This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Global existence for small amplitude semilinear wave equations with time-dependent scale-invariant damping

Daoyin He1∗,   Yaqing Sun2∗,   Kangqun Zhang2 111Daoyin He (101012711@seu.edu.cn) is supported by BK20233002 and 2242023R40009. Yaqing Sun (yaqingsun@njit.edu.cn) and Kangqun Zhang (chkq@njit.edu.cn) are supported by 23KJB110012, Yaqing Sun is also supported by YKJ202218. Daoyin He is the corresponding author.
1. School of Mathematics, Southeast University, Nanjing 211189, China.
2. School of Mathematical and Physics, Nanjing Institute of Technology, Nanjing 210067, China.
Abstract

In this paper we prove a sharp global existence result for semilinear wave equations with time-dependent scale-invariant damping terms if the initial data is small.

More specifically, we consider Cauchy problem of t2uΔu+μttu=|u|p\partial_{t}^{2}u-\Delta u+\frac{\mu}{t}\partial_{t}u=|u|^{p}, where n3n\geq 3, t1t\geq 1 and μ(0,1)(1,2)\mu\in(0,1)\cup(1,2). For critical exponent pcrit(n,μ)p_{\text{crit}}(n,\mu) which is the positive root of (n+μ1)p2(n+μ+1)p2=0(n+\mu-1)p^{2}-(n+\mu+1)p-2=0 and conformal exponent pconf(n,μ)=n+μ+3n+μ1p_{\text{conf}}(n,\mu)=\frac{n+\mu+3}{n+\mu-1}, we establish global existence for n3n\geq 3 and pcrit(n,μ)<ppconf(n,μ)p_{\text{crit}}(n,\mu)<p\leq p_{\text{conf}}(n,\mu). The proof is based on changing the wave equation into the semilinear generalized Tricomi equation t2utmΔu=tα(m)|u|p\partial_{t}^{2}u-t^{m}\Delta u=t^{\alpha(m)}|u|^{p}, where m=m(μ)>0m=m(\mu)>0 and α(m)\alpha(m)\in\mathbb{R} are two suitable constants, then we investigate more general semilinear Tricomi equation t2vtmΔv=tα|v|p\partial_{t}^{2}v-t^{m}\Delta v=t^{\alpha}|v|^{p} and establish related weighted Strichartz estimates. Returning to the original wave equation, the corresponding global existence results on the small data solution uu can be obtained.

Keywords: Global existence, Generalized Tricomi equation, Weighted Strichartz estimate, Fourier integral operator, Weak solution

Mathematical Subject Classification 2000: 35L70, 35L65, 35L67


1 Introduction

1.1 Setting of the problem and statement of the main result

Consider the Cauchy problem of the semilinear wave equation with time-dependent damping

{t2uΔu+μtβtu=|u|p,(t,x)(t0,)×n,u(t0,x)=u0(x),tu(t0,x)=u1(x),\left\{\enspace\begin{aligned} &\partial_{t}^{2}u-\Delta u+\frac{\mu}{t^{\beta}}\,\partial_{t}u=|u|^{p},&&(t,x)\in(t_{0},\infty)\times\mathbb{R}^{n},\\ &u(t_{0},x)=u_{0}(x),\quad\partial_{t}u(t_{0},x)=u_{1}(x),\end{aligned}\right. (1.1)

where μ0\mu\geq 0, β0\beta\geq 0, p>1p>1, n2n\geq 2 and t00t_{0}\geq 0. When μ=0\mu=0 and t0=0t_{0}=0 is , (1.1) becomes

{t2uΔu=|u|p,u(0,x)=u0(x),tu(0,x)=u1(x).\left\{\enspace\begin{aligned} &\partial_{t}^{2}u-\Delta u=|u|^{p},\\ &u(0,x)=u_{0}(x),\quad\partial_{t}u(0,x)=u_{1}(x).\end{aligned}\right. (1.2)

For (1.2), Strauss in [43] proposed the following well-known conjecture (Strauss’ conjecture):

Let ps(n)p_{s}(n) denote the positive root of the quadratic algebraic equation

(n1)p2(n+1)p2=0.\left(n-1\right)p^{2}-\left(n+1\right)p-2=0. (1.3)

If p>ps(n)p>p_{s}(n), (1.2) admits a unique global solution with small data; whereas if 1<pps(n)1<p\leq p_{s}(n), the solution of (1.2) can blow up in finite time.

So far the Strauss’ conjecture has been systematically studied and solved well, see [11, 12, 13, 21, 31, 40, 41, 55]. Especially, in [50], one can find the detailed history on the studies of (1.2).

When β=0\beta=0 holds and μ=1\mu=1 is assumed without loss of generality, (1.1) with t0=0t_{0}=0 becomes

{t2uΔu+tu=|u|p,u(0,x)=u0(x),tu(0,x)=u1(x).\left\{\enspace\begin{aligned} &\partial_{t}^{2}u-\Delta u+\partial_{t}u=|u|^{p},\\ &u(0,x)=u_{0}(x),\quad\partial_{t}u(0,x)=u_{1}(x).\end{aligned}\right. (1.4)

Nowadays the study of (1.4) is almost classic, it is shown that the solution uu can blow up in finite time when 1<ppf(n)1<p\leq p_{f}(n) with the Fujita exponent pf(n)=1+2np_{f}(n)=1+\frac{2}{n} as defined in [8] for the semilinear parabolic equations, while the small data solution uu exists globally for p>pf(n)p>p_{f}(n) with n=1,2n=1,2 and pf(n)<p<nn2p_{f}(n)<p<\frac{n}{n-2} for n3n\geq 3, see [7], [29], [44], [47] and [56]. Recently, Chen and Reissig in [1] considered (1.4) with data from Sobolev spaces of negative order, they obtained a new critical exponent pc=1+4n+2γp_{c}=1+\frac{4}{n+2\gamma} and established small data global existence result for 1<p<pc1<p<p_{c} and blow up result for 1<p<pc1<p<p_{c} provided that 1n61\leq n\leq 6, while the global existence for p=pcp=p_{c} is proved by D’Abbicco [3] in Euclidean setting and in the Heisenberg space.

For β>1\beta>1 or 0<β<10<\beta<1, consider the corresponding linear homogeneous equation

{t2vΔv+μtβtv=0,(t,x)(1,)×n,v(1,x)=v0(x),tv(1,x)=v1(x),\left\{\enspace\begin{aligned} &\partial_{t}^{2}v-\Delta v+\frac{\mu}{t^{\beta}}\,\partial_{t}v=0,&&(t,x)\in(1,\infty)\times\mathbb{R}^{n},\\ &v(1,x)=v_{0}(x),\quad\partial_{t}v(1,x)=v_{1}(x),\end{aligned}\right. (1.5)

then the long time decay rate of vv just corresponds to that of linear wave equation or linear parabolic equation, respectively, see Wirth [51, 52]. When 0<β<10<\beta<1 and μ>0\mu>0, if p>pf(n)p>p_{f}(n) with n=1,2n=1,2 or pf(n)<p<n+2n2p_{f}(n)<p<\frac{n+2}{n-2} with n3n\geq 3, then (1.1)\eqref{equ:eff} has a global small data solution uu, see D’Abbicco, Luencte and Reissig [4], Lin, Nishihara and Zhai [30] and Nishihara [33]; if 1<ppf(n)1<p\leq p_{f}(n), the solution uu generally blows up in finite time, one can be referred to Fujikawa, Ikeda and Wakasugi [9]. When β>1\beta>1 and μ>0\mu>0, the global existence or blowup results on (1.1) are analogous to the ones on (1.2). It is shown that for p>ps(n)p>p_{s}(n), the global small data solution exists (see Liu and Wang [32]), while the solution may blow up in finite time for 1<pps(n)1<p\leq p_{s}(n) (see Lai and Takamura [24] and Wakasa, Yordanov [49]).

When β=1\beta=1, the equation in (1.5) is invariant under the scaling

u~(x,t):=u(σx,σt),σ>0,\tilde{u}(x,t):=u(\sigma x,\sigma t),\quad\sigma>0,

and hence we say the damping term is scale-invariant. In this case, the behavior of (1.2) depends on the scale of μ\mu. If n=1n=1 with μ53\mu\geq\frac{5}{3} or n=2n=2 with μ3\mu\geq 3 or n3n\geq 3 with μn+2\mu\geq n+2 and pf(n)<p<nn2p_{f}(n)<p<\frac{n}{n-2}, then the global existence of small data solution uu has been established in the important work [2] by D’Abbicco. For relatively small μ\mu, so far there are few results on the global solution of (1.1) with β=1\beta=1, recently, for n=3n=3 and the radial symmetrical case, the global small solution is shown in Lai and Zhou [26] for μ[32,2)\mu\in[\frac{3}{2},2) and ps(3+μ)<p2p_{s}(3+\mu)<p\leq 2. On the other hand, there have been systematic results for blow up: for the case of n=1n=1, if 0<μ<430<\mu<\frac{4}{3} and 1<pps(1+μ)1<p\leq p_{s}(1+\mu), or μ43\mu\geq\frac{4}{3} and 1<ppf(1)1<p\leq p_{f}(1), the solution will blowup in finite time; for the case of n2n\geq 2, the blowup results are also established when μ>0\mu>0 and 1<p<ps(n+μ)1<p<p_{s}(n+\mu), or 0<μ<n2+n+2n+20<\mu<\frac{n^{2}+n+2}{n+2} and 1<pps(n+μ)1<p\leq p_{s}(n+\mu) (see the works in [20, 25, 45, 46, 47, 48] by Ikeda, Sobajima, Lai, Takamura, Wakasa, Tu, Lin and Wakasugi). These results enlighten us the critical exponent for 0<μ<n2+n+2n+20<\mu<\frac{n^{2}+n+2}{n+2} should be pcrit(n,μ)=ps(n+μ)p_{\text{crit}}(n,\mu)=p_{s}(n+\mu) where ps(n+μ)p_{s}(n+\mu) is the positive root of the following quadratic equation:

(n+μ1)p2(n+μ+1)p2=0.(n+\mu-1)p^{2}-(n+\mu+1)p-2=0. (1.6)

From our last paper [19], we start to study the global existence of small data solutions to problem (1.1) with β=1\beta=1, μ(0,1)(1,2)\mu\in(0,1)\cup(1,2) and p>ps(n+μ)p>p_{s}(n+\mu). That is, we focus on the following regular Cauchy problem

{t2uΔu+μttu=|u|p,u(1,x)=εu0(x),tu(1,x)=εu1(x),\left\{\enspace\begin{aligned} &\partial_{t}^{2}u-\Delta u+\frac{\mu}{t}\,\partial_{t}u=|u|^{p},\\ &u(1,x)=\varepsilon u_{0}(x),\quad\partial_{t}u(1,x)=\varepsilon u_{1}(x),\end{aligned}\right. (1.7)

where (u0,u1)Cc(n)(u_{0},u_{1})\in C^{\infty}_{c}(\mathbb{R}^{n}) and n2n\geq 2. Comparing (1.3) and (1.6), we see that we have a shift from nn to n+μn+\mu in the coefficients of the quadratic equations of pp. Thus the conformal exponent for (1.2) should be

pconf(n,μ)=n+μ+3n+μ1.p_{\text{conf}}(n,\mu)=\frac{n+\mu+3}{n+\mu-1}. (1.8)

In [19], we have obtained global existence result for small data solution for n2n\geq 2, μ(0,1)\mu\in(0,1) and pmax{pconf(m,μ),3}p\geq\max\{p_{\text{conf}}(m,\mu),3\}, or μ(1,2)\mu\in(1,2) and pmax{pconf(n,μ),4μ1}p\geq\max\{p_{\text{conf}}(n,\mu),\frac{4}{\mu}-1\}. The main results in this article can be stated as follows.

Theorem 1.1.

Assume that n3n\geq 3, μ(0,1)(1,2)\mu\in(0,1)\cup(1,2) and pcrit(n,μ)<ppconf(n,μ)p_{crit}(n,\mu)<p\leq p_{conf}(n,\mu). Suppose uiCc(n)u_{i}\in C_{c}^{\infty}(\mathbb{R}^{n}) (i=0,1i=0,1), then for ε>0\varepsilon>0 small enough problem (1.7) admits a global weak solution uu with

(1+|t2|x|2|)γtμp+1uLp+1([1,)×n),\left(1+\big{|}t^{2}-|x|^{2}\big{|}\right)^{\gamma}t^{\frac{\mu}{p+1}}u\in L^{p+1}([1,\infty)\times\mathbb{R}^{n}), (1.9)

for some γ\gamma satifying

1p(p+1)<γ<(n+μ1)p(n+μ+1)2(p+1).\frac{1}{p(p+1)}<\gamma<\frac{(n+\mu-1)p-(n+\mu+1)}{2(p+1)}.
Remark 1.1.

For μ=1\mu=1, under the Liouville transformation v=(1+t)12uv=(1+t)^{\frac{1}{2}}u, the equation in (1.7) becomes the semilinear Klein-Gordon equation t2vΔv+14(1+t)2v=(1+t)1p2|v|p\partial_{t}^{2}v-\Delta v+\frac{1}{4(1+t)^{2}}v=(1+t)^{\frac{1-p}{2}}|v|^{p} with time-dependent coefficient. By our knowledge, so far there are few results on the global existence of uu in (1.7) with μ=1\mu=1.

Remark 1.2.

For μ=2\mu=2, set v=(1+t)uv=(1+t)u, then the equation in (1.7) can be changed into the undamped wave equation t2vΔv=(1+t)1p|v|p\partial_{t}^{2}v-\Delta v=(1+t)^{1-p}|v|^{p}. In this case, there have been a lot of results about global existence for the small data solutions, see D’Abbicco and Lucente [5], and D’Abbicco, Lucente and Reissig [6], Kato and Sakuraba [22] and Palmieri [34]. For examples, when 1n31\leq n\leq 3, the critical indices have been determined as max{pf(n),ps(n+2)}\max\{p_{f}(n),p_{s}(n+2)\}; when n4n\geq 4 and nn is even, the global existence is established for ps(n+2)<p<pf(n+12)p_{s}(n+2)<p<p_{f}(\frac{n+1}{2}) provided that the solution is radial symmetric; the global existence results also hold for n5n\geq 5 when nn is odd, ps(n+2)<p<min{2,n+3n1}p_{s}(n+2)<p<\min\{2,\frac{n+3}{n-1}\} and the solution is radial symmetric. Recently, we obtain some global existence results for the general small data solution of (1.7) when μ=2\mu=2 and pp is suitably large in Theorems 1.3 of our former work [19] .

Remark 1.3.

For n=1n=1, it is proven recently by Li and Yin [27] that for μ(0,1)(1,43)\mu\in(0,1)\cup(1,\frac{4}{3}), the solution of (1.7) exists for small data. While for n=2n=2, Li and Yin establish the small data global existence for μ(0,1)(1,2)\mu\in(0,1)\cup(1,2) in [28].

Note that when 0<μ<10<\mu<1, as in D’Abbicco, Lucente and Reissig [6], if setting μ=kk+1\mu=\frac{k}{k+1} with k(0,)k\in(0,\infty) and t=Tk+1/(k+1)t=T^{k+1}/(k+1), then the equation in (1.7) is essentially equivalent to

T2uT2kΔu=T2k|u|p;\partial_{T}^{2}u-T^{2k}\Delta u=T^{2k}|u|^{p}; (1.10)

when 1<μ<21<\mu<2, if setting

v(t,x)=tμ1u(t,x),v(t,x)=t^{\mu-1}u(t,x),

then the equation in (1.7) can be written as

t2vΔv+μ~ttv=t(p1)(μ~1)|v|p,\partial_{t}^{2}v-\Delta v+\frac{\tilde{\mu}}{t}\,\partial_{t}v=t^{(p-1)(\tilde{\mu}-1)}|v|^{p}, (1.11)

where μ~=2μ(0,1)\tilde{\mu}=2-\mu\in(0,1), and the unimportant constant coefficients Cμ>0C_{\mu}>0 before the nonlinearities in (1.10) and (1.11) are neglected. Let μ~=k~k~+1\tilde{\mu}=\frac{\tilde{k}}{\tilde{k}+1} with k~(0,)\tilde{k}\in(0,\infty) and t=Tk~+1/(k~+1)t=T^{\tilde{k}+1}/(\tilde{k}+1). Then for t1t\geq 1, (1.11) is actually equivalent to

T2uT2k~Δu=Tα|u|p,\partial_{T}^{2}u-T^{2\tilde{k}}\Delta u=T^{\alpha}|u|^{p}, (1.12)

where α=2k~+1p\alpha=2\tilde{k}+1-p, and the unimportant constant coefficient Ck~>0C_{\tilde{k}}>0 before the nonlinearity of (1.12) is also neglected. Based on (1.10) and (1.12), in order to prove Theorems 1.1, it is necessary to study the following semilinear generalized Tricomi equation

t2utmΔu=tα|u|p,\displaystyle\partial_{t}^{2}u-t^{m}\Delta u=t^{\alpha}|u|^{p}, (1.13)

where m>0m>0 and α\alpha\in\mathbb{R}.

The local existence result for (1.13) was first considered by the pioneering work [53] of Yagdjian. Under the conditions of n2n\geq 2, α>1\alpha>-1 and

1<p<1+4(m+2)n2,1<p<1+\frac{4}{(m+2)n-2}, (1.14)

it is proved in [53, Theorem 1.3] that (1.13) addmits no global solution uC([0,),Lp+1(n))u\in C([0,\infty),L^{p+1}(\mathbb{R}^{n})). On the other hand, if n2n\geq 2, α>1\alpha>-1 and

{p1+2m(m+2)n+2,(m+2)npp+12(p+1)+max{α,αp}p1.\left\{\enspace\begin{aligned} p&\leq 1+\frac{2m}{(m+2)n+2},\\ \frac{(m+2)np}{p+1}&\geq\frac{2(p+1)+\max\{\alpha,\alpha p\}}{p-1}.\end{aligned}\right. (1.15)

then [53, Theorem 1.2] that (1.13) has a global small data solution uC([0,),Lp+1(n))C1([0,),𝒟(n))u\in C([0,\infty),L^{p+1}(\mathbb{R}^{n}))\cap C^{1}([0,\infty),{\mathcal{D}}^{\prime}(\mathbb{R}^{n})). By checking (1.14) and (1.15) one see that the results in [53] were not completed since there is a gap between the intervals for pp where blowup happens or small data solution exists globally, also an upper bound of pp exists for the global existence part. Later Galstian in [10] investigated Cauchy problem for (1.13) for the case n=1n=1, α>1\alpha>-1 and m0m\geq 0. She proved the blowup result for 1<p<1+4m1<p<1+\frac{4}{m} and established the global existence for small data solution under the condition (1.15).

Witt, Yin and the first author of this article considered the case α=0\alpha=0 and m>0m>0, and for the initial data problem of (1.13) starting from some positive time t0t_{0}, it has been shown that there exists a critical index pcrit(n,m)>1p_{\text{crit}}(n,m)>1 such that when p>pcrit(n,m)p>p_{\text{crit}}(n,m), the small data solution uu of (1.13) exists globally; when 1<ppcrit(n,m)1<p\leq p_{\text{crit}}(n,m), the solution uu may blow up in finite time, where pcrit(n,m)p_{\text{crit}}(n,m) for n2n\geq 2 and m>0m>0 is the positive root of

((m+2)n21)p2+((m+2)(1n2)3)p(m+2)=0,\Big{(}(m+2)\frac{n}{2}-1\Big{)}p^{2}+\Big{(}(m+2)(1-\frac{n}{2})-3\Big{)}p-(m+2)=0, (1.16)

while for n=1n=1, pcrit(1,m)=1+4mp_{\text{crit}}(1,m)=1+\frac{4}{m} (see [14, 15, 16, 17, 18]).

It is pointed out that about the local existence and regularity of solution uu to (1.13) with α=0\alpha=0 and mm\in\mathbb{N} under the weak regularity assumptions of initial data (u,tu)(0,x)=(u0,u1)(u,\partial_{t}u)(0,x)=(u_{0},u_{1}), the reader may consult Ruan, Witt and Yin [36, 37, 38, 39].

Now let us turn back to the problem (1.13). Here and below denote

ϕm(t)=2m+2tm+22,andT0=ϕm1(1)=(m+22)2m+2,\phi_{m}(t)=\frac{2}{m+2}t^{\frac{m+2}{2}},\quad\text{and}\quad T_{0}=\phi_{m}^{-1}(1)=\left(\frac{m+2}{2}\right)^{\frac{2}{m+2}},

note that T0(1,e1/e]T_{0}\in(1,e^{1/e}] for all m>0m>0. We next focus on the global existence of the solution to the following problem

{t2utmΔu=tα|u|p,u(T0,x)=εf(x),tu(T0,x)=εg(x),\begin{cases}\partial_{t}^{2}u-t^{m}\Delta u=t^{\alpha}|u|^{p},\\ u(T_{0},x)=\varepsilon f(x),\partial_{t}u(T_{0},x)=\varepsilon g(x),\end{cases} (1.17)

where m>0m>0, α\alpha\in\mathbb{R}, p>1p>1, f(x),g(x)Cc(n)f(x),g(x)\in C_{c}^{\infty}(\mathbb{R}^{n}) with n2n\geq 2 and supp ff, supp gB(0,M)g\in B(0,M) with M>0M>0. It has been shown in Theorem 1 of Palmieri and Reissig [35] that there exists a critical exponent pcrit(n,m,α)>1p_{crit}(n,m,\alpha)>1 for α>2\alpha>-2 such that when 1<ppcrit(n,m,α)1<p\leq p_{crit}(n,m,\alpha), the solution of (1.17) can blow up in finite time with some suitable choices of (u0,u1)(u_{0},u_{1}), where

pcrit(n,m,α)=max{p1(n,m,α),p2(n,m,α)}p_{crit}(n,m,\alpha)=\max\left\{p_{1}(n,m,\alpha),p_{2}(n,m,\alpha)\right\} (1.18)

with p1(n,m,α)=1+2(2+α)(m+2)n2p_{1}(n,m,\alpha)=1+\frac{2(2+\alpha)}{(m+2)n-2} and p2(n,m,α)p_{2}(n,m,\alpha) being the positive root of the quadratic equation:

(m2(m+2)+n12)p2(n+123m2(m+2)+2αm+2)p1=0.\left(\frac{m}{2(m+2)}+\frac{n-1}{2}\right)p^{2}-\left(\frac{n+1}{2}-\frac{3m}{2(m+2)}+\frac{2\alpha}{m+2}\right)p-1=0. (1.19)

It is not difficult to verify that when n3n\geq 3 and α>2\alpha>-2 or n=2n=2 and α>1\alpha>-1, pcrit(n,m,α)=p2(n,m,α)p_{crit}(n,m,\alpha)=p_{2}(n,m,\alpha) holds; when n=2n=2 and 2<α1-2<\alpha\leq-1, pcrit(n,m,α)=p1(n,m,α)p_{crit}(n,m,\alpha)=p_{1}(n,m,\alpha) holds. However, as we will see in next subsection, in order to prove Theorem 1.1, it suffices to consider 1<αm-1<\alpha\leq m for n2n\geq 2 in (1.17) , thus we set pcrit(n,m,α)=p2(n,m,α)p_{crit}(n,m,\alpha)=p_{2}(n,m,\alpha) in this article.

In [19, (1.24)], we have determined a conformal exponent

pconf(n,m,α)=(m+2)n+4α+6(m+2)n2.p_{\text{conf}}(n,m,\alpha)=\frac{(m+2)n+4\alpha+6}{(m+2)n-2}. (1.20)

Then we can state the global existence result for (1.17)

Theorem 1.2.

(Global existence for semilinear Tricomi equation) Let m(0,)m\in(0,\infty), assume that 1<αm-1<\alpha\leq m for n2n\geq 2. For p(pcrit(n,m,α),pconf(n,m,α)]p\in\big{(}p_{crit}(n,m,\alpha),p_{conf}(n,m,\alpha)\big{]}, there exists a constant ε0>0\varepsilon_{0}>0 such that if 0<ε<ε00<\varepsilon<\varepsilon_{0}, then problem (1.17) has a global weak solution uu with

(1+|ϕm2(t)|x|2|)γtαp+1uLp+1([T0,)×n),\left(1+\big{|}\phi_{m}^{2}(t)-|x|^{2}\big{|}\right)^{\gamma}t^{\frac{\alpha}{p+1}}u\in L^{p+1}([T_{0},\infty)\times\mathbb{R}^{n}), (1.21)

for some positive constant γ\gamma fulfills

1p(p+1)<γ<n21m+21p+1(n+2αmm+2).\frac{1}{p(p+1)}<\gamma<\frac{n}{2}-\frac{1}{m+2}-\frac{1}{p+1}\left(n+\frac{2\alpha-m}{m+2}\right). (1.22)
Remark 1.4.

Combing Theorem 1.2 together with the blowup result in Palmieri and Reissig [35, Theorem 1.1], the blowup vs global existence problem for the regular Cauchy problem of the semilinear Tricomi equation (1.17) has been solved for n2n\geq 2.

1.2 Proof of the main theorem

Take the results in Theorem 1.2 as granted, we can prove the main theorem.

Case I 𝟎<μ<𝟏\mathbf{0<\mu<1}

For any fixed μ(0,1)\mu\in(0,1), there exists unique m(0,)m\in(0,\infty) such that μ=mm+2\mu=\frac{m}{m+2}. Denote 2m+2tm+22\frac{2}{m+2}t^{\frac{m+2}{2}} as t~\tilde{t}, then for tT0t\geq T_{0}, (1.17) is equivalent to

{t~2uΔu+m(m+2)t~t~u=t~2(αm)m+2|u|p,u(1,x)=u0(x),t~u(1,x)=u1(x),\left\{\enspace\begin{aligned} &\partial_{\tilde{t}}^{2}u-\Delta u+\frac{m}{(m+2)\tilde{t}}\,\partial_{\tilde{t}}u=\tilde{t}^{\frac{2(\alpha-m)}{m+2}}|u|^{p},\\ &u(1,x)=u_{0}(x),\quad\partial_{\tilde{t}}u(1,x)=u_{1}(x),\end{aligned}\right. (1.23)

Then by choosing α=m\alpha=m, we see that (1.23) is equivalent to (1.7) with μ=mm+2\mu=\frac{m}{m+2}. The conditon α=m=2μ1μ\alpha=m=\frac{2\mu}{1-\mu} implies that (1.19) is equivalent to

(n+μ1)p2(n+μ+1)p2=0,(n+\mu-1)p^{2}-(n+\mu+1)p-2=0,

thus pcrit(n,m,α)=pcrit(n,μ)p_{\text{crit}}(n,m,\alpha)=p_{\text{crit}}(n,\mu). In addition,

pconf(n,m,α)=(2μ1μ+2)n+42μ1μ+6(2μ1μ+2)n2=n+μ+3n+μ1=pconf(n,μ).p_{\text{conf}}(n,m,\alpha)=\frac{(\frac{2\mu}{1-\mu}+2)n+4\frac{2\mu}{1-\mu}+6}{(\frac{2\mu}{1-\mu}+2)n-2}=\frac{n+\mu+3}{n+\mu-1}=p_{\text{conf}}(n,\mu).

Thus Theorem 1.1 follows immediately from Theorem 1.2 provided μ(0,1)\mu\in(0,1).

Case II 𝟏<μ<𝟐\mathbf{1<\mu<2}

For n3n\geq 3 and μ(1,2)\mu\in(1,2), we intend to establish global existence for (1.17) for each p(pcrit(n,μ),pconf(n,μ)]p\in(p_{\text{crit}}(n,\mu),p_{\text{conf}}(n,\mu)]. To this aim, let

v(t,x)=(1+t)μ1u(t,x).v(t,x)=(1+t)^{\mu-1}u(t,x).

Then the equation in (1.7) can be written as

t2vΔv+2μ1+ttv=(1+t)(p1)(1μ)|v|p.\partial_{t}^{2}v-\Delta v+\frac{2-\mu}{1+t}\,\partial_{t}v=(1+t)^{(p-1)(1-\mu)}|v|^{p}. (1.24)

Comparing (1.24) with (1.23), one can see that the global existence result of (1.7) can be derived from (1.23) for μ=2mm+2\mu=2-\frac{m}{m+2} and 2(αm)m+2=(p1)(1μ)\frac{2(\alpha-m)}{m+2}=(p-1)(1-\mu). This leads to the following choice of α\alpha for μ(1,2)\mu\in(1,2),

α=1+mp.\alpha=1+m-p. (1.25)

Hence in order to prove Theorem 1.1 for μ(1,2)\mu\in(1,2), we must guarantee the global existence result in Theorem 1.2 is applicable to m=2(2μ)μ1m=\frac{2(2-\mu)}{\mu-1} and every α\alpha satisfying

1+mpconf(n,μ)α<1+mpcrit(n,μ).1+m-p_{\text{conf}}(n,\mu)\leq\alpha<1+m-p_{\text{crit}}(n,\mu).

Since pcrit(n,μ)>1p_{\text{crit}}(n,\mu)>1, we have 1+mpcrit(n,μ)<m1+m-p_{\text{crit}}(n,\mu)<m. On the other hand, by μ=2mm+2\mu=2-\frac{m}{m+2},

pconf(n,μ)=1+4n+μ1=1+4(m+2)(m+2)n+2.p_{\text{conf}}(n,\mu)=1+\frac{4}{n+\mu-1}=1+\frac{4(m+2)}{(m+2)n+2}. (1.26)

Thus 1+mpconf(n,μ)=m4(m+2)(m+2)n+21+m-p_{\text{conf}}(n,\mu)=m-\frac{4(m+2)}{(m+2)n+2}, a direct computation shows that m4(m+2)(m+2)n+2>1m-\frac{4(m+2)}{(m+2)n+2}>-1 for n3n\geq 3, therefore

[1+mpconf(n,μ),1+mpcrit(n,μ))(1,m),forn3,\big{[}1+m-p_{\text{conf}}(n,\mu),1+m-p_{\text{crit}}(n,\mu)\big{)}\subseteq(-1,m),\quad\text{for}\quad n\geq 3,

and Theorem 1.2 implies Theorem 1.1 for μ(1,2)\mu\in(1,2).

1.3 Some remarks

Remark 1.5.

For the case n=2n=2, if μ(0,1)(1,1+22+1)\mu\in(0,1)\cup(1,1+\frac{2}{\sqrt{2}+1}), the method in Section 1.2 can also imply global existence for pcrit(2,μ)<p<pconf(2,μ)p_{crit}(2,\mu)<p<p_{conf}(2,\mu). However, if 1+22+1μ<21+\frac{2}{\sqrt{2}+1}\leq\mu<2 and 2μ1p<pconf(2,μ)\frac{2}{\mu-1}\leq p<p_{\text{conf}}(2,\mu), the global existence for (1.2) is related the global existence for (1.17) with 43<α1-\frac{4}{3}<\alpha\leq-1. Unfortunately, in this range of α\alpha, we have pcrit(n,m,α)=p1(n,m,α)=1+2(2+α)(m+2)n2p_{\text{crit}}(n,m,\alpha)=p_{1}(n,m,\alpha)=1+\frac{2(2+\alpha)}{(m+2)n-2} and the homogeneous Strichartz estimate Lemma 2.1 is no longer valid and the method of this article is not applicable. Recently, Yin and Li in [28] solved this gap by establishing angular mixed-norm Strichartz-type equation for semilinear Tricomi equation, then the small global existence for (1.2) with n=2n=2 and μ(0,1)(1,2)\mu\in(0,1)\cup(1,2) is obtained in [28].

Remark 1.6.

For μ=1\mu=1, the equation in (1.2) can not be transformed to Tricomi equation, and we will treat μ=1\mu=1 in our future work with different method.

