This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Global determination of two-meson distribution amplitudes from three-body BB decays in the perturbative QCD approach

Ya Li1 [email protected]    Da-Cheng Yan2 [email protected]    Jun Hua3 huajun$[email protected]    Zhou Rui4 [email protected]    Hsiang-nan Li5 [email protected] 1 Department of Physics, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China 2 School of Mathematics and Physics, Changzhou University, Changzhou, Jiangsu 213164, China 3 INPAC, Key Laboratory for Particle Astrophysics and Cosmology (MOE), Shanghai Key Laboratory for Particle Physics and Cosmology, School of Physics and Astronomy, Shanghai Jiao-Tong University, Shanghai 200240, China 4 College of Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China 5 Institute of Physics, Academia Sinica, Taipei, Taiwan 115, Republic of China
Abstract

We perform a global analysis of three-body charmless hadronic decays BVP3P1P2P3B\to VP_{3}\to P_{1}P_{2}P_{3} in the perturbative QCD (PQCD) approach, where VV denotes an intermediate vector resonance, and PiP_{i}, i=1,2,3i=1,2,3, denote final-state pseudoscalar mesons. Fitting the PQCD factorization formulas at leading order in the strong coupling αs\alpha_{s} to measured branching ratios and direct CPCP asymmetries, we determine the Gegenbauer moments in the two-meson distribution amplitudes (DAs) for the meson pairs P1P2=ππ,Kπ,KKP_{1}P_{2}=\pi\pi,K\pi,KK. The fitted Gegenbauer moments are then employed to make predictions for those observables, whose data are excluded in the fit due to larger experimental uncertainties. A general consistency between our predictions and data is achieved, which hints the validity of the PQCD formalism for the above three-body BB meson decays and the universality of the nonperturbative two-meson DAs. The obtained two-meson DAs can be applied to PQCD studies of other multi-body BB meson decays involving the same meson pairs. We also attempt to determine the dependence of the Gegenbauer moments on the meson-pair invariant mass, and demonstrate that this determination is promising, when data become more precise.

pacs:
13.25.Hw, 12.38.Bx, 14.40.Nd

I Introduction

Since the perturbative QCD (PQCD) framework for three-body BB meson decays was proposed in Chen:2002th , there have been extensive applications to various channels epjc77199 ; prd99093007 ; epjc79792 ; cpc43073103 ; epjc80394 ; epjc80517 ; epjc8191 ; prd103013005 ; prd95056008 ; epjc7937 ; prd103016002 ; epjc80815 ; prd101111901 ; jpg46095001 , and rich phenomenology has been explored. This formalism is based on the kTk_{T} factorization theorem for leading-power regions of a Dalitz plot, where two final-state mesons are roughly collimated to each other. The dominant nonperturbative dynamics responsible for the production of the meson pair, including final-state interactions between the two mesons, is absorbed into two-meson distribution amplitudes (DAs) G ; G1 ; DM ; Diehl:1998dk ; Diehl:1998dk1 ; Diehl:1998dk2 ; MP . It is similar to the absorption of collinear divergences associated with a meson, which participates a high-energy QCD exclusive process, into its meson DAs. The remaining contributions, being calculable at the parton level in perturbation theory, go into hard kernels. The analysis of three-body BB meson decays is then simplified to that of two-body decays, where a Feynman diagram for hard kernels at leading order (LO) of the strong coupling αs\alpha_{s} involves a single virtual gluon exchange. The same idea has been extended to four-body charmless hadronic BB meson decays recently Rui:2021kbn : they are assumed to proceed dominantly with two intermediate resonances, which then strongly decay into two light meson pairs. Various asymmetries in final-state angular distributions from the B(s)(Kπ)(Kπ)B_{(s)}\to(K\pi)(K\pi) decays were predicted based on the universality of the two-meson DAs for the KπK\pi pair.

A two-meson DA, being the time-like version of a generalized parton distribution function, depends on the parton momentum fraction xx, the meson momentum fraction ζ\zeta, which describes the relative motion between the two mesons in the pair, and the meson-pair invariant mass squared ω2\omega^{2}. For the xx dependence, one can decompose a two-meson DA into the eigenfunctions of its evolution equation JETP25-510 ; plb87-359 ; plb94-245 ; JETP26-594 , i.e., the Gegenbauer polynomials Cn3/2(2x1)C_{n}^{3/2}(2x-1), based on the conformal symmetry. This expansion follows that for a hadron DA exactly. As to the expansion in ζ\zeta, one employs the partial waves for the produced meson pair, i.e, the Legendre polynomials Pl(2ζ1)P_{l}(2\zeta-1), noticing the relation 2ζ1=cosθ2\zeta-1=\cos\theta with θ\theta being the polar angle of a meson in the center-of-mass frame of the meson pair Hambrock:2015aor . The expansion of a two-meson DA in terms of the two sets of orthogonal polynomials then reads MP

Φ(x,ζ,ω2)=622Ncx(1x)n=0l=0n+1Bnl(ω2)Cn3/2(2x1)Pl(2ζ1),\displaystyle\Phi(x,\zeta,\omega^{2})=\frac{6}{2\sqrt{2N_{c}}}x(1-x)\sum_{n=0}^{\infty}\sum_{l=0}^{n+1}B_{nl}(\omega^{2})C_{n}^{3/2}(2x-1)P_{l}(2\zeta-1), (1)

where Bnl(ω2)B_{nl}(\omega^{2}) are the ω2\omega^{2}-dependent coefficients, Nc=3N_{c}=3 is the number of colors, and l=0,1,2l=0,1,2,… denote the SS-wave , PP-wave, DD-wave,… components, respectively.

The time-like form factor B0l(ω2)B_{0l}(\omega^{2}), which normalizes each of the partial-wave component, contains both resonant and nonresonant contributions. Some form factors, such as the time-like pion form factor that receives contributions from the series of ρ\rho resonances, have been constrained stringently by experimental data prd86-032013 . The other coefficients Bnl(ω2)B_{nl}(\omega^{2}), referred to as the Gegenbauer moments, are still quite uncertain due to a lack of systematic nonperturbative studies. Note that these Gegenbauer moments differ from those in the DA for a specific resonance which strongly decays into the meson pair, because, as stated above, a two-meson DA collects contributions from a series of resonances as well as nonresonant contributions. Moreover, they are ω2\omega^{2}-dependent, a feature dramatically distinct from the Gegenbauer moments for a meson DA. It has been observed plb763-29 that the Gegenbauer moments of a PP-wave di-pion DA differ from those of the ρ(770)\rho(770) meson DA. Therefore, it is essential to determine the Gegenbauer moments for two-meson DAs in order to improve the precision of theoretical predictions for multi-body BB meson decays in factorization frameworks.

We will perform a global fit of the Gegenbauer moments in two-meson DAs to measured branching ratios and direct CPCP asymmetries in three-body charmless hadronic BB meson decays BVP3P1P2P3B\to VP_{3}\to P_{1}P_{2}P_{3} in the PQCD approach, where VV stands for an intermediate vector resonance, and PiP_{i}, i=1,2,3i=1,2,3, stand for final-state pseudoscalar mesons. As the first attempt to a global determination of two-meson DAs, we focus on the PP-wave components, and employ the LO PQCD factorization formulas for decay amplitudes. We establish a Gegenbauer-moment-independent database, by means of which each decay amplitude is expressed as a combination of the relevant Gegenbauer moments in the two-meson DAs. The Gegenbauer moments in the DAs for the mesons P3=π,KP_{3}=\pi,K are input from the global analysis of two-body BB meson decays in Ref. 2012-15074 . The leading-twist (twist-2) and next-to-leading-twist (twist-3) DAs for the pairs P1P2=ππ,KπP_{1}P_{2}=\pi\pi,K\pi and KKKK with the intermediate vector mesons V=ρ,KV=\rho,K^{*} and ϕ\phi, respectively, are then fixed in the global fit. Because the current data for three-body BB meson decays are not yet precise enough to determine the ω2\omega^{2} dependence of the Gegenbauer moments, we first treat them as constant parameters defined at the initial scale 1 GeV. One or two Gegenbauer moments for each of the above two-meson DAs are obtained with satisfactory fit quality, depending on the abundance of available data. It is noticed that the results and the precision of the extracted two-meson DAs depend on the number of the Gegenbauer moments considered in the fit: when more Gegenbauer moments are introduced into the KπK\pi DAs, the quality of the fit is improved at the cost of amplified uncertainties for fit outcomes.

The determined Gegenbauer moments are then employed to make predictions for those observables, whose data are excluded in the fit due to larger experimental errors. A general consistency between our predictions and data for various modes is achieved, except those which suffer significant subleading corrections according to previous PQCD studies, such as the B0π0(ρ0)ππB^{0}\to\pi^{0}(\rho^{0}\to)\pi\pi decay prd74-094020 ; Epjc72-1923 . The consistency hints the validity of the PQCD formalism for three-body hadronic BB meson decays and the universality of the nonperturbative two-meson DAs. The ππ,Kπ\pi\pi,K\pi and KKKK twist-2 and twist-3 DAs presented in this work are ready for applications to PQCD investigations of other multi-body BB meson decays involving the same meson pairs. Our formalism can be extended to global fits for other two-meson DAs of various partial waves straightforwardly. It can be also generalized to include higher-order and/or higher-power corrections to PQCD factorization formulas Li:2012nk , when they are available, so that more accurate two-meson DAs are attainable in a systematic way.

As a more ambitious attempt, we explore the dependence of the Gegenbauer moments in the di-pion DAs on the pion-pair invariant mass squared ω2\omega^{2}. It is unlikely to determine the exact ω2\omega^{2} dependence from current data, so we simply parametrize the Gegenbauer moments up to the first power in ω2\omega^{2}, following their series expansion derived in Ref. MP . The global fit shows that at least the linear term in one of the twist-3 di-pion DAs can be constrained effectively. It indicates that the determination of the ω2\omega^{2}-dependent Gegenbauer moments in two-meson DAs is promising, when data become more precise in the future.

The rest of the paper is organized as follows. The kinematic variables for three-body hadronic BB meson decays are defined in Sec. II, where the dependence on final-state meson masses is included to describe the phase space accurately. The parton kinematics and hard kernels are then refined, such that SU(3)SU(3) symmetry breaking effects in the decays can be evaluated more precisely. The considered two-meson PP-wave DAs are parametrized, whose normalization form factors are assumed to take the relativistic Breit-Wigner (RBW) model epjc78-1019 or the Gounaris-Sakurai (GS) model prl21-244 . We explain how to perform the global fit, present and discuss the numerical results, and try to extract the ω2\omega^{2} dependence of the Gegenbauer moments in Sec. III, which is followed by the Conclusion. We collect the PQCD factorization formulas for the decay amplitudes with numerous refined hard kernels in the Appendix.

II FRAMEWORK

II.1 Kinematics

Consider the charmless BB meson decay into three pseudoscalar mesons via a vector intermediate resonance, B(pB)V(p)P3(p3)P1(p1)P2(p2)P3(p3)B(p_{B})\rightarrow V(p)P_{3}(p_{3})\rightarrow P_{1}(p_{1})P_{2}(p_{2})P_{3}(p_{3}), with the meson momenta pB=p+p3p_{B}=p+p_{3} and p=p1+p2p=p_{1}+p_{2}. We work in the BB meson rest frame and parametrize the relevant momenta in the light-cone coordinates as

pB\displaystyle p_{B} =\displaystyle= mB2(1,1,0T),kB=(0,xBmB2,kBT),\displaystyle\frac{m_{B}}{\sqrt{2}}(1,1,\textbf{0}_{\rm T}),~{}~{}~{}~{}~{}~{}\quad k_{B}=\left(0,x_{B}\frac{m_{B}}{\sqrt{2}},\textbf{k}_{B\rm T}\right),
p\displaystyle p =\displaystyle= mB2(f+,f,0T),k=(zf+mB2,0,kT),\displaystyle\frac{m_{B}}{\sqrt{2}}(f_{+},f_{-},\textbf{0}_{\rm T}),~{}\quad k=\left(zf_{+}\frac{m_{B}}{\sqrt{2}},0,\textbf{k}_{\rm T}\right),
p3\displaystyle p_{3} =\displaystyle= mB2(g,g+,0T),k3=(0,x3g+mB2,k3T),\displaystyle\frac{m_{B}}{\sqrt{2}}(g_{-},g_{+},\textbf{0}_{\rm T}),~{}\quad k_{3}=\left(0,x_{3}g_{+}\frac{m_{B}}{\sqrt{2}},\textbf{k}_{3{\rm T}}\right), (2)

where mBm_{B} is the BB meson mass, and kB,kk_{B},k and k3k_{3} are the valence quark momenta in the BB meson, the meson pair, and the bachelor meson with the parton momentum fraction (transverse momenta) xB,zx_{B},z and x3x_{3} (kBT,kT{k}_{B\rm T},{k}_{\rm T} and k3T{k}_{3{\rm T}}), respectively. That is, we have chosen the frame, such that the meson pair and the bachelor meson move in the directions n=(1,0,0T)n=(1,0,0_{\rm T}) and v=(0,1,0T)v=(0,1,0_{\rm T}), respectively. Since the parton momentum kk (k3k_{3}) is aligned with the meson pair (bachelor meson), its small minus (plus) component has been neglected. We have also dropped the plus component kB+k_{B}^{+}, because it does not appear in the hard kernels for dominant factorizable contributions. In the above expressions, the functions f±f_{\pm} and g±g_{\pm} are written as

f±\displaystyle f_{\pm} =\displaystyle= 12(1+ηr3±(1η)22r3(1+η)+r32),\displaystyle\frac{1}{2}\left(1+\eta-r_{3}\pm\sqrt{(1-\eta)^{2}-2r_{3}(1+\eta)+r_{3}^{2}}\right),
g±\displaystyle g_{\pm} =\displaystyle= 12(1η+r3±(1η)22r3(1+η)+r32),\displaystyle\frac{1}{2}\left(1-\eta+r_{3}\pm\sqrt{(1-\eta)^{2}-2r_{3}(1+\eta)+r_{3}^{2}}\right), (3)

with the ratio r3=mP32/mB(s)2r_{3}=m_{P_{3}}^{2}/m^{2}_{B_{(s)}} and η=ω2/mB(s)2\eta=\omega^{2}/m^{2}_{B_{(s)}}, mP3m_{P_{3}} being the bachelor meson mass and ω2=p2\omega^{2}=p^{2} being the invariant mass squared of the meson pair. For a PP-wave meson pair, we introduce the longitudinal polarization vector

ϵ=12η(f+,f,0T).\displaystyle\epsilon=\frac{1}{\sqrt{2\eta}}(f_{+},-f_{-},\textbf{0}_{\rm T}). (4)

We derive the meson momenta p1p_{1} and p2p_{2},

p1\displaystyle p_{1} =\displaystyle= ((ζ+r1r22η)f+mB2,(1ζ+r1r22η)fmB2,pT),\displaystyle\left((\zeta+\frac{r_{1}-r_{2}}{2\eta})f_{+}\frac{m_{B}}{\sqrt{2}},(1-\zeta+\frac{r_{1}-r_{2}}{2\eta})f_{-}\frac{m_{B}}{\sqrt{2}},\textbf{p}_{\rm T}\right),
p2\displaystyle p_{2} =\displaystyle= ((1ζr1r22η)f+mB2,(ζr1r22η)fmB2,pT),\displaystyle\left((1-\zeta-\frac{r_{1}-r_{2}}{2\eta})f_{+}\frac{m_{B}}{\sqrt{2}},(\zeta-\frac{r_{1}-r_{2}}{2\eta})f_{-}\frac{m_{B}}{\sqrt{2}},-\textbf{p}_{\rm T}\right),
pT2\displaystyle p_{\rm T}^{2} =\displaystyle= ζ(1ζ)ω2+(mP12mP22)24ω2mP12+mP222,\displaystyle\zeta(1-\zeta)\omega^{2}+\frac{(m_{P_{1}}^{2}-m_{P_{2}}^{2})^{2}}{4\omega^{2}}-\frac{m^{2}_{P_{1}}+m^{2}_{P_{2}}}{2}, (5)

from the relation p=p1+p2p=p_{1}+p_{2} and the on-shell conditions pi2=mPi2p_{i}^{2}=m_{P_{i}}^{2}, i=1,2i=1,2, with the mass ratios r1,2=mP1,P22/mB2r_{1,2}=m_{P_{1},P_{2}}^{2}/m^{2}_{B}. The variable ζ+(r1r2)/(2η)=p1+/p+\zeta+(r_{1}-r_{2})/(2\eta)=p_{1}^{+}/p^{+} bears the meaning of the meson momentum fraction up to corrections from the final-state meson masses. Alternatively, one can define the polar angle θ\theta of the meson P1P_{1} in the P1P2P_{1}P_{2} pair rest frame. The transformation between the BB meson rest frame and the meson pair rest frame leads to the relation between the meson momentum fraction ζ\zeta and the polar angle θ\theta,

2ζ1=12r1+r2η+(r1r2)2η2cosθ,\displaystyle 2\zeta-1=\sqrt{1-2\frac{r_{1}+r_{2}}{\eta}+\frac{(r_{1}-r_{2})^{2}}{\eta^{2}}}\cos\theta, (6)

with the bounds

ζmax,min=12[1±12r1+r2η+(r1r2)2η2].\displaystyle\zeta_{\text{max,min}}=\frac{1}{2}\left[1\pm\sqrt{1-2\frac{r_{1}+r_{2}}{\eta}+\frac{(r_{1}-r_{2})^{2}}{\eta^{2}}}\right]. (7)

We emphasize that the parametrization with the exact dependence on the final-state meson masses in Eq. (II.1) is crucial for establishing Eq. (6), such that the Legendre polynomials in Eq. (1) correspond to the partial waves of the meson pair exactly.


Figure 1: LO diagrams for the three-body decays BVP3P1P2P3B\to VP_{3}\to P_{1}P_{2}P_{3} with the light quarks q=u,d,sq=u,d,s, where the symbol \bullet represents the weak vertex.


Figure 2: More LO diagrams for the three-body decays BVP3P1P2P3B\to VP_{3}\to P_{1}P_{2}P_{3}.

The branching ratio for a three-body BB meson decay is given by pdg2020

𝑑=τBmB256π3(r1+r2)21𝑑η(1η)22r3(1+η)+r32ζminζmax𝑑ζ|𝒜|2,\displaystyle\int d\mathcal{B}=\frac{\tau_{B}m_{B}}{256\pi^{3}}\int^{1}_{(\sqrt{r_{1}}+\sqrt{r_{2}})^{2}}d\eta\sqrt{(1-\eta)^{2}-2r_{3}(1+\eta)+r^{2}_{3}}\int^{\zeta_{\text{max}}}_{\zeta_{\text{min}}}d\zeta|\mathcal{A}|^{2}, (8)

with the BB meson lifetime τB\tau_{B}. The direct CPCP asymmetry ACPA_{CP} is then defined as

ACP\displaystyle A_{CP} =\displaystyle= (B¯f¯)(Bf)(B¯f¯)+(Bf).\displaystyle\frac{{\cal B}(\bar{B}\to\bar{f})-{\cal B}(B\to f)}{{\cal B}(\bar{B}\to\bar{f})+{\cal B}(B\to f)}. (9)

The decay amplitude 𝒜\mathcal{A}, according to the factorization theorem stated in the Introduction, is expressed as

𝒜=ΦBHΦP1P2ΦP3,\displaystyle\mathcal{A}=\Phi_{B}\otimes H\otimes\Phi_{P_{1}P_{2}}\otimes\Phi_{P_{3}}, (10)

where ΦB\Phi_{B} (ΦP3\Phi_{P_{3}}) is the BB (bachelor) meson DA, and the two-meson DA ΦP1P2\Phi_{P_{1}P_{2}} absorbs the nonperturbative dynamics in the production of the meson pair P1P2P_{1}P_{2}. The symbol \otimes denotes the convolution of the above factors in parton momenta. The LO diagrams for the hard kernel HH are displayed in Figs. 1 and 2, where Figs. 1(a)-(d) (Figs. 2(a)-(d)) are associated with the BP1P2B\to P_{1}P_{2} (BP3B\to P_{3}) transition, and Figs. 1(e)-(h) and Figs. 2(e)-(h) with the annihilation contributions.

II.2 Distribution Amplitudes

The light-cone hadronic matrix element for a BB meson is parametrized as prd63-054008 ; prd65-014007 ; epjc28-515 ; ppnp51-85 ; Prd85-094003

d4zei𝐤𝟏z0|qβ(z)b¯α(0)|B(pB)=i2Nc{(p/B+mB)γ5[ϕB(𝐤𝟏)n/v/2ϕ¯B(𝐤𝟏)]}βα,\displaystyle\int d^{4}ze^{i{\bf k_{1}}\cdot z}\langle 0|q_{\beta}(z)\bar{b}_{\alpha}(0)|B(p_{B})\rangle=\frac{i}{\sqrt{2N_{c}}}\left\{({p/}_{B}+m_{B})\gamma_{5}\left[\phi_{B}({\bf k_{1}})-\frac{{n/}-{v/}}{\sqrt{2}}\bar{\phi}_{B}({\bf k_{1}})\right]\right\}_{\beta\alpha}, (11)

where qq represents a uu, dd or ss quark. The two wave functions ϕB\phi_{B} and ϕ¯B\bar{\phi}_{B} in the above decomposition, related to ϕB+\phi_{B}^{+} and ϕB\phi_{B}^{-} defined in the literature GN via ϕB=(ϕB++ϕB)/2\phi_{B}=(\phi_{B}^{+}+\phi_{B}^{-})/2 and ϕ¯B=(ϕB+ϕB)/2\bar{\phi}_{B}=(\phi_{B}^{+}-\phi_{B}^{-})/2, obey the normalization conditions

d4𝐤𝟏(2π)4ϕB(𝐤𝟏)=fB22Nc,d4𝐤𝟏(2π)4ϕ¯B(𝐤𝟏)=0.\displaystyle\int\frac{d^{4}{\bf k_{1}}}{(2\pi)^{4}}\phi_{B}({\bf k_{1}})=\frac{f_{B}}{2\sqrt{2N_{c}}},\;\;\;\;\int\frac{d^{4}{\bf k_{1}}}{(2\pi)^{4}}\bar{\phi}_{B}({\bf k_{1}})=0. (12)

It has been shown that the contribution from ϕ¯B\bar{\phi}_{B} is of next-to-leading power and numerically suppressed prd65-014007 ; epjc28-515 ; Prd103-056006 , compared to the leading-power contribution from ϕB\phi_{B}. Taking the PQCD evaluation of the BπB\to\pi transition form factor F0BπF_{0}^{B\to\pi} in Ref. Prd103-056006 as an example, we find that the ϕ¯B\bar{\phi}_{B} contribution to F0BπF_{0}^{B\to\pi} is about 20% of the ϕB\phi_{B} one. The higher-twist BB meson DAs have been systematically investigated in the heavy quark effective theory jhep05-022 , which are decomposed according to definite twist and conformal spin assignments up to twist 6. In principle, all the next-to-leading-power sources should be included for a consistent and complete analysis, which, however, goes beyond the scope of the present formalism. Therefore, we focus only on the leading-power component

ΦB=i2Nc(p/B+mB)γ5ϕB(x,b),\displaystyle\Phi_{B}=\frac{i}{\sqrt{2N_{c}}}({p/}_{B}+m_{B})\gamma_{5}\phi_{B}(x,b), (13)

with the impact parameter bb being conjugate to the parton transverse momentum kBTk_{B\rm T}. The BB meson DA ϕB(x,b)\phi_{B}(x,b) is chosen as the model form widely adopted in the PQCD approach prd63-054008 ; prd65-014007 ; epjc28-515 ; ppnp51-85 ; Prd85-094003 ; Li:2012md ,

ϕB(x,b)\displaystyle\phi_{B}(x,b) =\displaystyle= NBx2(1x)2exp[mB2x22ωB212(ωBb)2],\displaystyle N_{B}x^{2}(1-x)^{2}\mathrm{exp}\left[-\frac{m_{B}^{2}x^{2}}{2\omega_{B}^{2}}-\frac{1}{2}(\omega_{B}b)^{2}\right], (14)

where the constant NBN_{B} is related to the BB meson decay constant fBf_{B} through the normalization condition 01𝑑xϕB(x,b=0)=fB/(22Nc)\int_{0}^{1}dx\;\phi_{B}(x,b=0)=f_{B}/(2\sqrt{2N_{c}}). The shape parameter takes the values ωB=0.40\omega_{B}=0.40 GeV for B+,B0B^{+},B^{0} mesons and ωBs=0.48\omega_{B_{s}}=0.48 GeV prd63-054008 ; plb504-6 ; prd63-074009 ; 2012-15074 for a Bs0B^{0}_{s} meson with 10% variation in the numerical study below.

