This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Global dynamics of large solution for the compressible Navier-Stokes-Korteweg equations

Zihao Song
(Research Institute for Mathematical Sciences, Kyoto University
Kyoto, 606-8007, Japan
E-mail: [email protected]
)
Abstract

In this paper, we study the Navier-Stokes-Korteweg equations governed by the evolution of compressible fluids with capillarity effects. We first investigate the global well-posedness of solution in the critical Besov space for large initial data. Contrary to pure parabolic methods in Charve, Danchin and Xu [6], we also take the strong dispersion due to large capillarity coefficient κ\kappa into considerations. By establishing a dissipative-dispersive estimate, we are able to obtain uniform estimates and incompressible limits in terms of κ\kappa simultaneously.

Secondly, we establish the large time behaviors of the solution. We would make full use of both parabolic mechanics and dispersive structure which implicates our decay results without limitations for upper bound of derivatives while requiring no smallness for initial assumption.

Keywords: Global well-posedness; Incompressible limit; Large time behaviors; Dissipative-dispersive estimates; Navier-Stokes-Korteweg system
MSC 2020: 76N10, 35D35, 35Q30

1 Introduction

In this paper, we investigate the compressible Navier-Stokes-Korteweg model, whose theory formulation was first introduced by Van der Waals [45], Korteweg [31]. The model aims to study the dynamics of a liquid-vapor mixture in the Diffuse Interface (DI) approach, where the phase changes are described through the variations of the density. The rigorous derivation of the corresponding equations for the compressible Navier-Stokes-Korteweg system (NSK) reads as:

{tρ+div(ρu)=0,t(ρu)+div(ρuu)+P(ρ)=𝒜(u)+divK(ρ).\left\{\begin{array}[]{l}\partial_{t}\rho+\mathrm{div}(\rho u)=0,\\[2.84526pt] \partial_{t}(\rho u)+\mathrm{div}(\rho u\otimes u)+\nabla P(\rho)=\mathcal{A}(u)+\mathrm{div}K(\rho).\\[2.84526pt] \end{array}\right. (1.1)

Here, ρ=ρ(t,x)+\rho=\rho(t,x)\in\mathbb{R}_{+} and u=u(t,x)d(d2)u=u(t,x)\in\mathbb{R}^{d}(d\geq 2) are the unknown functions on [0,+)×d[0,+\infty)\times\mathbb{R}^{d}, which stand for the density and velocity field of a fluid, respectively. We neglect the thermal fluctuation so that the pressure P=P(ρ)P=P(\rho) reduces to a function of ρ\rho only. The notation 𝒜u\mathcal{A}u is given by 𝒜u=div(2μD(u))+(λdivu)\mathcal{A}u=\mathrm{div}(2\mu D(u))+\nabla(\lambda\mathrm{div}u) with D(u)12(u+Tu)D(u)\triangleq\frac{1}{2}(\nabla u+\nabla^{T}u), where the Lamé coefficients λ\lambda and μ\mu (the bulk and shear viscosities) are density-dependent functions, respectively. In order to ensure the uniform ellipticity of 𝒜u\mathcal{A}u, they are assumed to satisfy

λ>0,νλ+2μ>0.\lambda>0,\nu\triangleq\lambda+2\mu>0.

In the following, the Korteweg tensor is given by (see [2])

divK(ρ)=κρ(m(ρ)Δρ+12m(ρ))|ρ|2).\mathrm{div}K(\rho)=\kappa\rho\nabla\big{(}m(\rho)\Delta\rho+\frac{1}{2}m^{\prime}(\rho))|\nabla\rho|^{2}\big{)}.

Here, κ+\kappa\in\mathbb{R}^{+} represents the capillarity coefficient while m(ρ)m(\rho) may depend on ρ\rho in general. The initial condition of System (1.1) is prescribed by

(ρ,u)|t=0=(ρ0(x),u0(x)),xd.\left(\rho,u\right)|_{t=0}=\left(\rho_{0}(x),u_{0}(x)\right),\ x\in\mathbb{R}^{d}. (1.2)

In this paper, we investigate the Cauchy problem (1.1)-(1.2), where initial data tends to a constant equilibrium (ρ,0)(\rho^{\ast},0) with ρ>0\rho^{\ast}>0.

There were fruitful mathematical results on the compressible fluid models of Korteweg type in the past thirty years. Hattori and Li [24, 25] obtained global smooth solutions for initial data close enough to a stable equilibrium (ρ,0)(\rho^{\ast},0). Bresch, Desjardins and Lin [16] established the global existence of weak solutions in a periodic or strip domain. However, the uniqueness problem of weak solutions has not been solved. A natural way of dealing with the uniqueness is to find a functional setting as large as possible in which the existence and uniqueness hold. This idea is closely linked with the concept of scaling invariance space, which has been successfully employed by Fujita-Kato [19], Cannone [5] and Chemin [9] for incompressible Navier-Stokes equations. Danchin [13] first developed the idea of scaling invariance in compressible Navier-Stokes equations. Note the fact that (NSK) is invariant by the transformation

ρ(t,x)ρ(2t,x),u(t,x)u(2t,x),>0\displaystyle\rho(t,x)\leadsto\rho(\ell^{2}t,\ell x),\quad u(t,x)\leadsto\ell u(\ell^{2}t,\ell x),\ \ \ell>0

up to a change of the pressure term PP into 2P\ell^{2}P, Danchin and Desjardins [15] investigated the global well-posedness of perturbation solutions for (NSK) in critical Besov spaces. Charve, Danchin and Xu [6] investigated the global existence and Gevrey analyticity of (1.1) in more general critical LpL^{p} framework. Chikami and Kobayashi [12] studied the optimal time-decay estimates in the L2L^{2} critical Besov spaces. Kawashima, Shibata and Xu [28] investigated the dissipation effect of Korteweg tensor with the density-dependent capillarity and developed the LpL^{p} energy methods (independent of spectral analysis), which leads to the optimal time-decay estimates of strong solutions. Murata and Shibata [36] addressed a totally different statement on the global existence of strong solutions to (1.1) in Besov spaces, where the maximal LpL^{p}-LqL^{q} regularity was mainly employed.

One important direction of studying fluid models is to investigate the singular limit in terms of different physical parameters. For Navier-Stokes-Korteweg equations, the zero mach number limit is studied in [34, 27]. As for vanishing limits for capillarity coefficient, one could refer to results given in [4, 3, 26]. Recently, some multi-scale problems for Korteweg system with high rotation were considered in Fanelli [18].

However, there are few results concern the case with large Korteweg coefficient κ\kappa, which may reflect strong capillarity effect for the fluid, and the corresponding converge process. In this paper, we would investigate this situation where the perturbation system admits not only parabolic mechanics, but also dispersive structures because of its strong capillarity effect. Our first goal is to prove the global well-posedness with initial velocity arbitrary large in the critical Besov space under κ\kappa large enough and the global existence of the incompressible Navier-Stokes equation (INS) which reads

{tvμΔv+vv+π=0,divv=0,(INS)v|t=0=v0(x).\qquad\qquad\left\{\begin{array}[]{l}\partial_{t}v-\mu\Delta v+v\cdot\nabla v+\nabla\pi=0,\\[2.84526pt] \mathrm{div}v=0,\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\mathrm{(INS)}\\[2.84526pt] v|_{t=0}=v_{0}(x).\end{array}\right.

Also, we will show the solution we construct converges to the solution of the incompressible Navier-Stokes equation. Moreover, we would establish the optimal decay rates for the solution of any order derivatives, but without asking any smallness for the initial assumption.

2 Reformulation and main results

Without loss of generality, we shall fix the equilibrium of density to be ρ=1\rho^{\ast}=1 and assume P(1)=μ(1)=λ(1)=m(1)=1P^{\prime}(1)=\mu(1)=\lambda(1)=m(1)=1. Denote the density fluctuation by a=κ(ρ)a=\sqrt{\kappa}\mathcal{L}(\rho) where

(ρ)=1ρm(s)s𝑑s.\mathcal{L}(\rho)=\int\limits^{\rho}_{1}\sqrt{\frac{m(s)}{s}}ds.

Then the density ρ\rho is also given by ρ=1(κ12a)\rho=\mathcal{L}^{-1}(\kappa^{-\frac{1}{2}}a). A simple calculation leads us to the following perturbation problem:

{ta+κdivu=f,tu𝒜¯u+1κaκΔa=g,(a,u)|t=0=(a0,u0),\left\{\begin{array}[]{l}\partial_{t}a+\sqrt{\kappa}\mathrm{div}u=f,\\[2.84526pt] \partial_{t}u-\bar{\mathcal{A}}u+\frac{1}{\sqrt{\kappa}}\nabla a-\sqrt{\kappa}\nabla\Delta a=g,\\[2.84526pt] (a,u)|_{t=0}=(a_{0},u_{0}),\\[2.84526pt] \end{array}\right. (2.3)

with

a0κ(ρ0)and𝒜¯u=Δu+2divu.a_{0}\triangleq\sqrt{\kappa}\mathcal{L}(\rho_{0})\quad\mbox{and}\quad\bar{\mathcal{A}}u=\Delta u+2\nabla\mathrm{div}u.

One can write the nonlinear terms f=uaκψ~(κ12a)divuf=-u\cdot\nabla a-\sqrt{\kappa}\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)\mathrm{div}u and g=i=15gig=\sum\limits^{5}_{i=1}g_{i} as follows:

{g1=uu,g2=(1+Q~(κ12a))(div(2μ~(κ12a)D(u))+(λ~(κ12a)divu)),g3=κ12G~(κ12a)a,g4=κ(ψ~(κ12a)Δa),g5=12(|a|2),\left\{\begin{array}[]{l}g_{1}=u\cdot\nabla u,\\[2.84526pt] g_{2}=\big{(}1+\widetilde{Q}(\kappa^{-\frac{1}{2}}a)\big{)}\big{(}\mathrm{div}(2\widetilde{\mu}(\kappa^{-\frac{1}{2}}a)D(u))+\nabla(\widetilde{\lambda}(\kappa^{-\frac{1}{2}}a)\mathrm{div}u)\big{)},\\[2.84526pt] g_{3}=\kappa^{-\frac{1}{2}}\widetilde{G}(\kappa^{-\frac{1}{2}}a)\nabla a,\\[2.84526pt] g_{4}=\sqrt{\kappa}\nabla(\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)\Delta a),\\[2.84526pt] g_{5}=\frac{1}{2}\nabla(|\nabla a|^{2}),\\[2.84526pt] \end{array}\right. (2.4)

where Q~(a)=Q1(a)\widetilde{Q}(a)=Q\circ\mathcal{L}^{-1}(a) (similarly definitions for μ~,λ~,G~,ψ~\widetilde{\mu},\widetilde{\lambda},\widetilde{G},\widetilde{\psi}) with

Q(ρ)\displaystyle Q(\rho) =\displaystyle= 1ρ1,G(ρ)=P(ρ)m(ρ)ρ1,μ¯(ρ)=μ(ρ)1,\displaystyle\frac{1}{\rho}-1,\quad G(\rho)=\frac{P^{\prime}(\rho)}{\sqrt{m(\rho)\rho}}-1,\quad\bar{\mu}(\rho)=\mu(\rho)-1,
λ¯(ρ)=λ(ρ)1,ψ(ρ)=m(ρ)ρ1.\displaystyle\bar{\lambda}(\rho)=\lambda(\rho)-1,\quad\psi(\rho)=\sqrt{m(\rho)\rho}-1.

In our analysis, those functions are assumed to be smooth and vanishing at zero whose exact values will not matter. Now, denote Leray projector by 𝒫=Id(Δ)1div\mathcal{P}=\mathrm{Id}-\nabla(-\Delta)^{-1}\mathrm{div}, our first main result is stated as follows.

Theorem 2.1.

Assume d2d\geq 2 and κ>1\kappa>1. Let (1κa0,a0,u0)B˙2,1d21(\frac{1}{\sqrt{\kappa}}a_{0},\nabla a_{0},u_{0})\in\dot{B}^{\frac{d}{2}-1}_{2,1}. If (INS)\mathrm{(INS)} with initial data 𝒫u0{\mathcal{P}}u_{0} admits a global solution vv satisfying for any T(0,)T\in(0,\infty) that

v𝒞T(B˙2,1d21)LT1(B˙2,1d2+1),\displaystyle v\in\mathcal{C}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})\cap L^{1}_{T}(\dot{B}^{\frac{d}{2}+1}_{2,1}), (2.5)

then there exists a positive κ0\kappa_{0} depending on the initial data such that for all κκ0\kappa\geq\kappa_{0}, the Cauchy problem (2.3)-(2.4) admits a unique global-in-time solution (a,u)(a,u) satisfying

(1κa,a,u)𝒞T(B˙2,1d21)LT1(B˙2,1d2+1).(\frac{1}{\sqrt{\kappa}}a,\nabla a,u)\in\mathcal{C}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})\cap L^{1}_{T}(\dot{B}^{\frac{d}{2}+1}_{2,1}). (2.6)

Furthermore, (a,𝒬u)(\nabla a,{\mathcal{Q}}u) tends to 0 in L~T2(B˙p,1dp)\widetilde{L}^{2}_{T}(\dot{B}^{\frac{d}{p}}_{p,1}), 𝒫u{\mathcal{P}}u tends to vv in LT(B˙2,1d21)LT1(B˙2,1d2+1)L^{\infty}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})\cap L^{1}_{T}(\dot{B}^{\frac{d}{2}+1}_{2,1}) satisfying

(a,𝒬u)L~T2(B˙p,1dp)Cκδ;𝒫uvLT(B˙2,1d21)LT1(B˙2,1d2+1)Cκδ2,\|(\nabla a,\mathcal{Q}u)\|_{\widetilde{L}^{2}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})}\leq C\kappa^{-\delta};\quad\|{\mathcal{P}}u-v\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})\cap L^{1}_{T}(\dot{B}^{\frac{d}{2}+1}_{2,1})}\leq C\kappa^{-\frac{\delta}{2}}, (2.7)

where (δ,p)(\delta,p) satisfies

(δ,p)={(14,2dd2),d3(14ε,12ε),d=2(\delta,p)=\left\{\begin{array}[]{l}(\frac{1}{4},\frac{2d}{d-2}),\qquad\quad d\geq 3\\[2.84526pt] (\frac{1}{4}-\varepsilon,\frac{1}{2\varepsilon}),\qquad d=2\end{array}\right. (2.8)

with positive ε>0\varepsilon>0 sufficient small.

Remark 2.1.

The motivation of Theorem 2.1 initiates from observation that linearized system admits a Schro¨\ddot{o}dinger  type dispersive structure brought by the three order term. Different from pure parabolic methods in [6], we would take both dissipation and dispersion into consideration and establish a Strichartz type estimate which implicates some smallness in terms of the coefficient κ\kappa.

Instead of classical perturbation variable ρρ\rho-\rho^{*}, we apply the modified density a(ρ)a(\rho) which defines a diffeomorphism from +\mathbb{R}^{+} onto a small neighborhood of 0. This fact enables us to symmtric those quasi-linear nonlinearities don’t contain smallness of κ\kappa, and offers us some nice cancellations in energy estimates.

Remark 2.2.

The global-in-time well-posedness of (INS)\mathrm{(INS)} with large initial data has been fixed in many directions. In 2D case, (INS)\mathrm{(INS)} is always globally well-posed, see Leray [33], Serrin [39]. For the case d=3d=3, the global well-posedness is ensured with initial data with special geometry structure, like axisymmetric [32], or those vary slowly in one space direction, see [10].

Secondly, we are going to establish the decay rates for the solution we establish above. Denote the multiplier Λαf1(|ξ|αf^(ξ))\Lambda^{\alpha}f\triangleq\mathcal{F}^{-1}(|\xi|^{\alpha}\widehat{f}(\xi)), with α\alpha\in\mathbb{R}, our decay results are given as follows:

Theorem 2.2.

Let d2d\geq 2, 1d2<σd21-\frac{d}{2}<\sigma\leq\frac{d}{2}. Let (a,u)(a,u) be the global-in-time solution constructed in Theorem 2.1. Assume initial data additionally satisfies

(1κa0,a0,u0)B˙2,σ,\displaystyle(\frac{1}{\sqrt{\kappa}}a_{0},\nabla a_{0},u_{0})\in\dot{B}^{-\sigma}_{2,\infty}, (2.9)

If the solution vv of (INS)\mathrm{(INS)} with initial data 𝒫u0{\mathcal{P}}u_{0} shares the decay estimates for any index |α|>σ|\alpha|>-\sigma such that

ΛαvL2t|α|2σ2,\displaystyle\|\Lambda^{\alpha}v\|_{L^{2}}\lesssim t^{-\frac{|\alpha|}{2}-\frac{\sigma}{2}}, (2.10)

then (a,u)(a,u) holds for any t1t\geq 1

Λα(1κa,a,u)L2t|α|2σ2.\displaystyle\|\Lambda^{\alpha}(\frac{1}{\sqrt{\kappa}}a,\nabla a,u)\|_{L^{2}}\lesssim t^{-\frac{|\alpha|}{2}-\frac{\sigma}{2}}. (2.11)
Remark 2.3.

The decay of solutions for heat equations or (INS)\mathrm{(INS)} originated from series works of Schonbek [41, 42] and later developed by [35, 37, 46]. On the other hand, the decay of high order derivatives is also considered by [43, 38]. We remark that according to [35], one is able to prove (2.10) once 𝒫u0B˙2,σ{\mathcal{P}}u_{0}\in\dot{B}^{-\sigma}_{2,\infty}.

Taking σ=d2\sigma=\frac{d}{2} (L1B˙2,σL^{1}\hookrightarrow\dot{B}^{-\sigma}_{2,\infty}), Theorem 2.2 and Sobolev embedding reflect classical decay rates of any order derivatives as heat equations where

Λα(1κa,a,u)Lrtd2(11r)α2,r2,t1\|\Lambda^{\alpha}(\frac{1}{\sqrt{\kappa}}a,\nabla a,u)\|_{L^{r}}\lesssim t^{-\frac{d}{2}(1-\frac{1}{r})-\frac{\alpha}{2}},\quad r\geq 2,t\geq 1

with initial assumption arbitrary large.

Remark 2.4.

Results of Theorem 2.1 and 2.2 could also be obtained for those irrotational fluids. At this moment, the velocity could be written as a potential while the incompressible part disappears, and one may remove those assumptions concerns 𝒫u0{\mathcal{P}}u_{0} in the main Theorems.

2.1 Strategy

In order to understand the proof of Theorems 2.1 and Theorems 2.2 well, we make a formal spectral analysis to the linearized system of (2.3) which can be written in terms of the divergence-free part 𝒫u\mathcal{P}u and the compressible one 𝒬u=(I𝒫)u\mathcal{Q}u=(I-\mathcal{P})u:

{ta+κdiv𝒬u=f,t𝒬u2Δ𝒬u+1κaκΔa=𝒬g,t𝒫uΔ𝒫u=𝒫g.\left\{\begin{array}[]{l}\partial_{t}a+\sqrt{\kappa}\mathrm{div}\mathcal{Q}u=f,\\[2.84526pt] \partial_{t}\mathcal{Q}u-2\Delta\mathcal{Q}u+\frac{1}{\sqrt{\kappa}}\nabla a-\sqrt{\kappa}\nabla\Delta a=\mathcal{Q}g,\\[2.84526pt] \partial_{t}\mathcal{P}u-\Delta\mathcal{P}u=\mathcal{P}g.\end{array}\right. (2.12)

It is clearly that the incompressible part 𝒫u\mathcal{P}u just satisfies an ordinary heat equation. Regarding the compressible part 𝒬u\mathcal{Q}u, it is convenient to introduce 𝒱Λ1divu\mathcal{V}\triangleq\Lambda^{-1}\mbox{\rm div}\;\!u where the new variable (a,𝒱)(a,\mathcal{V}) satisfies the coupling 2×22\times 2 system:

{ta+κΛ𝒱=0,t𝒱2Δ𝒱1κΛaκΛ3a=0.\left\{\begin{array}[]{l}\partial_{t}a+\sqrt{\kappa}\Lambda\mathcal{V}=0,\\[4.30554pt] \partial_{t}\mathcal{V}-2\Delta\mathcal{V}-\frac{1}{\sqrt{\kappa}}\Lambda a-\sqrt{\kappa}\Lambda^{3}a=0.\end{array}\right. (2.13)

Taking the Fourier transform with respect to xdx\in\mathbb{R}^{d} leads to

ddt(a^𝒱^)=A(ξ)(a^𝒱^)withA(ξ)=(0κ|ξ|1κ|ξ|+κ|ξ|32|ξ|2),\frac{d}{dt}\left(\begin{array}[]{c}\widehat{a}\\ \widehat{\mathcal{V}}\\ \end{array}\right)=A(\xi)\left(\begin{array}[]{c}\widehat{a}\\ \widehat{\mathcal{V}}\\ \end{array}\right)\quad\mbox{with}\quad A(\xi)=\left(\begin{array}[]{cc}0&-\sqrt{\kappa}|\xi|\\ \frac{1}{\sqrt{\kappa}}|\xi|+\sqrt{\kappa}|\xi|^{3}&-2|\xi|^{2}\\ \end{array}\right), (2.14)

where ξd\xi\in\mathbb{R}^{d} is the Fourier variable. It is not difficult to check that

λ±=|ξ|2±(1κ)|ξ|4|ξ|2.\lambda_{\pm}=|\xi|^{2}\pm\sqrt{(1-\kappa)|\xi|^{4}-|\xi|^{2}}.

