)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m}{\rm d}s\\[-5.69054pt] \leq C_{0}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(P-1,u,s-1\right)(0)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m}^{2}\ \ \mathrel{\overset{\makebox[0.0pt]{\mbox{\scriptsize\eqref{XmHm}}}}{\leq}}\ \ C_{0}C_{1}\|(P_{0}-1,u_{0},s_{0}-1)\|^{2}_{H^{m}}:=V_{0}. (2.5)

The proof of Proposition 2.2 is divided into the following three lemmas.

Lemma 2.3.

Under the assumption of Proposition 2.2, for any t[0,T]t\in[0,T], it holds that

ddt(P,u,s)(t)2+[q,(r2q)x(t)]2ϵ[Px,sx,(r2u)x](t)2.\frac{\rm d}{{\rm d}t}\|(P,u,s)(t)\|^{2}+\left\|\left[q,(r^{2}q)_{x}(t)\right]\right\|^{2}\lesssim\epsilon\left\|\left[P_{x},s_{x},(r^{2}u)_{x}\right](t)\right\|^{2}. (2.6)
Proof.

By computing (2.2)1×Cv(Cv+1)cρP+(2.2)2×u+(2.2)3×cθs(Cv+1)cρ+(2.2)4×14cθ3q\eqref{cns6}_{1}\times\frac{C_{v}}{(C_{v}+1)c_{\rho}}P+\eqref{cns6}_{2}\times u+\eqref{cns6}_{3}\times\frac{c_{\theta}s}{(C_{v}+1)c_{\rho}}+\eqref{cns6}_{4}\times\frac{1}{4c_{\theta}^{3}}q and integrating the resultant equality over 𝕀\mathbb{I}, we have that

ddt𝕀{Cv(Cv+1)cρP2+u2+cθ(Cv+1)cρs2}dx+𝕀14cθ3q2+cρ24cθ3(r2q)xdx\displaystyle\frac{{\rm d}}{{\rm d}t}\int_{\mathbb{I}}\left\{\frac{C_{v}}{(C_{v}+1)c_{\rho}}P^{2}+u^{2}+\frac{c_{\theta}}{(C_{v}+1)c_{\rho}}s^{2}\right\}\ {\rm d}x+\int_{\mathbb{I}}\frac{1}{4c_{\theta}^{3}}q^{2}+\frac{c_{\rho}^{2}}{4c_{\theta}^{3}}(r^{2}q)_{x}\ {\rm d}x
=\displaystyle= 𝕀[(ρcρ1)P]xr2u(ρcρP2)xr2u+[1Cv+1(ρcρ1)P]xr2q+[(cθθ1)sCv+1]xr2q+\displaystyle\int_{\mathbb{I}}\left[(\frac{\rho}{c_{\rho}}-1)P\right]_{x}r^{2}u-\left(\frac{\rho}{c_{\rho}}P^{2}\right)_{x}r^{2}u+\left[\frac{1}{C_{v}+1}\left(\frac{\rho}{c_{\rho}}-1\right)P\right]_{x}r^{2}q+\left[\left(\frac{c_{\theta}}{\theta}-1\right)\frac{s}{C_{v}+1}\right]_{x}r^{2}q+
[r24cθ3(cρ2ρ2)q]x(r2q)x+r2(cθ3θ3)(Cv+1)cθ3q(Px+sx)+18cθ3r2(ρ2)xq(r2q)xr2θ3(Cv+1)cθ3Pqsxdx\displaystyle\left[\frac{r^{2}}{4c_{\theta}^{3}}(c_{\rho}^{2}-\rho^{2})q\right]_{x}(r^{2}q)_{x}+\frac{r^{2}(c_{\theta}^{3}-\theta^{3})}{(C_{v}+1)c_{\theta}^{3}}q\left(P_{x}+s_{x}\right)+\frac{1}{8c_{\theta}^{3}}r^{2}(\rho^{2})_{x}q(r^{2}q)_{x}-\frac{r^{2}\theta^{3}}{(C_{v}+1)c_{\theta}^{3}}Pqs_{x}\ {\rm d}x
\displaystyle\lesssim ϵ[Px,sx,r2u,q,(r2q)x](t)2\displaystyle\ \epsilon\left\|\left[P_{x},s_{x},r^{2}u,q,(r^{2}q)_{x}\right](t)\right\|^{2}

With Poincare´Poincar\acute{e} inequality, (2.6) stands. ∎

Lemma 2.4.

Under the assumption of Proposition 2.2, for any t[0,T]t\in[0,T], it holds that

|(P,u,s,q,qx)(t)|12+0t(DP,Ds)(s)2+|(u,q,qx)(s)|12dsV0.{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(P,u,s,q,q_{x})(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{1}^{2}+\int_{0}^{t}\left\|\left(DP,Ds\right)(s)\right\|^{2}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(u,q,q_{x}\right)(s)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{1}^{2}{\rm d}s\leq V_{0}.
Proof.

By computing

x(2.1)1×CvCv+1r4Px+x(2.1)2×ρ(P+1)(r2u)x+x(2.1)3×1Cv+1(P+1)r4sx+(2.1)4×1(Cv+1)r2ρ(r4Px+r4sx)\partial_{x}\eqref{cns5}_{1}\times\frac{C_{v}}{C_{v}+1}r^{4}P_{x}+\partial_{x}\eqref{cns5}_{2}\times\rho(P+1)(r^{2}u)_{x}\\ +\partial_{x}\eqref{cns5}_{3}\times\frac{1}{C_{v}+1}(P+1)r^{4}s_{x}+\eqref{cns5}_{4}\times\frac{1}{(C_{v}+1)r^{2}\rho}(r^{4}P_{x}+r^{4}s_{x}) (2.7)

and integrating the resultant equality over 𝕀\mathbb{I}, we have that

ddt𝕀Cv2(Cv+1)r4Px2+12ρ(P+1)[(r2u)x]2+12(Cv+1)(P+1)r4sx2dx+0t𝕀4θ3ρ(Cv+1)2(r2Px+r2sx)2dxdsϵ[Px,sx,(r2u)x](t)2+[q,(r2q)x](t)2.\frac{\rm d}{{\rm d}t}\int_{\mathbb{I}}\frac{C_{v}}{2(C_{v}+1)}r^{4}P_{x}^{2}+\frac{1}{2}\rho(P+1)\left[(r^{2}u)_{x}\right]^{2}+\frac{1}{2(C_{v}+1)}(P+1)r^{4}s_{x}^{2}\ {\rm d}x+\\ \int_{0}^{t}\int_{\mathbb{I}}\frac{4\theta^{3}}{\rho(C_{v}+1)^{2}}(r^{2}P_{x}+r^{2}s_{x})^{2}{\rm d}x{\rm d}s\lesssim\epsilon\left\|\left[P_{x},s_{x},(r^{2}u)_{x}\right](t)\right\|^{2}+\left\|\left[q,(r^{2}q)_{x}\right](t)\right\|^{2}. (2.8)

Here that 𝕀x[(r4Px)(r2u)x]dx=0\int_{\mathbb{I}}\partial_{x}\left[\left(r^{4}P_{x}\right)(r^{2}u)_{x}\right]{\rm d}x=0 is because r4Px=2ru2(r2u)t=0r^{4}P_{x}=2ru^{2}-(r^{2}u)_{t}=0 on 𝕀\partial\mathbb{I}. To make up for the dissipation of (r2u)x(r^{2}u)_{x}, we compute ((2.2)1+(2.2)2)×(r2u)x\left(\eqref{cns6}_{1}+\eqref{cns6}_{2}\right)\times(r^{2}u)_{x} and integrate the resultant equality over 𝕀\mathbb{I} to obtain

ddt𝕀(P+s)(r2u)xdx+(r2u)x2(r2q)x2+Px+sx2+ϵ(Px2+(r2u)x2).\frac{\rm d}{{\rm d}t}\int_{\mathbb{I}}(P+s)(r^{2}u)_{x}\ {\rm d}x+\left\|(r^{2}u)_{x}\right\|^{2}\lesssim\left\|(r^{2}q)_{x}\right\|^{2}+\left\|P_{x}+s_{x}\right\|^{2}+\epsilon\left(\|P_{x}\|^{2}+\|(r^{2}u)_{x}\|^{2}\right). (2.9)

As for the dissipation of PxP_{x}, we multiply (2.1)2\eqref{cns5}_{2} by ×Px\times P_{x} and integrate the resultant equality over 𝕀\mathbb{I} to get

ddt𝕀r2uPxdx+Px2[(r2u)x,(r2q)x]2.\frac{\rm d}{{\rm d}t}\int_{\mathbb{I}}r^{2}uP_{x}\ {\rm d}x+\left\|P_{x}\right\|^{2}\lesssim\left\|\left[(r^{2}u)_{x},(r^{2}q)_{x}\right]\right\|^{2}. (2.10)

Finally take (2.6)+δ3(2.8)+δ2(2.9)+δ1(2.10)\eqref{00}+\delta_{3}\eqref{10}+\delta_{2}\eqref{11}+\delta_{1}\eqref{12} and we have

ddt𝕀\displaystyle\frac{\rm d}{{\rm d}t}\int_{\mathbb{I}} (P2+u2+s2)+δ3{Cv2(Cv+1)r4Px2+12ρ(P+1)[(r2u)x]2+12(Cv+1)(P+1)r4sx2}\displaystyle(P^{2}+u^{2}+s^{2})+\delta_{3}\left\{\frac{C_{v}}{2(C_{v}+1)}r^{4}P_{x}^{2}+\frac{1}{2}\rho(P+1)\left[(r^{2}u)_{x}\right]^{2}+\frac{1}{2(C_{v}+1)}(P+1)r^{4}s_{x}^{2}\right\}
+δ2[(P+s)(r2u)x]+δ1(r2uPx)dx\displaystyle\qquad\qquad\quad\quad+\delta_{2}\left[(P+s)(r^{2}u)_{x}\right]+\delta_{1}\left(r^{2}uP_{x}\right){\rm d}x
+{[q,(r2q)x]2+δ3Px+sx2+δ2(r2u)x2+δ1Px2}0\displaystyle\quad\qquad\qquad\qquad\quad\quad+\left\{\left\|\left[q,(r^{2}q)_{x}\right]\right\|^{2}+\delta_{3}\|P_{x}+s_{x}\|^{2}+\delta_{2}\left\|(r^{2}u)_{x}\right\|^{2}+\delta_{1}\|P_{x}\|^{2}\right\}\leq 0

where δi(i=1,2,3)\delta_{i}\ (i=1,2,3) are positive constants satisfying ϵδ1δ2δ31\epsilon\ll\delta_{1}\ll\delta_{2}\ll\delta_{3}\ll 1. Integrate the last inequality over (0,t)(0,t), we have that

(P,u,s)(t)H12+0t(Px,sx)(s)2+(u,q)(s)H12dsV0.\displaystyle\left\|(P,u,s)(t)\right\|_{H^{1}}^{2}+\int_{0}^{t}\left\|\left(P_{x},s_{x}\right)(s)\right\|^{2}+\left\|\left(u,q\right)(s)\right\|_{H^{1}}^{2}{\rm d}s\leq V_{0}. (2.11)

Here the estimate of 0tu(s)2ds\int_{0}^{t}\|u(s)\|^{2}{\rm d}s is obtained by Poincare´Poincar\acute{e} inequality, since r2u=0r^{2}u=0 on 𝕀\partial\mathbb{I}. Let (2.2)4×q\eqref{cns6}_{4}\times q and integrate the resultant equality over 𝕀\mathbb{I} to obtain

q(t)2+(r2q)x(t)2Px(t)2+sx(t)2.\|q(t)\|^{2}+\|(r^{2}q)_{x}(t)\|^{2}\lesssim\|P_{x}(t)\|^{2}+\|s_{x}(t)\|^{2}. (2.12)

Then we take (2.1)4×(r2q)xx\eqref{cns5}_{4}\times(r^{2}q)_{xx} and integrate the resultant equality over 𝕀\mathbb{I} to get

(r2q)xx(t)2Px(t)2+sx(t)2.\|(r^{2}q)_{xx}(t)\|^{2}\lesssim\|P_{x}(t)\|^{2}+\|s_{x}(t)\|^{2}. (2.13)

With (2.12), (2.13) and (2.11), we have that

(P,u,s,q,qx)(t)H12+0t(Px,sx)(s)2+(u,q,qx)(s)H12dsV0.\displaystyle\left\|(P,u,s,q,q_{x})(t)\right\|_{H^{1}}^{2}+\int_{0}^{t}\left\|\left(P_{x},s_{x}\right)(s)\right\|^{2}+\left\|\left(u,q,q_{x}\right)(s)\right\|_{H^{1}}^{2}{\rm d}s\leq V_{0}. (2.14)

From the first three equations in (2.2), we can see that (Pt,ut,st)\left\|(P_{t},u_{t},s_{t})\right\| are bounded by the left side of (2.14), which gives

|(P,u,s)(t)|12+(q,qx)(t)H12+0t(DP,Ds)(s)2+|u(s)|12+(q,qx)(s)H12dsV0\displaystyle{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(P,u,s)(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{1}^{2}+\left\|(q,q_{x})(t)\right\|_{H^{1}}^{2}+\int_{0}^{t}\left\|\left(DP,Ds\right)(s)\right\|^{2}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|u(s)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{1}^{2}+\left\|(q,q_{x})(s)\right\|_{H^{1}}^{2}{\rm d}s\leq V_{0} (2.15)

By taking t(2.1)4×qt\partial_{t}\eqref{cns5}_{4}\times q_{t} and integrating the resultant equality over 𝕀\mathbb{I}, we have that

qt(t)2+(r2q)xt(t)2(Pt+st)(r2q)xt(t)2+ϵ(qt2+(r2q)xx2)+ϵ(r2q)xt2\displaystyle\|q_{t}(t)\|^{2}+\|(r^{2}q)_{xt}(t)\|^{2}\lesssim\|\left(P_{t}+s_{t}\right)\|\|(r^{2}q)_{xt}(t)\|^{2}+\epsilon\left(\|q_{t}\|^{2}+\|(r^{2}q)_{xx}\|^{2}\right)+\epsilon\|(r^{2}q)_{xt}\|^{2}
+(Px,sx)(t)2+𝕀st{4θ3Cv+1P[t(r2q)2ruq]}xρt{r2ρ(r2q)x[t(r2q)2ruq]}xdx\displaystyle+\|(P_{x},s_{x})(t)\|^{2}+\int_{\mathbb{I}}s_{t}\left\{\frac{4\theta^{3}}{C_{v}+1}P\left[\partial_{t}(r^{2}q)-2ruq\right]\right\}_{x}-\rho_{t}\Big{\{}r^{2}\rho(r^{2}q)_{x}\left[\partial_{t}(r^{2}q)-2ruq\right]\Big{\}}_{x}{\rm d}x
ϵ(qt2+(r2q)xt2)+(r2q)xx2+(Px,ux,sx,st,q)2.\displaystyle\lesssim\epsilon\left(\|q_{t}\|^{2}+\|(r^{2}q)_{xt}\|^{2}\right)+\|(r^{2}q)_{xx}\|^{2}+\|(P_{x},u_{x},s_{x},s_{t},q)\|^{2}. (2.16)

By combining (2.16) and (2.15), we complete the proof of Lemma 2.4. ∎

Remark 2.1.

In (2.8), we have utilized |(Px,Pt)(t)|L(Px,Pt)(t)H1ϵ\left|\left(P_{x},P_{t}\right)(t)\right|_{L^{\infty}}\lesssim\left\|\left(P_{x},P_{t}\right)(t)\right\|_{H^{1}}\lesssim\epsilon, which is why we require m2m\geq 2.

Remark 2.2.

From (2.12), it can be easily derived that

qx(t)2(r2qx)(t)2q(t)2+(r2q)x(t)2Px(t)2+sx(t)2V0.\displaystyle\left\|q_{x}(t)\right\|^{2}\lesssim\left\|(r^{2}q_{x})(t)\right\|^{2}\lesssim\|q(t)\|^{2}+\|(r^{2}q)_{x}(t)\|^{2}\lesssim\|P_{x}(t)\|^{2}+\|s_{x}(t)\|^{2}\leq V_{0}.

And we can see if |q(t)|kV0{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|q(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}\leq V_{0}(k0k\geq 0), that |(r2q)x(t)|kV0{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(r^{2}q)_{x}(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}\leq V_{0} is equivalent to that |qx|kV0{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|q_{x}\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}\leq V_{0}. And the similar conclusion also stands for uu. These will be applied directly for the rest of this paper.

In the following Lemma, we use the induction method to prove the a priori estimates when m2m\geq 2

Lemma 2.5.

Under the assumption of Proposition 2.2, for any t[0,T]t\in[0,T], it holds that

|(P,u,s,q,qx)(t)|m2+0t|(DP,Ds)(s)|m12+|(u,q,qx)(s)|m2dsV0.{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(P,u,s,q,q_{x}\right)(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m}^{2}+\int_{0}^{t}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(DP,Ds)(s)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m-1}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(u,q,q_{x})(s)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m}{\rm d}s\leq V_{0}. (2.17)
Proof.

We assume (2.17) holds for any integer m=k(k2)m=k(k\geq 2). Since (2.17) has been proved for m=1m=1, we aim to prove (2.17) for m=k+1m=k+1 and what’s left is to obtain the estimates for k+1k+1 order derivatives of (P,u,s,q,qx)\left(P,u,s,q,q_{x}\right).

First, we derive the estimates of PP and uu. Similar to what we did in Lemma 2.4, compute that

tkx(2.1)1×CvCv+1tk(r4Px)+tkx(2.1)2×tk[ρ(P+1)(r2u)x]+tkx(2.1)3×1Cv+1(P+1)tk(r4sx)+tk[r2(2.1)4]×1(Cv+1)r4ρ[tk(r4Px)+tk(r4sx)]\partial_{t}^{k}\partial_{x}\eqref{cns5}_{1}\times\frac{C_{v}}{C_{v}+1}\partial_{t}^{k}\left(r^{4}P_{x}\right)+\partial_{t}^{k}\partial_{x}\eqref{cns5}_{2}\times\partial_{t}^{k}\left[\rho(P+1)(r^{2}u)_{x}\right]+\partial_{t}^{k}\partial_{x}\eqref{cns5}_{3}\times\\ \frac{1}{C_{v}+1}(P+1)\partial_{t}^{k}\left(r^{4}s_{x}\right)+\partial_{t}^{k}\left[r^{2}\cdot\eqref{cns5}_{4}\right]\times\frac{1}{(C_{v}+1)r^{4}\rho}\left[\partial_{t}^{k}\left(r^{4}P_{x}\right)+\partial_{t}^{k}\left(r^{4}s_{x}\right)\right] (2.18)