The light-cone matrix elements for a pseudoscalar meson is decomposed, up to twist 3, into prd65-014007 ; epjc28-515

ΦPi2NCγ5[p/3ϕPA(x3)+m03ϕPP(x3)+m03(n/v/1)ϕPT(x3)],\displaystyle\Phi_{P}\equiv\frac{i}{\sqrt{2N_{C}}}\gamma_{5}\left[{p/}_{3}\phi_{P}^{A}(x_{3})+m_{03}\phi_{P}^{P}(x_{3})+m_{03}({n/}{v/}-1)\phi_{P}^{T}(x_{3})\right], (15)

with P=π,KP=\pi,K and the chiral scale m03m_{03}. The pion and kaon DAs have been determined at the scale 1 GeV in a recent global analysis 2012-15074 based on LO PQCD factorization formulas, which is at the same level of accuracy as this work. The results are quoted as

ϕπA(x)\displaystyle\phi_{\pi}^{A}(x) =\displaystyle= 3fπ6x(1x)[1+a2πC23/2(2x1)+a4πC43/2(2x1)],\displaystyle\frac{3f_{\pi}}{\sqrt{6}}x(1-x)[1+a_{2}^{\pi}C_{2}^{3/2}(2x-1)+a_{4}^{\pi}C_{4}^{3/2}(2x-1)],
ϕπP(x)\displaystyle\phi_{\pi}^{P}(x) =\displaystyle= fπ26[1+a2PπC21/2(2x1)],\displaystyle\frac{f_{\pi}}{2\sqrt{6}}[1+a_{2P}^{\pi}C_{2}^{1/2}(2x-1)],
ϕπT(x)\displaystyle\phi_{\pi}^{T}(x) =\displaystyle= fπ26(12x)[1+a2Tπ(10x210x+1)],\displaystyle\frac{f_{\pi}}{2\sqrt{6}}(1-2x)[1+a_{2T}^{\pi}(10x^{2}-10x+1)],
ϕKA(x)\displaystyle\phi_{K}^{A}(x) =\displaystyle= 3fK6x(1x)[1+a1KC13/2(2x1)+a2KC23/2(2x1)+a4KC43/2(2x1)],\displaystyle\frac{3f_{K}}{\sqrt{6}}x(1-x)[1+a_{1}^{K}C_{1}^{3/2}(2x-1)+a_{2}^{K}C_{2}^{3/2}(2x-1)+a_{4}^{K}C_{4}^{3/2}(2x-1)],
ϕKP(x)\displaystyle\phi_{K}^{P}(x) =\displaystyle= fK26[1+a2PKC21/2(2x1)],\displaystyle\frac{f_{K}}{2\sqrt{6}}[1+a_{2P}^{K}C_{2}^{1/2}(2x-1)],
ϕKT(x)\displaystyle\phi_{K}^{T}(x) =\displaystyle= fK26[C11/2(x)+a2TKC31/2(x)],\displaystyle-\frac{f_{K}}{2\sqrt{6}}[C_{1}^{1/2}(x)+a_{2T}^{K}C_{3}^{1/2}(x)], (16)

where the Gegenbauer polynomials are defined as

C13/2(t)=3t,C23/2(t)=32(5t21),C43/2(t)=158(114t2+21t4),\displaystyle C_{1}^{3/2}(t)=3t,~{}\quad\quad C_{2}^{3/2}(t)=\frac{3}{2}(5t^{2}-1),~{}\quad\quad C_{4}^{3/2}(t)=\frac{15}{8}(1-14t^{2}+21t^{4}), (17)

and the Gegenbauer moments in Eq. (16) are summarized as follows,

a2π\displaystyle a_{2}^{\pi} =\displaystyle= 0.64±0.08,a4π=0.41±0.10,a2Pπ=1.08±0.15,a2Tπ=0.48±0.33,\displaystyle 0.64\pm 0.08,\quad a^{\pi}_{4}=-0.41\pm 0.10,\quad a^{\pi}_{2P}=1.08\pm 0.15,\quad a^{\pi}_{2T}=-0.48\pm 0.33,
a1K\displaystyle a^{K}_{1} =\displaystyle= 0.33±0.08,a2K=0.28±0.10,a4K=0.40±0.07,a2PK=0.24,a2TK=0.35.\displaystyle 0.33\pm 0.08,\quad a^{K}_{2}=0.28\pm 0.10,\quad a^{K}_{4}=-0.40\pm 0.07,\quad a^{K}_{2P}=0.24,\quad a^{K}_{2T}=0.35. (18)

Note that the twist-3 DAs ϕKP\phi_{K}^{P} and ϕKT\phi_{K}^{T}, which were not obtained in Ref. 2012-15074 , come from sum-rule calculations prd76-074018 .

As stated before, we focus on the PP-wave components in Eq. (1) proportional to Pl=1(2ζ1)=2ζ1P_{l=1}(2\zeta-1)=2\zeta-1. The corresponding light-cone matrix element for a longitudinal meson pair is decomposed, up to the twist 3, into plb763-29

ΦP1P2(x,ζ,ω2)=12Nc[ωϵ/ϕP1P20(x,ω2)+ωϕP1P2s(x,ω2)+p/1p/2p/2p/1ω(2ζ1)ϕP1P2t(x,ω2)](2ζ1),\displaystyle\Phi_{P_{1}P_{2}}(x,\zeta,\omega^{2})=\frac{1}{\sqrt{2N_{c}}}\left[\omega{\epsilon/}\phi_{P_{1}P_{2}}^{0}(x,\omega^{2})+\omega\phi_{P_{1}P_{2}}^{s}(x,\omega^{2})+\frac{{p/}_{1}{p/}_{2}-{p/}_{2}{p/}_{1}}{\omega(2\zeta-1)}\phi_{P_{1}P_{2}}^{t}(x,\omega^{2})\right](2\zeta-1), (19)

where the two-meson DAs for the ππ,KK\pi\pi,KK and KπK\pi pairs are parametrized as

ϕππ0(x,ω2)\displaystyle\phi_{\pi\pi}^{0}(x,\omega^{2}) =\displaystyle= 3Fππ(ω2)2Ncx(1x)[1+a2ρ0C23/2(2x1)],\displaystyle\frac{3F_{\pi\pi}^{\parallel}(\omega^{2})}{\sqrt{2N_{c}}}x(1-x)\left[1+a^{0}_{2\rho}C_{2}^{3/2}(2x-1)\right]\;,
ϕππs(x,ω2)\displaystyle\phi_{\pi\pi}^{s}(x,\omega^{2}) =\displaystyle= 3Fππ(ω2)22Nc(12x)[1+a2ρs(10x210x+1)],\displaystyle\frac{3F_{\pi\pi}^{\perp}(\omega^{2})}{2\sqrt{2N_{c}}}(1-2x)\left[1+a^{s}_{2\rho}(10x^{2}-10x+1)\right]\;,
ϕππt(x,ω2)\displaystyle\phi_{\pi\pi}^{t}(x,\omega^{2}) =\displaystyle= 3Fππ(ω2)22Nc(12x)2[1+a2ρtC23/2(2x1)],\displaystyle\frac{3F_{\pi\pi}^{\perp}(\omega^{2})}{2\sqrt{2N_{c}}}(1-2x)^{2}\left[1+a^{t}_{2\rho}C_{2}^{3/2}(2x-1)\right]\;,
ϕKπ0(x,ω2)\displaystyle\phi_{K\pi}^{0}(x,\omega^{2}) =\displaystyle= 3FKπ(ω2)2Ncx(1x)[1+a1K0C13/2(2x1)+a2K0C23/2(2x1)+a4K0C43/2(2x1)],\displaystyle\frac{3F_{K\pi}^{\parallel}(\omega^{2})}{\sqrt{2N_{c}}}x(1-x)\left[1+a_{1K^{*}}^{0}C_{1}^{3/2}(2x-1)+a_{2K^{*}}^{0}C_{2}^{3/2}(2x-1)+a_{4K^{*}}^{0}C_{4}^{3/2}(2x-1)\right]\;,
ϕKπs(x,ω2)\displaystyle\phi_{K\pi}^{s}(x,\omega^{2}) =\displaystyle= 3FKπ(ω2)22Nc(12x),\displaystyle\frac{3F_{K\pi}^{\perp}(\omega^{2})}{2\sqrt{2N_{c}}}(1-2x)\;,
ϕKπt(x,ω2)\displaystyle\phi_{K\pi}^{t}(x,\omega^{2}) =\displaystyle= 3FKπ(ω2)22Nc(12x)2,\displaystyle\frac{3F_{K\pi}^{\perp}(\omega^{2})}{2\sqrt{2N_{c}}}(1-2x)^{2}\;,
ϕKK0(x,ω2)\displaystyle\phi_{KK}^{0}(x,\omega^{2}) =\displaystyle= 3FKK(ω2)2Ncx(1x)[1+a2ϕ0C23/2(2x1)],\displaystyle\frac{3F_{KK}^{\parallel}(\omega^{2})}{\sqrt{2N_{c}}}x(1-x)\left[1+a^{0}_{2\phi}C_{2}^{3/2}(2x-1)\right]\;,
ϕKKs(x,ω2)\displaystyle\phi_{KK}^{s}(x,\omega^{2}) =\displaystyle= 3FKK(ω2)22Nc(12x),\displaystyle\frac{3F_{KK}^{\perp}(\omega^{2})}{2\sqrt{2N_{c}}}(1-2x)\;,
ϕKKt(x,ω2)\displaystyle\phi_{KK}^{t}(x,\omega^{2}) =\displaystyle= 3FKK(ω2)22Nc(12x)2.\displaystyle\frac{3F_{KK}^{\perp}(\omega^{2})}{2\sqrt{2N_{c}}}(1-2x)^{2}\;. (20)

The Gegenbauer moments a2ρ0,s,ta^{0,s,t}_{2\rho}, a1K,2K,4K0a_{1K^{*},2K^{*},4K^{*}}^{0}, and a2ϕ0a^{0}_{2\phi} will be determined in a global analysis in the next section. Since the current data are not yet precise enough for fixing the Gegenbauer moments in the twist-3 DAs ϕKπs,t\phi_{K\pi}^{s,t} and ϕKKs,t\phi_{KK}^{s,t}, they have been set to the asymptotic forms.

The elastic rescattering effects in a final-state meson pair can be absorbed into the time-like form factors F,(ω2)F^{\parallel,\perp}(\omega^{2}), namely, the leading Gegenbauer moment B00(ω2)B_{00}(\omega^{2}) in a two-meson DA according to the Watson theorem pr88-1163 . The resonant contribution from a ρ\rho meson with a broad width is usually parameterized as the GS model prl21-244 based on the Breit-Wigner (BW) function BW-model in experimental investigations of three-body hadronic BB meson decays, which interprets observed structures beyond the ρ(770)\rho(770) resonance in terms of heavier isovector vector mesons. Taking the ρ\rho-ω\omega interference and excited state contributions into account, we have the form factor prd86-032013 ; prd95056008 ; plb763-29

Fππ(ω2)=[GSρ(ω2,mρ,Γρ)1+cωBWω(ω2,mω,Γω)1+cω+ΣcjGSj(ω2,mj,Γj)](1+Σcj)1,\displaystyle F^{\parallel}_{\pi\pi}(\omega^{2})=\left[{\rm GS}_{\rho}(\omega^{2},m_{\rho},\Gamma_{\rho})\frac{1+c_{\omega}{\rm BW}_{\omega}(\omega^{2},m_{\omega},\Gamma_{\omega})}{1+c_{\omega}}+\Sigma c_{j}{\rm GS}_{j}(\omega^{2},m_{j},\Gamma_{j})\right]\left(1+\Sigma c_{j}\right)^{-1}, (21)

where mρ,ω,jm_{\rho,\omega,j} (Γρ,ω,j\Gamma_{\rho,\omega,j}), j=ρ(1450),ρ′′(1700)j=\rho^{\prime}(1450),\rho^{\prime\prime}(1700) and ρ′′′(2254)\rho^{\prime\prime\prime}(2254), are the masses (decay widths) of the series of resonances, and cω,jc_{\omega,j} are the weights associated with the corresponding resonances. The function GSρ(s,mρ,Γρ){\rm GS}_{\rho}(s,m_{\rho},\Gamma_{\rho}) is given by

GSρ(ω2,mρ,Γρ)=mρ2[1+d(mρ)Γρ/mρ]mρ2ω2+f(ω2,mρ,Γρ)imρΓ(ω2,mρ,Γρ),{\rm GS}_{\rho}(\omega^{2},m_{\rho},\Gamma_{\rho})=\frac{m_{\rho}^{2}[1+d(m_{\rho})\Gamma_{\rho}/m_{\rho}]}{m_{\rho}^{2}-\omega^{2}+f(\omega^{2},m_{\rho},\Gamma_{\rho})-im_{\rho}\Gamma(\omega^{2},m_{\rho},\Gamma_{\rho})}, (22)

with the factors

d(mρ)\displaystyle d(m_{\rho}) =\displaystyle= 3πmπ2k2(mρ2)ln(mρ+2k(mρ2)2mπ)+mρ2πk(mρ2)mπ2mρπk3(mρ2),\displaystyle\frac{3}{\pi}\frac{m_{\pi}^{2}}{k^{2}(m^{2}_{\rho})}\ln\left(\frac{m_{\rho}+2k(m^{2}_{\rho})}{2m_{\pi}}\right)+\frac{m_{\rho}}{2\pi k(m_{\rho}^{2})}-\frac{m_{\pi}^{2}m_{\rho}}{\pi k^{3}(m^{2}_{\rho})},
f(ω2,mρ,Γρ)\displaystyle f(\omega^{2},m_{\rho},\Gamma_{\rho}) =\displaystyle= Γρmρ2k3(mρ2){k2(ω2)[h(ω2)h(mρ2)]+(mρ2ω2)k2(mρ2)h(mρ2)},\displaystyle\frac{\Gamma_{\rho}m^{2}_{\rho}}{k^{3}(m^{2}_{\rho})}\left\{k^{2}(\omega^{2})[h(\omega^{2})-h(m^{2}_{\rho})]+(m^{2}_{\rho}-\omega^{2})k^{2}(m^{2}_{\rho})h^{\prime}(m^{2}_{\rho})\right\},
Γ(ω2,mρ,Γρ)\displaystyle\Gamma(\omega^{2},m_{\rho},\Gamma_{\rho}) =\displaystyle= Γρω2mρ2[βπ(ω2)βπ(mρ2)]3,\displaystyle\Gamma_{\rho}\frac{\omega^{2}}{m^{2}_{\rho}}\left[\frac{\beta_{\pi}(\omega^{2})}{\beta_{\pi}(m^{2}_{\rho})}\right]^{3}, (23)

where the functions k(ω2)k(\omega^{2}), h(ω2)h(\omega^{2}) and βπ(ω2)\beta_{\pi}(\omega^{2}) are expressed as

k(ω2)\displaystyle k(\omega^{2}) =\displaystyle= 12ω2βπ(ω2),\displaystyle\frac{1}{2}\sqrt{\omega^{2}}\beta_{\pi}(\omega^{2}),
h(ω2)\displaystyle h(\omega^{2}) =\displaystyle= 2πk(ω2)ω2ln(ω2+2k(ω2)2mπ),\displaystyle\frac{2}{\pi}\frac{k(\omega^{2})}{\sqrt{\omega^{2}}}\ln\left(\frac{\sqrt{\omega^{2}}+2k(\omega^{2})}{2m_{\pi}}\right),
βπ(ω2)\displaystyle\beta_{\pi}(\omega^{2}) =\displaystyle= 14mπ2ω2.\displaystyle\sqrt{1-\frac{4m_{\pi}^{2}}{\omega^{2}}}. (24)

The function BWω(ω2,mω,Γω){\rm BW}_{\omega}(\omega^{2},m_{\omega},\Gamma_{\omega}) for the ω\omega resonance takes the standard BW form BW-model .

We apply the RBW line shape for contributions from the intermediate resonances KK^{*} and ϕ\phi of narrow widths to the form factors epjc78-1019 ; epjc80517 ; epjc8191 ; epjc7937 ,

FKπ,KK(ω2)\displaystyle F^{\parallel}_{K\pi,KK}(\omega^{2}) =\displaystyle= mK,ϕ2mK,ϕ2ω2imK,ϕΓK,ϕ(ω2),\displaystyle\frac{m_{K^{*},\phi}^{2}}{m^{2}_{K^{*},\phi}-\omega^{2}-im_{K^{*},\phi}\Gamma_{K^{*},\phi}(\omega^{2})}, (25)

with the mass-dependent widths

ΓK,ϕ(ω2)\displaystyle\Gamma_{K^{*},\phi}(\omega^{2}) =\displaystyle= ΓK,ϕ(mK,ϕω)(|p1||p0|)(2LR+1),\displaystyle\Gamma_{K^{*},\phi}\left(\frac{m_{K^{*},\phi}}{\omega}\right)\left(\frac{|\vec{p}_{1}|}{|\vec{p}_{0}|}\right)^{(2L_{R}+1)}, (26)

where the masses mK,ϕm_{K^{*},\phi} and the widths ΓK,ϕ\Gamma_{K^{*},\phi} of the KK^{*} and ϕ\phi resonances, respectively, take the values in pdg2020 . The magnitude of the spatial momentum of the meson P1P_{1},

|p1|=λ(ω2,mP12,mP22)2ω,\displaystyle|\vec{p}_{1}|=\frac{\sqrt{\lambda(\omega^{2},m_{P_{1}}^{2},m_{P_{2}}^{2})}}{2\omega}, (27)

with the Ka¨\ddot{a}lle´\acute{e}n function λ(a,b,c)=a2+b2+c22(ab+ac+bc)\lambda(a,b,c)=a^{2}+b^{2}+c^{2}-2(ab+ac+bc), is measured in the rest frame of the resonance, and |p0||\vec{p}_{0}| is its value at the resonance mass. The orbital angular momentum LRL_{R} in the two-meson system is set to LR=1L_{R}=1 for a PP-wave state. Due to the limited knowledge on the form factors F(ω2)F^{\perp}(\omega^{2}), we assume the ratio Fi(ω2)/Fi(ω2)(fiT/fi)F^{\perp}_{i}(\omega^{2})/F^{\parallel}_{i}(\omega^{2})\approx(f^{T}_{i}/f_{i}) plb763-29 , i=ρ,Ki=\rho,K^{*} and ϕ\phi, with fiTf_{i}^{T} (fif_{i}) being the tensor (vector) decay constants of the intermediate resonances.

III Numerical Analysis

III.1 Global Fit

We specify the parameters adopted in the numerical analysis below, including the masses (in units of GeV) pdg2020

mB\displaystyle m_{B} =\displaystyle= 5.280,mBs=5.367,mb=4.8,mK±=0.494,\displaystyle 5.280,\quad m_{B_{s}}=5.367,\quad m_{b}=4.8,\quad~{}~{}~{}~{}m_{K^{\pm}}=0.494,
mK0\displaystyle m_{K^{0}} =\displaystyle= 0.498,mπ±=0.140,mπ0=0.135,\displaystyle 0.498,\quad m_{\pi^{\pm}}=0.140,\quad m_{\pi^{0}}=0.135, (28)

and the decay constants (in units of GeV) and the BB meson lifetimes (in units of ps) prd76-074018 ; prd95056008

fB\displaystyle f_{B} =\displaystyle= 0.21,fBs=0.23,fρ=0.216,fρT=0.184,\displaystyle 0.21,~{}~{}~{}\quad f_{B_{s}}=0.23,~{}~{}~{}~{}~{}~{}~{}~{}~{}\quad f_{\rho}=0.216,~{}~{}~{}~{}\quad f^{T}_{\rho}=0.184,
fϕ(1020)\displaystyle f_{\phi(1020)} =\displaystyle= 0.215,fϕ(1020)T=0.186,fK=0.217,fKT=0.185,\displaystyle 0.215,~{}\quad f_{\phi(1020)}^{T}=0.186,\quad f_{K^{*}}=0.217,~{}\quad f^{T}_{K^{*}}=0.185,
τB0\displaystyle\tau_{B^{0}} =\displaystyle= 1.519,τB±=1.638,τBs=1.512.\displaystyle 1.519,~{}\quad\tau_{B^{\pm}}=1.638,~{}~{}~{}~{}~{}~{}\quad\tau_{B_{s}}=1.512. (29)

The Wolfenstein parameters in the Cabibbo-Kobayashi-Maskawa (CKM) matrix take the values in Ref. pdg2018 : A=0.836±0.015,λ=0.22453±0.00044A=0.836\pm 0.015,\lambda=0.22453\pm 0.00044, ρ¯=0.1220.017+0.018\bar{\rho}=0.122^{+0.018}_{-0.017} and η¯=0.3550.011+0.012\bar{\eta}=0.355^{+0.012}_{-0.011}.

We stress that ωB(s)\omega_{B_{(s)}} in the B(s)B_{(s)} meson DA, as an overall parameter, cannot be determined in our global analysis, but must be treated as an input. This is why we take its value extracted from the B(s)B_{(s)} meson transition form factors in lattice QCD and light-cone sum rules, which has been also verified by the global study of two-body charmless hadronic BB meson decays in 2012-15074 . The value of ωB(s)\omega_{B_{(s)}}, together with the corresponding pion and kaon DAs fixed in 2012-15074 , are then input into the present work on the three-body BB meson decays for consistency. If the shape parameter ωB(s)\omega_{B_{(s)}} is changed, the pion and kaon DAs need to be refitted accordingly, before they can be employed to constrain the two-meson DAs. Fortunately, the variation of ωB(s)\omega_{B_{(s)}} causes less than 30%30\% uncertainties for most of the branching ratios and negligible effects on the direct CPCP asymmetries as seen later, and is thus not expected to make a significant impact on the determination of the two-meson DAs. Hence, we focus only on the uncertainties of the Gegenbauer moments in the two-meson DAs propagated from experimental data here.

Equation (20) suggests that the total amplitudes 𝒜\cal{A} for the B(s)P(ππ,πK,KK)B_{(s)}\to P(\pi\pi,\pi K,KK) decays with P=π,KP=\pi,K can be expanded in terms of the Gegenbauer moments of the two-meson DAs. As a result, we decompose the squared amplitudes

|𝒜ππ|2\displaystyle|{\cal A}_{\pi\pi}|^{2} =\displaystyle= M0ρ+a2ρ0M1ρ+(a2ρ0)2M2ρ+a2ρsM3ρ+(a2ρs)2M4ρ\displaystyle M_{0\rho}+a^{0}_{2\rho}M_{1\rho}+(a^{0}_{2\rho})^{2}M_{2\rho}+a^{s}_{2\rho}M_{3\rho}+(a^{s}_{2\rho})^{2}M_{4\rho}
+\displaystyle+ a2ρtM5ρ+(a2ρt)2M6ρ+a2ρ0a2ρsM7ρ+a2ρ0a2ρtM8ρ+a2ρsa2ρtM9ρ,\displaystyle a^{t}_{2\rho}M_{5\rho}+(a^{t}_{2\rho})^{2}M_{6\rho}+a^{0}_{2\rho}a^{s}_{2\rho}M_{7\rho}+a^{0}_{2\rho}a^{t}_{2\rho}M_{8\rho}+a^{s}_{2\rho}a^{t}_{2\rho}M_{9\rho},
|𝒜Kπ|2\displaystyle|{\cal A}_{K\pi}|^{2} =\displaystyle= M0K+(a1K0)M1K+(a1K0)2M2K+a2K0M3K\displaystyle M_{0K^{*}}+(a^{0}_{1K^{*}})M_{1K^{*}}+(a^{0}_{1K^{*}})^{2}M_{2K^{*}}+a^{0}_{2K^{*}}M_{3K^{*}}
+\displaystyle+ (a2K0)2M4K+a4K0M5K+(a4K0)2M6K\displaystyle(a^{0}_{2K^{*}})^{2}M_{4K^{*}}+a^{0}_{4K^{*}}M_{5K^{*}}+(a^{0}_{4K^{*}})^{2}M_{6K^{*}}
+\displaystyle+ a1K0a2K0M7K+a1K0a4K0M8K+a2K0a4K0M9K,\displaystyle a^{0}_{1K^{*}}a^{0}_{2K^{*}}M_{7K^{*}}+a^{0}_{1K^{*}}a^{0}_{4K^{*}}M_{8K^{*}}+a^{0}_{2K^{*}}a^{0}_{4K^{*}}M_{9K^{*}},
|𝒜KK|2\displaystyle|{\cal A}_{KK}|^{2} =\displaystyle= M0ϕ+a2ϕ0M1ϕ+(a2ϕ0)2M2ϕ,\displaystyle M_{0\phi}+a^{0}_{2\phi}M_{1\phi}+(a^{0}_{2\phi})^{2}M_{2\phi}, (30)

into the linear combinations of the Gegenbauer moments a2ρ0,s,ta^{0,s,t}_{2\rho}, a1K,2K,4K0a^{0}_{1K^{*},2K^{*},4K^{*}} and a2ϕ0a^{0}_{2\phi}, and their products. We then compute the coefficients MM, which involve only the Gegenbauer polynomials, to establish the database for the global fit.

Table 1: Fitted Gegenbauer moments for the twist-2 and twist-3 two-meson DAs.
a2ρ0a^{0}_{2\rho} a2ρsa^{s}_{2\rho} a2ρta^{t}_{2\rho} a2ϕ0a^{0}_{2\phi}
fit 0.08±0.130.08\pm 0.13 0.23±0.24-0.23\pm 0.24 0.35±0.06-0.35\pm 0.06 0.31±0.19-0.31\pm 0.19
a1K0(Scenario I)a_{1K^{*}}^{0}(\text{Scenario I}) a2K0(Scenario I)a_{2K^{*}}^{0}(\text{Scenario I}) a1K0(Scenario II)a_{1K^{*}}^{0}(\text{Scenario II}) a2K0(Scenario II)a_{2K^{*}}^{0}(\text{Scenario II}) a4K0(Scenario II)a_{4K^{*}}^{0}(\text{Scenario II})
fit 0.31±0.160.31\pm 0.16 1.19±0.101.19\pm 0.10 0.57±0.200.57\pm 0.20 1.13±0.321.13\pm 0.32 0.85±0.16-0.85\pm 0.16

Similar to the proposal in 2012-15074 , we determine the Gegenbauer moments of the two-meson DAs by fitting the formulas in Eq. (30) with the Gegenbauer-moment-independent database to the measured branching ratios {\cal B} and direct CPCP asymmetries 𝒜CP{\cal A}_{CP} of the B(s)P(ρ)ππB_{(s)}\to P(\rho\to)\pi\pi, B(s)P(K)KπB_{(s)}\to P(K^{*}\to)K\pi and B(s)P(ϕ)KKB_{(s)}\to P(\phi\to)KK decays. We adopt the standard nonlinear least-χ2\chi^{2} (lsq) method Peter:2020 , in which the χ2\chi^{2} function is defined for nn pieces of experimental data vi±δviv_{i}\pm\delta v_{i} with the errors δvi\delta v_{i} and the corresponding theoretical values vithv^{\rm{th}}_{i} as

χ2=i=1n(vivithδvi)2.\displaystyle\chi^{2}=\sum_{i=1}^{n}\Big{(}\frac{v_{i}-v^{\rm{th}}_{i}}{\delta v_{i}}\Big{)}^{2}. (31)

The theoretical values vithv^{\rm{th}}_{i} are the functions of the fitted Gegenbauer moments in the two-meson DAs. The lsq fit attempts to find the smallest χ2\chi^{2} by adjusting the fitted parameters that bring the theoretical values closest to the data. The data with errors are treated as of the Gaussian type automatically in the fit packages, and the errors of the fitted parameters and of the theoretical values vithv^{\rm{th}}_{i} come from experimental uncertainties by error propagation.

To minimize statistical uncertainties, we should include maximal amount of data in the fit. On the other hand, those measurements with significance lower than 3σ\sigma do not impose stringent constraints, and need not be taken into account in principle. The data of those modes, which are affected by subleading contributions manifestly based on the previous PQCD studies prd74-094020 ; Epjc72-1923 , are also excluded, even though they may have higher precision. The B0π0(ρ0)ππB^{0}\to\pi^{0}(\rho^{0}\to)\pi\pi decay, dominated by the color-suppressed tree amplitude that is expected to receive substantial higher-order corrections Li:2005kt , is a typical example.