1.4 Sketch for the proof of Theorem 1.2

We now sketch some of the ideas in the proof of Theorem 1.2. To prove Theorem 1.2, motivated by [11, 31], where some weighted Strichartz estimates with the characteristical weight 1+|t2|x|2|1+|t^{2}-|x|^{2}| were obtained for the linear wave operator t2\partial_{t}^{2}-\triangle, we need to establish some Strichartz estimates with the weight ((ϕm(t)+M)2|x|2)γtβ\big{(}(\phi_{m}(t)+M)^{2}-|x|^{2}\big{)}^{\gamma}t^{\beta} for the generalized Tricomi operator t2tmΔ\partial_{t}^{2}-t^{m}\Delta with suitable index β\beta and γ\gamma. As we will see in Lemma 2.1, it is not difficult to get the linear homogeneous Strichatz estimate once we have the pointwise decay estiamtes.

In next step, we turn to establish weighted Strichartz estimates for the linear inhomogeneous problem:

{t2wtmw=F(t,x),w(T0,x)=0,tw(T0,x)=0,\begin{cases}&\partial_{t}^{2}w-t^{m}\triangle w=F(t,x),\\ &w(T_{0},x)=0,\quad\partial_{t}w(T_{0},x)=0,\end{cases} (1.27)

which is the most difficult part in this article. The main result is the following:

Theorem 1.3.

Let n2n\geq 2, m>0m>0 and 1<αm-1<\alpha\leq m. For problem (1.27), if F(t,x)0F(t,x)\equiv 0 when |x|>ϕm(t)1|x|>\phi_{m}(t)-1, then there exist some constants γ1\gamma_{1} and γ2\gamma_{2} satisfying γ1<n21m+21q(n+2αmm+2)\gamma_{1}<\frac{n}{2}-\frac{1}{m+2}-\frac{1}{q}(n+\frac{2\alpha-m}{m+2}) and γ2>1q\gamma_{2}>\frac{1}{q}, such that

(ϕm2(t)|x|2)γ1tαqwLq([T0,)×n))C(ϕm2(t)|x|2)γ2tαqFLqq1([T0,)×n)),\begin{split}\left\|\big{(}\phi^{2}_{m}(t)-|x|^{2}\big{)}^{\gamma_{1}}t^{\frac{\alpha}{q}}w\right\|_{L^{q}([T_{0},\infty)\times\mathbb{R}^{n}))}\leq C\left\|\big{(}\phi^{2}_{m}(t)-|x|^{2}\big{)}^{\gamma_{2}}t^{-\frac{\alpha}{q}}F\right\|_{L^{\frac{q}{q-1}}([T_{0},\infty)\times\mathbb{R}^{n}))},\end{split} (1.28)

where 2q2((m+2)n+2+2α)(m+2)n22\leq q\leq\frac{2((m+2)n+2+2\alpha)}{(m+2)n-2}, and C>0C>0 is a constant depending on nn, mm, α\alpha, qq, γ1\gamma_{1} and γ2\gamma_{2}.

Based on Theorem 1.3, repeating the proof of Theorem 1.4 in [17] we can prove the following modified version of (1.28).

Theorem 1.4.

Let n2n\geq 2, m>0m>0 and 1<αm-1<\alpha\leq m. For problem (1.27), if F(t,x)0F(t,x)\equiv 0 when |x|>ϕm(t)+M1|x|>\phi_{m}(t)+M-1, then for γ1\gamma_{1} and γ2\gamma_{2} in Theorem 1.3,

((ϕm(t)+M)2|x|2)γ1tαqwLq([T0,)×n)C((ϕm(t)+M)2|x|2)γ2tαqFLqq1([T0,)×n),\begin{split}\Big{\|}\Big{(}\big{(}\phi_{m}(t)+M\big{)}^{2}-|x|^{2}\Big{)}^{\gamma_{1}}&t^{\frac{\alpha}{q}}w\Big{\|}_{L^{q}([T_{0},\infty)\times\mathbb{R}^{n})}\\ &\leq C\Big{\|}\Big{(}\big{(}\phi_{m}(t)+M\big{)}^{2}-|x|^{2}\Big{)}^{\gamma_{2}}t^{-\frac{\alpha}{q}}F\Big{\|}_{L^{\frac{q}{q-1}}([T_{0},\infty)\times\mathbb{R}^{n})},\end{split} (1.29)

where 2q2((m+2)n+2+2α)(m+2)n22\leq q\leq\frac{2((m+2)n+2+2\alpha)}{(m+2)n-2}, and C>0C>0 is a constant depending on nn, mm, α\alpha, qq, γ1\gamma_{1}, γ2\gamma_{2} and MM.

With Lemma 2.1 and Theorem 1.4, we can prove Theorem 1.2 by a standard Picard iteration, the detail is given in Section 5.

It remains to give the proof of Theorem 1.3. By Stein’s analytic interpolation theorem (see [42]), in order to prove (1.28), it suffices to establish (1.28) for the two extreme cases of q=q0=2((m+2)n+2+2α)(m+2)n2q=q_{0}=\frac{2((m+2)n+2+2\alpha)}{(m+2)n-2} and q=2q=2:

(ϕm(t)2|x|2)γ1tαq0wLq0([T0,)×n)C(ϕm(t)2|x|2)γ2tαq0FLq0q01([T0,)×n),\begin{split}\left\|\big{(}\phi_{m}(t)^{2}-|x|^{2}\big{)}^{\gamma_{1}}t^{\frac{\alpha}{q_{0}}}w\right\|_{L^{q_{0}}([T_{0},\infty)\times\mathbb{R}^{n})}\leq C\left\|\big{(}\phi_{m}(t)^{2}-|x|^{2}\big{)}^{\gamma_{2}}t^{-\frac{\alpha}{q_{0}}}F\right\|_{L^{\frac{q_{0}}{q_{0}-1}}([T_{0},\infty)\times\mathbb{R}^{n})},\end{split} (1.30)

where γ1<1q0<γ2\gamma_{1}<\frac{1}{q_{0}}<\gamma_{2}; and

(ϕm(t)2|x|2)γ1tα2wL2([T0,)×n)C(ϕm(t)2|x|2)γ2tα2FL2([T0,)×n),\begin{split}\left\|\big{(}\phi_{m}(t)^{2}-|x|^{2}\big{)}^{\gamma_{1}}t^{\frac{\alpha}{2}}w\right\|_{L^{2}([T_{0},\infty)\times\mathbb{R}^{n})}\leq C\left\|\big{(}\phi_{m}(t)^{2}-|x|^{2}\big{)}^{\gamma_{2}}t^{-\frac{\alpha}{2}}F\right\|_{L^{2}([T_{0},\infty)\times\mathbb{R}^{n})},\\ \end{split} (1.31)

where γ1<12+mαm+2\gamma_{1}<-\frac{1}{2}+\frac{m-\alpha}{m+2} and γ2>12\gamma_{2}>\frac{1}{2}.

In order to derive (1.30), we use the idea from [11] and split the integral domain {(t,x):ϕm2(t)|x|21}\{(t,x):\phi^{2}_{m}(t)-|x|^{2}\leq 1\} into some pieces, which correspond to the “relatively small times” part and the “relatively large times” part respectively.

For the case of “relatively small times”, the key point is to establish the inhomogeneous Strichartz estimates without characteristic weight at the endpoint 𝐪=𝐪𝟎\mathbf{q=q_{0}} for all 𝐧𝟐\mathbf{n\geq 2}, 𝐦>𝟎\mathbf{m>0} and 𝟎<α𝐧𝐧𝟏𝐦\mathbf{0<\alpha\leq\frac{n}{n-1}\cdot m} :

𝐭α𝐪𝟎𝐰𝐋𝐪𝟎([𝐓𝟎,)×𝐧)𝐂𝐭α𝐪𝟎𝐅𝐋𝐪𝟎𝐪𝟎𝟏([𝐓𝟎,)×𝐧)\mathbf{\left\|t^{\frac{\alpha}{q_{0}}}w\right\|_{L^{q_{0}}([T_{0},\infty)\times\mathbb{R}^{n})}\leq C\left\|t^{-\frac{\alpha}{q_{0}}}F\right\|_{L^{\frac{q_{0}}{q_{0}-1}}([T_{0},\infty)\times\mathbb{R}^{n})}} (1.32)

(1.32) is an essential improvement of Lemma 2.2 in [19] (see Remark 2.1 for explanation in details), it also make the proof in this article more self-contained. A local in time version of (1.32) can also be established for all n2n\geq 2, m>0m>0 and 1<α0-1<\alpha\leq 0 :

tαq0wLq0([T0,T¯]×n)Ctαq0FLq0q01([T0,T¯]×n),\left\|t^{\frac{\alpha}{q_{0}}}w\right\|_{L^{q_{0}}([T_{0},\bar{T}]\times\mathbb{R}^{n})}\leq C\left\|t^{-\frac{\alpha}{q_{0}}}F\right\|_{L^{\frac{q_{0}}{q_{0}-1}}([T_{0},\bar{T}]\times\mathbb{R}^{n})}, (1.33)

for any fixed large T¯\bar{T}. Application of (1.32) and (1.33) together with techniques of convolution type inequalities gives (1.30).

For the case of “relatively small times”, the analysis is more technical and involved. We have to divide the integral domain according to the scale of ϕm(t)|x|\phi_{m}(t)-|x|, if the |ϕm(t)|x|||\phi_{m}(t)-|x|| is very small or very large, then (1.30) follows by delicate analysis of support condition for ww and FF. While for |ϕm(t)|x|||\phi_{m}(t)-|x|| with medium scale, we introduce such kinds of Fourier integral operators for zz\in\mathbb{C},

(𝒯zg)(t,x)=(z(m+2)n+2+2α(m+2)(α+2))ez2tαq0×nnei{(xy)ξ[ϕm(t)|y|]|ξ|}(1+ϕm(t)|ξ|)m2(m+2)g(y)dξ|ξ|zdy,(𝒯~zg)(t,x)=(z(m+2)n+2+2α2(α+2))ez2tαq0ϕm(t)m2(m+2)×nnei{(xy)ξ[ϕm(t)|y|]|ξ|}g(y)dξ|ξ|zdy,\displaystyle\begin{split}(\mathcal{T}_{z}g)(t,x)=&\left(z-\frac{(m+2)n+2+2\alpha}{(m+2)(\alpha+2)}\right)e^{z^{2}}t^{\frac{\alpha}{q_{0}}}\\ &\times\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-|y|]|\xi|\}}\big{(}1+\phi_{m}(t)|\xi|\big{)}^{-\frac{m}{2(m+2)}}g(y)\frac{\mathrm{d}\xi}{|\xi|^{z}}\mathrm{d}y,\\ (\tilde{\mathcal{T}}_{z}g)(t,x)=&\left(z-\frac{(m+2)n+2+2\alpha}{2(\alpha+2)}\right)e^{z^{2}}t^{\frac{\alpha}{q_{0}}}\phi_{m}(t)^{-\frac{m}{2(m+2)}}\\ &\times\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-|y|]|\xi|\}}g(y)\frac{\mathrm{d}\xi}{|\xi|^{z}}\mathrm{d}y,\end{split}

applying these Fourier integral operators according to different range of α\alpha respectively, and combining with the complex interpolation methods, we ultimately obtain (1.30).

For the L2L^{2} estimate (1.31), the idea is similar to that of (1.30), we split again the integral domain {(t,x):ϕm2(t)|x|21}\{(t,x):\phi^{2}_{m}(t)-|x|^{2}\leq 1\} in the corresponding Fourier integral operators into some pieces, which correspond to the “relatively small times” part and the “relatively large times” part respectively. The main innovation for the L2L^{2} estimate is in the “relatively large times” part. We apply new technique of inequality when both the scales of ϕ𝐦(𝐭)+|𝐱|\mathbf{\phi_{m}(t)+|x|} and ϕ𝐦(𝐭)|𝐱|\mathbf{\phi_{m}(t)-|x|} are large, more specifically, we replace (ϕ𝐦(𝐭)𝟐|𝐱|𝟐)β\mathbf{(\phi_{m}(t)^{2}-|x|^{2})^{\beta}} with (ϕ𝐦(𝐭)+|𝐱|)β𝟏(ϕ𝐦(𝐭)|𝐱|)β𝟐\mathbf{(\phi_{m}(t)+|x|)^{\beta_{1}}(\phi_{m}(t)-|x|)^{\beta_{2}}} and let β𝟏\mathbf{\beta_{1}} and β𝟐\mathbf{\beta_{2}} be different indices, this modification implies more decay rate and the 𝐋𝟐\mathbf{L^{2}} estimate can be improved and we are able to handle all the dimension 𝐧𝟐\mathbf{n\geq 2} in the same manner. Recall that in our former work [17], the 𝐋𝟐\mathbf{L^{2}} estimate can be established only for 𝐧𝟑\mathbf{n\geq 3}, hence (1.31) is another essential improvement in this article.

This paper is organized as follows: In Section 22, we establish some basic estimates which includes the Strichartz inequality for the linear homogeneous equation t2vtmv=0\partial_{t}^{2}v-t^{m}\triangle v=0 and (1.32)-(1.33), and introduce some necessary results related to Littlewood-Paley decomposition. In Section 33 and Section 44, we will show the proofs of the endpoint inequalities (1.30) and (1.31), respectively. The proof of Theorem 1.2 is then given in Section 55. In addition, some elementary but important estimates used in Section 33 and Section 44 are discussed further in the appendix.

2 Basic Estimates

In this section, our purpose is to establish some basic estimates and list some necessary results.

2.1 Homogeneous Strichartz estimates with characteristic weight

The first one is the homogeneous Strichartz estimate, for which we consider the following linear homogeneous problem:

t2vtmv=0,v(T0,x)=f(x),tv(T0,x)=g(x),\partial_{t}^{2}v-t^{m}\triangle v=0,\qquad v(T_{0},x)=f(x),\quad\partial_{t}v(T_{0},x)=g(x), (2.34)

where f,gCc(n)f,g\in C_{c}^{\infty}(\mathbb{R}^{n}), and supp(f,g){x:|x|M}\operatorname{supp}\ (f,g)\subseteq\{x:|x|\leq M\}. By pointwise estimate in [17] and some delicate computation of Lt,xqL^{q}_{t,x} norm, we prove the following estimate.

Lemma 2.1.

Let n2n\geq 2, m>0m>0 and α>1\alpha>-1. For the solution vv of (2.34), one then has

((ϕm(t)+M)2|x|2)γtαqvLq([T0,+)×n)C(fWn2+1m+2+δ,1(n)+gWn21m+2+δ,1(n)),\begin{split}\left\|\Big{(}\big{(}\phi_{m}(t)+M\big{)}^{2}-|x|^{2}\Big{)}^{\gamma}t^{\frac{\alpha}{q}}v\right\|&{}_{L^{q}([T_{0},+\infty)\times\mathbb{R}^{n})}\\ &\leq C\left(\|f\|_{W^{\frac{n}{2}+\frac{1}{m+2}+\delta,1}(\mathbb{R}^{n})}+\|g\|_{W^{\frac{n}{2}-\frac{1}{m+2}+\delta,1}(\mathbb{R}^{n})}\right),\end{split} (2.35)

where pcrit(n,m,α)+1<qpconf(n,m,α)+1p_{\text{crit}}(n,m,\alpha)+1<q\leq p_{\text{conf}}(n,m,\alpha)+1, 0<γ<(m+2)n22(m+2)(m+2)n+2αm(m+2)q0<\gamma<\frac{(m+2)n-2}{2(m+2)}-\frac{(m+2)n+2\alpha-m}{(m+2)q}, δ>0\delta>0 is small enoughy, and CC is a positive constant depending on nn, mm, α\alpha, qq, γ\gamma, δ\delta and MM.

Proof.

We first denote

A(f,g)=(fWn2+1m+2+δ,1(n)+gWn21m+2+δ,1(n)),A(f,g)=\left(\|f\|_{W^{\frac{n}{2}+\frac{1}{m+2}+\delta,1}(\mathbb{R}^{n})}+\|g\|_{W^{\frac{n}{2}-\frac{1}{m+2}+\delta,1}(\mathbb{R}^{n})}\right),

then it follows from Section 2 of [17] (see formula 2-20) that the solution vv of (2.34) satisfies

|v|Cm,n,δ(1+ϕm(t))n2+1m+2(1+||x|ϕm(t)|)n2+1m+2+δA(f,g),\begin{split}|v|\leq&C_{m,n,\delta}(1+\phi_{m}(t))^{-\frac{n}{2}+\frac{1}{m+2}}(1+\big{|}|x|-\phi_{m}(t)\big{|})^{-\frac{n}{2}+\frac{1}{m+2}+\delta}A(f,g),\end{split}

where δ>0\delta>0 is small enough. Since t1t\geq 1, we have for all α>1\alpha>-1

|tαqv|Cm,n,δϕm(t)n2+1m+2+2αq(m+2)(1+||x|ϕm(t)|)n2+1m+2+δA(f,g).\begin{split}|t^{\frac{\alpha}{q}}v|\leq&C_{m,n,\delta}\phi_{m}(t)^{-\frac{n}{2}+\frac{1}{m+2}+\frac{2\alpha}{q(m+2)}}(1+\big{|}|x|-\phi_{m}(t)\big{|})^{-\frac{n}{2}+\frac{1}{m+2}+\delta}A(f,g).\end{split} (2.36)

Then we can compute the integral in the left hand side of (2.35) by (2.36) and the polar coordinate transformation. then one can calculate

((ϕm(t)+M)2|x|2)γtαqvLq([T0,)×n)qCm,n,δA(f,g)T0|x|ϕm(t)+M{((ϕm(t)+M)2|x|2)γ×ϕm(t)n2+1m+2+2αq(m+2)(1+||x|ϕm(t)|)n2+1m+2+δ}qdxdtCm,n,δA(f,g)T00ϕm(t)+M{(ϕm(t)+M+r)γ(ϕm(t)+Mr)γ×ϕm(t)n2+1m+2+2αq(m+2)(1+|rϕm(t)|)n2+1m+2+δ}qrn1drdtCm,n,δA(f,g)×T0ϕm(t)q(n2+1m+2+2αq(m+2)+γ)0ϕm(t)+M(1+|rϕm(t)|)q(γn2+1m+2+δ)rn1drdt.\begin{split}&\Big{\|}\big{(}(\phi_{m}(t)+M)^{2}-|x|^{2}\big{)}^{\gamma}t^{\frac{\alpha}{q}}v\Big{\|}_{L^{q}([T_{0},\infty)\times\mathbb{R}^{n})}^{q}\\ &\leq C_{m,n,\delta}A(f,g)\int_{T_{0}}^{\infty}\int_{|x|\leq\phi_{m}(t)+M}\bigg{\{}\Big{(}\big{(}\phi_{m}(t)+M\big{)}^{2}-|x|^{2}\Big{)}^{\gamma}\\ &\qquad\qquad\qquad\times\phi_{m}(t)^{-\frac{n}{2}+\frac{1}{m+2}+\frac{2\alpha}{q(m+2)}}\Big{(}1+\big{|}|x|-\phi_{m}(t)\big{|}\Big{)}^{-\frac{n}{2}+\frac{1}{m+2}+\delta}\bigg{\}}^{q}dxdt\\ &\leq C_{m,n,\delta}A(f,g)\int_{T_{0}}^{\infty}\int_{0}^{\phi_{m}(t)+M}\Big{\{}\big{(}\phi_{m}(t)+M+r\big{)}^{\gamma}\big{(}\phi_{m}(t)+M-r\big{)}^{\gamma}\\ &\qquad\qquad\qquad\times\phi_{m}(t)^{-\frac{n}{2}+\frac{1}{m+2}+\frac{2\alpha}{q(m+2)}}\big{(}1+|r-\phi_{m}(t)|\big{)}^{-\frac{n}{2}+\frac{1}{m+2}+\delta}\Big{\}}^{q}r^{n-1}drdt\\ &\leq C_{m,n,\delta}A(f,g)\\ &\times\int_{T_{0}}^{\infty}\phi_{m}(t)^{q(-\frac{n}{2}+\frac{1}{m+2}+\frac{2\alpha}{q(m+2)}+\gamma)}\int_{0}^{\phi_{m}(t)+M}\big{(}1+|r-\phi_{m}(t)|\big{)}^{q(\gamma-\frac{n}{2}+\frac{1}{m+2}+\delta)}r^{n-1}drdt.\end{split} (2.37)

Notice that by our assumption, γn2+1m+2+2αq(m+2)<(mm+2n)1q\gamma-\frac{n}{2}+\frac{1}{m+2}+\frac{2\alpha}{q(m+2)}<(\frac{m}{m+2}-n)\frac{1}{q} holds. Then we can choose a constant σ>0\sigma>0 such that

γn2+1m+2+2αq(m+2)<(mm+2n)1qσ.\gamma-\frac{n}{2}+\frac{1}{m+2}+\frac{2\alpha}{q(m+2)}<\Big{(}\frac{m}{m+2}-n\Big{)}\frac{1}{q}-\sigma.

Furthermore, we have

(γn2+1m+2+δ)q<qδ+m2αm+2n.\Big{(}\gamma-\frac{n}{2}+\frac{1}{m+2}+\delta\Big{)}q<q\delta+\frac{m-2\alpha}{m+2}-n.

In order to keep the integral in (2.37) bounded, we need qδ+m2αm+2n<1q\delta+\frac{m-2\alpha}{m+2}-n<-1, which is satisfied for α>1\alpha>-1, n2n\geq 2 and sufficiently small δ\delta. Then for some positive constant σ¯>0\bar{\sigma}>0, the integral in the last line of (2.37) can be controlled by

T00ϕm(t)+Mϕm(t)mm+2nσ¯(1+|rϕm(t)|)1σ¯rn1𝑑r𝑑tCT0ϕm(t)mm+2nσ¯(1+ϕm(t))n1𝑑tC.\begin{split}&\int_{T_{0}}^{\infty}\int_{0}^{\phi_{m}(t)+M}\phi_{m}(t)^{\frac{m}{m+2}-n-\bar{\sigma}}\big{(}1+\big{|}r-\phi_{m}(t)\big{|}\big{)}^{-1-\bar{\sigma}}r^{n-1}drdt\\ &\leq C\int_{T_{0}}^{\infty}\phi_{m}(t)^{\frac{m}{m+2}-n-\bar{\sigma}}\big{(}1+\phi_{m}(t)\big{)}^{n-1}dt\leq C.\end{split}

This, together with (2.37), yields (2.35). ∎

2.2 Inhomogeneous Strichartz estimates without characteristic weight

Now we turn to give inhomogeneous Strichartz estimate at q=q0q=q_{0} without characteristic weight, which is a key step in the proof of inhomogeneous Strichartz estimates with characteristic weight. To begin with, we introduce a result of dyadic decomposition from Lemma 3.8 of [11].

Lemma 2.2.

Assume that χCc()\chi\in C^{\infty}_{c}(\mathbb{R}) with

suppχ(12,2),j=χ(2jτ)1forτ>0.\textup{supp}\chi\subseteq\left(\frac{1}{2},2\right),\quad\displaystyle\sum\limits_{j=-\infty}^{\infty}\chi\left(2^{-j}\tau\right)\equiv 1\quad\text{for}\quad\tau>0. (2.38)

Define the Littlewood-Paley operators of function GG as follows

Gj(t,x)=(2π)nneixξχ(|ξ|2j)G^(t,ξ)𝑑ξ.G_{j}(t,x)=(2\pi)^{-n}\int_{\mathbb{R}^{n}}e^{ix\cdot\xi}\chi\left(\frac{|\xi|}{2^{j}}\right)\hat{G}(t,\xi)d\xi.

Then one has that

GLtsLxqC(j=GjLtsLxq2)12for 2q< and 2s\displaystyle\parallel G\parallel_{L^{s}_{t}L^{q}_{x}}\leq C\left(\sum\limits_{j=-\infty}^{\infty}\parallel G_{j}\parallel^{2}_{L^{s}_{t}L^{q}_{x}}\right)^{\frac{1}{2}}\qquad\text{for\quad$2\leq q<\infty$ and $2\leq s\leq\infty$}

and

(j=GjLtrLxp2)12CGLtrLxpfor 1<p2 and 1r2.\displaystyle\left(\sum\limits_{j=-\infty}^{\infty}\parallel G_{j}\parallel^{2}_{L^{r}_{t}L^{p}_{x}}\right)^{\frac{1}{2}}\leq C\parallel G\parallel_{L^{r}_{t}L^{p}_{x}}\qquad\text{for\quad$1<p\leq 2$\quad and \quad$1\leq r\leq 2$}.

In next step, we turn to handle the linear inhomogeneous problem:

{t2wtmw=F(t,x),w(T0,x)=0,tw(T0,x)=0,\begin{cases}&\partial_{t}^{2}w-t^{m}\triangle w=F(t,x),\\ &w(T_{0},x)=0,\quad\partial_{t}w(T_{0},x)=0,\end{cases} (2.39)

Based on Lemma 2.2, we have the following Strichartz estimate without characteristic weight:

Lemma 2.3.

For q0=2((m+2)n+2+2α)(m+2)n2q_{0}=\frac{2((m+2)n+2+2\alpha)}{(m+2)n-2} with n2n\geq 2, m>0m>0 and 0αnn1m0\leq\alpha\leq\frac{n}{n-1}\cdot m,

tαq0wLq0([T0,)×n)Ctαq0FLq0q01([T0,)×n).\begin{split}\left\|t^{\frac{\alpha}{q_{0}}}w\right\|_{L^{q_{0}}([T_{0},\infty)\times\mathbb{R}^{n})}\leq C\left\|t^{-\frac{\alpha}{q_{0}}}F\right\|_{L^{\frac{q_{0}}{q_{0}-1}}([T_{0},\infty)\times\mathbb{R}^{n})}.\end{split} (2.40)
Remark 2.1.

Recall that in our former work [19, Lemma 2.2], we have established for (2.39) with qq~0=2((m+2)n+2)(m+2)m24βq\geq\tilde{q}_{0}=\frac{2((m+2)n+2)}{(m+2)m-2-4\beta},

tβwLq([1,)×n)Ctβ|Dx|γ1m+2FLq~0q~01([1,)×n),\left\|t^{\beta}w\right\|_{L^{q}([1,\infty)\times\mathbb{R}^{n})}\leq C\,\left\|t^{-\beta}|D_{x}|^{\gamma-\frac{1}{m+2}}F\right\|_{L^{\frac{\tilde{q}_{0}}{\tilde{q}_{0}-1}}([1,\infty)\times\mathbb{R}^{n})}, (2.41)

where γ=n22βm+2(m+2)n+2q(m+2)\gamma=\frac{n}{2}-\frac{2\beta}{m+2}-\frac{(m+2)n+2}{q(m+2)}, 0<βm40<\beta\leq\frac{m}{4}, and the constant C=C(n,m,q)C=C(n,m,q). A direct computation shows that for the choice β=αq~0\beta=\frac{\alpha}{\tilde{q}_{0}},

q~0=2((m+2)n+2)(m+2)m24β=2((m+2)n+2)(m+2)m24αq~0q~0=2((m+2)n+2+2α)(m+2)n2=q0.\tilde{q}_{0}=\frac{2((m+2)n+2)}{(m+2)m-2-4\beta}=\frac{2((m+2)n+2)}{(m+2)m-2-4\frac{\alpha}{\tilde{q}_{0}}}\Longrightarrow\tilde{q}_{0}=\frac{2((m+2)n+2+2\alpha)}{(m+2)n-2}=q_{0}.

However, the restriction αq0=βm4\frac{\alpha}{q_{0}}=\beta\leq\frac{m}{4} implies αm2(m+2)n+2(m+2)(n1)\alpha\leq\frac{m}{2}\cdot\frac{(m+2)n+2}{(m+2)(n-1)}, thus one can derive (2.40) from [19, Lemma 2.2] only for the case αm2(m+2)n+2(m+2)(n1)\alpha\leq\frac{m}{2}\cdot\frac{(m+2)n+2}{(m+2)(n-1)}. On the other hand, it can be computed easily that for all n3n\geq 3,

m2(m+2)n+2(m+2)(n1)<m<nn1m,\frac{m}{2}\cdot\frac{(m+2)n+2}{(m+2)(n-1)}<m<\frac{n}{n-1}\cdot m,

thus Lemma 2.3 has improved the result in [19, Lemma 2.2] for the case q=q0q=q_{0}. Furthermore, the proof of Theorem 1.1 (Case I) require the global existence result for (1.17) with α=m\alpha=m, therefore Lemma 2.3 is a crucial step to establish (1.30).

Proof of Lemma 2.3.

Denote β=αq0\beta=\frac{\alpha}{q_{0}}, then for 0<αm2(m+2)n+2(m+2)(n1)0<\alpha\leq\frac{m}{2}\cdot\frac{(m+2)n+2}{(m+2)(n-1)} or equivalently 0<βm40<\beta\leq\frac{m}{4}, (2.40) is an immediate sequence of Lemma 2.2 in our former work [19] . Thus it suffices to consider m2(m+2)n+2(m+2)(n1)<αnn1m\frac{m}{2}\cdot\frac{(m+2)n+2}{(m+2)(n-1)}<\alpha\leq\frac{n}{n-1}\cdot m or equivalently m4<βm2nn+1\frac{m}{4}<\beta\leq\frac{m}{2}\cdot\frac{n}{n+1}.