Consequently, it is found that the coupling system presents both dissipation and dispersion. In particular, while κ>1\kappa>1, the corresponding dispersive structure is closely linked with the so called the Gross-Patavskii equation which reads as

itψ+Δψ2Reψ=F(ψ).i\partial_{t}\psi+\Delta\psi-2\mathrm{Re}\psi=F(\psi). (2.15)

Based on dispersive estimates of Gross-Patavskii equations established in Gustafson, Nakanishi and Tsai [22, 23], we would take not only optimal smooth effect of heat kernel (see ϕ1\phi_{1} in Figure 1), but also Strichartz estimates (ϕ2\phi_{2} in Figure 1) into considerations, which enables us to establish a dissipative-dispersive estimate in L~Tr(B˙p,qs)\widetilde{L}^{r}_{T}(\dot{B}^{s}_{p,q}) space (see Lemma 3.1), i.e. area Ψ\Psi in Figure 1 and obtain some smallness in terms of sufficient large dispersion coefficient κ\kappa.

Refer to caption
Figure 1: d3d=2d\geq 3\qquad\qquad\qquad\qquad\qquad\qquad\qquad d=2\qquad\qquad\qquad

Based on the dissipative-dispersive estimates and uniform control of vv, we are able to give the uniform estimates with initial data arbitrary large. Moreover, the incompressible limits are obtained according to different dimensions.

Our second result would focus on the decay rates. Observe the parabolic behavior of the perturbation system, we expect to establish decay for even high order derivatives. Different from the energy method [28] or Gevrey method established in [40], our decay derivation consists of two steps:

  • Evolution of negative Besov norm (a,u)B˙2,σ\|(a,u)\|_{\dot{B}^{-\sigma}_{2,\infty}};

  • Decay estimates for high order derivatives.

The main difficulties come from bounding nonlinearities since initial data doesn’t indicates any smallness. The Strichartz estimates would again be our main tool to offer smallness in terms of κ\kappa where we shall carefully deal with different frequency interactions.

Throughout the paper, C>0C>0 stands for a generic “constant”. For brevity, fgf\lesssim g means that fCgf\leq Cg. It will also be understood that (f,g)X=fX+gX\|(f,g)\|_{X}=\|f\|_{X}+\|g\|_{X} for all f,gXf,g\in X.

Finally, the rest of this paper unfolds as follows: in Section 3, we prove the global well-posedness and incompressible limits of solutions. Section 4 is devoted to giving the optimal decay estimates. In the last section (“Appendix”), we recall the classical Littlewood-Paley theory.

3 The global well-posedness and incompressible limit

We focus on the proof of Theorem 2.1 in this section. Before the proof, we shall present some notations concern functional spaces:

T(1κa,a,𝒬u)LT(B˙2,1d21)+(1κa,a,𝒬u)LT1(B˙2,1d2+1);\displaystyle\mathcal{E}_{T}\triangleq\|(\frac{1}{\sqrt{\kappa}}a,\nabla a,{\mathcal{Q}}u)\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})}+\|(\frac{1}{\sqrt{\kappa}}a,\nabla a,{\mathcal{Q}}u)\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}+1}_{2,1})}; (3.1)
𝒲T𝒫uvLT(B˙2,1d21)+𝒫uvLT1(B˙2,1d2+1).\displaystyle\mathcal{W}_{T}\triangleq\|{\mathcal{P}}u-v\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})}+\|{\mathcal{P}}u-v\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}+1}_{2,1})}. (3.2)

Also, the following Strichartz space is defined:

𝒟Tκδ(κ1ΔΔa,𝒬u)L~T2(B˙p,1dp),\displaystyle\mathcal{D}_{T}\triangleq\kappa^{\delta}\|(\sqrt{\frac{\kappa^{-1}-\Delta}{-\Delta}}\nabla a,\mathcal{Q}u)\|_{\widetilde{L}^{2}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})}, (3.3)

here (δ,p)(\delta,p) coincides with (2.8). Moreover, we shall define 𝒱t\mathcal{V}_{t} to present functional space for solutions of (INS):

𝒱TvLT(B˙2,1d21)+vLT1(B˙2,1d2+1).\displaystyle\mathcal{V}_{T}\triangleq\|v\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})}+\|v\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}+1}_{2,1})}. (3.4)

We shall first establish the priori estimates of T,𝒲T,𝒟T\mathcal{E}_{T},\mathcal{W}_{T},\mathcal{D}_{T} for the solution of (2.3)-(2.4) under the critical regularity. Moreover, we show such a priori estimate is uniform in terms of arbitrary large initial data and 𝒱T\mathcal{V}_{T} if the capillary effect is strong enough, i.e. κκ0\kappa\geq\kappa_{0} for some κ0\kappa_{0} sufficient large. Then the well-posedness is ensured by those local results established in [15] and a bootstramp argument.

3.1 Priori estimates

This subsection is devoted to proving the priori estimate. Without loss of generality, we always assume that κ>1\kappa>1. Our main result is to prove

Proposition 3.1.

Let d2d\geq 2 and κ>1\kappa>1. Suppose that (a,u)(a,u) is the solution of system (1.1)-(1.2). Then the following priori estimates holds true

𝒟T+TC((1κa0,a0,𝒬u0)B˙2,1d21+𝒱T2+𝒲T2+κδ(1+T)(𝒟T+T)2)\mathcal{D}_{T}+\mathcal{E}_{T}\leq C\big{(}\|(\frac{1}{\sqrt{\kappa}}a_{0},\nabla a_{0},{\mathcal{Q}}u_{0})\|_{\dot{B}^{\frac{d}{2}-1}_{2,1}}+\mathcal{V}^{2}_{T}+\mathcal{W}^{2}_{T}+\kappa^{-\delta}(1+\mathcal{E}_{T})(\mathcal{D}_{T}+\mathcal{E}_{T})^{2}\big{)} (3.5)

while

𝒲TCeC~𝒱T(𝒲T2+κδ2(1+T)(𝒟T+T+𝒱T+𝒲T)2).\displaystyle\mathcal{W}_{T}\leq Ce^{\widetilde{C}\mathcal{V}_{T}}\big{(}\mathcal{W}^{2}_{T}+\kappa^{-\frac{\delta}{2}}(1+\mathcal{E}_{T})(\mathcal{D}_{T}+\mathcal{E}_{T}+\mathcal{V}_{T}+\mathcal{W}_{T})^{2}\big{)}. (3.6)
Proof.

We begin with establishing the linear estimates by bounding the dissipative-dispersive coupling system and incompressible part respectively.

Step1: Dissipative estimates in energy framework for (a,𝒬u)(a,\mathcal{Q}u).

The coupling system of (a,𝒬u)(a,\mathcal{Q}u) could be written as

{ta+κdiv𝒬u=f,t𝒬u2Δu+1κaκΔa=𝒬g.\left\{\begin{array}[]{l}\partial_{t}a+\sqrt{\kappa}\mathrm{div}\mathcal{Q}u=f,\\[2.84526pt] \partial_{t}\mathcal{Q}u-2\Delta u+\frac{1}{\sqrt{\kappa}}\nabla a-\sqrt{\kappa}\nabla\Delta a=\mathcal{Q}g.\end{array}\right. (3.7)

Imposing the gradient on the continuity equation, then Fourier localization leads us to

{tΔ˙ja+κΔ˙jΔ𝒬u=Δ˙jf,tΔ˙j𝒬u2Δ˙jΔu+1κΔ˙jaκΔ˙jΔa=Δ˙j𝒬g.\left\{\begin{array}[]{l}\partial_{t}\dot{\Delta}_{j}\nabla a+\sqrt{\kappa}\dot{\Delta}_{j}\Delta\mathcal{Q}u=\dot{\Delta}_{j}\nabla f,\\[2.84526pt] \partial_{t}\dot{\Delta}_{j}\mathcal{Q}u-2\dot{\Delta}_{j}\Delta u+\frac{1}{\sqrt{\kappa}}\dot{\Delta}_{j}\nabla a-\sqrt{\kappa}\dot{\Delta}_{j}\nabla\Delta a=\dot{\Delta}_{j}\mathcal{Q}g.\end{array}\right. (3.8)

Denote (aj,uj)=(Δ˙ja,Δ˙ju)(a_{j},u_{j})=(\dot{\Delta}_{j}a,\dot{\Delta}_{j}u) and (fj,gj)=(Δ˙jf,Δ˙jg)(f_{j},g_{j})=(\dot{\Delta}_{j}f,\dot{\Delta}_{j}g), L2L^{2} inner product yields

12ddtajL22+κdΔ𝒬ujajdx=dfjajdx.\displaystyle\frac{1}{2}\frac{d}{dt}\|\nabla a_{j}\|^{2}_{L^{2}}+\sqrt{\kappa}\int_{\mathbb{R}^{d}}\Delta\mathcal{Q}u_{j}\nabla a_{j}dx=\int_{\mathbb{R}^{d}}\nabla f_{j}\nabla a_{j}dx. (3.9)
12ddt𝒬ujL22+2𝒬ujL22+1κdaj𝒬ujdxκdΔaj𝒬ujdx=dgj𝒬uj𝑑x.\frac{1}{2}\frac{d}{dt}\|\mathcal{Q}u_{j}\|^{2}_{L^{2}}+2\|\nabla\mathcal{Q}u_{j}\|^{2}_{L^{2}}+\frac{1}{\sqrt{\kappa}}\int_{\mathbb{R}^{d}}\nabla a_{j}\mathcal{Q}u_{j}dx\\ -\sqrt{\kappa}\int_{\mathbb{R}^{d}}\nabla\Delta a_{j}\mathcal{Q}u_{j}dx=\int_{\mathbb{R}^{d}}g_{j}\mathcal{Q}u_{j}dx. (3.10)
κ1212ddtd𝒬ujajdx𝒬ujL222κd𝒬ujajdx+κ1ajL22+ΔajL22=κ12dfj𝒬ujdx+κ12dgjajdx.\kappa^{-\frac{1}{2}}\frac{1}{2}\frac{d}{dt}\int_{\mathbb{R}^{d}}\mathcal{Q}u_{j}\nabla a_{j}dx-\|\nabla\mathcal{Q}u_{j}\|^{2}_{L^{2}}-\frac{2}{\sqrt{\kappa}}\int_{\mathbb{R}^{d}}\mathcal{Q}u_{j}\nabla a_{j}dx+\kappa^{-1}\|\nabla a_{j}\|^{2}_{L^{2}}+\|\Delta a_{j}\|^{2}_{L^{2}}\\ =\kappa^{-\frac{1}{2}}\int_{\mathbb{R}^{d}}\nabla f_{j}\mathcal{Q}u_{j}dx+\kappa^{-\frac{1}{2}}\int_{\mathbb{R}^{d}}g_{j}\nabla a_{j}dx. (3.11)

Now to deal with quasi-linear nonlinearity κψ~(κ12a)divu-\sqrt{\kappa}\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)\mathrm{div}u in ff and κ(ψ~(κ12a)Δa)\sqrt{\kappa}\nabla(\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)\Delta a) in gg, we have

dΔ˙j(ψ~(κ12a)divu)ajdx=d[Δ˙j,ψ~(κ12a)]divuΔaj𝑑x+dψ~(κ12a)div𝒬ujΔaj𝑑x-\int_{\mathbb{R}^{d}}\dot{\Delta}_{j}\nabla(\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)\mathrm{div}u)\nabla a_{j}dx=\int_{\mathbb{R}^{d}}[\dot{\Delta}_{j},\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)]\mathrm{div}u\Delta a_{j}dx\\ +\int_{\mathbb{R}^{d}}\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)\mathrm{div}\mathcal{Q}u_{j}\Delta a_{j}dx

while it holds

dΔ˙j(ψ~(κ12a)Δa)𝒬ujdx=d[Δ˙j,ψ~(κ12a)]Δadiv𝒬uj𝑑xdψ~(κ12a)divΔaj𝒬uj𝑑x.\int_{\mathbb{R}^{d}}\dot{\Delta}_{j}\nabla(\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)\Delta a)\mathcal{Q}u_{j}dx=-\int_{\mathbb{R}^{d}}[\dot{\Delta}_{j},\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)]\Delta a\mathrm{div}{\mathcal{Q}}u_{j}dx\\ -\int_{\mathbb{R}^{d}}\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)\mathrm{div}\Delta a_{j}\mathcal{Q}u_{j}dx.

Notice that it also holds

12κddtajL22+1κddiv𝒬ujaj𝑑x=1κdfjaj𝑑x.\displaystyle\frac{1}{2\kappa}\frac{d}{dt}\|a_{j}\|^{2}_{L^{2}}+\frac{1}{\sqrt{\kappa}}\int_{\mathbb{R}^{d}}\mathrm{div}\mathcal{Q}u_{j}a_{j}dx=-\frac{1}{\kappa}\int_{\mathbb{R}^{d}}f_{j}a_{j}dx. (3.12)

We immediately deduced from (3.9)-(3.12) that

ddt(1κaj,2jaj,uj)L2+c22j(1κaj,2jaj,uj)L2(1κfj,gjg4,j)L2+2jΔ˙j(ua)L2+2j[Δ˙j,ψ~(κ12a)](divu+Δa)L2.\frac{d}{dt}\|(\frac{1}{\sqrt{\kappa}}a_{j},2^{j}a_{j},u_{j})\|_{L^{2}}+c2^{2j}\|(\frac{1}{\sqrt{\kappa}}a_{j},2^{j}a_{j},u_{j})\|_{L^{2}}\leq\|(\frac{1}{\sqrt{\kappa}}f_{j},g_{j}-g_{4,j})\|_{L^{2}}\\ +2^{j}\|\dot{\Delta}_{j}(u\cdot\nabla a)\|_{L^{2}}+2^{j}\|[\dot{\Delta}_{j},\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)](\mathrm{div}u+\Delta a)\|_{L^{2}}. (3.13)

Hence taking B˙2,1d21\dot{B}^{\frac{d}{2}-1}_{2,1} norm and integral on tt lead us to

(1κa,a,𝒬u)LT(B˙2,1d21)LT1(B˙2,1d2+1)(1κa0,a0,𝒬u0)B˙2,1d21+uaLT1(B˙2,1d2)+(1κf,𝒬g𝒬g4)LT1(B˙2,1d21)+κ0T[Δ˙j,ψ~(κ12a)](divu+Δa)B˙2,1d2𝑑s.\|(\frac{1}{\sqrt{\kappa}}a,\nabla a,{\mathcal{Q}}u)\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})\cap L^{1}_{T}(\dot{B}^{\frac{d}{2}+1}_{2,1})}\lesssim\|(\frac{1}{\sqrt{\kappa}}a_{0},\nabla a_{0},{\mathcal{Q}}u_{0})\|_{\dot{B}^{\frac{d}{2}-1}_{2,1}}+\|u\cdot\nabla a\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}}_{2,1})}\\ +\|(\frac{1}{\sqrt{\kappa}}f,{\mathcal{Q}}g-{\mathcal{Q}}g_{4})\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})}+\sqrt{\kappa}\int^{T}_{0}\|[\dot{\Delta}_{j},\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)](\mathrm{div}u+\Delta a)\|_{\dot{B}^{\frac{d}{2}}_{2,1}}ds. (3.14)

Step2: Dissipative-dispersive estimates for (a,𝒬u)(a,\mathcal{Q}u).

Secondly we shall establish dissipative-dispersive estimates of (a,𝒬u)(a,\mathcal{Q}u) where one could find some smallness in L~Tr(B˙p,1s)\widetilde{L}^{r}_{T}(\dot{B}^{s}_{p,1}) (1<r<,2<p<1<r<\infty,2<p<\infty) space when dispersive coefficient κ\kappa is large. Inspired by [22], we denote HΔ(κ1Δ)H\triangleq\sqrt{-\Delta(\kappa^{-1}-\Delta)}, UΔκ1ΔU\triangleq\sqrt{\frac{-\Delta}{\kappa^{-1}-\Delta}} and define zU1a+i𝒬uz\triangleq U^{-1}\nabla a+i{\mathcal{Q}}u, then (3.8) could be rewritten as

itz2iΔzκHz=2iHa+iU1fg.i\partial_{t}z-2i\Delta z-\sqrt{\kappa}Hz=-2iH\nabla a+iU^{-1}\nabla f-g.

Then Duhamel formula yields

z(t)=eiκHteΔtz0+0teiκH(ts)eΔ(ts)(2iHa+iU1fg)(s)𝑑s.\displaystyle z(t)=e^{i\sqrt{\kappa}Ht}e^{\Delta t}z_{0}+\int^{t}_{0}e^{i\sqrt{\kappa}H(t-s)}e^{\Delta(t-s)}(-2iH\nabla a+iU^{-1}\nabla f-g)(s)ds. (3.15)

where z0=U1a0+i𝒬u0z_{0}=U^{-1}\nabla a_{0}+i{\mathcal{Q}}u_{0}. The above equation defines a dissipative-dispersive semi-group eiκHteΔte^{i\sqrt{\kappa}Ht}e^{\Delta t} and we would establish corresponding Strichartz type estimate containing smooth effect under dissipation. Let us first state the following Proposition concern the corresponding semi-group estimate under localization:

Proposition 3.2.

Set κ>0\kappa>0. Let p[2,]p\in[2,\infty] and 1=1p+1p1=\frac{1}{p}+\frac{1}{p^{\prime}}. For any distribution ff, there holds for t>0t>0

eiκHteΔtfjLp(κt)dpd2e22jtfjLp.\displaystyle\|e^{i\sqrt{\kappa}Ht}e^{\Delta t}f_{j}\|_{L^{p}}\lesssim(\sqrt{\kappa}t)^{\frac{d}{p}-\frac{d}{2}}e^{-2^{2j}t}\|f_{j}\|_{L^{p^{\prime}}}. (3.16)

Above Proposition is obtained by dispersive estimates in terms of parameter κ\kappa, see Theorem 2.1 in [22, 23] and heat kernel estimates under Fourier localization. Since it is fundamental for our analysis, a sketch of it is given in Appendix A. Based on above proposition, we state the following Strichartz type estimates in Besov space which shall be frequently applied in this paper:

Lemma 3.1.

Set κ>0\kappa>0, q,r[1,]q,r\in[1,\infty], p[2,]p\in[2,\infty] and ss\in\mathbb{R}. Let (r,p)(r,p) satisfies the condition:

{d2dp2rdpd2+2,d312p2r<2p+1,d=2.\left\{\begin{array}[]{l}\frac{d}{2}-\frac{d}{p}\leq\frac{2}{r}\leq\frac{d}{p}-\frac{d}{2}+2,\quad d\geq 3\\[2.84526pt] 1-\frac{2}{p}\leq\frac{2}{r}<\frac{2}{p}+1,\quad\quad\quad d=2.\end{array}\right. (3.17)

For any kk satisfies k=2r+dpd2k=\frac{2}{r}+\frac{d}{p}-\frac{d}{2}, there holds

eiκHteΔtuL~Tr(B˙p,qs+k)κ14(k2r)uB˙2,qs;\displaystyle\|e^{i\sqrt{\kappa}Ht}e^{\Delta t}u\|_{\widetilde{L}^{r}_{T}(\dot{B}^{s+k}_{p,q})}\lesssim\kappa^{\frac{1}{4}(k-\frac{2}{r})}\|u\|_{\dot{B}^{s}_{2,q}}; (3.18)
0teiκH(ts)eΔ(ts)f(s)𝑑sL~Tr(B˙p,qs+k)κ14(k2r)fL~T1(B˙2,qs).\displaystyle\big{\|}\int^{t}_{0}e^{i\sqrt{\kappa}H(t-s)}e^{\Delta(t-s)}f(s)ds\big{\|}_{\widetilde{L}^{r}_{T}(\dot{B}^{s+k}_{p,q})}\lesssim\kappa^{\frac{1}{4}(k-\frac{2}{r})}\|f\|_{\widetilde{L}^{1}_{T}(\dot{B}^{s}_{2,q})}. (3.19)
Proof.

In the case p=2p=2, the optimal smoothing effect of heat kernels, see for example [13], allows us to have

eiκHteΔtuL~Tr(B˙2,qs+2r)uB˙2,qs;\displaystyle\|e^{i\sqrt{\kappa}Ht}e^{\Delta t}u\|_{\widetilde{L}^{r}_{T}(\dot{B}^{s+\frac{2}{r}}_{2,q})}\lesssim\|u\|_{\dot{B}^{s}_{2,q}}; (3.20)
0teiκH(ts)eΔ(ts)f(s)𝑑sL~Tr(B˙2,qs+2r)uL~T1(B˙2,qs).\displaystyle\|\int^{t}_{0}e^{i\sqrt{\kappa}H(t-s)}e^{\Delta(t-s)}f(s)ds\|_{\widetilde{L}^{r}_{T}(\dot{B}^{s+\frac{2}{r}}_{2,q})}\lesssim\|u\|_{\widetilde{L}^{1}_{T}(\dot{B}^{s}_{2,q})}. (3.21)

As for case p>2p>2, we start from d3d\leq 3. We begin from d2dp=2r\frac{d}{2}-\frac{d}{p}=\frac{2}{r}, which corresponds to classical Schro¨\ddot{o}dinger admissible pair. By TTTT^{*} argument, it is enough to prove that

JfjLrLpκ12rfjLrLp\|Jf_{j}\|_{L^{r}L^{p}}\lesssim\kappa^{-\frac{1}{2r}}\|f_{j}\|_{L^{r^{\prime}}L^{p^{\prime}}}

where

Jfj0teiκH(sσ)eΔ(2tsσ)fj(σ)𝑑σ.Jf_{j}\triangleq\int^{t}_{0}e^{i\sqrt{\kappa}H(s-\sigma)}e^{\Delta(2t-s-\sigma)}f_{j}(\sigma)d\sigma.