III.2 Results

The Gegenbauer moments a2ρ0a^{0}_{2\rho}, a2ρsa^{s}_{2\rho} and a2ρta^{t}_{2\rho} for the twist-2 and twist-3 ππ\pi\pi DAs in Table 1 are obtained from the fit to eight pieces of BP(ρ)ππB\to P(\rho\to)\pi\pi data marked by ”\dagger” in Tables 2 and 3 with χ2/d.o.f.=2.6\chi^{2}/d.o.f.=2.6, whose errors mainly arise from experimental uncertainties. We point out that the measured B+π+(ρ0)ππB^{+}\to\pi^{+}(\rho^{0}\to)\pi\pi branching ratio, imposing a strong constraint on the Gegenbauer moment a2ρsa^{s}_{2\rho}, is considered in our fit, but the corresponding B+π+ρ0B^{+}\to\pi^{+}\rho^{0} data were excluded in the global analysis of two-body hadronic BB meson decays 2012-15074 . It is seen that our Gegenbauer moments differ from the corresponding ones of the ρ(770)\rho(770) meson DAs derived in QCD sum rules ball98 as mentioned before: the ππ\pi\pi DAs contain the ρ\rho-ω\omega mixing effect and the contributions from higher ρ\rho resonances with finite widths via Eq. (21), so they need not to be the same as the ρ(770)\rho(770) meson DAs. Our Gegenbauer moments also differ from a2ρ0=0.25a^{0}_{2\rho}=0.25, a2ρs=0.75a^{s}_{2\rho}=0.75 and a2ρt=0.60a^{t}_{2\rho}=-0.60 chosen in Ref. plb763-29 for two reasons at least. First, only the BK(ρ)ππB\to K(\rho\to)\pi\pi data were employed to constrain the ππ\pi\pi DAs in plb763-29 , while the additional Bπ(ρ)ππB\to\pi(\rho\to)\pi\pi data are included in our global analysis. Second, some BK(ρ)ππB\to K(\rho\to)\pi\pi data have been updated in this work.

A single Gegenbauer moment a2ϕ0a^{0}_{2\phi} is introduced into the KKKK twist-2 DA, and the twist-3 ones have been set to their asymptotic forms, since only two pieces of data from the BK(ϕ)KKB\to K(\phi\to)KK decays in Table 4 meet the required precision. The value of a2ϕ0a^{0}_{2\phi}, determined with χ2/d.o.f.=0.35\chi^{2}/d.o.f.=0.35, is distinct from, but still consistent with that of the ϕ\phi meson DA in QCD sum rules ball98 within theoretical errors. Note that our a2ϕ0a^{0}_{2\phi} deviates from the value 0.50±0.10-0.50\pm 0.10 adopted in Ref. epjc79792 , where BsB_{s} meson decays into charmonia plus a kaon pair were investigated. The deviation is understandable, because the choice of a2ϕ0a^{0}_{2\phi} depends on models for the uncertain charmonium DAs, as relevant data were accommodated.

The KπK\pi DAs are determined in a fit to six pieces of B(s)P(K)KπB_{(s)}\to P(K^{*}\to)K\pi data in Tables 5 and 6. We first work on Scenario I, in which the two Gegenbauer moments a1K0a_{1K^{*}}^{0} and a2K0a_{2K^{*}}^{0} of the twist-2 two-meson DA are fitted with χ2/d.o.f.=1.5\chi^{2}/d.o.f.=1.5, and observe that a2K0a_{2K^{*}}^{0} is slightly larger than unity as shown in Table 1. A larger moment is not favored in view of the convergence of the Gegenbauer expansion. Therefore, one more Gegenbauer moment a4K0a_{4K^{*}}^{0} is added in Scenario II, and a fit with χ2/d.o.f.=1.4\chi^{2}/d.o.f.=1.4 is attained. The resultant a2K0a_{2K^{*}}^{0} decreases a bit but with amplified uncertainty , and a4K0a_{4K^{*}}^{0} is smaller than the unity. The measured Bs0K±(K)KπB^{0}_{s}\to K^{\pm}(K^{*\mp}\to)K\pi and Bs0 ( ) [-.7ex] K ( ( ) [-.7ex] K 0)0KπB^{0}_{s}\to\kern 1.79993pt\shortstack{{\tiny(\rule[0.86108pt]{5.0pt}{0.28453pt})}\\ [-.7ex] $\kern-1.79993ptK$}{}^{0}(\kern 1.79993pt\shortstack{{\tiny(\rule[0.86108pt]{5.0pt}{0.28453pt})}\\ [-.7ex] $\kern-1.79993ptK$}\!{}^{*0}\to)K\pi branching ratios cannot give an effective constraint due to their larger experimental errors, such that the uncertainties of the Gegenbauer moments increase dramatically in Scenario II. For a similar reason, the obtained Gegenbauer moments differ from those of the KK^{*} meson DA in QCD sum rules ball98 , and from a1K0=0.2a_{1K^{*}}^{0}=0.2 and a2K0=0.5a_{2K^{*}}^{0}=0.5 chosen in the PQCD study on the B(s)ψKπB_{(s)}\to\psi K\pi decays Li:2019pzx . We state that the fits based on the currently available data cannot discriminate the two scenarios effectively. As experimental precision increases, we will be able to impose more stringent constraints on those two-meson DAs.

Table 2: CPCP averaged branching ratios {\cal B} and direct CPCP asymmetries 𝒜CP{\cal A}_{CP} of the B(s)K(ρ)ππB_{(s)}\to K(\rho\to)\pi\pi decays in the PQCD approach. The experimental data for comparison are quoted from Ref. pdg2020 . Those data marked by \dagger are included in the fit. The theoretical errors are attributed to the variations of the shape parameter ωB(s)\omega_{B_{(s)}} in the B(s)B_{(s)} meson DA and the decay constant fB(s)f_{B_{(s)}}, of the Gegenbauer moments in the two-pion DAs, and of the hard scale tt and the QCD scale ΛQCD\Lambda_{\rm QCD}.
Modes Results Data
B+K+(ρ0)ππB^{+}\to K^{+}(\rho^{0}\to)\pi\pi    (106){\cal B}(10^{-6}) 2.910.600.680.82+0.68+0.77+1.432.91^{+0.68+0.77+1.43}_{-0.60-0.68-0.82} 3.7±0.53.7\pm{0.5} \dagger
𝒜CP(%){\cal A}_{CP}(\%) 53.51.44.315.0+0.4+4.5+11.953.5^{+0.4+4.5+11.9}_{-1.4-4.3-15.0} 37±1037\pm{10} \dagger
B0K+(ρ)ππB^{0}\to K^{+}(\rho^{-}\to)\pi\pi (106){\cal B}(10^{-6}) 8.481.951.482.51+2.20+1.63+3.878.48^{+2.20+1.63+3.87}_{-1.95-1.48-2.51} 7.0±0.97.0\pm{0.9} \dagger
𝒜CP(%){\cal A}_{CP}(\%) 33.01.54.912.1+1.1+5.2+8.933.0^{+1.1+5.2+8.9}_{-1.5-4.9-12.1} 20±1120\pm{11}
Bs0K(ρ+)ππB_{s}^{0}\to K^{-}(\rho^{+}\to)\pi\pi (106){\cal B}(10^{-6}) 16.415.300.151.31+7.59+0.16+1.1016.41^{+7.59+0.16+1.10}_{-5.30-0.15-1.31} -
𝒜CP(%){\cal A}_{CP}(\%) 19.43.23.32.9+3.6+3.3+3.119.4^{+3.6+3.3+3.1}_{-3.2-3.3-2.9} -
B+K0(ρ+)ππB^{+}\to K^{0}(\rho^{+}\to)\pi\pi (106){\cal B}(10^{-6}) 7.861.821.502.31+2.07+1.51+3.687.86^{+2.07+1.51+3.68}_{-1.82-1.50-2.31} 7.31.2+1.07.3^{+1.0}_{-1.2} \dagger
𝒜CP(%){\cal A}_{CP}(\%) 13.10.52.53.6+1.2+1.8+1.513.1^{+1.2+1.8+1.5}_{-0.5-2.5-3.6} 3±15-3\pm{15}
B0K0(ρ0)ππB^{0}\to K^{0}(\rho^{0}\to)\pi\pi (106){\cal B}(10^{-6}) 3.760.810.520.81+0.95+0.57+0.923.76^{+0.95+0.57+0.92}_{-0.81-0.52-0.81} 3.4±1.13.4\pm{1.1} \dagger
𝒜CP(%){\cal A}_{CP}(\%) 1.40.50.63.1+0.6+0.5+2.11.4^{+0.6+0.5+2.1}_{-0.5-0.6-3.1} 4±20-4\pm 20
Bs0K¯0(ρ0)ππB_{s}^{0}\to\bar{K}^{0}(\rho^{0}\to)\pi\pi (106){\cal B}(10^{-6}) 0.170.040.020.02+0.04+0.02+0.010.17^{+0.04+0.02+0.01}_{-0.04-0.02-0.02} -
𝒜CP(%){\cal A}_{CP}(\%) 51.00.610.613.4+1.1+11.7+26.6-51.0^{+1.1+11.7+26.6}_{-0.6-10.6-13.4} -
Table 3: Same as Table 2 but for the B(s)π(ρ)ππB_{(s)}\to\pi(\rho\to)\pi\pi decays.
Modes Results Data
B+π+(ρ0)ππB^{+}\to\pi^{+}(\rho^{0}\to)\pi\pi    (106){\cal B}(10^{-6}) 5.981.371.310.37+1.56+1.46+0.455.98^{+1.56+1.46+0.45}_{-1.37-1.31-0.37} 8.3±1.28.3\pm{1.2} \dagger
𝒜CP(%){\cal A}_{CP}(\%) 34.90.74.49.6+2.0+5.3+7.3-34.9^{+2.0+5.3+7.3}_{-0.7-4.4-9.6} 0.9±1.90.9\pm{1.9}
B0π+(ρ)ππB^{0}\to\pi^{+}(\rho^{-}\to)\pi\pi (106){\cal B}(10^{-6}) 5.281.581.440.52+2.08+1.56+0.425.28^{+2.08+1.56+0.42}_{-1.58-1.44-0.52} 23.0±2.323.0\pm{2.3} 1 \dagger
𝒜CP(%){\cal A}_{CP}(\%) 30.63.54.15.4+3.4+4.1+4.5-30.6^{+3.4+4.1+4.5}_{-3.5-4.1-5.4} 8±8-8\pm{8}
B0π(ρ+)ππB^{0}\to\pi^{-}(\rho^{+}\to)\pi\pi (106){\cal B}(10^{-6}) 20.206.620.541.04+8.90+0.48+1.3020.20^{+8.90+0.48+1.30}_{-6.62-0.54-1.04} 23.0±2.3~{}23.0\pm{2.3} 1 \dagger
𝒜CP(%){\cal A}_{CP}(\%) 9.31.61.71.9+1.9+1.7+1.99.3^{+1.9+1.7+1.9}_{-1.6-1.7-1.9} 13±613\pm 6
Bs0π+(ρ)ππB_{s}^{0}\to\pi^{+}(\rho^{-}\to)\pi\pi (106){\cal B}(10^{-6}) 0.230.040.050.04+0.04+0.03+0.030.23^{+0.04+0.03+0.03}_{-0.04-0.05-0.04} -
𝒜CP(%){\cal A}_{CP}(\%) 24.33.814.36.1+2.0+4.5+8.8-24.3^{+2.0+4.5+8.8}_{-3.8-14.3-6.1} -
Bs0π(ρ+)ππB_{s}^{0}\to\pi^{-}(\rho^{+}\to)\pi\pi (106){\cal B}(10^{-6}) 0.120.050.060.06+0.01+0.01+0.000.12^{+0.01+0.01+0.00}_{-0.05-0.06-0.06} -
𝒜CP(%){\cal A}_{CP}(\%) 71.71.85.60.7+2.1+12.0+4.8-71.7^{+2.1+12.0+4.8}_{-1.8-5.6-0.7} -
B+π0(ρ+)ππB^{+}\to\pi^{0}(\rho^{+}\to)\pi\pi (106){\cal B}(10^{-6}) 8.503.040.980.55+4.25+1.05+0.248.50^{+4.25+1.05+0.24}_{-3.04-0.98-0.55} 10.9±1.410.9\pm{1.4} \dagger
𝒜CP(%){\cal A}_{CP}(\%) 20.44.14.46.4+5.0+4.6+4.720.4^{+5.0+4.6+4.7}_{-4.1-4.4-6.4} 2±112\pm{11}
B0π0(ρ0)ππB^{0}\to\pi^{0}(\rho^{0}\to)\pi\pi (106){\cal B}(10^{-6}) 0.080.020.030.05+0.01+0.02+0.050.08^{+0.01+0.02+0.05}_{-0.02-0.03-0.05} 2.0±0.52.0\pm{0.5}
𝒜CP(%){\cal A}_{CP}(\%) 20.84.416.540.1+6.0+17.0+11.720.8^{+6.0+17.0+11.7}_{-4.4-16.5-40.1} 27±2427\pm 24
Bs0π0(ρ0)ππB_{s}^{0}\to\pi^{0}(\rho^{0}\to)\pi\pi (106){\cal B}(10^{-6}) 0.140.030.010.04+0.03+0.04+0.040.14^{+0.03+0.04+0.04}_{-0.03-0.01-0.04} -
𝒜CP(%){\cal A}_{CP}(\%) 47.93.06.67.5+5.5+4.8+4.5-47.9^{+5.5+4.8+4.5}_{-3.0-6.6-7.5} -
  • 1 Sum of two branching ratios, (Bf)+(Bf¯){\cal B}(B\to f)+{\cal B}(B\to\bar{f}).

With the fitted Gegenbauer moments in Table 1, we calculate the CPCP averaged branching rations {\cal B} and the direct CPCP asymmetries 𝒜CP{\cal A}_{CP} in the LO PQCD formalism, and present the results in the central columns of Tables 2-6. The first theoretical uncertainty originates from the shape parameter ωB=0.40\omega_{B}=0.40 GeV or ωBs=0.48\omega_{B_{s}}=0.48 GeV with 10% variation, and the decay constant fB(s)f_{B_{(s)}}. The second one is from the Gegenbauer moments in the two-meson DAs. The last one is caused by the variations of the hard scale tt from 0.75t0.75t to 1.25t1.25t, which characterizes the effect of next-to-leading-order QCD corrections, and of the QCD scale ΛQCD=0.25±0.05\Lambda_{\rm QCD}=0.25\pm 0.05 GeV. The errors attributed to the CKM matrix elements are tiny and can be ignored safely. Note that the data for the B0π+(ρ)ππB^{0}\to\pi^{+}(\rho^{-}\to)\pi\pi and B0π(ρ+)ππB^{0}\to\pi^{-}(\rho^{+}\to)\pi\pi branching ratios in Table 3 represent the sum over these two modes. It is also the case for the measured Bs0K+(K)KπB_{s}^{0}\to K^{+}(K^{*-}\to)K\pi and B+π0(K+)KπB^{+}\to\pi^{0}(K^{*+}\to)K\pi branching ratios, and for the measured B0π0(K0)KπB^{0}\to\pi^{0}(K^{*0}\to)K\pi and Bs0K¯0(K0)KπB_{s}^{0}\to\bar{K}^{0}(K^{*0}\to)K\pi branching ratios in Table 5.

One can also assess the uncertainties from the Gegenbauer moments a2,4π,a2P(T)πa^{\pi}_{2,4},a^{\pi}_{2P(T)} and a(1,2,4)Ka^{K}_{(1,2,4)} in the pion and kaon DAs. Taking the B+π+(ρ0)ππB^{+}\to\pi^{+}(\rho^{0}\to)\pi\pi and Bs0K(K+)KπB^{0}_{s}\to K^{-}(K^{*+}\to)K\pi branching rations in Scenario II as examples, we obtain, given the errors in Eq. (18),

(B+π+(ρ0)ππ)\displaystyle{\cal B}(B^{+}\to\pi^{+}(\rho^{0}\to)\pi\pi) =\displaystyle= (5.980.02+0.02(a2π)0.26+0.24(a4π)0.06+0.07(a2Pπ)0.01+0.01(a2Tπ))×106,\displaystyle(5.98^{+0.02}_{-0.02}(a^{\pi}_{2})^{+0.24}_{-0.26}(a^{\pi}_{4})^{+0.07}_{-0.06}(a^{\pi}_{2P})^{+0.01}_{-0.01}(a^{\pi}_{2T}))\times 10^{-6},
(Bs0K(K+)Kπ)\displaystyle{\cal B}(B^{0}_{s}\to K^{-}(K^{*+}\to)K\pi) =\displaystyle= (7.720.14+0.16(a1K)0.35+0.34(a2K)0.14+0.13(a4K))×106.\displaystyle(7.72^{+0.16}_{-0.14}(a^{K}_{1})^{+0.34}_{-0.35}(a^{K}_{2})^{+0.13}_{-0.14}(a^{K}_{4}))\times 10^{-6}. (32)

It is seen that the former (latter) is more sensitive to the variation of the moment a4πa^{\pi}_{4} (a2Ka^{K}_{2}) in the twist-2 pion (kaon) DA. We remark that the total errors, derived by adding the individual ones from the moments in the pion and kaon DAs in quadrature and associated with the labels aπa^{\pi} and aKa^{K} below, respectively, are minor (less than 5%5\%) compared with other uncertainties listed in Tables 3 and 5:

(B+π+(ρ0)ππ)\displaystyle{\cal B}(B^{+}\to\pi^{+}(\rho^{0}\to)\pi\pi) =\displaystyle= (5.981.37+1.56(ωB,fB)0.26+0.25(aπ)1.31+1.46(aρ)0.37+0.45(t,ΛQCD))×106,\displaystyle(5.98^{+1.56}_{-1.37}(\omega_{B},f_{B})^{+0.25}_{-0.26}(a^{\pi})^{+1.46}_{-1.31}(a_{\rho})^{+0.45}_{-0.37}(t,\Lambda_{QCD}))\times 10^{-6},
(Bs0K(K+)Kπ)\displaystyle{\cal B}(B^{0}_{s}\to K^{-}(K^{*+}\to)K\pi) =\displaystyle= (7.721.59+1.89(ωB,fB)0.40+0.40(aK)1.49+1.82(aK)2.69+3.24(t,ΛQCD))×106.\displaystyle(7.72^{+1.89}_{-1.59}(\omega_{B},f_{B})^{+0.40}_{-0.40}(a^{K})^{+1.82}_{-1.49}(a_{K^{*}})^{+3.24}_{-2.69}(t,\Lambda_{QCD}))\times 10^{-6}. (33)

Therefore, the variation of the Gegenbauer moments in the pion and kaon DAs has little impact on the determination of the two-meson DAs.

It is found that most of the considered data in Tables 2 and 3 are well reproduced, in particular those with higher precision. Larger deviation from the data is observed in the B+π+(ρ0)ππB^{+}\to\pi^{+}(\rho^{0}\to)\pi\pi and B+π0(ρ+)ππB^{+}\to\pi^{0}(\rho^{+}\to)\pi\pi branching ratios. It is ascribed to the involved color-suppressed tree contributions, which receive sizable next-to-leading-order corrections. The observables removed from the fit are also predicted in the LO PQCD formalism, and compared with the data in Tables 2 and 3. Our prediction for the B0π0(ρ0)ππB^{0}\to\pi^{0}(\rho^{0}\to)\pi\pi branching ratio, which suffers significant subleading corrections as stated before, is still below the data, similar to that derived in the framework for two-body decays. Most of the 𝒜CP{\cal A}_{CP} data for the B(s)P(ρ)ππB_{(s)}\to P(\rho\to)\pi\pi decays with P=π,KP=\pi,K are not yet precise enough. We mention that 𝒜CP{\cal A}_{CP} in the B+π+ρ0B^{+}\to\pi^{+}\rho^{0} mode has been predicted to be large and negative in most QCD approaches Cheng:2020hyj ; prd95056008 , including the present analysis on three-body decays as shown in Table 3. However, its data are as small as 0.009±0.0190.009\pm 0.019 pdg2020 . Both the theoretical and experimental errors need to be reduced greatly in order to tell whether the discrepancy really stands as a puzzle.

Table 4: Same as Table 2 but for the B(s)P(ϕ)KKB_{(s)}\to P(\phi\to)KK decays with P=π,KP=\pi,K.
Modes Results Data
B+K+(ϕ)KKB^{+}\to K^{+}(\phi\to)KK    (106){\cal B}(10^{-6}) 8.462.700.451.95+3.57+0.41+2.658.46^{+3.57+0.41+2.65}_{-2.70-0.45-1.95} 8.80.6+0.78.8^{+0.7}_{-0.6} \dagger
𝒜CP(%){\cal A}_{CP}(\%) 1.40.31.70.8+0.8+0.1+0.01.4^{+0.8+0.1+0.0}_{-0.3-1.7-0.8} 2.4±2.82.4\pm 2.8
B0K0(ϕ)KKB^{0}\to K^{0}(\phi\to)KK    (106){\cal B}(10^{-6}) 7.822.500.191.71+3.18+0.40+2.407.82^{+3.18+0.40+2.40}_{-2.50-0.19-1.71} 7.3±0.77.3\pm 0.7 \dagger
𝒜CP(%){\cal A}_{CP}(\%) 0 1±141\pm 14
Bs0K¯0(ϕ)KKB_{s}^{0}\to\bar{K}^{0}(\phi\to)KK    (108){\cal B}(10^{-8}) 3.520.640.021.27+1.30+1.50+2.303.52^{+1.30+1.50+2.30}_{-0.64-0.02-1.27} -
𝒜CP(%){\cal A}_{CP}(\%) 0 -
B+π+(ϕ)KKB^{+}\to\pi^{+}(\phi\to)KK    (108){\cal B}(10^{-8}) 1.150.330.200.28+0.46+0.02+0.341.15^{+0.46+0.02+0.34}_{-0.33-0.20-0.28} 3.2±1.53.2\pm 1.5
𝒜CP(%){\cal A}_{CP}(\%) 0 10±5010\pm 50
B0π0(ϕ)KKB^{0}\to\pi^{0}(\phi\to)KK    (109){\cal B}(10^{-9}) 5.321.530.911.27+2.21+0.14+1.615.32^{+2.21+0.14+1.61}_{-1.53-0.91-1.27} <15~{}~{}<15~{}~{}
𝒜CP(%){\cal A}_{CP}(\%) 0 -
Bs0π0(ϕ)KKB_{s}^{0}\to\pi^{0}(\phi\to)KK    (107){\cal B}(10^{-7}) 1.060.340.200.14+0.41+0.15+0.071.06^{+0.41+0.15+0.07}_{-0.34-0.20-0.14} -
𝒜CP(%){\cal A}_{CP}(\%) 27.31.01.45.8+1.1+3.2+3.527.3^{+1.1+3.2+3.5}_{-1.0-1.4-5.8} -

Both the BK(ϕ)KKB\to K(\phi\to)KK data considered in the fit are well reproduced with a single Gegenbauer moment a2ϕ0a^{0}_{2\phi} as indicated in Table 4. Our predictions for the branching ratios and direct CPCP asymmetries excluded in the fit, mainly associated with BsB_{s} meson decays, can be confronted by more precise data in the future. All the available 𝒜CP{\cal A}_{CP} data for the BP(ϕ)KKB\to P(\phi\to)KK decays with P=π,KP=\pi,K have large errors. The central values of the prediction and the data for the B+π+(ϕ)KKB^{+}\to\pi^{+}(\phi\to)KK branching ratio are different, but still agree with each other within uncertainties.