and integrate the resultant equality over 𝕀\mathbb{I} to get that

ddt𝕀{Cv2(Cv+1)r4(tkxP)2+CvCv+1tkxP[tk,r4]Px+12ρ(P+1)[tkx(r2u)]2\displaystyle\frac{{\rm d}}{{\rm d}t}\int_{\mathbb{I}}\left\{\frac{C_{v}}{2(C_{v}+1)}r^{4}(\partial_{t}^{k}\partial_{x}P)^{2}+\frac{C_{v}}{C_{v}+1}\partial_{t}^{k}\partial_{x}P\left[\partial_{t}^{k},r^{4}\right]P_{x}+\frac{1}{2}\rho(P+1)\left[\partial_{t}^{k}\partial_{x}(r^{2}u)\right]^{2}\right.
+tkx(r2u)[tk,ρ(P+1)]t(r2u)x+12(Cv+1)(p+1)r4(tkxs)2\displaystyle\qquad+\partial_{t}^{k}\partial_{x}(r^{2}u)\left[\partial_{t}^{k},\rho(P+1)\right]_{t}(r^{2}u)_{x}+\frac{1}{2(C_{v}+1)}(p+1)r^{4}\left(\partial_{t}^{k}\partial_{x}s\right)^{2}
+1Cv+1tkxs(p+1)[tk,r4]sx}dx+tk(r4Px)+tk(r4sx)(t)2\displaystyle\qquad+\left.\frac{1}{C_{v}+1}\partial_{t}^{k}\partial_{x}s(p+1)\left[\partial_{t}^{k},r^{4}\right]s_{x}\right\}{\rm d}x+\left\|\partial_{t}^{k}\left(r^{4}P_{x}\right)+\partial_{t}^{k}\left(r^{4}s_{x}\right)(t)\right\|^{2}
𝕀Cv2(Cv+1)4r3u(tkxP)2+CvCv+1tkxPddt{[tk,r4]Px}\displaystyle\lesssim\int_{\mathbb{I}}\frac{C_{v}}{2(C_{v}+1)}4r^{3}u\left(\partial_{t}^{k}\partial_{x}P\right)^{2}+\frac{C_{v}}{C_{v}+1}\partial_{t}^{k}\partial_{x}P\frac{{\rm d}}{{\rm d}t}\left\{\left[\partial_{t}^{k},r^{4}\right]P_{x}\right\}
1Cv+1[tkx,ρ](r2q)xtk(r4Px)dx+𝕀12ddt[ρ(P+1)][tkx(r2u)]2\displaystyle\qquad-\frac{1}{C_{v}+1}\left[\partial_{t}^{k}\partial_{x},\rho\right](r^{2}q)_{x}\partial_{t}^{k}(r^{4}P_{x})\ {\rm d}x+\int_{\mathbb{I}}\frac{1}{2}\frac{{\rm d}}{{\rm d}t}\left[\rho(P+1)\right]\left[\partial_{t}^{k}\partial_{x}(r^{2}u)\right]^{2}
+tkx(r2u)ddt{[tk,ρ(P+1)](r2u)x}1+tkx(2ru2)tk[ρ(P+1)(r2u)x]2dx\displaystyle\qquad+\underbrace{\partial_{t}^{k}\partial_{x}(r^{2}u)\frac{{\rm d}}{{\rm d}t}\left\{\left[\partial_{t}^{k},\rho(P+1)\right](r^{2}u)_{x}\right\}}_{\leavevmode\hbox to8.36pt{\vbox to8.36pt{\pgfpicture\makeatletter\hbox{\hskip 4.17778pt\lower-4.17778pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{3.97778pt}{0.0pt}\pgfsys@curveto{3.97778pt}{2.19688pt}{2.19688pt}{3.97778pt}{0.0pt}{3.97778pt}\pgfsys@curveto{-2.19688pt}{3.97778pt}{-3.97778pt}{2.19688pt}{-3.97778pt}{0.0pt}\pgfsys@curveto{-3.97778pt}{-2.19688pt}{-2.19688pt}{-3.97778pt}{0.0pt}{-3.97778pt}\pgfsys@curveto{2.19688pt}{-3.97778pt}{3.97778pt}{-2.19688pt}{3.97778pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.575pt}{-2.03pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{1}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}+\underbrace{\partial_{t}^{k}\partial_{x}(2ru^{2})\partial_{t}^{k}\left[\rho(P+1)(r^{2}u)_{x}\right]}_{\leavevmode\hbox to8.36pt{\vbox to8.36pt{\pgfpicture\makeatletter\hbox{\hskip 4.17778pt\lower-4.17778pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{3.97778pt}{0.0pt}\pgfsys@curveto{3.97778pt}{2.19688pt}{2.19688pt}{3.97778pt}{0.0pt}{3.97778pt}\pgfsys@curveto{-2.19688pt}{3.97778pt}{-3.97778pt}{2.19688pt}{-3.97778pt}{0.0pt}\pgfsys@curveto{-3.97778pt}{-2.19688pt}{-2.19688pt}{-3.97778pt}{0.0pt}{-3.97778pt}\pgfsys@curveto{2.19688pt}{-3.97778pt}{3.97778pt}{-2.19688pt}{3.97778pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.575pt}{-2.03pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{2}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}\ {\rm d}x
+𝕀12(Cv+1)ddt[(P+1)r4](tkxs)2+1Cv+1tkxsddt{(P+1)[tk,r4]sx}\displaystyle\qquad+\int_{\mathbb{I}}\frac{1}{2(C_{v}+1)}\frac{{\rm d}}{{\rm d}t}\left[(P+1)r^{4}\right]\left(\partial_{t}^{k}\partial_{x}s\right)^{2}+\frac{1}{C_{v}+1}\partial_{t}^{k}\partial_{x}s\frac{{\rm d}}{{\rm d}t}\left\{(P+1)\left[\partial_{t}^{k},r^{4}\right]s_{x}\right\}
1Cv+1(P+1)[tkx,1θ](r2q)xtk(r4sx)dx+\displaystyle\qquad-\frac{1}{C_{v}+1}(P+1)\left[\partial_{t}^{k}\partial_{x},\frac{1}{\theta}\right](r^{2}q)_{x}\ \partial_{t}^{k}\left(r^{4}s_{x}\right)\ {\rm d}x+
𝕀1r4(Cv+1)r4ρ[tk,r4ρ2](r2q)xx[tk(r4Px)+tk(r4sx)]\displaystyle\qquad\int_{\mathbb{I}}-\frac{1}{r^{4}(C_{v}+1)r^{4}\rho}\left[\partial_{t}^{k},r^{4}\rho^{2}\right](r^{2}q)_{xx}\left[\partial_{t}^{k}\left(r^{4}P_{x}\right)+\partial_{t}^{k}\left(r^{4}s_{x}\right)\right]
1r4(Cv+1)r4ρ[tk,4θ3Cv+1(r4Px+r4sx)][tk(r4Px)+tk(r4sx)]\displaystyle\qquad-\frac{1}{r^{4}(C_{v}+1)r^{4}\rho}\left[\partial_{t}^{k},\frac{4\theta^{3}}{C_{v}+1}\left(r^{4}P_{x}+r^{4}s_{x}\right)\right]\left[\partial_{t}^{k}\left(r^{4}P_{x}\right)+\partial_{t}^{k}\left(r^{4}s_{x}\right)\right]
1r4(Cv+1)r4ρtk(r2q)[tk(r4Px)+tk(r4sx)]\displaystyle\qquad-\frac{1}{r^{4}(C_{v}+1)r^{4}\rho}\partial_{t}^{k}(r^{2}q)\left[\partial_{t}^{k}\left(r^{4}P_{x}\right)+\partial_{t}^{k}\left(r^{4}s_{x}\right)\right]
+tk[r4ρρx(r2q)x]1r4(Cv+1)r4ρ[tk(r4Px)+tk(r4sx)]\displaystyle\qquad+\partial_{t}^{k}\left[r^{4}\rho\rho_{x}(r^{2}q)_{x}\right]\frac{1}{r^{4}(C_{v}+1)r^{4}\rho}\left[\partial_{t}^{k}\left(r^{4}P_{x}\right)+\partial_{t}^{k}\left(r^{4}s_{x}\right)\right]
tk(4θ3r4Cv+1)1r4(Cv+1)r4ρ[tk(r4Px)+tk(r4sx)]dx\displaystyle\qquad-\partial_{t}^{k}\left(\frac{4\theta^{3}r^{4}}{C_{v}+1}\right)\frac{1}{r^{4}(C_{v}+1)r^{4}\rho}\left[\partial_{t}^{k}\left(r^{4}P_{x}\right)+\partial_{t}^{k}\left(r^{4}s_{x}\right)\right]\ {\rm d}x
ϵtkx(P,s,r2u)2+|(P,u,s,q,qx)|k2.\displaystyle\lesssim\epsilon\left\|\partial_{t}^{k}\partial_{x}(P,s,r^{2}u)\right\|^{2}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(P,u,s,q,q_{x})\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}^{2}. (2.19)

Here [,][\cdot,\cdot] denotes the commutator of operators. As for the last inequality, we use the following two examples to illustrate how the estimates are done.

𝕀1dxϵtkx(r2u)2+ddt{[tk,ρ(P+1)](r2u)x}2\displaystyle\int_{\mathbb{I}}\leavevmode\hbox to10.54pt{\vbox to10.54pt{\pgfpicture\makeatletter\hbox{\hskip 5.26787pt\lower-5.26787pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{5.06787pt}{0.0pt}\pgfsys@curveto{5.06787pt}{2.79893pt}{2.79893pt}{5.06787pt}{0.0pt}{5.06787pt}\pgfsys@curveto{-2.79893pt}{5.06787pt}{-5.06787pt}{2.79893pt}{-5.06787pt}{0.0pt}\pgfsys@curveto{-5.06787pt}{-2.79893pt}{-2.79893pt}{-5.06787pt}{0.0pt}{-5.06787pt}\pgfsys@curveto{2.79893pt}{-5.06787pt}{5.06787pt}{-2.79893pt}{5.06787pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.25pt}{-2.9pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{1}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\ {\rm d}x\lesssim\epsilon\left\|\partial_{t}^{k}\partial_{x}(r^{2}u)\right\|^{2}+\left\|\frac{{\rm d}}{{\rm d}t}\left\{\left[\partial_{t}^{k},\rho(P+1)\right](r^{2}u)_{x}\right\}\right\|^{2} (2.20)

Here,

ddt{[tk,ρ(P+1)](r2u)x}2=\displaystyle\left\|\frac{{\rm d}}{{\rm d}t}\left\{\left[\partial_{t}^{k},\rho(P+1)\right](r^{2}u)_{x}\right\}\right\|^{2}= i=1kti+1[ρ(P+1)]tki(r2u)x+ti[ρ(P+1)]tk+1i(r2u)x2\displaystyle\left\|\sum_{i=1}^{k}\partial_{t}^{i+1}\left[\rho\left(P+1\right)\right]\partial_{t}^{k-i}\left(r^{2}u\right)_{x}+\partial_{t}^{i}\left[\rho\left(P+1\right)\right]\partial_{t}^{k+1-i}\left(r^{2}u\right)_{x}\right\|^{2}
\displaystyle\lesssim i=0kti+1[ρ(P+1)]tki(r2u)x2\displaystyle\sum_{i=0}^{k}\left\|\partial_{t}^{i+1}\left[\rho\left(P+1\right)\right]\partial_{t}^{k-i}\left(r^{2}u\right)_{x}\right\|^{2}

When i=0i=0,

t[ρ(P+1)]tk(r2u)x2|t[ρ(P+1)]|L2tkx(r2u)2ϵtkx(r2u)2.\displaystyle\left\|\partial_{t}\left[\rho\left(P+1\right)\right]\partial_{t}^{k}\left(r^{2}u\right)_{x}\right\|^{2}\lesssim\left|\partial_{t}\left[\rho\left(P+1\right)\right]\right|^{2}_{L^{\infty}}\left\|\partial_{t}^{k}\partial_{x}(r^{2}u)\right\|^{2}\lesssim\epsilon\left\|\partial_{t}^{k}\partial_{x}(r^{2}u)\right\|^{2}.

when i=ki=k, tk+1P\partial_{t}^{k+1}P and tk+1s\partial_{t}^{k+1}s would appear. To cope with that, we apply tk\partial_{t}^{k} on the first and third equation in (2.1) which enable us to substitute tk+1P\partial_{t}^{k+1}P and tk+1s\partial_{t}^{k+1}s with terms containing tkx(r2u)\partial_{t}^{k}\partial_{x}(r^{2}u) and tkx(r2q)\partial_{t}^{k}\partial_{x}(r^{2}q). So we have

tk+1[ρ(P+1)](r2u)x2\displaystyle\left\|\partial_{t}^{k+1}\left[\rho\left(P+1\right)\right]\left(r^{2}u\right)_{x}\right\|^{2}\lesssim |(r2u)x|L2(tkx(r2u)2+tkx(r2q)2+ϵ|(P,s)|k2)\displaystyle\left|(r^{2}u)_{x}\right|^{2}_{L^{\infty}}\left(\left\|\partial_{t}^{k}\partial_{x}(r^{2}u)\right\|^{2}+\left\|\partial_{t}^{k}\partial_{x}(r^{2}q)\right\|^{2}+\epsilon{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(P,s)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}^{2}\right)
\displaystyle\lesssim ϵ(tkx(r2u)2+tkx(r2q)2)+|(P,s)|k2\displaystyle\epsilon\left(\left\|\partial_{t}^{k}\partial_{x}(r^{2}u)\right\|^{2}+\left\|\partial_{t}^{k}\partial_{x}(r^{2}q)\right\|^{2}\right)+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(P,s)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}^{2}

When i=k1i=k-1,

tk[ρ(P+1)]t(r2u)x2\displaystyle\left\|\partial_{t}^{k}\left[\rho\left(P+1\right)\right]\partial_{t}\left(r^{2}u\right)_{x}\right\|^{2}\lesssim tx(r2u)2|tk[ρ(P+1)]|L2ϵtk(P,s)H12.\displaystyle\left\|\partial_{t}\partial_{x}(r^{2}u)\right\|^{2}\left|\partial_{t}^{k}\left[\rho\left(P+1\right)\right]\right|^{2}_{L^{\infty}}\lesssim\epsilon\left\|\partial_{t}^{k}\left(P,s\right)\right\|_{H^{1}}^{2}.

Similarly the term can be estimated when 1ik21\leq i\leq k-2. As for 2, we have

𝕀2dx\displaystyle\int_{\mathbb{I}}\leavevmode\hbox to10.54pt{\vbox to10.54pt{\pgfpicture\makeatletter\hbox{\hskip 5.26787pt\lower-5.26787pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{5.06787pt}{0.0pt}\pgfsys@curveto{5.06787pt}{2.79893pt}{2.79893pt}{5.06787pt}{0.0pt}{5.06787pt}\pgfsys@curveto{-2.79893pt}{5.06787pt}{-5.06787pt}{2.79893pt}{-5.06787pt}{0.0pt}\pgfsys@curveto{-5.06787pt}{-2.79893pt}{-2.79893pt}{-5.06787pt}{0.0pt}{-5.06787pt}\pgfsys@curveto{2.79893pt}{-5.06787pt}{5.06787pt}{-2.79893pt}{5.06787pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.25pt}{-2.9pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{2}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\ {\rm d}x\lesssim ϵtk[ρ(P+1)(r2u)x]2+tkx(2ru2)2\displaystyle\epsilon\left\|\partial_{t}^{k}\left[\rho(P+1)(r^{2}u)_{x}\right]\right\|^{2}+\left\|\partial_{t}^{k}\partial_{x}(2ru^{2})\right\|^{2}
\displaystyle\lesssim ϵ(tkx(r2u)2+|(P,s)|k2|(r2u)|k2)+ϵ(tkxu2+|u|k2).\displaystyle\epsilon\left(\left\|\partial_{t}^{k}\partial_{x}(r^{2}u)\right\|^{2}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(P,s)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}^{2}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(r^{2}u)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}^{2}\right)+\epsilon\left(\left\|\partial_{t}^{k}\partial_{x}u\right\|^{2}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|u\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}^{2}\right).

In the last inequality, we have utilized a more detailed version of Lemma 2.1 (1)(1) to obtain the estimate that

tkx(2ru2)|r|k|u|k(tkxu+|u|k)+|r|k+1|u|k|u|k.\displaystyle\left\|\partial_{t}^{k}\partial_{x}(2ru^{2})\right\|\lesssim{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|r\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|u\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}\left(\left\|\partial_{t}^{k}\partial_{x}u\right\|+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|u\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}\right)+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|r\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k+1}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|u\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|u\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}.

To make up for the dissipation of tkx(r2u)\partial_{t}^{k}\partial_{x}(r^{2}u), we compute tk((2.1)1+(2.1)3)×tkx(r2u)\partial_{t}^{k}\left(\eqref{cns5}_{1}+\eqref{cns5}_{3}\right)\times\partial_{t}^{k}\partial_{x}(r^{2}u) and integrate the resultant equality over 𝕀\mathbb{I} to get that

ddt\displaystyle\frac{{\rm d}}{{\rm d}t} 𝕀[(tkP+tks)tkx(r2u)]dx+𝕀Cv+1Cvρ(P+1)[tkx(r2u)]2[(tkP+tks)tk(r2u)]xdx\displaystyle\int_{\mathbb{I}}\left[\left(\partial_{t}^{k}P+\partial_{t}^{k}s\right)\partial_{t}^{k}\partial_{x}(r^{2}u)\right]{\rm d}x+\int_{\mathbb{I}}\frac{C_{v}+1}{C_{v}}\rho(P+1)\left[\partial_{t}^{k}\partial_{x}(r^{2}u)\right]^{2}-\left[\left(\partial_{t}^{k}P+\partial_{t}^{k}s\right)\partial_{t}^{k}(r^{2}u)\right]_{x}{\rm d}x
=\displaystyle= 𝕀(tkP+tks)tk+1(r2u)Cv+1Cv[tk,ρ(P+1)](r2u)xtkx(r2u)\displaystyle\int_{\mathbb{I}}-\left(\partial_{t}^{k}P+\partial_{t}^{k}s\right)\partial_{t}^{k+1}(r^{2}u)-\frac{C_{v}+1}{C_{v}}\left[\partial_{t}^{k},\rho(P+1)\right](r^{2}u)_{x}\partial_{t}^{k}\partial_{x}(r^{2}u)
1Cvtkx(r2q)tkx(r2u)tk[(r2q)xθ]tkx(r2u)dx.\displaystyle\quad-\frac{1}{C_{v}}\partial_{t}^{k}\partial_{x}(r^{2}q)\partial_{t}^{k}\partial_{x}(r^{2}u)-\partial_{t}^{k}\left[\frac{(r^{2}q)_{x}}{\theta}\right]\partial_{t}^{k}\partial_{x}(r^{2}u)\ {\rm d}x. (2.21)

Apply tk\partial_{t}^{k} on the third equation in (2.1) and we have

tk+1(r2u)=tk(r4Px)+tk(2ru2).\displaystyle\partial_{t}^{k+1}(r^{2}u)=-\partial_{t}^{k}(r^{4}P_{x})+\partial_{t}^{k}(2ru^{2}). (2.22)

Substitute (2.22) into the first term on the right side of (2.21) to get

tk(r2u)x2+ddt𝕀(tkP+tks)tkx(r2u)dxϵtk(r4Px)2+{tkxP+tkxs2+|[P,u,s,(r2q)x]|k2}.\|\partial_{t}^{k}(r^{2}u)_{x}\|^{2}+\frac{{\rm d}}{{\rm d}t}\int_{\mathbb{I}}\left(\partial_{t}^{k}P+\partial_{t}^{k}s\right)\partial_{t}^{k}\partial_{x}(r^{2}u)\ {\rm d}x\\ \lesssim\epsilon\left\|\partial_{t}^{k}(r^{4}P_{x})\right\|^{2}+\left\{\left\|\partial_{t}^{k}\partial_{x}P+\partial_{t}^{k}\partial_{x}s\right\|^{2}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left[P,u,s,(r^{2}q)_{x}\right]\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}^{2}\right\}. (2.23)

Similarly we add the dissipation of tk(r4Px)\partial_{t}^{k}(r^{4}P_{x}) by having (2.22)×tk(r4Px)\eqref{tku}\times\partial_{t}^{k}(r^{4}P_{x}) and integrating it over 𝕀\mathbb{I}, which gives

tk(r4Px)2+ddt𝕀[tk(r2u)tk(r4Px)]dx|[P,u,s,(r2q)x]|k2+tkx(r2u)2.\displaystyle\|\partial_{t}^{k}(r^{4}P_{x})\|^{2}+\frac{{\rm d}}{{\rm d}t}\int_{\mathbb{I}}\left[\partial_{t}^{k}(r^{2}u)\partial_{t}^{k}(r^{4}P_{x})\right]\ {\rm d}x\lesssim{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left[P,u,s,(r^{2}q)_{x}\right]\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}^{2}+\left\|\partial_{t}^{k}\partial_{x}(r^{2}u)\right\|^{2}. (2.24)

By taking (2.19)+δ7(2.23)+δ6(2.24)\eqref{tkx1}+\delta_{7}\eqref{tkx1u}+\delta_{6}\eqref{tkx1P} (ϵδ6δ71\epsilon\ll\delta_{6}\ll\delta_{7}\ll 1) and integrating the resultant inequality over (0,t)(0,t), we have that

tkx(P,u,s)(t)2+0ttkx(P,u,s)(t)2dsV0.\displaystyle\|\partial_{t}^{k}\partial_{x}\left(P,u,s\right)(t)\|^{2}+\int_{0}^{t}\|\partial_{t}^{k}\partial_{x}\left(P,u,s\right)(t)\|^{2}{\rm d}s\leq V_{0}. (2.25)

With (2.25), if we apply tkixi\partial_{t}^{k-i}\partial_{x}^{i} on the first two equation in (2.1), iteratively we can have the estimates that

tkixi+1(P,u)(t)2+0ttk+1ixi(P,u)(t)2dsV0,for i=1,,k.\displaystyle\|\partial_{t}^{k-i}\partial_{x}^{i+1}\left(P,u\right)(t)\|^{2}+\int_{0}^{t}\|\partial_{t}^{k+1-i}\partial_{x}^{i}\left(P,u\right)(t)\|^{2}{\rm d}s\leq V_{0},\quad\text{for }i=1,\cdots,k. (2.26)

Instead of tkixi\partial_{t}^{k-i}\partial_{x}^{i}, if we apply tk\partial_{t}^{k} and we can get the estimate for tk+1(P,u)\partial_{t}^{k+1}\left(P,u\right).