By Proposition 3.2, there holds for d2dp=2r\frac{d}{2}-\frac{d}{p}=\frac{2}{r} such that

JfjLrLp\displaystyle\|Jf_{j}\|_{L^{r}L^{p}} \displaystyle\lesssim |κ(ts)|dpd2e22j(ts)fjLpLr\displaystyle\big{\|}|\sqrt{\kappa}(t-s)|^{\frac{d}{p}-\frac{d}{2}}e^{-2^{2j}(t-s)}\|f_{j}\|_{L^{p^{\prime}}}\big{\|}_{L^{r}}
\displaystyle\lesssim κd2pd4tdpd2fjLpLr.\displaystyle\kappa^{\frac{d}{2p}-\frac{d}{4}}\big{\|}t^{\frac{d}{p}-\frac{d}{2}}\|f_{j}\|_{L^{p^{\prime}}}\big{\|}_{L^{r}}.

Since that 2r+dp=d2\frac{2}{r}+\frac{d}{p}=\frac{d}{2}, by Hardy-Littlewood-Sobolev inequality, we have

JfjLrLpκ1rfjLrLp.\displaystyle\|Jf_{j}\|_{L^{r}L^{p}}\lesssim\kappa^{-\frac{1}{r}}\|f_{j}\|_{L^{r^{\prime}}L^{p^{\prime}}}. (3.23)

Then a duality argument allows us to have (3.19). For case d2dp<2r\frac{d}{2}-\frac{d}{p}<\frac{2}{r}, we shall utilize the following interpolation

L~Tr(B˙p,qs+k)=(L~Tr1(B˙p1,qs),L~Tr2(B˙2,qs+2r2))θ\widetilde{L}^{r}_{T}(\dot{B}^{s+k}_{p,q})=\Big{(}\widetilde{L}^{r_{1}}_{T}(\dot{B}^{s}_{p_{1},q}),\widetilde{L}^{r_{2}}_{T}(\dot{B}^{s+\frac{2}{r_{2}}}_{2,q})\Big{)}_{\theta}

provided

1r=θr1+1θr2;k=2(1θ)r2;1p=θp1+1θ2.\frac{1}{r}=\frac{\theta}{r_{1}}+\frac{1-\theta}{r_{2}};\quad k=\frac{2(1-\theta)}{r_{2}};\quad\frac{1}{p}=\frac{\theta}{p_{1}}+\frac{1-\theta}{2}.

Hence, keep in mind r12r_{1}\geq 2 and r21r_{2}\geq 1, there holds

2rdp+d214θr1+2(1θ)r220,\frac{2}{r}-\frac{d}{p}+\frac{d}{2}-1\leq\frac{4\theta}{r_{1}}+\frac{2(1-\theta)}{r_{2}}-2\leq 0,

then the interpolation leads us to for 2rdpd2+2\frac{2}{r}\leq\frac{d}{p}-\frac{d}{2}+2

eiκHteΔtuL~Tr(B˙p,qs+k)κθ2r1uB˙2,qsκ14(k2r)uB˙2,qs.\displaystyle\|e^{i\sqrt{\kappa}Ht}e^{\Delta t}u\|_{\widetilde{L}^{r}_{T}(\dot{B}^{s+k}_{p,q})}\lesssim\kappa^{-\frac{\theta}{2r_{1}}}\|u\|_{\dot{B}^{s}_{2,q}}\lesssim\kappa^{\frac{1}{4}(k-\frac{2}{r})}\|u\|_{\dot{B}^{s}_{2,q}}. (3.24)

Similarly we could get to (3.19).

As for case d=2d=2, we follow the similar calculations as d3d\geq 3 but notice critical admissible pair (r,p,k)=(2,,0)(r,p,k)=(2,\infty,0) is excluded. ∎

According to Lemma 3.1, we have for (δ,p)(\delta,p) satisfies (2.8) such that

zL~T2(B˙p,1dp)κδ(z0B˙2,1d21+HaLT1(B˙2,1d21)+(U1f,g)LT1(B˙2,1d21)).\displaystyle\|z\|_{\widetilde{L}^{2}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})}\lesssim\kappa^{-\delta}\big{(}\|z_{0}\|_{\dot{B}^{\frac{d}{2}-1}_{2,1}}+\|H\nabla a\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})}+\|(U^{-1}\nabla f,g)\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})}\big{)}. (3.25)

Notice that

HaLT1(B˙2,1d21)(1κa,a)LT1(B˙2,1d2+1);\|H\nabla a\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})}\lesssim\|(\frac{1}{\sqrt{\kappa}}a,\nabla a)\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}+1}_{2,1})};
U1fLT1(B˙2,1d21)(1κf,f)LT1(B˙2,1d21),\|U^{-1}\nabla f\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})}\lesssim\|(\frac{1}{\sqrt{\kappa}}f,\nabla f)\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})},

hence, we could conclude with

zL~T2(B˙p,1dp)κδ(z0B˙2,1d21+T+(1κf,f,g)LT1(B˙2,1d21)).\displaystyle\|z\|_{\widetilde{L}^{2}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})}\lesssim\kappa^{-\delta}\big{(}\|z_{0}\|_{\dot{B}^{\frac{d}{2}-1}_{2,1}}+\mathcal{E}_{T}+\|(\frac{1}{\sqrt{\kappa}}f,\nabla f,g)\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})}\big{)}. (3.26)

Step3: Estimates for incompressible part 𝒫u{\mathcal{P}}u

The incompressible estimates follow similar calculations in [14]. In fact, by Leray projector, the system (INS) could be rewritten as

{tvΔv=𝒫(vv),v|t=0=𝒫u0,\left\{\begin{array}[]{l}\partial_{t}v-\Delta v=\mathcal{P}(v\cdot\nabla v),\\[2.84526pt] v|_{t=0}=\mathcal{P}u_{0},\end{array}\right. (3.27)

while the incompressible part of 𝒫u{\mathcal{P}}u fulfills

t𝒫uΔ𝒫u=𝒫(g1+g2)\partial_{t}\mathcal{P}u-\Delta\mathcal{P}u=\mathcal{P}(g_{1}+g_{2})

where we take advantages of the fact that for any potential function w=fw=\nabla f, there holds 𝒫w=0{\mathcal{P}}w=0. Now define v~=𝒫uv\widetilde{v}=\mathcal{P}u-v, the error of the incompressible part of fluids satisfies

tv~Δv~=𝒫(v~v~)+𝒫(vv~)+𝒫(v~v)+𝒫g¯\displaystyle\partial_{t}\widetilde{v}-\Delta\widetilde{v}=\mathcal{P}(\widetilde{v}\cdot\nabla\widetilde{v})+\mathcal{P}(v\cdot\nabla\widetilde{v})+\mathcal{P}(\widetilde{v}\cdot\nabla v)+\mathcal{P}\bar{g} (3.28)

where g¯=𝒬u𝒬u+𝒬u𝒫u+𝒫u𝒬u+g2\bar{g}={\mathcal{Q}}u\cdot\nabla{\mathcal{Q}}u+{\mathcal{Q}}u\cdot\nabla{\mathcal{P}}u+{\mathcal{P}}u\cdot\nabla{\mathcal{Q}}u+g_{2}. Then by localization and do inner product with v~j\widetilde{v}_{j}, we reach

12ddtv~jL22+c22jv~jL22d[𝒫Δ˙j,v]v~v~j𝑑x+dvv~jv~jdx+v~jL2(𝒫(vv~)L2+𝒫(v~v~)L2+𝒫g¯jL2).\frac{1}{2}\frac{d}{dt}\|\widetilde{v}_{j}\|^{2}_{L^{2}}+c2^{2j}\|\widetilde{v}_{j}\|^{2}_{L^{2}}\lesssim\int_{\mathbb{R}^{d}}[{\mathcal{P}}\dot{\Delta}_{j},v\cdot\nabla]\widetilde{v}\widetilde{v}_{j}dx+\int_{\mathbb{R}^{d}}v\cdot\nabla\widetilde{v}_{j}\widetilde{v}_{j}dx\\ +\|\widetilde{v}_{j}\|_{L^{2}}(\|\mathcal{P}(v\cdot\nabla\widetilde{v})\|_{L^{2}}+\|\mathcal{P}(\widetilde{v}\cdot\nabla\widetilde{v})\|_{L^{2}}+\|\mathcal{P}\bar{g}_{j}\|_{L^{2}}).

Taking advantage of the commutator estimates

[𝒫Δ˙j,v]v~L2vB˙2,1d2+1v~jL2,\displaystyle\|[{\mathcal{P}}\dot{\Delta}_{j},v\cdot\nabla]\widetilde{v}\|_{L^{2}}\lesssim\|\nabla v\|_{\dot{B}^{\frac{d}{2}+1}_{2,1}}\|\widetilde{v}_{j}\|_{L^{2}},

and notice

dvv~jv~jdxvB˙2,1d2+1v~jL2,\displaystyle\int_{\mathbb{R}^{d}}v\cdot\nabla\widetilde{v}_{j}\widetilde{v}_{j}dx\lesssim\|\nabla v\|_{\dot{B}^{\frac{d}{2}+1}_{2,1}}\|\widetilde{v}_{j}\|_{L^{2}},

then by maximal regularity of heat equation, there holds

v~LT(B˙2,1d21)LT1(B˙2,1d2+1)0TvB˙2,1d2+1v~B˙2,1d21𝑑s+𝒫(v~v~)+𝒫g¯LT1(B˙2,1d21).\displaystyle\|\widetilde{v}\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})\cap L^{1}_{T}(\dot{B}^{\frac{d}{2}+1}_{2,1})}\lesssim\int^{T}_{0}\|v\|_{\dot{B}^{\frac{d}{2}+1}_{2,1}}\|\widetilde{v}\|_{\dot{B}^{\frac{d}{2}-1}_{2,1}}ds+\|\mathcal{P}(\widetilde{v}\cdot\nabla\widetilde{v})+\mathcal{P}\bar{g}\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})}.

Hence, the Gronwall inequality leads to

v~LT(B˙2,1d21)LT1(B˙2,1d2+1)eC~𝒱T𝒫(v~v~)+𝒫g¯LT1(B˙2,1d21)\displaystyle\|\widetilde{v}\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})\cap L^{1}_{T}(\dot{B}^{\frac{d}{2}+1}_{2,1})}\lesssim e^{\widetilde{C}\mathcal{V}_{T}}\|\mathcal{P}(\widetilde{v}\cdot\nabla\widetilde{v})+\mathcal{P}\bar{g}\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})} (3.29)

where C~\widetilde{C} is a positive constant. Now by combining (3.14), (3.26) with (3.29), one could always find a positive κ¯\bar{\kappa} such that for all κκ¯\kappa\geq\bar{\kappa}, we arrive at the linear estimates such that

𝒟T+TC((1κa0,a0,𝒬u0)B˙2,1d21+(1κf,𝒬g𝒬g4)LT1(B˙2,1d21)+uaLT1(B˙2,1d2)+κ0T[Δ˙j,ψ~(κ12a)](divu+Δa)B˙2,1d2ds)\mathcal{D}_{T}+\mathcal{E}_{T}\leq C\big{(}\|(\frac{1}{\sqrt{\kappa}}a_{0},\nabla a_{0},{\mathcal{Q}}u_{0})\|_{\dot{B}^{\frac{d}{2}-1}_{2,1}}+\|(\frac{1}{\sqrt{\kappa}}f,{\mathcal{Q}}g-{\mathcal{Q}}g_{4})\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})}\\ +\|u\cdot\nabla a\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}}_{2,1})}+\sqrt{\kappa}\int^{T}_{0}\|[\dot{\Delta}_{j},\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)](\mathrm{div}u+\Delta a)\|_{\dot{B}^{\frac{d}{2}}_{2,1}}ds\big{)} (3.30)

and

𝒲TCeC~𝒱T𝒫(v~v~)+𝒫g¯LT1(B˙2,1d21).\displaystyle\mathcal{W}_{T}\leq Ce^{\widetilde{C}\mathcal{V}_{T}}\|\mathcal{P}(\widetilde{v}\cdot\nabla\widetilde{v})+\mathcal{P}\bar{g}\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})}. (3.31)

Step4: Nonlinear estimates

So what left is to give nonlinear estimates. We begin with nonlinearities in (3.30). Bounding 1κfLT1(B˙2,1d21)\|\frac{1}{\sqrt{\kappa}}f\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})} is obtained by

ψ~(κ12a)divuLT1(B˙2,1d2)1κaLTLdiv𝒬uLT1(B˙2,1d2)κ12T2;\displaystyle\|\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)\mathrm{div}u\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}}_{2,1})}\lesssim\frac{1}{\sqrt{\kappa}}\|a\|_{L^{\infty}_{T}L^{\infty}}\|\mathrm{div}{\mathcal{Q}}u\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}}_{2,1})}\lesssim\kappa^{-\frac{1}{2}}\mathcal{E}^{2}_{T};
1κuaLT1(B˙2,1d2)1κuLT2LaLT2(B˙2,1d2)κ12T(T+𝒲T+𝒱T),\displaystyle\frac{1}{\sqrt{\kappa}}\|u\cdot\nabla a\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}}_{2,1})}\lesssim\frac{1}{\sqrt{\kappa}}\|u\|_{L^{2}_{T}L^{\infty}}\|\nabla a\|_{L^{2}_{T}(\dot{B}^{\frac{d}{2}}_{2,1})}\lesssim\kappa^{-\frac{1}{2}}\mathcal{E}_{T}(\mathcal{E}_{T}+\mathcal{W}_{T}+\mathcal{V}_{T}),

which leads to

1κfLT1(B˙2,1d21)κ12(T2+𝒲T2+𝒱T2).\displaystyle\|\frac{1}{\sqrt{\kappa}}f\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})}\lesssim\kappa^{-\frac{1}{2}}(\mathcal{E}^{2}_{T}+\mathcal{W}^{2}_{T}+\mathcal{V}^{2}_{T}). (3.32)

On the other hand, for uaLT1(B˙2,1d2)\|u\cdot\nabla a\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}}_{2,1})}, we immediately have

𝒬uaLT1(B˙2,1d2)aLT2L𝒬uLT2(B˙2,1d2)+𝒬uLT2LaLT2(B˙2,1d2).\displaystyle\|{\mathcal{Q}}u\cdot\nabla a\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}}_{2,1})}\lesssim\|\nabla a\|_{L^{2}_{T}L^{\infty}}\|{\mathcal{Q}}u\|_{L^{2}_{T}(\dot{B}^{\frac{d}{2}}_{2,1})}+\|{\mathcal{Q}}u\|_{L^{2}_{T}L^{\infty}}\|\nabla a\|_{L^{2}_{T}(\dot{B}^{\frac{d}{2}}_{2,1})}.

Since that there holds

(a,𝒬u)LT2L(U1Rez,Imz)LT2(B˙p,1dp)κδ𝒟T,\displaystyle\|(\nabla a,{\mathcal{Q}}u)\|_{L^{2}_{T}L^{\infty}}\lesssim\|(U^{-1}\mathrm{Re}z,\mathrm{Im}z)\|_{L^{2}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})}\lesssim\kappa^{-\delta}\mathcal{D}_{T}, (3.33)

provided pp satisfies (2.8), we obtain

𝒬uaLT1(B˙2,1d2)κδ𝒟TT.\displaystyle\|{\mathcal{Q}}u\cdot\nabla a\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}}_{2,1})}\lesssim\kappa^{-\delta}\mathcal{D}_{T}\mathcal{E}_{T}. (3.34)

To deal with interaction of 𝒫u{\mathcal{P}}u, we use the Bony decomposition

𝒫ua=T𝒫ua+R(𝒫u,a)+Ta𝒫u.{\mathcal{P}}u\cdot\nabla a=T_{{\mathcal{P}}u}\nabla a+R({\mathcal{P}}u,\nabla a)+T_{\nabla a}{\mathcal{P}}u.

We have the following estimate such that

T𝒫uaLT1(B˙2,1d2)𝒫uLT4(B˙2,1d212)aLT43(B˙p~,1dp~+12)\displaystyle\|T_{{\mathcal{P}}u}\nabla a\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}}_{2,1})}\lesssim\|{\mathcal{P}}u\|_{L^{4}_{T}(\dot{B}^{\frac{d}{2}-\frac{1}{2}}_{2,1})}\|\nabla a\|_{L^{\frac{4}{3}}_{T}(\dot{B}^{\frac{d}{\widetilde{p}}+\frac{1}{2}}_{\widetilde{p},1})}

provided d212=dp~\frac{d}{2}-\frac{1}{2}=\frac{d}{\widetilde{p}}. By taking k=1,r=43k=1,r=\frac{4}{3} in Lemma 3.1, there holds

aLT43(B˙p~,1dp~+12)aL~T43(B˙p~,1dp~+12)κδ2𝒟T.\|\nabla a\|_{L^{\frac{4}{3}}_{T}(\dot{B}^{\frac{d}{\widetilde{p}}+\frac{1}{2}}_{\widetilde{p},1})}\lesssim\|\nabla a\|_{\widetilde{L}^{\frac{4}{3}}_{T}(\dot{B}^{\frac{d}{\widetilde{p}}+\frac{1}{2}}_{\widetilde{p},1})}\lesssim\kappa^{-\frac{\delta}{2}}\mathcal{D}_{T}.

Consequently, the Cauchy inequality implicates that

T𝒫uaLT1(B˙2,1d2)κδ2(𝒲T+𝒱T)(𝒟T+T)(𝒲T+𝒱T)2+κδ(𝒟T+T)2.\|T_{{\mathcal{P}}u}\nabla a\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}}_{2,1})}\lesssim\kappa^{-\frac{\delta}{2}}(\mathcal{W}_{T}+\mathcal{V}_{T})(\mathcal{D}_{T}+\mathcal{E}_{T})\lesssim(\mathcal{W}_{T}+\mathcal{V}_{T})^{2}+\kappa^{-\delta}(\mathcal{D}_{T}+\mathcal{E}_{T})^{2}. (3.35)

On the other hand, there holds

R(𝒫u,a)+Ta𝒫uLT1(B˙2,1d2)aLT2L𝒫uLT2(B˙2,1d2)κδ𝒟T(𝒲T+𝒱T).\|R({\mathcal{P}}u,\nabla a)+T_{\nabla a}{\mathcal{P}}u\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}}_{2,1})}\lesssim\|\nabla a\|_{L^{2}_{T}L^{\infty}}\|{\mathcal{P}}u\|_{L^{2}_{T}(\dot{B}^{\frac{d}{2}}_{2,1})}\lesssim\kappa^{-\delta}\mathcal{D}_{T}(\mathcal{W}_{T}+\mathcal{V}_{T}). (3.36)

Hence, combining (3.35) with (3.36) yields

uaLT1(B˙2,1d2)(𝒲T+𝒱T)2+κ14(𝒟T+T)2.\displaystyle\|u\cdot\nabla a\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}}_{2,1})}\lesssim(\mathcal{W}_{T}+\mathcal{V}_{T})^{2}+\kappa^{-\frac{1}{4}}(\mathcal{D}_{T}+\mathcal{E}_{T})^{2}. (3.37)

Next we turn to gg. For the convection term g1g_{1}, we can follow similar steps as (3.37) which yields

𝒬u𝒬uLT1(B˙2,1d21)𝒬uLT2L𝒬uLT2(B˙2,1d2)κδ𝒟TT;\displaystyle\|\mathcal{Q}u\cdot\nabla\mathcal{Q}u\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})}\lesssim\|\mathcal{Q}u\|_{L^{2}_{T}L^{\infty}}\|\mathcal{Q}u\|_{L^{2}_{T}(\dot{B}^{\frac{d}{2}}_{2,1})}\lesssim\kappa^{-\delta}\mathcal{D}_{T}\mathcal{E}_{T}; (3.38)
𝒫u𝒬u+𝒬u𝒫uLT1(B˙2,1d21)\displaystyle\|\mathcal{P}u\cdot\nabla\mathcal{Q}u+\mathcal{Q}u\cdot\nabla\mathcal{P}u\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})} \displaystyle\lesssim 𝒫u𝒬uLT1(B˙2,1d2)\displaystyle\|\mathcal{P}u\mathcal{Q}u\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}}_{2,1})}
\displaystyle\lesssim (𝒲T+𝒱T)2+κδ(𝒟T+T)2;\displaystyle(\mathcal{W}_{T}+\mathcal{V}_{T})^{2}+\kappa^{-\delta}(\mathcal{D}_{T}+\mathcal{E}_{T})^{2};
𝒫u𝒫uLT1(B˙2,1d21)𝒫uLT(B˙2,1d21)𝒫uLT1(B˙2,1d2+1)(𝒱T+𝒲T)2.\displaystyle\|\mathcal{P}u\cdot\nabla\mathcal{P}u\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})}\lesssim\|\mathcal{P}u\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})}\|\mathcal{P}u\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}+1}_{2,1})}\lesssim(\mathcal{V}_{T}+\mathcal{W}_{T})^{2}. (3.40)

For the viscosity term g2g_{2}, , we shall estimates the term div(2μ~(κ12a)D(u))\mathrm{div}(2\widetilde{\mu}(\kappa^{-\frac{1}{2}}a)D(u)) where

(div(2μ~(κ12a)D(u)))LT1(B˙2,1d21)κ12aLT(B˙2,1d2)D(u)LT1(B˙2,1d2).\displaystyle\|\big{(}\mathrm{div}(2\widetilde{\mu}(\kappa^{-\frac{1}{2}}a)D(u))\big{)}\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})}\lesssim\kappa^{-\frac{1}{2}}\|a\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{2}}_{2,1})}\|D(u)\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}}_{2,1})}.