Table 5: Same as Table 2 but for the B(s)K(K)KπB_{(s)}\to K(K^{*}\to)K\pi decays.
Modes Results (Scenario I) Results (Scenario II) Data
B+K+(K¯0)KπB^{+}\to K^{+}(\bar{K}^{*0}\to)K\pi    (106){\cal B}(10^{-6}) 0.550.130.060.14+0.14+0.04+0.200.55^{+0.14+0.04+0.20}_{-0.13-0.06-0.14} 0.560.130.060.13+0.17+0.10+0.150.56^{+0.17+0.10+0.15}_{-0.13-0.06-0.13} 0.59±0.080.59\pm 0.08 \dagger
𝒜CP(%){\cal A}_{CP}(\%) 46.30.34.73.9+1.0+10.9+2.846.3^{+1.0+10.9+2.8}_{-0.3-4.7-3.9} 63.83.28.523.5+1.1+2.0+3.463.8^{+1.1+2.0+3.4}_{-3.2-8.5-23.5} 12±1012\pm 10
B0K+(K)KπB^{0}\to K^{+}(K^{*-}\to)K\pi    (106){\cal B}(10^{-6}) 0.270.050.060.03+0.05+0.05+0.040.27^{+0.05+0.05+0.04}_{-0.05-0.06-0.03} 0.250.010.030.01+0.01+0.09+0.010.25^{+0.01+0.09+0.01}_{-0.01-0.03-0.01} <0.4<0.4 1
𝒜CP(%){\cal A}_{CP}(\%) 19.83.62.17.5+0.5+2.1+13.419.8^{+0.5+2.1+13.4}_{-3.6-2.1-7.5} 20.20.01.60.0+7.1+10.6+16.920.2^{+7.1+10.6+16.9}_{-0.0-1.6-0.0} -
B0K(K+)KπB^{0}\to K^{-}(K^{*+}\to)K\pi    (106){\cal B}(10^{-6}) 0.090.020.010.03+0.01+0.01+0.040.09^{+0.01+0.01+0.04}_{-0.02-0.01-0.03} 0.110.060.020.02+0.02+0.01+0.030.11^{+0.02+0.01+0.03}_{-0.06-0.02-0.02} <0.4<0.4 1
𝒜CP(%){\cal A}_{CP}(\%) 5.215.511.40.0+12.3+9.4+30.4-5.2^{+12.3+9.4+30.4}_{-15.5-11.4-0.0} 33.80.014.40.0+13.4+16.4+9.433.8^{+13.4+16.4+9.4}_{-0.0-14.4-0.0} -
Bs0K+(K)KπB_{s}^{0}\to K^{+}(K^{*-}\to)K\pi    (106){\cal B}(10^{-6}) 15.152.531.724.61+2.78+1.90+7.2915.15^{+2.78+1.90+7.29}_{-2.53-1.72-4.61} 9.891.661.904.16+1.92+2.93+5.649.89^{+1.92+2.93+5.64}_{-1.66-1.90-4.16} (19±5)(19\pm 5) 1 \dagger
𝒜CP(%){\cal A}_{CP}(\%) 42.15.33.66.9+4.5+2.4+5.542.1^{+4.5+2.4+5.5}_{-5.3-3.6-6.9} 6.11.311.010.4+0.4+8.8+7.06.1^{+0.4+8.8+7.0}_{-1.3-11.0-10.4} -
Bs0K(K+)KπB_{s}^{0}\to K^{-}(K^{*+}\to)K\pi    (106){\cal B}(10^{-6}) 10.221.731.242.72+1.97+1.27+4.5110.22^{+1.97+1.27+4.51}_{-1.73-1.24-2.72} 7.721.591.492.69+1.88+1.82+3.247.72^{+1.88+1.82+3.24}_{-1.59-1.49-2.69} (19±5)(19\pm 5) 1 \dagger
𝒜CP(%){\cal A}_{CP}(\%) 34.82.30.66.6+3.0+1.5+7.5-34.8^{+3.0+1.5+7.5}_{-2.3-0.6-6.6} 24.00.34.16.1+1.5+6.1+11.4-24.0^{+1.5+6.1+11.4}_{-0.3-4.1-6.1} -
B+K¯0(K+)KπB^{+}\to\bar{K}^{0}(K^{*+}\to)K\pi    (106){\cal B}(10^{-6}) 0.310.050.040.09+0.06+0.07+0.160.31^{+0.06+0.07+0.16}_{-0.05-0.04-0.09} 0.190.050.070.05+0.06+0.06+0.110.19^{+0.06+0.06+0.11}_{-0.05-0.07-0.05} -
𝒜CP(%){\cal A}_{CP}(\%) 13.61.03.57.9+2.5+2.0+5.7-13.6^{+2.5+2.0+5.7}_{-1.0-3.5-7.9} 22.70.018.47.3+13.3+20.7+7.5-22.7^{+13.3+20.7+7.5}_{-0.0-18.4-7.3} -
B0K0(K¯0)KπB^{0}\to K^{0}(\bar{K}^{*0}\to)K\pi    (106){\cal B}(10^{-6}) 0.440.11+0.03+0.11+0.14+0.04+0.150.44^{+0.14+0.04+0.15}_{-0.11+0.03+0.11} 0.380.110.040.11+0.13+0.05+0.110.38^{+0.13+0.05+0.11}_{-0.11-0.04-0.11} <0.96<0.96 1
𝒜CP(%){\cal A}_{CP}(\%) 0 0 -
B0K¯0(K0)KπB^{0}\to\bar{K}^{0}(K^{*0}\to)K\pi    (106){\cal B}(10^{-6}) 0.440.08+0.07+0.15+0.08+0.06+0.220.44^{+0.08+0.06+0.22}_{-0.08+0.07+0.15} 0.300.050.020.12+0.07+0.08+0.160.30^{+0.07+0.08+0.16}_{-0.05-0.02-0.12} <0.96<0.96 1
𝒜CP(%){\cal A}_{CP}(\%) 0 0 -
Bs0K0(K¯0)KπB_{s}^{0}\to K^{0}(\bar{K}^{*0}\to)K\pi    (106){\cal B}(10^{-6}) 14.062.301.704.48+2.54+1.89+6.8814.06^{+2.54+1.89+6.88}_{-2.30-1.70-4.48} 8.841.461.983.54+1.66+2.77+5.318.84^{+1.66+2.77+5.31}_{-1.46-1.98-3.54} (20±6)(20\pm 6) 1 \dagger
𝒜CP(%){\cal A}_{CP}(\%) 0 0 -
Bs0K¯0(K0)KπB_{s}^{0}\to\bar{K}^{0}(K^{*0}\to)K\pi    (106){\cal B}(10^{-6}) 10.391.781.172.86+2.01+1.18+5.5810.39^{+2.01+1.18+5.58}_{-1.78-1.17-2.86} 7.921.641.362.85+1.95+1.63+3.467.92^{+1.95+1.63+3.46}_{-1.64-1.36-2.85} (20±6)(20\pm 6) 1 \dagger
𝒜CP(%){\cal A}_{CP}(\%) 0 0 -
Table 6: Same as Table 2 but for the B(s)π(K)KπB_{(s)}\to\pi(K^{*}\to)K\pi decays.
Modes Results (Scenario I) Results (Scenario II) Data
B+π+(K0)KπB^{+}\to\pi^{+}(K^{*0}\to)K\pi    (106){\cal B}(10^{-6}) 7.171.370.622.23+1.56+0.64+3.467.17^{+1.56+0.64+3.46}_{-1.37-0.62-2.23} 8.191.770.661.93+2.14+0.94+2.748.19^{+2.14+0.94+2.74}_{-1.77-0.66-1.93} 10.1±0.8~{}~{}10.1\pm{0.8}~{}~{}
𝒜CP(%){\cal A}_{CP}(\%) 5.40.20.30.8+0.5+0.8+2.1-5.4^{+0.5+0.8+2.1}_{-0.2-0.3-0.8} 4.50.61.41.2+0.5+1.1+2.7-4.5^{+0.5+1.1+2.7}_{-0.6-1.4-1.2} 4±9-4\pm 9
B0π(K+)KπB^{0}\to\pi^{-}(K^{*+}\to)K\pi    (106){\cal B}(10^{-6}) 7.471.410.712.06+1.60+0.72+3.297.47^{+1.60+0.72+3.29}_{-1.41-0.71-2.06} 7.611.610.651.78+1.83+0.92+2.407.61^{+1.83+0.92+2.40}_{-1.61-0.65-1.78} 7.5±0.47.5\pm{0.4} \dagger
𝒜CP(%){\cal A}_{CP}(\%) 52.91.81.07.0+3.1+0.7+9.3-52.9^{+3.1+0.7+9.3}_{-1.8-1.0-7.0} 32.30.28.46.3+0.7+10.3+7.9-32.3^{+0.7+10.3+7.9}_{-0.2-8.4-6.3} 27±4-27\pm{4}
Bs0π+(K)KπB_{s}^{0}\to\pi^{+}(K^{*-}\to)K\pi    (106){\cal B}(10^{-6}) 12.133.551.290.75+4.66+1.36+0.9212.13^{+4.66+1.36+0.92}_{-3.55-1.29-0.75} 5.521.661.850.41+2.22+2.09+0.415.52^{+2.22+2.09+0.41}_{-1.66-1.85-0.41} 2.9±1.1~{}~{}2.9\pm{1.1}~{}~{}
𝒜CP(%){\cal A}_{CP}(\%) 32.84.83.25.5+4.1+2.7+4.2-32.8^{+4.1+2.7+4.2}_{-4.8-3.2-5.5} 30.64.56.98.9+4.1+6.5+8.2-30.6^{+4.1+6.5+8.2}_{-4.5-6.9-8.9} -
B+π0(K+)KπB^{+}\to\pi^{0}(K^{*+}\to)K\pi    (106){\cal B}(10^{-6}) 4.710.980.381.30+1.18+0.39+1.924.71^{+1.18+0.39+1.92}_{-0.98-0.38-1.30} 5.621.280.491.11+1.54+0.62+1.555.62^{+1.54+0.62+1.55}_{-1.28-0.49-1.11} 6.8±0.96.8\pm{0.9} \dagger
𝒜CP(%){\cal A}_{CP}(\%) 36.21.00.48.2+1.6+0.1+7.4-36.2^{+1.6+0.1+7.4}_{-1.0-0.4-8.2} 19.11.95.46.0+2.4+6.6+4.6-19.1^{+2.4+6.6+4.6}_{-1.9-5.4-6.0} 39±21-39\pm{21}
B0π0(K0)KπB^{0}\to\pi^{0}(K^{*0}\to)K\pi    (106){\cal B}(10^{-6}) 2.990.550.330.89+0.59+0.33+1.492.99^{+0.59+0.33+1.49}_{-0.55-0.33-0.89} 2.550.490.190.74+0.57+0.36+1.062.55^{+0.57+0.36+1.06}_{-0.49-0.19-0.74} 3.3±0.63.3\pm{0.6} \dagger
𝒜CP(%){\cal A}_{CP}(\%) 11.61.20.21.0+1.0+0.49+5.0-11.6^{+1.0+0.49+5.0}_{-1.2-0.2-1.0} 11.81.21.70.2+1.2+4.3+4.3-11.8^{+1.2+4.3+4.3}_{-1.2-1.7-0.2} 15±13-15\pm{13}
Bs0π0(K¯0)KπB_{s}^{0}\to\pi^{0}(\bar{K}^{*0}\to)K\pi    (106){\cal B}(10^{-6}) 0.200.040.020.05+0.03+0.01+0.060.20^{+0.03+0.01+0.06}_{-0.04-0.02-0.05} 0.120.040.030.03+0.02+0.02+0.030.12^{+0.02+0.02+0.03}_{-0.04-0.03-0.03} -
𝒜CP(%){\cal A}_{CP}(\%) 70.66.72.815.1+6.7+13.2+23.5-70.6^{+6.7+13.2+23.5}_{-6.7-2.8-15.1} 50.42.612.414.1+3.1+22.7+15.1-50.4^{+3.1+22.7+15.1}_{-2.6-12.4-14.1} -

Overall speaking, Scenario II reproduces the considered B(s)P(K)KπB_{(s)}\to P(K^{*}\to)K\pi data with P=π,KP=\pi,K slightly better than Scenario I does as seen in Tables 5 and 6. The BsP(K)KπB_{s}\to P(K^{*}\to)K\pi branching ratios differ between the two scenarios more than the BP(K)KπB\to P(K^{*}\to)K\pi branching ratios do. This feature is understandable, because the former involve the Bs(K)KπB_{s}\to(K^{*}\to)K\pi transition form factors, which are more sensitive to the variation of the Gegenbauer moments in the KπK\pi DA. Hence, more precise BsP(K)KπB_{s}\to P(K^{*}\to)K\pi data are crucial for fixing the KπK\pi DAs. The direct CPCP asymmetries 𝒜CP{\cal A}_{CP} in some B(s)P(K)KπB_{(s)}\to P(K^{*}\to)K\pi modes depend on the chosen scenarios strongly, implying that more accurate KπK\pi DAs are necessary for predicting these observables unambiguously. The central value of the predicted Bs0π+(K)KπB_{s}^{0}\to\pi^{+}(K^{*-}\to)K\pi branching ratio in Scenario II, which is already much lower than in Scenario I, remains above the data. It deserves more thorough theoretical and experimental investigations. Similarly, most of the 𝒜CP{\cal A}_{CP} data for the B(s)P(K)KπB_{(s)}\to P(K^{*}\to)K\pi decays have substantial uncertainties so far, so it is not yet possible to make a meaningful comparison with our results.

A remark is in order. The twist-2 DAs ϕKA\phi_{K}^{A} and ϕKπ0\phi^{0}_{K\pi} in Eqs. (16) and (20), respectively, are expanded up to the fourth-order Gegenbauer polynomial without the third-order term, which exists in general. We find that the SU(3)SU(3) breaking effects in the considered decays can be well accounted for by the first-order term alone. That is, even the third-order term is included into the fit, its value turns out to be small, and does not modify the fit outcomes much. Taking the eight B(s)P(K)KπB_{(s)}\to P(K^{*}\to)K\pi (P=π,KP=\pi,K) decays as examples, we perform the global fit with a3K0a_{3K^{*}}^{0} being included, and obtain the Gegenbauer moments of the KπK\pi twist-2 DA

a1K0=0.37±0.60,a2K0=1.19±0.10,a3K0=0.04±0.36,\displaystyle a_{1K^{*}}^{0}=0.37\pm 0.60,\;\;\;\;a_{2K^{*}}^{0}=1.19\pm 0.10,\;\;\;\;a_{3K^{*}}^{0}=-0.04\pm 0.36, (34)

and the branching ratios in Table 7. It is seen that the central value of a1K0a_{1K^{*}}^{0} increases only a bit with an enlarged uncertainty and a2K0a_{2K^{*}}^{0} stays the same, compared with those from Scenario I in Table 1, and the central value of a3K0a_{3K^{*}}^{0} is tiny. The corresponding branching ratios in Table 7 also change very little, compared with those in Tables 5 and 6. The above observations support that the SU(3)SU(3) breaking effects in the considered modes can be explained by the a1K0a_{1K^{*}}^{0} term alone under the current data precision. Hence, the neglect of the a3K0a_{3K^{*}}^{0} term in this work is justified. Besides, it is not practical to include many parameters in the fit because of the limited amount of experimental data at present. For a similar reason, the asymptotic forms of the KπK\pi twist-3 DAs ϕKπs,t\phi_{K\pi}^{s,t} are adopted in our analysis. The same argument applies to the expansion of the kaon DAs in Eq. (16), where the higher moments responsible for SU(3)SU(3) symmetry breaking effects are also absent. We will explore the impact of these neglected Gegenbauer polynomials systematically in the future, when more experimental data with improved precision are available.

Table 7: CPCP averaged branching ratios (106){\cal B}(10^{-6}) corresponding to the fitted Gegenbauer moments in Eq. (34), compared with the data pdg2020 . For simplicity, only the theoretical errors from the Gegenbauer moments are presented.
       Modes        Results        Data
       B+K+(K¯0)KπB^{+}\to K^{+}(\bar{K}^{*0}\to)K\pi        0.59±0.080.59\pm 0.08        3.7±0.53.7\pm 0.5 \dagger
       B0π(K+)KπB^{0}\to\pi^{-}(K^{*+}\to)K\pi        7.51±0.347.51\pm 0.34        7.5±0.47.5\pm 0.4 \dagger
       B+π0(K+)KπB^{+}\to\pi^{0}(K^{*+}\to)K\pi        4.75±0.374.75\pm 0.37        6.8±0.96.8\pm 0.9 \dagger
       B0π0(K0)KπB^{0}\to\pi^{0}(K^{*0}\to)K\pi        2.91±0.402.91\pm 0.40        3.3±0.63.3\pm 0.6 \dagger
       Bs0K+(K)Kπ+c.cB_{s}^{0}\to K^{+}(K^{*-}\to)K\pi+c.c        25.40±1.6025.40\pm 1.60        19±519\pm 5 \dagger
       Bs0K0(K¯0)Kπ+c.cB_{s}^{0}\to K^{0}(\bar{K}^{*0}\to)K\pi+c.c        24.60±1.5024.60\pm 1.50        20±620\pm 6 \dagger

It is noticed that the parametrization of the parton momenta in Eqs. (2) and (3) introduces the dependence on the light meson mass m3m_{3} into the hard kernels and the Sudakov exponents, as explicitly shown in the Appendix. Since both these factors are perturbative pieces in a PQCD factorization formula, they should be insensitive to a light scale. Therefore, we test the sensitivity of our numerical results to this light scale by setting it to zero in the hard kernels and the Sudakov exponents. The corresponding branching ratios and direct CPCP asymmetries for two typical modes, B+K+(ρ0)ππB^{+}\to K^{+}(\rho^{0}\to)\pi\pi and B0π(K+)KπB^{0}\to\pi^{-}(K^{*+}\to)K\pi in Scenario II, are presented in Table 8. The neglect of the kaon mass for the former mode causes about 10% variation in the branching ratio and the direct CPCP asymmetry. The quantities associated with the latter mode are relatively stable with respect to the neglect of the pion mass as expected. The insensitivity to the light scale confirms that our parametrization for kinematic variables in three-body BB meson decays is reasonable.

Table 8: CPCP averaged branching ratios and direct CPCP asymmetries of the B+K+(ρ0)ππB^{+}\to K^{+}(\rho^{0}\to)\pi\pi decay and the B0π(K+)KπB^{0}\to\pi^{-}(K^{*+}\to)K\pi decay in Scenario II with and without the light meson masses in the hard kernels and the Sudakov exponents. The experimental data are quoted from pdg2020 . The sources of the theoretical errors are the same as in Table 2.
Modes Results (with light mass) Results (without light mass) Data
B+K+(ρ0)ππB^{+}\to K^{+}(\rho^{0}\to)\pi\pi (106){\cal B}(10^{-6}) 2.910.600.680.82+0.68+0.77+1.432.91^{+0.68+0.77+1.43}_{-0.60-0.68-0.82} 2.510.520.530.80+0.56+0.71+1.342.51^{+0.56+0.71+1.34}_{-0.52-0.53-0.80} 3.7±0.53.7\pm{0.5}
𝒜CP(%){\cal A}_{CP}(\%) 53.51.44.315.0+0.4+4.5+11.953.5^{+0.4+4.5+11.9}_{-1.4-4.3-15.0} 58.51.96.617.1+0.0+4.4+11.958.5^{+0.0+4.4+11.9}_{-1.9-6.6-17.1} 37±1037\pm{10}
B0π(K+)KπB^{0}\to\pi^{-}(K^{*+}\to)K\pi (106){\cal B}(10^{-6}) 7.611.610.651.78+1.83+0.92+2.407.61^{+1.83+0.92+2.40}_{-1.61-0.65-1.78} 7.661.600.642.06+1.84+0.95+2.437.66^{+1.84+0.95+2.43}_{-1.60-0.64-2.06} 7.5±0.47.5\pm{0.4}
𝒜CP(%){\cal A}_{CP}(\%) 32.30.28.46.3+0.7+10.3+7.9-32.3^{+0.7+10.3+7.9}_{-0.2-8.4-6.3} 32.70.18.46.1+0.6+10.4+7.9-32.7^{+0.6+10.4+7.9}_{-0.1-8.4-6.1} 27±4-27\pm{4}

III.3 ω2\omega^{2}-dependent Gegenbauer Moments

We make a more aggressive attempt in this subsection to determine the dependence of the Gegenbauer moments in the two-meson DAs on the meson pair invariant mass. As stated in the Introduction, it is unlikely to extract the exact dependence from current data, so we simply expand the Gegenbauer moments up to the first power in ω2\omega^{2}, and examine whether the additional linear terms can be constrained effectively in the global fit. Consider the parametrizations of the di-pion DAs,

ϕππ0(x,ω2)\displaystyle\phi_{\pi\pi}^{0}(x,\omega^{2}) =\displaystyle= 3Fππ(ω2)2Ncx(1x)[1+a2ρ0(1+cρ0ω2)C23/2(2x1)],\displaystyle\frac{3F_{\pi\pi}^{\parallel}(\omega^{2})}{\sqrt{2N_{c}}}x(1-x)\left[1+a^{0}_{2\rho}(1+c_{\rho}^{0}\omega^{2})C_{2}^{3/2}(2x-1)\right],
ϕππs(x,ω2)\displaystyle\phi_{\pi\pi}^{s}(x,\omega^{2}) =\displaystyle= 3Fππ(ω2)22Nc(12x)[1+a2ρs(1+cρsω2)(10x210x+1)],\displaystyle\frac{3F_{\pi\pi}^{\perp}(\omega^{2})}{2\sqrt{2N_{c}}}(1-2x)\left[1+a^{s}_{2\rho}(1+c_{\rho}^{s}\omega^{2})(10x^{2}-10x+1)\right],
ϕππt(x,ω2)\displaystyle\phi_{\pi\pi}^{t}(x,\omega^{2}) =\displaystyle= 3Fππ(ω2)22Nc(12x)2[1+a2ρt(1+cρtω2)C23/2(2x1)],\displaystyle\frac{3F_{\pi\pi}^{\perp}(\omega^{2})}{2\sqrt{2N_{c}}}(1-2x)^{2}\left[1+a^{t}_{2\rho}(1+c_{\rho}^{t}\omega^{2})C_{2}^{3/2}(2x-1)\right], (35)

with the free parameters a2ρ0,s,ta^{0,s,t}_{2\rho} and cρ0,s,tc_{\rho}^{0,s,t}. The above parametrization follows the power series for the ω2\omega^{2}-dependent Gegenbauer moments derived in Ref. MP .

Table 9: Fitted parameters for the ω2\omega^{2}-dependent Gegenbauer moments in the twist-2 and twist-3 ππ\pi\pi DAs.
a2ρ0a^{0}_{2\rho} a2ρsa^{s}_{2\rho} a2ρta^{t}_{2\rho} cρ0c^{0}_{\rho} (GeV-2) cρsc^{s}_{\rho} (GeV-2) cρtc^{t}_{\rho} (GeV-2)
     fit 0.45±0.29-0.45\pm 0.29 1.12±0.331.12\pm 0.33 0.43±0.11-0.43\pm 0.11 0.44±0.93-0.44\pm 0.93 1.42±0.42-1.42\pm 0.42 0.03±0.32-0.03\pm 0.32

The global fit to the same set of B(s)P(ρ)ππB_{(s)}\to P(\rho\to)\pi\pi data with P=π,KP=\pi,K leads to the outcomes in Table 9 with a smaller χ2/d.o.f.=0.51\chi^{2}/d.o.f.=0.51, which are not difficult to understand: varying ω2\omega^{2} around the ρ\rho resonance in its width window, we find that the values of a2ρ0,s,t(1+cρ0,s,tω2)a^{0,s,t}_{2\rho}(1+c_{\rho}^{0,s,t}\omega^{2}) are in fact consistent with the corresponding ones in Table 1. The consistency is particularly obvious for a2ρt(1+cρtω2)a^{t}_{2\rho}(1+c_{\rho}^{t}\omega^{2}) with the tiny coefficient cρtc_{\rho}^{t}. It is observed from Table 9 that the parameters for the twist-3 DA ϕππs\phi_{\pi\pi}^{s}, which gives sizable contributions to branching ratios, can be constrained effectively by the current data. It suggests that the determination of the ω2\omega^{2}-dependent Gegenbauer moments is promising, when more precise data are available in the future. Because our purpose is to demonstrate the potential to extract the ω2\omega^{2} dependence of the Gegenbauer moments, we will not work on the KπK\pi and KKKK DAs. The effect of including the ω2\omega^{2} dependence of the Gegenbauer moments is similar to that of introducing more parameters. That is, the fit quality is improved with a lower χ2/d.o.f.\chi^{2}/d.o.f. at the cost of larger uncertainties for fit results as shown in Table 10. For example, the reproduced branching ratios for the B+K+(ρ0)ππB^{+}\to K^{+}(\rho^{0}\to)\pi\pi and B+π+(ρ0)ππB^{+}\to\pi^{+}(\rho^{0}\to)\pi\pi decays get closer to the data, which have relatively higher precision. However, the uncertainty caused by the variation of the di-pion DAs is amplified compared to the second source of errors in Table 2.

Table 10: CPCP averaged branching ratios and direct CPCP asymmetries derived from the fitted Gegenbauer moments in Table 9, and compared with data pdg2020 . For simplicity, only the theoretical errors from the Gegenbauer moments are presented.
       Modes        Results        Data
       B+K+(ρ0)ππB^{+}\to K^{+}(\rho^{0}\to)\pi\pi        (106){\cal B}(10^{-6})        3.121.14+1.813.12^{+1.81}_{-1.14}        3.7±0.53.7\pm 0.5 \dagger
       𝒜CP(%){\cal A}_{CP}(\%)        37.911.9+10.637.9^{+10.6}_{-11.9}        37±1037\pm 10 \dagger
       B+K0(ρ+)ππB^{+}\to K^{0}(\rho^{+}\to)\pi\pi        (106){\cal B}(10^{-6})        8.661.99+3.248.66^{+3.24}_{-1.99}        7.3±1.27.3\pm 1.2 \dagger
       𝒜CP(%){\cal A}_{CP}(\%)        17.81.1+2.617.8^{+2.6}_{-1.1}        3±15-3\pm 15
       B0K+(ρ)ππB^{0}\to K^{+}(\rho^{-}\to)\pi\pi        (106){\cal B}(10^{-6})        8.221.93+3.218.22^{+3.21}_{-1.93}        7.0±0.97.0\pm 0.9 \dagger
       𝒜CP(%){\cal A}_{CP}(\%)        18.98.7+7.818.9^{+7.8}_{-8.7}        20±1120\pm 11
       B0K0(ρ0)ππB^{0}\to K^{0}(\rho^{0}\to)\pi\pi        (106){\cal B}(10^{-6})        2.880.72+1.192.88^{+1.19}_{-0.72}        3.4±1.13.4\pm 1.1 \dagger
       𝒜CP(%){\cal A}_{CP}(\%)        1.90.8+1.81.9^{+1.8}_{-0.8}        4±20-4\pm 20
       B+π+(ρ0)ππB^{+}\to\pi^{+}(\rho^{0}\to)\pi\pi        (106){\cal B}(10^{-6})        7.691.65+2.677.69^{+2.67}_{-1.65}        8.3±1.28.3\pm 1.2 \dagger
       𝒜CP(%){\cal A}_{CP}(\%)        17.24.2+9.2-17.2^{+9.2}_{-4.2}        0.9±1.90.9\pm 1.9
       B+π0(ρ+)ππB^{+}\to\pi^{0}(\rho^{+}\to)\pi\pi        (106){\cal B}(10^{-6})        10.143.89+5.1810.14^{+5.18}_{-3.89}        10.9±1.410.9\pm 1.4 \dagger
       𝒜CP(%){\cal A}_{CP}(\%)        5.614.8+13.45.6^{+13.4}_{-14.8}        2±112\pm 11
       B0π(ρ+)ππB^{0}\to\pi^{-}(\rho^{+}\to)\pi\pi        (106){\cal B}(10^{-6})        24.491.72+2.2924.49^{+2.29}_{-1.72} 1        23.0±2.323.0\pm 2.3 1 \dagger
       𝒜CP(%){\cal A}_{CP}(\%)        3.85.3+5.13.8^{+5.1}_{-5.3}        13±613\pm 6
       B0π+(ρ)ππB^{0}\to\pi^{+}(\rho^{-}\to)\pi\pi        (106){\cal B}(10^{-6})        24.491.72+2.2924.49^{+2.29}_{-1.72} 1        23.0±2.323.0\pm 2.3 1 \dagger
       𝒜CP(%){\cal A}_{CP}(\%)        16.410.1+11.8-16.4^{+11.8}_{-10.1}        8±8-8\pm 8

IV CONCLUSION

In this work we have performed a global fit of the Gegenbauer moments in two-meson DAs to measured branching ratios and direct CPCP asymmetries in the three-body hadronic BB meson decays BVP3P1P2P3B\to VP_{3}\to P_{1}P_{2}P_{3} with V=ρ,ϕ,KV=\rho,\phi,K^{*} and P3=π,KP_{3}=\pi,K in the LO PQCD approach. Two-meson DAs, collecting both nonresonant and multi-resonance contributions, serve as crucial nonperturbative ingredients of factorization theorems for the above decays. The Gegenbauer moments of the pion and kaon DAs determined in the LO global analysis of two-body hadronic BB meson decays have been input for theoretical consistency. To facilitate the numerical study, we have constructed a Gegenbauer-moment-independent database, via which a decay amplitude is decomposed into a linear combination of the relevant Gegenbauer moments in the two-meson DAs. It was noticed that the fitted Gegenbauer moments differ from those associated with an intermediate resonance which decays into the meson pair, and from those adopted in previous PQCD calculations. This observation indicates that the Gegenbauer moments of a two-meson DA cannot be inferred from sum-rule results for an intermediate resonance, and their global determination is essential.