Second, we derive the estimates of ss. Since we already have the estimates of |(q,qx)|k{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(q,q_{x})\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}, which together with the structure of third equation in (2.1) enable us to estimate all the k+1k+1 order derivatives of ss except of xk+1s\partial_{x}^{k+1}s. To overcome that, we compute xk+1(2.1)3×xk+1s\partial_{x}^{k+1}\eqref{cns5}_{3}\times\partial_{x}^{k+1}s and integrate the resultant equality over 𝕀\mathbb{I} to get

12ddtxk+1s(t)2+𝕀xk+2(r2q)θxk+1sdx=𝕀[xk+1,1θ](r2q)xxk+1sdx.\displaystyle\frac{1}{2}\frac{{\rm d}}{{\rm d}t}\left\|\partial_{x}^{k+1}s(t)\right\|^{2}+\int_{\mathbb{I}}\frac{\partial_{x}^{k+2}\left(r^{2}q\right)}{\theta}\ \partial_{x}^{k+1}s\ {\rm d}x=\int_{\mathbb{I}}\left[\partial_{x}^{k+1},\frac{1}{\theta}\right]\left(r^{2}q\right)_{x}\partial_{x}^{k+1}s{\rm d}x.

Then we compute xk(1r2ρ2(2.1)4)\partial_{x}^{k}\left(\frac{1}{r^{2}\rho^{2}}\eqref{cns5}_{4}\right), which can be used to represent xk+2(r2q)\partial_{x}^{k+2}\left(r^{2}q\right) in the last equality. After substitute for xk+2(r2q)\partial_{x}^{k+2}\left(r^{2}q\right), we have

ddtxk+1s(t)2+𝕀8θ2(Cv+1)ρ2(xk+1s)2dxϵxk+1s2+[xk,4θ3(Cv+1)ρ2]sx2+\displaystyle\frac{{\rm d}}{{\rm d}t}\left\|\partial_{x}^{k+1}s(t)\right\|^{2}+\int_{\mathbb{I}}\frac{8\theta^{2}}{\left(C_{v}+1\right)\rho^{2}}\left(\partial_{x}^{k+1}s\right)^{2}{\rm d}x\lesssim\epsilon\left\|\partial_{x}^{k+1}s\right\|^{2}+\left\|\left[\partial_{x}^{k},\frac{4\theta^{3}}{\left(C_{v}+1\right)\rho^{2}}\right]s_{x}\right\|^{2}+
xk(qr2ρ2+4θ3(Cv+1)ρ2Px+ρxρ(r2q)x)2+[xk,4θ3(Cv+1)ρ2P]sx2+[xk+1,1θ](r2q)x2\displaystyle\left\|\partial_{x}^{k}\left(\frac{q}{r^{2}\rho^{2}}+\frac{4\theta^{3}}{\left(C_{v}+1\right)\rho^{2}}P_{x}+\frac{\rho_{x}}{\rho}(r^{2}q)_{x}\right)\right\|^{2}+\left\|\left[\partial_{x}^{k},\frac{4\theta^{3}}{\left(C_{v}+1\right)\rho^{2}}P\right]s_{x}\right\|^{2}+\left\|\left[\partial_{x}^{k+1},\frac{1}{\theta}\right]\left(r^{2}q\right)_{x}\right\|^{2}
ϵxk+1s2+|(s,q,qx)|k2+|P|k+12.\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\ \lesssim\epsilon\left\|\partial_{x}^{k+1}s\right\|^{2}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(s,q,q_{x}\right)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}^{2}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|P\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k+1}^{2}. (2.27)

Integrate the inequality above over [0,t][0,t] and we have

xk+1s(t)2+0txk+1s(τ)2dτV0.\displaystyle\left\|\partial_{x}^{k+1}s(t)\right\|^{2}+\int_{0}^{t}\left\|\partial_{x}^{k+1}s(\tau)\right\|^{2}{\rm d}\tau\leq V_{0}. (2.28)

Now we use the following two estimates to illustrate why (2.27) stands.

xk(qr2ρ2)\displaystyle\left\|\partial_{x}^{k}\left(\frac{q}{r^{2}\rho^{2}}\right)\right\|\quad Lemma 2.1(1)|1r2ρ2|k|q|k\displaystyle\mathrel{\overset{\makebox[0.0pt]{\mbox{\tiny Lemma \ref{inequality}{(}1{)}}}}{\leq}}\quad{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\frac{1}{r^{2}\rho^{2}}\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|q\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}
Lemma 2.1(3)1r2ρ2Ck(r,ρ)[(1+|r|k)k1|ρ|k+(1+|ρ|k)k1|r|k]|q|k|q|k,\displaystyle\mathrel{\overset{\makebox[0.0pt]{\mbox{\tiny Lemma \ref{inequality}{(}3{)}}}}{\leq}}\quad\left\|\frac{1}{r^{2}\rho^{2}}\right\|_{C_{k}(r,\rho)}\left[\left(1+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|r\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}\right)^{k-1}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\rho\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}+\left(1+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\rho\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}\right)^{k-1}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|r\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}\right]{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|q\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}\lesssim{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|q\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k},
[xk+1,1θ](r2q)x=Dα(1θ)Dβ(r2q)x\displaystyle\left\|\left[\partial_{x}^{k+1},\frac{1}{\theta}\right]\left(r^{2}q\right)_{x}\right\|=\left\|D^{\alpha}\left(\frac{1}{\theta}\right)D^{\beta}\left(r^{2}q\right)_{x}\right\|
{|D(1θ)|L|(r2q)x|k|1θ|2|(r2q)x|k,|α|=1|β|=k|1θ|k+1|(r2q)x|L|1θ|k+1|(r2q)x|1,|α|=k+1|β|=0|1θ|k+1|(r2q)x|k(with Lemma 2.1 (2)),|α|+|β|<k+1|α|k|β|k1\displaystyle\qquad\lesssim\left\{\begin{aligned} &\left|D\left(\frac{1}{\theta}\right)\right|_{L^{\infty}}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(r^{2}q\right)_{x}\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}\lesssim{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\frac{1}{\theta}\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{2}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(r^{2}q\right)_{x}\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k},\ \begin{aligned} &|\alpha|=1\\ &|\beta|=k\end{aligned}\\[14.22636pt] &{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\frac{1}{\theta}\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k+1}\left|\left(r^{2}q\right)_{x}\right|_{L^{\infty}}\lesssim{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\frac{1}{\theta}\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k+1}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(r^{2}q\right)_{x}\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{1},\qquad\ \begin{aligned} &|\alpha|=k+1\\ &|\beta|=0\end{aligned}\\[14.22636pt] &{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\frac{1}{\theta}\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k+1}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(r^{2}q\right)_{x}\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}\ (\text{with Lemma \ref{inequality} (2)}),\quad\begin{aligned} &|\alpha|+|\beta|<k+1\\ &|\alpha|\leq k\\ &|\beta|\leq k-1\end{aligned}\end{aligned}\right.
|1θ|k+1|(r2q)x|k(1+|(P,s)|k+1)|(r2q)x|k\displaystyle\qquad\lesssim{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\frac{1}{\theta}\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k+1}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(r^{2}q\right)_{x}\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}\lesssim\left(1+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(P,s)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k+1}\right){\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(r^{2}q\right)_{x}\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}
|(r2q)x|k+|P|k+1+|s|k+i=1k+1xk+1itis+ϵxk+1s.\displaystyle\qquad\lesssim{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(r^{2}q\right)_{x}\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|P\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k+1}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|s\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}+\sum_{i=1}^{k+1}\left\|\partial_{x}^{k+1-i}\partial_{t}^{i}s\right\|+\epsilon\left\|\partial_{x}^{k+1}s\right\|.

Third, Let’s go for the estimates of qq. According to the induction hypothesis,

|(q,qx)(t)|k2+0t|(q,qx)(τ)|k2dτV0.\displaystyle{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(q,q_{x})(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}^{2}+\int_{0}^{t}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(q,q_{x})(\tau)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}^{2}\ {\rm d}\tau\leq V_{0}.

We aim to prove above estimates for |(q,qx)|k+1{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(q,q_{x})\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k+1}. The remaining terms in |(q,qx)|k+1{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(q,q_{x})\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k+1} are tk+1q\left\|\partial_{t}^{k+1}q\right\| and Dαqx\left\|D^{\alpha}q_{x}\right\| (|α|=k+1)(\,|\alpha|=k+1\,). Apply tkixi\partial_{t}^{k-i}\partial_{x}^{i} (0ik)(0\leq i\leq k) on the fourth equation in (2.1) and we have

tkixi+2(r2q)2|(DP,Ds)|k2+|u|k+1+|(q,qx)|k2.\displaystyle\left\|\partial_{t}^{k-i}\partial_{x}^{i+2}(r^{2}q)\right\|^{2}\lesssim{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(DP,Ds\right)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{k}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|u\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k+1}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(q,q_{x})\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}^{2}.

The estimates that are left to derive are those of tk+1q\left\|\partial_{t}^{k+1}q\right\| and tk+1xq\left\|\partial_{t}^{k+1}\partial_{x}q\right\|. We apply tk+1\partial_{t}^{k+1} on the fourth equation in (2.1), multiply the resultant equality by tk+1q\partial_{t}^{k+1}q and integrate it over 𝕀\mathbb{I}, which gives that

tk+1q2+𝕀ρ2[tk+1x(r2q)]2dx=\displaystyle\left\|\partial_{t}^{k+1}q\right\|^{2}+\int_{\mathbb{I}}\rho^{2}\left[\partial_{t}^{k+1}\partial_{x}\left(r^{2}q\right)\right]^{2}{\rm d}x=
𝕀2ρρxtk+1x(r2q)tk+1(r2q)+tk+1x(r2q)[([tk+1,r2]q)ρ2]x\displaystyle\qquad\qquad\quad\int_{\mathbb{I}}-2\rho\rho_{x}\partial_{t}^{k+1}\partial_{x}\left(r^{2}q\right)\partial_{t}^{k+1}\left(r^{2}q\right)+\partial_{t}^{k+1}\partial_{x}\left(r^{2}q\right)\left[\left(\left[\partial_{t}^{k+1},r^{2}\right]q\right)\rho^{2}\right]_{x}
+{tk+1[r2ρ2(r2q)xx]r2ρ2tk+1(r2q)xx}tk+1q\displaystyle\qquad\qquad\quad+\Big{\{}\partial_{t}^{k+1}\left[r^{2}\rho^{2}(r^{2}q)_{xx}\right]-r^{2}\rho^{2}\partial_{t}^{k+1}(r^{2}q)_{xx}\Big{\}}\partial_{t}^{k+1}q
{tk+1[4r2θ3Cv+1(Px+sx)]4r2θ3Cv+1tk+1x(P+s)}tk+1q\displaystyle\qquad\qquad\quad-\left\{\partial_{t}^{k+1}\left[\frac{4r^{2}\theta^{3}}{C_{v}+1}\left(P_{x}+s_{x}\right)\right]-\frac{4r^{2}\theta^{3}}{C_{v}+1}\partial_{t}^{k+1}\partial_{x}\left(P+s\right)\right\}\partial_{t}^{k+1}q
+tk+1(P+s){[tk+1(r2q)([tk+1,r2]q)]4θ3Cv+1}x\displaystyle\qquad\qquad\quad+\partial_{t}^{k+1}\left(P+s\right)\left\{\left[\partial_{t}^{k+1}(r^{2}q)-\left(\left[\partial_{t}^{k+1},r^{2}\right]q\right)\right]\frac{4\theta^{3}}{C_{v}+1}\right\}_{x}
+{tk+1[r2ρρx(r2q)x]r2ρtk+1ρx(r2q)r2ρρxtk+1(r2q)x}tk+1q\displaystyle\qquad\qquad\quad+\Big{\{}\partial_{t}^{k+1}\left[r^{2}\rho\rho_{x}(r^{2}q)_{x}\right]-r^{2}\rho\partial_{t}^{k+1}\rho_{x}(r^{2}q)-r^{2}\rho\rho_{x}\partial_{t}^{k+1}(r^{2}q)_{x}\Big{\}}\partial_{t}^{k+1}q
tk+1ρ{ρ(r2q)x[tk+1(r2q)[tk+1,r2]q]}x+r2ρρxtk+1(r2q)xtk+1q\displaystyle\qquad\qquad\quad-\partial_{t}^{k+1}\rho\Big{\{}\rho(r^{2}q)_{x}\left[\partial_{t}^{k+1}(r^{2}q)-\left[\partial_{t}^{k+1},r^{2}\right]q\right]\Big{\}}_{x}+r^{2}\rho\rho_{x}\partial_{t}^{k+1}(r^{2}q)_{x}\partial_{t}^{k+1}q
[tk+1(4r2θ3Cv+1Psx)4r2θ3Cv+1Ptk+1sx]tk+1q\displaystyle\qquad\qquad\quad-\left[\partial_{t}^{k+1}\left(\frac{4r^{2}\theta^{3}}{C_{v}+1}Ps_{x}\right)-\frac{4r^{2}\theta^{3}}{C_{v}+1}P\partial_{t}^{k+1}s_{x}\right]\partial_{t}^{k+1}q
+tk+1s{4θ3Cv+1P[tk+1(r2q)[tk+1,r2]q]}x\displaystyle\qquad\qquad\quad+\partial_{t}^{k+1}s\left\{\frac{4\theta^{3}}{C_{v}+1}P\left[\partial_{t}^{k+1}(r^{2}q)-\left[\partial_{t}^{k+1},r^{2}\right]q\right]\right\}_{x}
ϵ(tk+1q2+tk+1x(r2q)2)+tkx2(r2q)2+|(DP,Ds)|k2+|u|k+1+|(q,qx)|k2.\displaystyle\quad\quad\lesssim\epsilon\left(\left\|\partial_{t}^{k+1}q\right\|^{2}+\left\|\partial_{t}^{k+1}\partial_{x}\left(r^{2}q\right)\right\|^{2}\right)+\left\|\partial_{t}^{k}\partial_{x}^{2}(r^{2}q)\right\|^{2}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(DP,Ds\right)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{k}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|u\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k+1}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(q,q_{x})\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{k}^{2}.

Now we have completed our proof of Lemma 2.5. ∎

Remark 2.3.

In the Lemma 2.5, we prove (2.17) when m2m\geq 2. In this more general case, we can see that the essence of proof is to obtain the estimates for (tm1xP,tm1xu,tm1xs)(\partial_{t}^{m-1}\partial_{x}P,\partial_{t}^{m-1}\partial_{x}u,\partial_{t}^{m-1}\partial_{x}s).

Remark 2.4.

The reason why we use the complicated multipliers in (2.7) and (2.18) such as tk[ρ(P+1)(r2u)x]\partial_{t}^{k}\left[\rho\left(P+1\right)\left(r^{2}u\right)_{x}\right] rather than simply tkxu\partial_{t}^{k}\partial_{x}u is to overcome the difficulty that rx=1r2ρr_{x}=\frac{1}{r^{2}\rho} is not small. Otherwise the terms like x(2rρu)Px\partial_{x}\left(\textstyle\frac{2}{r\rho}u\right)P_{x} and tkx[2r(P+1)u]tkxP\partial_{t}^{k}\partial_{x}\left[\frac{2}{r}\left(P+1\right)u\right]\partial_{t}^{k}\partial_{x}P would be hard to cope with. So to avoid the emergence of xkr\partial_{x}^{k}r, we treat (r2u)(r^{2}u) as a whole and this strategy will be utilized multiple times in the following content (refer to (3.8) and (3.37)).

3 local existence

In this section, we shall establish the local existence of the solution to initial boundary problem (2.1),(2.3),(2.4) by iteration method. The main results are presented as follows.

Theorem 3.1.

If the initial data satisfies (1.19) and compatible conditions (1.20), then there exist some T0>0T_{0}>0 and K3{ϵ0}>0K_{3}\{\epsilon_{0}\}>0 such that the system (2.1),(2.3),(2.4) admit a unique classical solution (P,u,s,q)\left(P,u,s,q\right), which satisfies the regularity that

(P,u,s,q,qx)Bm([0,T0];𝕀;K3{ϵ0}).\displaystyle(P,u,s,q,q_{x})\in B_{m}\left([0,T_{0}];\mathbb{I};K_{3}\{\epsilon_{0}\}\right). (3.1)

In the beginning, we provide a helpful lemma for later use.

Lemma 3.1 (Theorem 2.5.7 in [7, p. 55]).

For arbitrary fk(𝐱)Hmk12(n)f_{k}(\bm{x})\in H^{m-k-\frac{1}{2}}(\mathbb{R}^{n}), k=0,,m1k=0,\cdots,m-1, there exists a function u(t,𝐱)Hm([0,+)×n)u(t,\bm{x})\in H^{m}([0,+\infty)\times\mathbb{R}^{n}) with tku(0,𝐱)=fk(𝐱)\partial_{t}^{k}u(0,\bm{x})=f_{k}(\bm{x}), k=0,,m1k=0,\cdots,m-1.

In order to construct the successive approximation sequence in the iteration process, we need to first consider the linearized system.

3.1 Solution to the linearized system

The desired linearized system takes the form as

{Pt+Cv+1Cv(P\cc@style¯+1)ρ¯r¯2ux+Cv+1Cv(P\cc@style¯+1)ρ¯2r¯u¯u+1Cvρ¯(r¯2q)x=0,ut+r¯2Px=0,st+(r¯2q)xθ¯=0,qr¯2ρ¯2(r¯2q)xx+4r¯2θ¯3Cv+1(P\cc@style¯x+s¯x)=12r¯2(ρ¯2)x(r¯2q)x4r¯2θ¯3Cv+1P\cc@style¯s¯x,\left\{\begin{aligned} &P_{t}+\frac{C_{v}+1}{C_{v}}(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1)\bar{\rho}\bar{r}^{2}u_{x}+\frac{C_{v}+1}{C_{v}}(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1)\bar{\rho}2\bar{r}\bar{u}u+\frac{1}{C_{v}}\bar{\rho}(\bar{r}^{2}q)_{x}=0,\\[5.69054pt] &u_{t}+\bar{r}^{2}P_{x}=0,\\[5.69054pt] &s_{t}+\frac{(\bar{r}^{2}q)_{x}}{\raisebox{-1.42262pt}{$\bar{\theta}$}}=0,\\ &q-\bar{r}^{2}\bar{\rho}^{2}(\bar{r}^{2}q)_{xx}+\frac{4\bar{r}^{2}\bar{\theta}^{3}}{C_{v}+1}\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}_{x}+\bar{s}_{x}\right)=\frac{1}{2}\bar{r}^{2}(\bar{\rho}^{2})_{x}(\bar{r}^{2}q)_{x}-\frac{4\bar{r}^{2}\bar{\theta}^{3}}{C_{v}+1}\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}\bar{s}_{x},\end{aligned}\right. (3.2)

with corresponding initial boundary conditions that

(P,u,s)(0,x)\displaystyle(P,u,s)(0,x) =(P01,u0,s01)(x),\displaystyle=(P_{0}-1,u_{0},s_{0}-1)(x),\qquad x𝕀,\displaystyle x\in\mathbb{I}, (3.3)
(u,q)(t,0)\displaystyle(u,q)(t,0) =(u,q)(t,1)=0,\displaystyle=(u,q)(t,1)=0,\qquad t0,\displaystyle t\geq 0, (3.4)

Here P\cc@style¯(t,x),u¯(t,x),s¯(t,x)\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}(t,x),\ \bar{u}(t,x),\ \bar{s}(t,x) are given and

{|(P\cc@style¯,u¯,s¯)|L2sup0tT[|(P\cc@style¯,u¯,s¯)(t)|m12+|(P\cc@style¯,u¯,s¯)(t)|m,tan2]K1{ϵ0},|(P\cc@style¯,u¯,s¯)|m,TK2{ϵ0}.\left\{\begin{aligned} &\left|\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P},\bar{u},\bar{s}\right)\right|^{2}_{L^{\infty}}\lesssim\sup_{0\leq t\leq T}\left[{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P},\bar{u},\bar{s}\right)(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m-1}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P},\bar{u},\bar{s}\right)(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m,tan}\right]\leq K_{1}\{\epsilon_{0}\},\\[5.69054pt] &{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P},\bar{u},\bar{s}\right)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,T}\leq K_{2}\{\epsilon_{0}\}.\end{aligned}\right. (3.5)

It is clear that ρ¯,θ¯\bar{\rho},\bar{\theta} are also known, since they can be expressed by P\cc@style¯,s¯\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P},\bar{s} (refer to (1)). We define r¯\bar{r} as that in (1.9).

r¯=r0(x)+0tu¯(τ,x)dτ.\displaystyle\bar{r}=r_{0}(x)+\int_{0}^{t}\bar{u}(\tau,x){\rm d}\tau. (3.6)

Especially, we need to point it out that other than (1.14), the derivatives of r¯\bar{r} take the form that

r¯t=u¯,r¯x=1r02ρ0+0tu¯x(τ,x)dτ.\displaystyle\bar{r}_{t}=\bar{u},\qquad\bar{r}_{x}=\frac{1}{r_{0}^{2}\rho_{0}}+\int_{0}^{t}\bar{u}_{x}(\tau,x)\ {\rm d}\tau.