Similar calculations on (1+Q(κ12a))(λ~(κ12a)divu)\big{(}1+Q(\kappa^{-\frac{1}{2}}a)\big{)}\nabla(\widetilde{\lambda}(\kappa^{-\frac{1}{2}}a)\mathrm{div}u) shares

𝒬g2LT1(B˙2,1d21)\displaystyle\|{\mathcal{Q}}g_{2}\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})} \displaystyle\lesssim κ12(1+T)T(T+𝒱T+𝒲T).\displaystyle\kappa^{-\frac{1}{2}}(1+\mathcal{E}_{T})\mathcal{E}_{T}(\mathcal{E}_{T}+\mathcal{V}_{T}+\mathcal{W}_{T}). (3.41)

Next we turn to the pressure term g3g_{3}, we have

G~(κ12a)aLT1(B˙2,1d21)G~(κ12a)LT2LaLT2(B˙2,1d2)aLT2LaκLT2(B˙2,1d2).\displaystyle\|\widetilde{G}(\kappa^{-\frac{1}{2}}a)\nabla a\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})}\lesssim\|\widetilde{G}(\kappa^{-\frac{1}{2}}a)\|_{L^{2}_{T}L^{\infty}}\|a\|_{L^{2}_{T}(\dot{B}^{\frac{d}{2}}_{2,1})}\lesssim\|a\|_{L^{2}_{T}L^{\infty}}\|\frac{a}{\sqrt{\kappa}}\|_{L^{2}_{T}(\dot{B}^{\frac{d}{2}}_{2,1})}.

Since that

κ12aLT2Lκ12U1RezLT2(B˙p,1dp1)zLT2(B˙p,1dp)κδ𝒟T,\displaystyle\kappa^{-\frac{1}{2}}\|a\|_{L^{2}_{T}L^{\infty}}\lesssim\kappa^{-\frac{1}{2}}\|U^{-1}\mathrm{Re}z\|_{L^{2}_{T}(\dot{B}^{\frac{d}{p}-1}_{p,1})}\lesssim\|z\|_{L^{2}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})}\lesssim\kappa^{-\delta}\mathcal{D}_{T}, (3.42)

we arrive at

κ12G~(κ12a)aLT1(B˙2,1d21)κδ𝒟TT.\displaystyle\|\kappa^{-\frac{1}{2}}\widetilde{G}(\kappa^{-\frac{1}{2}}a)\nabla a\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})}\lesssim\kappa^{-\delta}\mathcal{D}_{T}\mathcal{E}_{T}. (3.43)

Finally we bound Korteweg nonlinearities g5g_{5}, in fact, it holds

(|aa|2)LT1(B˙2,1d21)aLT2LaLT2(B˙2,1d2)κδ𝒟TT.\displaystyle\|\nabla(|\nabla a\otimes\nabla a|^{2})\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})}\lesssim\|\nabla a\|_{L^{2}_{T}L^{\infty}}\|\nabla a\|_{L^{2}_{T}(\dot{B}^{\frac{d}{2}}_{2,1})}\lesssim\kappa^{-\delta}\mathcal{D}_{T}\mathcal{E}_{T}. (3.44)

By commutator estimates we have

κ0T[Δ˙j,ψ~(κ12a)]divuB˙2,1d2𝑑s+κ0T[Δ˙j,ψ~(κ12a)]ΔaB˙2,1d2𝑑saLT2L(a,𝒬u)LT2(B˙2,1d2)κδ𝒟TT.\sqrt{\kappa}\int^{T}_{0}\|[\dot{\Delta}_{j},\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)]\mathrm{div}u\|_{\dot{B}^{\frac{d}{2}}_{2,1}}ds+\sqrt{\kappa}\int^{T}_{0}\|[\dot{\Delta}_{j},\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)]\Delta a\|_{\dot{B}^{\frac{d}{2}}_{2,1}}ds\\ \lesssim\|\nabla a\|_{L^{2}_{T}L^{\infty}}\|(\nabla a,{\mathcal{Q}}u)\|_{L^{2}_{T}(\dot{B}^{\frac{d}{2}}_{2,1})}\lesssim\kappa^{-\delta}\mathcal{D}_{T}\mathcal{E}_{T}. (3.45)

Therefore, combining linear estimates (3.30) and nonlinear estimates above, we finish the proof of (3.5). As for nonlinear estimates in (3.31), we have

𝒫(v~v~)LT1(B˙2,1d21)v~LT(B˙2,1d21)v~LT1(B˙2,1d2)𝒲T2.\displaystyle\|\mathcal{P}(\widetilde{v}\cdot\nabla\widetilde{v})\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})}\lesssim\|\widetilde{v}\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})}\|\nabla\widetilde{v}\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}}_{2,1})}\lesssim\mathcal{W}^{2}_{T}. (3.46)

On the other hand, repeating calculations in (3.36)-(3.35) and (3.41), we obtain

𝒫g¯LT1(B˙2,1d21)κδ2(1+T)(𝒟T+T+𝒱T+𝒲T)2\displaystyle\|\mathcal{P}\bar{g}\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})}\lesssim\kappa^{-\frac{\delta}{2}}(1+\mathcal{E}_{T})(\mathcal{D}_{T}+\mathcal{E}_{T}+\mathcal{V}_{T}+\mathcal{W}_{T})^{2} (3.47)

which leads to (3.6) and we finish the proof of Proposition 3.1. ∎

3.2 Bootstrap and continuation argument

Denote 𝒵0=(1κa0,a0,𝒬u0)B˙2,1d21\mathcal{Z}_{0}=\|(\frac{1}{\sqrt{\kappa}}a_{0},\nabla a_{0},{\mathcal{Q}}u_{0})\|_{\dot{B}^{\frac{d}{2}-1}_{2,1}}, we state the following Lemma concerns uniform bound for 𝒟T,T,𝒲T\mathcal{D}_{T},\mathcal{E}_{T},\mathcal{W}_{T}:

Lemma 3.2.

Assume T>0T>0 to be finite or infinite and 𝒱T\mathcal{V}_{T} is bounded, then there exists a large enough κ0>0\kappa_{0}>0 depends on (a0,a0,𝒬u0)B˙2,1d21,𝒱T\|(a_{0},\nabla a_{0},{\mathcal{Q}}u_{0})\|_{\dot{B}^{\frac{d}{2}-1}_{2,1}},\mathcal{V}_{T} such that it holds true for all κκ0\kappa\geq\kappa_{0}

𝒟T+T2C(𝒵0+𝒱T2);\displaystyle\mathcal{D}_{T}+\mathcal{E}_{T}\leq 2C(\mathcal{Z}_{0}+\mathcal{V}^{2}_{T}); (3.48)
𝒲T2κδ2CeC~𝒱T(1+2C(𝒵0+𝒱T2))(C(𝒵0+𝒱T2)+𝒱T2)2.\displaystyle\mathcal{W}_{T}\leq 2\kappa^{-\frac{\delta}{2}}Ce^{\widetilde{C}\mathcal{V}_{T}}(1+2C(\mathcal{Z}_{0}+\mathcal{V}^{2}_{T}))(C(\mathcal{Z}_{0}+\mathcal{V}^{2}_{T})+\mathcal{V}^{2}_{T})^{2}. (3.49)
Proof.

We denote:

Tmax{TT:𝒟T+T2C(𝒵0+𝒱T2);𝒲T2κδ2CeC~𝒱T(1+𝒵0+𝒱T2)(𝒵0+2𝒱T2)2}.T^{*}\triangleq\max\Big{\{}T^{*}\leq T:\mathcal{D}_{T^{*}}+\mathcal{E}_{T^{*}}\leq 2C(\mathcal{Z}_{0}+\mathcal{V}^{2}_{T^{*}});\\ \mathcal{W}_{T^{*}}\leq 2\kappa^{-\frac{\delta}{2}}Ce^{\widetilde{C}\mathcal{V}_{T^{*}}}(1+\mathcal{Z}_{0}+\mathcal{V}^{2}_{T^{*}})(\mathcal{Z}_{0}+2\mathcal{V}^{2}_{T^{*}})^{2}\Big{\}}.

According to Proposition 3.1, there holds

𝒟T+T\displaystyle\mathcal{D}_{T^{*}}+\mathcal{E}_{T^{*}}\!\! \displaystyle\leq C(𝒵0+𝒱T2+4κ2δC2eC~𝒱T(1+2C(𝒵0+𝒱T2))2(C(𝒵0+𝒱T2)+𝒱T2)4\displaystyle\!\!C\Big{(}\mathcal{Z}_{0}+\mathcal{V}^{2}_{T^{*}}+4\kappa^{-2\delta}C^{2}e^{\widetilde{C}\mathcal{V}_{T^{*}}}(1+2C(\mathcal{Z}_{0}+\mathcal{V}^{2}_{T^{*}}))^{2}(C(\mathcal{Z}_{0}+\mathcal{V}^{2}_{T^{*}})+\mathcal{V}^{2}_{T^{*}})^{4}
+\displaystyle+ κδ(1+2C(𝒵0+𝒱T2))(C(𝒵0+𝒱T2)+𝒱T2)2)\displaystyle\kappa^{-\delta}(1+2C(\mathcal{Z}_{0}+\mathcal{V}^{2}_{T^{*}}))(C(\mathcal{Z}_{0}+\mathcal{V}^{2}_{T^{*}})+\mathcal{V}^{2}_{T^{*}})^{2}\Big{)}

while

𝒲T\displaystyle\mathcal{W}_{T^{*}} \displaystyle\leq 4κ2δC3e3C~𝒱T(1+2C(𝒵0+𝒱T2))2(C(𝒵0+𝒱T2)+𝒱T2)4\displaystyle 4\kappa^{-2\delta}C^{3}e^{3\widetilde{C}\mathcal{V}_{T^{*}}}(1+2C(\mathcal{Z}_{0}+\mathcal{V}^{2}_{T^{*}}))^{2}(C(\mathcal{Z}_{0}+\mathcal{V}^{2}_{T^{*}})+\mathcal{V}^{2}_{T^{*}})^{4}
+\displaystyle+ κδCeC~𝒱T(1+2C(𝒵0+𝒱T2))(C(𝒵0+𝒱T2)+𝒱T2)2.\displaystyle\kappa^{-\delta}Ce^{\widetilde{C}\mathcal{V}_{T^{*}}}(1+2C(\mathcal{Z}_{0}+\mathcal{V}^{2}_{T^{*}}))(C(\mathcal{Z}_{0}+\mathcal{V}^{2}_{T^{*}})+\mathcal{V}^{2}_{T^{*}})^{2}.

By selecting the κ0\kappa_{0} satisfies

4κ02δC2eC~𝒱T(1+2C(𝒵0+𝒱T2))2(C(𝒵0+𝒱T2)+𝒱T2)4+κ0δ(1+2C(𝒵0+𝒱T2))(C(𝒵0+𝒱T2)+𝒱T2)2=12C(𝒵0+𝒱T2);4\kappa_{0}^{-2\delta}C^{2}e^{\widetilde{C}\mathcal{V}_{T^{*}}}(1+2C(\mathcal{Z}_{0}+\mathcal{V}^{2}_{T^{*}}))^{2}(C(\mathcal{Z}_{0}+\mathcal{V}^{2}_{T^{*}})+\mathcal{V}^{2}_{T^{*}})^{4}\\ +\kappa_{0}^{-\delta}(1+2C(\mathcal{Z}_{0}+\mathcal{V}^{2}_{T^{*}}))(C(\mathcal{Z}_{0}+\mathcal{V}^{2}_{T^{*}})+\mathcal{V}^{2}_{T^{*}})^{2}=\frac{1}{2}C(\mathcal{Z}_{0}+\mathcal{V}^{2}_{T^{*}});
4κ0δC3e3C~𝒱T(1+2C(𝒵0+𝒱T2))2(C(𝒵0+𝒱T2)+𝒱T2)4=12CeC~𝒱T(1+𝒵0+𝒱T2)(𝒵0+2𝒱T2)2,4\kappa_{0}^{-\delta}C^{3}e^{3\widetilde{C}\mathcal{V}_{T^{*}}}(1+2C(\mathcal{Z}_{0}+\mathcal{V}^{2}_{T^{*}}))^{2}(C(\mathcal{Z}_{0}+\mathcal{V}^{2}_{T^{*}})+\mathcal{V}^{2}_{T^{*}})^{4}\\ =\frac{1}{2}Ce^{\widetilde{C}\mathcal{V}_{T^{*}}}(1+\mathcal{Z}_{0}+\mathcal{V}^{2}_{T^{*}})(\mathcal{Z}_{0}+2\mathcal{V}^{2}_{T^{*}})^{2},

we could conclude on [0,T][0,T^{*}] such that for all κκ0\kappa\geq\kappa_{0}

𝒟T+T32C(𝒵0+𝒱T2);\displaystyle\mathcal{D}_{T^{*}}+\mathcal{E}_{T^{*}}\leq\frac{3}{2}C(\mathcal{Z}_{0}+\mathcal{V}^{2}_{T});
𝒲T32κδCeC~𝒱T(1+2C(𝒵0+𝒱T2))(C(𝒵0+𝒱T2)+𝒱T2)2\displaystyle\mathcal{W}_{T^{*}}\leq\frac{3}{2}\kappa^{-\delta}Ce^{\widetilde{C}\mathcal{V}_{T^{*}}}(1+2C(\mathcal{Z}_{0}+\mathcal{V}^{2}_{T^{*}}))(C(\mathcal{Z}_{0}+\mathcal{V}^{2}_{T^{*}})+\mathcal{V}^{2}_{T^{*}})^{2}

which contracts with definition of TT^{*} and we could extend to TT beyond [0,T][0,T^{*}]. ∎

Moreover, we introduce the following local well-posedness has been proved in [15]:

Lemma 3.3.

There exists a η>0\eta>0 such that if (a0,u0)B˙2,1d21(\nabla a_{0},u_{0})\in\dot{B}^{\frac{d}{2}-1}_{2,1} and

a0B˙2,1d2η\|a_{0}\|_{\dot{B}^{\frac{d}{2}}_{2,1}}\leq\eta

there exist a T>0T>0 such that (1.1)-(1.2) admits a unique solution (a,u)𝒞T(B˙2,1d21)LT1(B˙2,1d2+1)(a,u)\in\mathcal{C}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})\cap L^{1}_{T}(\dot{B}^{\frac{d}{2}+1}_{2,1}) satisfying

(a,u)LT(B˙2,1d21)+(a,u)LT1(B˙2,1d2+1)CT.\displaystyle\|(a,u)\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})}+\|(a,u)\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}+1}_{2,1})}\leq C_{T}. (3.50)

Therefore, by a standard bootstrap argument, we could prove that once κκ0\kappa\geq\kappa_{0} large enough, the solution could be extended to [0,][0,\infty] while the incompressible limit is ensured by (3.6).

4 Decay rates

In this section, we present the proof of Theorem 2.2 where we shall establish decay rates for arbitrary order derivatives. Our method includes two steps where we first reveal the evolution of regularity under σ\sigma. Then we would establish the decay rates for any order derivatives.

4.1 Evolution of norm under regularity σ-\sigma

In this section, we establish uniform bounds of the solution in negative Besov norms. More precisely, it is shown that for any t>0t>0

(1κa,a,u)(t)B˙2,σC0\displaystyle\|(\frac{1}{\sqrt{\kappa}}a,\nabla a,u)(t)\|_{{\dot{B}}^{-\sigma}_{2,\infty}}\leq C_{0} (4.1)

where C0>0C_{0}>0 depends on the initial norm (1κa0,a0,u0)B˙2,σ\|(\frac{1}{\sqrt{\kappa}}a_{0},\nabla a_{0},u_{0})\|_{\dot{B}^{-\sigma}_{2,\infty}}. The key step is to claim the following lemma concerns the evolution of norm under the negative regularity σ-\sigma.

Lemma 4.1.

Assume (a,u)(a,u) to be the solution established in Theorem 2.1. Let σ\sigma fulfills 1d2<σd21-\frac{d}{2}<\sigma\leq\frac{d}{2}. It holds that

(1κa,a,u)(t)B˙2,σ(1κa0,a0,u0)B˙2,σ+0t(1+aB˙2,1d2)(1κa,a,u)B˙2,1d2+1(1κa,a,u)B˙2,σ𝑑s.\|(\frac{1}{\sqrt{\kappa}}a,\nabla a,u)(t)\|_{\dot{B}^{-\sigma}_{2,\infty}}\lesssim\|(\frac{1}{\sqrt{\kappa}}a_{0},\nabla a_{0},u_{0})\|_{\dot{B}^{-\sigma}_{2,\infty}}\\ +\int^{t}_{0}(1+\|a\|_{\dot{B}^{\frac{d}{2}}_{2,1}})\|(\frac{1}{\sqrt{\kappa}}a,\nabla a,u)\|_{\dot{B}^{\frac{d}{2}+1}_{2,1}}\|(\frac{1}{\sqrt{\kappa}}a,\nabla a,u)\|_{\dot{B}^{-\sigma}_{2,\infty}}ds. (4.2)
Proof.

Let us first recall (3.13), integral on time leads us to

(1κaj,aj,𝒬uj)L2e22jt(1κa0,j,a0,j,𝒬u0,j)L2+0te22j(ts)(1κfj,𝒬gj𝒬g4,j)L2+2jΔ˙j(ua)L2ds+κ0te22j(ts)2j([Δ˙j,ψ~(κ12a)](divu+Δa)L2ds.\|(\frac{1}{\sqrt{\kappa}}a_{j},\nabla a_{j},{\mathcal{Q}}u_{j})\|_{L^{2}}\lesssim e^{-2^{2j}t}\|(\frac{1}{\sqrt{\kappa}}a_{0,j},\nabla a_{0,j},{\mathcal{Q}}u_{0,j})\|_{L^{2}}\\ +\int^{t}_{0}e^{-2^{2j}(t-s)}\|(\frac{1}{\sqrt{\kappa}}f_{j},{\mathcal{Q}}g_{j}-{\mathcal{Q}}g_{4,j})\|_{L^{2}}+2^{j}\|\dot{\Delta}_{j}(u\cdot\nabla a)\|_{L^{2}}ds\\ +\sqrt{\kappa}\int^{t}_{0}e^{-2^{2j}(t-s)}2^{j}\big{(}\|[\dot{\Delta}_{j},\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)](\mathrm{div}u+\Delta a)\|_{L^{2}}ds. (4.3)

Hence, taking B˙2,σ\dot{B}^{-\sigma}_{2,\infty} norm yields

(1κa,a,𝒬u)B˙2,σ(1κa0,a0,𝒬u0)B˙2,σ+0t(1κf,𝒬g𝒬g4)B˙2,σ𝑑s+0tuaB˙2,σ+1𝑑s+κ0t[Δ˙j,ψ~(κ12a)](divu+Δa)B˙2,σ+1𝑑s\|(\frac{1}{\sqrt{\kappa}}a,\nabla a,{\mathcal{Q}}u)\|_{\dot{B}^{-\sigma}_{2,\infty}}\lesssim\|(\frac{1}{\sqrt{\kappa}}a_{0},\nabla a_{0},{\mathcal{Q}}u_{0})\|_{\dot{B}^{-\sigma}_{2,\infty}}+\int^{t}_{0}\|(\frac{1}{\sqrt{\kappa}}f,{\mathcal{Q}}g-{\mathcal{Q}}g_{4})\|_{\dot{B}^{-\sigma}_{2,\infty}}ds\\ +\int^{t}_{0}\|u\cdot\nabla a\|_{\dot{B}^{-\sigma+1}_{2,\infty}}ds+\sqrt{\kappa}\int^{t}_{0}\|[\dot{\Delta}_{j},\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)](\mathrm{div}u+\Delta a)\|_{\dot{B}^{-\sigma+1}_{2,\infty}}ds (4.4)

while for the incompressible part, we do the similar calculations and reach

𝒫uB˙2,σ𝒫u0B˙2,σ+0t𝒫gB˙2,σ𝑑s.\displaystyle\|{\mathcal{P}}u\|_{\dot{B}^{-\sigma}_{2,\infty}}\lesssim\|{\mathcal{P}}u_{0}\|_{\dot{B}^{-\sigma}_{2,\infty}}+\int^{t}_{0}\|{\mathcal{P}}g\|_{\dot{B}^{-\sigma}_{2,\infty}}ds. (4.5)

For nonlinear terms, we start with uau\cdot\nabla a, indeed, we have

uaB˙2,σ+1uB˙2,σaB˙2,1d2+1+aB˙2,σuB˙2,1d2+1\displaystyle\|u\cdot\nabla a\|_{\dot{B}^{-\sigma+1}_{2,\infty}}\lesssim\|u\|_{\dot{B}^{-\sigma}_{2,\infty}}\|\nabla a\|_{\dot{B}^{\frac{d}{2}+1}_{2,1}}+\|\nabla a\|_{\dot{B}^{-\sigma}_{2,\infty}}\|u\|_{\dot{B}^{\frac{d}{2}+1}_{2,1}} (4.6)

provided 1d2<σd21-\frac{d}{2}<\sigma\leq\frac{d}{2}. Similarly we could estimate terms uu,(|a|2),κ12G~(κ12a)au\cdot\nabla u,\nabla(|\nabla a|^{2}),\kappa^{-\frac{1}{2}}\widetilde{G}(\kappa^{-\frac{1}{2}}a)\nabla a. For commutators, we have

[Δ˙j,ψ~(κ12a)](divu+Δa)B˙2,σ+1\displaystyle\|[\dot{\Delta}_{j},\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)](\mathrm{div}u+\Delta a)\|_{\dot{B}^{-\sigma+1}_{2,\infty}} \displaystyle\lesssim κ12aB˙2,1d2(u+a)B˙2,σ+1.\displaystyle\kappa^{-\frac{1}{2}}\|\nabla a\|_{\dot{B}^{\frac{d}{2}}_{2,1}}\|(u+\nabla a)\|_{\dot{B}^{-\sigma+1}_{2,\infty}}.