It follows from [19, (2.32)] that

w(t,x)=[T0,t)×nnei{(xy)ξ±[ϕm(t)ϕm(s)]|ξ|}a(t,s,ξ)F(s,y)dξdsdy=:AF.w(t,x)=\int_{[T_{0},t)\times\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi\pm[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}\,a(t,s,\xi)F(s,y)\,d\xi dsdy=:AF. (2.42)

where

|ξκa(t,s,ξ)|(1+ϕm(t)|ξ|)m2(m+2)(1+ϕm(s)|ξ|)m2(m+2)|ξ|2m+2|κ|.|\partial_{\xi}^{\kappa}a(t,s,\xi)|\lesssim(1+\phi_{m}(t)|\xi|)^{-\frac{m}{2(m+2)}}(1+\phi_{m}(s)|\xi|)^{-\frac{m}{2(m+2)}}|\xi|^{-\frac{2}{m+2}-|\kappa|}. (2.43)

In the remaining part of this article, it is enough to consider the phase function with sign minus before [ϕm(t)ϕm(s)]|ξ|[\phi_{m}(t)-\phi_{m}(s)]|\xi| since for the case of sign plus, the related estimates can be obtained in the same way. By setting aλ(t,s,ξ)=χ(|ξ|/λ)a(t,s,ξ)a_{\lambda}(t,s,\xi)=\chi(|\xi|/\lambda)a(t,s,\xi) for λ>0\lambda>0 and χ\chi defined in (2.38), one can obtain a dyadic decomposition of the operator AA as follows

AλF=[T0,t)×nnei{(xy)ξ[ϕm(t)ϕm(s)]|ξ|}aλ(t,s,ξ)F(s,y)𝑑ξ𝑑s𝑑y.A_{\lambda}F=\int_{[T_{0},t)\times\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}a_{\lambda}(t,s,\xi)F(s,y)\,d\xi dsdy. (2.44)

Define b(t,s,ξ)=|ξ|aλ(t,s,ξ)b(t,s,\xi)=|\xi|a_{\lambda}(t,s,\xi). Then |ξκb(t,s,ξ)|tm4sm4λ|κ|\bigl{|}\partial_{\xi}^{\kappa}b(t,s,\xi)\bigr{|}\lesssim t^{-\frac{m}{4}}s^{-\frac{m}{4}}\lambda^{-|\kappa|} and

AλF=[T0,t)×nnei{(xy)ξ[ϕm(t)ϕm(s)]|ξ|}|ξ|1b(t,s,ξ)F(s,y)𝑑ξ𝑑y𝑑s.A_{\lambda}F=\int_{[T_{0},t)\times\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}|\xi|^{-1}b(t,s,\xi)F(s,y)\,d\xi dyds. (2.45)

Set

Ht,sf(x)=nnei{(xy)ξ[ϕm(t)ϕm(s)]|ξ|}b(t,s,ξ)f(y)𝑑ξ𝑑y,H_{t,s}f(x)=\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}b(t,s,\xi)f(y)\,d\xi dy, (2.46)

then |AλF||λ1T0tHt,sFds||A_{\lambda}F|\lesssim|\lambda^{-1}\int_{T_{0}}^{t}H_{t,s}F\mathrm{d}s|. Since tsT0t\geq s\geq T_{0}, (2.43) yields |ξκb(t,s,ξ)|tm4sm4|ξ||κ||\partial_{\xi}^{\kappa}b(t,s,\xi)|\lesssim t^{-\frac{m}{4}}s^{-\frac{m}{4}}|\xi|^{-|\kappa|}, hence

tβHt,sf()L2(n)Ctβm4sβm4sβf()L2(n).\left\|t^{\beta}H_{t,s}f(\cdot)\right\|_{L^{2}(\mathbb{R}^{n})}\leq Ct^{\beta-\frac{m}{4}}s^{\beta-\frac{m}{4}}\left\|s^{-\beta}f(\cdot)\right\|_{L^{2}(\mathbb{R}^{n})}. (2.47)

In addition, by the method of stationary phase, one has

tβHt,s\displaystyle\Big{\|}t^{\beta}H_{t,s} f()L(n)λn(1+λ|ϕm(t)ϕm(s)|)n12tβm4sβm4sβf()L1(n)\displaystyle f(\cdot)\Big{\|}_{L^{\infty}(\mathbb{R}^{n})}\lesssim\lambda^{n}\left(1+\lambda\left|\phi_{m}(t)-\phi_{m}(s)\right|\right)^{-\frac{n-1}{2}}t^{\beta-\frac{m}{4}}s^{\beta-\frac{m}{4}}\left\|s^{-\beta}f(\cdot)\right\|_{L^{1}(\mathbb{R}^{n})} (2.48)
λn(1+λ|ϕm(t)ϕm(s)|)(n(m+2)n+24(β+1))tβm4sβm4sβf()L1(n)\displaystyle\lesssim\lambda^{n}(1+\lambda\left|\phi_{m}(t)-\phi_{m}(s)\right|)^{-\left(n-\frac{(m+2)n+2}{4(\beta+1)}\right)}t^{\beta-\frac{m}{4}}s^{\beta-\frac{m}{4}}\left\|s^{-\beta}f(\cdot)\right\|_{L^{1}(\mathbb{R}^{n})}
λ(m+2)n+24(β+1)|ϕm(t)ϕm(s)|(n(m+2)n+24(β+1))tβm4sβm4sβf()L1(n),\displaystyle\lesssim\lambda^{\frac{(m+2)n+2}{4(\beta+1)}}\left|\phi_{m}(t)-\phi_{m}(s)\right|^{-\left(n-\frac{(m+2)n+2}{4(\beta+1)}\right)}t^{\beta-\frac{m}{4}}s^{\beta-\frac{m}{4}}\left\|s^{-\beta}f(\cdot)\right\|_{L^{1}(\mathbb{R}^{n})},

where in the first inequality we use the fact 0<n(m+2)n+24(β+1)n120<n-\frac{(m+2)n+2}{4(\beta+1)}\leq\frac{n-1}{2} provided m4<βm2nn+1\frac{m}{4}<\beta\leq\frac{m}{2}\cdot\frac{n}{n+1}. To proceed further, we shall apply different techniques according to the value of st\frac{s}{t}.

Case I 𝟐𝐬𝐭\mathbf{2s\leq t}

Since tst2t-s\geq\frac{t}{2} and β>m4\beta>\frac{m}{4} , we have tβm4sβm4|ts|2βm2t^{\beta-\frac{m}{4}}s^{\beta-\frac{m}{4}}\lesssim|t-s|^{2\beta-\frac{m}{2}}. Thus (2.47) implies

tβHt,sf()L2(n)C|ts|2βm2sβf()L2(n),\left\|t^{\beta}H_{t,s}f(\cdot)\right\|_{L^{2}(\mathbb{R}^{n})}\leq C|t-s|^{2\beta-\frac{m}{2}}\left\|s^{-\beta}f(\cdot)\right\|_{L^{2}(\mathbb{R}^{n})}, (2.49)

and (2.48) yields

tβHt,sf()L(n)Cλ(m+2)n+24(β+1)|ts|(n(m+2)n+24(β+1))m+22|ts|2βm2sβf()L1(n).\left\|t^{\beta}H_{t,s}f(\cdot)\right\|_{L^{\infty}(\mathbb{R}^{n})}\leq C\lambda^{\frac{(m+2)n+2}{4(\beta+1)}}\left|t-s\right|^{-\left(n-\frac{(m+2)n+2}{4(\beta+1)}\right)\frac{m+2}{2}}|t-s|^{2\beta-\frac{m}{2}}\left\|s^{-\beta}f(\cdot)\right\|_{L^{1}(\mathbb{R}^{n})}. (2.50)

Interpolating (2.49) with (2.50), we have

tβHt,sf()Lq0(n)Cλ|ts|(m+2)n24β(m+2)n+2sβf()Lp0(n).\left\|t^{\beta}H_{t,s}f(\cdot)\right\|_{L^{q_{0}}(\mathbb{R}^{n})}\leq C\lambda\left|t-s\right|^{-\frac{(m+2)n-2-4\beta}{(m+2)n+2}}\left\|s^{-\beta}f(\cdot)\right\|_{L^{p_{0}}(\mathbb{R}^{n})}. (2.51)
Case II 𝟐𝐬>𝐭\mathbf{2s>t}

By mean value theorem we have

ϕm(t)ϕm(s)=ηm2(ts),η[s,t].\phi_{m}(t)-\phi_{m}(s)=\eta^{\frac{m}{2}}(t-s),\quad\eta\in[s,t].

Note that ηs>t2\eta\geq s>\frac{t}{2}, then by (2.48) we get

tβHt,sf()L(n)\displaystyle\left\|t^{\beta}H_{t,s}f(\cdot)\right\|_{L^{\infty}(\mathbb{R}^{n})} (2.52)
Cλ(m+2)n+24(β+1)ηm2(n(m+2)n+24(β+1))|ts|(n(m+2)n+24(β+1))tβm4sβm4sβf()L1(n)\displaystyle\leq C\lambda^{\frac{(m+2)n+2}{4(\beta+1)}}\eta^{-\frac{m}{2}\left(n-\frac{(m+2)n+2}{4(\beta+1)}\right)}\left|t-s\right|^{-\left(n-\frac{(m+2)n+2}{4(\beta+1)}\right)}t^{\beta-\frac{m}{4}}s^{\beta-\frac{m}{4}}\left\|s^{-\beta}f(\cdot)\right\|_{L^{1}(\mathbb{R}^{n})}
Cλ(m+2)n+24(β+1)tm2(n(m+2)n+24(β+1))|ts|(n(m+2)n+24(β+1))t2βm2sβf()L1(n),\displaystyle\leq C\lambda^{\frac{(m+2)n+2}{4(\beta+1)}}t^{-\frac{m}{2}\left(n-\frac{(m+2)n+2}{4(\beta+1)}\right)}\left|t-s\right|^{-\left(n-\frac{(m+2)n+2}{4(\beta+1)}\right)}t^{2\beta-\frac{m}{2}}\left\|s^{-\beta}f(\cdot)\right\|_{L^{1}(\mathbb{R}^{n})},

also (2.47) gives

tβHt,sf()L2(n)Ct2βm2sβf()L2(n).\left\|t^{\beta}H_{t,s}f(\cdot)\right\|_{L^{2}(\mathbb{R}^{n})}\leq Ct^{2\beta-\frac{m}{2}}\left\|s^{-\beta}f(\cdot)\right\|_{L^{2}(\mathbb{R}^{n})}. (2.53)

Interpolating (2.53) with (2.52), we have

tβHt,sf()Lq0(n)Cλt2βm2m2(n(m+2)n+24(β+1))4(β+1)(m+2)n+2|ts|(n(m+2)n+24(β+1))4(β+1)(m+2)n+2sβf()Lp0(n).\begin{split}&\left\|t^{\beta}H_{t,s}f(\cdot)\right\|_{L^{q_{0}}(\mathbb{R}^{n})}\\ &\leq C\lambda t^{2\beta-\frac{m}{2}-\frac{m}{2}\left(n-\frac{(m+2)n+2}{4(\beta+1)}\right)\frac{4(\beta+1)}{(m+2)n+2}}\left|t-s\right|^{-\left(n-\frac{(m+2)n+2}{4(\beta+1)}\right)\frac{4(\beta+1)}{(m+2)n+2}}\left\|s^{-\beta}f(\cdot)\right\|_{L^{p_{0}}(\mathbb{R}^{n})}.\end{split} (2.54)

By βm2nn+1\beta\leq\frac{m}{2}\cdot\frac{n}{n+1} we compute

2βm2m2(n(m+2)n+24(β+1))4(β+1)(m+2)n+2=2β2mn(β+1)(m+2)n+20,2\beta-\frac{m}{2}-\frac{m}{2}\left(n-\frac{(m+2)n+2}{4(\beta+1)}\right)\frac{4(\beta+1)}{(m+2)n+2}=2\beta-\frac{2mn(\beta+1)}{(m+2)n+2}\leq 0,

thus (2.54) gives

tβHt,sf()Lq0(n)Cλ|ts|2β2mn(β+1)(m+2)n+2|ts|(n(m+2)n+24(β+1))4(β+1)(m+2)n+2sβf()Lp0(n)Cλ|ts|(m+2)n24β(m+2)n+2sβf()Lp0(n).\begin{split}&\left\|t^{\beta}H_{t,s}f(\cdot)\right\|_{L^{q_{0}}(\mathbb{R}^{n})}\\ &\leq C\lambda\left|t-s\right|^{2\beta-\frac{2mn(\beta+1)}{(m+2)n+2}}\left|t-s\right|^{-\left(n-\frac{(m+2)n+2}{4(\beta+1)}\right)\frac{4(\beta+1)}{(m+2)n+2}}\left\|s^{-\beta}f(\cdot)\right\|_{L^{p_{0}}(\mathbb{R}^{n})}\\ &\leq C\lambda\left|t-s\right|^{-\frac{(m+2)n-2-4\beta}{(m+2)n+2}}\left\|s^{-\beta}f(\cdot)\right\|_{L^{p_{0}}(\mathbb{R}^{n})}.\end{split} (2.55)

Collecting (2.51) and (2.55), then by 1(1p01q0)=(m+2)n24β(m+2)n+21-(\frac{1}{p_{0}}-\frac{1}{q_{0}})=\frac{(m+2)n-2-4\beta}{(m+2)n+2} and the Hardy-Littlewood-Sobolev inequality, we arrive at

AλFLq0([T0,)×n)=λ1T0Ht,sF𝑑sLq0([T0,)×n)Cλ1λT0|ts|(m+2)n24β(m+2)n+2F(s,)Lp0(n)𝑑sLq0([T0,))CFLp0([T0,)×n).\|A_{\lambda}F\|_{L^{q_{0}}([T_{0},\infty)\times\mathbb{R}^{n})}=\left\|\lambda^{-1}\int_{T_{0}}^{\infty}H_{t,s}F\,ds\right\|_{L^{q_{0}}([T_{0},\infty)\times\mathbb{R}^{n})}\\ \begin{aligned} &\leq C\lambda^{-1}\lambda\left\|\int_{T_{0}}^{\infty}|t-s|^{-\frac{(m+2)n-2-4\beta}{(m+2)n+2}}\left\|F(s,\cdot)\right\|_{L^{p_{0}}(\mathbb{R}^{n})}\,ds\right\|_{L^{q_{0}}([T_{0},\infty))}\\ &\leq C\left\|F\right\|_{L^{p_{0}}([T_{0},\infty)\times\mathbb{R}^{n})}.\end{aligned} (2.56)

It follows from Lemma 2.2 and p0=2((m+2)n+2)(m+2)n+6+4β<2p_{0}=\frac{2((m+2)n+2)}{(m+2)n+6+4\beta}<2 that

AFLq02\displaystyle\|AF\|_{L^{q_{0}}}^{2} CjA2jFLq02Cjk:|jk|C0A2jFkLq02\displaystyle\leq C\sum_{j\in\mathbb{Z}}\|A_{2^{j}}F\|_{L^{q_{0}}}^{2}\leq C\sum_{j\in\mathbb{Z}}\sum_{k:|j-k|\leq C_{0}}\|A_{2^{j}}F_{k}\|_{L^{q_{0}}}^{2} (2.57)
Cjk:|jk|C0FkLp02CFLp0([T0,)×n)2,\displaystyle\leq C\sum_{j\in\mathbb{Z}}\sum_{k:|j-k|\leq C_{0}}\|F_{k}\|_{L^{p_{0}}}^{2}\leq C\,\|F\|_{L^{p_{0}}([T_{0},\infty)\times\mathbb{R}^{n})}^{2},

where F^k(s,ξ)=χ(2k|ξ|)F^(s,ξ)\hat{F}_{k}(s,\xi)=\chi(2^{-k}|\xi|)\,\hat{F}(s,\xi). Hence, the proof of the Lemma is completed. ∎ As the end of this section, we prove (2.40) with 1<α<0-1<\alpha<0, for technical reason, we only show the local in time case.

Lemma 2.4.

Let n2n\geq 2 and 1<α<0-1<\alpha<0, then for any fixed large T¯>0\bar{T}>0,

tαq0wLq0([T0,T¯]×n)Ctαq0FLq0q01([T0,T¯]×n),\begin{split}&\left\|t^{\frac{\alpha}{q_{0}}}w\right\|_{L^{q_{0}}([T_{0},\bar{T}]\times\mathbb{R}^{n})}\leq C\left\|t^{-\frac{\alpha}{q_{0}}}F\right\|_{L^{\frac{q_{0}}{q_{0}-1}}([T_{0},\bar{T}]\times\mathbb{R}^{n})},\end{split} (2.58)

where CC depends on q0q_{0} and T¯\bar{T}.

Proof.

Note that ww can be written in (2.42) with the amplitude function a(t,s,ξ)a(t,s,\xi) satisfying (2.43),

Define the dyadic operator AλA_{\lambda} as in (2.44), and set

H~t,sf(x)=nnei{(xy)ξ[ϕm(t)ϕm(s)]|ξ|}aλ(t,s,ξ)f(y)𝑑ξ𝑑y.\tilde{H}_{t,s}f(x)=\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}a_{\lambda}(t,s,\xi)f(y)\,d\xi dy. (2.59)

Then AλG=T0tH~t,sGdsA_{\lambda}G=\int_{T_{0}}^{t}\tilde{H}_{t,s}G\mathrm{d}s and (2.43) yields

tβH~t,sf()L2(n)Ctβsβλ2m+2sβf()L2(n)Cλ2m+2sβf()L2(n).\left\|t^{\beta}\tilde{H}_{t,s}f(\cdot)\right\|_{L^{2}(\mathbb{R}^{n})}\leq Ct^{\beta}s^{\beta}\lambda^{-\frac{2}{m+2}}\left\|s^{-\beta}f(\cdot)\right\|_{L^{2}(\mathbb{R}^{n})}\leq C\lambda^{-\frac{2}{m+2}}\left\|s^{-\beta}f(\cdot)\right\|_{L^{2}(\mathbb{R}^{n})}. (2.60)

In addition, for λ<1\lambda<1 , one has

tβH~t,sf()L(n)\displaystyle\left\|t^{\beta}\tilde{H}_{t,s}f(\cdot)\right\|_{L^{\infty}(\mathbb{R}^{n})} Cλn2m+2tβsβsβf()L1(n)Cλn2m+2sβf()L1(n).\displaystyle\leq C\lambda^{n-\frac{2}{m+2}}t^{\beta}s^{\beta}\left\|s^{-\beta}f(\cdot)\right\|_{L^{1}(\mathbb{R}^{n})}\leq C\lambda^{n-\frac{2}{m+2}}\left\|s^{-\beta}f(\cdot)\right\|_{L^{1}(\mathbb{R}^{n})}. (2.61)

Interpolation (2.60) with (2.61), we get

tβH~t,sf()Lq0(n)Cλ4n(β+1)(m+2)n+22m+2sβf()Lp0(n).\left\|t^{\beta}\tilde{H}_{t,s}f(\cdot)\right\|_{L^{q_{0}}(\mathbb{R}^{n})}\leq C\lambda^{\frac{4n(\beta+1)}{(m+2)n+2}-\frac{2}{m+2}}\left\|s^{-\beta}f(\cdot)\right\|_{L^{p_{0}}(\mathbb{R}^{n})}. (2.62)

The condition α>1\alpha>-1 implies that

4n(β+1)(m+2)n+22m+2>4n(m+2)n+2(m+2)n+22(m+2)n2m+2=0,\frac{4n(\beta+1)}{(m+2)n+2}-\frac{2}{m+2}>\frac{4n}{(m+2)n+2}\cdot\frac{(m+2)n+2}{2(m+2)n}-\frac{2}{m+2}=0,

then by 1stT¯1\leq s\leq t\leq\bar{T} we have for λ<1\lambda<1

tβH~t,sf()Lq0(n)C(T¯)|ts|(m+2)n24β(m+2)n+2sβf()Lp0(n).\left\|t^{\beta}\tilde{H}_{t,s}f(\cdot)\right\|_{L^{q_{0}}(\mathbb{R}^{n})}\leq C(\bar{T})\left|t-s\right|^{-\frac{(m+2)n-2-4\beta}{(m+2)n+2}}\left\|s^{-\beta}f(\cdot)\right\|_{L^{p_{0}}(\mathbb{R}^{n})}. (2.63)

On the other hand, if λ1\lambda\geq 1, then by stationary phase method, we get

tβH~t,sf()L(n)\displaystyle\left\|t^{\beta}\tilde{H}_{t,s}f(\cdot)\right\|_{L^{\infty}(\mathbb{R}^{n})} Cλn(1+λ|ϕm(t)ϕm(s)|)n12tβm4sβm4λ1sβf()L1(n)\displaystyle\leq C\lambda^{n}(1+\lambda\left|\phi_{m}(t)-\phi_{m}(s)\right|)^{-\frac{n-1}{2}}t^{\beta-\frac{m}{4}}s^{\beta-\frac{m}{4}}\lambda^{-1}\left\|s^{-\beta}f(\cdot)\right\|_{L^{1}(\mathbb{R}^{n})} (2.64)
Cλn+12|ts|n12λ1sβf()L1(n),\displaystyle\leq C\lambda^{\frac{n+1}{2}}\left|t-s\right|^{-\frac{n-1}{2}}\lambda^{-1}\left\|s^{-\beta}f(\cdot)\right\|_{L^{1}(\mathbb{R}^{n})},

while for the L2L^{2} estimate, we have

tβH~t,sf()L2(n)Ctβm4sβm4λ1sβf()L2(n)Cλ1sβf()L2(n).\left\|t^{\beta}\tilde{H}_{t,s}f(\cdot)\right\|_{L^{2}(\mathbb{R}^{n})}\leq Ct^{\beta-\frac{m}{4}}s^{\beta-\frac{m}{4}}\lambda^{-1}\left\|s^{-\beta}f(\cdot)\right\|_{L^{2}(\mathbb{R}^{n})}\leq C\lambda^{-1}\left\|s^{-\beta}f(\cdot)\right\|_{L^{2}(\mathbb{R}^{n})}. (2.65)

Interpolation (2.65) with (2.64), we arrive at

tβH~t,sf()Lq0(n)Cλ2(n+1)(β+1)(m+2)n+21|ts|2(n1)(β+1)(m+2)n+2sβf()Lp0(n).\left\|t^{\beta}\tilde{H}_{t,s}f(\cdot)\right\|_{L^{q_{0}}(\mathbb{R}^{n})}\leq C\lambda^{\frac{2(n+1)(\beta+1)}{(m+2)n+2}-1}\left|t-s\right|^{-\frac{2(n-1)(\beta+1)}{(m+2)n+2}}\left\|s^{-\beta}f(\cdot)\right\|_{L^{p_{0}}(\mathbb{R}^{n})}. (2.66)

Since β<0\beta<0, one can compute 2(n+1)(β+1)(m+2)n+21<0\frac{2(n+1)(\beta+1)}{(m+2)n+2}-1<0 and 2(n1)(β+1)(m+2)n+2>(m+2)n24β(m+2)n+2-\frac{2(n-1)(\beta+1)}{(m+2)n+2}>-\frac{(m+2)n-2-4\beta}{(m+2)n+2}, then by |ts|2T¯|t-s|\leq 2\bar{T} we have

tβH~t,sf()Lq0(n)C(T¯)|ts|(m+2)n24β(m+2)n+2sβf()Lp0(n)\left\|t^{\beta}\tilde{H}_{t,s}f(\cdot)\right\|_{L^{q_{0}}(\mathbb{R}^{n})}\leq C(\bar{T})\left|t-s\right|^{-\frac{(m+2)n-2-4\beta}{(m+2)n+2}}\left\|s^{-\beta}f(\cdot)\right\|_{L^{p_{0}}(\mathbb{R}^{n})} (2.67)

for λ1\lambda\geq 1. The remaining part of the proof is similar to (2.56)-(2.57) in Lemma 2.3, we omit the details. ∎

3 The proof of Theorem 1.3 at the end point 𝐪=𝐪𝟎\mathbf{q=q_{0}}

In order to prove Theorem 1.3, as stated in Section 1.4, it suffices to handle the two endpoint cases, which correspond to q=q0=2((m+2)n+2α+2)(m+2)n2q=q_{0}=\frac{2((m+2)n+2\alpha+2)}{(m+2)n-2} and q=2q=2. We start with the proof of (1.30).

3.1 Local estimate at q=q0q=q_{0}

One can write inequality (1.30) as

(ϕm2(t)|x|2)1q0νtαq0wLq0([T0,)×n)C(ϕm2(t)|x|2)1q0+νtαq0FLq0q01([T0,)×n),\left\|\left(\phi_{m}^{2}(t)-|x|^{2}\right)^{\frac{1}{q_{0}}-\nu}t^{\frac{\alpha}{q_{0}}}w\right\|_{L^{q_{0}}([T_{0},\infty)\times\mathbb{R}^{n})}\leq C\left\|\left(\phi_{m}^{2}(t)-|x|^{2}\right)^{\frac{1}{q_{0}}+\nu}t^{-\frac{\alpha}{q_{0}}}F\right\|_{L^{\frac{q_{0}}{q_{0}-1}}([T_{0},\infty)\times\mathbb{R}^{n})}, (3.68)

where ν>0\nu>0. First note that for any fixed T¯T0\bar{T}\gg T_{0}, the weight ϕm2(t)|x|2\phi_{m}^{2}(t)-|x|^{2} and tαq0t^{\frac{\alpha}{q_{0}}} are both bounded from below and above for T0tT¯T_{0}\leq t\leq\bar{T}, this observation together with Lemma 2.3 and Lemma 2.4 give

(ϕm2(t)|x|2)1q0νtαq0wLq0([T0,T¯]×n)Cϕm(T¯)ν4(ϕm2(t)|x|2)1q0+νtαq0FLq0q01([T0,T¯]×n).\begin{split}&\left\|\left(\phi_{m}^{2}(t)-|x|^{2}\right)^{\frac{1}{q_{0}}-\nu}t^{\frac{\alpha}{q_{0}}}w\right\|_{L^{q_{0}}([T_{0},\bar{T}]\times\mathbb{R}^{n})}\\ &\leq C\phi_{m}(\bar{T})^{-\frac{\nu}{4}}\left\|\left(\phi_{m}^{2}(t)-|x|^{2}\right)^{\frac{1}{q_{0}}+\nu}t^{-\frac{\alpha}{q_{0}}}F\right\|_{L^{\frac{q_{0}}{q_{0}-1}}([T_{0},\bar{T}]\times\mathbb{R}^{n})}.\end{split} (3.69)

Hence in order to prove (3.68) and further (1.30), it suffices to prove the following inequality for TT¯T\geq\bar{T},

(ϕm2(t)|x|2)1q0νtαq0wLq0([T,2T]×n)Cϕm(T)ν4(ϕm2(t)|x|2)1q0+νtαq0FLq0q01([T0,)×n),\begin{split}&\Big{\|}\big{(}\phi_{m}^{2}(t)-|x|^{2}\big{)}^{\frac{1}{q_{0}}-\nu}t^{\frac{\alpha}{q_{0}}}w\Big{\|}_{L^{q_{0}}([T,2T]\times\mathbb{R}^{n})}\\ &\leq C\phi_{m}(T)^{-\frac{\nu}{4}}\Big{\|}\big{(}\phi_{m}^{2}(t)-|x|^{2}\big{)}^{\frac{1}{q_{0}}+\nu}t^{-\frac{\alpha}{q_{0}}}F\Big{\|}_{L^{\frac{q_{0}}{q_{0}-1}}([T_{0},\infty)\times\mathbb{R}^{n})},\end{split} (3.70)

where T¯>0\bar{T}>0 is a fixed large constant.

3.2 Simplifications for the end point estimate

Note that F(t,x)0F(t,x)\equiv 0 for |x|>ϕm(t)1|x|>\phi_{m}(t)-1, then this means suppF{(t,x):|x|2ϕm2(t)1}\operatorname{supp}\ F\subseteq\{(t,x):|x|^{2}\leq\phi_{m}^{2}(t)-1\}. Set F=F0+F1F=F^{0}+F^{1}, where

F0=F,iftT2102m+2;F0=0,ift<T2102m+2.F^{0}=F,\quad\text{if}\quad t\geq\frac{T}{2\cdot 10^{\frac{2}{m+2}}};\quad F^{0}=0,\quad\text{if}\quad t<\frac{T}{2\cdot 10^{\frac{2}{m+2}}}. (3.71)

Correspondingly, let w=w0+w1w=w^{0}+w^{1}, where t2wjtmΔwj=Fj\partial_{t}^{2}w^{j}-t^{m}\Delta w^{j}=F^{j} with zero data (j=0,1)(j=0,1). Hence in order to prove (3.70), it suffices to show that for j=0,1j=0,1,

(ϕm2(t)|x|2)1q0νtαq0wjLq0({(t,x):Tt2T})Cϕm(T)ν4(ϕm2(t)|x|2)1q0+νtαq0FjLq0q01([T0,)×n).\begin{split}\Big{\|}&\big{(}\phi^{2}_{m}(t)-|x|^{2}\big{)}^{\frac{1}{q_{0}}-\nu}t^{\frac{\alpha}{q_{0}}}w^{j}\Big{\|}_{L^{q_{0}}(\{(t,x):T\leq t\leq 2T\})}\\ &\leq C\phi_{m}(T)^{-\frac{\nu}{4}}\Big{\|}\big{(}\phi^{2}_{m}(t)-|x|^{2}\big{)}^{\frac{1}{q_{0}}+\nu}t^{-\frac{\alpha}{q_{0}}}F^{j}\Big{\|}_{L^{\frac{q_{0}}{q_{0}-1}}([T_{0},\infty)\times\mathbb{R}^{n})}.\\ \end{split} (3.72)

For this purpose, we shall make some reductions by which we restrict the support of FjF_{j} and wjw_{j} in certain domains, such that in each domain the characteristic weight ϕm2(t)|x|2\phi^{2}_{m}(t)-|x|^{2} on both sides of (3.72) are essentially constants and hence can be removed. More specifically, following the idea of [11] and [17], we assume that suppFj[T0¯,2T0¯]×n\operatorname{supp}F^{j}\subseteq[\bar{T_{0}},2\bar{T_{0}}]\times\mathbb{R}^{n} for T0¯=2kT¯\bar{T_{0}}=2^{k}\bar{T}, k=0,1,2,k=0,1,2,... such that T0¯T\bar{T_{0}}\leq T, and Fj0F^{j}\equiv 0 holds when ϕm(t)|x|[δ0ϕm(T¯0),2δ0ϕm(T0¯)]\phi_{m}(t)-|x|\notin[\delta_{0}\phi_{m}(\bar{T}_{0}),2\delta_{0}\phi_{m}(\bar{T_{0}})] for some fixed constant δ0\delta_{0} with 0<δ020<\delta_{0}\leq 2 and δ0ϕm(T0¯)1\delta_{0}\phi_{m}(\bar{T_{0}})\geq 1; while for the solution wjw_{j}, we further assume that wj0w^{j}\equiv 0 holds when ϕm(t)|x|[δϕm(T¯0),2δϕm(T0¯)]\phi_{m}(t)-|x|\notin[\delta\phi_{m}(\bar{T}_{0}),2\delta\phi_{m}(\bar{T_{0}})] for δδ0\delta\geq\delta_{0} such that δϕm(T¯0)ϕm(T)\delta\phi_{m}(\bar{T}_{0})\leq\phi_{m}(T). With these reductions, our task is reduced to prove some unweighted Strichartz estimates

(ϕm2(t)|x|2)1q0νtαq0wjLq0({(t,x):Tt2T,δϕm(T0¯)ϕm(t)|x|2δϕm(T0¯)})C(ϕm(T0¯)ϕm(T))ν2(ϕm2(t)|x|2)1q0+νtαq0FjLq0q01([T0,)×n).\begin{split}\Big{\|}&\big{(}\phi^{2}_{m}(t)-|x|^{2}\big{)}^{\frac{1}{q_{0}}-\nu}t^{\frac{\alpha}{q_{0}}}w^{j}\Big{\|}_{L^{q_{0}}(\{(t,x):T\leq t\leq 2T,\delta\phi_{m}(\bar{T_{0}})\leq\phi_{m}(t)-|x|\leq 2\delta\phi_{m}(\bar{T_{0}})\})}\\ &\leq C\left(\phi_{m}(\bar{T_{0}})\phi_{m}(T)\right)^{-\frac{\nu}{2}}\Big{\|}\big{(}\phi^{2}_{m}(t)-|x|^{2}\big{)}^{\frac{1}{q_{0}}+\nu}t^{-\frac{\alpha}{q_{0}}}F^{j}\Big{\|}_{L^{\frac{q_{0}}{q_{0}-1}}([T_{0},\infty)\times\mathbb{R}^{n})}.\end{split} (3.73)

By the scale of ϕm(t)\phi_{m}(t) and ϕm(t)|x|\phi_{m}(t)-|x|, (3.73) is equivalent to

(ϕm(T0¯)\displaystyle\big{(}\phi_{m}(\bar{T_{0}}) ϕm(T)δ)1q0νtαq0wjLq0({(t,x):Tt2T,δϕm(T0¯)ϕm(t)|x|2δϕm(T0¯)})\displaystyle\phi_{m}(T)\delta\big{)}^{\frac{1}{q_{0}}-\nu}\left\|t^{\frac{\alpha}{q_{0}}}w^{j}\right\|_{L^{q_{0}}(\{(t,x):T\leq t\leq 2T,\delta\phi_{m}(\bar{T_{0}})\leq\phi_{m}(t)-|x|\leq 2\delta\phi_{m}(\bar{T_{0}})\})}
C\displaystyle\leq C (ϕm(T0¯)ϕm(T))ν2(ϕm2(T0¯)δ0)1q0+νtαq0FjLq0q01([T0,)×n).\displaystyle\left(\phi_{m}(\bar{T_{0}})\phi_{m}(T)\right)^{-\frac{\nu}{2}}\left(\phi^{2}_{m}(\bar{T_{0}})\delta_{0}\right)^{\frac{1}{q_{0}}+\nu}\left\|t^{-\frac{\alpha}{q_{0}}}F^{j}\right\|_{L^{\frac{q_{0}}{q_{0}-1}}([T_{0},\infty)\times\mathbb{R}^{n})}. (3.74)