The reason is that (1.14) comes from the nonlinear mass-conservation equation (1.13) and definition (1.9), but the former one is not valid in linearized system. With (3.5), we can see that r¯\bar{r} has positive upper and lower bounds when ϵ0\epsilon_{0}, K1{ϵ0}K_{1}\{\epsilon_{0}\}, TT are small and fixed. Moreover |r¯|m,T{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\bar{r}\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,T} has a upper bound concerning ϵ0\epsilon_{0}, 𝕀\mathbb{I}, TT and K2{ϵ0}K_{2}\{\epsilon_{0}\}.

|r¯(t)|m\displaystyle{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\bar{r}(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m}\leq r0Hm+1|𝕀|+|||u(t)|||m1+T|||u|||m,T\displaystyle\left\|r_{0}\right\|_{H^{m+1}}\cdot\big{\lvert}\,\mathbb{I}\,\big{\lvert}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|u(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}+T\cdot{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|u\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,T}
\displaystyle\leq r0Hm+1|𝕀|+|||u(0)|||m1+2T|||u|||m,TC2{ϵ0,𝕀}+2TK2{ϵ0}.\displaystyle\left\|r_{0}\right\|_{H^{m+1}}\cdot\big{\lvert}\,\mathbb{I}\,\big{\lvert}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|u(0)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}+2T\cdot{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|u\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,T}\leq C_{2}\{\epsilon_{0},\mathbb{I}\}+2T\cdot K_{2}\{\epsilon_{0}\}. (3.7)

(Here, |𝕀|\big{\lvert}\,\mathbb{I}\,\big{\lvert} denotes the measure of domain 𝕀\mathbb{I}. Since our region 𝕀\mathbb{I} is fixed, it won’t appear afterwards in our proof as a variable.) To prove (3.7), since r¯t=u¯\bar{r}_{t}=\bar{u}, we just need to consider the case when only spatial derivatives are involved and with Minkowski’s integral inequality, it can be easily proved. The detailed proof is omitted here. Now we start to work on the existence of solutions to such linearized system and the main results are presented in the following Theorem.

Theorem 3.2 (solution to the linearized system).

The initial boundary problem (3.2)–(3.4) has a unique solution (P,u,s,q)(P,u,s,q) satisfying (P,u,s,q,qx)Xm([0,T];𝕀)(P,u,s,q,q_{x})\in X_{m}\left([0,T];\mathbb{I}\right) for any given T>0T>0, which is provided that

  • (i)

    The known functions (P\cc@style¯,u¯,s¯)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P},\bar{u},\bar{s}\right) satisfy (3.5);

  • (ii)

    FXm([0,T],𝕀)F\in X_{m}([0,T],\mathbb{I}) and (P01,u)Hm(𝕀)(P_{0}-1,u)\in H^{m}(\mathbb{I});

  • (iii)

    The compatibility conditions that tku(0,x)=0\partial_{t}^{k}u(0,x)=0 on 𝕀\partial\mathbb{I} hold.

First, consider the last equation in (3.2). It is a standard second-order linear elliptic equation with Dirichlet boundary conditions provided that K2{ϵ0}K_{2}\{\epsilon_{0}\} in (3.5) is sufficiently small. The solution to such problem is quite clear (e.g. see for chapter 6 in [5]) and satisfies that

|(q,(r¯2q)x)(t)|m2G1{ϵ0,T,K1{ϵ0}}|(P\cc@style¯,s¯)(t)|m2.\displaystyle{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\Big{(}q,(\bar{r}^{2}q)_{x}\Big{)}(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m}^{2}\leq G_{1}\big{\{}\epsilon_{0},T,K_{1}\{\epsilon_{0}\}\big{\}}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P},\bar{s}\right)(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m}. (3.8)

The estimates (3.8) can be obtained just like what we did in the a priori estimates with respect to qq in the nonlinear system. One thing we want to point out here is that due to the definition (3.6), xm+1u¯\partial_{x}^{m+1}\bar{u} would appear when we compute xm(r¯2q)x\partial_{x}^{m}(\bar{r}^{2}q)_{x}, which may not be bounded in L2L^{2}-norm. And that is why we treat r¯2q\bar{r}^{2}q as a whole. Now since qq is solved, ss can be easily obtained by integrate (3.2) over [0,t][0,t], which is

s(t,x)=s0(x)+0t(r¯2q)xθ¯(s,x)ds.\displaystyle s(t,x)=s_{0}(x)+\int_{0}^{t}\frac{(\bar{r}^{2}q)_{x}}{\raisebox{-1.42262pt}{$\bar{\theta}$}}(s,x)\ {\rm d}s.

With clear expression of ss, we can get the following estimates that

|s(t)|m,tan2tm1((r¯2q)xθ¯)(t)2|(r¯2q)xθ¯(t)|m12Lemma 2.1(1)|1θ¯(t)|m12|(r¯2q)x(t)|m12\displaystyle{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|s(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m,tan}\leq\left\|\partial_{t}^{m-1}\left(\frac{(\bar{r}^{2}q)_{x}}{\raisebox{-1.42262pt}{$\bar{\theta}$}}\right)(t)\right\|^{2}\lesssim{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\frac{(\bar{r}^{2}q)_{x}}{\raisebox{-1.42262pt}{$\bar{\theta}$}}(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}^{2}\ \ \ \mathrel{\overset{\makebox[0.0pt]{\mbox{\scriptsize Lemma \ref{inequality}{(}1{)}}}}{\lesssim}}\qquad{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\frac{1}{\raisebox{-1.42262pt}{$\bar{\theta}$}}(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m-1}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(\bar{r}^{2}q)_{x}(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m-1}
(|1θ¯(0)|m12+T|1θ¯|m,T2)[|(r¯2q)x(0)|m12+T|(r¯2q)x|m,T2]\displaystyle\qquad\qquad\,\lesssim\left({\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\frac{1}{\raisebox{-1.42262pt}{$\bar{\theta}$}}(0)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m-1}+T\cdot{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\frac{1}{\raisebox{-1.42262pt}{$\bar{\theta}$}}\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,T}^{2}\right)\left[{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(\bar{r}^{2}q)_{x}(0)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m-1}+T\cdot{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(\bar{r}^{2}q)_{x}\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m,T}\right]
(G2{ϵ0}+TG3{K2{ϵ0}})(G4{ϵ0}ϵ0+TG1{ϵ0,T,K1{ϵ0}}(K2{ϵ0})2),\displaystyle\qquad\qquad\,\leq\Big{(}G_{2}\{\epsilon_{0}\}+T\cdot G_{3}\big{\{}K_{2}\{\epsilon_{0}\}\big{\}}\Big{)}\Big{(}G_{4}\{\epsilon_{0}\}\epsilon_{0}+T\cdot G_{1}\big{\{}\epsilon_{0},T,K_{1}\{\epsilon_{0}\}\big{\}}\left(K_{2}\{\epsilon_{0}\}\right)^{2}\Big{)}, (3.9)
|||s(t)|||k2s0Hm2+|||1θ¯|||m12|||(r¯2q)x|||m12+0t|||1θ¯(τ)|||m2|||(r¯2q)x(τ)|||m2dτ.(k=m1,m)\displaystyle{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|s(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{k}\lesssim\left\|s_{0}\right\|^{2}_{H^{m}}\!\!+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\frac{1}{\raisebox{-1.42262pt}{$\bar{\theta}$}}\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m-1}\!\!{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(\bar{r}^{2}q)_{x}\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m-1}\!\!+\!\!\int_{0}^{t}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\frac{1}{\raisebox{-1.42262pt}{$\bar{\theta}$}}(\tau)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m}\!\!{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(\bar{r}^{2}q)_{x}(\tau)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m}{\rm d}\tau.\qquad(k=m-1,m)
ϵ0+(G2{ϵ0}+TG3{K2{ϵ0}})(G4{ϵ0}ϵ0+TG1{ϵ0,T,K1{ϵ0}}(K2{ϵ0})2)\displaystyle\qquad\quad\ \lesssim\epsilon_{0}+\Big{(}G_{2}\{\epsilon_{0}\}+T\cdot G_{3}\big{\{}K_{2}\{\epsilon_{0}\}\big{\}}\Big{)}\Big{(}G_{4}\{\epsilon_{0}\}\epsilon_{0}+T\cdot G_{1}\big{\{}\epsilon_{0},T,K_{1}\{\epsilon_{0}\}\big{\}}\left(K_{2}\{\epsilon_{0}\}\right)^{2}\Big{)}
+TG5{K2{ϵ0}}G1{ϵ0,T,K1{ϵ0}}(K2{ϵ0})2\displaystyle\qquad\quad\quad\ \ +T\cdot G_{5}\big{\{}K_{2}\{\epsilon_{0}\}\big{\}}G_{1}\big{\{}\epsilon_{0},T,K_{1}\{\epsilon_{0}\}\big{\}}\left(K_{2}\{\epsilon_{0}\}\right)^{2} (3.10)

As for PP and uu, we take the first two equations in (3.2) as a individual system. Rewrite them in the form that

(Cv(Cv+1)(P\cc@style¯+1)ρ¯r¯2001r¯2)t(Pu)+(0110)x(Pu)+(02u¯r¯00)(Pu)=((r¯2q)x(Cv+1)(P\cc@style¯+1)r¯20)\left(\begin{matrix}\frac{C_{v}}{(C_{v}+1)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1\right)\bar{\rho}\bar{r}^{2}}&0\\ 0&\frac{1}{\bar{r}^{2}}\end{matrix}\right)\frac{\partial}{\partial_{t}}\left(\begin{matrix}P\\ u\end{matrix}\right)+\left(\begin{matrix}0&1\\ 1&0\end{matrix}\right)\frac{\partial}{\partial_{x}}\left(\begin{matrix}P\\ u\end{matrix}\right)+\left(\begin{matrix}0&\frac{2\bar{u}}{\bar{r}}\\ 0&0\end{matrix}\right)\left(\begin{matrix}P\\ u\end{matrix}\right)=\left(\begin{matrix}-\frac{(\bar{r}^{2}q)_{x}}{(C_{v}+1)(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1)\bar{r}^{2}}\\ 0\end{matrix}\right) (3.11)

Now for U=(P,u)TU=(P,u)^{T}, we define the corresponding linear partial differential operator that

LU=AUt+BUx+CU,whereA=(Cv(Cv+1)(P\cc@style¯+1)ρ¯r¯2001r¯2),B=(0110),C=(02u¯r¯00).\displaystyle LU=AU_{t}+BU_{x}+CU,\qquad\text{where}\ A=\left(\begin{matrix}\frac{C_{v}}{(C_{v}+1)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1\right)\bar{\rho}\bar{r}^{2}}&0\\ 0&\frac{1}{\bar{r}^{2}}\end{matrix}\right),\ B=\left(\begin{matrix}0&1\\ 1&0\end{matrix}\right),\ C=\left(\begin{matrix}0&\frac{2\bar{u}}{\bar{r}}\\ 0&0\end{matrix}\right).

Since F:=((r¯2q)x(Cv+1)(P\cc@style¯+1)r¯2,0)TF:=\left(-\frac{(\bar{r}^{2}q)_{x}}{(C_{v}+1)(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1)\bar{r}^{2}},0\right)^{T} is given, we can see that LU=FLU=F is a linear symmetric hyperbolic system with initial boundary conditions

(P,u)(0,x)\displaystyle(P,u)(0,x) =(P01,u0)(x),\displaystyle=(P_{0}-1,u_{0})(x),\qquad x𝕀,\displaystyle x\in\mathbb{I}, (3.12)
u(t,0)\displaystyle u(t,0) =u(t,1)=0,\displaystyle=u(t,1)=0,\qquad t0.\displaystyle t\geq 0. (3.13)

The boundary condition (3.13) is maximally nonnegative according to [21, p. 62] (or maximal dissipative refer to Definition 2.1.3 in [18, p. 22]). The local existence of solution to the initial boundary problem (3.11)-(3.13) is proved in the following theorem

Lemma 3.2 (solution to the hyperbolic part).

The initial boundary problem LU=FLU=F with (3.12) and (3.13) has a unique solution in Xm([0,T],𝕀)(m2)X_{m}([0,T],\mathbb{I})\quad(m\geq 2), provided that

  • (i)

    The known functions (P\cc@style¯,u¯,s¯)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P},\bar{u},\bar{s}\right) satisfy (3.5);

  • (ii)

    FXm([0,T],𝕀)F\in X_{m}([0,T],\mathbb{I}) and (P01,u)Hm(𝕀)(P_{0}-1,u)\in H^{m}(\mathbb{I});

  • (iii)

    The compatibility conditions that tku(0)=0\partial_{t}^{k}u(0)=0 on 𝕀\partial\mathbb{I} hold.

The solution U=(P,u)TU=(P,u)^{T} obeys the estimates that

|(P,u)(t)|m12+|(P,u)(t)|m,tan2\displaystyle{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(P,u)(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}^{2}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(P,u)(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,tan}^{2}\leq
(G6{ϵ0}+TG7{ϵ0,T,K1{ϵ0}})exp{tG8{ϵ0,T,K2{ϵ0}}}[|||(P,u)(0)|||m12+|||(P,u)(0)|||m,tan2+G9{ϵ0,T,K2{ϵ0}}0t|||(r¯2q)x(s)|||m2ds],\displaystyle\qquad\quad\begin{multlined}\Big{(}G_{6}\{\epsilon_{0}\}+T\cdot G_{7}\big{\{}\epsilon_{0},T,K_{1}\{\epsilon_{0}\}\big{\}}\Big{)}\exp\Big{\{}{t\cdot G_{8}\big{\{}\epsilon_{0},T,K_{2}\{\epsilon_{0}\}\big{\}}}\Big{\}}\left[{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(P,u)(0)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}^{2}\right.\\ +\left.{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(P,u)(0)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,tan}^{2}+G_{9}\big{\{}\epsilon_{0},T,K_{2}\{\epsilon_{0}\}\big{\}}\int_{0}^{t}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(\bar{r}^{2}q)_{x}(s)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m}^{2}{\rm d}s\right],\end{multlined}\Big{(}G_{6}\{\epsilon_{0}\}+T\cdot G_{7}\big{\{}\epsilon_{0},T,K_{1}\{\epsilon_{0}\}\big{\}}\Big{)}\exp\Big{\{}{t\cdot G_{8}\big{\{}\epsilon_{0},T,K_{2}\{\epsilon_{0}\}\big{\}}}\Big{\}}\left[{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(P,u)(0)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}^{2}\right.\\ +\left.{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(P,u)(0)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,tan}^{2}+G_{9}\big{\{}\epsilon_{0},T,K_{2}\{\epsilon_{0}\}\big{\}}\int_{0}^{t}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(\bar{r}^{2}q)_{x}(s)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m}^{2}{\rm d}s\right], (3.16)
|||(P,u)(t)|||mG10{ϵ0,T,K1{ϵ0}}(1+|||(P\cc@style¯,u¯,s¯,r¯)|||m,Ta)\displaystyle{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(P,u\right)(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m}\leq G_{10}\big{\{}\epsilon_{0},T,K_{1}\{\epsilon_{0}\}\big{\}}\left(1+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P},\bar{u},\bar{s},\bar{r}\right)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,T}^{a}\right)\cdot
[|(P,u)(t)|m1+|(P,u)(t)|m,tan+|(r¯2q)x(t)|m1].\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\quad\left[{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(P,u)(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(P,u)(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,tan}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(\bar{r}^{2}q)_{x}(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}\right]. (3.17)

Here, constant aa satisfies 0<a<10<a<1.

Proof.

As for the existence and uniqueness of solution, one can refer to Theorem A1 in Appendix A of [21] and the important reference [19, Theorem 3.1] in it. Now it is left to prove (3.16) and (3.17), which can be derived from the following estimates.

ddt𝕀|α|m|α|m1orα2=0[Cv2(Cv+1)(P\cc@style¯+1)ρ¯r¯2(DαP)2+12r¯2(Dαu)2]dx\displaystyle\frac{{\rm d}}{{\rm d}t}\int_{\mathbb{I}}\sum_{\begin{subarray}{c}|\alpha|\leq m\\ |\alpha|\leq m-1\ \text{or}\ \alpha_{2}=0\end{subarray}}\left[\frac{C_{v}}{2(C_{v}+1)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1\right)\bar{\rho}\bar{r}^{2}}\left(D^{\alpha}P\right)^{2}+\frac{1}{2\bar{r}^{2}}\left(D^{\alpha}u\right)^{2}\right]{\rm d}x
C{ϵ0,T,K2{ϵ0}}|(P,u)|m2+C{ϵ0,T,K2{ϵ0}}|(q,(r¯2q)x)|m,\displaystyle\qquad\qquad\qquad\quad\ \leq C\big{\{}\epsilon_{0},T,K_{2}\{\epsilon_{0}\}\big{\}}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(P,u)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m}+C\left\{\epsilon_{0},T,K_{2}\{\epsilon_{0}\}\right\}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\Big{(}q,(\bar{r}^{2}q)_{x}\Big{)}\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m}, (3.18)
tmixi(P,u)C{ϵ0,T,K1{ϵ0}}tmi+1xi1(P,u)+ϵ1i=1mtmixi(P,u)+\displaystyle\left\|\partial_{t}^{m-i}\partial_{x}^{i}\left(P,u\right)\right\|\leq C\big{\{}\epsilon_{0},T,K_{1}\{\epsilon_{0}\}\big{\}}\left\|\partial_{t}^{m-i+1}\partial_{x}^{i-1}\left(P,u\right)\right\|+\epsilon_{1}\textstyle\sum_{i=1}^{m}\left\|\partial_{t}^{m-i}\partial_{x}^{i}\left(P,u\right)\right\|+
C{ϵ0,T,K1{ϵ0}}(1+|||(P\cc@style¯,u¯,s¯,r¯)|||m,Ta)[|||(P,u)(t)|||m1+|||(P,u)(t)|||m,tan\displaystyle\qquad\qquad\qquad\quad\ \ C\big{\{}\epsilon_{0},T,K_{1}\{\epsilon_{0}\}\big{\}}\left(1+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P},\bar{u},\bar{s},\bar{r}\right)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,T}^{a}\right)\left[{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(P,u)(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(P,u)(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,tan}\right.
+|||(q,(r¯2q)x)(t)|||m1](1im),for a small constant ϵ1.\displaystyle\qquad\qquad\qquad\quad\ \left.+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\Big{(}q,(\bar{r}^{2}q)_{x}\Big{)}(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}\right]\quad\left(1\leq i\leq m\right),\quad\text{for a small constant }\epsilon_{1}. (3.19)

First, we will explain how to obtain (3.16), (3.17) by using (3.18) and (3.19). According to (3.19), we can see that when i=1i=1, tm1x1(P,u)\left\|\partial_{t}^{m-1}\partial_{x}^{1}\left(P,u\right)\right\| is bounded by the right side of (3.17) except for the term ϵ1i=1mtmixi(P,u)\epsilon_{1}\textstyle\sum_{i=1}^{m}\left\|\partial_{t}^{m-i}\partial_{x}^{i}\left(P,u\right)\right\|. Substitute it into (3.19) when i=2i=2 and we have tm2x2(P,u)\left\|\partial_{t}^{m-2}\partial_{x}^{2}\left(P,u\right)\right\| also does. Iteratively, it holds for all 1im1\leq i\leq m. Add them up and we have i=1mtmixi(P,u)\sum_{i=1}^{m}\left\|\partial_{t}^{m-i}\partial_{x}^{i}\left(P,u\right)\right\| bounded by the right side of (3.17). The remaining terms in |(P,u)(t)|m{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(P,u)(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m} naturally satisfy (3.17), if we set G10{ϵ0,T,K1{ϵ0}}>1G_{10}\big{\{}\epsilon_{0},T,K_{1}\{\epsilon_{0}\}\big{\}}>1. To prove(3.16), we substitute (3.17) into the right side of (3.18), then use

|Cv2(Cv+1)(P\cc@style¯+1)ρ¯r¯2|L,|12r¯2|L\displaystyle\left|\frac{C_{v}}{2(C_{v}+1)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1\right)\bar{\rho}\bar{r}^{2}}\right|_{L^{\infty}},\ \left|\frac{1}{2\bar{r}^{2}}\right|_{L^{\infty}} C{ϵ0}+TC{ϵ0,T,K2{ϵ0}},\displaystyle\leq C\{\epsilon_{0}\}+T\cdot C\big{\{}\epsilon_{0},T,K_{2}\{\epsilon_{0}\}\big{\}}, (3.20)
|(Cv2(Cv+1)(P\cc@style¯+1)ρ¯r¯2)1|L,|(12r¯2)1|L\displaystyle\left|\left(\frac{C_{v}}{2(C_{v}+1)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1\right)\bar{\rho}\bar{r}^{2}}\right)^{-1}\right|_{L^{\infty}},\ \left|\left(\frac{1}{2\bar{r}^{2}}\right)^{-1}\right|_{L^{\infty}} C{ϵ0}+TC{ϵ0,T,K2{ϵ0}},\displaystyle\leq C\{\epsilon_{0}\}+T\cdot C\big{\{}\epsilon_{0},T,K_{2}\{\epsilon_{0}\}\big{\}}, (3.21)

and Gro¨nwallsGr\ddot{o}nwall^{\prime}s inequality and eventually we have (3.16). To prove (3.20) here, we can see

Cv(Cv+1)(P\cc@style¯+1)ρ¯r¯2Ck(P\cc@style¯,ρ¯,r¯)C{ϵ0,T,K1{ϵ0}}.\displaystyle\left\|\frac{C_{v}}{\left(C_{v}+1\right)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1\right)\bar{\rho}\bar{r}^{2}}\right\|_{C^{k}\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P},\bar{\rho},\bar{r}\right)}\leq C\big{\{}\epsilon_{0},T,K_{1}\{\epsilon_{0}\}\big{\}}.