Now taking θ=1σ+d2+1\theta=\frac{1}{\sigma+\frac{d}{2}+1}, interpolation allows us to have

aB˙2,1d2aB˙2,σθaB˙2,1d2+11θ\|\nabla a\|_{\dot{B}^{\frac{d}{2}}_{2,1}}\leq\|\nabla a\|^{\theta}_{\dot{B}^{-\sigma}_{2,\infty}}\|\nabla a\|^{1-\theta}_{\dot{B}^{\frac{d}{2}+1}_{2,1}}

and

(u+a)B˙2,σ+1(a,u)B˙2,σ1θ(a,u)B˙2,1d2+1θ,\|(u+\nabla a)\|_{\dot{B}^{-\sigma+1}_{2,\infty}}\leq\|(\nabla a,u)\|^{1-\theta}_{\dot{B}^{-\sigma}_{2,\infty}}\|(\nabla a,u)\|^{\theta}_{\dot{B}^{\frac{d}{2}+1}_{2,1}},

thus we find

κ[Δ˙j,ψ~(κ12a)](divu+Δa)B˙2,σ+1\displaystyle\sqrt{\kappa}\|[\dot{\Delta}_{j},\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)](\mathrm{div}u+\Delta a)\|_{\dot{B}^{-\sigma+1}_{2,\infty}} \displaystyle\lesssim (a,u)B˙2,σ(a,u)B˙2,1d2+1.\displaystyle\|(\nabla a,u)\|_{\dot{B}^{-\sigma}_{2,\infty}}\|(\nabla a,u)\|_{\dot{B}^{\frac{d}{2}+1}_{2,1}}.

For the quasi-linear ones, we take a look on λ~(κ12a)Δu\widetilde{\lambda}(\kappa^{-\frac{1}{2}}a)\Delta u, we actually have

λ~(κ12a)ΔuB˙2,σ\displaystyle\|\widetilde{\lambda}(\kappa^{-\frac{1}{2}}a)\Delta u\|_{\dot{B}^{-\sigma}_{2,\infty}} \displaystyle\lesssim κ12aB˙2,1d2ΔuB˙2,σ\displaystyle\kappa^{-\frac{1}{2}}\|a\|_{\dot{B}^{\frac{d}{2}}_{2,1}}\|\Delta u\|_{\dot{B}^{-\sigma}_{2,\infty}}
\displaystyle\lesssim κ12aB˙2,σθ~aB˙2,1d2+11θ~uB˙2,σ1θ~uB˙2,1d2+1θ~\displaystyle\kappa^{-\frac{1}{2}}\|\nabla a\|^{\widetilde{\theta}}_{\dot{B}^{-\sigma}_{2,\infty}}\|\nabla a\|^{1-\widetilde{\theta}}_{\dot{B}^{\frac{d}{2}+1}_{2,1}}\|u\|^{1-\widetilde{\theta}}_{\dot{B}^{-\sigma}_{2,\infty}}\|u\|^{\widetilde{\theta}}_{\dot{B}^{\frac{d}{2}+1}_{2,1}}

with θ~=2σ+d2+1\widetilde{\theta}=\frac{2}{\sigma+\frac{d}{2}+1}. Again, the Cauchy inequality allows us to arrive at

λ~(κ12a)ΔuB˙2,σκ12(a,u)B˙2,σ(a,u)B˙2,1d2+1.\displaystyle\|\widetilde{\lambda}(\kappa^{-\frac{1}{2}}a)\Delta u\|_{\dot{B}^{-\sigma}_{2,\infty}}\lesssim\kappa^{-\frac{1}{2}}\|(\nabla a,u)\|_{\dot{B}^{-\sigma}_{2,\infty}}\|(\nabla a,u)\|_{\dot{B}^{\frac{d}{2}+1}_{2,1}}.

Other terms follow similar calculations and hence, Lemma 4.1 is proved. ∎

Now Theorem 2.1 ensures that

0t(1+aB˙2,1d2)(1κa,a,u)B˙2,1d2+1𝑑s(1+aLT(B˙2,1d2))(1κa,a,u)LT1(B˙2,1d2+1)C,\int^{t}_{0}(1+\|a\|_{\dot{B}^{\frac{d}{2}}_{2,1}})\|(\frac{1}{\sqrt{\kappa}}a,\nabla a,u)\|_{\dot{B}^{\frac{d}{2}+1}_{2,1}}ds\\ \leq(1+\|a\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{2}}_{2,1})})\|(\frac{1}{\sqrt{\kappa}}a,\nabla a,u)\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}+1}_{2,1})}\leq C, (4.7)

the Gronwall inequality allows us to have (4.1).

4.2 Decay estimates of arbitrary order derivatives

In this subsection, we would establish decay rates for derivatives. Let us first introduce the following signal:

𝒳tsupt[0,T]t|α|2Dα(1κa,a,u)B˙2,σ\displaystyle\mathcal{X}_{t}\triangleq\sup_{t\in[0,T]}t^{\frac{|\alpha|}{2}}\|D^{\alpha}(\frac{1}{\sqrt{\kappa}}a,\nabla a,u)\|_{\dot{B}^{-\sigma}_{2,\infty}} (4.8)

where α\alpha is the index fulfills |α|>0|\alpha|>0. Moreover, we shall define 𝒴t\mathcal{Y}_{t} to present the decay functional space for solutions of (INS):

𝒴tsupt[0,T]t|α|2DαvB˙2,σ.\displaystyle\mathcal{Y}_{t}\triangleq\sup_{t\in[0,T]}t^{\frac{|\alpha|}{2}}\|D^{\alpha}v\|_{\dot{B}^{-\sigma}_{2,\infty}}. (4.9)

Our main purpose is to establish the following Lemma:

Proposition 4.1.

Let d2d\geq 2. Suppose that (a,u)(a,u) is the solution of system (1.1)-(1.2). Then the following inequality holds true for |α|σ|\alpha|\geq\sigma and t1t\geq 1 such that

𝒳t(1κa0,a0,u0)B˙2,σ+(1κa,a,u)Lt(B˙2,σ)(t+𝒲t+𝒱t)+(𝒱t+𝒟t)𝒴t+(𝒲t+κδασtϵ𝒱t+κδ𝒟t)𝒳t\mathcal{X}_{t}\lesssim\|(\frac{1}{\sqrt{\kappa}}a_{0},\nabla a_{0},u_{0})\|_{\dot{B}^{-\sigma}_{2,\infty}}+\|(\frac{1}{\sqrt{\kappa}}a,\nabla a,u)\|_{L^{\infty}_{t}(\dot{B}^{-\sigma}_{2,\infty})}(\mathcal{E}_{t}+\mathcal{W}_{t}+\mathcal{V}_{t})\\ +(\mathcal{V}_{t}+\mathcal{D}_{t})\mathcal{Y}_{t}+(\mathcal{W}_{t}+\kappa^{-\frac{\delta}{\alpha-\sigma}}t^{-\epsilon}\mathcal{V}_{t}+\kappa^{-\delta}\mathcal{D}_{t})\mathcal{X}_{t} (4.10)

where ϵ=d21σ\epsilon=\frac{d}{2}-1-\sigma.

Proof.

Before the detailed calculations, for clarify, we write mm and hh to represent

m=(1κa,a,𝒬u)andh=1κf+𝒬g𝒬g4+(ua).m=(\frac{1}{\sqrt{\kappa}}a,\nabla a,{\mathcal{Q}}u)\quad\mathrm{and}\quad h=\frac{1}{\sqrt{\kappa}}f+{\mathcal{Q}}g-{\mathcal{Q}}g_{4}+\nabla(u\cdot\nabla a).

Applying derivatives DαD^{\alpha} on the variable and repeating the energy under localization in (3.9) yields

ddtDαmjL2+22jDαmjL2DαhjL2κ2j[DαΔ˙j,ψ~(κ12a)](Δa+div𝒬u)L2.\frac{d}{dt}\|D^{\alpha}m_{j}\|_{L^{2}}+2^{2j}\|D^{\alpha}m_{j}\|_{L^{2}}\\ \lesssim\|D^{\alpha}h_{j}\|_{L^{2}}-\sqrt{\kappa}2^{j}\|[D^{\alpha}\dot{\Delta}_{j},\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)](\Delta a+\mathrm{div}\mathcal{Q}u)\|_{L^{2}}.

Then taking advantages of the Gronwall inequality and notice the following estimate

e22jtDα(1κa0,j,a0,j,𝒬u0,j)L2\displaystyle e^{-2^{2j}t}\|D^{\alpha}(\frac{1}{\sqrt{\kappa}}a_{0,j},\nabla a_{0,j},{\mathcal{Q}}u_{0,j})\|_{L^{2}} \displaystyle\lesssim e22jt2|α|j(1κa0,j,a0,j,𝒬u0,j)L2\displaystyle e^{-2^{2j}t}2^{|\alpha|j}\|(\frac{1}{\sqrt{\kappa}}a_{0,j},\nabla a_{0,j},{\mathcal{Q}}u_{0,j})\|_{L^{2}}
\displaystyle\lesssim ec22jtt|α|2(1κa0,j,a0,j,𝒬u0,j)L2\displaystyle e^{-c2^{2j}t}t^{-\frac{|\alpha|}{2}}\|(\frac{1}{\sqrt{\kappa}}a_{0,j},\nabla a_{0,j},{\mathcal{Q}}u_{0,j})\|_{L^{2}}

where we use xηexecxx^{\eta}e^{-x}\leq e^{-cx} for η>0\eta>0, we immediately have

DαmjL2t|α|2m0,jL2+0te22j(ts)DαhjL2𝑑s+κ0te22j(ts)2j[DαΔ˙j,ψ~(κ12a)](Δa+div𝒬u)L2𝑑s.\|D^{\alpha}m_{j}\|_{L^{2}}\lesssim t^{-\frac{|\alpha|}{2}}\|m_{0,j}\|_{L^{2}}+\int^{t}_{0}e^{-2^{2j}(t-s)}\|D^{\alpha}h_{j}\|_{L^{2}}ds\\ +\sqrt{\kappa}\int^{t}_{0}e^{-2^{2j}(t-s)}2^{j}\|[D^{\alpha}\dot{\Delta}_{j},\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)](\Delta a+\mathrm{div}\mathcal{Q}u)\|_{L^{2}}ds. (4.11)

Then after taking B˙2,σ\dot{B}^{-\sigma}_{2,\infty} norm, the following inequality holds

DαmB˙2,σt|α|2m0B˙2,σ+supj2σj0te22j(ts)DαhjL2𝑑s+κsupj2(σ+1)j0te22j(ts)[DαΔ˙j,ψ~(κ12a)](Δa+div𝒬u)L2𝑑s.\|D^{\alpha}m\|_{\dot{B}^{-\sigma}_{2,\infty}}\lesssim t^{-\frac{|\alpha|}{2}}\|m_{0}\|_{\dot{B}^{-\sigma}_{2,\infty}}+\sup_{j}2^{-\sigma j}\int^{t}_{0}e^{-2^{2j}(t-s)}\|D^{\alpha}h_{j}\|_{L^{2}}ds\\ +\sqrt{\kappa}\sup_{j}2^{(-\sigma+1)j}\int^{t}_{0}e^{-2^{2j}(t-s)}\|[D^{\alpha}\dot{\Delta}_{j},\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)](\Delta a+\mathrm{div}\mathcal{Q}u)\|_{L^{2}}ds. (4.12)

Very similarly, we obtain for 𝒫u{\mathcal{P}}u such that

Dα𝒫uB˙2,σt|α|2𝒫u0B˙2,σ+supj2σj0te22j(ts)Dα𝒫gjL2𝑑s\|D^{\alpha}{\mathcal{P}}u\|_{\dot{B}^{-\sigma}_{2,\infty}}\lesssim t^{-\frac{|\alpha|}{2}}\|{\mathcal{P}}u_{0}\|_{\dot{B}^{-\sigma}_{2,\infty}}+\sup_{j}2^{-\sigma j}\int^{t}_{0}e^{-2^{2j}(t-s)}\|D^{\alpha}{\mathcal{P}}g_{j}\|_{L^{2}}ds (4.13)

and we conclude with

Dα(1κa,a,u)B˙2,σt|α|2(1κa0,a0,u0)B˙2,σ+I1+I2\displaystyle\|D^{\alpha}(\frac{1}{\sqrt{\kappa}}a,\nabla a,u)\|_{\dot{B}^{-\sigma}_{2,\infty}}\lesssim t^{-\frac{|\alpha|}{2}}\|(\frac{1}{\sqrt{\kappa}}a_{0},\nabla a_{0},u_{0})\|_{\dot{B}^{-\sigma}_{2,\infty}}+I_{1}+I_{2} (4.14)

where I1I_{1} represents nonlinearities of integral of time on [0,t2][0,\frac{t}{2}] while I2I_{2} is the integral on [t2,t][\frac{t}{2},t]. Now we start to deal with different time integral intervals respectively.

4.2.1 Nonlinear estimates on [0,t2][0,\frac{t}{2}]

The estimates on [0,t2][0,\frac{t}{2}] is not problematic, we shall take the term (ua)\nabla(u\cdot\nabla a) in hh as an example where we have

supj2σj0t2e22j(ts)DαΔ˙j(ua)L2𝑑s\displaystyle\sup_{j}2^{-\sigma j}\int^{\frac{t}{2}}_{0}e^{-2^{2j}(t-s)}\|D^{\alpha}\dot{\Delta}_{j}\nabla(u\cdot\nabla a)\|_{L^{2}}ds
\displaystyle\lesssim supj2σj0t2(ts)(|α|+σ)((ts)22j)|α|+σe22j(ts)Δ˙j(ua)L2𝑑s\displaystyle\sup_{j}2^{-\sigma j}\int^{\frac{t}{2}}_{0}(t-s)^{-(|\alpha|+\sigma)}((t-s)2^{2j})^{|\alpha|+\sigma}e^{-2^{2j}(t-s)}\|\dot{\Delta}_{j}\nabla(u\cdot\nabla a)\|_{L^{2}}ds
\displaystyle\lesssim t|α|2uaL~t1(B˙2,σ+1).\displaystyle t^{-\frac{|\alpha|}{2}}\|u\cdot\nabla a\|_{\widetilde{L}^{1}_{t}(\dot{B}^{-\sigma+1}_{2,\infty})}.

Since that

uaL~t1(B˙2,σ+1)uLt(B˙2,σ)aLt1(B˙2,1d2+1)+aLt(B˙2,σ)uLt1(B˙2,1d2+1).\|u\cdot\nabla a\|_{\widetilde{L}^{1}_{t}(\dot{B}^{-\sigma+1}_{2,\infty})}\lesssim\|u\|_{L^{\infty}_{t}(\dot{B}^{-\sigma}_{2,\infty})}\|\nabla a\|_{L^{1}_{t}(\dot{B}^{\frac{d}{2}+1}_{2,1})}+\|\nabla a\|_{L^{\infty}_{t}(\dot{B}^{-\sigma}_{2,\infty})}\|u\|_{L^{1}_{t}(\dot{B}^{\frac{d}{2}+1}_{2,1})}.

Therefore, calculations as in Section 3 allows us to have

supj2σj0t2e22j(ts)DαΔ˙j(ua)L2𝑑st|α|2(a,u)Lt(B˙2,σ)(t+𝒲t+𝒱t).\sup_{j}2^{-\sigma j}\int^{\frac{t}{2}}_{0}e^{-2^{2j}(t-s)}\|D^{\alpha}\dot{\Delta}_{j}(u\cdot\nabla a)\|_{L^{2}}ds\\ \lesssim t^{-\frac{|\alpha|}{2}}\|(\nabla a,u)\|_{L^{\infty}_{t}(\dot{B}^{-\sigma}_{2,\infty})}(\mathcal{E}_{t}+\mathcal{W}_{t}+\mathcal{V}_{t}).

So does estimates for those semi-linear ones uu,(|a|2)u\cdot\nabla u,\nabla(|\nabla a|^{2}). In terms of the pressure term κ12G~(κ12a)a\kappa^{-\frac{1}{2}}\widetilde{G}(\kappa^{-\frac{1}{2}}a)\nabla a, we have

supj2σj0t2e22j(ts)DαΔ˙j(G~(κ12a)a)L2𝑑st|α|2G~(κ12a)aL~t1(B˙2,σ)\displaystyle\sup_{j}2^{-\sigma j}\int^{\frac{t}{2}}_{0}e^{-2^{2j}(t-s)}\|D^{\alpha}\dot{\Delta}_{j}(\widetilde{G}(\kappa^{-\frac{1}{2}}a)\nabla a)\|_{L^{2}}ds\lesssim t^{-\frac{|\alpha|}{2}}\|\widetilde{G}(\kappa^{-\frac{1}{2}}a)\nabla a\|_{\widetilde{L}^{1}_{t}(\dot{B}^{-\sigma}_{2,\infty})}
κt|α|2aκLt(B˙2,σ)aκLt1(B˙2,1d2+1)\displaystyle\lesssim\sqrt{\kappa}t^{-\frac{|\alpha|}{2}}\|\frac{a}{\sqrt{\kappa}}\|_{L^{\infty}_{t}(\dot{B}^{-\sigma}_{2,\infty})}\|\frac{a}{\sqrt{\kappa}}\|_{L^{1}_{t}(\dot{B}^{\frac{d}{2}+1}_{2,1})}

which yields

κ12supj2σj0t2e22j(ts)DαΔ˙j(G~(κ12a)a)L2𝑑st|α|2(a,u)Lt(B˙2,σ)t.\kappa^{-\frac{1}{2}}\sup_{j}2^{-\sigma j}\int^{\frac{t}{2}}_{0}e^{-2^{2j}(t-s)}\|D^{\alpha}\dot{\Delta}_{j}(\widetilde{G}(\kappa^{-\frac{1}{2}}a)\nabla a)\|_{L^{2}}ds\lesssim t^{-\frac{|\alpha|}{2}}\|(\nabla a,u)\|_{L^{\infty}_{t}(\dot{B}^{-\sigma}_{2,\infty})}\mathcal{E}_{t}.

For quasi-linear nonlinearity g2g_{2}, we pay attention to div(2μ~(κ12a)D(u))\mathrm{div}(2\widetilde{\mu}(\kappa^{-\frac{1}{2}}a)D(u)) where

μ~(κ12a)D(u)L~t1(B˙2,σ+1)κ12(aLt(B˙2,σ+1)D(u)Lt1(B˙2,1d2)+D(u)Lt(B˙2,σ1)aLt1(B˙2,1d2+2)).\|\widetilde{\mu}(\kappa^{-\frac{1}{2}}a)D(u)\|_{\widetilde{L}^{1}_{t}(\dot{B}^{-\sigma+1}_{2,\infty})}\lesssim\kappa^{-\frac{1}{2}}\big{(}\|a\|_{L^{\infty}_{t}(\dot{B}^{-\sigma+1}_{2,\infty})}\|D(u)\|_{L^{1}_{t}(\dot{B}^{\frac{d}{2}}_{2,1})}\\ +\|D(u)\|_{L^{\infty}_{t}(\dot{B}^{-\sigma-1}_{2,\infty})}\|a\|_{L^{1}_{t}(\dot{B}^{\frac{d}{2}+2}_{2,1})}\big{)}.

which implies

supj2σj0t2e22j(ts)DαΔ˙jdiv(2μ~(κ12a)D(u))L2𝑑st|α|2(1κa,a,u)Lt(B˙2,σ)(t+𝒲t+𝒱t).\sup_{j}2^{-\sigma j}\int^{\frac{t}{2}}_{0}e^{-2^{2j}(t-s)}\|D^{\alpha}\dot{\Delta}_{j}\mathrm{div}(2\widetilde{\mu}(\kappa^{-\frac{1}{2}}a)D(u))\|_{L^{2}}ds\\ \lesssim t^{-\frac{|\alpha|}{2}}\|(\frac{1}{\sqrt{\kappa}}a,\nabla a,u)\|_{L^{\infty}_{t}(\dot{B}^{-\sigma}_{2,\infty})}(\mathcal{E}_{t}+\mathcal{W}_{t}+\mathcal{V}_{t}).

Similarly we could estimates other terms. Finally we turn to commutators, here, we shall take [DαΔ˙j,ψ~(κ12a)]Δa[D^{\alpha}\dot{\Delta}_{j},\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)]\Delta a as an example while the other one enjoys exact same calculations. Indeed we have

[DαΔ˙j,ψ~(κ12a)]Δa=DαΔ˙j(ψ~(κ12a)Δa)ψ~(κ12a)DαΔ˙jΔa.[D^{\alpha}\dot{\Delta}_{j},\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)]\Delta a=D^{\alpha}\dot{\Delta}_{j}(\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)\Delta a)-\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)D^{\alpha}\dot{\Delta}_{j}\Delta a.