By rearranging some terms in (3.2), then (3.2) directly follows from

(ϕm(T)ϕm(T0¯))1q0ν2δ1q0+ν21ϕm(T0¯)3νδ32νδ0ν\displaystyle\Big{(}\frac{\phi_{m}(T)}{\phi_{m}(\bar{T_{0}})}\Big{)}^{\frac{1}{q_{0}}-\frac{\nu}{2}}\delta^{\frac{1}{q_{0}}+\frac{\nu}{2}}\frac{1}{\phi_{m}(\bar{T_{0}})^{3\nu}\delta^{\frac{3}{2}\nu}\delta_{0}^{\nu}} tαq0wjLq0({(t,x):Tt2T,δϕm(T0¯)ϕm(t)|x|2δϕm(T0¯)})\displaystyle\left\|t^{\frac{\alpha}{q_{0}}}w^{j}\right\|_{L^{q_{0}}(\{(t,x):T\leq t\leq 2T,\delta\phi_{m}(\bar{T_{0}})\leq\phi_{m}(t)-|x|\leq 2\delta\phi_{m}(\bar{T_{0}})\})}
Cδ01q0tαq0FjLq0q01([T0,)×n).\displaystyle\leq C\delta_{0}^{\frac{1}{q_{0}}}\left\|t^{-\frac{\alpha}{q_{0}}}F^{j}\right\|_{L^{\frac{q_{0}}{q_{0}-1}}([T_{0},\infty)\times\mathbb{R}^{n})}. (3.75)

Note that ϕm(T0¯)3νδ32νδ0νϕm(T0¯)3νδ052νδ0ν21.\phi_{m}(\bar{T_{0}})^{3\nu}\delta^{\frac{3}{2}\nu}\delta_{0}^{\nu}\geq\phi_{m}(\bar{T_{0}})^{-3\nu}\delta_{0}^{-\frac{5}{2}\nu}\geq\delta_{0}^{\frac{\nu}{2}}\gtrsim 1. Therefore, (3.2) follows from

(ϕm(T)ϕm(T0¯))1q0ν2δ1q0+ν2tαq0wjLq0({(t,x):Tt2T,δϕm(T0¯)ϕm(t)|x|2δϕm(T0¯)})Cδ01q0tαq0FjLq0q01([T0,)×n).\begin{split}\Big{(}\frac{\phi_{m}(T)}{\phi_{m}(\bar{T_{0}})}\Big{)}^{\frac{1}{q_{0}}-\frac{\nu}{2}}\delta^{\frac{1}{q_{0}}+\frac{\nu}{2}}\|&t^{\frac{\alpha}{q_{0}}}w^{j}\|_{L^{q_{0}}(\{(t,x):T\leq t\leq 2T,\delta\phi_{m}(\bar{T_{0}})\leq\phi_{m}(t)-|x|\leq 2\delta\phi_{m}(\bar{T_{0}})\})}\\ &\leq C\delta_{0}^{\frac{1}{q_{0}}}\|t^{-\frac{\alpha}{q_{0}}}F^{j}\|_{L^{\frac{q_{0}}{q_{0}-1}}([T_{0},\infty)\times\mathbb{R}^{n})}.\end{split} (3.76)

To proceed further, we set Gj(t,x)=:T0¯2Fj(T0¯t,T0¯m+22x)G^{j}(t,x)=:\bar{T_{0}}^{2}F^{j}(\bar{T_{0}}t,\bar{T_{0}}^{\frac{m+2}{2}}x) and vj(t,x)=:wj(T0¯t,T0¯m+22x)v^{j}(t,x)=:w^{j}(\bar{T_{0}}t,\bar{T_{0}}^{\frac{m+2}{2}}x) for j=0,1j=0,1. Then vjv^{j} satisfies

{t2vjtmvj=Gj(t,x),vj(0,x)=0,tvj(0,x)=0,\begin{cases}&\partial_{t}^{2}v^{j}-t^{m}\triangle v^{j}=G^{j}(t,x),\\ &v^{j}(0,x)=0,\quad\partial_{t}v^{j}(0,x)=0,\\ \end{cases} (3.77)

where suppGj{(t,x):1t2,δ0ϕm(1)ϕm(t)|x|2δ0ϕm(1)}\operatorname{supp}G^{j}\subseteq\{(t,x):1\leq t\leq 2,\delta_{0}\phi_{m}(1)\leq\phi_{m}(t)-|x|\leq 2\delta_{0}\phi_{m}(1)\}. Then, if we let T/T0¯T/\bar{T_{0}} denoted by TT, then (3.76) is a result of

ϕm(T)1q0ν2δ1q0+ν2tαq0vjLq0({(t,x):Tt2T,δϕm(1)ϕm(t)|x|2δϕm(1)})Cδ01q0tαq0GjLq0q01([1,2]×n).\begin{split}\phi_{m}(T)^{\frac{1}{q_{0}}-\frac{\nu}{2}}\delta^{\frac{1}{q_{0}}+\frac{\nu}{2}}&\left\|t^{\frac{\alpha}{q_{0}}}v^{j}\right\|_{L^{q_{0}}(\{(t,x):T\leq t\leq 2T,\delta\phi_{m}(1)\leq\phi_{m}(t)-|x|\leq 2\delta\phi_{m}(1)\})}\\ &\leq C\delta_{0}^{\frac{1}{q_{0}}}\left\|t^{-\frac{\alpha}{q_{0}}}G^{j}\right\|_{L^{\frac{q_{0}}{q_{0}-1}}([1,2]\times\mathbb{R}^{n})}.\end{split} (3.78)

At this time, by (3.71), 1T/T0¯4102m+21\leq T/\bar{T_{0}}\leq 4\cdot 10^{\frac{2}{m+2}} holds for (t,x)suppw0(t,x)\in\operatorname{supp}w^{0} and Tt2TT\leq t\leq 2T, or equivalently, 1T4102m+21\leq T\leq 4\cdot 10^{\frac{2}{m+2}} holds for (t,x)suppv0(t,x)\in\operatorname{supp}v^{0} and Tt2TT\leq t\leq 2T, which is called the relatively “small times”.

On the other hand, we have that T/T0¯2102m+2T/\bar{T_{0}}\geq 2\cdot 10^{\frac{2}{m+2}} holds for (t,x)suppw1(t,x)\in\operatorname{supp}w^{1} and Tt2TT\leq t\leq 2T, or equivalently, T2102m+2T\geq 2\cdot 10^{\frac{2}{m+2}} holds for (t,x)suppv1(t,x)\in\operatorname{supp}v^{1} and Tt2TT\leq t\leq 2T, which is called the relatively “large times”.

In Subsection 4.2 and Subsection 4.3, we will handle the two cases respectively. For the concision of notation, in the following subsections, we will omit the superscript jj and denote

Dt,xT,δ={(t,x):Tt2T,δϕm(1)ϕm(t)|x|2δϕm(1)}.D_{t,x}^{T,\delta}=\{(t,x):T\leq t\leq 2T,\delta\phi_{m}(1)\leq\phi_{m}(t)-|x|\leq 2\delta\phi_{m}(1)\}. (3.79)

Then our task is reduced to prove

ϕm(T)1q0ν2δ1q0+ν2tαq0vLq0(Dt,xT,δ)Cδ01q0tαq0GLq0q01([1,2]×n).\phi_{m}(T)^{\frac{1}{q_{0}}-\frac{\nu}{2}}\delta^{\frac{1}{q_{0}}+\frac{\nu}{2}}\left\|t^{\frac{\alpha}{q_{0}}}v\right\|_{L^{q_{0}}(D_{t,x}^{T,\delta})}\leq C\delta_{0}^{\frac{1}{q_{0}}}\left\|t^{-\frac{\alpha}{q_{0}}}G\right\|_{L^{\frac{q_{0}}{q_{0}-1}}([1,2]\times\mathbb{R}^{n})}. (3.80)

3.3 Some related estimates for small times

Let us begin with the estimate of v0v^{0} in (3.80). Note that the integral domain of vv satisfies δϕm(1)ϕm(t)|x|2δϕm(1)\delta\phi_{m}(1)\leq\phi_{m}(t)-|x|\leq 2\delta\phi_{m}(1) and the support of GG satisfies δ0ϕm(1)ϕm(t)|x|2δ0ϕm(1)\delta_{0}\phi_{m}(1)\leq\phi_{m}(t)-|x|\leq 2\delta_{0}\phi_{m}(1), in order to treat the related Fourier integral operator (corresponding to the estimate of w0w^{0}), we distinguish the following two cases according to the different values of δ/δ0\delta/\delta_{0}:

(i) δ0δ102m+22δ0\delta_{0}\leq\delta\leq 10\cdot 2^{\frac{m+2}{2}}\delta_{0};

(ii) 102m+22δ0δ(2T)m+2210\cdot 2^{\frac{m+2}{2}}\delta_{0}\leq\delta\leq(2T)^{\frac{m+2}{2}}, if Tm+2210T^{\frac{m+2}{2}}\geq 10.

Case (i): small δ\delta

In this case, one has that δ/δ0[1,102m+22]\delta/\delta_{0}\in[1,10\cdot 2^{\frac{m+2}{2}}] and δϕm(T0¯)ϕm(T)\delta\phi_{m}(\bar{T_{0}})\leq\phi_{m}(T) in the support of ww ( δTm+22\delta\leq T^{\frac{m+2}{2}} in the support of vv ). Thus in order to prove (3.80), it suffices to show

ϕm(T)1q0tαq0vLq0(Dt,xT,δ)Ctαq0GLq0q01([1,2]×n).\phi_{m}(T)^{\frac{1}{q_{0}}}\left\|t^{\frac{\alpha}{q_{0}}}v\right\|_{L^{q_{0}}(D_{t,x}^{T,\delta})}\leq C\left\|t^{-\frac{\alpha}{q_{0}}}G\right\|_{L^{\frac{q_{0}}{q_{0}-1}}([1,2]\times\mathbb{R}^{n})}. (3.81)

By ϕm(1)ϕm(T)10ϕm(4)\phi_{m}(1)\leq\phi_{m}(T)\leq 10\phi_{m}(4), we only need to prove

tαq0vLq0(Dt,xT,δ)Ctαq0GLq0q01([1,2]×n),\left\|t^{\frac{\alpha}{q_{0}}}v\right\|_{L^{q_{0}}(D_{t,x}^{T,\delta})}\leq C\left\|t^{-\frac{\alpha}{q_{0}}}G\right\|_{L^{\frac{q_{0}}{q_{0}-1}}([1,2]\times\mathbb{R}^{n})}, (3.82)

and (3.82) follows from Lemma 2.3 and Lemma 2.4 immediately.

Case (ii): large δ\delta

In this case, we only need to prove

δ1q0tαq0vLq0(Dt,xT,δ)Cδ01q0tαq0GLq0q01([1,2]×n).\delta^{\frac{1}{q_{0}}}\left\|t^{\frac{\alpha}{q_{0}}}v\right\|_{L^{q_{0}}(D_{t,x}^{T,\delta})}\leq C\delta_{0}^{\frac{1}{q_{0}}}\left\|t^{-\frac{\alpha}{q_{0}}}G\right\|_{L^{\frac{q_{0}}{q_{0}-1}}([1,2]\times\mathbb{R}^{n})}. (3.83)

By (2.42) , we can write

v=[1,2]×nnei{(xy)ξ[ϕm(t)ϕm(s)]|ξ|}a(t,s,ξ)G(s,y)dξdyds.\begin{split}v=&\int_{[1,2]\times\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}a(t,s,\xi)G(s,y)\mathrm{d}\xi\mathrm{d}y\mathrm{d}s.\end{split} (3.84)

Similar to the proof of Lemma 2.3, by setting aλ(t,s,ξ)=χ(|ξ|/λ)a(t,s,ξ)a_{\lambda}(t,s,\xi)=\chi(|\xi|/\lambda)a(t,s,\xi) for λ>0\lambda>0 with function χ\chi defined in (2.38), then one can obtain a dyadic decomposition of vv as follows

vλ=[1,2]×nnei{(xy)ξ[ϕm(t)ϕm(s)]|ξ|}aλ(t,s,ξ)G(s,y)𝑑ξ𝑑s𝑑y.v_{\lambda}=\int_{[1,2]\times\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}a_{\lambda}(t,s,\xi)G(s,y)\,d\xi dsdy. (3.85)

Then it suffices to prove (3.83) for vλv_{\lambda}. Apply the operator H~t,s\tilde{H}_{t,s} defined in (2.59) to GG:

H~t,sG(x)=nnei{(xy)ξ[ϕm(t)ϕm(s)]|ξ|}aλ(t,s,ξ)G(s,y)𝑑ξ𝑑y,\tilde{H}_{t,s}G(x)=\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}a_{\lambda}(t,s,\xi)G(s,y)\,d\xi dy,

then similar analysis as that in the derivation of (2.51) and (2.55) in Lemma 2.3 gives

tβH~t,sG()Lq0(n)C|ts|(m+2)n24β(m+2)n+2sβG(s,)Lp0(n),\begin{split}&\left\|t^{\beta}\tilde{H}_{t,s}G(\cdot)\right\|_{L^{q_{0}}(\mathbb{R}^{n})}\leq C\left|t-s\right|^{-\frac{(m+2)n-2-4\beta}{(m+2)n+2}}\left\|s^{-\beta}G(s,\cdot)\right\|_{L^{p_{0}}(\mathbb{R}^{n})},\end{split} (3.86)

where β=αq0\beta=\frac{\alpha}{q_{0}}. Then by (m+2)n24β(m+2)n+2=(m+2)n2(m+2)n+2+2α=1(1p01q0)\frac{(m+2)n-2-4\beta}{(m+2)n+2}=\frac{(m+2)n-2}{(m+2)n+2+2\alpha}=1-(\frac{1}{p_{0}}-\frac{1}{q_{0}}) and the Hardy-Littlewood-Sobolev inequality, we arrive at

tαq0vλLq0(Dt,xT,δ)tαq0H~t,sG𝑑sLq0([1,2]×n)CI|ts|2q0sβG(s,)Lp0(n)𝑑sLq0([1,2])C|s|2q0Lq02(I)sβGLp0([1,2]×n).\begin{split}\left\|t^{\frac{\alpha}{q_{0}}}v_{\lambda}\right\|_{L^{q_{0}}(D_{t,x}^{T,\delta})}&\leq\left\|\int t^{\frac{\alpha}{q_{0}}}\tilde{H}_{t,s}G\,ds\right\|_{L^{q_{0}}([1,2]\times\mathbb{R}^{n})}\\ &\leq C\left\|\int_{I}|t-s|^{-\frac{2}{q_{0}}}\left\|s^{-\beta}G(s,\cdot)\right\|_{L^{p_{0}}(\mathbb{R}^{n})}\,ds\right\|_{L^{q_{0}}([1,2])}\\ &\leq C\left\||s|^{-\frac{2}{q_{0}}}\right\|_{L^{\frac{q_{0}}{2}}(I)}\left\|s^{-\beta}G\right\|_{L^{p_{0}}([1,2]\times\mathbb{R}^{n})}.\end{split} (3.87)

Since the support of G(s,y)G(s,y) satisfies δ0ϕm(1)ϕm(s)|y|2δ0ϕm(1)\delta_{0}\phi_{m}(1)\leq\phi_{m}(s)-|y|\leq 2\delta_{0}\phi_{m}(1) and

ϕm(s)ϕm(s)=(ss)ηm2,η[1,2],\phi_{m}(s^{\prime})-\phi_{m}(s)=(s^{\prime}-s)\eta^{\frac{m}{2}},\eta\in[1,2],

the length of the integral interval II should be controlled by cδ0c\delta_{0} with some fixed positive constant cc. With out loss of generality, we may assume c=1c=1. Furthermore, note that |ϕm(t)ϕm(s)|δ|\phi_{m}(t)-\phi_{m}(s)|\gtrsim\delta and hence |ts|Cδ|t-s|\geq C\delta for some fixed positive constant CC. Therefore

|s|2q0Lq02(I)(CδCδ+δ01|s|ds)2q0(δ0δ)2q0(δ0δ)1q0.\left\||s|^{-\frac{2}{q_{0}}}\right\|_{L^{\frac{q_{0}}{2}}(I)}\leq\left(\int_{C\delta}^{C\delta+\delta_{0}}\frac{1}{|s|}\mathrm{d}s\right)^{\frac{2}{q_{0}}}\lesssim\left(\frac{\delta_{0}}{\delta}\right)^{\frac{2}{q_{0}}}\leq\left(\frac{\delta_{0}}{\delta}\right)^{\frac{1}{q_{0}}}. (3.88)

Combing (3.87) and (3.88), then (3.83) and further (3.80) is proved.

Thus (3.80) has been established for relatively small time.

3.4 Some related estimates for large times

We now deal with the cases of “relative large times” in (3.80), for which ϕm(T)10ϕm(2)\phi_{m}(T)\geq 10\phi_{m}(2). Note that the integral domain of vv satisfies {δϕm(1)ϕm(t)|x|2δϕm(1)}\{\delta\phi_{m}(1)\leq\phi_{m}(t)-|x|\leq 2\delta\phi_{m}(1)\}, while the support of GG satisfies {δ0ϕm(1)ϕm(t)|x|2δ0ϕm(1)}\{\delta_{0}\phi_{m}(1)\leq\phi_{m}(t)-|x|\leq 2\delta_{0}\phi_{m}(1)\}. Thus in order to treat the related Fourier integral operator (corresponding to the estimate of w1w^{1}), we distinguish the following three cases according to the different values of δ/δ0\delta/\delta_{0}:

Case (i) δ0δ102m+22δ0\delta_{0}\leq\delta\leq 10\cdot 2^{\frac{m+2}{2}}\delta_{0};

Case (ii) δ102m+22\delta\geq 10\cdot 2^{\frac{m+2}{2}};

Case (iii) 102m+22δ0δ102m+2210\cdot 2^{\frac{m+2}{2}}\delta_{0}\leq\delta\leq 10\cdot 2^{\frac{m+2}{2}}, if δ01\delta_{0}\leq 1.

Here we point out that for Case (i)- Case (ii) of the wave equation, it is direct to establish an inequality analogous to (3.80) (see (3.2) and Section 33 of [11]). However, for the Tricomi equation, due to the complexity of the fundamental solution, more delicate and involved techniques from microlocal analysis are required to get the estimate of vv.

3.4.1 Case (i): small δ\delta

Note that ϕm(1)>0\phi_{m}(1)>0 and δϕm(1)ϕm(T)\delta\phi_{m}(1)\leq\phi_{m}(T) in the support of vv and hence δϕm(T)\delta\lesssim\phi_{m}(T) holds. To prove (3.80), it suffices to show

ϕm(T)1q0tαq0vLq0(Dt,xT,δ)Ctαq0GLq0q01([1,2]×n).\phi_{m}(T)^{\frac{1}{q_{0}}}\left\|t^{\frac{\alpha}{q_{0}}}v\right\|_{L^{q_{0}}(D_{t,x}^{T,\delta})}\leq C\left\|t^{-\frac{\alpha}{q_{0}}}G\right\|_{L^{\frac{q_{0}}{q_{0}-1}}([1,2]\times\mathbb{R}^{n})}. (3.89)

To prove (3.89) , by the method in [11, Proposition 3.1] and [14, Lemma 3.3], if we write

v(t,x)=0t(H~t,sG)(x)ds,v(t,x)=\int_{0}^{t}(\tilde{H}_{t,s}G)(x)\mathrm{d}s, (3.90)

where the operator H~t,s\tilde{H}_{t,s} is defined in (2.59) with the amplitude function a(t,s,ξ)a(t,s,\xi) satisfying (2.43), then it suffices to prove

Claim 3.1.
tαq0(H~t,sG)()Lq0(n)C|ts|2q0(1+m4)sαq0G(s,)Lq0q01(n).\left\|t^{\frac{\alpha}{q_{0}}}(\tilde{H}_{t,s}G)(\cdot)\right\|_{L^{q_{0}}(\mathbb{R}^{n})}\leq C|t-s|^{-\frac{2}{q_{0}}(1+\frac{m}{4})}\left\|s^{-\frac{\alpha}{q_{0}}}G(s,\cdot)\right\|_{L^{\frac{q_{0}}{q_{0}-1}}(\mathbb{R}^{n})}. (3.91)

In fact, with Claim 3.1, noting that by the support condition of vv and GG, we have for every fixed m>0m>0

tT2102m+2>2s,t\geq T\geq 2\cdot 10^{\frac{2}{m+2}}>2\geq s,

which yields ttstt\geq t-s\gtrsim t, we then have

tαq0vLq0([T,2T]×n)12tαq0(H~t,sG)()Lq0(n)dsLtq0([T,2T])C12|ts|2q0(1+m4)G(s,)Lxq0q01dsLtq0C|t|2q0(1+m4)12G(s,)Lxq0q01dsLtq0C(T2Tt2(1+m4)dt)1q0sαq0GLq0q01([1,2]×n)(Hölder’s inequality)Cϕm(T)1q0sαq0GLq0q01([1,2]×n),\begin{split}\left\|t^{\frac{\alpha}{q_{0}}}v\right\|_{L^{q_{0}}([T,2T]\times\mathbb{R}^{n})}\leq&\left\|\int_{1}^{2}\left\|t^{\frac{\alpha}{q_{0}}}(\tilde{H}_{t,s}G)(\cdot)\right\|_{L^{q_{0}}(\mathbb{R}^{n})}\mathrm{d}s\right\|_{L^{q_{0}}_{t}([T,2T])}\\ \leq&C\left\|\int_{1}^{2}|t-s|^{-\frac{2}{q_{0}}(1+\frac{m}{4})}\left\|G(s,\cdot)\right\|_{L^{\frac{q_{0}}{q_{0}-1}}_{x}}\mathrm{d}s\right\|_{L^{q_{0}}_{t}}\\ \leq&C\left\||t|^{-\frac{2}{q_{0}}(1+\frac{m}{4})}\int_{1}^{2}\|G(s,\cdot)\|_{L^{\frac{q_{0}}{q_{0}-1}}_{x}}\mathrm{d}s\right\|_{L^{q_{0}}_{t}}\\ \leq&C\left(\int_{T}^{2T}t^{-2(1+\frac{m}{4})}\mathrm{d}t\right)^{\frac{1}{q_{0}}}\left\|s^{-\frac{\alpha}{q_{0}}}G\right\|_{L^{\frac{q_{0}}{q_{0}-1}}([1,2]\times\mathbb{R}^{n})}\ \ \text{(H\"{o}lder's inequality)}\\ \leq&C\phi_{m}(T)^{-\frac{1}{q_{0}}}\left\|s^{-\frac{\alpha}{q_{0}}}G\right\|_{L^{\frac{q_{0}}{q_{0}-1}}([1,2]\times\mathbb{R}^{n})},\end{split}

which derives (3.89).

Proof of Claim 3.1.

We can make the dyadic decomposition H~t,sG=j=H~t,sjG\tilde{H}_{t,s}G=\displaystyle\sum_{j=-\infty}^{\infty}\tilde{H}_{t,s}^{j}G, where

H~t,sjG=nei{xξ[ϕm(t)ϕm(s)]|ξ|}χ(|ξ|2j)a(t,s,ξ)G^(s,ξ)dξ\tilde{H}_{t,s}^{j}G=\int_{\mathbb{R}^{n}}e^{i\{x\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}\chi\left(\frac{|\xi|}{2^{j}}\right)a(t,s,\xi)\hat{G}(s,\xi)\mathrm{d}\xi (3.92)

and the cut-off function χ\chi is defined in (2.38). Since 1s21\leq s\leq 2 in the support of GG, (2.43) implies

|ξβa(t,s,ξ)|Cϕm(t)m2(m+2)|ξ|m2(m+2)ϕm(s)m2(m+2)|ξ|m2(m+2)|ξ|2m+2|β|Cϕm(t)m2(m+2)|ξ|1|β|,\begin{split}\big{|}\partial_{\xi}^{\beta}a(t,s,\xi)\big{|}&\leq C\phi_{m}(t)^{-\frac{m}{2(m+2)}}|\xi|^{-\frac{m}{2(m+2)}}\phi_{m}(s)^{-\frac{m}{2(m+2)}}|\xi|^{-\frac{m}{2(m+2)}}|\xi|^{-\frac{2}{m+2}-|\beta|}\\ &\leq C\phi_{m}(t)^{-\frac{m}{2(m+2)}}|\xi|^{-1-|\beta|},\end{split} (3.93)

Thus if we further set

H~jG(t,s,x)=:tαq0(H~t,sjG)(x)with λj=2j,\tilde{H}_{j}G(t,s,x)=:t^{\frac{\alpha}{q_{0}}}(\tilde{H}_{t,s}^{j}G)(x)\quad\text{with $\lambda_{j}=2^{j}$},

then an application of FIO theory and stationary phase method yields

H~jG(t,s,)L2(n)Cλj1tαq0m4sαq0G(s,)L2(n)\begin{split}\left\|\tilde{H}_{j}G(t,s,\cdot)\right\|_{L^{2}(\mathbb{R}^{n})}\leq C\lambda_{j}^{-1}t^{\frac{\alpha}{q_{0}}-\frac{m}{4}}\left\|s^{-\frac{\alpha}{q_{0}}}G(s,\cdot)\right\|_{L^{2}(\mathbb{R}^{n})}\end{split}

and

H~jG(t,s,)L(n)Cλjn+121tαq0m4|ts|n12m+22sαq0G(s,)L1(n).\begin{split}\qquad\qquad\quad\|\tilde{H}_{j}G(t,s,\cdot)&\|_{L^{\infty}(\mathbb{R}^{n})}\leq C\lambda_{j}^{\frac{n+1}{2}-1}t^{\frac{\alpha}{q_{0}}-\frac{m}{4}}|t-s|^{-\frac{n-1}{2}\cdot\frac{m+2}{2}}\left\|s^{-\frac{\alpha}{q_{0}}}G(s,\cdot)\right\|_{L^{1}(\mathbb{R}^{n})}.\end{split}

By the interpolation and direct computation, we have that for j0j\geq 0,

H~j(t,s,)Lq0(n)Cλn+12(12q0)1tαq0m4|ts|(n1)(m+2)4(12q0)sαq0G(s,)Lq0q01(n).\|\tilde{H}_{j}(t,s,\cdot)\|_{L^{q_{0}}(\mathbb{R}^{n})}\leq C\lambda^{\frac{n+1}{2}(1-\frac{2}{q_{0}})-1}t^{\frac{\alpha}{q_{0}}-\frac{m}{4}}|t-s|^{-\frac{(n-1)(m+2)}{4}(1-\frac{2}{q_{0}})}\left\|s^{-\frac{\alpha}{q_{0}}}G(s,\cdot)\right\|_{L^{\frac{q_{0}}{q_{0}-1}}(\mathbb{R}^{n})}. (3.94)

Since ttstt\geq t-s\gtrsim t, (3.94) gives

H~j(t,s,)Lq0(n)Cλn+12(12q0)1|ts|αq0m4|ts|(n1)(m+2)4(12q0)sαq0G(s,)Lq0q01(n)=Cλ(n1)αmn(m+2)n+2α+2|ts|2q0(1+m4)sαq0G(s,)Lq0q01(n).\begin{split}\|\tilde{H}_{j}(t,s,\cdot)&\|_{L^{q_{0}}(\mathbb{R}^{n})}\\ &\leq C\lambda^{\frac{n+1}{2}(1-\frac{2}{q_{0}})-1}|t-s|^{\frac{\alpha}{q_{0}}-\frac{m}{4}}|t-s|^{-\frac{(n-1)(m+2)}{4}(1-\frac{2}{q_{0}})}\left\|s^{-\frac{\alpha}{q_{0}}}G(s,\cdot)\right\|_{L^{\frac{q_{0}}{q_{0}-1}}(\mathbb{R}^{n})}\\ &=C\lambda^{\frac{(n-1)\alpha-mn}{(m+2)n+2\alpha+2}}|t-s|^{-\frac{2}{q_{0}}(1+\frac{m}{4})}\left\|s^{-\frac{\alpha}{q_{0}}}G(s,\cdot)\right\|_{L^{\frac{q_{0}}{q_{0}-1}}(\mathbb{R}^{n})}.\end{split} (3.95)

Since 1<(n1)αmn(m+2)n+2α+2<0-1<\frac{(n-1)\alpha-mn}{(m+2)n+2\alpha+2}<0 provided α<mnn1\alpha<m\cdot\frac{n}{n-1}, if we denote H~+G(t,s,x)j0H~j(t,s,x),\tilde{H}_{+}G(t,s,x)\equiv\displaystyle\sum_{j\geq 0}\tilde{H}_{j}(t,s,x), then

H~+G(t,s,)Lq0(n)C|ts|2q0(1+m4)sαq0G(s,)Lq0q01(n).\|\tilde{H}_{+}G(t,s,\cdot)\|_{L^{q_{0}}(\mathbb{R}^{n})}\leq C|t-s|^{-\frac{2}{q_{0}}(1+\frac{m}{4})}\left\|s^{-\frac{\alpha}{q_{0}}}G(s,\cdot)\right\|_{L^{\frac{q_{0}}{q_{0}-1}}(\mathbb{R}^{n})}. (3.96)

For j<0j<0, let

H~G(t,s,x)j<0H~j(t,s,x)=|ξ|1ei{xξ[ϕm(t)ϕm(s)]|ξ|}tαq0a(t,s,ξ)G^(s,ξ)𝑑ξ.\tilde{H}_{-}G(t,s,x)\equiv\displaystyle\sum_{j<0}\tilde{H}_{j}(t,s,x)=\int_{|\xi|\leq 1}e^{i\{x\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}t^{\frac{\alpha}{q_{0}}}a(t,s,\xi)\hat{G}(s,\xi)d\xi.

Then it follows from Plancherel’s identity that

H~G(t,s,)L2(n)C(|ξ|1||ξ|2m+2tαq0(1+ϕm(t)|ξ|)m2(m+2)G^(s,ξ)|2dξ)12.\begin{split}\left\|\tilde{H}_{-}G(t,s,\cdot)\right\|_{L^{2}(\mathbb{R}^{n})}\leq C\left(\int_{|\xi|\leq 1}\left||\xi|^{-\frac{2}{m+2}}t^{\frac{\alpha}{q_{0}}}\big{(}1+\phi_{m}(t)|\xi|\big{)}^{-\frac{m}{2(m+2)}}\hat{G}(s,\xi)\right|^{2}\mathrm{d}\xi\right)^{\frac{1}{2}}.\end{split}

Note that for 1s21\leq s\leq 2

|G^(s,ξ)|=|neiyξG(s,y)dy|=||y|ϕm(2)eiyξG(s,y)dy|Csαq0G(s,)L2(n),\left|\hat{G}(s,\xi)\right|=\left|\int_{\mathbb{R}^{n}}e^{-iy\cdot\xi}G(s,y)\mathrm{d}y\right|=\left|\int_{|y|\leq\phi_{m}(2)}e^{-iy\cdot\xi}G(s,y)\mathrm{d}y\right|\leq C\left\|s^{-\frac{\alpha}{q_{0}}}G(s,\cdot)\right\|_{L^{2}(\mathbb{R}^{n})},

then we can compute in the polar coordinate that

(|ξ|1||ξ|2m+2tαq0(1+ϕm(t)|ξ|)m2(m+2)|2dξ)12Ctαq0(01rn1m+4m+2ϕm(t)mm+2dr)12Ctαq0m4,\begin{split}\bigg{(}\int_{|\xi|\leq 1}\big{|}|\xi|^{-\frac{2}{m+2}}t^{\frac{\alpha}{q_{0}}}&(1+\phi_{m}(t)|\xi|)^{-\frac{m}{2(m+2)}}\big{|}^{2}\mathrm{d}\xi\bigg{)}^{\frac{1}{2}}\\ &\leq Ct^{\frac{\alpha}{q_{0}}}\left(\int_{0}^{1}r^{n-1-\frac{m+4}{m+2}}\phi_{m}(t)^{-\frac{m}{m+2}}\mathrm{d}r\right)^{\frac{1}{2}}\leq Ct^{\frac{\alpha}{q_{0}}-\frac{m}{4}},\end{split}

here we have used the fact of n1m+4m+22m+2>1n-1-\frac{m+4}{m+2}\geq-\frac{2}{m+2}>-1 for n2n\geq 2 and m>0m>0. Thus by the condition ttstt\geq t-s\gtrsim t one has

H~G(t,s,)L2(n)Ctαq0m4G(s,)L2(n)\left\|\tilde{H}_{-}G(t,s,\cdot)\right\|_{L^{2}(\mathbb{R}^{n})}\leq Ct^{\frac{\alpha}{q_{0}}-\frac{m}{4}}\left\|G(s,\cdot)\right\|_{L^{2}(\mathbb{R}^{n})}

Similarly, we have by stationary phase method,

H~G(t,s,)L(n)C|ts|αq0m4n12m+22G(s,)L1(n).\left\|\tilde{H}_{-}G(t,s,\cdot)\right\|_{L^{\infty}(\mathbb{R}^{n})}\leq C|t-s|^{\frac{\alpha}{q_{0}}-\frac{m}{4}-\frac{n-1}{2}\cdot\frac{m+2}{2}}\left\|G(s,\cdot)\right\|_{L^{1}(\mathbb{R}^{n})}.