And (3.20) follows from

|Cv2(Cv+1)(P\cc@style¯+1)ρ¯r¯2|L,|12r¯2|Lsup0tT|(Cv2(Cv+1)(P\cc@style¯+1)ρ¯r¯2,12r¯2)(t)|m1\displaystyle\quad\ \left|\frac{C_{v}}{2(C_{v}+1)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1\right)\bar{\rho}\bar{r}^{2}}\right|_{L^{\infty}},\ \left|\frac{1}{2\bar{r}^{2}}\right|_{L^{\infty}}\lesssim\sup_{0\leq t\leq T}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(\frac{C_{v}}{2(C_{v}+1)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1\right)\bar{\rho}\bar{r}^{2}}\ ,\ \frac{1}{2\bar{r}^{2}}\right)(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}
|(Cv2(Cv+1)(P\cc@style¯+1)ρ¯r¯2,12r¯2)(0)|m1+T|(Cv2(Cv+1)(P\cc@style¯+1)ρ¯r¯2,12r¯2)|m,T\displaystyle\lesssim{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(\frac{C_{v}}{2(C_{v}+1)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1\right)\bar{\rho}\bar{r}^{2}}\ ,\ \frac{1}{2\bar{r}^{2}}\right)(0)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}+T\cdot{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(\frac{C_{v}}{2(C_{v}+1)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1\right)\bar{\rho}\bar{r}^{2}}\ ,\ \frac{1}{2\bar{r}^{2}}\right)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,T}
Lemma 2.1(3)C{ϵ0}+TC{ϵ0,T,K2{ϵ0}}.\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\mathrel{\overset{\makebox[0.0pt]{\mbox{\scriptsize Lemma \ref{inequality}{(}3{)}}}}{\leq}}\qquad C\{\epsilon_{0}\}+T\cdot C\big{\{}\epsilon_{0},T,K_{2}\{\epsilon_{0}\}\big{\}}.

Similarly, we can derive (3.21).

Second, we aim to prove (3.18). Apply tk(0km)\partial_{t}^{k}(0\leq k\leq m) on (3.11), multiply the resultant equality by (tkP,tku)(\partial_{t}^{k}P,\partial_{t}^{k}u) and integrate over 𝕀\mathbb{I} to get

ddt\displaystyle\frac{{\rm d}}{{\rm d}t} 𝕀[Cv2(Cv+1)(P\cc@style¯+1)ρ¯r¯2(tkP)2+12r¯2(tku)2]dx\displaystyle\int_{\mathbb{I}}\left[\frac{C_{v}}{2(C_{v}+1)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1\right)\bar{\rho}\bar{r}^{2}}\left(\partial_{t}^{k}P\right)^{2}+\frac{1}{2\bar{r}^{2}}\left(\partial_{t}^{k}u\right)^{2}\right]{\rm d}x
=\displaystyle= 𝕀ddt[Cv2(Cv+1)(P\cc@style¯+1)ρ¯r¯2](tkP)2+[tk,Cv(Cv+1)(P\cc@style¯+1)ρ¯r¯2]tPtkP3+\displaystyle\int_{\mathbb{I}}\frac{{\rm d}}{{\rm d}t}\left[\frac{C_{v}}{2(C_{v}+1)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1\right)\bar{\rho}\bar{r}^{2}}\right]\left(\partial_{t}^{k}P\right)^{2}+\underbrace{\left[\partial_{t}^{k},\frac{C_{v}}{\left(C_{v}+1\right)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1\right)\bar{\rho}\bar{r}^{2}}\right]\partial_{t}P\cdot\partial_{t}^{k}P}_{\leavevmode\hbox to8.36pt{\vbox to8.36pt{\pgfpicture\makeatletter\hbox{\hskip 4.17778pt\lower-4.17778pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{3.97778pt}{0.0pt}\pgfsys@curveto{3.97778pt}{2.19688pt}{2.19688pt}{3.97778pt}{0.0pt}{3.97778pt}\pgfsys@curveto{-2.19688pt}{3.97778pt}{-3.97778pt}{2.19688pt}{-3.97778pt}{0.0pt}\pgfsys@curveto{-3.97778pt}{-2.19688pt}{-2.19688pt}{-3.97778pt}{0.0pt}{-3.97778pt}\pgfsys@curveto{2.19688pt}{-3.97778pt}{3.97778pt}{-2.19688pt}{3.97778pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.575pt}{-2.03pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{3}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}+
tk(2u¯r¯u)tkP+tk((r¯2q)x(Cv+1)(P\cc@style¯+1)r¯2)tkPdx+𝕀ddt(12r¯2)(tku)2+\displaystyle\partial_{t}^{k}\left(\frac{2\bar{u}}{\bar{r}}u\right)\cdot\partial_{t}^{k}P+\partial_{t}^{k}\left(\frac{(\bar{r}^{2}q)_{x}}{\left(C_{v}+1\right)(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1)\bar{r}^{2}}\right)\cdot\partial_{t}^{k}P\ {\rm d}x+\int_{\mathbb{I}}\frac{{\rm d}}{{\rm d}t}\left(\frac{1}{2\bar{r}^{2}}\right)\left(\partial_{t}^{k}u\right)^{2}+
[tk,1r¯2]tutkudx\displaystyle\left[\partial_{t}^{k},\frac{1}{\bar{r}^{2}}\right]\partial_{t}u\cdot\partial_{t}^{k}u\ {\rm d}x
C{ϵ0,T,K2{ϵ0}}|(P,u)(t)|m2+C{ϵ0,T,K2{ϵ0}}|(r¯2q)x(t)|m.\displaystyle\leq C\big{\{}\epsilon_{0},T,K_{2}\{\epsilon_{0}\}\big{\}}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(P,u)(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m}+C\big{\{}\epsilon_{0},T,K_{2}\{\epsilon_{0}\}\big{\}}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(\bar{r}^{2}q)_{x}(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m}. (3.22)

We use 3 to illustrate how the estimates are done.

𝕀3dx\displaystyle\int_{\mathbb{I}}\leavevmode\hbox to10.54pt{\vbox to10.54pt{\pgfpicture\makeatletter\hbox{\hskip 5.26787pt\lower-5.26787pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{5.06787pt}{0.0pt}\pgfsys@curveto{5.06787pt}{2.79893pt}{2.79893pt}{5.06787pt}{0.0pt}{5.06787pt}\pgfsys@curveto{-2.79893pt}{5.06787pt}{-5.06787pt}{2.79893pt}{-5.06787pt}{0.0pt}\pgfsys@curveto{-5.06787pt}{-2.79893pt}{-2.79893pt}{-5.06787pt}{0.0pt}{-5.06787pt}\pgfsys@curveto{2.79893pt}{-5.06787pt}{5.06787pt}{-2.79893pt}{5.06787pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.25pt}{-2.9pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{3}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\ {\rm d}x\leq tkP|α|+|β|=k1|α|k0|β|k1Dα(Cv(Cv+1)(P\cc@style¯+1)ρ¯r¯2)Dβ(tP)\displaystyle\left\|\partial_{t}^{k}P\right\|\sum_{\begin{subarray}{c}|\alpha|+|\beta|=k\\ 1\leq|\alpha|\leq k\\ 0\leq|\beta|\leq k-1\end{subarray}}\left\|D^{\alpha}\left(\frac{C_{v}}{\left(C_{v}+1\right)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1\right)\bar{\rho}\bar{r}^{2}}\right)D^{\beta}\left(\partial_{t}P\right)\right\|
\displaystyle\leq C{ϵ0,T,K2{ϵ0}}|P|m2.\displaystyle C\big{\{}\epsilon_{0},T,K_{2}\{\epsilon_{0}\}\big{\}}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|P\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m}.

Here,

Dα(Cv(Cv+1)(P\cc@style¯+1)ρ¯r¯2)Dβ(tP)\displaystyle\left\|D^{\alpha}\left(\frac{C_{v}}{\left(C_{v}+1\right)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1\right)\bar{\rho}\bar{r}^{2}}\right)D^{\beta}\left(\partial_{t}P\right)\right\|
{|D(Cv(Cv+1)(P\cc@style¯+1)ρ¯r¯2)|L|tP|m1|Cv(Cv+1)(P\cc@style¯+1)ρ¯r¯2|2|tP|m1,|α|=1|β|=k1|Cv(Cv+1)(P\cc@style¯+1)ρ¯r¯2|m|tP|L|Cv(Cv+1)(P\cc@style¯+1)ρ¯r¯2|m|tP|1,|α|=k|β|=0|Cv(Cv+1)(P\cc@style¯+1)ρ¯r¯2|m|tP|m1(with Lemma 2.1 (2)),|α|+|β|<k+12m1|α|k1m1|β|k2m2\displaystyle\ \ \lesssim\left\{\begin{aligned} &\left|D\left(\frac{C_{v}}{\left(C_{v}+1\right)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1\right)\bar{\rho}\bar{r}^{2}}\right)\right|_{L^{\infty}}{\left|\kern-0.8611pt\left|\kern-0.8611pt\left|\partial_{t}P\right|\kern-0.8611pt\right|\kern-0.8611pt\right|}_{m-1}\lesssim{\left|\kern-0.8611pt\left|\kern-0.8611pt\left|\frac{C_{v}}{\left(C_{v}+1\right)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1\right)\bar{\rho}\bar{r}^{2}}\right|\kern-0.8611pt\right|\kern-0.8611pt\right|}_{2}{\left|\kern-0.8611pt\left|\kern-0.8611pt\left|\partial_{t}P\right|\kern-0.8611pt\right|\kern-0.8611pt\right|}_{m-1},\ \begin{aligned} &|\alpha|=1\\ &|\beta|=k-1\end{aligned}\\[14.22636pt] &{\left|\kern-0.8611pt\left|\kern-0.8611pt\left|\frac{C_{v}}{\left(C_{v}+1\right)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1\right)\bar{\rho}\bar{r}^{2}}\right|\kern-0.8611pt\right|\kern-0.8611pt\right|}_{m}\left|\partial_{t}P\right|_{L^{\infty}}\lesssim{\left|\kern-0.8611pt\left|\kern-0.8611pt\left|\frac{C_{v}}{\left(C_{v}+1\right)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1\right)\bar{\rho}\bar{r}^{2}}\right|\kern-0.8611pt\right|\kern-0.8611pt\right|}_{m}{\left|\kern-0.8611pt\left|\kern-0.8611pt\left|\partial_{t}P\right|\kern-0.8611pt\right|\kern-0.8611pt\right|}_{1},\qquad\ \begin{aligned} &|\alpha|=k\\ &|\beta|=0\end{aligned}\\[14.22636pt] &{\left|\kern-0.8611pt\left|\kern-0.8611pt\left|\frac{C_{v}}{\left(C_{v}+1\right)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1\right)\bar{\rho}\bar{r}^{2}}\right|\kern-0.8611pt\right|\kern-0.8611pt\right|}_{m}{\left|\kern-0.8611pt\left|\kern-0.8611pt\left|\partial_{t}P\right|\kern-0.8611pt\right|\kern-0.8611pt\right|}_{m-1}\ (\text{with Lemma \ref{inequality} (2)}),\qquad\begin{aligned} &|\alpha|+|\beta|<k+1\leq 2m-1\\ &|\alpha|\leq k-1\leq m-1\\ &|\beta|\leq k-2\leq m-2\end{aligned}\end{aligned}\right.
|||Cv(Cv+1)(P\cc@style¯+1)ρ¯r¯2|||m|||P|||mLemma 2.1(3)C{ϵ0,T,K2{ϵ0}}|||P|||m.\displaystyle\ \ \lesssim{\left|\kern-0.8611pt\left|\kern-0.8611pt\left|\frac{C_{v}}{\left(C_{v}+1\right)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1\right)\bar{\rho}\bar{r}^{2}}\right|\kern-0.8611pt\right|\kern-0.8611pt\right|}_{m}{\left|\kern-0.8611pt\left|\kern-0.8611pt\left|P\right|\kern-0.8611pt\right|\kern-0.8611pt\right|}_{m}\quad\mathrel{\overset{\makebox[0.0pt]{\mbox{\tiny Lemma \ref{inequality}{(}3{)}}}}{\leq}}\quad\ C\big{\{}\epsilon_{0},T,K_{2}\{\epsilon_{0}\}\big{\}}{\left|\kern-0.8611pt\left|\kern-0.8611pt\left|P\right|\kern-0.8611pt\right|\kern-0.8611pt\right|}_{m}.

The remaining terms on the left side of (3.16) are |(P,u)(t)|m1{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(P,u)(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}, the estimates for which can be obtained by following the same procedure but omitting the integration by parts in the spatial derivative terms to avoid boundary terms. With these estimates and (3.22), the proof of (3.18) completes.

Third, we are going to derive (3.17). Apply tmixi\partial_{t}^{m-i}\partial_{x}^{i} on (3.11) and solve it for tmixiP\partial_{t}^{m-i}\partial_{x}^{i}P, tmixiu\partial_{t}^{m-i}\partial_{x}^{i}u to get

tmixi(P,u)|Cv(Cv+1)(P\cc@style¯+1)ρ¯r¯2|Ltmi+1xi1P+|1r¯2|Ltmi+1xi1u\displaystyle\left\|\partial_{t}^{m-i}\partial_{x}^{i}\left(P,u\right)\right\|\leq\left|\frac{C_{v}}{\left(C_{v}+1\right)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1\right)\bar{\rho}\bar{r}^{2}}\right|_{L^{\infty}}\left\|\partial_{t}^{m-i+1}\partial_{x}^{i-1}P\right\|+\left|\frac{1}{\bar{r}^{2}}\right|_{L^{\infty}}\left\|\partial_{t}^{m-i+1}\partial_{x}^{i-1}u\right\|
+|α|+|β|=m11|α|m10|β|m2Dα(Cv(Cv+1)(P\cc@style¯+1)ρ¯r¯2)Dβ(tP)+|α|+|β|=m11|α|m10|β|m2Dα(1r¯2)Dβ(tu)\displaystyle+\sum_{\begin{subarray}{c}|\alpha|+|\beta|=m-1\\ 1\leq|\alpha|\leq m-1\\ 0\leq|\beta|\leq m-2\end{subarray}}\left\|D^{\alpha}\left(\frac{C_{v}}{\left(C_{v}+1\right)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1\right)\bar{\rho}\bar{r}^{2}}\right)D^{\beta}\left(\partial_{t}P\right)\right\|+\sum_{\begin{subarray}{c}|\alpha|+|\beta|=m-1\\ 1\leq|\alpha|\leq m-1\\ 0\leq|\beta|\leq m-2\end{subarray}}\left\|D^{\alpha}\left(\frac{1}{\bar{r}^{2}}\right)D^{\beta}\left(\partial_{t}u\right)\right\|
+tmixi1(2u¯r¯u)+tmixi1[(r¯2q)x(Cv+1)(P\cc@style¯+1)r¯2]\displaystyle+\left\|\partial_{t}^{m-i}\partial_{x}^{i-1}\left(\frac{2\bar{u}}{\bar{r}}u\right)\right\|+\left\|\partial_{t}^{m-i}\partial_{x}^{i-1}\left[\frac{(\bar{r}^{2}q)_{x}}{\left(C_{v}+1\right)(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1)\bar{r}^{2}}\right]\right\|
C{ϵ0,T,K1{ϵ0}}tmi+1xi1(P,u)+ϵ1i=1mtmixi(P,u)+\displaystyle\leq C\big{\{}\epsilon_{0},T,K_{1}\{\epsilon_{0}\}\big{\}}\left\|\partial_{t}^{m-i+1}\partial_{x}^{i-1}\left(P,u\right)\right\|+\epsilon_{1}\textstyle\sum_{i=1}^{m}\left\|\partial_{t}^{m-i}\partial_{x}^{i}\left(P,u\right)\right\|+
C{ϵ0,T,K1{ϵ0}}(1+|(P\cc@style¯,u¯,s¯,r¯)|m,Ta)(|P|m1+|P|m,tan+|(r¯2q)x(t)|m1),\displaystyle\quad C\big{\{}\epsilon_{0},T,K_{1}\{\epsilon_{0}\}\big{\}}\left(1+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P},\bar{u},\bar{s},\bar{r}\right)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,T}^{a}\right)\left({\left|\kern-0.96873pt\left|\kern-0.96873pt\left|P\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|P\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,tan}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(\bar{r}^{2}q)_{x}(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}\right), (3.23)

and (3.17) is proved. We use the following estimate to illustrate why the last inequality in (3.23) stands.

|α|+|β|=m11|α|m10|β|m2Dα(Cv(Cv+1)(P\cc@style¯+1)ρ¯r¯2)Dβ(tP)\displaystyle\sum_{\begin{subarray}{c}|\alpha|+|\beta|=m-1\\ 1\leq|\alpha|\leq m-1\\ 0\leq|\beta|\leq m-2\end{subarray}}\left\|D^{\alpha}\left(\frac{C_{v}}{\left(C_{v}+1\right)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1\right)\bar{\rho}\bar{r}^{2}}\right)D^{\beta}\left(\partial_{t}P\right)\right\|
Lemma 2.1(2)|||Cv(Cv+1)(P\cc@style¯+1)ρ¯r¯2|||m11a1|||Cv(Cv+1)(P\cc@style¯+1)ρ¯r¯2|||ma1|||P|||m11a2|||P|||ma2\displaystyle\mathrel{\overset{\makebox[0.0pt]{\mbox{\scriptsize Lemma \ref{inequality}{(}2{)}}}}{\lesssim}}\qquad{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\frac{C_{v}}{\left(C_{v}+1\right)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1\right)\bar{\rho}\bar{r}^{2}}\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}^{1-a_{1}}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\frac{C_{v}}{\left(C_{v}+1\right)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1\right)\bar{\rho}\bar{r}^{2}}\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m}^{a_{1}}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|P\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}^{1-a_{2}}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|P\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m}^{a_{2}}
small ϵ2C{ϵ0,T,K1{ϵ0}}|||Cv(Cv+1)(P\cc@style¯+1)ρ¯r¯2|||m(ϵ2|||P|||m+C|||P|||m1)\displaystyle\mathrel{\overset{\makebox[0.0pt]{\mbox{\scriptsize small $\epsilon_{2}$}}}{\lesssim}}\qquad C\big{\{}\epsilon_{0},T,K_{1}\{\epsilon_{0}\}\big{\}}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\frac{C_{v}}{\left(C_{v}+1\right)\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P}+1\right)\bar{\rho}\bar{r}^{2}}\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m}\left(\epsilon_{2}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|P\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m}+C{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|P\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}\right)
Lemma 2.1(3)C{ϵ0,T,K1{ϵ0}}(1+|||(P\cc@style¯,u¯,s¯,r¯)|||ma1)[ϵ2i=1mtmixi(P,u)+\displaystyle\mathrel{\overset{\makebox[0.0pt]{\mbox{\scriptsize Lemma \ref{inequality}{(}3{)}}}}{\leq}}\qquad C\big{\{}\epsilon_{0},T,K_{1}\{\epsilon_{0}\}\big{\}}\left(1+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P},\bar{u},\bar{s},\bar{r}\right)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m}^{a_{1}}\right)\left[\epsilon_{2}\textstyle\sum_{i=1}^{m}\left\|\partial_{t}^{m-i}\partial_{x}^{i}\left(P,u\right)\right\|+\right.
C(|||P|||m1+|||P|||m,tan)]\displaystyle\qquad\quad\left.C\left({\left|\kern-0.96873pt\left|\kern-0.96873pt\left|P\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|P\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,tan}\right)\right]
ϵ1i=1mtmixi(P,u)+C{ϵ0,T,K1{ϵ0}}(1+|||(P\cc@style¯,u¯,s¯,r¯)|||m,Ta)(|||P|||m1+\displaystyle\leq\epsilon_{1}\textstyle\sum_{i=1}^{m}\left\|\partial_{t}^{m-i}\partial_{x}^{i}\left(P,u\right)\right\|+C\big{\{}\epsilon_{0},T,K_{1}\{\epsilon_{0}\}\big{\}}\left(1+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P},\bar{u},\bar{s},\bar{r}\right)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,T}^{a}\right)\left({\left|\kern-0.96873pt\left|\kern-0.96873pt\left|P\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}+\right.
|||P|||m,tan).(Let a=a1,ϵ1=ϵ2C{ϵ0,T,K1{ϵ0}}(1+|||(P\cc@style¯,u¯,s¯,r¯)|||m,Ta).)\displaystyle\quad\left.{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|P\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,tan}\right).\qquad\left(\text{Let }a=a_{1},\epsilon_{1}=\epsilon_{2}C\big{\{}\epsilon_{0},T,K_{1}\{\epsilon_{0}\}\big{\}}\left(1+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(\accentset{{\cc@style\underline{\mskip 10.0mu}}}{P},\bar{u},\bar{s},\bar{r}\right)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,T}^{a}\right).\right)

Now the whole proof is accomplished.