The former one enjoys similar calculations as quasi-linear ones, for the latter one, we have

κsupj2σj0t2e22j(ts)ψ~(κ12a)DαΔ˙jΔaL2𝑑sκt|α|2supj2σj0t2ψ~(κ12a)L𝑑sΔ˙jΔaL2t|α|2aLtr1LΔaL~tr2(B˙2,σ)\sqrt{\kappa}\sup_{j}2^{-\sigma j}\int^{\frac{t}{2}}_{0}e^{-2^{2j}(t-s)}\|\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)D^{\alpha}\dot{\Delta}_{j}\Delta a\|_{L^{2}}ds\\ \lesssim\sqrt{\kappa}t^{-\frac{|\alpha|}{2}}\sup_{j}2^{-\sigma j}\int^{\frac{t}{2}}_{0}\|\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)\|_{L^{\infty}}ds\|\dot{\Delta}_{j}\Delta a\|_{L^{2}}\\ \lesssim t^{-\frac{|\alpha|}{2}}\|a\|_{L^{r_{1}}_{t}L^{\infty}}\|\Delta a\|_{\widetilde{L}^{r_{2}}_{t}(\dot{B}^{-\sigma}_{2,\infty})}

where 1r1=σ+d21σ+d2+1,1r2=2σ+d2+1\frac{1}{r_{1}}=\frac{\sigma+\frac{d}{2}-1}{\sigma+\frac{d}{2}+1},\frac{1}{r_{2}}=\frac{2}{\sigma+\frac{d}{2}+1}. Keep in mind the following interpolation

aLtr1LaLtr1(B˙2,1d21)aLt(B˙2,σ)θ1aLt1(B˙2,1d2+1)1θ1\|a\|_{L^{r_{1}}_{t}L^{\infty}}\lesssim\|\nabla a\|_{L^{r_{1}}_{t}(\dot{B}^{\frac{d}{2}-1}_{2,1})}\lesssim\|\nabla a\|^{\theta_{1}}_{L^{\infty}_{t}(\dot{B}^{-\sigma}_{2,\infty})}\|\nabla a\|^{1-\theta_{1}}_{L^{1}_{t}(\dot{B}^{\frac{d}{2}+1}_{2,1})}

and

ΔaL~tr2(B˙2,σ)aLt(B˙2,σ)θ2aLt1(B˙2,1d2+1)1θ2\|\Delta a\|_{\widetilde{L}^{r_{2}}_{t}(\dot{B}^{-\sigma}_{2,\infty})}\lesssim\|\nabla a\|^{\theta_{2}}_{L^{\infty}_{t}(\dot{B}^{-\sigma}_{2,\infty})}\|\nabla a\|^{1-\theta_{2}}_{L^{1}_{t}(\dot{B}^{\frac{d}{2}+1}_{2,1})}

with θ1=11r1,θ2=11r2\theta_{1}=1-\frac{1}{r_{1}},\theta_{2}=1-\frac{1}{r_{2}}, we arrive at

κsupj2σj0t2e22j(ts)ψ~(κ12a)DαΔ˙jΔaL2𝑑st|α|2aLt(B˙2,σ)(t+𝒲t+𝒱t).\sqrt{\kappa}\sup_{j}2^{-\sigma j}\int^{\frac{t}{2}}_{0}e^{-2^{2j}(t-s)}\|\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)D^{\alpha}\dot{\Delta}_{j}\Delta a\|_{L^{2}}ds\\ \lesssim t^{-\frac{|\alpha|}{2}}\|\nabla a\|_{L^{\infty}_{t}(\dot{B}^{-\sigma}_{2,\infty})}(\mathcal{E}_{t}+\mathcal{W}_{t}+\mathcal{V}_{t}).

Similar calculations on another commutator allows us to finish nonlinear estimates on [0,t2][0,\frac{t}{2}] and we finish with

I1\displaystyle I_{1} \displaystyle\lesssim t|α|2(1κa,a,u)Lt(B˙2,σ)(t+𝒲t+𝒱t).\displaystyle t^{-\frac{|\alpha|}{2}}\|(\frac{1}{\sqrt{\kappa}}a,\nabla a,u)\|_{L^{\infty}_{t}(\dot{B}^{-\sigma}_{2,\infty})}(\mathcal{E}_{t}+\mathcal{W}_{t}+\mathcal{V}_{t}). (4.16)

4.2.2 Nonlinear estimates on [t2,t][\frac{t}{2},t]

Next we term to bound [t2,t][\frac{t}{2},t]. Again, we start with ua=𝒬ua+(𝒫uv)a+vau\cdot\nabla a=\mathcal{Q}u\cdot\nabla a+(\mathcal{P}u-v)\cdot\nabla a+v\cdot\nabla a, for the first one, we have

supj2σjt2te22j(ts)DαΔ˙j(𝒬ua)L2𝑑s\displaystyle\sup_{j}2^{-\sigma j}\int^{t}_{\frac{t}{2}}e^{-2^{2j}(t-s)}\|D^{\alpha}\dot{\Delta}_{j}\nabla(\mathcal{Q}u\cdot\nabla a)\|_{L^{2}}ds
\displaystyle\lesssim supj2σj(t2te22j(ts)𝑑s)12DαΔ˙j(𝒬ua)L[t2,t]2L2.\displaystyle\sup_{j}2^{-\sigma j}\big{(}\int^{t}_{\frac{t}{2}}e^{-2^{2j}(t-s)}ds\big{)}^{\frac{1}{2}}\|D^{\alpha}\dot{\Delta}_{j}\nabla(\mathcal{Q}u\cdot\nabla a)\|_{L^{2}_{[\frac{t}{2},t]}L^{2}}.

Observe that for fixed c>0c>0 and γ[1,]\gamma\in[1,\infty]

(t2tec22j(ts)𝑑s)1γC22γj\big{(}\int^{t}_{\frac{t}{2}}e^{-c2^{2j}(t-s)}ds\big{)}^{\frac{1}{\gamma}}\leq C2^{-\frac{2}{\gamma}j}

for some positive CC, there naturally holds

supj2σjt2te22j(ts)DαΔ˙j(𝒬ua)L2𝑑sDα(𝒬ua)L~[t2,t]2(B˙2,σ).\displaystyle\sup_{j}2^{-\sigma j}\int^{t}_{\frac{t}{2}}e^{-2^{2j}(t-s)}\|D^{\alpha}\dot{\Delta}_{j}\nabla(\mathcal{Q}u\cdot\nabla a)\|_{L^{2}}ds\lesssim\|D^{\alpha}(\mathcal{Q}u\cdot\nabla a)\|_{\widetilde{L}^{2}_{[\frac{t}{2},t]}(\dot{B}^{-\sigma}_{2,\infty})}. (4.17)

Now Bony decomposition

𝒬ua=T𝒬ua+R(𝒬u,a)+Ta𝒬u,\mathcal{Q}u\cdot\nabla a=T_{\mathcal{Q}u}\nabla a+R(\mathcal{Q}u,\nabla a)+T_{\nabla a}\mathcal{Q}u,

we have for all ασ\alpha\geq\sigma

DαT𝒬uaL~[t2,t]2(B˙2,σ)𝒬uLt2LDαaL[t2,t](B˙2,σ);\displaystyle\|D^{\alpha}T_{\mathcal{Q}u}\nabla a\|_{\widetilde{L}^{2}_{[\frac{t}{2},t]}(\dot{B}^{-\sigma}_{2,\infty})}\lesssim\|\mathcal{Q}u\|_{L^{2}_{t}L^{\infty}}\|D^{\alpha}\nabla a\|_{L^{\infty}_{[\frac{t}{2},t]}(\dot{B}^{-\sigma}_{2,\infty})}; (4.18)
DαR(𝒬u,a)L~[t2,t]2(B˙2,σ)𝒬uL~t2(B˙,10)DαaL[t2,t](B˙2,σ);\displaystyle\|D^{\alpha}R(\mathcal{Q}u,\nabla a)\|_{\widetilde{L}^{2}_{[\frac{t}{2},t]}(\dot{B}^{-\sigma}_{2,\infty})}\lesssim\|\mathcal{Q}u\|_{\widetilde{L}^{2}_{t}(\dot{B}^{0}_{\infty,1})}\|D^{\alpha}\nabla a\|_{L^{\infty}_{[\frac{t}{2},t]}(\dot{B}^{-\sigma}_{2,\infty})}; (4.19)
DαTa𝒬uL~[t2,t]2(B˙2,σ)aLt2LDα𝒬uL[t2,t](B˙2,σ).\displaystyle\|D^{\alpha}T_{\nabla a}\mathcal{Q}u\|_{\widetilde{L}^{2}_{[\frac{t}{2},t]}(\dot{B}^{-\sigma}_{2,\infty})}\lesssim\|\nabla a\|_{L^{2}_{t}L^{\infty}}\|D^{\alpha}\mathcal{Q}u\|_{L^{\infty}_{[\frac{t}{2},t]}(\dot{B}^{-\sigma}_{2,\infty})}. (4.20)

Now for the first one, if ασ\alpha\geq\sigma, there holds

Dα𝒬uaL~[t2,t]2(B˙2,σ)\displaystyle\|D^{\alpha}\mathcal{Q}u\cdot\nabla a\|_{\widetilde{L}^{2}_{[\frac{t}{2},t]}(\dot{B}^{-\sigma}_{2,\infty})} \displaystyle\lesssim t|α|2aL~2(B˙,10)sup[t2,t]sα2Dα𝒬uB˙2,σ.\displaystyle t^{-\frac{|\alpha|}{2}}\|\nabla a\|_{\widetilde{L}^{2}(\dot{B}^{0}_{\infty,1})}\sup_{[\frac{t}{2},t]}s^{\frac{\alpha}{2}}\|D^{\alpha}\mathcal{Q}u\|_{\dot{B}^{-\sigma}_{2,\infty}}.

Thanks to (3.33), we deduce

supj2σjt2te22j(ts)DαΔ˙j(𝒬ua)L2𝑑s\displaystyle\sup_{j}2^{-\sigma j}\int^{t}_{\frac{t}{2}}e^{-2^{2j}(t-s)}\|D^{\alpha}\dot{\Delta}_{j}\nabla(\mathcal{Q}u\cdot\nabla a)\|_{L^{2}}ds \displaystyle\lesssim κδt|α|2𝒟t𝒳t.\displaystyle\kappa^{-\delta}t^{-\frac{|\alpha|}{2}}\mathcal{D}_{t}\mathcal{X}_{t}. (4.21)

Now we turn to consider (𝒫uv)a(\mathcal{P}u-v)\cdot\nabla a, in fact, it is similarly handled as (4.21) where

supj2σjt2te22j(ts)DαΔ˙j((𝒫uv)a)L2𝑑s\displaystyle\sup_{j}2^{-\sigma j}\int^{t}_{\frac{t}{2}}e^{-2^{2j}(t-s)}\|D^{\alpha}\dot{\Delta}_{j}\nabla((\mathcal{P}u-v)\cdot\nabla a)\|_{L^{2}}ds \displaystyle\lesssim t|α|2𝒲t𝒳t.\displaystyle t^{-\frac{|\alpha|}{2}}\mathcal{W}_{t}\mathcal{X}_{t}.

As for vav\cdot\nabla a, again we have Bony decomposition

va=Tva+R(v,a)+Tav.v\cdot\nabla a=T_{v}\nabla a+R(v,\nabla a)+T_{\nabla a}v.

For the first one, one shall decompose the frequency into

Δ˙jTva=S˙jvΔ˙ja=2jlκηΔ˙lvΔ˙ja+2jlκηΔ˙lvΔ˙ja\dot{\Delta}_{j}T_{v}\nabla a=\dot{S}_{j}v\dot{\Delta}_{j}\nabla a=\sum_{2^{j-l}\leq\kappa^{\eta}}\dot{\Delta}_{l}v\dot{\Delta}_{j}\nabla a+\sum_{2^{j-l}\geq\kappa^{\eta}}\dot{\Delta}_{l}v\dot{\Delta}_{j}\nabla a

and it holds that

supj2σjt2te22j(ts)Dα(2jlκηΔ˙lvΔ˙ja)L2\displaystyle\sup_{j}2^{-\sigma j}\int^{t}_{\frac{t}{2}}e^{-2^{2j}(t-s)}\|D^{\alpha}\nabla(\sum_{2^{j-l}\leq\kappa^{\eta}}\dot{\Delta}_{l}v\dot{\Delta}_{j}\nabla a)\|_{L^{2}}
\displaystyle\lesssim supj2σj2jlκηΔ˙lvL[t2,t]L2Δ˙jDαaL[t2,t]2L\displaystyle\sup_{j}2^{-\sigma j}\sum_{2^{j-l}\leq\kappa^{\eta}}\|\dot{\Delta}_{l}v\|_{L^{\infty}_{[\frac{t}{2},t]}L^{2}}\|\dot{\Delta}_{j}\nabla D^{\alpha}a\|_{L^{2}_{[\frac{t}{2},t]}L^{\infty}}
\displaystyle\lesssim supj2jlκη2(ασ)(jl)2(ασ)lΔ˙lvL[t2,t]L22αjΔ˙jDαaL[t2,t]2L\displaystyle\sup_{j}\sum_{2^{j-l}\leq\kappa^{\eta}}2^{(\alpha-\sigma)(j-l)}2^{(\alpha-\sigma)l}\|\dot{\Delta}_{l}v\|_{L^{\infty}_{[\frac{t}{2},t]}L^{2}}2^{-\alpha j}\|\dot{\Delta}_{j}\nabla D^{\alpha}a\|_{L^{2}_{[\frac{t}{2},t]}L^{\infty}}
\displaystyle\lesssim κ(ασ)ηDαvL[t2,t](B˙2,σ)aL[t2,t]2L.\displaystyle\kappa^{(\alpha-\sigma)\eta}\|D^{\alpha}v\|_{L^{\infty}_{[\frac{t}{2},t]}(\dot{B}^{-\sigma}_{2,\infty})}\|\nabla a\|_{L^{2}_{[\frac{t}{2},t]}L^{\infty}}.

We conclude for any t1t\geq 1

j2σjt2te22j(ts)(jlκηΔ˙lvΔ˙jDαa)L2𝑑sκ(ασ)ηδt|α|2𝒴t𝒟t.\sum_{j}2^{-\sigma j}\int^{t}_{\frac{t}{2}}e^{-2^{2j}(t-s)}\|\nabla(\sum_{j-l\leq\kappa^{\eta}}\dot{\Delta}_{l}v\dot{\Delta}_{j}\nabla D^{\alpha}a)\|_{L^{2}}ds\lesssim\kappa^{(\alpha-\sigma)\eta-\delta}t^{-\frac{|\alpha|}{2}}\mathcal{Y}_{t}\mathcal{D}_{t}. (4.23)

On the other hand, we have

supj2σjt2te22j(ts)(jlκηΔ˙lvΔ˙jDαa)L2𝑑s\displaystyle\sup_{j}2^{-\sigma j}\int^{t}_{\frac{t}{2}}e^{-2^{2j}(t-s)}\|\nabla(\sum_{j-l\geq\kappa^{\eta}}\dot{\Delta}_{l}v\dot{\Delta}_{j}\nabla D^{\alpha}a)\|_{L^{2}}ds
\displaystyle\lesssim supj2(σ1)jjlκηΔ˙lvL[t2,t]LΔ˙jDαaL[t2,t]L2\displaystyle\sup_{j}2^{(-\sigma-1)j}\sum_{j-l\geq\kappa^{\eta}}\|\dot{\Delta}_{l}v\|_{L^{\infty}_{[\frac{t}{2},t]}L^{\infty}}\|\dot{\Delta}_{j}\nabla D^{\alpha}a\|_{L^{\infty}_{[\frac{t}{2},t]}L^{2}}
\displaystyle\lesssim supj2jlκη2(jl)2lΔ˙lvL[t2,t]L2σjΔ˙jDαaL[t2,t]L2\displaystyle\sup_{j}\sum_{2^{j-l}\geq\kappa^{\eta}}2^{-(j-l)}2^{-l}\|\dot{\Delta}_{l}v\|_{L^{\infty}_{[\frac{t}{2},t]}L^{\infty}}2^{-\sigma j}\|\dot{\Delta}_{j}\nabla D^{\alpha}a\|_{L^{\infty}_{[\frac{t}{2},t]}L^{2}}
\displaystyle\lesssim κηvL[t2,t](B˙2,d21)DαaL[t2,t](B˙2,σ)κηt|α|2tϵ𝒱t𝒳t\displaystyle\kappa^{-\eta}\|v\|_{L^{\infty}_{[\frac{t}{2},t]}(\dot{B}^{\frac{d}{2}-1}_{2,\infty})}\|\nabla D^{\alpha}a\|_{L^{\infty}_{[\frac{t}{2},t]}(\dot{B}^{-\sigma}_{2,\infty})}\lesssim\kappa^{-\eta}t^{-\frac{|\alpha|}{2}}t^{-\epsilon}\mathcal{V}_{t}\mathcal{X}_{t}

where ϵ=d21σ>0\epsilon=\frac{d}{2}-1-\sigma>0. Finally, we have

supj2σjt2te22j(ts)Δ˙jDα(R(v,a)+Tav)L2𝑑s\displaystyle\sup_{j}2^{-\sigma j}\int^{t}_{\frac{t}{2}}e^{-2^{2j}(t-s)}\|\dot{\Delta}_{j}D^{\alpha}\nabla(R(v,\nabla a)+T_{\nabla a}v)\|_{L^{2}}ds
\displaystyle\lesssim DαR(v,a)+DαTavL[t2,t]2(B˙2,σ)\displaystyle\|D^{\alpha}R(v,\nabla a)+D^{\alpha}T_{\nabla a}v\|_{L^{2}_{[\frac{t}{2},t]}(\dot{B}^{-\sigma}_{2,\infty})}
\displaystyle\lesssim aL[t2,t]2(B˙,10)DαvL[t2,t](B˙2,σ)\displaystyle\|\nabla a\|_{L^{2}_{[\frac{t}{2},t]}(\dot{B}^{0}_{\infty,1})}\|D^{\alpha}v\|_{L^{\infty}_{[\frac{t}{2},t]}(\dot{B}^{-\sigma}_{2,\infty})}
\displaystyle\lesssim t|α|2κδ𝒟t𝒳t.\displaystyle t^{-\frac{|\alpha|}{2}}\kappa^{-\delta}\mathcal{D}_{t}\mathcal{X}_{t}.

Consequently, by selecting η=δασ\eta=\frac{\delta}{\alpha-\sigma}, we finally have

supj2σj0te22j(ts)DαΔ˙j(va)L2𝑑st|α|2(𝒴t𝒟t+κδασtϵ𝒱t𝒳t+κδ𝒟t𝒳t).\sup_{j}2^{-\sigma j}\int^{t}_{0}e^{-2^{2j}(t-s)}\|D^{\alpha}\dot{\Delta}_{j}\nabla(v\cdot\nabla a)\|_{L^{2}}ds\\ \lesssim t^{-\frac{|\alpha|}{2}}\big{(}\mathcal{Y}_{t}\mathcal{D}_{t}+\kappa^{-\frac{\delta}{\alpha-\sigma}}t^{-\epsilon}\mathcal{V}_{t}\mathcal{X}_{t}+\kappa^{-\delta}\mathcal{D}_{t}\mathcal{X}_{t}\big{)}. (4.26)

So does estimates for those semi-linear ones (|a|2),κ12G~(κ12a)a\nabla(|\nabla a|^{2}),\kappa^{-\frac{1}{2}}\widetilde{G}(\kappa^{-\frac{1}{2}}a)\nabla a while for vvv\cdot\nabla v, there holds

supj2σj0te22j(ts)DαΔ˙j(vv)L2𝑑sDαv2L[t2,t]2(B˙2,σ)vL~[t2,t]2B˙2,1d2DαvL[t2,t](B˙2,σ)t|α|2𝒱t𝒴t.\sup_{j}2^{-\sigma j}\int^{t}_{0}e^{-2^{2j}(t-s)}\|D^{\alpha}\dot{\Delta}_{j}(v\cdot\nabla v)\|_{L^{2}}ds\lesssim\|D^{\alpha}v^{2}\|_{L^{2}_{[\frac{t}{2},t]}(\dot{B}^{-\sigma}_{2,\infty})}\\ \lesssim\|v\|_{\widetilde{L}^{2}_{[\frac{t}{2},t]}\dot{B}^{\frac{d}{2}}_{2,1}}\|D^{\alpha}v\|_{L^{\infty}_{[\frac{t}{2},t]}(\dot{B}^{-\sigma}_{2,\infty})}\lesssim t^{-\frac{|\alpha|}{2}}\mathcal{V}_{t}\mathcal{Y}_{t}. (4.27)

Next we focus on those quasi-linear ones and take (λ~(κ12a)divu)\nabla(\widetilde{\lambda}(\kappa^{-\frac{1}{2}}a)\mathrm{div}u) as an example. We have

supj2σjt2te22j(ts)Δ˙jDα(λ~(κ12a)divu)L2𝑑s\displaystyle\sup_{j}2^{-\sigma j}\int^{t}_{\frac{t}{2}}e^{-2^{2j}(t-s)}\|\dot{\Delta}_{j}D^{\alpha}\nabla(\widetilde{\lambda}(\kappa^{-\frac{1}{2}}a)\mathrm{div}u)\|_{L^{2}}ds
\displaystyle\lesssim Dα(λ~(κ12a)divu)L[t2,t](B˙2,σ1).\displaystyle\|D^{\alpha}(\widetilde{\lambda}(\kappa^{-\frac{1}{2}}a)\mathrm{div}u)\|_{L^{\infty}_{[\frac{t}{2},t]}(\dot{B}^{-\sigma-1}_{2,\infty})}.