We have examined two scenarios for the determination of the KπK\pi DAs in order to check the convergence of the Gegenbauer expansion, and the sensitivity of the fitted observables to our setup. It was found that the Gegenbauer expansion is improved by increasing the number of Gegenbauer moments at the cost of large uncertainties for fit outcomes, and that the branching ratios of BsB_{s} meson decays and direct CPCP asymmetries in some modes are more sensitive to the chosen scenarios. Hence, more accurate KπK\pi DAs are necessary for predicting these quantities unambiguously. We state that our fits have not been able to discriminate the two scenarios effectively. We have also explored the potential to fix the dependence of the Gegenbauer moments on the meson-pair invariant mass, and confirmed that at least the parameter for the twist-3 DA ϕππs\phi_{\pi\pi}^{s} can be constrained to some extent by the current data. Therefore, the determination of the dependence on the meson-pair invariant mass is promising, when data become more precise.

We mention that the three-body charmless hadronic BB meson decays included in this work have been studied in Refs. epjc80394 ; epjc80517 ; epjc7937 ; prd95056008 in a scattered manner. The improvements compared to the earlier studies contain (1) the partonic kinematic variables have been refined to take into account finite masses of final-state mesons, such that the SU(3)SU(3) symmetry breaking effects in the decays can be evaluated more precisely; and (2) the Gegenbauer moments in the two-meson DAs have been determined in a global analysis for the first time, which are valuable for future applications of the PQCD framework to multi-body BB meson decays; (3) the dependence of the Gegenbauer moments on the meson-pair invariant mass has been probed for the first time. Because of (1), the numerous hard kernels involved in the various modes need to be modified, which have been presented, together with the factorization formulas for the decay amplitudes, in the Appendix. The refined partonic kinematics is general enough for its extension to multi-body BB meson decays into arbitrary massive final states. For (2), we remind that different Gegenbauer moments for the KπK\pi DAs were taken in the previous scattered studies, such as Refs. epjc80517 and epjc7937 , so our work facilitates a consistent understanding of multi-body BB meson decays. We have shown that the preferred central value of, for instance, the Gegenbauer moment a1K0a_{1K^{*}}^{0} is 0.31, instead of 0.2 in epjc80517 or 0.05 in epjc7937 (but note the large theoretical uncertainties).

It has been demonstrated that most of the data considered in the fit are well reproduced, namely, the fit quality is satisfactory. It implies that the two-meson DAs presented in this paper are ready for applications to other multi-body hadronic BB meson decays involving the same meson pairs. With the obtained Gegenbauer moments, we have made predictions for those observables, whose data were excluded in the fit because of their substantial experimental errors or significant subleading contributions to the corresponding factorization formulas. Except the Bs0π+(K)KπB_{s}^{0}\to\pi^{+}(K^{*-}\to)K\pi branching ratio, our predictions agree with the data within uncertainties in the former case. Since our results were still derived in the LO PQCD approach, the data in the latter case remain unexplained, and deserve more through investigations. As pointed out before, the precision of the extracted two-meson DAs can be improved systematically, when higher-order and/or higher-power corrections to three-body hadronic BB meson decays are taken into account in our formalism. At the same time, more precise measurements are urged, especially those of CPCP asymmetries. These efforts will strengthen the constraint on the Gegenbauer moments and sharpen the confrontation between theoretical predictions and experimental data.

Acknowledgements.
We thank W.F. Wang for helpful discussions. This work is supported in part by “Fundamental Research Funds for Central Universities” under Grant No. KJQN202144 and the National Natural Science Foundation of China under Grant Nos. 12005103, 12075086, 11947013, 11947215 and U2032102, and by MOST of R.O.C. under Grant No. MOST-107-2119-M-001-035-MY3. YL is also supported by the Natural Science Foundation of Jiangsu Province under Grant No. BK20190508 and the Research Start-up Funds of Nanjing Agricultural University. DCY is supported by the Natural Science Foundation of Jiangsu Province under Grant No. BK20200980. ZR is supported in part by the Natural Science Foundation of Hebei Province under Grant Nos. A2019209449 and A2021209002.

Appendix A Decay amplitudes

In this Appendix we present the PQCD factorization formulas for the amplitudes of the considered three-body charmless hadronic BB meson decays. We first decompose various decay amplitudes 𝒜\cal A in terms of the factorizable emission (annihilation) contributions Fe(a)VF_{e(a)V} and the nonfactorizable emission (annihilation) contributions Me(a)VM_{e(a)V} for the intermediate vector mesons V=ρ,K,ϕV=\rho,K^{*},\phi from Fig. 1, and the similar ones Fe(a)PF_{e(a)P} and Me(a)PM_{e(a)P} for the bachelor mesons P=π,KP=\pi,K from Fig. 2. These contributions are further labelled by the superscripts LLLL, LRLR and SPSP corresponding to the (VA)(VA)(V-A)(V-A), (VA)(V+A)(V-A)(V+A) and (SP)(S+P)(S-P)(S+P) operators, respectively:

  1. \bullet

    B(s)K(ρ)ππB_{(s)}\to K(\rho\to)\pi\pi

    𝒜(B+K+(ρ0)ππ)\displaystyle{\cal A}(B^{+}\to K^{+}(\rho^{0}\to)\pi\pi) =\displaystyle= GF2{VubVus[(C13+C2)(FeρLL+FaρLL)+(C1+C23)FeKLL+C2MeKLL\displaystyle\frac{G_{F}}{2}\big{\{}V_{ub}^{*}V_{us}[(\frac{C_{1}}{3}+C_{2})(F^{LL}_{e\rho}+F^{LL}_{a\rho})+(C_{1}+\frac{C_{2}}{3})F^{LL}_{eK}+C_{2}M^{LL}_{eK} (36)
    +\displaystyle+ C1(MeρLL+MaρLL)]VtbVts[(C33+C4+C93+C10)(FeρLL+FaρLL)\displaystyle C_{1}(M^{LL}_{e\rho}+M^{LL}_{a\rho})]-V_{tb}^{*}V_{ts}[(\frac{C_{3}}{3}+C_{4}+\frac{C_{9}}{3}+C_{10})(F^{LL}_{e\rho}+F^{LL}_{a\rho})
    +\displaystyle+ (C53+C6+C73+C8)(FeρSP+FaρSP)+(C3+C9)(MeρLL+MaρLL)\displaystyle(\frac{C_{5}}{3}+C_{6}+\frac{C_{7}}{3}+C_{8})(F^{SP}_{e\rho}+F^{SP}_{a\rho})+(C_{3}+C_{9})(M^{LL}_{e\rho}+M^{LL}_{a\rho})
    +\displaystyle+ (C5+C7)(MeρLR+MaρLR)+3C82MeKSP+3C102MeKLL\displaystyle(C_{5}+C_{7})(M^{LR}_{e\rho}+M^{LR}_{a\rho})+\frac{3C_{8}}{2}M^{SP}_{eK}+\frac{3C_{10}}{2}M^{LL}_{eK}
    +\displaystyle+ 32(C7+C83+C9+C103)FeKLL]},\displaystyle\frac{3}{2}(C_{7}+\frac{C_{8}}{3}+C_{9}+\frac{C_{10}}{3})F^{LL}_{eK}]\big{\}},
    𝒜(B0K+(ρ)ππ)\displaystyle{\cal A}(B^{0}\to K^{+}(\rho^{-}\to)\pi\pi) =\displaystyle= GF2{VubVus[(C13+C2)FeρLL+C1MeρLL]VtbVts[(C3\displaystyle\frac{G_{F}}{\sqrt{2}}\big{\{}V_{ub}^{*}V_{us}[(\frac{C_{1}}{3}+C_{2})F^{LL}_{e\rho}+C_{1}M^{LL}_{e\rho}]-V_{tb}^{*}V_{ts}[(C_{3} (37)
    +\displaystyle+ C9)MLLeρ+(C33+C4+C93+C10)FLLeρ+(C53+C6+C73\displaystyle C_{9})M^{LL}_{e\rho}+(\frac{C_{3}}{3}+C_{4}+\frac{C_{9}}{3}+C_{10})F^{LL}_{e\rho}+(\frac{C_{5}}{3}+C_{6}+\frac{C_{7}}{3}
    +\displaystyle+ C8)FSPeρ+(C5+C7)MLReρ+(C33+C412(C93+C10))FLLaρ\displaystyle C_{8})F^{SP}_{e\rho}+(C_{5}+C_{7})M^{LR}_{e\rho}+(\frac{C_{3}}{3}+C_{4}-\frac{1}{2}(\frac{C_{9}}{3}+C_{10}))F^{LL}_{a\rho}
    +\displaystyle+ (C3C92)MaρLL+(C53+C612(C73+C8))FaρSP+(C5\displaystyle(C_{3}-\frac{C_{9}}{2})M^{LL}_{a\rho}+(\frac{C_{5}}{3}+C_{6}-\frac{1}{2}(\frac{C_{7}}{3}+C_{8}))F^{SP}_{a\rho}+(C_{5}
    \displaystyle- C72)MaρLR]},\displaystyle\frac{C_{7}}{2})M^{LR}_{a\rho}]\big{\}},
    𝒜(Bs0K(ρ+)ππ)\displaystyle{\cal A}(B_{s}^{0}\to K^{-}(\rho^{+}\to)\pi\pi) =\displaystyle= GF2{VubVud[(C13+C2)FeKLL+C1MeKLL]VtbVtd[(C3+C9)MeKLL\displaystyle\frac{G_{F}}{\sqrt{2}}\big{\{}V_{ub}^{*}V_{ud}[(\frac{C_{1}}{3}+C_{2})F^{LL}_{eK}+C_{1}M^{LL}_{eK}]-V_{tb}^{*}V_{td}[(C_{3}+C_{9})M^{LL}_{eK} (38)
    +\displaystyle+ (C33+C4+C93+C10)FeKLL+(C5+C7)MeKLR+(C33+C4\displaystyle(\frac{C_{3}}{3}+C_{4}+\frac{C_{9}}{3}+C_{10})F^{LL}_{eK}+(C_{5}+C_{7})M^{LR}_{eK}+(\frac{C_{3}}{3}+C_{4}
    \displaystyle- 12(C93+C10))FLLaK+(C53+C612(C73+C8))FSPaK\displaystyle\frac{1}{2}(\frac{C_{9}}{3}+C_{10}))F^{LL}_{aK}+(\frac{C_{5}}{3}+C_{6}-\frac{1}{2}(\frac{C_{7}}{3}+C_{8}))F^{SP}_{aK}
    +\displaystyle+ (C3C92)MaKLL+(C5C72)MaKLR]},\displaystyle(C_{3}-\frac{C_{9}}{2})M^{LL}_{aK}+(C_{5}-\frac{C_{7}}{2})M^{LR}_{aK}]\big{\}},
    𝒜(B+K0(ρ+)ππ)\displaystyle{\cal A}(B^{+}\to K^{0}(\rho^{+}\to)\pi\pi) =\displaystyle= GF2{VubVus[(C13+C2)FaρLL+C1MaρLL]VtbVts[(C3C92)MeρLL\displaystyle\frac{G_{F}}{\sqrt{2}}\big{\{}V_{ub}^{*}V_{us}[(\frac{C_{1}}{3}+C_{2})F^{LL}_{a\rho}+C_{1}M^{LL}_{a\rho}]-V_{tb}^{*}V_{ts}[(C_{3}-\frac{C_{9}}{2})M^{LL}_{e\rho} (39)
    +\displaystyle+ (C33+C412(C93+C10))FeρLL+(C53+C612(C73+C8))FeρSP\displaystyle(\frac{C_{3}}{3}+C_{4}-\frac{1}{2}(\frac{C_{9}}{3}+C_{10}))F^{LL}_{e\rho}+(\frac{C_{5}}{3}+C_{6}-\frac{1}{2}(\frac{C_{7}}{3}+C_{8}))F^{SP}_{e\rho}
    +\displaystyle+ (C5C72)MeρLR+(C33+C4+C93+C10)FaρLL+(C3+C9)MaρLL\displaystyle(C_{5}-\frac{C_{7}}{2})M^{LR}_{e\rho}+(\frac{C_{3}}{3}+C_{4}+\frac{C_{9}}{3}+C_{10})F^{LL}_{a\rho}+(C_{3}+C_{9})M^{LL}_{a\rho}
    +\displaystyle+ (C53+C6+C73+C8)FaρSP+(C5+C7)MaρLR]},\displaystyle(\frac{C_{5}}{3}+C_{6}+\frac{C_{7}}{3}+C_{8})F^{SP}_{a\rho}+(C_{5}+C_{7})M^{LR}_{a\rho}]\big{\}},
    𝒜(B0K0(ρ0)ππ)\displaystyle{\cal A}(B^{0}\to K^{0}(\rho^{0}\to)\pi\pi) =\displaystyle= GF2{VubVus[(C1+C23)FeKLL+C2MeKLL]VtbVts[3C82MeKSP(C33\displaystyle\frac{G_{F}}{2}\big{\{}V_{ub}^{*}V_{us}[(C_{1}+\frac{C_{2}}{3})F^{LL}_{eK}+C_{2}M^{LL}_{eK}]-V_{tb}^{*}V_{ts}[\frac{3C_{8}}{2}M^{SP}_{eK}-(\frac{C_{3}}{3} (40)
    +\displaystyle+ C412(C93+C10))(FeρLL+FaρLL)(C3C92)(MeρLL+MaρLL)\displaystyle C_{4}-\frac{1}{2}(\frac{C_{9}}{3}+C_{10}))(F^{LL}_{e\rho}+F^{LL}_{a\rho})-(C_{3}-\frac{C_{9}}{2})(M^{LL}_{e\rho}+M^{LL}_{a\rho})
    \displaystyle- (C53+C612(C73+C8))(FeρSP+FaρSP)(C5C72)(MeρLR\displaystyle(\frac{C_{5}}{3}+C_{6}-\frac{1}{2}(\frac{C_{7}}{3}+C_{8}))(F^{SP}_{e\rho}+F^{SP}_{a\rho})-(C_{5}-\frac{C_{7}}{2})(M^{LR}_{e\rho}
    +\displaystyle+ MaρLR)+32(C7+C83+C9+C103)FeKLL+3C102MeKLL]},\displaystyle M^{LR}_{a\rho})+\frac{3}{2}(C_{7}+\frac{C_{8}}{3}+C_{9}+\frac{C_{10}}{3})F^{LL}_{eK}+\frac{3C_{10}}{2}M^{LL}_{eK}]\big{\}},
    𝒜(Bs0K0(ρ0)ππ)\displaystyle{\cal A}(B_{s}^{0}\to K^{0}(\rho^{0}\to)\pi\pi) =\displaystyle= GF2{VubVud[(C1+C23)FeKLL+C2MeKLL]VtbVtd[3C82MeKSP\displaystyle\frac{G_{F}}{2}\big{\{}V_{ub}^{*}V_{ud}[(C_{1}+\frac{C_{2}}{3})F^{LL}_{eK}+C_{2}M^{LL}_{eK}]-V_{tb}^{*}V_{td}[\frac{3C_{8}}{2}M^{SP}_{eK} (41)
    +\displaystyle+ (C33C4+5C93+C10+32(C7+C83))FeKLL\displaystyle(-\frac{C_{3}}{3}-C_{4}+\frac{5C_{9}}{3}+C_{10}+\frac{3}{2}(C_{7}+\frac{C_{8}}{3}))F^{LL}_{eK}
    +\displaystyle+ (C3+C92+3C102)MeKLL(C5C72)(MeKLR+MaKLR)\displaystyle(-C_{3}+\frac{C_{9}}{2}+\frac{3C_{10}}{2})M^{LL}_{eK}-(C_{5}-\frac{C_{7}}{2})(M^{LR}_{eK}+M^{LR}_{aK})
    \displaystyle- (C33+C412(C93+C10))FaKLL)(C3C92)MLLaK\displaystyle(\frac{C_{3}}{3}+C_{4}-\frac{1}{2}(\frac{C_{9}}{3}+C_{10}))F^{LL}_{aK})-(C_{3}-\frac{C_{9}}{2})M^{LL}_{aK}
    \displaystyle- (C53+C612(C73+C8))FaKSP]},\displaystyle(\frac{C_{5}}{3}+C_{6}-\frac{1}{2}(\frac{C_{7}}{3}+C_{8}))F^{SP}_{aK}]\big{\}},
  2. \bullet