Using interpolation again, we get

H~G(t,s,)Lq0(n)C|ts|2q0(1+m4)G(s,)Lq0q01(n).\left\|\tilde{H}_{-}G(t,s,\cdot)\right\|_{L^{q_{0}}(\mathbb{R}^{n})}\leq C|t-s|^{-\frac{2}{q_{0}}(1+\frac{m}{4})}\left\|G(s,\cdot)\right\|_{L^{\frac{q_{0}}{q_{0}-1}}(\mathbb{R}^{n})}. (3.97)

Then by Littlewood-Paley theory, (3.96) and (3.97), Claim 3.1 is established. ∎

3.4.2 Case (ii): large δ\delta

In this case, one has ϕm(t)|x|δϕm(1)10ϕm(2)\phi_{m}(t)-|x|\geq\delta\phi_{m}(1)\gtrsim 10\phi_{m}(2). As in (3.90) and (3.92), we can write

v=j=vj=j=0tnKj(t,x;s,y)G(s,y)𝑑y𝑑s,v=\sum_{j=-\infty}^{\infty}v_{j}=\sum_{j=-\infty}^{\infty}\int_{0}^{t}\int_{\mathbb{R}^{n}}K_{j}(t,x;s,y)G(s,y)dyds,

where

Kj(t,x;s,y)=nei{(xy)ξ[ϕm(t)ϕm(s)]|ξ|}χ(|ξ|2j)a(t,s,ξ)G(s,y)𝑑ξ,K_{j}(t,x;s,y)=\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}\chi\left(\frac{|\xi|}{2^{j}}\right)a(t,s,\xi)G(s,y)d\xi, (3.98)

moreover, as in (3.41) of [14], the kernel KjK_{j} satisfies for λj=2j\lambda_{j}=2^{j} and any N+N\in\mathbb{R}^{+},

|Kj(t,x;s,y)|CNλjn+122m+2(|ϕm(t)ϕm(s)|+λj1)n12(1+ϕm(t)λj)m2(m+2)×(1+λj||ϕm(t)ϕm(s)||xy||)N.\begin{split}|K_{j}(t,x;s,y)|\leq&C_{N}\lambda_{j}^{\frac{n+1}{2}-\frac{2}{m+2}}\big{(}|\phi_{m}(t)-\phi_{m}(s)|+\lambda_{j}^{-1}\big{)}^{-\frac{n-1}{2}}\big{(}1+\phi_{m}(t)\lambda_{j}\big{)}^{-\frac{m}{2(m+2)}}\\ &\times\Big{(}1+\lambda_{j}\big{|}|\phi_{m}(t)-\phi_{m}(s)|-|x-y|\big{|}\Big{)}^{-N}.\end{split} (3.99)

Denote Ds,yδ0={(s,y):1s2,δ0ϕm(1)ϕm(s)|y|2δ0ϕm(1)}D_{s,y}^{\delta_{0}}=\{(s,y):1\leq s\leq 2,\delta_{0}\phi_{m}(1)\leq\phi_{m}(s)-|y|\leq 2\delta_{0}\phi_{m}(1)\}. By Hölder’s inequality and the support condtiton of G(s,y)G(s,y) with respect to the variable (s,y)(s,y), we arrive at

|tαq0vj|tαq0Kj(t,x;s,y)(ϕm2(t)|x|2)1q0sαq0Lq0(Ds,yδ0)×(ϕm2(t)|x|2)1q0sαq0G(s,y)Lq0q01(Ds,yδ0).\begin{split}|t^{\frac{\alpha}{q_{0}}}v_{j}|\leq&\Big{\|}t^{\frac{\alpha}{q_{0}}}K_{j}(t,x;s,y)\big{(}\phi^{2}_{m}(t)-|x|^{2}\big{)}^{\frac{1}{q_{0}}}s^{\frac{\alpha}{q_{0}}}\Big{\|}_{L^{q_{0}}(D_{s,y}^{\delta_{0}})}\\ &\times\Big{\|}\big{(}\phi^{2}_{m}(t)-|x|^{2}\big{)}^{-\frac{1}{q_{0}}}s^{-\frac{\alpha}{q_{0}}}G(s,y)\Big{\|}_{L^{\frac{q_{0}}{q_{0}-1}}(D_{s,y}^{\delta_{0}})}.\end{split}

In addition, by applying the support condition of G(s,y)G(s,y), it is easy to check

ϕm(t)ϕm(s)|xy|C(ϕm(t)|x|),ϕm(t)ϕm(s)+|xy|ϕm(t).\phi_{m}(t)-\phi_{m}(s)-|x-y|\geq C(\phi_{m}(t)-|x|),\quad\phi_{m}(t)-\phi_{m}(s)+|x-y|\sim\phi_{m}(t).

Based on this observation, let N=n21m+2N=\frac{n}{2}-\frac{1}{m+2} in (3.99), we then have

tαq0Kj(t,x;s,y)(ϕm2(t)|x|2)1q0sαq0Lq0(Ds,yδ0)C(Ds,yδ0{tαq0λjn+122m+2(|ϕm(t)ϕm(s)|+λj1)n12(1+ϕm(t)λj)m2(m+2)×(1+λj||ϕm(t)ϕm(s)||xy||)1m+2n2}q0ϕm(t)(ϕm(t)|x|)dyds)1q0Cϕm(t)n12+1q0+2α(m+2)q0m2(m+2)(ϕm(t)|x|)1m+2n2+1q0(Ds,yδ0dyds)1q0Cδ01q0ϕm(t)n2+1m+2+1q0+2α(m+2)q0(ϕm(t)|x|)1m+2n2+1q0\begin{split}&\Big{\|}t^{\frac{\alpha}{q_{0}}}K_{j}(t,x;s,y)\big{(}\phi^{2}_{m}(t)-|x|^{2}\big{)}^{\frac{1}{q_{0}}}s^{-\frac{\alpha}{q_{0}}}\Big{\|}_{L^{q_{0}}(D_{s,y}^{\delta_{0}})}\\ &\leq C\bigg{(}\iint_{D_{s,y}^{\delta_{0}}}\bigg{\{}t^{\frac{\alpha}{q_{0}}}\lambda_{j}^{\frac{n+1}{2}-\frac{2}{m+2}}\big{(}|\phi_{m}(t)-\phi_{m}(s)|+\lambda_{j}^{-1}\big{)}^{-\frac{n-1}{2}}(1+\phi_{m}(t)\lambda_{j})^{-\frac{m}{2(m+2)}}\\ &\qquad\times\Big{(}1+\lambda_{j}\big{|}|\phi_{m}(t)-\phi_{m}(s)|-|x-y|\big{|}\Big{)}^{\frac{1}{m+2}-\frac{n}{2}}\bigg{\}}^{q_{0}}\phi_{m}(t)(\phi_{m}(t)-|x|)\mathrm{d}y\mathrm{d}s\bigg{)}^{\frac{1}{q_{0}}}\\ &\leq C\phi_{m}(t)^{-\frac{n-1}{2}+\frac{1}{q_{0}}+\frac{2\alpha}{(m+2)q_{0}}-\frac{m}{2(m+2)}}\big{(}\phi_{m}(t)-|x|\big{)}^{\frac{1}{m+2}-\frac{n}{2}+\frac{1}{q_{0}}}\Big{(}\iint_{D_{s,y}^{\delta_{0}}}\mathrm{d}y\mathrm{d}s\Big{)}^{\frac{1}{q_{0}}}\\ &\leq C\delta_{0}^{\frac{1}{q_{0}}}\phi_{m}(t)^{-\frac{n}{2}+\frac{1}{m+2}+\frac{1}{q_{0}}+\frac{2\alpha}{(m+2)q_{0}}}\big{(}\phi_{m}(t)-|x|\big{)}^{\frac{1}{m+2}-\frac{n}{2}+\frac{1}{q_{0}}}\end{split} (3.100)

and

(Ds,yδ0{(ϕm2(t)|x|2)1q0sαq0G(s,y)}q0q01dyds)q01q0C(δϕm(T))1q0sαq0GLq0q01([T0,)×n)\begin{split}\Big{(}\iint_{D_{s,y}^{\delta_{0}}}\big{\{}(\phi^{2}_{m}(t)-|x|^{2})^{-\frac{1}{q_{0}}}&s^{-\frac{\alpha}{q_{0}}}G(s,y)\big{\}}^{\frac{q_{0}}{q_{0}-1}}\mathrm{d}y\mathrm{d}s\Big{)}^{\frac{q_{0}-1}{q_{0}}}\\ &\leq C\big{(}\delta\phi_{m}(T)\big{)}^{-\frac{1}{q_{0}}}\|s^{-\frac{\alpha}{q_{0}}}G\|_{L^{\frac{q_{0}}{q_{0}-1}}([T_{0},\infty)\times\mathbb{R}^{n})}\\ \end{split} (3.101)

On the other hand,

ϕm(t)n2+1m+2+1q0+2α(m+2)q0(ϕm(t)|x|)1m+2n2+1q0Lq0([T,2T]×n)=Cn(T2Tϕm(t)q0(n21m+2)+1+2αm+20ϕm(t)10ϕm(2)(ϕm(t)r)q0(1m+2n2)+1rn1drdt)1q0C(T2Tϕm(t)2m+2dt)1q0C.\begin{split}&\left\|\phi_{m}(t)^{-\frac{n}{2}+\frac{1}{m+2}+\frac{1}{q_{0}}+\frac{2\alpha}{(m+2)q_{0}}}\big{(}\phi_{m}(t)-|x|\big{)}^{\frac{1}{m+2}-\frac{n}{2}+\frac{1}{q_{0}}}\right\|_{L^{q_{0}}([T,2T]\times\mathbb{R}^{n})}\\ &=C_{n}\left(\int_{T}^{2T}\phi_{m}(t)^{q_{0}(\frac{n}{2}-\frac{1}{m+2})+1+\frac{2\alpha}{m+2}}\int_{0}^{\phi_{m}(t)-10\phi_{m}(2)}\big{(}\phi_{m}(t)-r\big{)}^{q_{0}(\frac{1}{m+2}-\frac{n}{2})+1}r^{n-1}\mathrm{d}r\mathrm{d}t\right)^{\frac{1}{q_{0}}}\\ &\leq C\left(\int_{T}^{2T}\phi_{m}(t)^{-\frac{2}{m+2}}\mathrm{d}t\right)^{\frac{1}{q_{0}}}\leq C.\end{split} (3.102)

Therefore, combining (3.100)-(3.102) gives

vjLq0(Dt,xT,δ)\displaystyle\|v_{j}\|_{L^{q_{0}}(D_{t,x}^{T,\delta})}\leq Cδ01q0(δϕm(T))1q0sαq0GLq0q01([T0,)×n)\displaystyle C\delta_{0}^{\frac{1}{q_{0}}}(\delta\phi_{m}(T))^{-\frac{1}{q_{0}}}\|s^{-\frac{\alpha}{q_{0}}}G\|_{L^{\frac{q_{0}}{q_{0}-1}}([T_{0},\infty)\times\mathbb{R}^{n})}
\displaystyle\leq Cδ01q0ϕm(T)1q0+ν2δ1q0ν2sαq0GLq0q01([T0,)×n),\displaystyle C\delta_{0}^{\frac{1}{q_{0}}}\phi_{m}(T)^{-\frac{1}{q_{0}}+\frac{\nu}{2}}\delta^{-\frac{1}{q_{0}}-\frac{\nu}{2}}\|s^{-\frac{\alpha}{q_{0}}}G\|_{L^{\frac{q_{0}}{q_{0}-1}}([T_{0},\infty)\times\mathbb{R}^{n})}, (3.103)

here we have used the fact of δϕm(T)\delta\lesssim\phi_{m}(T) due to 2δϕm(1)ϕm(T)2\delta\phi_{m}(1)\leq\phi_{m}(T). Then (3.4.2) together with Lemma 2.2 yields estimate (3.80) in Case (ii).

3.4.3 Case (iii): medium δ\delta

Motivated by the ideas in Section 3 of [11], we shall decompose the related Fourier integral operator in the expression of vv into a high frequency part and a low frequency part, then the two parts are treated with different techniques respectively. First, by (2.42), the solution vv of (3.77) can be expressed as

v=[1,2]×nnei{(xy)ξ[ϕm(t)ϕm(s)]|ξ|}a(t,s,ξ)G(s,y)dξdydsv=\int_{[1,2]\times\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}a(t,s,\xi)G(s,y)\mathrm{d}\xi\mathrm{d}y\mathrm{d}s (3.104)

by (2.43) we have for κ0n\kappa\in\mathbb{N}_{0}^{n},

|ξκa(t,s,ξ)|C(1+ϕm(t)|ξ|)m2(m+2)|ξ|2m+2|κ|,\begin{split}\big{|}\partial_{\xi}^{\kappa}a(t,s,\xi)\big{|}&\leq C\big{(}1+\phi_{m}(t)|\xi|\big{)}^{-\frac{m}{2(m+2)}}|\xi|^{-\frac{2}{m+2}-|\kappa|},\\ \end{split} (3.105)
|ξκa(t,s,ξ)|Cϕm(t)m2(m+2)|ξ|1|κ|.\big{|}\partial_{\xi}^{\kappa}a(t,s,\xi)\big{|}\leq C\phi_{m}(t)^{-\frac{m}{2(m+2)}}|\xi|^{-1-|\kappa|}. (3.106)

Set τ=ϕm(s)|y|\tau=\phi_{m}(s)-|y|. Applying Hölder’s inequality, one then has that

|tαq0v|=|ϕm(1)ϕm(2)nnei{(xy)ξ[ϕm(t)ϕm(s)]|ξ|}a(t,s,ξ)G(s,y)dξdy1ϕm(s)dϕm(s)|δ02δ0|nnei{(xy)ξ[ϕm(t)τ|y|]|ξ|}a(t,ϕm1(τ+|y|),ξ)G(ϕm1(τ+|y|),y)dξdy|dτCδ01q0(δ02δ0|nnei{(xy)ξ[ϕm(t)τ|y|]|ξ|}tαq0a(t,ϕm1(τ+|y|),ξ)×G(ϕm1(τ+|y|),y)dξdy|q0q01dτ)q01q0.\begin{split}&\left|t^{\frac{\alpha}{q_{0}}}v\right|=\left|\int_{\phi_{m}(1)}^{\phi_{m}(2)}\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}a(t,s,\xi)G(s,y)\mathrm{d}\xi\mathrm{d}y\frac{1}{\phi_{m}(s)}\mathrm{d}\phi_{m}(s)\right|\\ &\lesssim\int_{\delta_{0}}^{2\delta_{0}}\left|\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\tau-|y|]|\xi|\}}a(t,\phi_{m}^{-1}(\tau+|y|),\xi)G(\phi_{m}^{-1}(\tau+|y|),y)\mathrm{d}\xi\mathrm{d}y\right|\mathrm{d}\tau\\ &\leq C\delta_{0}^{\frac{1}{q_{0}}}\bigg{(}\int_{\delta_{0}}^{2\delta_{0}}\Big{|}\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\tau-|y|]|\xi|\}}t^{\frac{\alpha}{q_{0}}}a(t,\phi_{m}^{-1}(\tau+|y|),\xi)\\ &\qquad\qquad\qquad\qquad\qquad\qquad\times G\big{(}\phi_{m}^{-1}(\tau+|y|),y\big{)}\mathrm{d}\xi\mathrm{d}y\Big{|}^{\frac{q_{0}}{q_{0}-1}}\mathrm{d}\tau\bigg{)}^{\frac{q_{0}-1}{q_{0}}}.\end{split} (3.107)

Next note that by (3.71), ϕm(t)ϕm(T)10ϕm(2)\phi_{m}(t)\geq\phi_{m}(T)\geq 10\phi_{m}(2), this together with τ<ϕm(s)<ϕm(2)\tau<\phi_{m}(s)<\phi_{m}(2) yields ϕm(t)ϕm(t)τ>12ϕm(t)\phi_{m}(t)\geq\phi_{m}(t)-\tau>\frac{1}{2}\phi_{m}(t). Thus we can replace ϕm(t)τ\phi_{m}(t)-\tau with ϕm(t)\phi_{m}(t) in (3.107) and consider

𝒯g(t,x)=nnei{(xy)ξ[ϕm(t)|y|]|ξ|}b(t,ξ)g(y)dξdy.\mathcal{T}g(t,x)=\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-|y|]|\xi|\}}b(t,\xi)g(y)\mathrm{d}\xi\mathrm{d}y.

The estimate of 𝒯gLxq0\|\mathcal{T}g\|_{L_{x}^{q_{0}}} is divided into different parts according to the range of α\alpha and |ξ||\xi|.

Case (iii-1) 1<α<0-1<\alpha<0

In this case, (3.105) implies that for κ0n\kappa\in\mathbb{N}_{0}^{n},

ξκb(t,ξ)C(1+ϕm(t)|ξ|)m2(m+2)|ξ|2m+2|κ|\partial_{\xi}^{\kappa}b(t,\xi)\leq C\big{(}1+\phi_{m}(t)|\xi|\big{)}^{-\frac{m}{2(m+2)}}|\xi|^{-\frac{2}{m+2}-|\kappa|}

which motivate us to consider for zz\in\mathbb{C}

(𝒯zg)(t,x)=(z(m+2)n+2+2α(m+2)(α+2))ez2×nnei{(xy)ξ[ϕm(t)|y|]|ξ|}tαq0(1+ϕm(t)|ξ|)m2(m+2)g(y)dξ|ξ|zdy,\begin{split}(\mathcal{T}_{z}g)(t,x)=&\left(z-\frac{(m+2)n+2+2\alpha}{(m+2)(\alpha+2)}\right)e^{z^{2}}\\ &\times\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-|y|]|\xi|\}}t^{\frac{\alpha}{q_{0}}}\big{(}1+\phi_{m}(t)|\xi|\big{)}^{-\frac{m}{2(m+2)}}g(y)\frac{\mathrm{d}\xi}{|\xi|^{z}}\mathrm{d}y,\end{split} (3.108)

where ϕm(t)10ϕm(2)ϕm(2)9ϕm(2)\phi_{m}(t)\geq 10\phi_{m}(2)-\phi_{m}(2)\geq 9\phi_{m}(2) and δ<10ϕm(2)\delta<10\phi_{m}(2), then by [17, Lemma A.2.], (3.80) follows from

(𝒯zg)(t,)Lq0({x:δϕm(1)ϕm(t)|x|2δϕm(1)})Cϕm(t)ν2m+4q0(m+2)δν21q0gLq0q01(n),Rez=2m+2.\begin{split}\|(\mathcal{T}_{z}g)(t,\cdot)&\|_{L^{q_{0}}(\{x:\delta\phi_{m}(1)\leq\phi_{m}(t)-|x|\leq 2\delta\phi_{m}(1)\})}\\ &\leq C\phi_{m}(t)^{\frac{\nu}{2}-\frac{m+4}{q_{0}(m+2)}}\delta^{-\frac{\nu}{2}-\frac{1}{q_{0}}}\|g\|_{L^{\frac{q_{0}}{q_{0}-1}}(\mathbb{R}^{n})},\quad Rez=\frac{2}{m+2}.\end{split} (3.109)

For clearer statement on (3.109), we shall replace ν2\frac{\nu}{2} by νq0\frac{\nu}{q_{0}} and rewrite (3.109) as

(𝒯zg)(t,)Lq0({x:δϕm(1)ϕm(t)|x|2δϕm(1)})Cϕm(t)νq0m+4q0(m+2)δνq01q0gLq0q01(n),Rez=2m+2.\begin{split}\|(\mathcal{T}_{z}g)(t,\cdot)&\|_{L^{q_{0}}(\{x:\delta\phi_{m}(1)\leq\phi_{m}(t)-|x|\leq 2\delta\phi_{m}(1)\})}\\ &\leq C\phi_{m}(t)^{\frac{\nu}{q_{0}}-\frac{m+4}{q_{0}(m+2)}}\delta^{-\frac{\nu}{q_{0}}-\frac{1}{q_{0}}}\|g\|_{L^{\frac{q_{0}}{q_{0}-1}}(\mathbb{R}^{n})},\quad Rez=\frac{2}{m+2}.\end{split} (3.110)

Next we focus on the proofs of (3.110) and (3.109). We shall use the complex interpolation method to establish (3.110),

then (3.110) would be a consequence of

(𝒯zg)(t,)L(n)Ctαq0ϕm(t)n12m2(m+2)gL1(n),Rez=(m+2)n+2+2α(m+2)(α+2),\|(\mathcal{T}_{z}g)(t,\cdot)\|_{L^{\infty}(\mathbb{R}^{n})}\leq Ct^{\frac{\alpha}{q_{0}}}\phi_{m}(t)^{-\frac{n-1}{2}-\frac{m}{2(m+2)}}\|g\|_{L^{1}(\mathbb{R}^{n})},Rez=\frac{(m+2)n+2+2\alpha}{(m+2)(\alpha+2)}, (3.111)

and

(𝒯zg)(t,)L2(n)Ctαq0ϕm(t)m2(m+2)(ϕm(t)νδ(ν+1))1m+2gL2(n),Rez=0.\|(\mathcal{T}_{z}g)(t,\cdot)\|_{L^{2}(\mathbb{R}^{n})}\leq Ct^{\frac{\alpha}{q_{0}}}\phi_{m}(t)^{-\frac{m}{2(m+2)}}(\phi_{m}(t)^{\nu}\delta^{-(\nu+1)})^{\frac{1}{m+2}}\|g\|_{L^{2}(\mathbb{R}^{n})},\quad Rez=0. (3.112)

In fact, the interpolation between (3.112) and (3.111) gives

(𝒯zg)(t,)Lq0({x:δϕm(1)ϕm(t)|x|2δϕm(1)})Cϕm(t)2α(m+2)q0m2(m+2)+(n12)(12q0)+2νq0(m+2)δ2(ν+1)(m+2)q0gLq0q01(n)Cϕm(t)νq0m+4q0(m+2)δ2(ν+1)(m+2)q0gLq0q01(n).\begin{split}&\|(\mathcal{T}_{z}g)(t,\cdot)\|_{L^{q_{0}}(\{x:\delta\phi_{m}(1)\leq\phi_{m}(t)-|x|\leq 2\delta\phi_{m}(1)\})}\\ &\leq C\phi_{m}(t)^{\frac{2\alpha}{(m+2)q_{0}}-\frac{m}{2(m+2)}+(-\frac{n-1}{2})(1-\frac{2}{q_{0}})+\frac{2\nu}{q_{0}(m+2)}}\delta^{-\frac{2(\nu+1)}{(m+2)q_{0}}}\|g\|_{L^{\frac{q_{0}}{q_{0}-1}}(\mathbb{R}^{n})}\\ &\leq C\phi_{m}(t)^{\frac{\nu}{q_{0}}-\frac{m+4}{q_{0}(m+2)}}\delta^{-\frac{2(\nu+1)}{(m+2)q_{0}}}\|g\|_{L^{\frac{q_{0}}{q_{0}-1}}(\mathbb{R}^{n})}.\end{split}

By δ10ϕm(2)\delta\leq 10\phi_{m}(2), (3.110) is established.

We now prove (3.111) by the stationary phase method. To this end, for z=(m+2)n+2+2α(m+2)(α+2)+iθz=\frac{(m+2)n+2+2\alpha}{(m+2)(\alpha+2)}+i\theta with θ\theta\in\mathbb{R}, we have for all 1<α<0-1<\alpha<0,

(m+2)n+2+2α(m+2)(α+2)>(m+2)n+22(m+2),\frac{(m+2)n+2+2\alpha}{(m+2)(\alpha+2)}>\frac{(m+2)n+2}{2(m+2)},

thus there exists σ>0\sigma>0 such that

(m+2)n+2+2α(m+2)(α+2)σ>(m+2)n+22(m+2),\frac{(m+2)n+2+2\alpha}{(m+2)(\alpha+2)}-\sigma>\frac{(m+2)n+2}{2(m+2)},

hence,

|θeθ2n|ξ|1ei[(xy)ξ(ϕm(t)|y|)|ξ|]tαq0(1+ϕm(t)|ξ|)m2(m+2)g(y)dξ|ξ|zdy|C(ϕm(t)ϕm(2))n12ϕm(t)m2(m+2)tαq0|ξ|1|ξ|n12m2(m+2)|ξ|(m+2)n+22(m+2)σdξgL1(n)Cϕm(t)n12m2(m+2)tαq01r1σdrgL1(n)Cϕm(t)n2+1m+2tαq0gL1(n).\begin{split}&\bigg{|}\theta e^{-\theta^{2}}\int_{\mathbb{R}^{n}}\int_{|\xi|\geq 1}e^{i[(x-y)\cdot\xi-(\phi_{m}(t)-|y|)|\xi|]}t^{\frac{\alpha}{q_{0}}}\big{(}1+\phi_{m}(t)|\xi|\big{)}^{-\frac{m}{2(m+2)}}g(y)\frac{\mathrm{d}\xi}{|\xi|^{z}}\mathrm{d}y\bigg{|}\\ &\leq C\big{(}\phi_{m}(t)-\phi_{m}(2)\big{)}^{-\frac{n-1}{2}}\phi_{m}(t)^{-\frac{m}{2(m+2)}}t^{\frac{\alpha}{q_{0}}}\int_{|\xi|\geq 1}|\xi|^{-\frac{n-1}{2}-\frac{m}{2(m+2)}}|\xi|^{-\frac{(m+2)n+2}{2(m+2)}-\sigma}\mathrm{d}\xi\|g\|_{L^{1}(\mathbb{R}^{n})}\\ &\leq C\phi_{m}(t)^{-\frac{n-1}{2}-\frac{m}{2(m+2)}}t^{\frac{\alpha}{q_{0}}}\int_{1}^{\infty}r^{-1-\sigma}\mathrm{d}r\|g\|_{L^{1}(\mathbb{R}^{n})}\\ &\leq C\phi_{m}(t)^{-\frac{n}{2}+\frac{1}{m+2}}t^{\frac{\alpha}{q_{0}}}\|g\|_{L^{1}(\mathbb{R}^{n})}.\end{split} (3.113)

On the other hand, we have that for |ξ|1|\xi|\leq 1,

|θeθ2|ξ|1nei[(xy)ξ(ϕm(t)|y|)|ξ|]tαq0(1+ϕm(t)|ξ|)m2(m+2)g(y)dξ|ξ|zdy|CgL1(n)|ξ|1tαq0(1+ϕm(t)|ξ|)n12m2(m+2)|ξ|(m+2)n+2+2α(m+2)(α+2)dξCgL1(n)tαq001(1+ϕm(t)r)n2+1m+2r(m+2)n+2+2α(m+2)(α+2)rn1dr,\begin{split}&\left|\theta e^{-\theta^{2}}\int_{|\xi|\leq 1}\int_{\mathbb{R}^{n}}e^{i[(x-y)\cdot\xi-(\phi_{m}(t)-|y|)|\xi|]}t^{\frac{\alpha}{q_{0}}}\big{(}1+\phi_{m}(t)|\xi|\big{)}^{-\frac{m}{2(m+2)}}g(y)\frac{\mathrm{d}\xi}{|\xi|^{z}}\mathrm{d}y\right|\\ &\leq C\|g\|_{L^{1}(\mathbb{R}^{n})}\int_{|\xi|\leq 1}t^{\frac{\alpha}{q_{0}}}\big{(}1+\phi_{m}(t)|\xi|\big{)}^{-\frac{n-1}{2}-\frac{m}{2(m+2)}}|\xi|^{-\frac{(m+2)n+2+2\alpha}{(m+2)(\alpha+2)}}\mathrm{d}\xi\\ &\leq C\|g\|_{L^{1}(\mathbb{R}^{n})}t^{\frac{\alpha}{q_{0}}}\int_{0}^{1}(1+\phi_{m}(t)r)^{-\frac{n}{2}+\frac{1}{m+2}}r^{-\frac{(m+2)n+2+2\alpha}{(m+2)(\alpha+2)}}r^{n-1}\mathrm{d}r,\end{split} (3.114)

here we have noted the fact of

n1(m+2)n+2+2α(m+2)(α+2)>n1(m+2)nm+2=1,for1<α<0n-1-\frac{(m+2)n+2+2\alpha}{(m+2)(\alpha+2)}>n-1-\frac{(m+2)n}{m+2}=-1,\quad\text{for}-1<\alpha<0

and n2n\geq 2, thus the integral in last line of (3.114) is convergent. In order to give a precise estimate to (3.114), denoting σ=n(m+2)n+2+2α(m+2)(α+2)\sigma=n-\frac{(m+2)n+2+2\alpha}{(m+2)(\alpha+2)}, then the integral in (3.114) can be controlled by

01(1+ϕm(t)r)n2+1m+2r1+σdr=σ1ϕm(t)n2+1m+2+(m+2)n22σ(m+2)01(1+ϕm(t)r)n2+1m+21rσdr\begin{split}&\int_{0}^{1}(1+\phi_{m}(t)r)^{-\frac{n}{2}+\frac{1}{m+2}}r^{-1+\sigma}\mathrm{d}r\\ &=\sigma^{-1}\phi_{m}(t)^{-\frac{n}{2}+\frac{1}{m+2}}+\frac{(m+2)n-2}{2\sigma(m+2)}\int_{0}^{1}\left(1+\phi_{m}(t)r\right)^{-\frac{n}{2}+\frac{1}{m+2}-1}r^{\sigma}\mathrm{d}r\end{split} (3.115)

For the last integral in (3.115), note that

(1+ϕm(t)r)n2+1m+21rσ=(1+ϕm(t)r)n2+1m+2r1+σr1+ϕm(t)rϕm(t)1(1+ϕm(t)r)n12m2(m+2)r1+σ,\begin{split}\left(1+\phi_{m}(t)r\right)^{-\frac{n}{2}+\frac{1}{m+2}-1}r^{\sigma}&=(1+\phi_{m}(t)r)^{-\frac{n}{2}+\frac{1}{m+2}}r^{-1+\sigma}\frac{r}{1+\phi_{m}(t)r}\\ &\leq\phi_{m}(t)^{-1}(1+\phi_{m}(t)r)^{-\frac{n-1}{2}-\frac{m}{2(m+2)}}r^{-1+\sigma},\end{split}

for every fixed (n,m,α)(n,m,\alpha), (m+2)n+22σ(m+2)\frac{(m+2)n+2}{2\sigma(m+2)} is a given positive constant, therefore without loss of generalirity, we can assume ϕm(t)ϕm(T)(m+2)n+2σ(m+2)\phi_{m}(t)\geq\phi_{m}(T)\geq\frac{(m+2)n+2}{\sigma(m+2)}, otherwise the estimate (3.80) can be established as the relatively small time case in Section 3.3.2. Then we have

01(1+ϕm(t)r)n2+1m+2r1+σdrϕm(t)n2+1m+2σ+1201(1+ϕm(t)r)n2+1m+2r1+σdr,\begin{split}&\int_{0}^{1}(1+\phi_{m}(t)r)^{-\frac{n}{2}+\frac{1}{m+2}}r^{-1+\sigma}\mathrm{d}r\leq\frac{\phi_{m}(t)^{-\frac{n}{2}+\frac{1}{m+2}}}{\sigma}+\frac{1}{2}\int_{0}^{1}\left(1+\phi_{m}(t)r\right)^{-\frac{n}{2}+\frac{1}{m+2}}r^{-1+\sigma}\mathrm{d}r,\end{split}

which implies

|θeθ2|ξ|1nei{(xy)ξ[ϕm(t)|y|]|ξ|}(1+ϕm(t)|ξ|)m2(m+2)g(y)dξ|ξ|zdy|Cσϕm(t)n2+1m+2tαq0gL1(n)\begin{split}&\left|\theta e^{-\theta^{2}}\int_{|\xi|\leq 1}\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-|y|]|\xi|\}}\big{(}1+\phi_{m}(t)|\xi|\big{)}^{-\frac{m}{2(m+2)}}g(y)\frac{\mathrm{d}\xi}{|\xi|^{z}}\mathrm{d}y\right|\\ &\leq\frac{C}{\sigma}\phi_{m}(t)^{-\frac{n}{2}+\frac{1}{m+2}}t^{\frac{\alpha}{q_{0}}}\|g\|_{L^{1}(\mathbb{R}^{n})}\end{split} (3.116)

Thus combining (3.113) and (3.116) yields (3.111) with a constant C>0C>0 depends on nn, mm and α\alpha.