Since that

Dα(λ~(κ12a)divu)L[t2,t](B˙2,σ1)\displaystyle\|D^{\alpha}(\widetilde{\lambda}(\kappa^{-\frac{1}{2}}a)\mathrm{div}u)\|_{L^{\infty}_{[\frac{t}{2},t]}(\dot{B}^{-\sigma-1}_{2,\infty})}
\displaystyle\lesssim Dα1λ~(κ12a)div𝒬uL[t2,t](B˙2,σ)+λ~(κ12a)Dα1div𝒬uL[t2,t](B˙2,σ)\displaystyle\|D^{\alpha-1}\widetilde{\lambda}(\kappa^{-\frac{1}{2}}a)\mathrm{div}\mathcal{Q}u\|_{L^{\infty}_{[\frac{t}{2},t]}(\dot{B}^{-\sigma}_{2,\infty})}+\|\widetilde{\lambda}(\kappa^{-\frac{1}{2}}a)D^{\alpha-1}\mathrm{div}\mathcal{Q}u\|_{L^{\infty}_{[\frac{t}{2},t]}(\dot{B}^{-\sigma}_{2,\infty})}
\displaystyle\lesssim κ12(aL[t2,t](B˙2,1d2)Dα𝒬uL[t2,t](B˙2,σ)+Dα1aL[t2,t](B˙2,1d2)div𝒬uL[t2,t](B˙2,σ)).\displaystyle\kappa^{-\frac{1}{2}}\big{(}\|a\|_{L^{\infty}_{[\frac{t}{2},t]}(\dot{B}^{\frac{d}{2}}_{2,1})}\|D^{\alpha}\mathcal{Q}u\|_{L^{\infty}_{[\frac{t}{2},t]}(\dot{B}^{-\sigma}_{2,\infty})}+\|D^{\alpha-1}a\|_{L^{\infty}_{[\frac{t}{2},t]}(\dot{B}^{\frac{d}{2}}_{2,1})}\|\mathrm{div}\mathcal{Q}u\|_{L^{\infty}_{[\frac{t}{2},t]}(\dot{B}^{-\sigma}_{2,\infty})}\big{)}.

we have

supj2σjt2te22j(ts)Δ˙jDα(λ~(κ12a)divu)L2𝑑sκ12t|α|2𝒟t𝒳t.\displaystyle\sup_{j}2^{-\sigma j}\int^{t}_{\frac{t}{2}}e^{-2^{2j}(t-s)}\|\dot{\Delta}_{j}D^{\alpha}\nabla(\widetilde{\lambda}(\kappa^{-\frac{1}{2}}a)\mathrm{div}u)\|_{L^{2}}ds\lesssim\kappa^{-\frac{1}{2}}t^{-\frac{|\alpha|}{2}}\mathcal{D}_{t}\mathcal{X}_{t}. (4.30)

At this end, we turn to commutator. It could be written as

[DαΔ˙j,ψ~(κ12a)]Δa=[DαΔ˙j,Tψ~(κ12a)]Δa+DαΔ˙j(TΔaψ~(κ12a))+TDαΔ˙jΔaψ~(κ12a)+DαΔ˙jR(Δa,ψ~(κ12a))+R(DαΔ˙jΔa,ψ~(κ12a))i=15Ri.\!\!\!\!\!\![D^{\alpha}\dot{\Delta}_{j},\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)]\Delta a=[D^{\alpha}\dot{\Delta}_{j},T_{\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)}]\Delta a+D^{\alpha}\dot{\Delta}_{j}(T_{\Delta a}\widetilde{\psi}(\kappa^{-\frac{1}{2}}a))+T_{D^{\alpha}\dot{\Delta}_{j}\Delta a}\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)\\ +D^{\alpha}\dot{\Delta}_{j}R(\Delta a,\widetilde{\psi}(\kappa^{-\frac{1}{2}}a))+R(D^{\alpha}\dot{\Delta}_{j}\Delta a,\widetilde{\psi}(\kappa^{-\frac{1}{2}}a))\triangleq\sum^{5}_{i=1}R_{i}.

For R1R_{1}, we have

[DαΔ˙j,Tψ~(κ12a)]Δa=kj2[DαΔ˙j,Δ˙kψ~(κ12a)]ΔΔ˙ja.[D^{\alpha}\dot{\Delta}_{j},T_{\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)}]\Delta a=\sum_{k\leq j-2}[D^{\alpha}\dot{\Delta}_{j},\dot{\Delta}_{k}\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)]\Delta\dot{\Delta}_{j}a.

Classical commutator estimates under localization indicates

kj2[DαΔ˙j,Δ˙kψ~(κ12a)]ΔΔ˙jaL2\displaystyle\|\sum_{k\leq j-2}[D^{\alpha}\dot{\Delta}_{j},\dot{\Delta}_{k}\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)]\Delta\dot{\Delta}_{j}a\|_{L^{2}} \displaystyle\lesssim 2(α1)jψ~(κ12a)LΔΔ˙jaL2\displaystyle 2^{(\alpha-1)j}\|\nabla\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)\|_{L^{\infty}}\|\Delta\dot{\Delta}_{j}a\|_{L^{2}}

which implies

κsupj2(σ+1)j0t2e22j(ts)R1L2𝑑ssupj2(σ+α1)jΔΔ˙jaL[t2,t]L2aLt2Lκδt|α|2𝒟t𝒳t.\sqrt{\kappa}\sup_{j}2^{(-\sigma+1)j}\int^{\frac{t}{2}}_{0}e^{-2^{2j}(t-s)}\|R_{1}\|_{L^{2}}ds\\ \lesssim\sup_{j}2^{(-\sigma+\alpha-1)j}\|\Delta\dot{\Delta}_{j}a\|_{L^{\infty}_{[\frac{t}{2},t]}L^{2}}\|\nabla a\|_{L^{2}_{t}L^{\infty}}\lesssim\kappa^{-\delta}t^{-\frac{|\alpha|}{2}}\mathcal{D}_{t}\mathcal{X}_{t}.

As for R2R_{2} and R4R_{4}, we have

κsupj2(σ+1)j0t2e22j(ts)R2+R4L2𝑑sR2+R4L~[t2,t]2(B˙2,σ)DαΔaL[t2,t](B˙2,σ1)aL~[t2,t]2(B˙,11)κδt|α|2𝒟t𝒳t.\sqrt{\kappa}\sup_{j}2^{(-\sigma+1)j}\int^{\frac{t}{2}}_{0}e^{-2^{2j}(t-s)}\|R_{2}+R_{4}\|_{L^{2}}ds\lesssim\|R_{2}+R_{4}\|_{\widetilde{L}^{2}_{[\frac{t}{2},t]}(\dot{B}^{-\sigma}_{2,\infty})}\\ \lesssim\|D^{\alpha}\Delta a\|_{L^{\infty}_{[\frac{t}{2},t]}(\dot{B}^{-\sigma-1}_{2,\infty})}\|a\|_{\widetilde{L}^{2}_{[\frac{t}{2},t]}(\dot{B}^{1}_{\infty,1})}\lesssim\kappa^{-\delta}t^{-\frac{|\alpha|}{2}}\mathcal{D}_{t}\mathcal{X}_{t}.

provided ασ\alpha\geq\sigma. In consider of R3,R5R_{3},R_{5}, we actually have

R3+R5L2DαΔ˙jΔaB˙2,1ψ~(κ12a)B˙p,1dp+1κ12DαΔ˙jaL2aB˙p,1dp.\|R_{3}+R_{5}\|_{L^{2}}\lesssim\|D^{\alpha}\dot{\Delta}_{j}\Delta a\|_{\dot{B}^{-1}_{2,\infty}}\|\widetilde{\psi}(\kappa^{-\frac{1}{2}}a)\|_{\dot{B}^{\frac{d}{p}+1}_{p,1}}\lesssim\kappa^{-\frac{1}{2}}\|D^{\alpha}\dot{\Delta}_{j}\nabla a\|_{L^{2}}\|\nabla a\|_{\dot{B}^{\frac{d}{p}}_{p,1}}. (4.31)

Therefore, it holds

κsupj2(σ+1)j0t2e22j(ts)R3+R5L2𝑑sDαaL[t2,t](B˙2,σ)aL~[t2,t]2(B˙p,1dp)κδt|α|2𝒟t𝒳t.\sqrt{\kappa}\sup_{j}2^{(-\sigma+1)j}\int^{\frac{t}{2}}_{0}e^{-2^{2j}(t-s)}\|R_{3}+R_{5}\|_{L^{2}}ds\\ \lesssim\|D^{\alpha}\nabla a\|_{L^{\infty}_{[\frac{t}{2},t]}(\dot{B}^{-\sigma}_{2,\infty})}\|a\|_{\widetilde{L}^{2}_{[\frac{t}{2},t]}(\dot{B}^{\frac{d}{p}}_{p,1})}\lesssim\kappa^{-\delta}t^{-\frac{|\alpha|}{2}}\mathcal{D}_{t}\mathcal{X}_{t}.

Above inequalities indicate that

I2\displaystyle I_{2} \displaystyle\lesssim t|α|2((𝒱t+𝒟t)𝒴t+𝒲t𝒳t+κδασtϵ𝒱t𝒳t+κδ𝒟t𝒳t).\displaystyle t^{-\frac{|\alpha|}{2}}\big{(}(\mathcal{V}_{t}+\mathcal{D}_{t})\mathcal{Y}_{t}+\mathcal{W}_{t}\mathcal{X}_{t}+\kappa^{-\frac{\delta}{\alpha-\sigma}}t^{-\epsilon}\mathcal{V}_{t}\mathcal{X}_{t}+\kappa^{-\delta}\mathcal{D}_{t}\mathcal{X}_{t}\big{)}. (4.32)

Finally, combining (4.14) with (4.16), (4.16) allows us to arrive at (4.10) by taking the supremum norm of tt. ∎

Since that 𝒲t2CκδeC𝒱t𝒱T2\mathcal{W}_{t}\leq 2C\kappa^{-\delta}e^{C\mathcal{V}_{t}}\mathcal{V}^{2}_{T}, the fact κ11\kappa^{-1}\ll 1 enable us to find

𝒲t+κδασtϵ𝒱t+κδ𝒟t12.\mathcal{W}_{t}+\kappa^{-\frac{\delta}{\alpha-\sigma}}t^{-\epsilon}\mathcal{V}_{t}+\kappa^{-\delta}\mathcal{D}_{t}\leq\frac{1}{2}.

Therefore notice the fact

𝒴tsupt[0,T]t|α|2Λασ2vL2C,\mathcal{Y}_{t}\lesssim\sup_{t\in[0,T]}t^{\frac{|\alpha|}{2}}\|\Lambda^{\frac{\alpha-\sigma}{2}}v\|_{L^{2}}\leq C,

where we utilize (2.10), the boundedness of (1κa,a,u)Lt(B˙2,σ)\|(\frac{1}{\sqrt{\kappa}}a,\nabla a,u)\|_{L^{\infty}_{t}(\dot{B}^{-\sigma}_{2,\infty})} and 𝒱t,𝒴t,t,𝒟t\mathcal{V}_{t},\mathcal{Y}_{t},\mathcal{E}_{t},\mathcal{D}_{t} indicates 𝒳tC0\mathcal{X}_{t}\leq C_{0} where C0C_{0} depends on initial data and conclude with Theorem 2.2.

5 Appendix

In this appendix, we would recall some classical theory concerns Fourier localization technique. The Fourier transform of a function f𝒮f\in\mathcal{S} (the Schwarz class) is denoted by

f^(ξ)=[f](ξ):=df(x)eiξx𝑑x.\widehat{f}(\xi)=\mathcal{F}[f](\xi):=\int_{\mathbb{R}^{d}}f(x)e^{-i\xi\cdot x}dx.

For 1p1\leq p\leq\infty, we denote by Lp=Lp(d)L^{p}=L^{p}(\mathbb{R}^{d}) the usual Lebesgue space on d\mathbb{R}^{d} with the norm Lp\|\cdot\|_{L^{p}}.

For convenience of reader, we would like to recall the Littlewood-Paley decomposition, Besov spaces and related analysis tools. The reader is referred to Chap. 2 and Chap. 3 of [1] for more details. Let χ\chi be a smooth function valued in [0,1][0,1], such that χ\chi is supported in the ball 𝐁(0,43)={ξd:|ξ|43}\mathbf{B}(0,\frac{4}{3})=\{\xi\in\mathbb{R}^{d}:|\xi|\leq\frac{4}{3}\}. Set φ(ξ)=χ(ξ/2)χ(ξ)\varphi(\xi)=\chi(\xi/2)-\chi(\xi). Then φ\varphi is supported in the shell 𝐂(0,34,83)={ξd:34|ξ|83}\mathbf{C}(0,\frac{3}{4},\frac{8}{3})=\{\xi\in\mathbb{R}^{d}:\frac{3}{4}\leq|\xi|\leq\frac{8}{3}\} so that

qφ(2qξ)=1,ξd\{0}.\sum_{q\in\mathbb{Z}}\varphi(2^{-q}\xi)=1,\quad\forall\xi\in\mathbb{R}^{d}\backslash\{{0}\}.

For any tempered distribution f𝒮f\in\mathcal{S}^{\prime}, one can define the homogeneous dyadic blocks and homogeneous low-frequency cut- off operators:

Δ˙qf:=φ(2qD)f=1(φ(2qξ)f),q;\displaystyle\dot{\Delta}_{q}f:=\varphi(2^{-q}D)f=\mathcal{F}^{-1}(\varphi(2^{-q}\xi)\mathcal{F}f),\quad q\in\mathbb{Z};
S˙qf:=χ(2qD)f=1(χ(2qξ)f),q.\displaystyle\dot{S}_{q}f:=\chi(2^{-q}D)f=\mathcal{F}^{-1}(\chi(2^{-q}\xi)\mathcal{F}f),\quad q\in\mathbb{Z}.

Furthermore, we have the formal homogeneous decomposition as follows

f=qΔ˙qf.f=\sum_{q\in\mathbb{Z}}\dot{\Delta}_{q}f.

Also, throughout the paper, fhf^{h} and ff^{\ell} represent the high frequency part and low frequency part of ff respectively where

fS˙q0f;fh(1S˙q0)ff^{\ell}\triangleq\dot{S}_{q_{0}}f;\quad f^{h}\triangleq(1-\dot{S}_{q_{0}})f

with some given constant q0q_{0}.

Denote by 𝒮0:=𝒮/𝒫\mathcal{S}^{\prime}_{0}:=\mathcal{S^{\prime}}/\mathcal{P} the tempered distributions modulo polynomials 𝒫\mathcal{P}. As we known, the homogeneous Besov spaces can be characterised in terms of the above spectral cut-off blocks.

5.1 Homogeneous Besov space

Definition 5.1.

For ss\in\mathbb{R} and 1p,r1\leq p,r\leq\infty, the homogeneous Besov spaces B˙p,rs\dot{B}^{s}_{p,r} are defined by

B˙p,rs:={f𝒮0:fB˙p,rs<},\dot{B}^{s}_{p,r}:=\Big{\{}f\in\mathcal{S}^{\prime}_{0}:\|f\|_{\dot{B}^{s}_{p,r}}<\infty\Big{\}},

where

fB˙p,rs:=(q(2qsΔ˙qfLp)r)1/r\|f\|_{\dot{B}^{s}_{p,r}}:=\Big{(}\sum_{q\in\mathbb{Z}}(2^{qs}\|\dot{\Delta}_{q}f\|_{L^{p}})^{r}\Big{)}^{1/r}

with the usual convention if r=r=\infty.

We often use the following classical properties of Besov spaces (see [1]):

\bullet  Scaling invariance: For any σ\sigma\in\mathbb{R} and (p,r)[1,]2(p,r)\in[1,\infty]^{2}, there exists a constant C=C(σ,p,r,d)C=C(\sigma,p,r,d) such that for all λ>0\lambda>0 and fB˙p,rσf\in\dot{B}_{p,r}^{\sigma}, we have

C1λσdpfB˙p,rσf(λ)B˙p,rσCλσdpfB˙p,rσ.C^{-1}\lambda^{\sigma-\frac{d}{p}}\|f\|_{\dot{B}_{p,r}^{\sigma}}\leq\|f(\lambda\,\cdot)\|_{\dot{B}_{p,r}^{\sigma}}\leq C\lambda^{\sigma-\frac{d}{p}}\|f\|_{\dot{B}_{p,r}^{\sigma}}.

\bullet  Completeness: B˙p,rσ\dot{B}^{\sigma}_{p,r} is a Banach space whenever σ<dp\sigma<\frac{d}{p} or σdp\sigma\leq\frac{d}{p} and r=1r=1.

\bullet  Interpolation: The following inequality is satisfied for 1p,r1,r2,r,σ1σ21\leq p,r_{1},r_{2},r\leq\infty,\sigma_{1}\neq\sigma_{2} and θ(0,1)\theta\in(0,1):

fB˙p,rθσ1+(1θ)σ2fB˙p,r1σ1θfB˙p,r2σ21θ\|f\|_{\dot{B}_{p,r}^{\theta\sigma_{1}+(1-\theta)\sigma_{2}}}\lesssim\|f\|_{\dot{B}_{p,r_{1}}^{\sigma_{1}}}^{\theta}\|f\|_{\dot{B}_{p,r_{2}}^{\sigma_{2}}}^{1-\theta}

with 1r=θr1+1θr2\frac{1}{r}=\frac{\theta}{r_{1}}+\frac{1-\theta}{r_{2}}.

\bullet  Action of Fourier multipliers: If FF is a smooth homogeneous of degree mm function on d\{0}\mathbb{R}^{d}\backslash\{0\} then

F(D):B˙p,rσB˙p,rσm.F(D):\dot{B}_{p,r}^{\sigma}\rightarrow\dot{B}_{p,r}^{\sigma-m}.

The embedding properties will be used several times throughout the paper.

Proposition 5.1.
  • For any p[1,]p\in[1,\infty] we have the continuous embedding B˙p,10LpB˙p,0\dot{B}^{0}_{p,1}\hookrightarrow L^{p}\hookrightarrow\dot{B}^{0}_{p,\infty}.

  • If σ\sigma\in\mathbb{R}, 1p1p21\leq p_{1}\leq p_{2}\leq\infty and 1r1r2,1\leq r_{1}\leq r_{2}\leq\infty, then B˙p1,r1σB˙p2,r2σd(1p11p2)\dot{B}^{\sigma}_{p_{1},r_{1}}\hookrightarrow\dot{B}^{\sigma-d\,(\frac{1}{p_{1}}-\frac{1}{p_{2}})}_{p_{2},r_{2}}.

  • The space B˙p,1dp\dot{B}^{\frac{d}{p}}_{p,1} is continuously embedded in the set of bounded continuous functions (going to zero at infinity if, additionally, p<p<\infty).

In addition, we also recall the classical Bernstein inequality:

DkfLbC1+kλk+d(1a1b)fLa\|D^{k}f\|_{L^{b}}\leq C^{1+k}\lambda^{k+d(\frac{1}{a}-\frac{1}{b})}\|f\|_{L^{a}} (5.33)

that holds for all function ff such that Suppf{ξd:|ξ|Rλ}\mathrm{Supp}\,\mathcal{F}f\subset\left\{\xi\in\mathbb{R}^{d}:|\xi|\leq R\lambda\right\} for some R>0R>0 and λ>0\lambda>0, if kk\in\mathbb{N} and 1ab1\leq a\leq b\leq\infty.

More generally, if we assume ff to satisfy Suppf{ξd:R1λ|ξ|R2λ}\mathrm{Supp}\,\mathcal{F}f\subset\{\xi\in\mathbb{R}^{d}:R_{1}\lambda\leq|\xi|\leq R_{2}\lambda\} for some 0<R1<R20<R_{1}<R_{2} and λ>0\lambda>0, then for any smooth homogeneous of degree mm function AA on d{0}\mathbb{R}^{d}\setminus\{0\} and 1a1\leq a\leq\infty, we have (see e.g. Lemma 2.2 in [1]):

A(D)fLaλmfLa.\|A(D)f\|_{L^{a}}\approx\lambda^{m}\|f\|_{L^{a}}. (5.34)

An obvious consequence of (5.33) and (5.34) is that DkfB˙p,rsfB˙p,rs+k\|D^{k}f\|_{\dot{B}^{s}_{p,r}}\thickapprox\|f\|_{\dot{B}^{s+k}_{p,r}} for all kk\in\mathbb{N}.

Moreover, a class of mixed space-time Besov spaces are also used when studying the evolution PDEs, which were firstly proposed by J.-Y. Chemin and N. Lerner in [11].

Definition 5.2.

For T>0,s,1r,θT>0,s\in\mathbb{R},1\leq r,\theta\leq\infty, the homogeneous Chemin-Lerner spaces L~Tθ(B˙p,rs)\widetilde{L}^{\theta}_{T}(\dot{B}^{s}_{p,r}) are defined by

L~Tθ(B˙p,rs):={fLθ(0,T;𝒮0):fL~Tθ(B˙p,rs)<},\widetilde{L}^{\theta}_{T}(\dot{B}^{s}_{p,r}):=\Big{\{}f\in L^{\theta}(0,T;\mathcal{S}^{\prime}_{0}):\|f\|_{\widetilde{L}^{\theta}_{T}(\dot{B}^{s}_{p,r})}<\infty\Big{\}},

where

fL~Tθ(B˙p,rs):=(q(2qsΔ˙qfLTθ(Lp))r)1/r\|f\|_{\widetilde{L}^{\theta}_{T}(\dot{B}^{s}_{p,r})}:=\Big{(}\sum_{q\in\mathbb{Z}}(2^{qs}\|\dot{\Delta}_{q}f\|_{L^{\theta}_{T}(L^{p})})^{r}\Big{)}^{1/r}

with the usual convention if r=r=\infty.