    B(s)π(ρ)ππB_{(s)}\to\pi(\rho\to)\pi\pi

    𝒜(B+π+(ρ0)ππ)\displaystyle{\cal A}(B^{+}\to\pi^{+}(\rho^{0}\to)\pi\pi) =\displaystyle= GF2{VubVud[(C13+C2)(FeρLL+FaρLLFaπLL)+(C1+C23)FeπLL\displaystyle\frac{G_{F}}{2}\big{\{}V_{ub}^{*}V_{ud}[(\frac{C_{1}}{3}+C_{2})(F^{LL}_{e\rho}+F^{LL}_{a\rho}-F^{LL}_{a\pi})+(C_{1}+\frac{C_{2}}{3})F^{LL}_{e\pi} (42)
    +\displaystyle+ C1(MeρLL+MaρLLMaπLL)+C2MeπLL]VtbVtd[3C82MeπSP\displaystyle C_{1}(M^{LL}_{e\rho}+M^{LL}_{a\rho}-M^{LL}_{a\pi})+C_{2}M^{LL}_{e\pi}]-V_{tb}^{*}V_{td}[\frac{3C_{8}}{2}M^{SP}_{e\pi}
    +\displaystyle+ (C33+C4+C93+C10)(FeρLL+FaρLLFaπLL)\displaystyle(\frac{C_{3}}{3}+C_{4}+\frac{C_{9}}{3}+C_{10})(F^{LL}_{e\rho}+F^{LL}_{a\rho}-F^{LL}_{a\pi})
    +\displaystyle+ (C3+C9)(MeρLL+MaρLLMaπLL)+(C5+C72)MeπLR\displaystyle(C_{3}+C_{9})(M^{LL}_{e\rho}+M^{LL}_{a\rho}-M^{LL}_{a\pi})+(-C_{5}+\frac{C_{7}}{2})M^{LR}_{e\pi}
    +\displaystyle+ (C53+C6+C73+C8)(FeρSP+FaρSPFaπSP)\displaystyle(\frac{C_{5}}{3}+C_{6}+\frac{C_{7}}{3}+C_{8})(F^{SP}_{e\rho}+F^{SP}_{a\rho}-F^{SP}_{a\pi})
    +\displaystyle+ (C5+C7)(MeρLR+MaρLRMaπLR)+(C33C4+53C9\displaystyle(C_{5}+C_{7})(M^{LR}_{e\rho}+M^{LR}_{a\rho}-M^{LR}_{a\pi})+(-\frac{C_{3}}{3}-C_{4}+\frac{5}{3}C_{9}
    +\displaystyle+ C10+32(C7+C83))FeπLL+(C3+C92+3C102)MeπLL]},\displaystyle C_{10}+\frac{3}{2}(C_{7}+\frac{C_{8}}{3}))F^{LL}_{e\pi}+(-C_{3}+\frac{C_{9}}{2}+\frac{3C_{10}}{2})M^{LL}_{e\pi}]\big{\}},
    𝒜(B0π(ρ+)ππ)\displaystyle{\cal A}(B^{0}\to\pi^{-}(\rho^{+}\to)\pi\pi) =\displaystyle= GF2{VubVud[(C1+C23)FaρLL+(C13+C2)FeπLL+C2MaρLL\displaystyle\frac{G_{F}}{\sqrt{2}}\big{\{}V_{ub}^{*}V_{ud}[(C_{1}+\frac{C_{2}}{3})F^{LL}_{a\rho}+(\frac{C_{1}}{3}+C_{2})F^{LL}_{e\pi}+C_{2}M^{LL}_{a\rho} (43)
    +\displaystyle+ C1MeπLL]VtbVtd[(C33+C4+C93+C10)FeπLL+(C4\displaystyle C_{1}M^{LL}_{e\pi}]-V_{tb}^{*}V_{td}[(\frac{C_{3}}{3}+C_{4}+\frac{C_{9}}{3}+C_{10})F^{LL}_{e\pi}+(C_{4}
    +\displaystyle+ C10)MLLaρ+(C3+C43C5C63C7C83+C9+C103)FLLaρ\displaystyle C_{10})M^{LL}_{a\rho}+(C_{3}+\frac{C_{4}}{3}-C_{5}-\frac{C_{6}}{3}-C_{7}-\frac{C_{8}}{3}+C_{9}+\frac{C_{10}}{3})F^{LL}_{a\rho}
    +\displaystyle+ (C3+C9)MeπLL+(C5+C7)MeπLR+(C5C72)MaπLR\displaystyle(C_{3}+C_{9})M^{LL}_{e\pi}+(C_{5}+C_{7})M^{LR}_{e\pi}+(C_{5}-\frac{C_{7}}{2})M^{LR}_{a\pi}
    +\displaystyle+ (43(C3+C4C92C102)C5C63+12(C7+C83))FaπLL\displaystyle(\frac{4}{3}(C_{3}+C_{4}-\frac{C_{9}}{2}-\frac{C_{10}}{2})-C_{5}-\frac{C_{6}}{3}+\frac{1}{2}(C_{7}+\frac{C_{8}}{3}))F^{LL}_{a\pi}
    +\displaystyle+ (C53+C612(C73+C8))FaπSP+(C6C82)MaπSP\displaystyle(\frac{C_{5}}{3}+C_{6}-\frac{1}{2}(\frac{C_{7}}{3}+C_{8}))F^{SP}_{a\pi}+(C_{6}-\frac{C_{8}}{2})M^{SP}_{a\pi}
    +\displaystyle+ (C3+C4C92C102)MaπLL+(C6+C8)MaρSP]},\displaystyle(C_{3}+C_{4}-\frac{C_{9}}{2}-\frac{C_{10}}{2})M^{LL}_{a\pi}+(C_{6}+C_{8})M^{SP}_{a\rho}]\big{\}},
    𝒜(B0π+(ρ)ππ)\displaystyle{\cal A}(B^{0}\to\pi^{+}(\rho^{-}\to)\pi\pi) =\displaystyle= GF2{VubVud[(C13+C2)FeρLL+(C1+C23)FaπLL+C1MeρLL\displaystyle\frac{G_{F}}{\sqrt{2}}\big{\{}V_{ub}^{*}V_{ud}[(\frac{C_{1}}{3}+C_{2})F^{LL}_{e\rho}+(C_{1}+\frac{C_{2}}{3})F^{LL}_{a\pi}+C_{1}M^{LL}_{e\rho} (44)
    +\displaystyle+ C2MaπLL]VtbVtd[(C33+C4+C93+C10)FeρLL+(C3\displaystyle C_{2}M^{LL}_{a\pi}]-V_{tb}^{*}V_{td}[(\frac{C_{3}}{3}+C_{4}+\frac{C_{9}}{3}+C_{10})F^{LL}_{e\rho}+(C_{3}
    +\displaystyle+ C9)MLLeρ+(C53+C6+C73+C8)FSPeρ+(C5+C7)MLReρ\displaystyle C_{9})M^{LL}_{e\rho}+(\frac{C_{5}}{3}+C_{6}+\frac{C_{7}}{3}+C_{8})F^{SP}_{e\rho}+(C_{5}+C_{7})M^{LR}_{e\rho}
    +\displaystyle+ (C6+C8)MaπSP+(43(C3+C4C92C102)C5C63\displaystyle(C_{6}+C_{8})M^{SP}_{a\pi}+(\frac{4}{3}(C_{3}+C_{4}-\frac{C_{9}}{2}-\frac{C_{10}}{2})-C_{5}-\frac{C_{6}}{3}
    +\displaystyle+ 12(C7+C83))FLLaρ+(C53+C612(C73+C8))FSPaρ\displaystyle\frac{1}{2}(C_{7}+\frac{C_{8}}{3}))F^{LL}_{a\rho}+(\frac{C_{5}}{3}+C_{6}-\frac{1}{2}(\frac{C_{7}}{3}+C_{8}))F^{SP}_{a\rho}
    +\displaystyle+ (C3+C4C92C102)MaρLL+(C5C72)MaρLR+(C6\displaystyle(C_{3}+C_{4}-\frac{C_{9}}{2}-\frac{C_{10}}{2})M^{LL}_{a\rho}+(C_{5}-\frac{C_{7}}{2})M^{LR}_{a\rho}+(C_{6}
    \displaystyle- C82)MSPaρ+(C4+C10)MLLaπ+(C3+C43C5C63C7\displaystyle\frac{C_{8}}{2})M^{SP}_{a\rho}+(C_{4}+C_{10})M^{LL}_{a\pi}+(C_{3}+\frac{C_{4}}{3}-C_{5}-\frac{C_{6}}{3}-C_{7}
    \displaystyle- C83+C9+C103)FaπLL]},\displaystyle\frac{C_{8}}{3}+C_{9}+\frac{C_{10}}{3})F^{LL}_{a\pi}]\big{\}},
    𝒜(Bs0π(ρ+)ππ)\displaystyle{\cal A}(B_{s}^{0}\to\pi^{-}(\rho^{+}\to)\pi\pi) =\displaystyle= GF2{VubVus[(C1+C23)FaρLL+C2MaρLL]VtbVts[(C6\displaystyle\frac{G_{F}}{\sqrt{2}}\big{\{}V_{ub}^{*}V_{us}[(C_{1}+\frac{C_{2}}{3})F^{LL}_{a\rho}+C_{2}M^{LL}_{a\rho}]-V_{tb}^{*}V_{ts}[(C_{6} (45)
    +\displaystyle+ C8)MSPaρ+(C3+C43C5C63C7C83+C9+C103)FLLaρ\displaystyle C_{8})M^{SP}_{a\rho}+(C_{3}+\frac{C_{4}}{3}-C_{5}-\frac{C_{6}}{3}-C_{7}-\frac{C_{8}}{3}+C_{9}+\frac{C_{10}}{3})F^{LL}_{a\rho}
    +\displaystyle+ (C3+C4312(C9+C103)C5C63+12(C7+C83))FaπLL\displaystyle(C_{3}+\frac{C_{4}}{3}-\frac{1}{2}(C_{9}+\frac{C_{10}}{3})-C_{5}-\frac{C_{6}}{3}+\frac{1}{2}(C_{7}+\frac{C_{8}}{3}))F^{LL}_{a\pi}
    +\displaystyle+ (C4C102)MaπLL+(C6C82)MaπSP+(C4+C10)MaρLL]},\displaystyle(C_{4}-\frac{C_{10}}{2})M^{LL}_{a\pi}+(C_{6}-\frac{C_{8}}{2})M^{SP}_{a\pi}+(C_{4}+C_{10})M^{LL}_{a\rho}]\big{\}},
    𝒜(Bs0π+(ρ)ππ)\displaystyle{\cal A}(B_{s}^{0}\to\pi^{+}(\rho^{-}\to)\pi\pi) =\displaystyle= GF2{VubVus[(C1+C23)FaπLL+C2MaπLL]VtbVts[(C4\displaystyle\frac{G_{F}}{\sqrt{2}}\big{\{}V_{ub}^{*}V_{us}[(C_{1}+\frac{C_{2}}{3})F^{LL}_{a\pi}+C_{2}M^{LL}_{a\pi}]-V_{tb}^{*}V_{ts}[(C_{4} (46)
    \displaystyle- C102)MLLaρ+(C3+C4312(C9+C103)C5C63\displaystyle\frac{C_{10}}{2})M^{LL}_{a\rho}+(C_{3}+\frac{C_{4}}{3}-\frac{1}{2}(C_{9}+\frac{C_{10}}{3})-C_{5}-\frac{C_{6}}{3}
    +\displaystyle+ 12(C7+C83))FLLaρ+(C6C82)MSPaρ+(C4+C10)MLLaπ\displaystyle\frac{1}{2}(C_{7}+\frac{C_{8}}{3}))F^{LL}_{a\rho}+(C_{6}-\frac{C_{8}}{2})M^{SP}_{a\rho}+(C_{4}+C_{10})M^{LL}_{a\pi}
    +\displaystyle+ (C6+C8)MaπSP+(C3+C43C5C63C7C83+C9\displaystyle(C_{6}+C_{8})M^{SP}_{a\pi}+(C_{3}+\frac{C_{4}}{3}-C_{5}-\frac{C_{6}}{3}-C_{7}-\frac{C_{8}}{3}+C_{9}
    +\displaystyle+ C103)FaπLL]},\displaystyle\frac{C_{10}}{3})F^{LL}_{a\pi}]\big{\}},
    𝒜(B+π0(ρ+)ππ)\displaystyle{\cal A}(B^{+}\to\pi^{0}(\rho^{+}\to)\pi\pi) =\displaystyle= GF2{VubVud[(C1+C23)FeρLL+(C13+C2)(FaρLL+FeπLL+FaπLL)\displaystyle\frac{G_{F}}{2}\big{\{}V_{ub}^{*}V_{ud}[(C_{1}+\frac{C_{2}}{3})F^{LL}_{e\rho}+(\frac{C_{1}}{3}+C_{2})(-F^{LL}_{a\rho}+F^{LL}_{e\pi}+F^{LL}_{a\pi}) (47)
    +\displaystyle+ C2MeρLL+C1(MaρLL+MeπLL+MaπLL)]VtbVtd[3C82MeρSP\displaystyle C_{2}M^{LL}_{e\rho}+C_{1}(-M^{LL}_{a\rho}+M^{LL}_{e\pi}+M^{LL}_{a\pi})]-V_{tb}^{*}V_{td}[\frac{3C_{8}}{2}M^{SP}_{e\rho}
    +\displaystyle+ (C33C432(C7+C83)+5C93+C10)FeρLL\displaystyle(-\frac{C_{3}}{3}-C_{4}-\frac{3}{2}(C_{7}+\frac{C_{8}}{3})+\frac{5C_{9}}{3}+C_{10})F^{LL}_{e\rho}
    +\displaystyle+ (C53C6+12(C73+C8))FeρSP+(C3+C92+3C102)MeρLL\displaystyle(-\frac{C_{5}}{3}-C_{6}+\frac{1}{2}(\frac{C_{7}}{3}+C_{8}))F^{SP}_{e\rho}+(-C_{3}+\frac{C_{9}}{2}+\frac{3C_{10}}{2})M^{LL}_{e\rho}
    +\displaystyle+ (C33+C4+C93+C10)(FaρLL+FeπLL+FaπLL)\displaystyle(\frac{C_{3}}{3}+C_{4}+\frac{C_{9}}{3}+C_{10})(-F^{LL}_{a\rho}+F^{LL}_{e\pi}+F^{LL}_{a\pi})
    +\displaystyle+ (C53+C6+C73+C8)(FaρSP+FaπSP)+(C5+C72)MeρLR\displaystyle(\frac{C_{5}}{3}+C_{6}+\frac{C_{7}}{3}+C_{8})(-F^{SP}_{a\rho}+F^{SP}_{a\pi})+(-C_{5}+\frac{C_{7}}{2})M^{LR}_{e\rho}
    +\displaystyle+ (C3+C9)(MaρLL+MeπLL+MaπLL)\displaystyle(C_{3}+C_{9})(-M^{LL}_{a\rho}+M^{LL}_{e\pi}+M^{LL}_{a\pi})
    +\displaystyle+ (C5+C7)(MaρLR+MeπLR+MaπLR)]},\displaystyle(C_{5}+C_{7})(-M^{LR}_{a\rho}+M^{LR}_{e\pi}+M^{LR}_{a\pi})]\big{\}},
    𝒜(B0π0(ρ0)ππ)\displaystyle{\cal A}(B^{0}\to\pi^{0}(\rho^{0}\to)\pi\pi) =\displaystyle= GF22{VubVud[(C1+C23)(FeρLLFaρLL+FeπLLFaπLL)\displaystyle-\frac{G_{F}}{2\sqrt{2}}\big{\{}V_{ub}^{*}V_{ud}[(C_{1}+\frac{C_{2}}{3})(F^{LL}_{e\rho}-F^{LL}_{a\rho}+F^{LL}_{e\pi}-F^{LL}_{a\pi}) (48)
    +\displaystyle+ C2(MeρLLMaρLL+MeπLLMaπLL)]VtbVtd[3C82(MeρSP\displaystyle C_{2}(M^{LL}_{e\rho}-M^{LL}_{a\rho}+M^{LL}_{e\pi}-M^{LL}_{a\pi})]-V_{tb}^{*}V_{td}[\frac{3C_{8}}{2}(M^{SP}_{e\rho}
    +\displaystyle+ MeπSP)+(C33C432(C7+C83)+5C93+C10)(FeρLL\displaystyle M^{SP}_{e\pi})+(-\frac{C_{3}}{3}-C_{4}-\frac{3}{2}(C_{7}+\frac{C_{8}}{3})+\frac{5C_{9}}{3}+C_{10})(F^{LL}_{e\rho}
    +\displaystyle+ FeπLL)+(C53C6+12(C73+C8))FSPeρ+(C3+C92\displaystyle F^{LL}_{e\pi})+(-\frac{C_{5}}{3}-C_{6}+\frac{1}{2}(\frac{C_{7}}{3}+C_{8}))F^{SP}_{e\rho}+(-C_{3}+\frac{C_{9}}{2}
    +\displaystyle+ 3C102)(MeρLL+MeπLL)+(C5+C72)(MeρLR+MeπLL)\displaystyle\frac{3C_{10}}{2})(M^{LL}_{e\rho}+M^{LL}_{e\pi})+(-C_{5}+\frac{C_{7}}{2})(M^{LR}_{e\rho}+M^{LL}_{e\pi})
    \displaystyle- (2C6+C82)(MaρSP+MaπSP)(7C33+5C432(C5+C63)\displaystyle(2C_{6}+\frac{C_{8}}{2})(M^{SP}_{a\rho}+M^{SP}_{a\pi})-(\frac{7C_{3}}{3}+\frac{5C_{4}}{3}-2(C_{5}+\frac{C_{6}}{3})
    \displaystyle- 12(C7+C8323(C9C10)))(FaρLL+FaπLL)(C53+C6\displaystyle\frac{1}{2}(C_{7}+\frac{C_{8}}{3}-\frac{2}{3}(C_{9}-C_{10})))(F^{LL}_{a\rho}+F^{LL}_{a\pi})-(\frac{C_{5}}{3}+C_{6}
    \displaystyle- 12(C73+C8))(FaρSP+FaπSP)(C5C72)(MaρLR+MaπLR)\displaystyle\frac{1}{2}(\frac{C_{7}}{3}+C_{8}))(F^{SP}_{a\rho}+F^{SP}_{a\pi})-(C_{5}-\frac{C_{7}}{2})(M^{LR}_{a\rho}+M^{LR}_{a\pi})
    \displaystyle- (C3+2C4C92+C102)(MaρLL+MaπLL)]},\displaystyle(C_{3}+2C_{4}-\frac{C_{9}}{2}+\frac{C_{10}}{2})(M^{LL}_{a\rho}+M^{LL}_{a\pi})]\big{\}},
    𝒜(Bs0π0(ρ0)ππ)\displaystyle{\cal A}(B_{s}^{0}\to\pi^{0}(\rho^{0}\to)\pi\pi) =\displaystyle= GF22{VubVus[(C1+C23)(FaρLL+FaπLL)+C2(MaρLL+MaπLL)]\displaystyle\frac{G_{F}}{2\sqrt{2}}\big{\{}V_{ub}^{*}V_{us}[(C_{1}+\frac{C_{2}}{3})(F^{LL}_{a\rho}+F^{LL}_{a\pi})+C_{2}(M^{LL}_{a\rho}+M^{LL}_{a\pi})] (49)
    \displaystyle- VtbVts[(2(C3+C43C5C63)12(C7+C83C9\displaystyle V_{tb}^{*}V_{ts}[(2(C_{3}+\frac{C_{4}}{3}-C_{5}-\frac{C_{6}}{3})-\frac{1}{2}(C_{7}+\frac{C_{8}}{3}-C_{9}
    \displaystyle- C103))(FaρLL+FaπLL)+(2C4+C102)(MaρLL\displaystyle\frac{C_{10}}{3}))(F^{LL}_{a\rho}+F^{LL}_{a\pi})+(2C_{4}+\frac{C_{10}}{2})(M^{LL}_{a\rho}
    +\displaystyle+ MaπLL)+(2C6+C82)(MaρSP+MaπSP)]},\displaystyle M^{LL}_{a\pi})+(2C_{6}+\frac{C_{8}}{2})(M^{SP}_{a\rho}+M^{SP}_{a\pi})]\big{\}},
  3. \bullet

    B(s)K(K)KπB_{(s)}\to K(K^{*}\to)K\pi

    𝒜(B+K+(K¯0)Kπ)\displaystyle{\cal A}(B^{+}\to K^{+}(\bar{K}^{*0}\to)K\pi) =\displaystyle= GF2{VubVud[(C13+C2)FaKLL+C1MaKLL]VtbVtd[(C33\displaystyle\frac{G_{F}}{\sqrt{2}}\big{\{}V_{ub}^{*}V_{ud}[(\frac{C_{1}}{3}+C_{2})F^{LL}_{aK}+C_{1}M^{LL}_{aK}]-V_{tb}^{*}V_{td}[(\frac{C_{3}}{3} (50)
    +\displaystyle+ C4C96C102)FLLeK+(C3C92)MLLeK+(C5C72)MLReK\displaystyle C_{4}-\frac{C_{9}}{6}-\frac{C_{10}}{2})F^{LL}_{eK}+(C_{3}-\frac{C_{9}}{2})M^{LL}_{eK}+(C_{5}-\frac{C_{7}}{2})M^{LR}_{eK}
    +\displaystyle+ (C33+C4+C93+C10)FaKLL+(C53+C6+C73+C8)FaKSP\displaystyle(\frac{C_{3}}{3}+C_{4}+\frac{C_{9}}{3}+C_{10})F^{LL}_{aK}+(\frac{C_{5}}{3}+C_{6}+\frac{C_{7}}{3}+C_{8})F^{SP}_{aK}
    +\displaystyle+ (C3+C9)MaKLL+(C5+C7)MaKLR]},\displaystyle(C_{3}+C_{9})M^{LL}_{aK}+(C_{5}+C_{7})M^{LR}_{aK}]\big{\}}\;,
    𝒜(B0K+(K)Kπ)\displaystyle{\cal A}(B^{0}\to K^{+}(K^{*-}\to)K\pi) =\displaystyle= GF2{VubVud[(C1+C23)FaKLL+C2MaKLL]VtbVtd[(C3\displaystyle\frac{G_{F}}{\sqrt{2}}\big{\{}V_{ub}^{*}V_{ud}[(C_{1}+\frac{C_{2}}{3})F^{LL}_{aK}+C_{2}M^{LL}_{aK}]-V_{tb}^{*}V_{td}[(C_{3} (51)
    +\displaystyle+ C43C92C106C5C63+C72+C86)FLLaK\displaystyle\frac{C_{4}}{3}-\frac{C_{9}}{2}-\frac{C_{10}}{6}-C_{5}-\frac{C_{6}}{3}+\frac{C_{7}}{2}+\frac{C_{8}}{6})F^{LL}_{aK^{*}}
    +\displaystyle+ (C4C102)MaKLL+(C6C82)MaKSP+(C3+C43\displaystyle(C_{4}-\frac{C_{10}}{2})M^{LL}_{aK^{*}}+(C_{6}-\frac{C_{8}}{2})M^{SP}_{aK^{*}}+(C_{3}+\frac{C_{4}}{3}
    +\displaystyle+ C9+C103C5C63C7C83)FLLaK\displaystyle C_{9}+\frac{C_{10}}{3}-C_{5}-\frac{C_{6}}{3}-C_{7}-\frac{C_{8}}{3})F^{LL}_{aK}
    +\displaystyle+ (C4+C10)MaKLL+(C6+C8)MaKSP]},\displaystyle(C_{4}+C_{10})M^{LL}_{aK}+(C_{6}+C_{8})M^{SP}_{aK}]\big{\}}\;,
    𝒜(B0K(K+)Kπ)\displaystyle{\cal A}(B^{0}\to K^{-}(K^{*+}\to)K\pi) =\displaystyle= GF2{VubVud[(C1+C23)FaKLL+C2MaKLL]VtbVtd[(C3+C43\displaystyle\frac{G_{F}}{\sqrt{2}}\big{\{}V_{ub}^{*}V_{ud}[(C_{1}+\frac{C_{2}}{3})F^{LL}_{aK^{*}}+C_{2}M^{LL}_{aK^{*}}]-V_{tb}^{*}V_{td}[(C_{3}+\frac{C_{4}}{3}
    +\displaystyle+ C9+C103C5C63C7C83)FLLaK+(C4+C10)MLLaK\displaystyle C_{9}+\frac{C_{10}}{3}-C_{5}-\frac{C_{6}}{3}-C_{7}-\frac{C_{8}}{3})F^{LL}_{aK^{*}}+(C_{4}+C_{10})M^{LL}_{aK^{*}}
    +\displaystyle+ (C6+C8)MaKSP+(C3+C43C92C106C5C63+C72\displaystyle(C_{6}+C_{8})M^{SP}_{aK^{*}}+(C_{3}+\frac{C_{4}}{3}-\frac{C_{9}}{2}-\frac{C_{10}}{6}-C_{5}-\frac{C_{6}}{3}+\frac{C_{7}}{2}
    +\displaystyle+ C86)FaKLL+(C4C102)MaKLL+(C6C82)MaKSP]},\displaystyle\frac{C_{8}}{6})F^{LL}_{aK}+(C_{4}-\frac{C_{10}}{2})M^{LL}_{aK}+(C_{6}-\frac{C_{8}}{2})M^{SP}_{aK}]\big{\}}\;,
    𝒜(Bs0K+(K)Kπ)\displaystyle{\cal A}(B_{s}^{0}\to K^{+}(K^{*-}\to)K\pi) =\displaystyle= GF2{VubVus[(C13+C2)FeKLL+C1MeKLL+(C1+C23)FaKLL\displaystyle\frac{G_{F}}{\sqrt{2}}\big{\{}V_{ub}^{*}V_{us}[(\frac{C_{1}}{3}+C_{2})F^{LL}_{eK^{*}}+C_{1}M^{LL}_{eK^{*}}+(C_{1}+\frac{C_{2}}{3})F^{LL}_{aK} (53)
    +\displaystyle+ C2MaKLL]VtbVts[(C33+C4+C93+C10)FeKLL+(C53\displaystyle C_{2}M^{LL}_{aK}]-V_{tb}^{*}V_{ts}[(\frac{C_{3}}{3}+C_{4}+\frac{C_{9}}{3}+C_{10})F^{LL}_{eK^{*}}+(\frac{C_{5}}{3}
    +\displaystyle+ C6+C73+C8)FSPeK+(C3+C9)MLLeK+(C5+C7)MLReK\displaystyle C_{6}+\frac{C_{7}}{3}+C_{8})F^{SP}_{eK^{*}}+(C_{3}+C_{9})M^{LL}_{eK^{*}}+(C_{5}+C_{7})M^{LR}_{eK^{*}}
    +\displaystyle+ (43(C3+C4C92C102)C5C63+C72\displaystyle(\frac{4}{3}(C_{3}+C_{4}-\frac{C_{9}}{2}-\frac{C_{10}}{2})-C_{5}-\frac{C_{6}}{3}+\frac{C_{7}}{2}
    +\displaystyle+ C86)FLLaK+(C53+C6C76C82)FSPaK+(C3+C4\displaystyle\frac{C_{8}}{6})F^{LL}_{aK^{*}}+(\frac{C_{5}}{3}+C_{6}-\frac{C_{7}}{6}-\frac{C_{8}}{2})F^{SP}_{aK^{*}}+(C_{3}+C_{4}
    \displaystyle- C92C102)MLLaK+(C5C72)MLRaK+(C6C82)MSPaK\displaystyle\frac{C_{9}}{2}-\frac{C_{10}}{2})M^{LL}_{aK^{*}}+(C_{5}-\frac{C_{7}}{2})M^{LR}_{aK^{*}}+(C_{6}-\frac{C_{8}}{2})M^{SP}_{aK^{*}}
    +\displaystyle+ (C3+C43+C9+C103C5C63\displaystyle(C_{3}+\frac{C_{4}}{3}+C_{9}+\frac{C_{10}}{3}-C_{5}-\frac{C_{6}}{3}
    \displaystyle- C7C83)FaKLL+(C4+C10)MaKLL+(C6+C8)MaKSP]},\displaystyle C_{7}-\frac{C_{8}}{3})F^{LL}_{aK}+(C_{4}+C_{10})M^{LL}_{aK}+(C_{6}+C_{8})M^{SP}_{aK}]\big{\}}\;,
    𝒜(Bs0K(K+)Kπ)\displaystyle{\cal A}(B_{s}^{0}\to K^{-}(K^{*+}\to)K\pi) =\displaystyle= GF2{VubVus[(C1+C23)FaKLL+C2MaKLL+(C13+C2)FeKLL\displaystyle\frac{G_{F}}{\sqrt{2}}\big{\{}V_{ub}^{*}V_{us}[(C_{1}+\frac{C_{2}}{3})F^{LL}_{aK^{*}}+C_{2}M^{LL}_{aK^{*}}+(\frac{C_{1}}{3}+C_{2})F^{LL}_{eK} (54)
    +\displaystyle+ C1MeKLL]VtbVts[(C3+C43+C9+C103C5C63C7\displaystyle C_{1}M^{LL}_{eK}]-V_{tb}^{*}V_{ts}[(C_{3}+\frac{C_{4}}{3}+C_{9}+\frac{C_{10}}{3}-C_{5}-\frac{C_{6}}{3}-C_{7}
    \displaystyle- C83)FLLaK+(C4+C10)MLLaK+(C6+C8)MSPaK+(C33\displaystyle\frac{C_{8}}{3})F^{LL}_{aK^{*}}+(C_{4}+C_{10})M^{LL}_{aK^{*}}+(C_{6}+C_{8})M^{SP}_{aK^{*}}+(\frac{C_{3}}{3}
    +\displaystyle+ C4+C93+C10)FLLeK+(C3+C9)MLLeK+(C5+C7)MLReK\displaystyle C_{4}+\frac{C_{9}}{3}+C_{10})F^{LL}_{eK}+(C_{3}+C_{9})M^{LL}_{eK}+(C_{5}+C_{7})M^{LR}_{eK}
    +\displaystyle+ (43(C3+C4C92C102)C5C63+C72+C86)FaKLL\displaystyle(\frac{4}{3}(C_{3}+C_{4}-\frac{C_{9}}{2}-\frac{C_{10}}{2})-C_{5}-\frac{C_{6}}{3}+\frac{C_{7}}{2}+\frac{C_{8}}{6})F^{LL}_{aK}
    +\displaystyle+ (C53+C6C76C82)FaKSP+(C3+C4C92\displaystyle(\frac{C_{5}}{3}+C_{6}-\frac{C_{7}}{6}-\frac{C_{8}}{2})F^{SP}_{aK}+(C_{3}+C_{4}-\frac{C_{9}}{2}
    \displaystyle- C102)MaKLL+(C5C72)MaKLR+(C6C82)MaKSP]},\displaystyle\frac{C_{10}}{2})M^{LL}_{aK}+(C_{5}-\frac{C_{7}}{2})M^{LR}_{aK}+(C_{6}-\frac{C_{8}}{2})M^{SP}_{aK}]\big{\}}\;,
    𝒜(B+K¯0(K+)Kπ)\displaystyle{\cal A}(B^{+}\to\bar{K}^{0}(K^{*+}\to)K\pi) =\displaystyle= GF2{VubVud[(C13+C2)FaKLL+C1MaKLL]VtbVtd[(C33+C4\displaystyle\frac{G_{F}}{\sqrt{2}}\big{\{}V_{ub}^{*}V_{ud}[(\frac{C_{1}}{3}+C_{2})F^{LL}_{aK^{*}}+C_{1}M^{LL}_{aK^{*}}]-V_{tb}^{*}V_{td}[(\frac{C_{3}}{3}+C_{4} (55)
    \displaystyle- C96C102)FLLeK+(C53+C6C76C82)FSPeK+(C3\displaystyle\frac{C_{9}}{6}-\frac{C_{10}}{2})F^{LL}_{eK^{*}}+(\frac{C_{5}}{3}+C_{6}-\frac{C_{7}}{6}-\frac{C_{8}}{2})F^{SP}_{eK^{*}}+(C_{3}
    \displaystyle- C92)MLLeK+(C5C72)MLReK+(C33+C4+C93+C10)FLLaK\displaystyle\frac{C_{9}}{2})M^{LL}_{eK^{*}}+(C_{5}-\frac{C_{7}}{2})M^{LR}_{eK^{*}}+(\frac{C_{3}}{3}+C_{4}+\frac{C_{9}}{3}+C_{10})F^{LL}_{aK^{*}}
    +\displaystyle+ (C53+C6+C73+C8)FaKSP+(C3+C9)MaKLL\displaystyle(\frac{C_{5}}{3}+C_{6}+\frac{C_{7}}{3}+C_{8})F^{SP}_{aK^{*}}+(C_{3}+C_{9})M^{LL}_{aK^{*}}
    +\displaystyle+ (C5+C7)MaKLR]},\displaystyle(C_{5}+C_{7})M^{LR}_{aK^{*}}]\big{\}}\;,
    𝒜(B0K0(K¯0)Kπ)\displaystyle{\cal A}(B^{0}\to K^{0}(\bar{K}^{*0}\to)K\pi) =\displaystyle= GF2{VtbVtd[(C3+C43C92C106C5C63+C72\displaystyle-\frac{G_{F}}{\sqrt{2}}\big{\{}V_{tb}^{*}V_{td}[(C_{3}+\frac{C_{4}}{3}-\frac{C_{9}}{2}-\frac{C_{10}}{6}-C_{5}-\frac{C_{6}}{3}+\frac{C_{7}}{2}
    +\displaystyle+ C86)FLLaK+(C4C102)MLLaK+(C6C82)(MSPaK+MSPaK)\displaystyle\frac{C_{8}}{6})F^{LL}_{aK^{*}}+(C_{4}-\frac{C_{10}}{2})M^{LL}_{aK^{*}}+(C_{6}-\frac{C_{8}}{2})(M^{SP}_{aK^{*}}+M^{SP}_{aK})
    +\displaystyle+ (C33+C4C96C102)FLLeK+(C3C92)MLLeK+(C5\displaystyle(\frac{C_{3}}{3}+C_{4}-\frac{C_{9}}{6}-\frac{C_{10}}{2})F^{LL}_{eK}+(C_{3}-\frac{C_{9}}{2})M^{LL}_{eK}+(C_{5}
    \displaystyle- C72)(MLReK+MLRaK)+(C53+C6C76C82)FSPaK+(43(C3\displaystyle\frac{C_{7}}{2})(M^{LR}_{eK}+M^{LR}_{aK})+(\frac{C_{5}}{3}+C_{6}-\frac{C_{7}}{6}-\frac{C_{8}}{2})F^{SP}_{aK}+(\frac{4}{3}(C_{3}
    +\displaystyle+ C4C92C102)C5C63+C72+C86)FLLaK+(C3+C4\displaystyle C_{4}-\frac{C_{9}}{2}-\frac{C_{10}}{2})-C_{5}-\frac{C_{6}}{3}+\frac{C_{7}}{2}+\frac{C_{8}}{6})F^{LL}_{aK}+(C_{3}+C_{4}
    \displaystyle- C92C102)MLLaK]},\displaystyle\frac{C_{9}}{2}-\frac{C_{10}}{2})M^{LL}_{aK}]\big{\}}\;,
    𝒜(B0K¯0(K0)Kπ)\displaystyle{\cal A}(B^{0}\to\bar{K}^{0}(K^{*0}\to)K\pi) =\displaystyle= GF2{VtbVtd[(C33+C4C96C102)FLLeK+(C53+C6C76\displaystyle-\frac{G_{F}}{\sqrt{2}}\big{\{}V_{tb}^{*}V_{td}[(\frac{C_{3}}{3}+C_{4}-\frac{C_{9}}{6}-\frac{C_{10}}{2})F^{LL}_{eK^{*}}+(\frac{C_{5}}{3}+C_{6}-\frac{C_{7}}{6}
    \displaystyle- C82)(FSPeK+FSPaK)+(C3C92)MLLeK+(43(C3+C4C92\displaystyle\frac{C_{8}}{2})(F^{SP}_{eK^{*}}+F^{SP}_{aK^{*}})+(C_{3}-\frac{C_{9}}{2})M^{LL}_{eK^{*}}+(\frac{4}{3}(C_{3}+C_{4}-\frac{C_{9}}{2}
    \displaystyle- C102)C5C63+C72+C86)FLLaK+(C3+C4C92\displaystyle\frac{C_{10}}{2})-C_{5}-\frac{C_{6}}{3}+\frac{C_{7}}{2}+\frac{C_{8}}{6})F^{LL}_{aK^{*}}+(C_{3}+C_{4}-\frac{C_{9}}{2}
    \displaystyle- C102)MLLaK+(C5C72)(MLReK+MLRaK)+(C6\displaystyle\frac{C_{10}}{2})M^{LL}_{aK^{*}}+(C_{5}-\frac{C_{7}}{2})(M^{LR}_{eK^{*}}+M^{LR}_{aK^{*}})+(C_{6}
    \displaystyle- C82)(MSPaK+MSPaK)+(C3+C43C92C106C5\displaystyle\frac{C_{8}}{2})(M^{SP}_{aK^{*}}+M^{SP}_{aK})+(C_{3}+\frac{C_{4}}{3}-\frac{C_{9}}{2}-\frac{C_{10}}{6}-C_{5}
    \displaystyle- C63+C72+C86)FLLaK+(C4C102)MLLaK]},\displaystyle\frac{C_{6}}{3}+\frac{C_{7}}{2}+\frac{C_{8}}{6})F^{LL}_{aK}+(C_{4}-\frac{C_{10}}{2})M^{LL}_{aK}]\big{\}}\;,
    𝒜(Bs0K0(K¯0)Kπ)\displaystyle{\cal A}(B_{s}^{0}\to K^{0}(\bar{K}^{*0}\to)K\pi) =\displaystyle= GF2{VtbVts[(C33+C4C96C102)FLLeK+(C53+C6C76\displaystyle-\frac{G_{F}}{\sqrt{2}}\big{\{}V_{tb}^{*}V_{ts}[(\frac{C_{3}}{3}+C_{4}-\frac{C_{9}}{6}-\frac{C_{10}}{2})F^{LL}_{eK^{*}}+(\frac{C_{5}}{3}+C_{6}-\frac{C_{7}}{6}
    \displaystyle- C82)(FSPeK+FSPaK)+(C3C92)MLLeK+(43(C3+C4C92\displaystyle\frac{C_{8}}{2})(F^{SP}_{eK^{*}}+F^{SP}_{aK^{*}})+(C_{3}-\frac{C_{9}}{2})M^{LL}_{eK^{*}}+(\frac{4}{3}(C_{3}+C_{4}-\frac{C_{9}}{2}
    \displaystyle- C102)C5C63+C72+C86)FLLaK+(C3+C4C92\displaystyle\frac{C_{10}}{2})-C_{5}-\frac{C_{6}}{3}+\frac{C_{7}}{2}+\frac{C_{8}}{6})F^{LL}_{aK^{*}}+(C_{3}+C_{4}-\frac{C_{9}}{2}
    \displaystyle- C102)MLLaK+(C5C72)(MLReK+MLRaK)+(C6C82)(MSPaK\displaystyle\frac{C_{10}}{2})M^{LL}_{aK^{*}}+(C_{5}-\frac{C_{7}}{2})(M^{LR}_{eK^{*}}+M^{LR}_{aK^{*}})+(C_{6}-\frac{C_{8}}{2})(M^{SP}_{aK^{*}}
    +\displaystyle+ MSPaK)+(C3+C43C92C106C5C63+C72+C86)FLLaK\displaystyle M^{SP}_{aK})+(C_{3}+\frac{C_{4}}{3}-\frac{C_{9}}{2}-\frac{C_{10}}{6}-C_{5}-\frac{C_{6}}{3}+\frac{C_{7}}{2}+\frac{C_{8}}{6})F^{LL}_{aK}
    +\displaystyle+ (C4C102)MLLaK]},\displaystyle(C_{4}-\frac{C_{10}}{2})M^{LL}_{aK}]\big{\}}\;,
    𝒜(Bs0K¯0(K0)Kπ)\displaystyle{\cal A}(B_{s}^{0}\to\bar{K}^{0}(K^{*0}\to)K\pi) =\displaystyle= GF2{VtbVts[(C3+C43C92C106C5C63+C72\displaystyle-\frac{G_{F}}{\sqrt{2}}\big{\{}V_{tb}^{*}V_{ts}[(C_{3}+\frac{C_{4}}{3}-\frac{C_{9}}{2}-\frac{C_{10}}{6}-C_{5}-\frac{C_{6}}{3}+\frac{C_{7}}{2}
    +\displaystyle+ C86)FLLaK+(C4C102)MLLaK+(C6C82)(MSPaK+MSPaK)\displaystyle\frac{C_{8}}{6})F^{LL}_{aK^{*}}+(C_{4}-\frac{C_{10}}{2})M^{LL}_{aK^{*}}+(C_{6}-\frac{C_{8}}{2})(M^{SP}_{aK^{*}}+M^{SP}_{aK})
    +\displaystyle+ (C33+C4C96C102)FLLeK+(C3C92)MLLeK+(C5C72)(MLReK\displaystyle(\frac{C_{3}}{3}+C_{4}-\frac{C_{9}}{6}-\frac{C_{10}}{2})F^{LL}_{eK}+(C_{3}-\frac{C_{9}}{2})M^{LL}_{eK}+(C_{5}-\frac{C_{7}}{2})(M^{LR}_{eK}
    +\displaystyle+ MLRaK)+(C53+C6C76C82)FSPaK+(43(C3+C4C92\displaystyle M^{LR}_{aK})+(\frac{C_{5}}{3}+C_{6}-\frac{C_{7}}{6}-\frac{C_{8}}{2})F^{SP}_{aK}+(\frac{4}{3}(C_{3}+C_{4}-\frac{C_{9}}{2}
    \displaystyle- C102)C5C63+C72+C86)FLLaK+(C3+C4C92\displaystyle\frac{C_{10}}{2})-C_{5}-\frac{C_{6}}{3}+\frac{C_{7}}{2}+\frac{C_{8}}{6})F^{LL}_{aK}+(C_{3}+C_{4}-\frac{C_{9}}{2}
    \displaystyle- C102)MLLaK]},\displaystyle\frac{C_{10}}{2})M^{LL}_{aK}]\big{\}}\;,
  4. \bullet