To get (3.112), the low frequencies and high frequencies will be treated separately. As in [11], we shall use Sobolev trace theorem to handle the low frequency part. More specifically, we first introduce a function ρC(n)\rho\in C^{\infty}(\mathbb{R}^{n}) such that

ρ(ξ)={1,|ξ|2,0,|ξ|1.\rho(\xi)=\left\{\enspace\begin{aligned} 1,\quad&|\xi|\geq 2,\\ 0,\quad&|\xi|\leq 1.\end{aligned}\right.

For ϱ=1+ν\varrho=1+\nu, let

(𝒯zg)(t,x)=(Rzg)(t,x)+(Szg)(t,x),(\mathcal{T}_{z}g)(t,x)=(R_{z}g)(t,x)+(S_{z}g)(t,x),

where

(Rzg)(t,x)=\displaystyle(R_{z}g)(t,x)= (z(m+2)n+2+2α(m+2)(α+2))ez2tαq0n12ϕm(1)|y|ϕm(2)ei{(xy)ξ[ϕm(t)|y|]|ξ|}\displaystyle\Big{(}z-\frac{(m+2)n+2+2\alpha}{(m+2)(\alpha+2)}\Big{)}e^{z^{2}}t^{\frac{\alpha}{q_{0}}}\int_{\mathbb{R}^{n}}\int_{\frac{1}{2}\phi_{m}(1)\leq|y|\leq\phi_{m}(2)}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-|y|]|\xi|\}}
×(1+ϕm(t)|ξ|)m2(m+2)(1ρ(ϕm(t)1ϱδϱξ))g(y)dξ|ξ|zdy,\displaystyle\qquad\qquad\qquad\times\big{(}1+\phi_{m}(t)|\xi|\big{)}^{-\frac{m}{2(m+2)}}\Big{(}1-\rho\big{(}\phi_{m}(t)^{1-\varrho}\delta^{\varrho}\xi\big{)}\Big{)}g(y)\frac{\mathrm{d}\xi}{|\xi|^{z}}\mathrm{d}y,
(Szg)(t,x)=\displaystyle(S_{z}g)(t,x)= (z(m+2)n+2+2α(m+2)(α+2))ez2tαq0n12ϕm(1)|y|ϕm(2)ei{(xy)ξ[ϕm(t)|y|]|ξ|}\displaystyle\Big{(}z-\frac{(m+2)n+2+2\alpha}{(m+2)(\alpha+2)}\Big{)}e^{z^{2}}t^{\frac{\alpha}{q_{0}}}\int_{\mathbb{R}^{n}}\int_{\frac{1}{2}\phi_{m}(1)\leq|y|\leq\phi_{m}(2)}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-|y|]|\xi|\}}
×(1+ϕm(t)|ξ|)m2(m+2)ρ(ϕm(t)1ϱδϱξ)g(y)dξ|ξ|zdy.\displaystyle\qquad\qquad\qquad\qquad\times\big{(}1+\phi_{m}(t)|\xi|\big{)}^{-\frac{m}{2(m+2)}}\rho\big{(}\phi_{m}(t)^{1-\varrho}\delta^{\varrho}\xi\big{)}g(y)\frac{\mathrm{d}\xi}{|\xi|^{z}}\mathrm{d}y. (3.117)

Note that for Rez=0Rez=0, the integral in RzgR_{z}g and SzgS_{z}g are the same as the integral in [17, (4-44)], thus [17, (4-45)-(4-46)] imply

(Rzg)(t,)L2(n)Cϕm(t)2α(m+2)q0m2(m+2)(ϕm(t)ϱ1δϱ)1m+2gL2(n)Rez=0,\|(R_{z}g)(t,\cdot)\|_{L^{2}(\mathbb{R}^{n})}\leq C\phi_{m}(t)^{\frac{2\alpha}{(m+2)q_{0}}-\frac{m}{2(m+2)}}(\phi_{m}(t)^{\varrho-1}\delta^{-\varrho})^{\frac{1}{m+2}}\|g\|_{L^{2}(\mathbb{R}^{n})}\quad Rez=0, (3.118)

and

Szg(t,)L2({x:δϕm(t)|x|2δ})Cϕm(t)2α(m+2)q0m2(m+2)(ϕm(t)ϱ1δϱ)1m+2gL2(n),Rez=0.\begin{split}\|S_{z}g(t,\cdot)&\|_{L^{2}(\{x:\delta\leq\phi_{m}(t)-|x|\leq 2\delta\})}\\ \leq&C\phi_{m}(t)^{\frac{2\alpha}{(m+2)q_{0}}-\frac{m}{2(m+2)}}(\phi_{m}(t)^{\varrho-1}\delta^{-\varrho})^{\frac{1}{m+2}}\|g\|_{L^{2}(\mathbb{R}^{n})},\qquad Rez=0.\end{split} (3.119)

Note that (3.118) together with (3.119) yields (3.112). Interpolation between (3.111) and (3.112) implies (3.110) and further

(𝒯g)(t,)Lq0({x:δϕm(1)ϕm(t)|x|2δϕm(1)})ϕm(t)ν2m+4q0(m+2)δν21q0gLq0q01(n),\begin{split}\|(\mathcal{T}g)(t,\cdot)&\|_{L^{q_{0}}(\{x:\delta\phi_{m}(1)\leq\phi_{m}(t)-|x|\leq 2\delta\phi_{m}(1)\})}\lesssim\phi_{m}(t)^{\frac{\nu}{2}-\frac{m+4}{q_{0}(m+2)}}\delta^{-\frac{\nu}{2}-\frac{1}{q_{0}}}\|g\|_{L^{\frac{q_{0}}{q_{0}-1}}(\mathbb{R}^{n})},\end{split} (3.120)

with 1<α<0-1<\alpha<0.

Case (iii-2) 0αm0\leq\alpha\leq m

If 0<|ξ|<10<|\xi|<1, then the analysis of estimating 𝒯gLxq0\|\mathcal{T}g\|_{L_{x}^{q_{0}}} is the same as Case (iii-1) via the formula of 𝒯zg\mathcal{T}_{z}g in (3.108), and we omit the detials. However, for the case |ξ|1|\xi|\geq 1, (3.106) implies that

ξκb(t,ξ)Cϕm(t)m2(m+2)|ξ|1|κ|\partial_{\xi}^{\kappa}b(t,\xi)\leq C\phi_{m}(t)^{-\frac{m}{2(m+2)}}|\xi|^{-1-|\kappa|}

which motivate us to consider for zz\in\mathbb{C}

(𝒯~zg)(t,x)=(z(m+2)n+2+2α2(α+2))ez2tαq0ϕm(t)m2(m+2)×nnei{(xy)ξ[ϕm(t)|y|]|ξ|}g(y)dξ|ξ|zdy,\begin{split}(\tilde{\mathcal{T}}_{z}g)(t,x)=&\left(z-\frac{(m+2)n+2+2\alpha}{2(\alpha+2)}\right)e^{z^{2}}t^{\frac{\alpha}{q_{0}}}\phi_{m}(t)^{-\frac{m}{2(m+2)}}\\ &\times\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-|y|]|\xi|\}}g(y)\frac{\mathrm{d}\xi}{|\xi|^{z}}\mathrm{d}y,\end{split} (3.121)

We now prove (3.111) by the stationary phase method. To this end, for z=(m+2)n+2+2α2(α+2)+iθz=\frac{(m+2)n+2+2\alpha}{2(\alpha+2)}+i\theta with θ\theta\in\mathbb{R}, we have for all 0αm0\leq\alpha\leq m,

(m+2)n+2+2α2(α+2)<(m+2)n+2+2m2(m+2)<(m+2)n+22(m+2),-\frac{(m+2)n+2+2\alpha}{2(\alpha+2)}<-\frac{(m+2)n+2+2m}{2(m+2)}<-\frac{(m+2)n+2}{2(m+2)},

thus there exists σ>0\sigma>0 such that

(m+2)n+2+2α2(α+2)<(m+2)n+22(m+2)σ,-\frac{(m+2)n+2+2\alpha}{2(\alpha+2)}<-\frac{(m+2)n+2}{2(m+2)}-\sigma,

hence

|θeθ2n|ξ|1ei{(xy)ξ[ϕm(t)|y|]|ξ|}tαq0(1+ϕm(t)|ξ|)m2(m+2)g(y)dξ|ξ|zdy|C(ϕm(t)ϕm(2))n12ϕm(t)m2(m+2)tαq0|ξ|1|ξ|n12m2(m+2)|ξ|(m+2)n+22(m+2)σdξgL1(n)Cϕm(t)n12m2(m+2)tαq01r1σdrgL1(n)Cϕm(t)n12m2(m+2)tαq0gL1(n).\begin{split}&\left|\theta e^{-\theta^{2}}\int_{\mathbb{R}^{n}}\int_{|\xi|\geq 1}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-|y|]|\xi|\}}t^{\frac{\alpha}{q_{0}}}\big{(}1+\phi_{m}(t)|\xi|\big{)}^{-\frac{m}{2(m+2)}}g(y)\frac{\mathrm{d}\xi}{|\xi|^{z}}\mathrm{d}y\right|\\ &\leq C\big{(}\phi_{m}(t)-\phi_{m}(2)\big{)}^{-\frac{n-1}{2}}\phi_{m}(t)^{-\frac{m}{2(m+2)}}t^{\frac{\alpha}{q_{0}}}\int_{|\xi|\geq 1}|\xi|^{-\frac{n-1}{2}-\frac{m}{2(m+2)}}|\xi|^{-\frac{(m+2)n+2}{2(m+2)}-\sigma}\mathrm{d}\xi\|g\|_{L^{1}(\mathbb{R}^{n})}\\ &\leq C\phi_{m}(t)^{-\frac{n-1}{2}-\frac{m}{2(m+2)}}t^{\frac{\alpha}{q_{0}}}\int_{1}^{\infty}r^{-1-\sigma}\mathrm{d}r\|g\|_{L^{1}(\mathbb{R}^{n})}\\ &\leq C\phi_{m}(t)^{-\frac{n-1}{2}-\frac{m}{2(m+2)}}t^{\frac{\alpha}{q_{0}}}\|g\|_{L^{1}(\mathbb{R}^{n})}.\end{split} (3.122)

Thus

(𝒯~zg)(t,)L(n)Ctαq0ϕm(t)n12m2(m+2)gL1(n),Rez=(m+2)n+2+2α2(α+2).\|(\tilde{\mathcal{T}}_{z}g)(t,\cdot)\|_{L^{\infty}(\mathbb{R}^{n})}\leq Ct^{\frac{\alpha}{q_{0}}}\phi_{m}(t)^{-\frac{n-1}{2}-\frac{m}{2(m+2)}}\|g\|_{L^{1}(\mathbb{R}^{n})},Rez=\frac{(m+2)n+2+2\alpha}{2(\alpha+2)}. (3.123)

While for the L2L^{2} estimate, like the case 1<α<0-1<\alpha<0, one need to handle

(R~zg)\displaystyle(\tilde{R}_{z}g) (t,x)=(z(m+2)n+2+2α2(α+2))ez2tαq0ϕm(t)m2(m+2)\displaystyle(t,x)=\Big{(}z-\frac{(m+2)n+2+2\alpha}{2(\alpha+2)}\Big{)}e^{z^{2}}t^{\frac{\alpha}{q_{0}}}\phi_{m}(t)^{-\frac{m}{2(m+2)}}
×|ξ|112ϕm(1)|y|ϕm(2)ei{(xy)ξ[ϕm(t)|y|]|ξ|}(1ρ(ϕm(t)1ϱδϱξ))g(y)dξ|ξ|zdy,\displaystyle\times\int_{|\xi|\geq 1}\int_{\frac{1}{2}\phi_{m}(1)\leq|y|\leq\phi_{m}(2)}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-|y|]|\xi|\}}\Big{(}1-\rho\big{(}\phi_{m}(t)^{1-\varrho}\delta^{\varrho}\xi\big{)}\Big{)}g(y)\frac{\mathrm{d}\xi}{|\xi|^{z}}\mathrm{d}y,
(S~zg)\displaystyle(\tilde{S}_{z}g) (t,x)=(z(m+2)n+2+2α2(α+2))ez2tαq0ϕm(t)m2(m+2)\displaystyle(t,x)=\Big{(}z-\frac{(m+2)n+2+2\alpha}{2(\alpha+2)}\Big{)}e^{z^{2}}t^{\frac{\alpha}{q_{0}}}\phi_{m}(t)^{-\frac{m}{2(m+2)}}
×|ξ|112ϕm(1)|y|ϕm(2)ei{(xy)ξ[ϕm(t)|y|]|ξ|}ρ(ϕm(t)1ϱδϱξ)g(y)dξ|ξ|zdy.\displaystyle\times\int_{|\xi|\geq 1}\int_{\frac{1}{2}\phi_{m}(1)\leq|y|\leq\phi_{m}(2)}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-|y|]|\xi|\}}\rho\big{(}\phi_{m}(t)^{1-\varrho}\delta^{\varrho}\xi\big{)}g(y)\frac{\mathrm{d}\xi}{|\xi|^{z}}\mathrm{d}y. (3.124)

It follows from Lemma A.1 and Lemma A.2 in Appendix that

(R~zg)(t,)L2(n)Cϕm(t)2α(m+2)q0m2(m+2)(ϕm(t)ϱ1δϱ)12gL2(n)Rez=0,\|(\tilde{R}_{z}g)(t,\cdot)\|_{L^{2}(\mathbb{R}^{n})}\leq C\phi_{m}(t)^{\frac{2\alpha}{(m+2)q_{0}}-\frac{m}{2(m+2)}}(\phi_{m}(t)^{\varrho-1}\delta^{-\varrho})^{\frac{1}{2}}\|g\|_{L^{2}(\mathbb{R}^{n})}\quad Rez=0, (3.125)

and

S~zg(t,)L2({x:δϕm(t)|x|2δ})Cϕm(t)2α(m+2)q0m2(m+2)(ϕm(t)ϱ1δϱ)12gL2(n),Rez=0.\begin{split}\|\tilde{S}_{z}g(t,\cdot)&\|_{L^{2}(\{x:\delta\leq\phi_{m}(t)-|x|\leq 2\delta\})}\\ \leq&C\phi_{m}(t)^{\frac{2\alpha}{(m+2)q_{0}}-\frac{m}{2(m+2)}}(\phi_{m}(t)^{\varrho-1}\delta^{-\varrho})^{\frac{1}{2}}\|g\|_{L^{2}(\mathbb{R}^{n})},\qquad Rez=0.\end{split} (3.126)

(3.125) together with (3.126) yield

(𝒯~zg)(t,)L2(n)Ctαq0ϕm(t)m2(m+2)(ϕm(t)νδ(ν+1))12gL2(n),Rez=0.\|(\tilde{\mathcal{T}}_{z}g)(t,\cdot)\|_{L^{2}(\mathbb{R}^{n})}\leq Ct^{\frac{\alpha}{q_{0}}}\phi_{m}(t)^{-\frac{m}{2(m+2)}}(\phi_{m}(t)^{\nu}\delta^{-(\nu+1)})^{\frac{1}{2}}\|g\|_{L^{2}(\mathbb{R}^{n})},\quad Rez=0. (3.127)

Interpolation between (3.123) with (3.127) gives

(𝒯~zg)(t,)Lq0({x:δϕm(1)ϕm(t)|x|2δϕm(1)})Cϕm(t)νq0m+4q0(m+2)δνq01q0gLq0q01(n),Rez=1,\begin{split}\|(\tilde{\mathcal{T}}_{z}g)(t,\cdot)&\|_{L^{q_{0}}(\{x:\delta\phi_{m}(1)\leq\phi_{m}(t)-|x|\leq 2\delta\phi_{m}(1)\})}\\ &\leq C\phi_{m}(t)^{\frac{\nu}{q_{0}}-\frac{m+4}{q_{0}(m+2)}}\delta^{-\frac{\nu}{q_{0}}-\frac{1}{q_{0}}}\|g\|_{L^{\frac{q_{0}}{q_{0}-1}}(\mathbb{R}^{n})},\quad Rez=1,\end{split}

then (3.120) can be established for 0<αm0<\alpha\leq m and the proof for the medium δ\delta case is finished.

Collecting all the analysis above in Case (i)- Case (iii), (3.80) is proved for the relatively large times.

Combining the results in Section 3.3 and Section 3.4, we have obtained (3.72), therefore (1.30) is established.

4 The proof of Theorem 1.3 at the end point 𝐪=𝟐\mathbf{q=2}

4.1 Simplifications for the end point estimate

In this section we establish another endpoint estimate (1.31) for q=2q=2 in Theorem 1.3. Suppose that ww solves (1.27), where F0F\equiv 0 if ϕm(t)|x|<1\phi_{m}(t)-|x|<1. Then by Theorem 2.1 of [53], we have

w(t,)L2(n)CtT0tF(s,)L2(n)ds,\|w(t,\cdot)\|_{L^{2}(\mathbb{R}^{n})}\leq Ct\int_{T_{0}}^{t}\|F(s,\cdot)\|_{L^{2}(\mathbb{R}^{n})}\mathrm{d}s,

which yields that for T0t5{T_{0}}\leq t\leq 5 the L2L^{2} estimate,

wL2([T0,5]×n)CFL2([T0,5]×n).\|w\|_{L^{2}([{T_{0}},5]\times\mathbb{R}^{n})}\leq C\|F\|_{L^{2}([{T_{0}},5]\times\mathbb{R}^{n})}.

Note that ϕm(t)|x|\phi_{m}(t)-|x| is bounded from below and above when T0t5{T_{0}}\leq t\leq 5, hence for any ν>0\nu>0,

(ϕ2m(t)|x|2)12+mαm+2νtα2wL2([T0,5]×n)C(ϕ2m(t)|x|2)12+νtα2FL2([T0,)×n).\begin{split}\Big{\|}\big{(}\phi^{2}_{m}(t)-|x|^{2}\big{)}^{-\frac{1}{2}+\frac{m-\alpha}{m+2}-\nu}t^{\frac{\alpha}{2}}w\Big{\|}_{L^{2}([{T_{0}},5]\times\mathbb{R}^{n})}\leq C\Big{\|}\big{(}\phi^{2}_{m}(t)-|x|^{2}\big{)}^{\frac{1}{2}+\nu}t^{-\frac{\alpha}{2}}F\Big{\|}_{L^{2}([T_{0},\infty)\times\mathbb{R}^{n})}.\end{split} (4.128)

Next we suppose T5T\geq 5. As in Section 3.2, we make the decomposition F=F0+F1F=F^{0}+F^{1} with F0F^{0} defined in (3.71), and split ww as w=w0+w1w=w^{0}+w^{1}, where for j=0,1j=0,1, (t2tmΔ)wj=Fj(\partial_{t}^{2}-t^{m}\Delta)w^{j}=F^{j} with zero data. Then in order to prove (1.31), it suffices to show that for j=0j=0, 11,

(ϕ2m(t)|x|2)12+mαm+2νtα2wjL2({(t,x):Tt2T})Cϕm(T)ν4(ϕ2m(t)|x|2)12+νtα2FjL2([T0,)×n).\begin{split}\Big{\|}\big{(}\phi^{2}_{m}(t)-|x|^{2}\big{)}^{-\frac{1}{2}+\frac{m-\alpha}{m+2}-\nu}&t^{\frac{\alpha}{2}}w^{j}\Big{\|}_{L^{2}(\{(t,x):T\leq t\leq 2T\})}\\ &\leq C\phi_{m}(T)^{-\frac{\nu}{4}}\Big{\|}\big{(}\phi^{2}_{m}(t)-|x|^{2}\big{)}^{\frac{1}{2}+\nu}t^{-\frac{\alpha}{2}}F^{j}\Big{\|}_{L^{2}([T_{0},\infty)\times\mathbb{R}^{n})}.\end{split} (4.129)

Note that by the analogous treatment on wjw^{j} as in (3.72)-(3.80), (4.129) will follow from

ϕm(T)12+mαm+2ν2δ12+mαm+2+ν2tα2vL2(Dt,xT,δ)Cδ012sα2GL2([1,2]×n),\begin{split}&\phi_{m}(T)^{-\frac{1}{2}+\frac{m-\alpha}{m+2}-\frac{\nu}{2}}\delta^{-\frac{1}{2}+\frac{m-\alpha}{m+2}+\frac{\nu}{2}}\left\|t^{\frac{\alpha}{2}}v\right\|_{L^{2}(D_{t,x}^{T,\delta})}\leq C\delta_{0}^{\frac{1}{2}}\left\|s^{-\frac{\alpha}{2}}G\right\|_{L^{2}([1,2]\times\mathbb{R}^{n})},\end{split} (4.130)

where Dt,xT,δD_{t,x}^{T,\delta} was defined in (3.79) and suppGDs,yδ0={(s,y):1s2,δ0ϕm(1)ϕm(s)|y|2δ0ϕm(1)}\operatorname{supp}G\subseteq D_{s,y}^{\delta_{0}}=\{(s,y):1\leq s\leq 2,\delta_{0}\phi_{m}(1)\leq\phi_{m}(s)-|y|\leq 2\delta_{0}\phi_{m}(1)\}, and δδ0\delta\geq\delta_{0}. Next we focus on the proof of (4.130). For technical reason, we will first treat the “relatively large time” case and establish L2L^{2} estimate for v1v^{1}. Then the estimate for v0v^{0} follows with similar idea but easier computation.

4.2 Estimate for large times

Note that ϕm(T)10ϕm(2)\phi_{m}(T)\geq 10\phi_{m}(2) holds for (t,x)suppv1(t,x)\in\operatorname{supp}v^{1}. As in Section 3, we shall deal with the estimates according to the different scales of δ\delta.

The case of δ𝟏𝟎ϕ𝐦(𝟐)\mathbf{\delta\geq 10\phi_{m}(2)}

As in Subsection 3.4.2, we shall use the pointwise estimate to handle the case of ϕm(t)|x|δ10ϕm(2)\phi_{m}(t)-|x|\geq\delta\geq 10\phi_{m}(2). We now write

v=j=vj=j=Ds,yδ0Kj(t,x;s,y)G(s,y)dyds,v=\sum_{j=-\infty}^{\infty}v_{j}=\sum_{j=-\infty}^{\infty}\iint_{D_{s,y}^{\delta_{0}}}K_{j}(t,x;s,y)G(s,y)dyds,

where

Kj(t,x;s,y)=nei{(xy)ξ[ϕm(t)ϕm(s)]|ξ|}χ(|ξ|2j)a(t,s,ξ)G^(s,ξ)dξ.K_{j}(t,x;s,y)=\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}\chi\Big{(}\frac{|\xi|}{2^{j}}\Big{)}a(t,s,\xi)\hat{G}(s,\xi)\mathrm{d}\xi.

Let ϵ>0\epsilon>0 be a sufficiently small constant, then by (3.99) and Hölder’s inequality, we arrive at

|tα2vj|tα2Kj(t,x;s,y)(ϕm(t)+|x|)12(ϕm(t)|x|)121m+2ϵsα2L2s,y(Ds,yδ0)×(ϕm(t)+|x|)12(ϕm(t)|x|)12+1m+2+ϵsα2G(s,y)L2s,y(Ds,yδ0).\begin{split}|t^{\frac{\alpha}{2}}v_{j}|\leq&\left\|t^{\frac{\alpha}{2}}K_{j}(t,x;s,y)(\phi_{m}(t)+|x|)^{\frac{1}{2}}(\phi_{m}(t)-|x|)^{\frac{1}{2}-\frac{1}{m+2}-\epsilon}s^{\frac{\alpha}{2}}\right\|_{L^{2}_{s,y}(D_{s,y}^{\delta_{0}})}\\ &\times\left\|(\phi_{m}(t)+|x|)^{-\frac{1}{2}}(\phi_{m}(t)-|x|)^{-\frac{1}{2}+\frac{1}{m+2}+\epsilon}s^{-\frac{\alpha}{2}}G(s,y)\right\|_{L^{2}_{s,y}(D_{s,y}^{\delta_{0}})}.\end{split} (4.131)

Taking N=n21m+2N=\frac{n}{2}-\frac{1}{m+2} in (3.99) and repeating the computations of (3.100) and (3.101), we have

tα2Kj(t,x;s,y)(ϕm(t)+|x|)12(ϕm(t)|x|)121m+2ϵsα2L2s,y(Ds,yδ0)Cδ012ϕm(t)n12+1+αm+2(ϕm(t)|x|)n2+12ϵ\begin{split}&\left\|t^{\frac{\alpha}{2}}K_{j}(t,x;s,y)(\phi_{m}(t)+|x|)^{\frac{1}{2}}(\phi_{m}(t)-|x|)^{\frac{1}{2}-\frac{1}{m+2}-\epsilon}s^{\frac{\alpha}{2}}\right\|_{L^{2}_{s,y}(D_{s,y}^{\delta_{0}})}\\ &\leq C\delta_{0}^{\frac{1}{2}}\phi_{m}(t)^{-\frac{n-1}{2}+\frac{1+\alpha}{m+2}}(\phi_{m}(t)-|x|)^{-\frac{n}{2}+\frac{1}{2}-\epsilon}\end{split}

and

(Ds,yδ0{(ϕm(t)+|x|)12(ϕm(t)|x|)12+1m+2+ϵsα2G(s,y)}2dyds)12C(δϕm(T))12δ1m+2+ϵsα2GL2([1,2]×n).\begin{split}&\left(\iint_{D_{s,y}^{\delta_{0}}}\big{\{}(\phi_{m}(t)+|x|)^{-\frac{1}{2}}(\phi_{m}(t)-|x|)^{-\frac{1}{2}+\frac{1}{m+2}+\epsilon}s^{-\frac{\alpha}{2}}G(s,y)\big{\}}^{2}\mathrm{d}y\mathrm{d}s\right)^{\frac{1}{2}}\\ &\leq C\big{(}\delta\phi_{m}(T)\big{)}^{-\frac{1}{2}}\delta^{\frac{1}{m+2}+\epsilon}\left\|s^{-\frac{\alpha}{2}}G\right\|_{L^{2}([1,2]\times\mathbb{R}^{n})}.\end{split}

In addition, by n12ϵ<12-\frac{n-1}{2}-\epsilon<-\frac{1}{2} for n2n\geq 2, direct computation yields

ϕm(t)n12+1+αm+2(ϕm(t)|x|)n12ϵLt,x2(Dt,xT,δ)Cn(T2Tϕm(t)(n1)+2(1+α)m+20ϕm(t)10ϕm(2)(ϕm(t)r)2ϵ(n1)rn1drdt)12C(T2Tϕm(t)2(1+α)m+2dt)12CT1+α2.\begin{split}\Big{\|}&\phi_{m}(t)^{-\frac{n-1}{2}+\frac{1+\alpha}{m+2}}\big{(}\phi_{m}(t)-|x|\big{)}^{-\frac{n-1}{2}-\epsilon}\Big{\|}_{L_{t,x}^{2}(D_{t,x}^{T,\delta})}\\ &\leq C_{n}\left(\int_{T}^{2T}\phi_{m}(t)^{-(n-1)+\frac{2(1+\alpha)}{m+2}}\int_{0}^{\phi_{m}(t)-10\phi_{m}(2)}(\phi_{m}(t)-r)^{-2\epsilon-(n-1)}r^{n-1}\mathrm{d}r\mathrm{d}t\right)^{\frac{1}{2}}\\ &\leq C\left(\int_{T}^{2T}\phi_{m}(t)^{\frac{2(1+\alpha)}{m+2}}\mathrm{d}t\right)^{\frac{1}{2}}\leq CT^{1+\frac{\alpha}{2}}.\end{split}

Thus we obtain

ϕm(T)12+mαm+2ν2δ12+mαm+2+ν2tα2vL2(Dt,xT,δ)ϕm(T)12+mαm+2ν2δ12+mαm+2+ν2δ012(δϕm(T))12δ1m+2+ϵT1+α2tα2GL2([1,2]×n)Cδ012(δϕm(t))ν2δα+1m+2+ϵtα2GL2([1,2]×n).\begin{split}&\phi_{m}(T)^{-\frac{1}{2}+\frac{m-\alpha}{m+2}-\frac{\nu}{2}}\delta^{-\frac{1}{2}+\frac{m-\alpha}{m+2}+\frac{\nu}{2}}\left\|t^{\frac{\alpha}{2}}v\right\|_{L^{2}(D_{t,x}^{T,\delta})}\\ &\leq\phi_{m}(T)^{-\frac{1}{2}+\frac{m-\alpha}{m+2}-\frac{\nu}{2}}\delta^{-\frac{1}{2}+\frac{m-\alpha}{m+2}+\frac{\nu}{2}}\delta_{0}^{\frac{1}{2}}\big{(}\delta\phi_{m}(T)\big{)}^{-\frac{1}{2}}\delta^{\frac{1}{m+2}+\epsilon}T^{1+\frac{\alpha}{2}}\left\|t^{-\frac{\alpha}{2}}G\right\|_{L^{2}([1,2]\times\mathbb{R}^{n})}\\ &\leq C\delta_{0}^{\frac{1}{2}}\left(\frac{\delta}{\phi_{m}(t)}\right)^{\frac{\nu}{2}}\delta^{-\frac{\alpha+1}{m+2}+\epsilon}\left\|t^{-\frac{\alpha}{2}}G\right\|_{L^{2}([1,2]\times\mathbb{R}^{n})}.\end{split} (4.132)

By the condition α>1\alpha>-1, we have α+1m+2<0-\frac{\alpha+1}{m+2}<0, thus there exists a ϵ>0\epsilon>0 small enough such that

α+1m+2+ϵ<0,-\frac{\alpha+1}{m+2}+\epsilon<0,

then by ϕm(t)δ10ϕm(2)\phi_{m}(t)\gtrsim\delta\geq 10\phi_{m}(2), (4.130) is proved.