The Chemin-Lerner space L~Tθ(B˙p,rs)\widetilde{L}^{\theta}_{T}(\dot{B}^{s}_{p,r}) may be linked with the standard spaces LTθ(B˙p,rs)L_{T}^{\theta}(\dot{B}^{s}_{p,r}) by means of Minkowski’s inequality.

Remark 5.1.

It holds that

fL~Tθ(B˙p,rs)fLTθ(B˙p,rs)ifrθ;fL~Tθ(B˙p,rs)fLTθ(B˙p,rs)ifrθ.\left\|f\right\|_{\widetilde{L}^{\theta}_{T}(\dot{B}^{s}_{p,r})}\leq\left\|f\right\|_{L^{\theta}_{T}(\dot{B}^{s}_{p,r})}\,\,\,\mbox{if}\,\,\,r\geq\theta;\ \ \ \ \left\|f\right\|_{\widetilde{L}^{\theta}_{T}(\dot{B}^{s}_{p,r})}\geq\left\|f\right\|_{L^{\theta}_{T}(\dot{B}^{s}_{p,r})}\,\,\,\mbox{if}\,\,\,r\leq\theta.

5.2 Product estimates and composition estimates

The product estimates in Besov spaces play a fundamental role in bounding bilinear terms in (2.3) (see [1]).

Proposition 5.2.

Let s>0s>0 and 1p,r1\leq p,\,r\leq\infty. Then B˙p,rsL\dot{B}^{s}_{p,r}\cap L^{\infty} is an algebra and

fgB˙p,rsfLgB˙p,rs+gLfB˙p,rs.\|fg\|_{\dot{B}^{s}_{p,r}}\lesssim\|f\|_{L^{\infty}}\|g\|_{\dot{B}^{s}_{p,r}}+\|g\|_{L^{\infty}}\|f\|_{\dot{B}^{s}_{p,r}}.

If s1,s2dps_{1},s_{2}\leq\frac{d}{p}, s1+s2>dmax{0,2p1}s_{1}+s_{2}>d\max\{0,\frac{2}{p}-1\}, then

abB˙p,1s1+s2dpaB˙p,1s1bB˙p,1s2.\|ab\|_{\dot{B}^{s_{1}+s_{2}-\frac{d}{p}}_{p,1}}\lesssim\|a\|_{\dot{B}^{s_{1}}_{p,1}}\|b\|_{\dot{B}^{s_{2}}_{p,1}}.

If s1dps_{1}\leq\frac{d}{p}, s2<dps_{2}<\frac{d}{p}, s1+s2dmax{0,2p1}s_{1}+s_{2}\geq d\max\{0,\frac{2}{p}-1\}, then

abB˙p,s1+s2dpaB˙p,1s1bB˙p,s2.\|ab\|_{\dot{B}^{s_{1}+s_{2}-\frac{d}{p}}_{p,\infty}}\lesssim\|a\|_{\dot{B}^{s_{1}}_{p,1}}\|b\|_{\dot{B}^{s_{2}}_{p,\infty}}.

System (2.3) also involves compositions of functions that are handled according to the following estimates.

Proposition 5.3.

Let F:F:\mathbb{R}\rightarrow\mathbb{R} be smooth with F(0)=0F(0)=0. For all 1p,r1\leq p,\,r\leq\infty and s>0s>0 we have F(f)B˙p,rsLF(f)\in\dot{B}^{s}_{p,r}\cap L^{\infty} for fB˙p,rsLf\in\dot{B}^{s}_{p,r}\cap L^{\infty}, and

F(f)B˙p,rsCfB˙p,rs\|F(f)\|_{\dot{B}^{s}_{p,r}}\leq C\|f\|_{\dot{B}^{s}_{p,r}}

with C>0C>0 depending only on fL\|f\|_{L^{\infty}}, FF^{\prime} (and higher derivatives), ss, pp and dd.

In the case s>dmin(1p,1p)s>-d\min(\frac{1}{p},\frac{1}{p^{\prime}}) then fB˙p,rsB˙p,1dpf\in\dot{B}^{s}_{p,r}\cap\dot{B}^{\frac{d}{p}}_{p,1} implies that F(f)B˙p,rsB˙p,1dpF(f)\in\dot{B}^{s}_{p,r}\cap\dot{B}^{\frac{d}{p}}_{p,1}, and

F(f)B˙p,rsCfB˙p,rs,\|F(f)\|_{\dot{B}^{s}_{p,r}}\leq C\|f\|_{\dot{B}^{s}_{p,r}},

where C>0C>0 is some constant depends on fB˙p,1dp\|f\|_{\dot{B}^{\frac{d}{p}}_{p,1}}, F,s,pF,s,p and dd.

5.3 Proof of Proposition 3.2

Taking advantages of interpolation, it is enough to prove the case p=p=\infty. Inspired by Young inequality and heat kernel estimates under Fourier localization, we immediately have

eiκHteΔtfjLe22jteiκHtψjLfjL1.\displaystyle\|e^{i\sqrt{\kappa}Ht}e^{\Delta t}f_{j}\|_{L^{\infty}}\lesssim e^{-2^{2j}t}\|e^{i\sqrt{\kappa}Ht}\psi_{j}\|_{L^{\infty}}\|f_{j}\|_{L^{1}}. (5.35)

where ψ^(ξ)=φ(ξ)\widehat{\psi}(\xi)=\varphi(\xi). Then (3.33) is given if the following estimate holds true:

eiκHtψjL(κt)d2.\displaystyle\|e^{i\sqrt{\kappa}Ht}\psi_{j}\|_{L^{\infty}}\lesssim(\sqrt{\kappa}t)^{-\frac{d}{2}}. (5.36)

The (5.36) is proved by stationary phase method given in [21] and we shall focus on case d2d\geq 2 while d=1d=1 is more direct by van der Corput’s lemma, see [44]. Actually, denote by Jm(r)J_{m}(r) the Bessel function, one could write

eiκHtψj=2jd0eitH~(2jr)φ(r)rd1(r2j|x|)n22Jn22(r2j|x|)𝑑r\displaystyle e^{i\sqrt{\kappa}Ht}\psi_{j}=2^{jd}\int^{\infty}_{0}e^{it\widetilde{H}(2^{j}r)}\varphi(r)r^{d-1}(r2^{j}|x|)^{-\frac{n-2}{2}}J_{\frac{n-2}{2}}(r2^{j}|x|)dr (5.37)

where H~(r)=r1+κr2\widetilde{H}(r)=r\sqrt{1+\kappa r^{2}}. Then it is not difficult to see

H~(r)1;H~′′(r)κr,H~(m)(r)(κr)1m,rκ12;\widetilde{H}^{\prime}(r)\thicksim 1;\,\,\,\widetilde{H}^{\prime\prime}(r)\thicksim\kappa r,\,\,\,\widetilde{H}^{(m)}(r)\leq(\kappa r)^{1-m},\,\,\,r\leq\kappa^{-\frac{1}{2}};
H~(r)κr;H~′′(r)κ,H~(m)(r)κr2m,rκ12.\widetilde{H}^{\prime}(r)\thicksim\sqrt{\kappa}r;\,\,\,\widetilde{H}^{\prime\prime}(r)\thicksim\sqrt{\kappa},\,\,\,\widetilde{H}^{(m)}(r)\leq\sqrt{\kappa}r^{2-m},\,\,\,r\geq\kappa^{-\frac{1}{2}}.

Therefore, we would consider case (i). 2jκ122^{j}\leq\kappa^{-\frac{1}{2}} and (ii). 2jκ122^{j}\leq\kappa^{-\frac{1}{2}} respectively. For case (i), the corresponding behaviors are closely linked with wave operator and we start with |x|2|x|\leq 2. In fact, denote Dr=1itH~(2jr)2jddrD_{r}=\frac{1}{it\widetilde{H}^{\prime}(2^{j}r)2^{j}}\frac{d}{dr}, integral by parts in terms of DrD_{r} immediately yields

eiκHtψj\displaystyle e^{i\sqrt{\kappa}Ht}\psi_{j} =\displaystyle= 2jd0Drk(eitH~(2jr))φ(r)rd1(r2j|x|)n22Jn22(r2j|x|)𝑑r\displaystyle 2^{jd}\int^{\infty}_{0}D^{k}_{r}\big{(}e^{it\widetilde{H}(2^{j}r)}\big{)}\varphi(r)r^{d-1}(r2^{j}|x|)^{-\frac{n-2}{2}}J_{\frac{n-2}{2}}(r2^{j}|x|)dr
=\displaystyle= 2jd(it2j)km=0klmm0eitH~(2jr)lmrlm(1H~(2jr))\displaystyle\frac{2^{jd}}{(it2^{j})^{k}}\sum^{k}_{m=0}\sum^{m}_{l_{m}}\int^{\infty}_{0}e^{it\widetilde{H}(2^{j}r)}\prod_{l_{m}}\partial^{l_{m}}_{r}\big{(}\frac{1}{\widetilde{H}^{\prime}(2^{j}r)}\big{)}
\displaystyle\cdot rkm(φ(r)rd1(r2j|x|)n22Jn22(r2j|x|))dr.\displaystyle\partial^{k-m}_{r}\big{(}\varphi(r)r^{d-1}(r2^{j}|x|)^{-\frac{n-2}{2}}J_{\frac{n-2}{2}}(r2^{j}|x|)\big{)}dr.

where m=l1+l2++lmm=l_{1}+l_{2}+...+l_{m}. Keep in mind that for any m0m\geq 0

dmdrm(1H~(2jr))c,for   2jκ12,\frac{d^{m}}{d^{m}_{r}}\big{(}\frac{1}{\widetilde{H}^{\prime}(2^{j}r)}\big{)}\leq c,\,\,\,\mathrm{for}\,\,\,2^{j}\leq\kappa^{-\frac{1}{2}},

the vanishing property of the Bessel function at the origin indicates

|eiκHtψj|\displaystyle|e^{i\sqrt{\kappa}Ht}\psi_{j}| \displaystyle\leq Ctk2j(dk).\displaystyle Ct^{-k}2^{j(d-k)}. (5.39)

Hence, taking k=d2k=\frac{d}{2} yields (5.36). For case |x|2|x|\geq 2, we rewrite (5.37) into

eiκHtψj=2jd0eit(H~(2jr)r|x|)φ(r)rd1h(r|x|)𝑑r\displaystyle e^{i\sqrt{\kappa}Ht}\psi_{j}=2^{jd}\int^{\infty}_{0}e^{it(\widetilde{H}(2^{j}r)-r|x|)}\varphi(r)r^{d-1}h(r|x|)dr (5.40)

where

(eirh(r))=crn22Jn22(r).\mathcal{R}(e^{ir}h(r))=cr^{-\frac{n-2}{2}}J_{\frac{n-2}{2}}(r).

At this moment, we start with |x||x| fulfills 12infrt2jH~(2jr)|x|2suprt2jH~(2jr)\frac{1}{2}\inf\limits_{r}t2^{j}\widetilde{H}^{\prime}(2^{j}r)\leq|x|\leq 2\sup\limits_{r}t2^{j}\widetilde{H}^{\prime}(2^{j}r). Denote H¯(r)=H~(2jr)r|x|\bar{H}(r)=\widetilde{H}(2^{j}r)-r|x|, it is clear that H¯′′(r)=22jH~′′(2jr)κ23j\bar{H}^{\prime\prime}(r)=2^{2j}\widetilde{H}^{\prime\prime}(2^{j}r)\geq\kappa 2^{3j}, therefore, by van der Corput¡¯s lemma and pointwise estimates for hh (see in [21]), there holds

|eiκHtψj|\displaystyle|e^{i\sqrt{\kappa}Ht}\psi_{j}| \displaystyle\leq C(|t|κ23j)120|ddr(φ(r)rd1h(r|x|))|𝑑rtd2κ122d22j,\displaystyle C(|t|\kappa 2^{3j})^{-\frac{1}{2}}\int^{\infty}_{0}\big{|}\frac{d}{dr}(\varphi(r)r^{d-1}h(r|x|))\big{|}dr\leq t^{-\frac{d}{2}}\kappa^{-\frac{1}{2}}2^{\frac{d-2}{2}j},

which implies (5.36) by the fact 2jκ122^{j}\leq\kappa^{-\frac{1}{2}}. For |x|12infrt2jH~(2jr)|x|\leq\frac{1}{2}\inf\limits_{r}t2^{j}\widetilde{H}^{\prime}(2^{j}r) and 2suprt2jH~(2jr)|x|2\sup\limits_{r}t2^{j}\widetilde{H}^{\prime}(2^{j}r)\leq|x|, there holds

|H¯(r)|c2j,c>0,\big{|}\bar{H}^{\prime}(r)\big{|}\geq c2^{j},\,\,\,c>0,

we could repeat same calculations as (5.3)-(5.39) and conclude with (5.36).

The case 2jκ122^{j}\geq\kappa^{-\frac{1}{2}} is treated as low frequencies above, in which part could be regarded as a Schro¨\ddot{o}dinger  semi-group with parameter κ\sqrt{\kappa}. We omit the detailed proof and conclude with (5.36).

Acknowledgments:

The author sincerely thanks Professor Nakanishi Kenji and Professor Jiang Xu for helpful suggestions and discussions in the course of this research.

Conflicts of interest statement:

The author does not have any possible conflict of interest.

References

  • [1] H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, 343, Springer (2011).
  • [2] S. Benzoni-Gavage, R. Danchin, S. Descombes and D. Jamet, Structure of Korteweg models and stability of diffuse interfaces, Interfaces and Free Boundaries, 7, 371-414 (2005).
  • [3] C. Burtea and B. Haspot, Vanishing capillarity limit of the Navier-Stokes-Korteweg system in one dimension with degenerate viscosity coefficient and discontinuous initial density, SIAM J. Math. Anal., 54, 1428-1469 (2022).
  • [4] D. Bian, L. Yao and C. Zhu, Vanishing capillarity limit of the compressible fluid models of Korteweg type to the Navier-Stokes equations, SIAM J. Math. Anal., 46, 1633-1650 (2014).
  • [5] M. Cannone, A generalization of a theorem by Kato on Navier-Stokes equations. Rev. Mat. Iberoam., 13, 515-542 (1997).
  • [6] F. Charve; R. Danchin and J. Xu, Gevrey analyticity and decay for the compressible Navier-Stokes system with capillarity, Indiana Univ. Math. J., 70, 1903-1944 (2021).
  • [7] F. Charve and B. Haspot, Convergence of capillary fluid models: from the non-local to the local Korteweg model, Indiana Univ. Math. J., 60, 2021-2059 (2011).
  • [8] F. Charve and B. Haspot, On a Lagrangian method for the convergence from a non-local to a local Korteweg capillary fluid model, J. Funct. Anal., 265, 1264-1323 (2013).
  • [9] J. Y. Chemin, The´\acute{e}ore`\grave{e}mes d’unicite´\acute{e} pour le syst¨¨e`\grave{e}me de Navier-Stokes tridimensionnel, J. Anal. Math., 77, 27-50 (1999).
  • [10] J. Y. Chemin and I. Gallagher, Large, global solutions to the Navier-Stokes equations, slowly varying in one direction, Trans. Amer. Math. Soc. 362, 2859-2873 (2010).
  • [11] J. Y. Chemin and N. Lerner, Flot de champs de vecteurs non lipschitziens et e´\acute{e}quations de Navier-Stokes, J. Differential Equations, 121, 314-328 (1995).
  • [12] N. Chikami and T. Kobayashi, Global well-posedness and time-decay estimates of the compressible Navier-Stokes-Korteweg system in critical Besov spaces, J. Math. Fluid Mech., 21: Art.31 (2019).
  • [13] R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141, 579-614 (2000).
  • [14] R. Danchin, Zero Mach number limit in critical spaces for compressible Navier-Stokes equations, Ann. Sci. E´\acute{E}cole Norm. Sup., 35, 27-75 (2002).
  • [15] R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18, 97-133 (2001).
  • [16] R. Danchin, B. Desjardins and C. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm. Partial Differential Equations, 28, 843-868 (2003).
  • [17] J. E. Dunn and J. Serrin, On the thermomechanics of interstitial working, Arch. Ration. Mech. Anal, 88, 95-133 (1985).
  • [18] F. Fanelli, Highly rotating viscous compressible fluids in presence of capillarity effects, Math. Ann., 366, 981-1033 (2016).
  • [19] H. Fujita and T. Kato, On the Navier-Stokes initial value problem, Arch. Ration. Mech. Anal., 16, 269-315 (1964).
  • [20] Y. Giga, Handbook of mathematical analysis in mechanics of viscous fluids Springer, Cham, 2018, xxviii+3045 pp.
  • [21] Z. Guo, L. Peng and B. Wang, Decay estimates for a class of wave equations, J. Funct. Anal., 254, 1642-1660 (2008).
  • [22] S. Gustafson; K. Nakanishi and T. Tsai, Scattering for the Gross-Pitaevskii equation, Math. Res. Lett., 13, 273-285 (2006).
  • [23] S. Gustafson; K. Nakanishi and T. Tsai, Scattering theory for the Gross-Pitaevskii equation in three dimensions, Commun. Contemp. Math., 11, 657-707 (2009).
  • [24] H. Hattori and D. Li, Global solutions of a high-dimensional system for Korteweg materials, J. Math. Anal. Appl., 198, 84-97 (1996).
  • [25] H. Hattori abd D. Li, Solutions for two-dimensional system for materials of Korteweg type, SIAM J. Math. Anal., 25, 85-98 (1994).
  • [26] X. Hou, L. Yao and C. Zhu, Vanishing capillarity limit of the compressible non-isentropic Navier-Stokes-Korteweg system to Navier-Stokes system, J. Math. Anal. Appl., 448, 421-446 (2017).
  • [27] Q. Ju and J. Xu, Zero-Mach limit of the compressible Navier-Stokes-Korteweg equations, J. Math. Phys., 63, 21 pp (2022).
  • [28] S. Kawashima, Y. Shibata and J. Xu, Dissipative structure for symmetric hyperbolic-parabolic systems with Korteweg-type dispersion, Comm. Part. Differ. Equs. 47, 378-400 (2021).
  • [29] T. Kobayashi and M. Murata, The global well-posedness of the compressible fluid model of Korteweg type for the critical case, Differential Integral Equations, 34, 245-264 (2021).
  • [30] T. Kobayashi and K. Tsuda, Global existence and time decay estimate of solutions to the compressible Navier-Stokes-Korteweg system under critical condition, Asymptot. Anal. 121, 195-217 (2021).
  • [31] D. J. Korteweg, Sur la forme que prennent les e´\acute{e}quations du mouvement des fluides si lon tient compte des forces capillaires par des variations de densite´\acute{e}, Arch. Ne´\acute{e}er. Sci. Exactes Se´\acute{e}r. II 6, 1-24 (1901).
  • [32] S. Leonardi, J. Ma´\acute{a}lek, J. Necˇ\check{c}as and M. Pokorny´\acute{y}, On Axially Symmetric Flows in 3\mathbb{R}^{3}, Z. Anal. Anwendungen, 18, 639-649 (1999).
  • [33] J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 63, 193-248 (1934).
  • [34] Y. Li and W. Yong, Zero Mach number limit of the compressible Navier-Stokes-Korteweg equations, Commun. Math. Sci., 14, 233-247 (2016).
  • [35] B. Lorenzo, Characterization of solutions to dissipative systems with sharp algebraic decay. SIAM J. Math. Anal. 48, 1616-1633 (2016).
  • [36] M. Murata and Y. Shibata, The global well-posedness for the compressible fluid model of Korteweg type, SIAM J. Math. Anal., 52, 6313-6337 (2020).
  • [37] C. J. Niche; M. E. Schonbek, Decay characterization of solutions to dissipative equations. J. Lond. Math. Soc. 91, 573-595 (2015).
  • [38] M. Oliver and E. Titi, Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations in n\mathbb{R}^{n}, J. Funct. Anal., 172, 1-18 (2000).
  • [39] J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rat. Mech. Anal., 9, 187-191 (1962).
  • [40] Z. Song and J. Xu, Global existence and analyticity of LpL^{p} solutions to the compressible fluid model of Korteweg type, J. Differential Equations, 370, 101-139 (2023).
  • [41] M. E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations. Comm. Partial Differential Equations, 11, 733-763 (1986).
  • [42] M. E. Schonbek, L2L^{2} decay for weak solutions of the Navier-Stokes equations. Arch. Rational Mech. Anal., 88, 209-222 (1985).
  • [43] M. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations in HmH^{m} spaces, Comm. Part. Differ. Equs. 20, 103-117 (1995).
  • [44] E.M. Stein, Harmonic Analysis, Princeton Univ. Press, 1993.
  • [45] J. F. Van der Waals, Thermodynamische Theorie der Kapillarita¨\ddot{a}t unter Voraussetzung stetiger Dichtea¨\ddot{a}nderung, Phys. Chem. 13, 657-725 (1894).
  • [46] M. Wiegner, Decay results for weak solutions of the Navier-Stokes equations on d\mathbb{R}^{d}, J. London Math. Soc. 35, 303-313 (1987).