3.2 Iteration Scheme

Now with the solvability of linearized system, we are able to prove Theorem 1.1 through the classical iteration process, which can be roughly presented as obtaining a solution-sequence ([Pk+1],[uk+1],[sk+1],[qk+1])\left([P_{k+1}],[u_{k+1}],[s_{k+1}],[q_{k+1}]\right) iteratively to the following linear system, for k=0,1,2,k=0,1,2,\cdots.

{[Pk+1]t+Cv+1Cv([Pk]+1)[ρk]([rk]2[uk+1])x+1Cv[ρk]([rk]2[qk+1])x=0,[uk+1]t+[rk]2[Pk+1]x=0,[sk+1]t+([rk]2[qk+1])x[θk]=0,[qk+1][rk]2[ρk]([ρk]([rk]2[qk+1])x)x+4[θk]3(Cv+1)[ρk]([Pk]x+([Pk]+1)[sk]x)=0.\left\{\begin{aligned} &[P_{k+1}]_{t}+\frac{C_{v}+1}{C_{v}}([P_{k}]+1)[\rho_{k}]\left([r_{k}]^{2}[u_{k+1}]\right)_{x}+\frac{1}{C_{v}}[\rho_{k}]([r_{k}]^{2}[q_{k+1}])_{x}=0,\\[5.69054pt] &[u_{k+1}]_{t}+[r_{k}]^{2}[P_{k+1}]_{x}=0,\\[5.69054pt] &[s_{k+1}]_{t}+\frac{([r_{k}]^{2}[q_{k+1}])_{x}}{[\theta_{k}]}=0,\\ &\frac{[q_{k+1}]}{[r_{k}]^{2}[\rho_{k}]}-\Big{(}[\rho_{k}]([r_{k}]^{2}[q_{k+1}])_{x}\Big{)}_{x}+\frac{4[\theta_{k}]^{3}}{(C_{v}+1)[\rho_{k}]}\Big{(}[P_{k}]_{x}+\left([P_{k}]+1\right)[s_{k}]_{x}\Big{)}=0.\end{aligned}\right. (3.24)

with

([Pk+1],[uk+1],[sk+1])(0,x)\displaystyle([P_{k+1}],[u_{k+1}],[s_{k+1}])(0,x) =(P01,u0,s01)(x),\displaystyle=(P_{0}-1,u_{0},s_{0}-1)(x),\qquad x𝕀,\displaystyle x\in\mathbb{I}, (3.25)
([uk+1],[qk+1])(t,0)\displaystyle([u_{k+1}],[q_{k+1}])(t,0) =([uk+1],[qk+1])(t,1)=0,\displaystyle=([u_{k+1}],[q_{k+1}])(t,1)=0,\qquad t0,\displaystyle t\geq 0, (3.26)

At outset, it is not obvious the iterates above are well-posed. The following three lemmas are aimed to establish this. First, we can see that the starting point of iteration is not given yet and the iteration systems do not necessarily satisfy the compatible conditions. Usually, the initial data (see [17, p. 36]) or the equilibrium states (see [11, p. 307]) are used for the beginning of iteration. However, in our case when boundary condition are included these two won’t work since we need all iteration systems satisfy the compatible conditions. We can see it in Lemma that if the starting point we choose such that the first system satisfies the compatible conditions, then all systems in iteration sequence naturally do. So the fact we aim to prove in the first lemma is that such starting point does exist, which is analogous to [21, Lemma A3].

Lemma 3.3.

There exist ([P0],[u0],[s0])Xm([0,T];𝕀)\left([P_{0}],[u_{0}],[s_{0}]\right)\in X_{m}([0,T];\mathbb{I}) which satisfy the boundary conditions [u0](t,0)=[u0](t,1)=0[u_{0}](t,0)=[u_{0}](t,1)=0 and initial conditions

(tk[P0],tk[u0],tk[s0])(0,x)={(P01,u0,s01),k=0(tkP,tku,tks)(0),1km\left(\partial_{t}^{k}[P_{0}],\partial_{t}^{k}[u_{0}],\partial_{t}^{k}[s_{0}]\right)(0,x)=\left\{\begin{aligned} &(P_{0}-1,u_{0},s_{0}-1),&&k=0\\ &\left(\partial_{t}^{k}P,\partial_{t}^{k}u,\partial_{t}^{k}s\right)(0),&\quad&1\leq k\leq m\end{aligned}\right. (3.27)
Proof.

We just need to find some functions ([P0],[u0],[s0])Hm+1([0,T]×𝕀)\left([P_{0}],[u_{0}],[s_{0}]\right)\in H^{m+1}([0,T]\times\mathbb{I}), which satisfy the initial conditions (3.27). To achieve that, we can utilize Lemma 3.1, which requires the values that (tk[P0],tk[u0],tk[s0])(0,x)\left(\partial_{t}^{k}[P_{0}],\partial_{t}^{k}[u_{0}],\partial_{t}^{k}[s_{0}]\right)(0,x) take should belong to Hm+1k12(𝕀)H^{m+1-k-\frac{1}{2}}(\mathbb{I}), if we want ([P0],[u0],[s0])Hm+1([0,T]×𝕀)\left([P_{0}],[u_{0}],[s_{0}]\right)\in H^{m+1}([0,T]\times\mathbb{I}). It is a natural requirement if we see from Trace Theorem. However, the values in (3.27) only belong to Hmk(𝕀)H^{m-k}(\mathbb{I}). To overcome this difficulty, we shall make use of our linearized system. Let ([Pk],[uk],[sk])=(P0,u0,s0)\left([P_{k}],[u_{k}],[s_{k}]\right)=(P_{0},u_{0},s_{0}) and ([ρk],[θk],[rk])=(ρ0,θ0,r0)\left([\rho_{k}],[\theta_{k}],[r_{k}]\right)=(\rho_{0},\theta_{0},r_{0}) in the first three equations of system (3.24).

{[P0]t+Cv+1Cv(P0+1)ρ0(r02[u0])x=R1,[u0]t+r02[P0]x=R2,[s0]t=R3.\left\{\begin{aligned} &[P_{0}]_{t}+\frac{C_{v}+1}{C_{v}}(P_{0}+1)\rho_{0}\left(r_{0}^{2}[u_{0}]\right)_{x}=R_{1},\\[5.69054pt] &[u_{0}]_{t}+r_{0}^{2}[P_{0}]_{x}=R_{2},\\[5.69054pt] &[s_{0}]_{t}=R_{3}.\end{aligned}\right. (3.28)

with initial and boundary conditions that

([P0],[u0],[s0])(0,x)\displaystyle([P_{0}],[u_{0}],[s_{0}])(0,x) =(P01,u0,s01)(x),\displaystyle=(P_{0}-1,u_{0},s_{0}-1)(x),\qquad x𝕀,\displaystyle x\in\mathbb{I}, (3.29)
[u0](t,0)\displaystyle[u_{0}](t,0) =[u0](t,1)=0,\displaystyle=[u_{0}](t,1)=0,\qquad t0.\displaystyle t\geq 0. (3.30)

Let ([P0],[u0],[s0])\left([P_{0}],[u_{0}],[s_{0}]\right) be the solution of above system and the good in this is that instead of finding ([P0],[u0],[s0])Hm+1([0,T]×𝕀)\left([P_{0}],[u_{0}],[s_{0}]\right)\in H^{m+1}([0,T]\times\mathbb{I}), which satisfy the initial conditions (3.27), we only need to choose functions (R1(t,x),R2(t,x),R3(t,x))Hm([0,T]×𝕀)\left(R_{1}(t,x),R_{2}(t,x),R_{3}(t,x)\right)\in H^{m}([0,T]\times\mathbb{I}) such that

(tk[P0],tk[u0],tk[s0])(0,x)=(tkP(0,x),tku(0,x),tks(0,x)),1km,\left(\partial_{t}^{k}[P_{0}],\partial_{t}^{k}[u_{0}],\partial_{t}^{k}[s_{0}]\right)(0,x)=\left(\partial_{t}^{k}P(0,x),\partial_{t}^{k}u(0,x),\partial_{t}^{k}s(0,x)\right),\quad 1\leq k\leq m, (3.31)

If this can be achieved, the compatible conditions for above linear system is naturally met and with Theorem 3.2 we can conclude that there exist such ([P0],[u0],[s0])Xm([0,T];𝕀)\left([P_{0}],[u_{0}],[s_{0}]\right)\in X_{m}([0,T];\mathbb{I}). In order to have (3.31), let

{tkR1(0,x)=tk+1P(0,x)+Cv+1Cv(P0+1)ρ0(r02tku(0,x))x,tkR2(0,x)=tk+1u(0,x)+r02(tkP(0,x))x,tkR3(0,x)=tk+1s(0,x),\left\{\begin{aligned} &\partial_{t}^{k}R_{1}(0,x)=\partial_{t}^{k+1}P(0,x)+\frac{C_{v}+1}{C_{v}}(P_{0}+1)\rho_{0}\left(r_{0}^{2}\partial_{t}^{k}u(0,x)\right)_{x},\\ &\partial_{t}^{k}R_{2}(0,x)=\partial_{t}^{k+1}u(0,x)+r_{0}^{2}\left(\partial_{t}^{k}P(0,x)\right)_{x},\\[4.2679pt] &\partial_{t}^{k}R_{3}(0,x)=\partial_{t}^{k+1}s(0,x),\end{aligned}\right. (3.32)

for 0km0\leq k\leq m. We can see although tk+1P(0,x),tk+1u(0,x)Hmk1(𝕀)\partial_{t}^{k+1}P(0,x),\partial_{t}^{k+1}u(0,x)\in H^{m-k-1}(\mathbb{I}), due to the structure (3.32) (depending on the system (3.28)), tkRi(0,x)Hmk(𝕀)Hmk12(𝕀)\partial_{t}^{k}R_{i}(0,x)\in H^{m-k}(\mathbb{I})\subset H^{m-k-\frac{1}{2}}(\mathbb{I}) (i=1,2,3i=1,2,3). Now with Lemma 3.1, we can prove such Ri(t,x)Hm([0,T]×𝕀)(i=1,2,3)R_{i}(t,x)\in H^{m}([0,T]\times\mathbb{I})\ (i=1,2,3) do exist and the proof of Lemma 3.3 completes. ∎

In the next two lemmas, we aim to prove the solution sequence generated by the iteration process is convergent in a certain function space. With the classical method (see [17, p. 34–46]), it is converted into proving two simple facts about the sequence, boundedness in the high norm and contraction in the low norm.

Lemma 3.4 (boundedness in the high norm).

There are sufficiently small constants T1T_{1} and K3{ϵ0}K_{3}\{\epsilon_{0}\} such that ([Pk],[uk],[sk],[qk],([rk1]2[qk])x)Bm([0,T1];𝕀;K3{ϵ0})\Big{(}\left[P_{k}\right],\left[u_{k}\right],\left[s_{k}\right],\left[q_{k}\right],\left([r_{k-1}]^{2}[q_{k}]\right)_{x}\Big{)}\in B_{m}\left([0,T_{1}];\mathbb{I};K_{3}\{\epsilon_{0}\}\right). Furthermore, ti[uk]=0\partial_{t}^{i}[u_{k}]=0 on 𝕀\partial\mathbb{I} and

(ti[Pk],ti[uk],ti[sk])(0,x)=(tiP(0,x),tiu(0,x),tis(0,x)),i=0,,m.\displaystyle\left(\partial_{t}^{i}\left[P_{k}\right],\partial_{t}^{i}\left[u_{k}\right],\partial_{t}^{i}\left[s_{k}\right]\right)(0,x)=\left(\partial_{t}^{i}P(0,x),\partial_{t}^{i}u(0,x),\partial_{t}^{i}s(0,x)\right),\qquad i=0,\cdots,m.
Proof.

Since Ri(t,x)Hm([0,T]×𝕀)(i=1,2,3)R_{i}(t,x)\in H^{m}([0,T]\times\mathbb{I})\ (i=1,2,3), let’s say |||Ri(t,x)|||m,TK0{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|R_{i}(t,x)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,T}\leq K_{0} and according to (3.32), we have |||(R2,R3)(0)|||2mC4{ϵ0}ϵ0{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left(R_{2},R_{3}\right)(0)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m}\leq C_{4}\{\epsilon_{0}\}\epsilon_{0}. Now we choose a suitable T2T_{2}, K1{ϵ0}K_{1}\{\epsilon_{0}\} and K2{ϵ0}K_{2}\{\epsilon_{0}\} such that for any TT^{\prime} that 0<TT2T0<T^{\prime}\leq T_{2}\leq T, our starting point ([P0],[u0],[s0])\left([P_{0}],[u_{0}],[s_{0}]\right) satisfy

([P0],[u0],[s0])Am([0,T];𝕀;K1{ϵ0})Bm([0,T];𝕀;K2{ϵ0}).\displaystyle\left([P_{0}],[u_{0}],[s_{0}]\right)\in A_{m}\left([0,T^{\prime}];\mathbb{I};K_{1}\{\epsilon_{0}\}\right)\textstyle\bigcap B_{m}\left([0,T^{\prime}];\mathbb{I};K_{2}\{\epsilon_{0}\}\right). (3.33)

To achieve that, we apply the similar estimates to system (3.28) as what we did in (3.16), (3.17) and (3.10). Then we have

|||([P0],[u0])(t)|||m,tan2+|||([P0],[u0])(t)|||m12C6{ϵ0}exp{tC8{ϵ0}}[|||(P,u)(0)|||m12\displaystyle{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|([P_{0}],[u_{0}])(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,tan}^{2}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|([P_{0}],[u_{0}])(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}^{2}\leq C_{6}\{\epsilon_{0}\}\cdot\exp\Big{\{}{t\cdot C_{8}\{\epsilon_{0}\}}\Big{\}}\left[{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(P,u)(0)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}^{2}\right.
+|||(P,u)(0)|||m,tan2+0t|||R1(s)|||m2ds]C6{ϵ0}exp{tC8{ϵ0}}[2C1{ϵ0}ϵ0+TK02],\displaystyle\left.\qquad\quad\ +{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(P,u)(0)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,tan}^{2}+\int_{0}^{t}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|R_{1}(s)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m}^{2}{\rm d}s\right]\leq C_{6}\{\epsilon_{0}\}\cdot\exp\Big{\{}{t\cdot C_{8}\{\epsilon_{0}\}}\Big{\}}\left[2C_{1}\{\epsilon_{0}\}\epsilon_{0}+T\cdot K_{0}^{2}\right],
|||[s0](t)|||2ms02Hm+|||R3(t)|||2m1+0t|||R3(τ)|||2mdτϵ0+(C4{ϵ0}ϵ0+TK02)+TK02.\displaystyle{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|[s_{0}](t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m}\lesssim\left\|s_{0}\right\|^{2}_{H^{m}}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|R_{3}(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m-1}+\int_{0}^{t}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|R_{3}(\tau)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m}\ {\rm d}\tau\lesssim\epsilon_{0}+\Big{(}C_{4}\{\epsilon_{0}\}\epsilon_{0}+T\cdot K_{0}^{2}\Big{)}+T\cdot K_{0}^{2}.
|||[s0](t)|||2m,tan+|||[s0](t)|||2m1|||R3(t)|||2m1+|||[s0](t)|||2mϵ0+2(C4{ϵ0}ϵ0+TK02)+TK02,\displaystyle{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|[s_{0}](t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m,tan}\!+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|[s_{0}](t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m-1}\leq{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|R_{3}(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m-1}\!+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|[s_{0}](t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}^{2}_{m}\leq\epsilon_{0}+2\Big{(}C_{4}\{\epsilon_{0}\}\epsilon_{0}+T\cdot K_{0}^{2}\Big{)}\!+T\cdot K_{0}^{2},
|||([P0],[u0])(t)|||mC10{ϵ0}[|||([P0],[u0])(t)|||m1+|||([P0],[u0])(t)|||m,tan+|||R2(t)|||m1]\displaystyle{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left([P_{0}],[u_{0}]\right)(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m}\leq C_{10}\{\epsilon_{0}\}\left[{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left([P_{0}],[u_{0}]\right)(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left([P_{0}],[u_{0}]\right)(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,tan}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|R_{2}(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}\right]
C10{ϵ0}[|||([P0],[u0])(t)|||m1+|||([P0],[u0])(t)|||m,tan+C4{ϵ0}ϵ0+TK02].\displaystyle\qquad\qquad\qquad\ \ \leq C_{10}\{\epsilon_{0}\}\left[{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left([P_{0}],[u_{0}]\right)(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left([P_{0}],[u_{0}]\right)(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,tan}+\sqrt{C_{4}\{\epsilon_{0}\}\epsilon_{0}+T\cdot K_{0}^{2}}\right].

For any fixed ϵ0\epsilon_{0}, denote

G4=max{G4{ϵ0},C4{ϵ0}},G6=max{G6{ϵ0},C6{ϵ0}},\displaystyle G_{4}^{*}=\max\Big{\{}G_{4}\{\epsilon_{0}\},C_{4}\{\epsilon_{0}\}\Big{\}},\quad G_{6}^{*}=\max\Big{\{}G_{6}\{\epsilon_{0}\},C_{6}\{\epsilon_{0}\}\Big{\}},
G10=max{G10{ϵ0,1,K1{ϵ0}},C10{ϵ0}}.\displaystyle G_{10}^{*}=\max\Big{\{}G_{10}\big{\{}\epsilon_{0},1,K_{1}\{\epsilon_{0}\}\big{\}},C_{10}\{\epsilon_{0}\}\Big{\}}.

Now we define

K1{ϵ0}=2(G6+1)(2C1{ϵ0}+1)ϵ0+2ϵ0+2(G2{ϵ0}+1)(G4+1)ϵ0,\displaystyle K_{1}\{\epsilon_{0}\}=2\big{(}G_{6}^{*}+1\big{)}\big{(}2C_{1}\{\epsilon_{0}\}+1\big{)}\epsilon_{0}+2\epsilon_{0}+2\big{(}G_{2}\{\epsilon_{0}\}+1\big{)}\big{(}G_{4}^{*}+1\big{)}\epsilon_{0},
K2{ϵ0}=11aG10(2+(C2{ϵ0})a)[2K1{ϵ0}+(G4+1)ϵ0]\displaystyle K_{2}\{\epsilon_{0}\}=\frac{1}{1-a}G_{10}^{*}\Big{(}2+\left(C_{2}\{\epsilon_{0}\}\right)^{a}\Big{)}\left[\sqrt{2K_{1}\{\epsilon_{0}\}}+\sqrt{\left(G_{4}^{*}+1\right)\epsilon_{0}}\right]
+(G10[2K1{ϵ0}+(G4+1)ϵ0])11a+11a2ϵ0+(G2{ϵ0}+1)(G4+1)ϵ0,\displaystyle\quad+\left(G_{10}^{*}\left[\sqrt{2K_{1}\{\epsilon_{0}\}}+\sqrt{\left(G_{4}^{*}+1\right)\epsilon_{0}}\ \right]\right)^{\frac{1}{1-a}}+\frac{1}{1-a}\sqrt{2\epsilon_{0}+\left(G_{2}\{\epsilon_{0}\}+1\right)\left(G_{4}^{*}+1\right)\epsilon_{0}},
K3{ϵ0}=(G1{ϵ0,1,K1{ϵ0}}+1)K2{ϵ0}.\displaystyle K_{3}\{\epsilon_{0}\}=\left(\sqrt{G_{1}\big{\{}\epsilon_{0},1,K_{1}\{\epsilon_{0}\}\big{\}}}+1\right)K_{2}\{\epsilon_{0}\}.