    B(s)π(K)KπB_{(s)}\to\pi(K^{*}\to)K\pi

    𝒜(B+π+(K0)Kπ)\displaystyle{\cal A}(B^{+}\to\pi^{+}(K^{*0}\to)K\pi) =\displaystyle= GF2{VubVus[(C13+C2)FLLaπ+C1MLLaπ]VtbVts[(C33+C4\displaystyle\frac{G_{F}}{\sqrt{2}}\big{\{}V_{ub}^{*}V_{us}[(\frac{C_{1}}{3}+C_{2})F^{LL}_{a\pi}+C_{1}M^{LL}_{a\pi}]-V_{tb}^{*}V_{ts}[(\frac{C_{3}}{3}+C_{4}
    \displaystyle- C96C102)FLLeπ+(C3C92)MLLeπ+(C5C72)MLReπ+(C33\displaystyle\frac{C_{9}}{6}-\frac{C_{10}}{2})F^{LL}_{e\pi}+(C_{3}-\frac{C_{9}}{2})M^{LL}_{e\pi}+(C_{5}-\frac{C_{7}}{2})M^{LR}_{e\pi}+(\frac{C_{3}}{3}
    +\displaystyle+ C4+C93+C10)FLLaπ+(C53+C6+C73+C8)FSPaπ\displaystyle C_{4}+\frac{C_{9}}{3}+C_{10})F^{LL}_{a\pi}+(\frac{C_{5}}{3}+C_{6}+\frac{C_{7}}{3}+C_{8})F^{SP}_{a\pi}
    +\displaystyle+ (C3+C9)MLLaπ+(C5+C7)MLRaπ]},\displaystyle(C_{3}+C_{9})M^{LL}_{a\pi}+(C_{5}+C_{7})M^{LR}_{a\pi}]\big{\}}\;,
    𝒜(B0π(K+)Kπ)\displaystyle{\cal A}(B^{0}\to\pi^{-}(K^{*+}\to)K\pi) =\displaystyle= GF2{VubVus[(C13+C2)FLLeπ+C1MLLeπ]VtbVts[(C33+C4\displaystyle\frac{G_{F}}{\sqrt{2}}\big{\{}V_{ub}^{*}V_{us}[(\frac{C_{1}}{3}+C_{2})F^{LL}_{e\pi}+C_{1}M^{LL}_{e\pi}]-V_{tb}^{*}V_{ts}[(\frac{C_{3}}{3}+C_{4} (61)
    +\displaystyle+ C93+C10)FLLeπ+(C3+C9)MLLeπ+(C5+C7)MLReπ+(C33\displaystyle\frac{C_{9}}{3}+C_{10})F^{LL}_{e\pi}+(C_{3}+C_{9})M^{LL}_{e\pi}+(C_{5}+C_{7})M^{LR}_{e\pi}+(\frac{C_{3}}{3}
    +\displaystyle+ C4C96C102)FLLaπ+(C53+C6C76C82)FSPaπ+(C3\displaystyle C_{4}-\frac{C_{9}}{6}-\frac{C_{10}}{2})F^{LL}_{a\pi}+(\frac{C_{5}}{3}+C_{6}-\frac{C_{7}}{6}-\frac{C_{8}}{2})F^{SP}_{a\pi}+(C_{3}
    \displaystyle- C92)MLLaπ+(C5C72)MLRaπ]},\displaystyle\frac{C_{9}}{2})M^{LL}_{a\pi}+(C_{5}-\frac{C_{7}}{2})M^{LR}_{a\pi}]\big{\}}\;,
    𝒜(Bs0π+(K)Kπ)\displaystyle{\cal A}(B_{s}^{0}\to\pi^{+}(K^{*-}\to)K\pi) =\displaystyle= GF2{VubVud[(C13+C2)FLLeK+C1MLLeK]VtbVtd[(C33+C4\displaystyle\frac{G_{F}}{\sqrt{2}}\big{\{}V_{ub}^{*}V_{ud}[(\frac{C_{1}}{3}+C_{2})F^{LL}_{eK^{*}}+C_{1}M^{LL}_{eK^{*}}]-V_{tb}^{*}V_{td}[(\frac{C_{3}}{3}+C_{4} (62)
    +\displaystyle+ C93+C10)FLLeK+(C53+C6+C73+C8)FSPeK+(C3+C9)MLLeK\displaystyle\frac{C_{9}}{3}+C_{10})F^{LL}_{eK^{*}}+(\frac{C_{5}}{3}+C_{6}+\frac{C_{7}}{3}+C_{8})F^{SP}_{eK^{*}}+(C_{3}+C_{9})M^{LL}_{eK^{*}}
    +\displaystyle+ (C5+C7)MLReK+(C33+C4C96C102)FLLaK+(C53+C6\displaystyle(C_{5}+C_{7})M^{LR}_{eK^{*}}+(\frac{C_{3}}{3}+C_{4}-\frac{C_{9}}{6}-\frac{C_{10}}{2})F^{LL}_{aK^{*}}+(\frac{C_{5}}{3}+C_{6}
    \displaystyle- C76C82)FSPaK+(C3C92)MLLaK+(C5C72)MLRaK]},\displaystyle\frac{C_{7}}{6}-\frac{C_{8}}{2})F^{SP}_{aK^{*}}+(C_{3}-\frac{C_{9}}{2})M^{LL}_{aK^{*}}+(C_{5}-\frac{C_{7}}{2})M^{LR}_{aK^{*}}]\big{\}}\;,
    𝒜(B+π0(K+)Kπ)\displaystyle{\cal A}(B^{+}\to\pi^{0}(K^{*+}\to)K\pi) =\displaystyle= GF2{VubVus[(C1+C23)FLLeK+(C13+C2)(FLLeπ+FLLaπ)\displaystyle\frac{G_{F}}{2}\big{\{}V_{ub}^{*}V_{us}[(C_{1}+\frac{C_{2}}{3})F^{LL}_{eK^{*}}+(\frac{C_{1}}{3}+C_{2})(F^{LL}_{e\pi}+F^{LL}_{a\pi}) (63)
    +\displaystyle+ C1(MLLeπ+MLLaπ)+C2MLLeK]VtbVts[(3C92+C1023C72\displaystyle C_{1}(M^{LL}_{e\pi}+M^{LL}_{a\pi})+C_{2}M^{LL}_{eK^{*}}]-V_{tb}^{*}V_{ts}[(\frac{3C_{9}}{2}+\frac{C_{10}}{2}-\frac{3C_{7}}{2}
    \displaystyle- C82)FLLeK+3C102MLLeK+3C82MSPeK+(C33+C4+C93\displaystyle\frac{C_{8}}{2})F^{LL}_{eK^{*}}+\frac{3C_{10}}{2}M^{LL}_{eK^{*}}+\frac{3C_{8}}{2}M^{SP}_{eK^{*}}+(\frac{C_{3}}{3}+C_{4}+\frac{C_{9}}{3}
    +\displaystyle+ C10)(FLLeπ+FLLaπ)+(C53+C6+C73+C8)FSPaπ+(C3\displaystyle C_{10})(F^{LL}_{e\pi}+F^{LL}_{a\pi})+(\frac{C_{5}}{3}+C_{6}+\frac{C_{7}}{3}+C_{8})F^{SP}_{a\pi}+(C_{3}
    +\displaystyle+ C9)(MLLeπ+MLLaπ)+(C5+C7)(MLReπ+MLRaπ)]},\displaystyle C_{9})(M^{LL}_{e\pi}+M^{LL}_{a\pi})+(C_{5}+C_{7})(M^{LR}_{e\pi}+M^{LR}_{a\pi})]\big{\}}\;,
    𝒜(B0π0(K0)Kπ)\displaystyle{\cal A}(B^{0}\to\pi^{0}(K^{*0}\to)K\pi) =\displaystyle= GF2{VubVus[(C1+C23)FLLeK+C2MLLeK]VtbVts[(3C92+C102\displaystyle\frac{G_{F}}{2}\big{\{}V_{ub}^{*}V_{us}[(C_{1}+\frac{C_{2}}{3})F^{LL}_{eK^{*}}+C_{2}M^{LL}_{eK^{*}}]-V_{tb}^{*}V_{ts}[(\frac{3C_{9}}{2}+\frac{C_{10}}{2}
    \displaystyle- 3C72C82)FLLeK+3C102MLLeK+3C82MSPeK(C33+C4C96\displaystyle\frac{3C_{7}}{2}-\frac{C_{8}}{2})F^{LL}_{eK^{*}}+\frac{3C_{10}}{2}M^{LL}_{eK^{*}}+\frac{3C_{8}}{2}M^{SP}_{eK^{*}}-(\frac{C_{3}}{3}+C_{4}-\frac{C_{9}}{6}
    \displaystyle- C102)(FLLeπ+FLLaπ)(C53+C6C76C82)FSPaπ(C3\displaystyle\frac{C_{10}}{2})(F^{LL}_{e\pi}+F^{LL}_{a\pi})-(\frac{C_{5}}{3}+C_{6}-\frac{C_{7}}{6}-\frac{C_{8}}{2})F^{SP}_{a\pi}-(C_{3}
    \displaystyle- C92)(MLLeπ+MLLaπ)(C5C72)(MLReπ+MLRaπ)]},\displaystyle\frac{C_{9}}{2})(M^{LL}_{e\pi}+M^{LL}_{a\pi})-(C_{5}-\frac{C_{7}}{2})(M^{LR}_{e\pi}+M^{LR}_{a\pi})]\big{\}}\;,
    𝒜(Bs0π0(K¯0)Kπ)\displaystyle{\cal A}(B_{s}^{0}\to\pi^{0}(\bar{K}^{*0}\to)K\pi) =\displaystyle= GF2{VubVud[(C1+C23)FLLeK+C2MLLeK]VtbVtd[(C33C4\displaystyle\frac{G_{F}}{2}\big{\{}V_{ub}^{*}V_{ud}[(C_{1}+\frac{C_{2}}{3})F^{LL}_{eK^{*}}+C_{2}M^{LL}_{eK^{*}}]-V_{tb}^{*}V_{td}[(-\frac{C_{3}}{3}-C_{4} (65)
    +\displaystyle+ 5C93+C103C72C82)FLLeK(C53+C6C76C82)FSPeK\displaystyle\frac{5C_{9}}{3}+C_{10}-\frac{3C_{7}}{2}-\frac{C_{8}}{2})F^{LL}_{eK^{*}}-(\frac{C_{5}}{3}+C_{6}-\frac{C_{7}}{6}-\frac{C_{8}}{2})F^{SP}_{eK^{*}}
    +\displaystyle+ (C3+C92+3C102)MLLeK(C5C72)MLReK+3C82MSPeK\displaystyle(-C_{3}+\frac{C_{9}}{2}+\frac{3C_{10}}{2})M^{LL}_{eK^{*}}-(C_{5}-\frac{C_{7}}{2})M^{LR}_{eK^{*}}+\frac{3C_{8}}{2}M^{SP}_{eK^{*}}
    \displaystyle- (C33+C4C96C102)FLLaK+(C53+C6C76C82)FSPaK\displaystyle(\frac{C_{3}}{3}+C_{4}-\frac{C_{9}}{6}-\frac{C_{10}}{2})F^{LL}_{aK^{*}}+(\frac{C_{5}}{3}+C_{6}-\frac{C_{7}}{6}-\frac{C_{8}}{2})F^{SP}_{aK^{*}}
    \displaystyle- (C3C92)MLLaK(C5C72)MLRaK]},\displaystyle(C_{3}-\frac{C_{9}}{2})M^{LL}_{aK^{*}}-(C_{5}-\frac{C_{7}}{2})M^{LR}_{aK^{*}}]\big{\}}\;,
  5. \bullet

    B(s)K(ϕ)KKB_{(s)}\to K(\phi\to)KK

    𝒜(B+K+(ϕ)KK)\displaystyle{\cal A}(B^{+}\to K^{+}(\phi\to)KK) =\displaystyle= GF2{VubVus[(C13+C2)FaKLL+C1MaKLL]GF2VtbVts[(43(C3+C4)\displaystyle\frac{G_{F}}{\sqrt{2}}\big{\{}V^{*}_{ub}V_{us}[(\frac{C_{1}}{3}+C_{2})F_{aK}^{LL}+C_{1}M_{aK}^{LL}]-\frac{G_{F}}{\sqrt{2}}V^{*}_{tb}V_{ts}[(\frac{4}{3}(C_{3}+C_{4}) (66)
    +\displaystyle+ C5+C63C72C8623(C9+C10))FeKLL+(C3+C412(C9\displaystyle C_{5}+\frac{C_{6}}{3}-\frac{C_{7}}{2}-\frac{C_{8}}{6}-\frac{2}{3}(C_{9}+C_{10}))F_{eK}^{LL}+(C_{3}+C_{4}-\frac{1}{2}(C_{9}
    +\displaystyle+ C10))MeKLL+(C5C72)MeKLR+(C6C82)MeKSP+(C33+C4\displaystyle C_{10}))M_{eK}^{LL}+(C_{5}-\frac{C_{7}}{2})M_{eK}^{LR}+(C_{6}-\frac{C_{8}}{2})M_{eK}^{SP}+(\frac{C_{3}}{3}+C_{4}
    +\displaystyle+ C93+C10)FaKLL+(C53+C6+C73+C8)FaKSP+(C3+C9)MaKLL\displaystyle\frac{C_{9}}{3}+C_{10})F_{aK}^{LL}+(\frac{C_{5}}{3}+C_{6}+\frac{C_{7}}{3}+C_{8})F_{aK}^{SP}+(C_{3}+C_{9})M_{aK}^{LL}
    +\displaystyle+ (C5+C7)MaKLR]},\displaystyle(C_{5}+C_{7})M_{aK}^{LR}]\big{\}}\;,
    𝒜(B0K0(ϕ)KK)\displaystyle{\cal A}(B^{0}\to K^{0}(\phi\to)KK) =\displaystyle= GF2{VtbVts[(43C3+43C4+C5+C63C72C8623C9\displaystyle-\frac{G_{F}}{\sqrt{2}}\big{\{}V^{*}_{tb}V_{ts}[(\frac{4}{3}C_{3}+\frac{4}{3}C_{4}+C_{5}+\frac{C_{6}}{3}-\frac{C_{7}}{2}-\frac{C_{8}}{6}-\frac{2}{3}C_{9} (67)
    \displaystyle- 23C10)FeKLL+(C3+C4C92C102)MeKLL+(C5C72)MeKLR\displaystyle\frac{2}{3}C_{10})F_{eK}^{LL}+(C_{3}+C_{4}-\frac{C_{9}}{2}-\frac{C_{10}}{2})M_{eK}^{LL}+(C_{5}-\frac{C_{7}}{2})M_{eK}^{LR}
    +\displaystyle+ (C6C82)MeKSP+(C33+C4C96C102)FaKLL+(C53+C6\displaystyle(C_{6}-\frac{C_{8}}{2})M_{eK}^{SP}+(\frac{C_{3}}{3}+C_{4}-\frac{C_{9}}{6}-\frac{C_{10}}{2})F_{aK}^{LL}+(\frac{C_{5}}{3}+C_{6}
    \displaystyle- C76C82)FaKSP+(C3C92)MaKLL+(C5C72)MaKLR]},\displaystyle\frac{C_{7}}{6}-\frac{C_{8}}{2})F_{aK}^{SP}+(C_{3}-\frac{C_{9}}{2})M_{aK}^{LL}+(C_{5}-\frac{C_{7}}{2})M_{aK}^{LR}]\big{\}}\;,
    A(Bs0K¯0(ϕ)KK)\displaystyle A(B_{s}^{0}\to\bar{K}^{0}(\phi\to)KK) =\displaystyle= GF2{VtbVtd[(C3+C43+C5+C63C72C86C92C106)FeKLL\displaystyle-\frac{G_{F}}{\sqrt{2}}\big{\{}V^{*}_{tb}V_{td}[(C_{3}+\frac{C_{4}}{3}+C_{5}+\frac{C_{6}}{3}-\frac{C_{7}}{2}-\frac{C_{8}}{6}-\frac{C_{9}}{2}-\frac{C_{10}}{6})F_{eK}^{LL} (68)
    +\displaystyle+ (C33+C4C96C102)(FeϕLL+FaϕLL)+(C53+C6C76C82)(FeϕSP\displaystyle(\frac{C_{3}}{3}+C_{4}-\frac{C_{9}}{6}-\frac{C_{10}}{2})(F_{e\phi}^{LL}+F_{a\phi}^{LL})+(\frac{C_{5}}{3}+C_{6}-\frac{C_{7}}{6}-\frac{C_{8}}{2})(F_{e\phi}^{SP}
    +\displaystyle+ FaϕSP)+(C3C92)(MeϕLL+MaϕLL)+(C5C72)(MeϕLR+MaϕLR)\displaystyle F_{a\phi}^{SP})+(C_{3}-\frac{C_{9}}{2})(M_{e\phi}^{LL}+M_{a\phi}^{LL})+(C_{5}-\frac{C_{7}}{2})(M_{e\phi}^{LR}+M_{a\phi}^{LR})
    +\displaystyle+ (C4C102)MeKLL+(C6C82)MeKSP]},\displaystyle(C_{4}-\frac{C_{10}}{2})M_{eK}^{LL}+(C_{6}-\frac{C_{8}}{2})M_{eK}^{SP}]\big{\}}\;,
  6. \bullet

    B(s)π(ϕ)KKB_{(s)}\to\pi(\phi\to)KK

    𝒜(B+π+(ϕ)KK)\displaystyle{\cal A}(B^{+}\to\pi^{+}(\phi\to)KK) =\displaystyle= GF2{VtbVtd[(C3+C43+C5+C63C72C86C92\displaystyle-\frac{G_{F}}{\sqrt{2}}\big{\{}V^{*}_{tb}V_{td}[(C_{3}+\frac{C_{4}}{3}+C_{5}+\frac{C_{6}}{3}-\frac{C_{7}}{2}-\frac{C_{8}}{6}-\frac{C_{9}}{2} (69)
    \displaystyle- C106)FeπLL+(C4C102)MeπLL+(C6C82)MeπSP]},\displaystyle\frac{C_{10}}{6})F_{e\pi}^{LL}+(C_{4}-\frac{C_{10}}{2})M_{e\pi}^{LL}+(C_{6}-\frac{C_{8}}{2})M_{e\pi}^{SP}]\big{\}}\;,
    2𝒜(B0π0(ϕ)KK)\displaystyle\sqrt{2}{\cal A}(B^{0}\to\pi^{0}(\phi\to)KK) =\displaystyle= GF2{VtbVtd[(C3C43C5C63+C72+C86+C92\displaystyle-\frac{G_{F}}{\sqrt{2}}\big{\{}V^{*}_{tb}V_{td}[(-C_{3}-\frac{C_{4}}{3}-C_{5}-\frac{C_{6}}{3}+\frac{C_{7}}{2}+\frac{C_{8}}{6}+\frac{C_{9}}{2} (70)
    +\displaystyle+ C106)FeπLL+(C4+C102)MeπLL+(C6+C82)MeπSP]},\displaystyle\frac{C_{10}}{6})F_{e\pi}^{LL}+(-C_{4}+\frac{C_{10}}{2})M_{e\pi}^{LL}+(-C_{6}+\frac{C_{8}}{2})M_{e\pi}^{SP}]\big{\}}\;,
    2A(Bs0π0(ϕ)KK)\displaystyle\sqrt{2}A(B_{s}^{0}\to\pi^{0}(\phi\to)KK) =\displaystyle= GF2{VubVus[(C1+C23)FLLeϕ+C2MeϕLL]GF2VtbVts[(32C7\displaystyle\frac{G_{F}}{\sqrt{2}}\big{\{}V^{*}_{ub}V_{us}[(C_{1}+\frac{C_{2}}{3})F^{LL}_{e\phi}+C_{2}M_{e\phi}^{LL}]-\frac{G_{F}}{\sqrt{2}}V^{*}_{tb}V_{ts}[(-\frac{3}{2}C_{7} (71)
    \displaystyle- C82+32C9+C102)FLLeϕ+32C8MeϕSP+32C10MeϕLL]}.\displaystyle\frac{C_{8}}{2}+\frac{3}{2}C_{9}+\frac{C_{10}}{2})F^{LL}_{e\phi}+\frac{3}{2}C_{8}M_{e\phi}^{SP}+\frac{3}{2}C_{10}M_{e\phi}^{LL}]\big{\}}\;.