The case of δ𝟎δ𝟏𝟎ϕ𝐦(𝟐)\mathbf{\delta_{0}\leq\delta\leq 10\phi_{m}(2)}

Next we study (4.130) under the condition ϕm(t)|x|10ϕm(2)\phi_{m}(t)-|x|\leq 10\phi_{m}(2). At first, we claim that under certain restrictions on the variable ξ\xi, this situation can be treated as in the proof of (3.112) in Section 3. Indeed, recalling (3.84), vv can be written as:

v=[1,2]×nnei{(xy)ξ[ϕm(t)ϕm(s)]|ξ|}a(t,s,ξ)G(s,y)dξdyds.\begin{split}v=&\int_{[1,2]\times\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}a(t,s,\xi)G(s,y)\mathrm{d}\xi\mathrm{d}y\mathrm{d}s.\end{split}

where a(t,s,ξ)a(t,s,\xi) satisfying (2.43). Noting that ts1t\geq s\gtrsim 1, then we can assume

v=12nnei{(xy)ξ[ϕm(t)ϕm(s)]|ξ|}ϕm(t)m2(m+2)|ξ|1G(s,y)dydξds.v=\int_{1}^{2}\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}\phi_{m}(t)^{-\frac{m}{2(m+2)}}|\xi|^{-1}G(s,y)\mathrm{d}y\mathrm{d}\xi\mathrm{d}s. (4.133)

As in the proof of (3.112), we again split vv into a low frequency part and a high frequency part respectively. To this end, we choose a function βC0(n)\beta\in C_{0}^{\infty}(\mathbb{R}^{n}) satisfying β=1\beta=1 near the origin such that tα2v=v0+v1t^{\frac{\alpha}{2}}v=v_{0}+v_{1}, where

v1=12nnei{(xy)ξ[ϕm(t)ϕm(s)]|ξ|}ϕm(t)m2(m+2)tα21β(δξ)|ξ|G(s,y)dydξds.\begin{split}v_{1}&=\int_{1}^{2}\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}\phi_{m}(t)^{-\frac{m}{2(m+2)}}t^{\frac{\alpha}{2}}\frac{1-\beta(\delta\xi)}{|\xi|}G(s,y)\mathrm{d}y\mathrm{d}\xi\mathrm{d}s.\\ \end{split}

If we set ϕm(s)=|y|+τ\phi_{m}(s)=|y|+\tau and use Hölder’s inequality as in (3.107), then

|v1|Cδ012(δ02δ0|ϕm(t)m2(m+2)tα2×nnei{(xy)ξ[ϕm(t)|y|τ]|ξ|}1β(δξ)|ξ|G(ϕm1(|y|+τ),y)dydξ|2dτ)12=:Cδ012(δ02δ0|T1(t,τ,)|2dτ)12.\begin{split}|v_{1}|\leq&C\delta_{0}^{\frac{1}{2}}\bigg{(}\int_{\delta_{0}}^{2\delta_{0}}\bigg{|}\phi_{m}(t)^{-\frac{m}{2(m+2)}}t^{\frac{\alpha}{2}}\\ &\times\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-|y|-\tau]|\xi|\}}\frac{1-\beta(\delta\xi)}{|\xi|}G(\phi_{m}^{-1}(|y|+\tau),y)\mathrm{d}y\mathrm{d}\xi\bigg{|}^{2}\mathrm{d}\tau\bigg{)}^{\frac{1}{2}}\\ =&:C\delta_{0}^{\frac{1}{2}}\bigg{(}\int_{\delta_{0}}^{2\delta_{0}}|T_{1}(t,\tau,\cdot)|^{2}\mathrm{d}\tau\bigg{)}^{\frac{1}{2}}.\end{split}

Note 1β(δξ)|ξ|=O(δ)\frac{1-\beta(\delta\xi)}{|\xi|}=O(\delta). Then the expression of T1T_{1} is similar to (3.121) with Rez=0Rez=0, with this observation we apply the method of (3.127) to get

T1(t,τ,)L2(n)C(ϕm(t)τ)ν2m2(m+2)tα2δν+12+1G(s,)L2(n),\|T_{1}(t,\tau,\cdot)\|_{L^{2}(\mathbb{R}^{n})}\leq C\big{(}\phi_{m}(t)-\tau\big{)}^{\frac{\nu}{2}-\frac{m}{2(m+2)}}t^{\frac{\alpha}{2}}\delta^{-\frac{\nu+1}{2}+1}\|G(s,\cdot)\|_{L^{2}(\mathbb{R}^{n})},

which derives

v1L2Cδ012δν+12+1ϕm(T)ν2m22(m+2)Tα2GL2([1,2]×n).\|v_{1}\|_{L^{2}}\leq C\delta_{0}^{\frac{1}{2}}\delta^{-\frac{\nu+1}{2}+1}\phi_{m}(T)^{\frac{\nu}{2}-\frac{m-2}{2(m+2)}}T^{\frac{\alpha}{2}}\|G\|_{L^{2}([1,2]\times\mathbb{R}^{n})}. (4.134)

Due to the condition δ10ϕm(2)\delta\lesssim 10\phi_{m}(2), the estimate (4.130) for v1v_{1} follows immediately from (4.134).

We now estimate v0v_{0}. At first, one notes that

||ξ|1ei{(xy)ξ[ϕm(t)ϕm(s)]|ξ|}ϕm(t)m2(m+2)tα2β(δξ)|ξ|dξ|C(1+|ϕm(t)ϕm(s)|)n12ϕm(t)m2(m+2)tα2C(1+|xy|)n12ϕm(t)m2(m+2)tα2.\begin{split}&\Big{|}\int_{|\xi|\leq 1}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}\phi_{m}(t)^{-\frac{m}{2(m+2)}}t^{\frac{\alpha}{2}}\frac{\beta(\delta\xi)}{|\xi|}\mathrm{d}\xi\Big{|}\\ &\leq C\big{(}1+\big{|}\phi_{m}(t)-\phi_{m}(s)\big{|}\big{)}^{-\frac{n-1}{2}}\phi_{m}(t)^{-\frac{m}{2(m+2)}}t^{\frac{\alpha}{2}}\\ &\leq C\big{(}1+|x-y|\big{)}^{-\frac{n-1}{2}}\phi_{m}(t)^{-\frac{m}{2(m+2)}}t^{\frac{\alpha}{2}}.\end{split} (4.135)

In the last step of (4.135) we have used the fact ϕm(t)ϕm(s)|xy|\phi_{m}(t)-\phi_{m}(s)\geq|x-y| for any (s,y)suppF(s,y)\in\operatorname{supp}F and (t,x)suppw(t,x)\in\operatorname{supp}w. This condition can be derived from the formula in Theorem 2.4 of [54], see Section 5B2 in our former work [17] for details.

Note that the corresponding inequality (4.130) holds when we replace vv by

v01=12n|ξ|1ei{(xy)ξ[ϕm(t)ϕm(s)]|ξ|}ϕm(t)m2(m+2)β(δξ)|ξ|G(s,y)dydξds.v_{01}=\int_{1}^{2}\int_{\mathbb{R}^{n}}\int_{|\xi|\leq 1}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}\phi_{m}(t)^{-\frac{m}{2(m+2)}}\frac{\beta(\delta\xi)}{|\xi|}G(s,y)\mathrm{d}y\mathrm{d}\xi\mathrm{d}s.

It follows from method of stationary phase and direct computation that

tα2v01L2(Dt,xT,δ)|ξ|1ei{(xy)ξ[ϕm(t)ϕm(s)]|ξ|}tα2ϕm(t)m2(m+2)β(δξ)|ξ|dξG(s,y)dydsL2t,x(Dt,xT,δ)C(1+|xy|)n12tα2ϕm(t)m2(m+2)G(s,y)dydsL2t,x(Dt,xT,δ)Cϕm(T)m2(m+2)Tα2(1+|xy|)n12sα2L2s,y(Ds,yδ0)sα2GL2s,y(Ds,yδ0)L2t,x(Dt,xT,δ)ϕm(T)αm+2m2(m+2)sα2GL2s,y(Ds,yδ0)×(T2Tδϕm(1)ϕm(t)|x|2δϕm(1)dxdt(1+|xy|)n1)12L2s,y(Ds,yδ0).\begin{split}&\left\|t^{\frac{\alpha}{2}}v_{01}\right\|_{L^{2}(D_{t,x}^{T,\delta})}\\ &\leq\left\|\iiint_{|\xi|\leq 1}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}t^{\frac{\alpha}{2}}\phi_{m}(t)^{-\frac{m}{2(m+2)}}\frac{\beta(\delta\xi)}{|\xi|}\mathrm{d}\xi G(s,y)\mathrm{d}y\mathrm{d}s\right\|_{L^{2}_{t,x}(D_{t,x}^{T,\delta})}\\ &\leq C\left\|\iint\big{(}1+\big{|}x-y\big{|}\big{)}^{-\frac{n-1}{2}}t^{\frac{\alpha}{2}}\phi_{m}(t)^{-\frac{m}{2(m+2)}}G(s,y)\mathrm{d}y\mathrm{d}s\right\|_{L^{2}_{t,x}(D_{t,x}^{T,\delta})}\\ &\leq C\phi_{m}(T)^{-\frac{m}{2(m+2)}}T^{\frac{\alpha}{2}}\left\|\left\|\big{(}1+\big{|}x-y\big{|}\big{)}^{-\frac{n-1}{2}}s^{\frac{\alpha}{2}}\right\|_{L^{2}_{s,y}(D_{s,y}^{\delta_{0}})}\left\|s^{-\frac{\alpha}{2}}G\right\|_{L^{2}_{s,y}(D_{s,y}^{\delta_{0}})}\right\|_{L^{2}_{t,x}(D_{t,x}^{T,\delta})}\\ &\lesssim\phi_{m}(T)^{\frac{\alpha}{m+2}-\frac{m}{2(m+2)}}\|s^{-\frac{\alpha}{2}}G\|_{L^{2}_{s,y}(D_{s,y}^{\delta_{0}})}\\ &\quad\times\bigg{\|}\bigg{(}\int_{T}^{2T}\int_{\delta\phi_{m}(1)\leq\phi_{m}(t)-|x|\leq 2\delta\phi_{m}(1)}\frac{\mathrm{d}x\mathrm{d}t}{\big{(}1+|x-y|\big{)}^{n-1}}\bigg{)}^{\frac{1}{2}}\bigg{\|}_{L^{2}_{s,y}(D_{s,y}^{\delta_{0}})}.\end{split} (4.136)

By |y|ϕm(2)|y|\leq\phi_{m}(2), we see that 12|x||xy|2|x|\frac{1}{2}|x|\leq|x-y|\leq 2|x| holds if |x|2ϕm(2)|x|\geq 2\phi_{m}(2). On the other hand, if |x|<2ϕm(2)|x|<2\phi_{m}(2), then the integral with respect to the variable xx in last line of in (4.136) must be convergent and can be controlled by δ\delta. This yields

(T2Tδϕm(1)ϕm(t)|x|2δϕm(1)dxdt(1+|xy|)n1)12L2s,y(Ds,yδ0)C(T2Tϕm(t)2δϕm(t)δdrdt)12L2s,y(Ds,yδ0)C(δ0δT)12,\begin{split}\bigg{\|}\bigg{(}\int_{T}^{2T}&\int_{\delta\phi_{m}(1)\leq\phi_{m}(t)-|x|\leq 2\delta\phi_{m}(1)}\frac{\mathrm{d}x\mathrm{d}t}{\big{(}1+|x-y|\big{)}^{n-1}}\bigg{)}^{\frac{1}{2}}\bigg{\|}_{L^{2}_{s,y}(D_{s,y}^{\delta_{0}})}\\ &\leq C\bigg{\|}\bigg{(}\int_{T}^{2T}\int_{\phi_{m}(t)-2\delta}^{\phi_{m}(t)-\delta}\mathrm{d}r\mathrm{d}t\bigg{)}^{\frac{1}{2}}\bigg{\|}_{L^{2}_{s,y}(D_{s,y}^{\delta_{0}})}\leq C(\delta_{0}\delta T)^{\frac{1}{2}},\end{split}

which implies that the left side of (4.130) can be controlled by

ϕm(T)12+mαm+2ν2δ12+mαm+2+ν2ϕm(T)αm+2m2(m+2)(δ0δT)12sα2GL2s,y(Ds,yδ0)Cδmαm+2δ012sα2GL2s,y(Ds,yδ0)Cδ012sα2GL2([1,2]×n).\begin{split}&\phi_{m}(T)^{-\frac{1}{2}+\frac{m-\alpha}{m+2}-\frac{\nu}{2}}\delta^{-\frac{1}{2}+\frac{m-\alpha}{m+2}+\frac{\nu}{2}}\phi_{m}(T)^{\frac{\alpha}{m+2}-\frac{m}{2(m+2)}}(\delta_{0}\delta T)^{\frac{1}{2}}\left\|s^{-\frac{\alpha}{2}}G\right\|_{L^{2}_{s,y}(D_{s,y}^{\delta_{0}})}\\ &\leq C\delta^{\frac{m-\alpha}{m+2}}\delta_{0}^{\frac{1}{2}}\left\|s^{-\frac{\alpha}{2}}G\right\|_{L^{2}_{s,y}(D_{s,y}^{\delta_{0}})}\leq C\delta_{0}^{\frac{1}{2}}\left\|s^{-\frac{\alpha}{2}}G\right\|_{L^{2}([1,2]\times\mathbb{R}^{n})}.\end{split} (4.137)

In the last inequality we have used δ10ϕm(2)\delta\lesssim 10\phi_{m}(2) and αm\alpha\leq m.

Consequently, the proof of (4.130) will be completed if we could show that

ϕm(T)12+mαm+2ν2δ12+mαm+2+ν2tα2v02L2(Dt,xT,δ)Cδ012sα2GL2([T0,)×n),\begin{split}&\phi_{m}(T)^{-\frac{1}{2}+\frac{m-\alpha}{m+2}-\frac{\nu}{2}}\delta^{-\frac{1}{2}+\frac{m-\alpha}{m+2}+\frac{\nu}{2}}\left\|t^{\frac{\alpha}{2}}v_{02}\right\|_{L^{2}(D_{t,x}^{T,\delta})}\leq C\delta_{0}^{\frac{1}{2}}\left\|s^{-\frac{\alpha}{2}}G\right\|_{L^{2}([T_{0},\infty)\times\mathbb{R}^{n})},\end{split} (4.138)

where

v02=12n|ξ|1ei{(xy)ξ[ϕm(t)ϕm(s)]|ξ|}ϕm(t)m2(m+2)β(δξ)|ξ|G(s,y)dydξds.v_{02}=\int_{1}^{2}\int_{\mathbb{R}^{n}}\int_{|\xi|\geq 1}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}\phi_{m}(t)^{-\frac{m}{2(m+2)}}\frac{\beta(\delta\xi)}{|\xi|}G(s,y)\mathrm{d}y\mathrm{d}\xi\mathrm{d}s.

The first step in proving (4.138) is to notice that

tα2v02L2(Dt,xT,δ)TˇGL2({x:δϕm(1)ϕm(t)|x|2δϕm(1)})dsL2({t:T2tT}),\begin{split}&\left\|t^{\frac{\alpha}{2}}v_{02}\right\|_{L^{2}(D_{t,x}^{T,\delta})}\leq\left\|\int\parallel\check{T}G\parallel_{L^{2}(\{x:\delta\phi_{m}(1)\leq\phi_{m}(t)-|x|\leq 2\delta\phi_{m}(1)\})}ds\right\|_{L^{2}(\{t:\frac{T}{2}\leq t\leq T\})},\end{split}

where

TˇG=|ξ|1ei{(xy)ξ[ϕm(t)ϕm(s)]|ξ|}ϕm(t)m2(m+2)tα2β(δξ)|ξ|G(s,y)dydξ.\check{T}G=\int\int_{|\xi|\geq 1}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}\phi_{m}(t)^{-\frac{m}{2(m+2)}}t^{\frac{\alpha}{2}}\frac{\beta(\delta\xi)}{|\xi|}G(s,y)\mathrm{d}y\mathrm{d}\xi.

To estimate TˇGL2({x:δϕm(1)ϕm(t)|x|2δϕm(1)})\parallel\check{T}G\parallel_{L^{2}(\{x:\delta\phi_{m}(1)\leq\phi_{m}(t)-|x|\leq 2\delta\phi_{m}(1)\})}, it follows from Lemma A.3 and direct computation

ϕm(T)12+mαm+2ν2δ12+mαm+2+ν2tα2v02L2(Dt,xT,δ)Cϕm(T)12+mαm+2ν2δ12+mαm+2+ν2δ12T12ϕm(T)αm+2m2(m+2)×(j=02j2ei{yξ+ϕm(s))|ξ|}β(δξ)|ξ|G(s,y)dydsL2(2j|ξ|2j+1))Cδmαm+2(δϕm(T))ν2(j=02j|ξ|2j+1ei{(xy)ξ+ϕm(s))|ξ|}β(δξ)|ξ|12G(s,y)dydξdsL2x).\begin{split}&\phi_{m}(T)^{-\frac{1}{2}+\frac{m-\alpha}{m+2}-\frac{\nu}{2}}\delta^{-\frac{1}{2}+\frac{m-\alpha}{m+2}+\frac{\nu}{2}}\left\|t^{\frac{\alpha}{2}}v_{02}\right\|_{L^{2}(D_{t,x}^{T,\delta})}\\ &\leq C\phi_{m}(T)^{-\frac{1}{2}+\frac{m-\alpha}{m+2}-\frac{\nu}{2}}\delta^{-\frac{1}{2}+\frac{m-\alpha}{m+2}+\frac{\nu}{2}}\delta^{\frac{1}{2}}T^{\frac{1}{2}}\phi_{m}(T)^{\frac{\alpha}{m+2}-\frac{m}{2(m+2)}}\\ &\qquad\times\left(\sum_{j=0}^{\infty}2^{\frac{j}{2}}\left\|\iint e^{i\{-y\cdot\xi+\phi_{m}(s))|\xi|\}}\frac{\beta(\delta\xi)}{|\xi|}G(s,y)\mathrm{d}y\mathrm{d}s\right\|_{L^{2}(2^{j}\leq|\xi|\leq 2^{j+1})}\right)\\ &\leq C\delta^{\frac{m-\alpha}{m+2}}\left(\frac{\delta}{\phi_{m}(T)}\right)^{\frac{\nu}{2}}\left(\sum_{j=0}^{\infty}\Big{\|}\iiint_{2^{j}\leq|\xi|\leq 2^{j+1}}e^{i\{(x-y)\cdot\xi+\phi_{m}(s))|\xi|\}}\frac{\beta(\delta\xi)}{|\xi|^{\frac{1}{2}}}G(s,y)\mathrm{d}y\mathrm{d}\xi\mathrm{d}s\Big{\|}_{L^{2}_{x}}\right).\end{split} (4.139)

By applying Hölder’s inequality as in (3.107), we get

2j|ξ|2j+1ei{(xy)ξ+ϕm(s))|ξ|}β(δξ)|ξ|12G(s,y)dydξdsL2xCδ012(|2j|ξ|2j+1ei{(xy)ξ+(|y|+τ)|ξ|}β(δξ)|ξ|12G(ϕm1(|y|+τ),y)dydξ|2dxdτ)12.\begin{split}&\Big{\|}\iiint_{2^{j}\leq|\xi|\leq 2^{j+1}}e^{i\{(x-y)\cdot\xi+\phi_{m}(s))|\xi|\}}\frac{\beta(\delta\xi)}{|\xi|^{\frac{1}{2}}}G(s,y)\mathrm{d}y\mathrm{d}\xi\mathrm{d}s\Big{\|}_{L^{2}_{x}}\\ &\leq C\delta_{0}^{\frac{1}{2}}\left(\iint\Big{|}\iint_{2^{j}\leq|\xi|\leq 2^{j+1}}e^{i\{(x-y)\cdot\xi+(|y|+\tau)|\xi|\}}\frac{\beta(\delta\xi)}{|\xi|^{\frac{1}{2}}}G(\phi_{m}^{-1}(|y|+\tau),y)\mathrm{d}y\mathrm{d}\xi\Big{|}^{2}\mathrm{d}x\mathrm{d}\tau\right)^{\frac{1}{2}}.\end{split} (4.140)

On the other hand, an application of Lemma 3.2 in [11] yields that for each fixed j0j\geq 0,

2j|ξ|2j+1ei{(xy)ξ+(|y|+τ)|ξ|}β(δξ)|ξ|12G(ϕm1(|y|+τ),y)dydξL2τ,xC(ϕm(1)|y|+τϕm(2)|G(ϕm1(|y|+τ),y)|2dydτ)12C(n12|G(s,y)|2sm2dsdy)12C(n12|G(s,y)|2dsdy)12Csα2GL2([T0,)×n).\begin{split}&\Big{\|}\iint_{2^{j}\leq|\xi|\leq 2^{j+1}}e^{i\{(x-y)\cdot\xi+(|y|+\tau)|\xi|\}}\frac{\beta(\delta\xi)}{|\xi|^{\frac{1}{2}}}G(\phi_{m}^{-1}(|y|+\tau),y)\mathrm{d}y\mathrm{d}\xi\Big{\|}_{L^{2}_{\tau,x}}\\ &\leq C\Big{(}\iint_{\phi_{m}(1)\leq|y|+\tau\leq\phi_{m}(2)}\left|G\big{(}\phi_{m}^{-1}(|y|+\tau),y\big{)}\right|^{2}\mathrm{d}y\mathrm{d}\tau\Big{)}^{\frac{1}{2}}\\ &\leq C\Big{(}\int_{\mathbb{R}^{n}}\int_{1}^{2}|G(s,y)|^{2}s^{\frac{m}{2}}\mathrm{d}s\mathrm{d}y\Big{)}^{\frac{1}{2}}\\ &\leq C\Big{(}\int_{\mathbb{R}^{n}}\int_{1}^{2}|G(s,y)|^{2}\mathrm{d}s\mathrm{d}y\Big{)}^{\frac{1}{2}}\leq C\left\|s^{-\frac{\alpha}{2}}G\right\|_{L^{2}{([T_{0},\infty)\times\mathbb{R}^{n})}}.\\ \end{split} (4.141)

In addition, in the support of β(δξ)\beta(\delta\xi), one has 2jδ|ξ|δC2^{j}\delta\leq|\xi|\delta\leq C, which derives

jC(1+|lnδ|).\begin{split}&j\leq C(1+|\ln{\delta}|).\end{split} (4.142)

Substituting (4.141) and (4.142) into (4.140) and further (4.139), we finally get

ϕm(T)12+mαm+2ν2δ12+mαm+2+ν2tα2v02L2(Dt,xT,δ)\displaystyle\phi_{m}(T)^{-\frac{1}{2}+\frac{m-\alpha}{m+2}-\frac{\nu}{2}}\delta^{-\frac{1}{2}+\frac{m-\alpha}{m+2}+\frac{\nu}{2}}\left\|t^{\frac{\alpha}{2}}v_{02}\right\|_{L^{2}(D_{t,x}^{T,\delta})}
Cδmαm+2(1+|lnδ|)δν2ϕm(t)ν2δ012sα2GL2([T0,)×n)Cδ012sα2GL2([T0,)×n).\displaystyle\leq C\delta^{\frac{m-\alpha}{m+2}}(1+|\ln{\delta}|)\delta^{\frac{\nu}{2}}\phi_{m}(t)^{-\frac{\nu}{2}}\delta_{0}^{\frac{1}{2}}\left\|s^{-\frac{\alpha}{2}}G\right\|_{L^{2}{([T_{0},\infty)\times\mathbb{R}^{n})}}\leq C\delta_{0}^{\frac{1}{2}}\left\|s^{-\frac{\alpha}{2}}G\right\|_{L^{2}{([T_{0},\infty)\times\mathbb{R}^{n})}}.

4.3 Estimate for small times

Now it remains to prove (4.130) for ϕm(T)10ϕm(4)\phi_{m}(T)\leq 10\phi_{m}(4), where we have δ0δ104m+22\delta_{0}\leq\delta\leq 10\cdot 4^{\frac{m+2}{2}}. Our task is reduced to prove

δ12+mαm+2+ν2tα2vL2(Dt,xT,δ)Cδ012sα2GL2([T0,)×n).\delta^{-\frac{1}{2}+\frac{m-\alpha}{m+2}+\frac{\nu}{2}}\left\|t^{\frac{\alpha}{2}}v\right\|_{L^{2}(D_{t,x}^{T,\delta})}\leq C\delta_{0}^{\frac{1}{2}}\left\|s^{-\frac{\alpha}{2}}G\right\|_{L^{2}([T_{0},\infty)\times\mathbb{R}^{n})}. (4.143)

Since 1st4102m+21\lesssim s\leq t\leq 4\cdot 10^{\frac{2}{m+2}}, as in (4.133) , we can write

v=0tnnei{(xy)ξ[ϕm(t)ϕm(s)]|ξ|}|ξ|1G(s,y)dydξds,v=\int_{0}^{t}\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}|\xi|^{-1}G(s,y)\mathrm{d}y\mathrm{d}\xi\mathrm{d}s,

and split vv into a low frequency part and a high frequency part respectively. We choose a function βC0(n)\beta\in C_{0}^{\infty}(\mathbb{R}^{n}) satisfying β=1\beta=1 near the origin such that v=v0+v1v=v_{0}+v_{1}, where

v1=0tnnei{(xy)ξ[ϕm(t)ϕm(s)]|ξ|}1β(δξ)|ξ|G(s,y)dydξds.\begin{split}v_{1}&=\int_{0}^{t}\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}\frac{1-\beta(\delta\xi)}{|\xi|}G(s,y)\mathrm{d}y\mathrm{d}\xi\mathrm{d}s.\\ \end{split}

If we set ϕm(s)=|y|+τ\phi_{m}(s)=|y|+\tau and use Hölder’s inequality as in (3.107), then

|v1|δ012(δ02δ0|nnei{(xy)ξ[ϕm(t)ϕm(s)]|ξ|}1β(δξ)|ξ|G(ϕm1(|y|+τ),y)dydξ|2dτ)12=:Cδ012(δ02δ0|T1¯(t,τ,)|2dτ)12.\begin{split}|v_{1}|&\lesssim\delta_{0}^{\frac{1}{2}}\bigg{(}\int_{\delta_{0}}^{2\delta_{0}}\bigg{|}\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}\frac{1-\beta(\delta\xi)}{|\xi|}G(\phi_{m}^{-1}(|y|+\tau),y)\mathrm{d}y\mathrm{d}\xi\bigg{|}^{2}\mathrm{d}\tau\bigg{)}^{\frac{1}{2}}\\ &=:C\delta_{0}^{\frac{1}{2}}\bigg{(}\int_{\delta_{0}}^{2\delta_{0}}|\bar{T_{1}}(t,\tau,\cdot)|^{2}\mathrm{d}\tau\bigg{)}^{\frac{1}{2}}.\end{split}

Note 1β(δξ)|ξ|=O(δ)\frac{1-\beta(\delta\xi)}{|\xi|}=O(\delta). Then the expression of v1v_{1} is similar to (3.121) with Rez=0Rez=0. Consequently we can apply the method of (3.127) to get

T1¯(t,τ,)L2(n)C(ϕm(t)τ)ν2δν+12+1G(s,)L2(n),\|\bar{T_{1}}(t,\tau,\cdot)\|_{L^{2}(\mathbb{R}^{n})}\leq C\big{(}\phi_{m}(t)-\tau\big{)}^{\frac{\nu}{2}}\delta^{-\frac{\nu+1}{2}+1}\|G(s,\cdot)\|_{L^{2}(\mathbb{R}^{n})},

which derives

tα2v1L2Cδ012δν+12+1ϕm(T)ν2+αm+2GL2([T0,)×n).\left\|t^{\frac{\alpha}{2}}v_{1}\right\|_{L^{2}}\leq C\delta_{0}^{\frac{1}{2}}\delta^{-\frac{\nu+1}{2}+1}\phi_{m}(T)^{\frac{\nu}{2}+\frac{\alpha}{m+2}}\|G\|_{L^{2}([T_{0},\infty)\times\mathbb{R}^{n})}. (4.144)

Due to δϕm(T)10ϕm(4)\delta\lesssim\phi_{m}(T)\lesssim 10\phi_{m}(4) and ϕm(T)ϕm(1)\phi_{m}(T)\geq\phi_{m}(1), the estimate (4.143) for v1v_{1} is an immediately consequence of (4.144).

We now estimate v0v_{0}. At first, similarly to (4.135), we have

||ξ|1ei{(xy)ξ[ϕm(t)ϕm(s)]|ξ|}β(δξ)|ξ|dξ|C(1+|xy|)n12.\begin{split}\bigg{|}\int_{|\xi|\leq 1}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}\frac{\beta(\delta\xi)}{|\xi|}\mathrm{d}\xi\bigg{|}\leq C\big{(}1+\big{|}x-y\big{|}\big{)}^{-\frac{n-1}{2}}.\end{split}

Thus the corresponding inequality (4.130) holds if we replace vv by

v01=12n|ξ|1ei{(xy)ξ[ϕm(t)ϕm(s)]|ξ|}β(δξ)|ξ|G(s,y)dydξds.v_{01}=\int_{1}^{2}\int_{\mathbb{R}^{n}}\int_{|\xi|\leq 1}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}\frac{\beta(\delta\xi)}{|\xi|}G(s,y)\mathrm{d}y\mathrm{d}\xi\mathrm{d}s.

As in (4.136) one has

tα2v01L2(Dt,xT,δ)tα2|ξ|1ei{(xy)ξ[ϕm(t)ϕm(s)]|ξ|}β(δξ)|ξ|dξG(s,y)dydsL2(Dt,xT,δ)Csα2GL2(T2Tδϕm(t)|x|2δ(1+|xy|)(n1)dxdt)12L2s,y(Ds,yδ0).\begin{split}&\left\|t^{\frac{\alpha}{2}}v_{01}\right\|_{L^{2}(D_{t,x}^{T,\delta})}\\ &\leq\bigg{\|}t^{\frac{\alpha}{2}}\iiint_{|\xi|\leq 1}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}\frac{\beta(\delta\xi)}{|\xi|}\mathrm{d}\xi G(s,y)\mathrm{d}y\mathrm{d}s\bigg{\|}_{L^{2}(D_{t,x}^{T,\delta})}\\ &\leq C\left\|s^{-\frac{\alpha}{2}}G\right\|_{L^{2}}\bigg{\|}\Big{(}\int_{T}^{2T}\int_{\delta\leq\phi_{m}(t)-|x|\leq 2\delta}(1+\big{|}x-y\big{|})^{-(n-1)}\mathrm{d}x\mathrm{d}t\Big{)}^{\frac{1}{2}}\bigg{\|}_{L^{2}_{s,y}(D_{s,y}^{\delta_{0}})}.\end{split}

Note that in this case of |x|ϕm(t)10ϕm(2)|x|\leq\phi_{m}(t)\leq 10\phi_{m}(2), direct computation yields

(T2Tδϕm(t)|x|2δ(1+|xy|)(n1)dxdt)12L2s,y(Ds,yδ0)C(T2Tϕm(t)2δϕm(t)δdrdt)12L2s,y(Ds,yδ0)C(δ0δT)12,\begin{split}\bigg{\|}&\Big{(}\int_{T}^{2T}\int_{\delta\leq\phi_{m}(t)-|x|\leq 2\delta}\big{(}1+\big{|}x-y\big{|}\big{)}^{-(n-1)}\mathrm{d}x\mathrm{d}t\Big{)}^{\frac{1}{2}}\bigg{\|}_{L^{2}_{s,y}(D_{s,y}^{\delta_{0}})}\\ &\leq C\left\|\Big{(}\int_{T}^{2T}\int_{\phi_{m}(t)-2\delta}^{\phi_{m}(t)-\delta}\mathrm{d}r\mathrm{d}t\Big{)}^{\frac{1}{2}}\right\|_{L^{2}_{s,y}(D_{s,y}^{\delta_{0}})}\leq C(\delta_{0}\delta T)^{\frac{1}{2}},\end{split}

which implies that the left side of (4.143) is bounded by

δ12+mαm+2+ν2(δ0δT)12sα2GL2(Ds,yδ0)Cδmαm+2δ012sα2GL2([1,2]×n).\begin{split}\delta^{-\frac{1}{2}+\frac{m-\alpha}{m+2}+\frac{\nu}{2}}(\delta_{0}\delta T)^{\frac{1}{2}}\|s^{-\frac{\alpha}{2}}G\|_{L^{2}(D_{s,y}^{\delta_{0}})}\leq C\delta^{\frac{m-\alpha}{m+2}}\delta_{0}^{\frac{1}{2}}\|s^{-\frac{\alpha}{2}}G\|_{L^{2}([1,2]\times\mathbb{R}^{n})}.\end{split} (4.145)

Consequently, our proof will be completed once the following inequality holds

δ12+mαm+2+ν2tα2v02L2(Dt,xT,δ)Cδ012sα2GL2([T0,)×n),\begin{split}\delta^{-\frac{1}{2}+\frac{m-\alpha}{m+2}+\frac{\nu}{2}}\|t^{\frac{\alpha}{2}}v_{02}\|_{L^{2}(D_{t,x}^{T,\delta})}\leq C\delta_{0}^{\frac{1}{2}}\|s^{-\frac{\alpha}{2}}G\|_{L^{2}([T_{0},\infty)\times\mathbb{R}^{n})},\end{split} (4.146)

where

v02=12n|ξ|1ei{(xy)ξ[ϕm(t)ϕm(s)]|ξ|}β(δξ)|ξ|G(s,y)dydξds.v_{02}=\int_{1}^{2}\int_{\mathbb{R}^{n}}\int_{|\xi|\geq 1}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-\phi_{m}(s)]|\xi|\}}\frac{\beta(\delta\xi)}{|\xi|}G(s,y)\mathrm{d}y\mathrm{d}\xi\mathrm{d}s.