Since T2T_{2} is small, without loss of generality we assume T2<1T_{2}<1. Furthermore, we set T2K02ϵ0T_{2}\cdot K_{0}^{2}\leq\epsilon_{0} and exp{T2C8{ϵ0,1,K2{ϵ0}}}<2\exp\Big{\{}{T_{2}\cdot C_{8}\big{\{}\epsilon_{0},1,K_{2}\{\epsilon_{0}\}\big{\}}}\Big{\}}<2. It’s easy to check that

|||([P0],[u0],[s0])(t)|||m12+|||([P0],[u0],[s0])(t)|||m,tan2\displaystyle{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|([P_{0}],[u_{0}],[s_{0}])(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}^{2}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|([P_{0}],[u_{0}],[s_{0}])(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,tan}^{2}
2(C4{ϵ0}+1)(2C1{ϵ0}+1)ϵ0+2ϵ0+2(C4{ϵ0}+1)ϵ0K1{ϵ0},\displaystyle\qquad\qquad\qquad\qquad\qquad\quad\ \,\leq 2\big{(}C_{4}\{\epsilon_{0}\}+1\big{)}\big{(}2C_{1}\{\epsilon_{0}\}+1\big{)}\epsilon_{0}+2\epsilon_{0}+2\big{(}C_{4}\{\epsilon_{0}\}+1\big{)}\epsilon_{0}\leq K_{1}\{\epsilon_{0}\},
|||([P0],[u0])(t)|||m+|||[s0](t)|||m\displaystyle{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left([P_{0}],[u_{0}]\right)(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|[s_{0}](t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m}
C10{ϵ0}(2K1{ϵ0}+(C4{ϵ0}+1)ϵ0)+2ϵ0+(C4{ϵ0}+1)ϵ0K2{ϵ0},\displaystyle\qquad\qquad\qquad\leq C_{10}\{\epsilon_{0}\}\left(\sqrt{2K_{1}\{\epsilon_{0}\}}+\sqrt{\left(C_{4}\{\epsilon_{0}\}+1\right)\epsilon_{0}}\right)+\sqrt{2\epsilon_{0}+\left(C_{4}\{\epsilon_{0}\}+1\right)\epsilon_{0}}\leq K_{2}\{\epsilon_{0}\},

and (3.33) stands.

Next, we prove that there exists a T1T_{1} such that for any TT^{\prime} satisfying 0<TT1T20<T^{\prime}\leq T_{1}\leq T_{2} if

([Pk],[uk],[sk])Am([0,T1];𝕀;K1{ϵ0})Bm([0,T1];𝕀;K2{ϵ0}),\displaystyle\left([P_{k}],[u_{k}],[s_{k}]\right)\in A_{m}\left([0,T_{1}];\mathbb{I};K_{1}\{\epsilon_{0}\}\right)\textstyle\bigcap B_{m}\left([0,T_{1}];\mathbb{I};K_{2}\{\epsilon_{0}\}\right),
(ti[Pk],ti[uk],ti[sk])(0,x)=(tiP,tiu,tis)(0),i=0,,m.\displaystyle\left(\partial_{t}^{i}\left[P_{k}\right],\partial_{t}^{i}\left[u_{k}\right],\partial_{t}^{i}\left[s_{k}\right]\right)(0,x)=\left(\partial_{t}^{i}P,\partial_{t}^{i}u,\partial_{t}^{i}s\right)(0),\qquad i=0,\cdots,m. (3.34)

then

([Pk+1],[uk+1],[sk+1],[qk+1],([rk]2[qk+1])x)Bm([0,T1];𝕀;K3{ϵ0}),\displaystyle\Big{(}[P_{k+1}],[u_{k+1}],[s_{k+1}],[q_{k+1}],\left([r_{k}]^{2}[q_{k+1}]\right)_{x}\Big{)}\in B_{m}\left([0,T_{1}];\mathbb{I};K_{3}\{\epsilon_{0}\}\right),
(ti[Pk+1],ti[uk+1],ti[sk+1])(0,x)=(tiP,tiu,tis)(0),i=0,,m.\displaystyle\left(\partial_{t}^{i}\left[P_{k+1}\right],\partial_{t}^{i}\left[u_{k+1}\right],\partial_{t}^{i}\left[s_{k+1}\right]\right)(0,x)=\left(\partial_{t}^{i}P,\partial_{t}^{i}u,\partial_{t}^{i}s\right)(0),\qquad i=0,\cdots,m.

First, we can see it from the definition of (tiP(0,x),tiu(0,x),tis(0,x))\left(\partial_{t}^{i}P(0,x),\partial_{t}^{i}u(0,x),\partial_{t}^{i}s(0,x)\right), conditions (3.34) and the structure of system (3.24) that

(ti[Pk+1],ti[uk+1],ti[sk+1])(0,x)=(tiP(0,x),tiu(0,x),tis(0,x)).\left(\partial_{t}^{i}\left[P_{k+1}\right],\partial_{t}^{i}\left[u_{k+1}\right],\partial_{t}^{i}\left[s_{k+1}\right]\right)(0,x)=\left(\partial_{t}^{i}P(0,x),\partial_{t}^{i}u(0,x),\partial_{t}^{i}s(0,x)\right).

Second, we choose T1T_{1} is small enough such that |r¯|L|\bar{r}|_{L^{\infty}} has a positive lower bound, T1K2{ϵ0}<12T_{1}\cdot K_{2}\{\epsilon_{0}\}<\frac{1}{2}, T1G7{ϵ0,1,K1{ϵ0}}<1T_{1}\cdot G_{7}\big{\{}\epsilon_{0},1,K_{1}\{\epsilon_{0}\}\big{\}}<1, exp{T1G8{ϵ0,1,K2{ϵ0}}}<2\exp\Big{\{}{T_{1}\cdot G_{8}\big{\{}\epsilon_{0},1,K_{2}\{\epsilon_{0}\}\big{\}}}\Big{\}}<2, T1G3{K2{ϵ0}}<1T_{1}\cdot G_{3}\big{\{}K_{2}\{\epsilon_{0}\}\big{\}}<1,

T1\displaystyle T_{1}\cdot G5{K2{ϵ0}}G1{ϵ0,1,K1{ϵ0}}(K2{ϵ0})2<ϵ0,\displaystyle G_{5}\big{\{}K_{2}\{\epsilon_{0}\}\big{\}}G_{1}\big{\{}\epsilon_{0},1,K_{1}\{\epsilon_{0}\}\big{\}}\left(K_{2}\{\epsilon_{0}\}\right)^{2}<\epsilon_{0},
G9{ϵ0,1,K2{ϵ0}}\displaystyle G_{9}\left\{\epsilon_{0},1,K_{2}\{\epsilon_{0}\}\right\} 0t|||(r¯2q)x(s)|||m2dsT1G9G1{ϵ0,1,K1{ϵ0}}(K2{ϵ0})2ϵ0,\displaystyle\int_{0}^{t}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(\bar{r}^{2}q)_{x}(s)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m}^{2}{\rm d}s\leq T_{1}\cdot G_{9}G_{1}\big{\{}\epsilon_{0},1,K_{1}\{\epsilon_{0}\}\big{\}}\left(K_{2}\{\epsilon_{0}\}\right)^{2}\leq\epsilon_{0},
|||(r¯2q)x(t)|||m12\displaystyle{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|(\bar{r}^{2}q)_{x}(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}^{2} (3.9)G4{ϵ0}ϵ0+T1G1{ϵ0,1,K1{ϵ0}}(K2{ϵ0})2(G4{ϵ0}+1)ϵ0.\displaystyle\mathrel{\overset{\makebox[0.0pt]{\mbox{\scriptsize\eqref{smtan}}}}{\leq}}\ G_{4}\{\epsilon_{0}\}\epsilon_{0}+T_{1}\cdot G_{1}\big{\{}\epsilon_{0},1,K_{1}\{\epsilon_{0}\}\big{\}}\left(K_{2}\{\epsilon_{0}\}\right)^{2}\leq\left(G_{4}\{\epsilon_{0}\}+1\right)\epsilon_{0}.

Then we have from (3.16), (3.17), (3.9), (3.10) and (3.8) that

|||([Pk+1],[uk+1],[sk+1])(t)|||m,tan2+|||([Pk+1],[uk+1],[sk+1])(t)|||m12\displaystyle{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|([P_{k+1}],[u_{k+1}],[s_{k+1}])(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,tan}^{2}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|([P_{k+1}],[u_{k+1}],[s_{k+1}])(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m-1}^{2}
2(G6{ϵ0}+1)(2C1{ϵ0}+1)ϵ0+2ϵ0+2(G2{ϵ0}+1)(G4{ϵ0}+1)ϵ0K1{ϵ0},\displaystyle\qquad\qquad\qquad\leq 2\big{(}G_{6}\{\epsilon_{0}\}+1\big{)}\big{(}2C_{1}\{\epsilon_{0}\}+1\big{)}\epsilon_{0}+2\epsilon_{0}+2\big{(}G_{2}\{\epsilon_{0}\}+1\big{)}\big{(}G_{4}\{\epsilon_{0}\}+1\big{)}\epsilon_{0}\leq K_{1}\{\epsilon_{0}\},
|||([Pk+1],[uk+1])(t)|||m+|||[sk+1](t)|||m\displaystyle{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left([P_{k+1}],[u_{k+1}]\right)(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|[s_{k+1}](t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m}
(3.7)G10{ϵ0,1,K1{ϵ0}}|||([Pk],[uk],[sk])|||m,Ta[2K1{ϵ0}+(G4{ϵ0}+1)ϵ0]\displaystyle\qquad\qquad\qquad\mathrel{\overset{\makebox[0.0pt]{\mbox{\scriptsize\eqref{barr}}}}{\leq}}G_{10}\big{\{}\epsilon_{0},1,K_{1}\{\epsilon_{0}\}\big{\}}{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\left([P_{k}],[u_{k}],[s_{k}]\right)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m,T}^{a}\left[\sqrt{2K_{1}\{\epsilon_{0}\}}+\sqrt{\left(G_{4}\{\epsilon_{0}\}+1\right)\epsilon_{0}}\right]
+G10{ϵ0,1,K1{ϵ0}}(2+(C2{ϵ0})a)[2K1{ϵ0}+(G4{ϵ0}+1)ϵ0]\displaystyle\qquad\qquad\qquad\quad\ +G_{10}\big{\{}\epsilon_{0},1,K_{1}\{\epsilon_{0}\}\big{\}}\Big{(}2+\left(C_{2}\{\epsilon_{0}\}\right)^{a}\Big{)}\left[\sqrt{2K_{1}\{\epsilon_{0}\}}+\sqrt{\left(G_{4}\{\epsilon_{0}\}+1\right)\epsilon_{0}}\right]
+2ϵ0+(G2{ϵ0}+1)(G4{ϵ0}+1)ϵ0\displaystyle\qquad\qquad\qquad\quad\ +\sqrt{2\epsilon_{0}+\left(G_{2}\{\epsilon_{0}\}+1\right)\left(G_{4}\{\epsilon_{0}\}+1\right)\epsilon_{0}}
Young’s inequalityaK2{ϵ0}+(1a)(G10{ϵ0,1,K1{ϵ0}}[2K1{ϵ0}+(G4{ϵ0}+1)ϵ0])11a\displaystyle\qquad\ \ \mathrel{\overset{\raise 2.84526pt\hbox{\scriptsize Young's inequality}}{\leq}}\!\!\!\!\!\!\!\!aK_{2}\{\epsilon_{0}\}+(1-a)\left(G_{10}\big{\{}\epsilon_{0},1,K_{1}\{\epsilon_{0}\}\big{\}}\left[\sqrt{2K_{1}\{\epsilon_{0}\}}+\sqrt{\left(G_{4}\{\epsilon_{0}\}+1\right)\epsilon_{0}}\right]\right)^{\frac{1}{1-a}}
+G10{ϵ0,1,K1{ϵ0}}(2+(C2{ϵ0})a)[2K1{ϵ0}+(G4{ϵ0}+1)ϵ0]\displaystyle\qquad\qquad\qquad\quad\ +G_{10}\big{\{}\epsilon_{0},1,K_{1}\{\epsilon_{0}\}\big{\}}\left(2+\left(C_{2}\{\epsilon_{0}\}\right)^{a}\right)\left[\sqrt{2K_{1}\{\epsilon_{0}\}}+\sqrt{\left(G_{4}\{\epsilon_{0}\}+1\right)\epsilon_{0}}\right]
+2ϵ0+(G2{ϵ0}+1)(G4{ϵ0}+1)ϵ0\displaystyle\qquad\qquad\qquad\quad\ +\sqrt{2\epsilon_{0}+\left(G_{2}\{\epsilon_{0}\}+1\right)\left(G_{4}\{\epsilon_{0}\}+1\right)\epsilon_{0}}
aK2{ϵ0}+(1a)K2{ϵ0}=K2{ϵ0},\displaystyle\qquad\qquad\qquad\leq aK_{2}\{\epsilon_{0}\}+(1-a)K_{2}\{\epsilon_{0}\}=K_{2}\{\epsilon_{0}\},
|||([Pk+1],[uk+1],[sk+1])(t)|||m+|||([qk+1],([rk]2[qk+1])x)(t)|||m\displaystyle{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|([P_{k+1}],[u_{k+1}],[s_{k+1}])(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m}+{\left|\kern-0.96873pt\left|\kern-0.96873pt\left|\Big{(}[q_{k+1}],\left([r_{k}]^{2}[q_{k+1}]\right)_{x}\Big{)}(t)\right|\kern-0.96873pt\right|\kern-0.96873pt\right|}_{m}
(3.8)K2{ϵ0}+G1{ϵ0,1,K1{ϵ0}}K2{ϵ0}=K3{ϵ0}.\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\mathrel{\overset{\makebox[0.0pt]{\mbox{\scriptsize\eqref{barq}}}}{\leq}}K_{2}\{\epsilon_{0}\}+\sqrt{G_{1}\big{\{}\epsilon_{0},1,K_{1}\{\epsilon_{0}\}\big{\}}}K_{2}\{\epsilon_{0}\}=K_{3}\{\epsilon_{0}\}.

Lemma 3.5 (contraction in low norm).

A T0>0T_{0}>0 can be found such that if TT0T\leq T_{0}, there exist functions (P,u,s,q)C{[0,T],L2(𝕀)}\left(P,u,s,q\right)\in C\left\{[0,T],L^{2}(\mathbb{I})\right\} satisfy

([Pk],[uk],[sk],[qk])(P,u,s,q)inC{[0,T],L2(𝕀)},ask.\displaystyle\big{(}\,[P_{k}],[u_{k}],[s_{k}],[q_{k}]\,\big{)}\rightarrow\left(P,u,s,q\right)\ \text{in}\ \ C\{[0,T],L^{2}(\mathbb{I})\},\quad\text{as}\ k\rightarrow\infty. (3.35)
Proof.

If system (3.24) is denoted as Ek+1E_{k+1}, we subtract EkE_{k} from Ek+1E_{k+1} and get the equations for ([Pk]~,[uk]~,[sk]~,[qk]~):=([Pk+1][Pk],[uk+1][uk],[sk+1][sk],[qk+1][qk])\left(\widetilde{[P_{k}]},\widetilde{[u_{k}]},\widetilde{[s_{k}]},\widetilde{[q_{k}]}\right):=\Big{(}[P_{k+1}]-[P_{k}],\ [u_{k+1}]-[u_{k}],\ [s_{k+1}]-[s_{k}],\ [q_{k+1}]-[q_{k}]\Big{)} that

{[Pk]~t+Cv+1Cv([Pk]+1)[ρk][Uk]~x=n1,[uk]~t+[rk]2[Pk]~x=n2,[sk]~t=n3,[qk]~[rk]2[ρk]([ρk][Qk]~x)x=n4.\left\{\begin{aligned} &\widetilde{[P_{k}]}_{t}+\frac{C_{v}+1}{C_{v}}([P_{k}]+1)[\rho_{k}]\widetilde{[U_{k}]}_{x}=\mathbb{R}_{n}^{1},\\[5.69054pt] &\widetilde{[u_{k}]}_{t}+[r_{k}]^{2}\widetilde{[P_{k}]}_{x}=\mathbb{R}_{n}^{2},\\[5.69054pt] &\widetilde{[s_{k}]}_{t}=\mathbb{R}_{n}^{3},\\[5.69054pt] &\frac{\widetilde{[q_{k}]}}{[r_{k}]^{2}[\rho_{k}]}-\Big{(}[\rho_{k}]\widetilde{[Q_{k}]}_{x}\Big{)}_{x}=\mathbb{R}_{n}^{4}.\end{aligned}\right. (3.36)

Here,

[Uk]~:=[rk]2[uk+1][rk1]2[uk],[Qk]~:=[rk]2[qk+1][rk1]2[qk],\displaystyle\widetilde{[U_{k}]}:=[r_{k}]^{2}[u_{k+1}]-[r_{k-1}]^{2}[u_{k}],\qquad\ \widetilde{[Q_{k}]}:=[r_{k}]^{2}[q_{k+1}]-[r_{k-1}]^{2}[q_{k}], (3.37)
n1=(Cv+1Cv([Pk]+1)[ρk]Cv+1Cv([Pk1]+1)[ρk1])([rk1]2[uk])x\displaystyle\mathbb{R}_{n}^{1}=-\left(\frac{C_{v}+1}{C_{v}}([P_{k}]+1)[\rho_{k}]-\frac{C_{v}+1}{C_{v}}([P_{k-1}]+1)[\rho_{k-1}]\right)\left([r_{k-1}]^{2}[u_{k}]\right)_{x}
1Cv[ρk][Qk]~x([ρk][ρk1])([rk1]2[qk])xCv,\displaystyle\qquad\ -\frac{1}{C_{v}}[\rho_{k}]\widetilde{[Q_{k}]}_{x}-\Big{(}[\rho_{k}]-[\rho_{k-1}]\Big{)}\frac{\left([r_{k-1}]^{2}[q_{k}]\right)_{x}}{C_{v}},
n2=([rk]2[rk1]2)[Pk]x,n3=[Qk]~x[θk](1[θk]1[θk1])([rk1]2[qk])x,\displaystyle\mathbb{R}_{n}^{2}=-\left([r_{k}]^{2}-[r_{k-1}]^{2}\right)[P_{k}]_{x},\qquad\mathbb{R}_{n}^{3}=-\frac{\widetilde{[Q_{k}]}_{x}}{[\theta_{k}]}-\left(\frac{1}{[\theta_{k}]}-\frac{1}{[\theta_{k-1}]}\right)\left([r_{k-1}]^{2}[q_{k}]\right)_{x},
n4=(1[rk]2[ρk]1[rk1]2[ρk1])[qk]+(([ρk][ρk1])([rk1]2[qk])x)x\displaystyle\mathbb{R}_{n}^{4}=-\left(\frac{1}{[r_{k}]^{2}[\rho_{k}]}-\frac{1}{[r_{k-1}]^{2}[\rho_{k-1}]}\right)[q_{k}]+\Big{(}\big{(}[\rho_{k}]-[\rho_{k-1}]\big{)}\left([r_{k-1}]^{2}[q_{k}]\right)_{x}\Big{)}_{x}
4[θk]3(Cv+1)[ρk]([Pk1]~x+([Pk]+1)[sk1]~x)(4[θk]3(Cv+1)[ρk]4[θk1]3(Cv+1)[ρk1])[Pk1]x\displaystyle\qquad\ -\frac{4[\theta_{k}]^{3}}{(C_{v}+1)[\rho_{k}]}\Big{(}\widetilde{[P_{k-1}]}_{x}+\left([P_{k}]+1\right)\widetilde{[s_{k-1}]}_{x}\Big{)}-\left(\frac{4[\theta_{k}]^{3}}{(C_{v}+1)[\rho_{k}]}-\frac{4[\theta_{k-1}]^{3}}{(C_{v}+1)[\rho_{k-1}]}\right)[P_{k-1}]_{x}
(4[θk]3(Cv+1)[ρk]([Pk]+1)4[θk1]3(Cv+1)[ρk1]([Pk1]+1))[sk1]x.\displaystyle\qquad\ -\left(\frac{4[\theta_{k}]^{3}}{(C_{v}+1)[\rho_{k}]}\left([P_{k}]+1\right)-\frac{4[\theta_{k-1}]^{3}}{(C_{v}+1)[\rho_{k-1}]}\left([P_{k-1}]+1\right)\right)[s_{k-1}]_{x}.

Here, just like what we did in (3.8), the reason why we treat [Uk]~\widetilde{[U_{k}]} and [Qk]~\widetilde{[Q_{k}]} as a whole is to avoid [uk1]~x\widetilde{[u_{k-1}]}_{x} emerging from [rk]x[rk1]x[r_{k}]_{x}-[r_{k-1}]_{x}, which would make the order of derivatives not balanced in (3.41). Then we compute (3.36)1×Cv(Cv+1)[ρk][Pk]~+(3.36)2×1[rk]2[Uk]~+(3.36)3×[sk]~\eqref{cns11}_{1}\times\frac{C_{v}}{(C_{v}+1)[\rho_{k}]}\widetilde{[P_{k}]}+\eqref{cns11}_{2}\times\frac{1}{[r_{k}]^{2}}\widetilde{[U_{k}]}+\eqref{cns11}_{3}\times\widetilde{[s_{k}]} and integrate the resultant equality over 𝕀\mathbb{I}, which gives

ddt𝕀\displaystyle\frac{{\rm d}}{{\rm d}t}\int_{\mathbb{I}} (Cv(Cv+1)[ρk][Pk]~2+[uk]~22+[rk][rk1]~[uk][uk]~[rk]2+[rk1]~[rk1][uk][uk]~[rk]2+[sk]~22)dx\displaystyle\left(\frac{C_{v}}{(C_{v}+1)[\rho_{k}]}\widetilde{[P_{k}]}^{2}+\frac{\widetilde{[u_{k}]}^{2}}{2}+\frac{[r_{k}]\widetilde{[r_{k-1}]}[u_{k}]\widetilde{[u_{k}]}}{[r_{k}]^{2}}+\frac{\widetilde{[r_{k-1}]}[r_{k-1}][u_{k}]\widetilde{[u_{k}]}}{[r_{k}]^{2}}+\frac{\widetilde{[s_{k}]}^{2}}{2}\right){\rm d}x
([Pk]~,[uk]~,[sk]~)(t)2+([Qk]~x,[Pk1]~,[sk1]~)(t)2+Tsupt[0,T][uk1]~(t)2.\displaystyle\lesssim\left\|\left(\widetilde{[P_{k}]},\widetilde{[u_{k}]},\widetilde{[s_{k}]}\right)(t)\right\|^{2}+\left\|\left(\widetilde{[Q_{k}]}_{x},\widetilde{[P_{k-1}]},\widetilde{[s_{k-1}]}\right)(t)\right\|^{2}+T\cdot\sup_{t\in[0,T]}\left\|\widetilde{[u_{k-1}]}(t)\right\|^{2}. (3.38)

Integrate (3.38) over [0,t][0,t] (0tT0\leq t\leq T) and we have

([Pk]~,[uk]~,[sk]~)(t)2\displaystyle\left\|\left(\widetilde{[P_{k}]},\widetilde{[u_{k}]},\widetilde{[s_{k}]}\right)(t)\right\|^{2}\lesssim 0t([Pk]~,[uk]~,[sk]~)(τ)2dτ+0t([Qk]~x,[Pk1]~,[sk1]~)(τ)2dτ\displaystyle\int_{0}^{t}\left\|\left(\widetilde{[P_{k}]},\widetilde{[u_{k}]},\widetilde{[s_{k}]}\right)(\tau)\right\|^{2}{\rm d}\tau+\int_{0}^{t}\left\|\left(\widetilde{[Q_{k}]}_{x},\widetilde{[P_{k-1}]},\widetilde{[s_{k-1}]}\right)(\tau)\right\|^{2}{\rm d}\tau
+tsupt[0,T][uk1]~(t)2.(T<1 set in Lemma 3.4)\displaystyle+t\cdot\sup_{t\in[0,T]}\left\|\widetilde{[u_{k-1}]}(t)\right\|^{2}.\qquad\quad\text{{(}$T<1$ set in Lemma \ref{boundedness}{)}}

With Gro¨nwallsGr\ddot{o}nwall^{\prime}s inequality, we have for some positive constant CC that

([Pk]~,[uk]~,[sk]~)(t)2CTeCTsupt[0,T]([Qk]~x,[Pk1]~,[uk1]~,[sk1]~)(t)2.\displaystyle\left\|\left(\widetilde{[P_{k}]},\widetilde{[u_{k}]},\widetilde{[s_{k}]}\right)(t)\right\|^{2}\leq CTe^{CT}\sup_{t\in[0,T]}\left\|\left(\widetilde{[Q_{k}]}_{x},\widetilde{[P_{k-1}]},\widetilde{[u_{k-1}]},\widetilde{[s_{k-1}]}\right)(t)\right\|^{2}. (3.39)

Now we compute (3.36)4×[Qk]~\eqref{cns11}_{4}\times\widetilde{[Q_{k}]}, integrate the resultant equality over 𝕀\mathbb{I} and we have for for some positive constant CC that

[qk]~2+[Qk]~x2C([Pk1]~,[uk1]~,[sk1]~)2.\displaystyle\left\|\widetilde{[q_{k}]}\right\|^{2}+\left\|\widetilde{[Q_{k}]}_{x}\right\|^{2}\leq C\left\|\left(\widetilde{[P_{k-1}]},\widetilde{[u_{k-1}]},\widetilde{[s_{k-1}]}\right)\right\|^{2}. (3.40)

Substitute (3.40) into (3.39) and we have

([Pk]~,[uk]~,[sk]~)(t)2CTeCTsupt[0,T]([Pk1]~,[uk1]~,[sk1]~)(t)2.\displaystyle\left\|\left(\widetilde{[P_{k}]},\widetilde{[u_{k}]},\widetilde{[s_{k}]}\right)(t)\right\|^{2}\leq CTe^{CT}\sup_{t\in[0,T]}\left\|\left(\widetilde{[P_{k-1}]},\widetilde{[u_{k-1}]},\widetilde{[s_{k-1}]}\right)(t)\right\|^{2}. (3.41)

We can see there exist a fixed constant 0<γ<10<\gamma<1 and a small T0>0T_{0}>0 such that if TT0T\leq T_{0}, then CTeCTγCTe^{CT}\leq\gamma. According to Banach fixed-point theorem, there exist (P,u,s)C{[0,T],L2(𝕀)}\left(P,u,s\right)\in C\{[0,T],L^{2}(\mathbb{I})\} such that

([Pk],[uk],[sk])(P,u,s)inC{[0,T],L2(𝕀)},ask.\displaystyle\big{(}\,[P_{k}],[u_{k}],[s_{k}]\,\big{)}\rightarrow\left(P,u,s\right)\ \text{in}\ \ C\{[0,T],L^{2}(\mathbb{I})\},\quad\text{as}\ k\rightarrow\infty. (3.42)

With (3.40) and (3.41), we have for some qC{[0,T],L2(𝕀)}q\in C\{[0,T],L^{2}(\mathbb{I})\} that

[qk]qinC{[0,T],L2(𝕀)},ask,\displaystyle[q_{k}]\rightarrow q\ \text{in}\ \ C\{[0,T],L^{2}(\mathbb{I})\},\quad\text{as}\ k\rightarrow\infty, (3.43)

according to Cauchy’s Criterion. ∎

Since we have proved Lemma 3.4 and 3.5, by utilizing the Sobolev space interpolation inequality

fHsCmfHmsmf1sm,\displaystyle\left\|f\right\|_{H^{s}}\leq C_{m}\left\|f\right\|_{H^{m}}^{\frac{s}{m}}\left\|f\right\|^{1-\frac{s}{m}}, (3.44)

we have for any 0<s<m0<s<m that

([Pk][Pl],[uk][ul],[sk][sl],[qk][ql])HsCK3{ϵ0}([Pk][Pl],[uk][ul],[sk][sl],[qk][ql])1sm.\left\|\big{(}\,[P_{k}]-[P_{l}],\,[u_{k}]-[u_{l}],\,[s_{k}]-[s_{l}],\,[q_{k}]-[q_{l}]\,\big{)}\right\|_{H^{s}}\\ \leq CK_{3}\{\epsilon_{0}\}\left\|\big{(}\,[P_{k}]-[P_{l}],\,[u_{k}]-[u_{l}],\,[s_{k}]-[s_{l}],\,[q_{k}]-[q_{l}]\,\big{)}\right\|^{1-\frac{s}{m}}. (3.45)

From (3.42), (3.43) and (3.45), we conclude that

limk+supt[0,T0]([Pk]P,[uk]u,[sk]s,[qk]q)(t)Hs=0.\lim_{k\rightarrow+\infty}\sup_{t\in[0,T_{0}]}\left\|\big{(}\,[P_{k}]-P,\,[u_{k}]-u,\,[s_{k}]-s,\,[q_{k}]-q\,\big{)}(t)\right\|_{H^{s}}=0.

If we choose s>12+1s>\frac{1}{2}+1, Sobolev inequality implies that

([Pk],[uk],[sk],[qk])(P,u,s,q)inC{[0,T0],C1(𝕀)}.\big{(}\,[P_{k}],\,[u_{k}],\,[s_{k}],\,[q_{k}]\,\big{)}\rightarrow\big{(}\,P,\,u,\,s,\,q\,\big{)}\quad\text{in}\quad C\{[0,T_{0}],C^{1}(\mathbb{I})\}. (3.46)

From the structure of first three equation in (3.24), we can see

([Pk]t,[uk]t,[sk]t)(Pt,ut,st)inC{[0,T0],C(𝕀)},\big{(}\,[P_{k}]_{t},\,[u_{k}]_{t},\,[s_{k}]_{t}\,\big{)}\rightarrow\big{(}\,P_{t},\,u_{t},\,s_{t}\,\big{)}\quad\text{in}\quad C\{[0,T_{0}],C(\mathbb{I})\},

and (P,u,s)\big{(}\,P,\,u,\,s\,\big{)} belong to C1{[0,T0]×𝕀}C^{1}\{[0,T_{0}]\times\mathbb{I}\}. So the first three equation of (1.15) hold in classical sense. So (1.14) holds. We have from (3.46) that

([rk1]2[qk])x(r2q)xinC{[0,T0],L2(𝕀)},\left([r_{k-1}]^{2}[q_{k}]\right)_{x}\rightarrow(r^{2}q)_{x}\quad\text{in}\quad C\{[0,T_{0}],L^{2}(\mathbb{I})\},

Together with (3.40), (3.44), it can be derived that

([rk1]2[qk])x(r2q)xinC{[0,T0],C1(𝕀)}.\displaystyle\left([r_{k-1}]^{2}[q_{k}]\right)_{x}\rightarrow(r^{2}q)_{x}\quad\text{in}\quad C\{[0,T_{0}],C^{1}(\mathbb{I})\}. (3.47)

With (1.14), (3.46) and (3.47), we have qxC{[0,T0],C1(𝕀)}q_{x}\in C\{[0,T_{0}],C^{1}(\mathbb{I})\}, which indicate that the last equation of (1.15) also holds in classical sense.

From the technique in [17, p. 34–46], we can raise the regularity of solution such that

(P,u,s,q,qx)Xm([0,T0],𝕀).(P,u,s,q,q_{x})\in X_{m}([0,T_{0}],\mathbb{I}).

We omit the proof here. One can refer to the proof of Theorem 2.1(a)2.1(a) and 2.1(b)2.1(b) in [17, p. 34–46]. Now the proof of local existence completes. To obtain the global-in-time classical solution, first we denote K3{ϵ0}=max{K3{ϵ0},K3{V0}}K_{3}^{*}\{\epsilon_{0}\}=\max\big{\{}K_{3}\{\epsilon_{0}\},K_{3}\{V_{0}\}\big{\}} and set ϵ0\epsilon_{0} is small enough such that K3{ϵ0}ϵK_{3}^{*}\{\epsilon_{0}\}\leq\epsilon. (Here ϵ\epsilon is defined in Proposition 2.2 to ensure that the a priori estimates stand.) Second we set TT0T\leq T_{0}. (Here T0T_{0} is fixed, since ϵ0\epsilon_{0} is already set.) And we have the classical solution in [0,T][0,T]. Third, with the a priori estimates, apply the method of continuity like what is stated before Section 2. Finally, we finish the proof of Theorem 1.1.

4 Acknowledgements.

The research is supported by a grant from National Natural Science Foundation of China under contract No.12221001 and a grant from Science and Technology Department of Hubei Province under contract No.2020DFH002.

References

  • Castor [2004] J. I. Castor. Radiation hydrodynamics. Cambridge University Press, 2004.
  • Chandrasekhar [1960] S. Chandrasekhar. Radiative transfer. Dover Publications, Inc., New York, 1960.
  • Christodoulou and Miao [2014] D. Christodoulou and S. Miao. Compressible flow and Euler’s equations, volume 9 of Surveys of Modern Mathematics. International Press, Somerville, MA; Higher Education Press, Beijing, 2014. ISBN 978-1-57146-297-8.
  • Deng and Yang [2020] S. Deng and X. Yang. Pointwise structure of a radiation hydrodynamic model in one-dimension. Math. Methods Appl. Sci., 43(6):3432–3456, 2020. ISSN 0170-4214. doi: 10.1002/mma.6130. URL https://doi.org/10.1002/mma.6130.
  • Evans [2010] L. C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2010. ISBN 978-0-8218-4974-3. doi: 10.1090/gsm/019. URL https://doi.org/10.1090/gsm/019.
  • Fan et al. [2019] L. Fan, L. Ruan, and W. Xiang. Asymptotic stability of a composite wave of two viscous shock waves for the one-dimensional radiative Euler equations. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 36(1):1–25, 2019. ISSN 0294-1449. doi: 10.1016/j.anihpc.2018.03.008. URL https://doi.org/10.1016/j.anihpc.2018.03.008.
  • Hörmander [1963] L. Hörmander. Linear partial differential operators. Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg,, 1963.
  • Huang and Li [2016] F.-m. Huang and X. Li. Convergence to the rarefaction wave for a model of radiating gas in one-dimension. Acta Math. Appl. Sin. Engl. Ser., 32(2):239–256, 2016. ISSN 0168-9673,1618-3932. doi: 10.1007/s10255-016-0576-7. URL https://doi.org/10.1007/s10255-016-0576-7.
  • Jiang et al. [2015] S. Jiang, F. Li, and F. Xie. Nonrelativistic limit of the compressible Navier-Stokes-Fourier-P1 approximation model arising in radiation hydrodynamics. SIAM J. Math. Anal., 47(5):3726–3746, 2015. ISSN 0036-1410,1095-7154. doi: 10.1137/140987596. URL https://doi.org/10.1137/140987596.
  • John [1974] F. John. Formation of singularities in one-dimensional nonlinear wave propagation. Comm. Pure Appl. Math., 27:377–405, 1974. ISSN 0010-3640,1097-0312. doi: 10.1002/cpa.3160270307. URL https://doi.org/10.1002/cpa.3160270307.
  • Kawashima et al. [2003] S. Kawashima, Y. Nikkuni, and S. Nishibata. Large-time behavior of solutions to hyperbolic-elliptic coupled systems. Arch. Ration. Mech. Anal., 170(4):297–329, 2003. ISSN 0003-9527,1432-0673. doi: 10.1007/s00205-003-0273-6. URL https://doi.org/10.1007/s00205-003-0273-6.
  • Lax [1964] P. D. Lax. Development of singularities of solutions of nonlinear hyperbolic partial differential equations. J. Mathematical Phys., 5:611–613, 1964. ISSN 0022-2488,1089-7658. doi: 10.1063/1.1704154. URL https://doi.org/10.1063/1.1704154.
  • Li and Wang [2022] S. Li and J. Wang. Formation of singularities of solutions to a 1D compressible radiation hydrodynamics model. Nonlinear Anal., 222:Paper No. 112969, 16, 2022. ISSN 0362-546X,1873-5215. doi: 10.1016/j.na.2022.112969. URL https://doi.org/10.1016/j.na.2022.112969.
  • Lin [2011] C. Lin. Asymptotic stability of rarefaction waves in radiative hydrodynamics. Commun. Math. Sci., 9(1):207–223, 2011. ISSN 1539-6746. URL http://projecteuclid.org/euclid.cms/1294170332.
  • Lin et al. [2006] C. Lin, J.-F. Coulombel, and T. Goudon. Shock profiles for non-equilibrium radiating gases. Phys. D, 218(1):83–94, 2006. ISSN 0167-2789,1872-8022. doi: 10.1016/j.physd.2006.04.012. URL https://doi.org/10.1016/j.physd.2006.04.012.
  • Lin et al. [2007] C. Lin, J.-F. Coulombel, and T. Goudon. Asymptotic stability of shock profiles in radiative hydrodynamics. C. R. Math. Acad. Sci. Paris, 345(11):625–628, 2007. ISSN 1631-073X,1778-3569. doi: 10.1016/j.crma.2007.10.029. URL https://doi.org/10.1016/j.crma.2007.10.029.
  • Majda [1984] A. Majda. Compressible fluid flow and systems of conservation laws in several space variables, volume 53 of Applied Mathematical Sciences. Springer-Verlag, New York, 1984. ISBN 0-387-96037-6. doi: 10.1007/978-1-4612-1116-7. URL https://doi.org/10.1007/978-1-4612-1116-7.
  • Métivier [2004] G. Métivier. Small viscosity and boundary layer methods. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston, Inc., Boston, MA, 2004. ISBN 0-8176-3390-1. doi: 10.1007/978-0-8176-8214-9. URL https://doi.org/10.1007/978-0-8176-8214-9. Theory, stability analysis, and applications.
  • Rauch and Massey [1974] J. B. Rauch and F. J. Massey, III. Differentiability of solutions to hyperbolic initial-boundary value problems. Trans. Amer. Math. Soc., 189:303–318, 1974. ISSN 0002-9947. doi: 10.2307/1996861. URL https://doi.org/10.2307/1996861.
  • Rohde et al. [2013] C. Rohde, W. Wang, and F. Xie. Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiation hydrodynamics model: superposition of rarefaction and contact waves. Commun. Pure Appl. Anal., 12(5):2145–2171, 2013. ISSN 1534-0392. doi: 10.3934/cpaa.2013.12.2145. URL https://doi.org/10.3934/cpaa.2013.12.2145.
  • Schochet [1986] S. Schochet. The compressible Euler equations in a bounded domain: existence of solutions and the incompressible limit. Comm. Math. Phys., 104(1):49–75, 1986. ISSN 0010-3616. URL http://projecteuclid.org/euclid.cmp/1104114932.
  • Sideris [1985] T. C. Sideris. Formation of singularities in three-dimensional compressible fluids. Comm. Math. Phys., 101(4):475–485, 1985. ISSN 0010-3616,1432-0916. URL http://projecteuclid.org/euclid.cmp/1104114244.
  • Vincenti and Kruger [1965] W. G. Vincenti and C. H. Kruger. Introduction to physical gas dynamics. Introduction to physical gas dynamics, 1965.
  • Wan and Wang [2017] L. Wan and T. Wang. Symmetric flows for compressible heat-conducting fluids with temperature dependent viscosity coefficients. J. Differential Equations, 262(12):5939–5977, 2017. ISSN 0022-0396. doi: 10.1016/j.jde.2017.02.022. URL https://doi.org/10.1016/j.jde.2017.02.022.
  • Wang and Xie [2011a] J. Wang and F. Xie. Singular limit to strong contact discontinuity for a 1D compressible radiation hydrodynamics model. SIAM J. Math. Anal., 43(3):1189–1204, 2011a. ISSN 0036-1410,1095-7154. doi: 10.1137/100792792. URL https://doi.org/10.1137/100792792.
  • Wang and Xie [2011b] J. Wang and F. Xie. Asymptotic stability of viscous contact wave for the one-dimensional compressible viscous gas with radiation. Nonlinear Anal., 74(12):4138–4151, 2011b. ISSN 0362-546X,1873-5215. doi: 10.1016/j.na.2011.03.047. URL https://doi.org/10.1016/j.na.2011.03.047.
  • Wang and Xie [2011c] J. Wang and F. Xie. Asymptotic stability of viscous contact wave for the 1D radiation hydrodynamics system. J. Differential Equations, 251(4-5):1030–1055, 2011c. ISSN 0022-0396. doi: 10.1016/j.jde.2011.03.011. URL https://doi.org/10.1016/j.jde.2011.03.011.
  • Xie [2012] F. Xie. Nonlinear stability of combination of viscous contact wave with rarefaction waves for a 1D radiation hydrodynamics model. Discrete Contin. Dyn. Syst. Ser. B, 17(3):1075–1100, 2012. ISSN 1531-3492. doi: 10.3934/dcdsb.2012.17.1075. URL https://doi.org/10.3934/dcdsb.2012.17.1075.
  • Zhang and Zhao [2023] J. Zhang and H. Zhao. Global regularity for a radiation hydrodynamics model with viscosity and thermal conductivity. SIAM J. Math. Anal., 55(6):6229–6261, 2023. ISSN 0036-1410,1095-7154. doi: 10.1137/22M1524126. URL https://doi.org/10.1137/22M1524126.