But (4.146) just only follows from the estimate of v02v_{02} in Section 4.2 if one notes the condtion δϕm(T)10ϕm(2)\delta\leq\phi_{m}(T)\leq 10\phi_{m}(2).

Collecting the estimates on w0w^{0} and w1w^{1} in Section 4.2 and Section 4.3 respectively, the proof of (1.31) is completed.

5 Proof of Theorem 1.2

Proof of Theorem 1.2.

Based on the smallness of the initial data in (1.17) , we now use the standard Picard iteration and contraction mapping principle to obtain Theorem 1.2. First let u10u_{-1}\equiv 0, then for k=0,1,2,3,k=0,1,2,3,\ldots, let uku_{k} be the weak solution of the following equation

{t2uktmuk=tα|uk1|p,(t,x)(T0,)×n,uk(T0,x)=εf(x)tuk(T0,x)=εg(x).\begin{cases}&\partial_{t}^{2}u_{k}-t^{m}\triangle u_{k}=t^{\alpha}|u_{k-1}|^{p},\quad(t,x)\in(T_{0},\infty)\times\mathbb{R}^{n},\\ &u_{k}(T_{0},x)=\varepsilon f(x)\quad\partial_{t}u_{k}(T_{0},x)=\varepsilon g(x).\end{cases} (5.147)

For any p(pcrit(n,m,α),pconf(n,m,α)]p\in(p_{crit}(n,m,\alpha),p_{conf}(n,m,\alpha)], one can always fix a number γ>0\gamma>0 satisfying

1p(p+1)<γ<n21m+21p+1(n+2αmm+2).\frac{1}{p(p+1)}<\gamma<\frac{n}{2}-\frac{1}{m+2}-\frac{1}{p+1}\left(n+\frac{2\alpha-m}{m+2}\right).

Set

Mk=\displaystyle M_{k}= ((ϕm(t)+M)2|x|2)γtαqukLq([T0,)×n),\displaystyle\Big{\|}\Big{(}\big{(}\phi_{m}(t)+M\big{)}^{2}-|x|^{2}\Big{)}^{\gamma}t^{\frac{\alpha}{q}}u_{k}\Big{\|}_{L^{q}([T_{0},\infty)\times\mathbb{R}^{n})},
Nk=\displaystyle N_{k}= ((ϕm(t)+M)2|x|2)γtαq(ukuk1)Lq([T0,)×n),\displaystyle\Big{\|}\Big{(}\big{(}\phi_{m}(t)+M\big{)}^{2}-|x|^{2}\Big{)}^{\gamma}t^{\frac{\alpha}{q}}(u_{k}-u_{k-1})\Big{\|}_{L^{q}([T_{0},\infty)\times\mathbb{R}^{n})},

where q=p+1q=p+1. For k=0k=0, u0u_{0} solves the linear problem

{t2u0tmu0=0,(t,x)[T0,)×n,u0(T0,x)=f(x)tu0(T0,x)=g(x).\begin{cases}&\partial_{t}^{2}u_{0}-t^{m}\triangle u_{0}=0,\quad(t,x)\in[T_{0},\infty)\times\mathbb{R}^{n},\\ &u_{0}(T_{0},x)=f(x)\quad\partial_{t}u_{0}(T_{0},x)=g(x).\end{cases} (5.148)

Thus one can apply Lemma 2.1 to (5.148), we know that there exists a constant C0>0C_{0}>0 such that

M0C0ε.M_{0}\leq C_{0}\varepsilon.

Notice that for jj, k0k\geq 0,

{t2(uk+1uj+1)tmΔ(uk+1uj+1)=V(uk,uj)(ukuj),(uk+1uj+1)(T0,x)=0,t(uk+1uj+1)(T0,x)=0,\begin{cases}&\partial_{t}^{2}(u_{k+1}-u_{j+1})-t^{m}\Delta(u_{k+1}-u_{j+1})=V(u_{k},u_{j})(u_{k}-u_{j}),\\ &(u_{k+1}-u_{j+1})(T_{0},x)=0,\quad\partial_{t}(u_{k+1}-u_{j+1})(T_{0},x)=0,\end{cases}

where

|V(uk,uj)|tαC(|uk|+|uj|)p1\big{|}V(u_{k},u_{j})\big{|}\leq t^{\alpha}C(|u_{k}|+|u_{j}|)^{p-1}

By our assumptions

γ<n21m+21q(n+2αmm+2)andpγ>1q,q=p+1,\gamma<\frac{n}{2}-\frac{1}{m+2}-\frac{1}{q}\left(n+\frac{2\alpha-m}{m+2}\right)\quad\text{and}\quad p\gamma>\frac{1}{q},\quad q=p+1,

then Theorem 1.4 together with Hölder’s inequality yield

((ϕm(t)+M)2|x|2)γtαq(uk+1uj+1)Lq([T0,)×n)C((ϕm(t)+M)2|x|2)pγtαqV(uk,uj)(ukuj)Lqq1([T0,)×n)C((ϕm(t)+M)2|x|2)γtαq(|uk|+|uj|)Lq([T0,]×n)p1×((ϕm(t)+M)2|x|2)γtαq(ukuj)Lq([T0,)×n)C(Mk+Mj)p1((ϕm(t)+M)2|x|2)γtαq(ukuj)Lq([T0,)×n).\begin{split}&\Big{\|}\Big{(}\big{(}\phi_{m}(t)+M\big{)}^{2}-|x|^{2}\Big{)}^{\gamma}t^{\frac{\alpha}{q}}(u_{k+1}-u_{j+1})\Big{\|}_{L^{q}([T_{0},\infty)\times\mathbb{R}^{n})}\\ &\leq C\Big{\|}\Big{(}\big{(}\phi_{m}(t)+M\big{)}^{2}-|x|^{2}\Big{)}^{p\gamma}t^{-\frac{\alpha}{q}}V(u_{k},u_{j})(u_{k}-u_{j})\Big{\|}_{L^{\frac{q}{q-1}}([T_{0},\infty)\times\mathbb{R}^{n})}\\ &\leq C\Big{\|}\Big{(}\big{(}\phi_{m}(t)+M\big{)}^{2}-|x|^{2}\Big{)}^{\gamma}t^{\frac{\alpha}{q}}(|u_{k}|+|u_{j}|)\Big{\|}_{L^{q}([T_{0},\infty]\times\mathbb{R}^{n})}^{p-1}\\ &\quad\times\Big{\|}\Big{(}\big{(}\phi_{m}(t)+M\big{)}^{2}-|x|^{2}\Big{)}^{\gamma}t^{\frac{\alpha}{q}}(u_{k}-u_{j})\Big{\|}_{L^{q}([T_{0},\infty)\times\mathbb{R}^{n})}\\ &\leq C\big{(}M_{k}+M_{j}\big{)}^{p-1}\Big{\|}\Big{(}\big{(}\phi_{m}(t)+M\big{)}^{2}-|x|^{2}\Big{)}^{\gamma}t^{\frac{\alpha}{q}}(u_{k}-u_{j})\Big{\|}_{L^{q}([T_{0},\infty)\times\mathbb{R}^{n})}.\end{split} (5.149)

If j=1j=-1, then Mj=0M_{j}=0, and (5.149) gives

Mk+1M0+Mk2forCMkp112.M_{k+1}\leq M_{0}+\frac{M_{k}}{2}\quad\text{for}\quad CM_{k}^{p-1}\leq\frac{1}{2}.

This yields that

Mk2M0ifC(C0ε)p112.M_{k}\leq 2M_{0}\quad\text{if}\quad C\big{(}C_{0}\varepsilon\big{)}^{p-1}\leq\frac{1}{2}.

Thus we get the boundedness of {((ϕm(t)+M)2|x|2)γtαquk}\{\big{(}(\phi_{m}(t)+M)^{2}-|x|^{2}\big{)}^{\gamma}t^{\frac{\alpha}{q}}u_{k}\} in the space Lq([T0,)×n)L^{q}([T_{0},\infty)\times\mathbb{R}^{n}) for sufficiently small ε>0\varepsilon>0. Similarly, we have

Nk+112Nk,N_{k+1}\leq\frac{1}{2}N_{k},

which derives that there exists a function uu with ((ϕm(t)+M)2|x|2)γtαquLq([T0,)×n)\big{(}(\phi_{m}(t)+M)^{2}-|x|^{2}\big{)}^{\gamma}t^{\frac{\alpha}{q}}u\in L^{q}\big{(}[T_{0},\infty)\times\mathbb{R}^{n}\big{)} such that ((ϕm(t)+M)2|x|2)γtαquk((ϕm(t)+M)2|x|2)γtαqu\big{(}(\phi_{m}(t)+M)^{2}-|x|^{2}\big{)}^{\gamma}t^{\frac{\alpha}{q}}u_{k}\rightarrow\big{(}(\phi_{m}(t)+M)^{2}-|x|^{2}\big{)}^{\gamma}t^{\frac{\alpha}{q}}u in Lq([T0,)×n)L^{q}\big{(}[T_{0},\infty)\times\mathbb{R}^{n}\big{)}. In addition, by the uniform boundedness of {Mk}\{M_{k}\}, one easily calculates for any compact set K[T0,)×nK\subseteq[T_{0},\infty)\times\mathbb{R}^{n},

tα|uk+1|ptα|uk|pLqq1(K)\displaystyle\|t^{\alpha}|u_{k+1}|^{p}-t^{\alpha}|u_{k}|^{p}\|_{L^{\frac{q}{q-1}}(K)}
C(K)((ϕm(t)+M)2|x|2)pγtαq(tα|uk+1|ptα|uk|p)Lqq1(K)\displaystyle\leq C(K)\left\|\Big{(}\big{(}\phi_{m}(t)+M\big{)}^{2}-|x|^{2}\Big{)}^{p\gamma}t^{-\frac{\alpha}{q}}(t^{\alpha}|u_{k+1}|^{p}-t^{\alpha}|u_{k}|^{p})\right\|_{L^{\frac{q}{q-1}}(K)}
C(K)((ϕm(t)+M)2|x|2)γtαq(uk+1uk)Lq(K)\displaystyle\leq C(K)\left\|\big{(}(\phi_{m}(t)+M)^{2}-|x|^{2}\big{)}^{\gamma}t^{\frac{\alpha}{q}}(u_{k+1}-u_{k})\right\|_{L^{q}(K)}
C(K)NkC2k.\displaystyle\leq C(K)N_{k}\leq C2^{-k}.

Therefore tα|uk|ptα|u|pt^{\alpha}|u_{k}|^{p}\rightarrow t^{\alpha}|u|^{p} in Lqq1(K)L^{\frac{q}{q-1}}\big{(}K\big{)} and hence in L1loc([T0,)×n)L^{1}_{loc}([T_{0},\infty)\times\mathbb{R}^{n}). Thus uu is a weak solution of (1.2) in the sense of distributions. Then we complete the proof of Theorem 1.2. ∎

Acknowledgment. The authors would like to thank the referee very much for his (or her) many helpful suggestions and comments that lead to a substantial improvement of this manuscript. The authors also would like to thank Prof. Huicheng Yin, Prof. Yi Zhou and Prof. Zhen Lei for many helpful guidance and discussions.

Appendix A Appendix

Lemma A.1.

(3.125) holds.

Proof.

We shall apply Lemma 3.2 in [11] and the dual argument to derive (3.125). For gL2(n)g\in L^{2}(\mathbb{R}^{n}),

R~zgL2=suphL2|(h,R~zg¯)|hL2=suphL2|(R~zh,g¯)|hL2suphL2R~zhL2hL2gL2,\|\tilde{R}_{z}g\|_{L^{2}}=\sup_{h\in L^{2}}\frac{\big{|}(h,\overline{\tilde{R}_{z}g})\big{|}}{\|h\|_{L^{2}}}=\sup_{h\in L^{2}}\frac{\big{|}(\tilde{R}_{z}^{*}h,\bar{g})\big{|}}{\|h\|_{L^{2}}}\leq\sup_{h\in L^{2}}\frac{\|\tilde{R}_{z}^{*}h\|_{L^{2}}}{\|h\|_{L^{2}}}\|g\|_{L^{2}},

thus our task is reduced to estimate R~zh\tilde{R}_{z}^{*}h. Since

(R~zg)(t,x)=(z(m+2)n+2+2α2(α+2))ez2tαq0ϕm(t)m2(m+2)×|ξ|112ϕm(1)|y|ϕm(2)ei{(xy)ξ[ϕm(t)|y|]|ξ|}(1ρ(ϕm(t)1ϱδϱξ))g(y)dξ|ξ|zdy,\begin{split}(\tilde{R}_{z}g)&(t,x)=\Big{(}z-\frac{(m+2)n+2+2\alpha}{2(\alpha+2)}\Big{)}e^{z^{2}}t^{\frac{\alpha}{q_{0}}}\phi_{m}(t)^{-\frac{m}{2(m+2)}}\\ &\times\int_{|\xi|\geq 1}\int_{\frac{1}{2}\phi_{m}(1)\leq|y|\leq\phi_{m}(2)}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-|y|]|\xi|\}}\Big{(}1-\rho\big{(}\phi_{m}(t)^{1-\varrho}\delta^{\varrho}\xi\big{)}\Big{)}g(y)\frac{\mathrm{d}\xi}{|\xi|^{z}}\mathrm{d}y,\end{split}

the dual operator of RzgR_{z}g is

(R~zh)(y)=(z¯(m+2)n+2+2α2(α+2))ez¯2tαq0ϕm(t)m2(m+2)×ei{(yx)ξ+[ϕm(t)|y|]|ξ|}(1ρ(ϕ(t)1αδαξ))h(x)dξ|ξ|z¯dx=(z¯(m+2)n+2+2α2(α+2))ez¯2tαq0ϕm(t)m2(m+2)×ei(yξ|y||ξ|)eiϕ(t)|ξ|(1ρ(ϕ(t)1αδαξ))|ξ|z¯h^(ξ)dξ.\begin{split}(\tilde{R}_{z}^{*}h)&(y)=\Big{(}\bar{z}-\frac{(m+2)n+2+2\alpha}{2(\alpha+2)}\Big{)}e^{\bar{z}^{2}}t^{\frac{\alpha}{q_{0}}}\phi_{m}(t)^{-\frac{m}{2(m+2)}}\\ &\qquad\times\int\int e^{i\{(y-x)\cdot\xi+[\phi_{m}(t)-|y|]|\xi|\}}\Big{(}1-\rho\big{(}\phi(t)^{1-\alpha}\delta^{\alpha}\xi\big{)}\Big{)}h(x)\frac{\mathrm{d}\xi}{|\xi|^{\bar{z}}}\mathrm{d}x\\ &=\Big{(}\bar{z}-\frac{(m+2)n+2+2\alpha}{2(\alpha+2)}\Big{)}e^{\bar{z}^{2}}t^{\frac{\alpha}{q_{0}}}\phi_{m}(t)^{-\frac{m}{2(m+2)}}\\ &\qquad\times\int e^{i(y\cdot\xi-|y||\xi|)}e^{i\phi(t)|\xi|}\Big{(}1-\rho\big{(}\phi(t)^{1-\alpha}\delta^{\alpha}\xi\big{)}\Big{)}|\xi|^{-\bar{z}}\hat{h}(\xi)\mathrm{d}\xi.\end{split}

Denote

H^(ξ)=eiϕ(t)|ξ|tαq0ϕm(t)m2(m+2)(1ρ(ϕ(t)1αδαξ))|ξ|z¯h^(ξ).\hat{H}(\xi)=e^{i\phi(t)|\xi|}t^{\frac{\alpha}{q_{0}}}\phi_{m}(t)^{-\frac{m}{2(m+2)}}\Big{(}1-\rho\big{(}\phi(t)^{1-\alpha}\delta^{\alpha}\xi\big{)}\Big{)}|\xi|^{-\bar{z}}\hat{h}(\xi).

Then a simple computation yields

R~zhL2(12ϕ(1)|y|ϕ(2))Ck=02k2H^L2(2k|ξ|2k+1)(by Lemma 3.2 of [11])2k+1ϕ(t)α1δα2k2H^L2(2k|ξ|2k+1).\begin{split}\|\tilde{R}_{z}^{*}h\|_{L^{2}(\frac{1}{2}\phi(1)\leq|y|\leq\phi(2))}&\leq C\sum_{k=0}^{\infty}2^{\frac{k}{2}}\|\hat{H}\|_{L^{2}(2^{k}\leq|\xi|\leq 2^{k+1})}\qquad(\text{by Lemma 3.2 of \cite[cite]{[\@@bibref{}{Gls1}{}{}]}})\\ &\lesssim\sum_{2^{k+1}\leq\phi(t)^{\alpha-1}\delta^{-\alpha}}^{\infty}2^{\frac{k}{2}}\|\hat{H}\|_{L^{2}(2^{k}\leq|\xi|\leq 2^{k+1})}.\end{split}

If k0k\geq 0, then for Rez=0Rez=0,

H^L2(2k|ξ|2k+1)Ctαq0ϕm(t)m2(m+2)2k2h^L2(2k|ξ|2k+1).\|\hat{H}\|_{L^{2}(2^{k}\leq|\xi|\leq 2^{k+1})}\leq Ct^{\frac{\alpha}{q_{0}}}\phi_{m}(t)^{-\frac{m}{2(m+2)}}2^{\frac{k}{2}}\|\hat{h}\|_{L^{2}(2^{k}\leq|\xi|\leq 2^{k+1})}.

Then (3.125) follows immediately.

Lemma A.2.

(3.119) holds true.

Proof.

Denote KzK_{z} by the kernel of the operator SzS_{z}. Then

Kz(t;x,y)=(z(m+2)n+2+2α2(α+2))ez2tαq0ϕm(t)m2(m+2)×nei{(xy)ξ[ϕm(t)|y|]|ξ|}ρ(ϕm(t)1αδαξ)dξ|ξ|zwith Rez=0.\begin{split}K_{z}(t;x,y)=&\Big{(}z-\frac{(m+2)n+2+2\alpha}{2(\alpha+2)}\Big{)}e^{z^{2}}t^{\frac{\alpha}{q_{0}}}\phi_{m}(t)^{-\frac{m}{2(m+2)}}\\ &\times\int_{\mathbb{R}^{n}}e^{i\{(x-y)\cdot\xi-[\phi_{m}(t)-|y|]|\xi|\}}\rho(\phi_{m}(t)^{1-\alpha}\delta^{\alpha}\xi)\frac{d\xi}{|\xi|^{z}}\quad\text{with $Rez=0$}.\end{split} (A.150)

Note that |ξ|ϕm(t)α1δα|\xi|\geq\phi_{m}(t)^{\alpha-1}\delta^{-\alpha} holds in the integral domain of (A.150). Therefore it follows from Lemma 3.3 in [11] and the condition δ10ϕm(2)\delta\lesssim 10\phi_{m}(2) that for any N+N\in\mathbb{R}^{+},

|Kz|CN\displaystyle|K_{z}|\leq C_{N} tαq0ϕm(t)m2(m+2)(δϕm(t))NCNϕm(t)2α(m+2)q0m2(m+2)(ϕm(t)α1δα)12\displaystyle t^{\frac{\alpha}{q_{0}}}\phi_{m}(t)^{-\frac{m}{2(m+2)}}\Big{(}\frac{\delta}{\phi_{m}(t)}\Big{)}^{N}\leq C_{N}\phi_{m}(t)^{\frac{2\alpha}{(m+2)q_{0}}-\frac{m}{2(m+2)}}(\phi_{m}(t)^{\alpha-1}\delta^{-\alpha})^{\frac{1}{2}}
if||xy||ϕm(t)|y|||δ2.\displaystyle\text{if}\quad\Big{|}|x-y|-\big{|}\phi_{m}(t)-|y|\big{|}\Big{|}\geq\frac{\delta}{2}.

This yields (3.119) when ||xy||ϕm(t)|y|||δ2\Big{|}|x-y|-\big{|}\phi_{m}(t)-|y|\big{|}\Big{|}\geq\frac{\delta}{2}. When ||xy||ϕm(t)|y|||<δ2\Big{|}|x-y|-\big{|}\phi_{m}(t)-|y|\big{|}\Big{|}<\frac{\delta}{2}, analogously treated as in Lemma 3.4-Lemma 3.5 and Proposition 3.6 of [11], (3.119) can be also obtained, thus we omit the detail since the proof procedure is completely similar to that in [11]. ∎

Lemma A.3.

One has that for δ>0\delta>0,

nei(xξt|ξ|)f^(ξ)dξL2({x:δt|x|2δ})Cδ12(f^L2(|ξ|1)+k=02k2f^L2(2k|ξ|2k+1)).\begin{split}&\Big{\|}\int_{\mathbb{R}^{n}}e^{i(x\cdot\xi-t|\xi|)}\hat{f}(\xi)\mathrm{d}\xi\Big{\|}_{L^{2}(\{x:\delta\leq t-|x|\leq 2\delta\})}\leq C\delta^{\frac{1}{2}}\Big{(}\|\hat{f}\|_{L^{2}(|\xi|\leq 1)}+\sum_{k=0}^{\infty}2^{\frac{k}{2}}\|\hat{f}\|_{L^{2}(2^{k}\leq|\xi|\leq 2^{k+1})}\Big{)}.\end{split} (A.151)
Proof.

The procedure of the proof is the same as that of Lemma A.5 in [17], one can refer to [17] for details. ∎

References

  • [1] W. Chen, M. Reissig, On the critical exponent and sharp lifespan estimates for semilinear damped wave equations with data from Sobolev spaces of negative order, J. Evol. Equ. 23 (2023), no. 1, Paper No. 13, 21 pp.
  • [2] M. D’Abbicco, The threshold of effective damping for semilinear wave equations, Math. Methods Appl. Sci. 38 (6) (2015), 1032–1045.
  • [3] M. D’Abbicco, Semilinear damped wave equations with data from Sobolev spaces of negative order: the critical case in Euclidean setting and in the Heisenberg space, arXiv:2408.11756.
  • [4] M. D’Abbicco, S. Lucente, M. Reissig, Semilinear wave equations with effective damping, Chin. Ann. Math. Ser. B 34 (2013), 345–380.
  • [5] M. D’Abbicco, S. Lucente, NLWE with a special scale invariant damping in odd space dimension, Discrete Contin. Dyn. Syst., 10th AIMS Conference. Suppl., (2015), 312-319.
  • [6] M. D’Abbicco, S. Lucente, M. Reissig, A shift in the Strauss exponent for semilinear wave equations with a not effective damping, J. Differential Equations 259 (2015), 5040–5073.
  • [7] M. R. Ebert, G. Girardi, M. Reissig, Critical regularity of nonlinearities in semilinear classical damped wave equations, Math. Ann. 378 (2020), 1311-1326.
  • [8] H. Fujita, On the blowing up of solutions of the Cauchy Problem for ut=Δu+u1+αu_{t}=\Delta u+u^{1+\alpha}, J. Fac. Sci. Univ. Tokyo 13 (1966), 109–124.
  • [9] K. Fujiwara, M. Ikeda, Y. Wakasugi, Estimates of lifespan and blow-up rates for the wave equation with a time dependent damping and a power-type nonlinearity, Funkc. Ekvacioj 62 (2) (2019), 157–189.
  • [10] A. Galstian, Global existence for the one-dimensional second order semilinear hyperbolic equations, J. Math. Anal. Appl. 344 (1) (2008), 76–98.
  • [11] V. Georgiev, H. Lindblad, C. D. Sogge, Weighted Strichartz estimates and global existence for semi-linear wave equations, Amer. J. Math. 119 (1997), 1291–1319.
  • [12] R. T. Glassey, Finite-time blow-up for solutions of nonlinear wave equations, Math. Z. 177 (1981), 323–340.
  • [13] R. T. Glassey, Existence in the large for \Boxu =F(u) in two space dimensions, Math. Z. 178 (1981), 233–261.
  • [14] D. He, I. Witt, H. Yin, On the global solution problem for semilinear generalized Tricomi equations, I, Calc. Var. Partial Differential Equations 56 (2017), no. 2, Paper No. 21, 24 pp.
  • [15] D. He, I. Witt, H. Yin, On semilinear Tricomi equations with critical exponents or in two space dimensions, J. Differential Equations 263 (2017), no. 12, 8102–8137.
  • [16] D. He, I. Witt, H. Yin, On the Strauss index of semilinear Tricomi equation, Commun. Pure Appl. Anal. 19 (2020), no. 10, 4817–4838.
  • [17] D. He, I. Witt, H. Yin, On the global solution problem of semilinear generalized Tricomi equations, II, Pacific J. Math. 314 (2021), no. 1, 29–80.
  • [18] D. He, I. Witt, H. Yin, Finite time blowup for the 1-D semilinear generalized Tricomi equation with subcritical or critical exponents, Methods Appl. Anal. 28 (2021), no. 3, 313–324.
  • [19] D. He, Q. Li, H. Yin, Global existence of small data weak solutions to the semilinear wave equations with time-dependent scale-invariant damping, preprint, 2024
  • [20] M. Ikeda, M. Sobajima, Life-span of solutions to semilinear wave equation with time-dependent critical damping for specially localized initial data, Math. Ann. 372 (3-4) (2018), 1017–1040.
  • [21] F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math. 28 (1979), 235–265.
  • [22] M. Kato, M. Sakuraba, Global existence and blow-up for semilinear damped wave equations in three space dimensions, Nonlinear Anal. 182 (2019), 209–225.
  • [23] C. E. Kenig, G. Ponce, L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), 527–620.
  • [24] N. Lai, H. Takamura, Blow-up for semilinear damped wave equations with subcritical exponent in the scattering case, Nonlinear Anal. 168 (2018), 222–237.
  • [25] N. Lai, H. Takamura, K. Wakasa, Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent, J. Differential Equations 263 (9) (2017), 5377–5394.
  • [26] N. Lai, Y. Zhou, Global existence for semilinear wave equations with scaling invariant damping in 3-D, Nonlinear Anal. 210 (2021), Paper No. 112392, 12 pp.
  • [27] Q. Li, H. Yin, Global weighted space-time estimates of small data weak solutions to 1-D semilinear wave equations with scaling invariant dampings, Preprint, 2024.
  • [28] Q. Li, H. Yin, Global weighted space-time estimates of small data weak solutions to 2-D semilinear wave equations with scaling invariant dampings, Preprint, 2024.
  • [29] T. Li, Y. Zhou, Breakdown of solutions to u+ut=|u|1+α\Box u+u_{t}=|u|^{1+\alpha}, Discrete Contin. Dynam. Systems Ser. A 1 (4) (1995), 503-520.
  • [30] J. Lin, K. Nishihara, J. Zhai, Critical exponent for the semilinear wave equation with time-dependent damping, Discrete Contin. Dyn. Syst. 32 (2012), 4307–4320.
  • [31] H. Lindblad, C. D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (1995), 357–426.
  • [32] M. Liu, C. Wang, Global existence for semilinear damped wave equations in relation with the Strauss conjecture, Discrete Contin. Dyn. Syst. 40 (2) (2020), 709–724.
  • [33] K. Nishihara, Asymptotic behavior of solutions to the semilinear wave equation with time-dependent damping, Tokyo J. Math. 34 (2) (2011), 327–343.
  • [34] A. Palmieri, A global existence result for a semilinear scale-invariant wave equation in even dimension, Math. Methods Appl. Sci.42 (8) (2019), 2680–2706.
  • [35] A. Palmieri, M. Reissig, A competition between Fujita and Strauss type exponents for blow-up of semi-linear wave equations with scale-invariant damping and mass, J. Differential Equations 266 (2-3) (2019), 1176–1220.
  • [36] Z. Ruan, I. Witt, H. Yin, The existence and singularity structures of low regularity solutions to higher order degenerate hyperbolic equations, J. Differential Equations 256 (2014), 407–460.
  • [37] Z. Ruan, I. Witt, H. Yin, On the existence and cusp singularity of solutions to semilinear generalized Tricomi equations with discontinuous initial data, Commun. Contemp. Math., 17 (2015), 1450028 (49 pages).
  • [38] Z. Ruan, I. Witt, H. Yin, On the existence of low regularity solutions to semilinear generalized Tricomi equations in mixed type domains, J. Differential Equations 259 (2015), 7406–7462.
  • [39] Z. Ruan, I. Witt, H. Yin, Minimal regularity solutions of semilinear generalized Tricomi equations, Pacific J. Math. 296 (2018), no. 1, 181–226.
  • [40] J. Schaeffer, The equation u=|u|p\Box u=|u|^{p} for the critical value of pp, Proc. Roy. Soc. Edinburgh 101 (1985), 31–44.
  • [41] T. Sideris, Nonexistence of global solutions to semilinear wave equations in high dimensions, J. Differential Equations 52 (1984), 378–406.
  • [42] E. M. Stein, Intepolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482-492.
  • [43] W. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal. 41 (1981), 110–133.
  • [44] G. Todorova, B. T. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2) (2001), 464–489.
  • [45] Z. Tu, J. Lin, A note on the blowup of scale invariant damping wave equation with sub-Strauss exponent, arXiv preprint arXiv:1709.00866, 2017.
  • [46] Z. Tu, J. Lin, Life-span of semilinear wave equations with scale-invariant damping: critical Strauss exponent case, Differential Integral Equations 32 (2019), no. 5-6, 249–264.
  • [47] Y. Wakasugi, Critical exponent for the semilinear wave equation with scale invariant damping, in: Fourier Analysis, Birkhäuser, Cham, 2014, pp. 375–390.
  • [48] Y. Wakasugi, On the diffusive structure for the damped wave equation with variable coefficients (Doctoral dissertation), Doctoral thesis, Osaka University, 2014.
  • [49] K. Wakasa, B. T. Yordanov, On the nonexistence of global solutions for critical semilinear wave equations with damping in the scattering case, Nonlinear Anal. 180 (2019), 67–74.
  • [50] C. Wang, Recent progress on the Strauss conjecture and related problems, Mathematica 48 (2018), no. 1, 111–130.
  • [51] J. Wirth, Wave equations with time-dependent dissipation. I. Non-effective dissipation, J. Differential Equations 222 (2006), no. 2, 487–514.
  • [52] J. Wirth, Wave equations with time-dependent dissipation. II. Effective dissipation, J. Differential Equations 232 (2007), no. 1, 74–103.
  • [53] K. Yagdjian, Global existence for the n-dimensional semilinear Tricomi-type equations, Comm. Partial Diff. Equations 31 (2006), 907–944.
  • [54] K. Yagdjian, The self-similar solutions of the Tricomi-type equations, Z. angew. Math. Phys. 58 (2007), 612–645.
  • [55] B. Yordanov, Q. S. Zhang, Finite time blow up for critical wave equations in high dimensions, J. Funct. Anal. 231 (2006), 361–374.
  • [56] Q. S. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case, C. R. Acad. Sci., Sér. 1 Math. 333 (2) (2001), 109–114.