The explicit PQCD factorization formulas for the functions FF and MM appearing in the above decay amplitudes are given by

FLLeV\displaystyle F^{LL}_{eV} =\displaystyle= 8πCFfPmB401dxBdz0bBdbBbdbϕB(xB,bB)\displaystyle 8\pi C_{F}f_{P}m_{B}^{4}\int_{0}^{1}dx_{B}dz\int_{0}^{\infty}b_{B}\;db_{B}\;b\;db\;\phi_{B}(x_{B},b_{B}) (72)
×\displaystyle\times {[((fgf+g+(1+f+z))ηϕ0(z)(g+g+(12f+z))ηϕs(z)\displaystyle\bigg{\{}\big{[}((f_{-}g_{-}-f_{+}g_{+}(1+f_{+}z))\sqrt{\eta}\phi_{0}(z)-(g_{-}+g_{+}(1-2f_{+}z))\eta\phi_{s}(z)
+\displaystyle+ ff+(g+g+(1+2f+z))ϕt(z))/η]Ee(taV)hVa(αVe,βVa,bB,b)St(z)\displaystyle f_{-}f_{+}(g_{-}+g_{+}(-1+2f_{+}z))\phi_{t}(z))/\sqrt{\eta}\big{]}E_{e}(t_{a}^{V})\;h^{V}_{a}(\alpha^{V}_{e},\beta^{V}_{a},b_{B},b)S_{t}(z)
+\displaystyle+ [f+(f(gg+)gxB)ϕ0(z)2((fxB)g+f+g+)ηϕs(z)]\displaystyle\big{[}f_{+}(f_{-}(g_{-}-g_{+})-g_{-}x_{B})\phi_{0}(z)-2((f_{-}-x_{B})g_{-}+f_{+}g_{+})\sqrt{\eta}\phi_{s}(z)\big{]}
×\displaystyle\times Ee(tbV)hVb(αVe,βVb,bB,b)St(|xBf|)},\displaystyle\;E_{e}(t_{b}^{V})\;h^{V}_{b}(\alpha^{V}_{e},\beta^{V}_{b},b_{B},b)S_{t}(|x_{B}-f_{-}|)\bigg{\}},
FLReV\displaystyle F^{LR}_{eV} =\displaystyle= FLLeV,\displaystyle-F^{LL}_{eV}, (73)
FSPeV\displaystyle F^{SP}_{eV} =\displaystyle= 16πCFfPmB4r0301dxBdz0bBdbBbdbϕB(xB,bB)\displaystyle 16\pi C_{F}f_{P}m_{B}^{4}r_{03}\int_{0}^{1}dx_{B}dz\int_{0}^{\infty}b_{B}\;db_{B}\;b\;db\;\phi_{B}(x_{B},b_{B}) (74)
×\displaystyle\times {[((f++f(1+2f+z))ηϕ0(z)+(2+f+z)ηϕs(z)ff+2zϕt(z))/η]\displaystyle\bigg{\{}\big{[}((f_{+}+f_{-}(-1+2f_{+}z))\sqrt{\eta}\phi_{0}(z)+(2+f_{+}z)\eta\phi_{s}(z)-f_{-}f_{+}^{2}z\phi_{t}(z))/\sqrt{\eta}\big{]}
×\displaystyle\times Ee(taV)hVa(αVe,βVa,bB,b)St(z)\displaystyle E_{e}(t_{a}^{V})\;h^{V}_{a}(\alpha^{V}_{e},\beta^{V}_{a},b_{B},b)S_{t}(z)
+\displaystyle+ [f+xBϕ0(z)+2(f+f+xB)ηϕs(z)]Ee(tbV)hVb(αVe,βVb,bB,b)St(|xBf|)},\displaystyle\big{[}f_{+}x_{B}\phi_{0}(z)+2(f_{-}+f_{+}-x_{B})\sqrt{\eta}\phi_{s}(z)\big{]}E_{e}(t_{b}^{V})\;h^{V}_{b}(\alpha^{V}_{e},\beta^{V}_{b},b_{B},b)S_{t}(|x_{B}-f_{-}|)\bigg{\}},
MLLeV\displaystyle M^{LL}_{eV} =\displaystyle= 32πCFm4B/6/η01dxBdzdx30bBdbBb3db3ϕB(xB,bB)ϕAP(x3)\displaystyle 32\pi C_{F}m^{4}_{B}/\sqrt{6}/\sqrt{\eta}\int_{0}^{1}dx_{B}dzdx_{3}\int_{0}^{\infty}b_{B}db_{B}\;b_{3}db_{3}\;\phi_{B}(x_{B},b_{B})\phi^{A}_{P}(x_{3}) (75)
×\displaystyle\times {[(g+g+)(f+(g+(1+x3)+xB)+f(g+f+z))ηϕ0(z)+(g(g+(x32)\displaystyle\bigg{\{}\big{[}(g_{-}+g_{+})(f_{+}(g_{+}(-1+x_{3})+x_{B})+f_{-}(g_{-}+f_{+}z))\sqrt{\eta}\phi_{0}(z)+(-g_{-}(g_{+}(x_{3}-2)
+\displaystyle+ xB)+f+g+z)ηϕs(z)ff+(g(g+x3+xB)+f+g+z)ϕt(z)]En(tcV)hVc(αVe,βVc,bB,b3)\displaystyle x_{B})+f_{+}g_{+}z)\eta\phi_{s}(z)-f_{-}f_{+}(g_{-}(g_{+}x_{3}+x_{B})+f_{+}g_{+}z)\phi_{t}(z)\big{]}\;E_{n}(t_{c}^{V})\;h^{V}_{c}(\alpha^{V}_{e},\beta^{V}_{c},b_{B},b_{3})
\displaystyle- [(fgf+g+)(g+x3xB+f+z)ηϕ0(z)+(gg+x3gxB+f+g+z)ηϕs(z)\displaystyle\big{[}(f_{-}g_{-}-f_{+}g_{+})(g_{+}x_{3}-x_{B}+f_{+}z)\sqrt{\eta}\phi_{0}(z)+(g_{-}g_{+}x_{3}-g_{-}x_{B}+f_{+}g_{+}z)\eta\phi_{s}(z)
+\displaystyle+ ff+(g(g+x3+xB)+f+g+z)ϕt(z)]En(tdV)hVd(αVe,βVd,bB,b3)},\displaystyle f_{-}f_{+}(g_{-}(-g_{+}x_{3}+x_{B})+f_{+}g_{+}z)\phi_{t}(z)\big{]}\;E_{n}(t_{d}^{V})\;h^{V}_{d}(\alpha^{V}_{e},\beta^{V}_{d},b_{B},b_{3})\bigg{\}},
MLReV\displaystyle M^{LR}_{eV} =\displaystyle= 32πCFm4Br03/6/η01dxBdzdx30bBdbBb3db3ϕB(xB,bB)\displaystyle-32\pi C_{F}m^{4}_{B}r_{03}/\sqrt{6}/\sqrt{\eta}\int_{0}^{1}dx_{B}dzdx_{3}\int_{0}^{\infty}b_{B}db_{B}\;b_{3}db_{3}\;\phi_{B}(x_{B},b_{B}) (76)
×\displaystyle\times {[ηϕ0(z)(f(g+f+z)(ϕPP(x3)ϕPT(x3))+f+(g+(x31)+xB)(ϕPP(x3)+ϕPT(x3)))\displaystyle\bigg{\{}\big{[}\sqrt{\eta}\phi_{0}(z)(f_{-}(g_{-}+f_{+}z)(\phi_{P}^{P}(x_{3})-\phi_{P}^{T}(x_{3}))+f_{+}(g_{+}(x_{3}-1)+x_{B})(\phi_{P}^{P}(x_{3})+\phi_{P}^{T}(x_{3})))
\displaystyle- (ηϕs(z)+f+fϕt(z))(f+z+g)(ϕPP(x3)ϕPT(x3))+(ηϕs(z)f+fϕt(z))(xB\displaystyle(\eta\phi_{s}(z)+f_{+}f_{-}\phi_{t}(z))(f_{+}z+g_{-})(\phi_{P}^{P}(x_{3})-\phi_{P}^{T}(x_{3}))+(\eta\phi_{s}(z)-f_{+}f_{-}\phi_{t}(z))(x_{B}
+\displaystyle+ g+(x31))(ϕPP(x3)+ϕPT(x3))]En(tcV)hVc(αVe,βVc,bB,b3)\displaystyle g_{+}(x_{3}-1))(\phi_{P}^{P}(x_{3})+\phi_{P}^{T}(x_{3}))\big{]}E_{n}(t_{c}^{V})\;h^{V}_{c}(\alpha^{V}_{e},\beta^{V}_{c},b_{B},b_{3})
+\displaystyle+ [f+ηϕ0(z)((g+x3xB)(ϕPP(x3)ϕPT(x3))fz(ϕPP(x3)+ϕPT(x3)))\displaystyle\big{[}f_{+}\sqrt{\eta}\phi_{0}(z)((g_{+}x_{3}-x_{B})(\phi_{P}^{P}(x_{3})-\phi_{P}^{T}(x_{3}))-f_{-}z(\phi_{P}^{P}(x_{3})+\phi_{P}^{T}(x_{3})))
+\displaystyle+ (g+x3xB)(ϕPP(x3)ϕPT(x3))(ηϕs(z)f+fϕt(z))\displaystyle(g_{+}x_{3}-x_{B})(\phi_{P}^{P}(x_{3})-\phi_{P}^{T}(x_{3}))(\eta\phi_{s}(z)-f_{+}f_{-}\phi_{t}(z))
+\displaystyle+ f+z(ϕPP(x3)+ϕPT(x3))(ηϕs(z)+f+fϕt(z))]En(tdV)hVd(αVe,βVd,bB,b3)},\displaystyle f_{+}z(\phi_{P}^{P}(x_{3})+\phi_{P}^{T}(x_{3}))(\eta\phi_{s}(z)+f_{+}f_{-}\phi_{t}(z))\big{]}E_{n}(t_{d}^{V})\;h^{V}_{d}(\alpha^{V}_{e},\beta^{V}_{d},b_{B},b_{3})\bigg{\}},
MSPeV\displaystyle M^{SP}_{eV} =\displaystyle= 32πCFm4B/6/η01dxBdzdx30bBdbBb3db3ϕB(xB,bB)ϕAP(x3)\displaystyle-32\pi C_{F}m^{4}_{B}/\sqrt{6}/\sqrt{\eta}\int_{0}^{1}dx_{B}dzdx_{3}\int_{0}^{\infty}b_{B}db_{B}\;b_{3}db_{3}\;\phi_{B}(x_{B},b_{B})\phi^{A}_{P}(x_{3}) (77)
×\displaystyle\times {[(fgf+g+)(g+g+(1x3)xB+f+z)ηϕ0(z)+(g(g+(2\displaystyle\bigg{\{}\big{[}(f_{-}g_{-}-f_{+}g_{+})(g_{-}+g_{+}(1-x_{3})-x_{B}+f_{+}z)\sqrt{\eta}\phi_{0}(z)+(-g_{-}(g_{+}(-2
+\displaystyle+ x3)+xB)+f+g+z)ηϕs(z)+ff+(g(g+x3+xB)+f+g+z)ϕt(z)]\displaystyle x_{3})+x_{B})+f_{+}g_{+}z)\eta\phi_{s}(z)+f_{-}f_{+}(g_{-}(g_{+}x_{3}+x_{B})+f_{+}g_{+}z)\phi_{t}(z)\big{]}
×\displaystyle\times En(tcV)hVc(αVe,βVc,bB,b3)\displaystyle E_{n}(t_{c}^{V})\;h^{V}_{c}(\alpha^{V}_{e},\beta^{V}_{c},b_{B},b_{3})
\displaystyle- [f+(g+g+)(g+x3xBfz)ηϕ0(z)+(gg+x3gxB+f+g+z)\displaystyle\big{[}-f_{+}(g_{-}+g_{+})(g_{+}x_{3}-x_{B}-f_{-}z)\sqrt{\eta}\phi_{0}(z)+(g_{-}g_{+}x_{3}-g_{-}x_{B}+f_{+}g_{+}z)
×\displaystyle\times ηϕs(z)ff+(g(xBg+x3)+f+g+z)ϕt(z)]En(tdV)hVd(αVe,βVd,bB,b3)},\displaystyle\eta\phi_{s}(z)-f_{-}f_{+}(g_{-}(x_{B}-g_{+}x_{3})+f_{+}g_{+}z)\phi_{t}(z)\big{]}E_{n}(t_{d}^{V})\;h^{V}_{d}(\alpha^{V}_{e},\beta^{V}_{d},b_{B},b_{3})\bigg{\}},
FLLaV\displaystyle F^{LL}_{aV} =\displaystyle= 8πCFm4BfB/601dzdx30bdbb3db3\displaystyle-8\pi C_{F}m^{4}_{B}f_{B}/\sqrt{6}\int_{0}^{1}dzdx_{3}\int_{0}^{\infty}bdb\;b_{3}db_{3}\; (78)
×\displaystyle\times {[((f2g+fgg++f+g+(f+(z1)g))ηϕ0(z)ϕPA(x3)+2r03(f+f++g+g+\displaystyle\bigg{\{}\big{[}((f_{-}^{2}g_{-}+f_{-}g_{-}g_{+}+f_{+}g_{+}(f_{+}(z-1)-g_{-}))\sqrt{\eta}\phi_{0}(z)\phi_{P}^{A}(x_{3})+2r_{03}(f_{-}+f_{+}+g_{-}+g_{+}
\displaystyle- f+z)ηϕs(z)ϕPP(x3)+2ff+r03(fg+g++f+(z1))ϕt(z)ϕPP(x3))/η]Ea(teV)hVe(αVa,βVe,b,b3)St(z)\displaystyle f_{+}z)\eta\phi_{s}(z)\phi_{P}^{P}(x_{3})+2f_{-}f_{+}r_{03}(f_{-}-g_{-}+g_{+}+f_{+}(z-1))\phi_{t}(z)\phi_{P}^{P}(x_{3}))/\sqrt{\eta}\big{]}E_{a}(t_{e}^{V})\;h^{V}_{e}(\alpha^{V}_{a},\beta^{V}_{e},b,b_{3})S_{t}(z)
\displaystyle- [f+(f(gg+)g+2x3)ϕ0(z)ϕPA(x3)+2r03η(f+(ϕPP(x3)ϕPT(x3))\displaystyle\big{[}f_{+}(f_{-}(g_{-}-g_{+})-g_{+}^{2}x_{3})\phi_{0}(z)\phi_{P}^{A}(x_{3})+2r_{03}\sqrt{\eta}(f_{+}(\phi_{P}^{P}(x_{3})-\phi_{P}^{T}(x_{3}))
+\displaystyle+ (f+g+x3)(ϕPP(x3)+ϕPT(x3)))ϕs(z)]Ea(tfV)hVf(αVa,βVf,b,b3)St(|f+x3g+|)},\displaystyle(f_{-}+g_{+}x_{3})(\phi_{P}^{P}(x_{3})+\phi_{P}^{T}(x_{3})))\phi_{s}(z)\big{]}E_{a}(t_{f}^{V})\;h^{V}_{f}(\alpha^{V}_{a},\beta^{V}_{f},b,b_{3})S_{t}(|f_{-}+x_{3}g_{+}|)\bigg{\}},
FLRaV\displaystyle F^{LR}_{aV} =\displaystyle= FLLaV,\displaystyle-F^{LL}_{aV}, (79)
FSPaV\displaystyle F^{SP}_{aV} =\displaystyle= 16πCFm4BfB/601dzdx30bdbb3db3\displaystyle 16\pi C_{F}m^{4}_{B}f_{B}/\sqrt{6}\int_{0}^{1}dzdx_{3}\int_{0}^{\infty}bdb\;b_{3}db_{3}\; (80)
×\displaystyle\times {[(2r03(f+(g++fz)fg)ηϕ0(z)ϕPP(x3)(fg+g+(f+(1z)+2g))ηϕs(z)ϕPA(x3)\displaystyle\bigg{\{}\big{[}(2r_{03}(f_{+}(g_{+}+f_{-}z)-f_{-}g_{-})\sqrt{\eta}\phi_{0}(z)\phi_{P}^{P}(x_{3})-(f_{-}g_{-}+g_{+}(f_{+}(1-z)+2g_{-}))\eta\phi_{s}(z)\phi_{P}^{A}(x_{3})
+\displaystyle+ ff+(fg+f+g+(z1))ϕt(z)ϕPA(x3))/η]\displaystyle f_{-}f_{+}(f_{-}g_{-}+f_{+}g_{+}(z-1))\phi_{t}(z)\phi_{P}^{A}(x_{3}))/\sqrt{\eta}\big{]}
×\displaystyle\times Ea(teV)hVe(αVa,βVe,b,b3)St(z)\displaystyle E_{a}(t_{e}^{V})\;h^{V}_{e}(\alpha^{V}_{a},\beta^{V}_{e},b,b_{3})S_{t}(z)
+\displaystyle+ [f+r03ϕ0(z)(g+x3(ϕPP(x3)ϕPT(x3))2fϕPT(x3))2(fg+g+(f++gx3))ηϕs(z)ϕPA(x3)]\displaystyle\big{[}f_{+}r_{03}\phi_{0}(z)(g_{+}x_{3}(\phi_{P}^{P}(x_{3})-\phi_{P}^{T}(x_{3}))-2f_{-}\phi_{P}^{T}(x_{3}))-2(f_{-}g_{-}+g_{+}(f_{+}+g_{-}x_{3}))\sqrt{\eta}\phi_{s}(z)\phi_{P}^{A}(x_{3})\big{]}
×\displaystyle\times Ea(tfV)hVf(αVa,βVf,b,b3)St(|f+x3g+|)},\displaystyle\;E_{a}(t_{f}^{V})\;h^{V}_{f}(\alpha^{V}_{a},\beta^{V}_{f},b,b_{3})S_{t}(|f_{-}+x_{3}g_{+}|)\bigg{\}},
MLLaV\displaystyle M^{LL}_{aV} =\displaystyle= 32πCFm4B/6/η01dxBdzdx30bBdbBbdbϕB(xB,bB)\displaystyle 32\pi C_{F}m^{4}_{B}/\sqrt{6}/\sqrt{\eta}\int_{0}^{1}dx_{B}dzdx_{3}\int_{0}^{\infty}b_{B}db_{B}\;bdb\;\phi_{B}(x_{B},b_{B}) (81)
×\displaystyle\times {[(f+g++fg(g+g+1)+f+(g+g+)(g+(x31)+xB)\displaystyle\bigg{\{}\big{[}(f_{+}g_{+}+f_{-}g_{-}(g_{-}+g_{+}-1)+f_{+}(g_{-}+g_{+})(g_{+}(x_{3}-1)+x_{B})
+\displaystyle+ ff+(g+g+)z)ηϕ0(z)ϕPA(x3)+r03η((g+g+(1x3)xB+f+z4)ϕPP(x3)\displaystyle f_{-}f_{+}(g_{-}+g_{+})z)\sqrt{\eta}\phi_{0}(z)\phi_{P}^{A}(x_{3})+r_{03}\eta((g_{-}+g_{+}(1-x_{3})-x_{B}+f_{+}z-4)\phi_{P}^{P}(x_{3})
\displaystyle- (g+g+(x31)+xB+f+z)ϕPT(x3))ϕs(z)+ff+r03((f+z+g)(ϕPP(x3)ϕPT(x3))\displaystyle(g_{-}+g_{+}(x_{3}-1)+x_{B}+f_{+}z)\phi_{P}^{T}(x_{3}))\phi_{s}(z)+f_{-}f_{+}r_{03}((f_{+}z+g_{-})(\phi_{P}^{P}(x_{3})-\phi_{P}^{T}(x_{3}))
+\displaystyle+ (xB+g+(x31))(ϕPP(x3)+ϕPT(x3)))ϕt(z)]En(tgV)hVg(αVa,βVg,bB,b)\displaystyle(x_{B}+g_{+}(x_{3}-1))(\phi_{P}^{P}(x_{3})+\phi_{P}^{T}(x_{3})))\phi_{t}(z)\big{]}E_{n}(t_{g}^{V})\;h^{V}_{g}(\alpha^{V}_{a},\beta^{V}_{g},b_{B},b)
+\displaystyle+ [(ff+)(f+g+(1z)+g(fxB+g+x3))ηϕ0(z)ϕPA(x3)\displaystyle\big{[}(f_{-}-f_{+})(f_{+}g_{+}(1-z)+g_{-}(f_{-}-x_{B}+g_{+}x_{3}))\sqrt{\eta}\phi_{0}(z)\phi_{P}^{A}(x_{3})
+\displaystyle+ (r03ηϕs(z)+ff+r03ϕt(z))(f+g+x3xB)(ϕPP(x3)ϕPT(x3))\displaystyle(r_{03}\eta\phi_{s}(z)+f_{-}f_{+}r_{03}\phi_{t}(z))(f_{-}+g_{+}x_{3}-x_{B})(\phi_{P}^{P}(x_{3})-\phi_{P}^{T}(x_{3}))
+\displaystyle+ (ff+r03ϕt(z)r03ηϕs(z))f+(z1)(ϕPP(x3)+ϕPT(x3))]\displaystyle(f_{-}f_{+}r_{03}\phi_{t}(z)-r_{03}\eta\phi_{s}(z))f_{+}(z-1)(\phi_{P}^{P}(x_{3})+\phi_{P}^{T}(x_{3}))\big{]}
×\displaystyle\times En(thV)hVh(αVa,βVh,bB,b)},\displaystyle E_{n}(t_{h}^{V})\;h^{V}_{h}(\alpha^{V}_{a},\beta^{V}_{h},b_{B},b)\bigg{\}},
MLRaV\displaystyle M^{LR}_{aV} =\displaystyle= 32πCFm4B/6/η01dxBdzdx30bBdbBbdbϕB(xB,bB)\displaystyle-32\pi C_{F}m^{4}_{B}/\sqrt{6}/\sqrt{\eta}\int_{0}^{1}dx_{B}dzdx_{3}\int_{0}^{\infty}b_{B}db_{B}\;bdb\;\phi_{B}(x_{B},b_{B}) (82)
×\displaystyle\times {[r03ηϕ0(z)(f(1+g+f+z)(ϕPP(x3)ϕPT(x3))+f+(g+(x31)1\displaystyle\bigg{\{}\big{[}r_{03}\sqrt{\eta}\phi_{0}(z)(f_{-}(1+g_{-}+f_{+}z)(\phi_{P}^{P}(x_{3})-\phi_{P}^{T}(x_{3}))+f_{+}(g_{+}(x_{3}-1)-1
+\displaystyle+ xB)(ϕPP(x3)+ϕPT(x3)))+(g(g+(x32)1+xB)g+(1+f+z))ηϕPA(x3)ϕs(z)\displaystyle x_{B})(\phi_{P}^{P}(x_{3})+\phi_{P}^{T}(x_{3})))+(g_{-}(g_{+}(x_{3}-2)-1+x_{B})-g_{+}(1+f_{+}z))\eta\phi_{P}^{A}(x_{3})\phi_{s}(z)
+\displaystyle+ ff+(g++g(g+x3+xB1)+f+g+z)ϕPA(x3)ϕt(z)]En(tgV)hVg(αVa,βVg,bB,b)\displaystyle f_{-}f_{+}(g_{+}+g_{-}(g_{+}x_{3}+x_{B}-1)+f_{+}g_{+}z)\phi_{P}^{A}(x_{3})\phi_{t}(z)\big{]}E_{n}(t_{g}^{V})\;h^{V}_{g}(\alpha^{V}_{a},\beta^{V}_{g},b_{B},b)
\displaystyle- [f+r03ηϕ0(z)((g+x3xB)(ϕPP(x3)+ϕPT(x3))+f(zϕPP(x3)+(2z)ϕPT(x3)))\displaystyle\big{[}f_{+}r_{03}\sqrt{\eta}\phi_{0}(z)((g_{+}x_{3}-x_{B})(\phi_{P}^{P}(x_{3})+\phi_{P}^{T}(x_{3}))+f_{-}(z\phi_{P}^{P}(x_{3})+(2-z)\phi_{P}^{T}(x_{3})))
+\displaystyle+ (f+g+(1z)+g(f+g+x3xB))ηϕPA(x3)ϕs(z)+ff+(g(f+g+x3\displaystyle(f_{+}g_{+}(1-z)+g_{-}(f_{-}+g_{+}x_{3}-x_{B}))\eta\phi_{P}^{A}(x_{3})\phi_{s}(z)+f_{-}f_{+}(g_{-}(f_{-}+g_{+}x_{3}
\displaystyle- xB)+f+g+(1+z))ϕPA(x3)ϕt(z)]En(thV)hVh(αVa,βVh,bB,b)},\displaystyle x_{B})+f_{+}g_{+}(-1+z))\phi_{P}^{A}(x_{3})\phi_{t}(z)\big{]}E_{n}(t_{h}^{V})\;h^{V}_{h}(\alpha^{V}_{a},\beta^{V}_{h},b_{B},b)\bigg{\}},
MSPaV\displaystyle M^{SP}_{aV} =\displaystyle= 32πCFm4B/6/η01dxBdzdx30bBdbBbdbϕB(xB,bB)\displaystyle 32\pi C_{F}m^{4}_{B}/\sqrt{6}/\sqrt{\eta}\int_{0}^{1}dx_{B}dzdx_{3}\int_{0}^{\infty}b_{B}db_{B}\;bdb\;\phi_{B}(x_{B},b_{B}) (83)
×\displaystyle\times {[(g(f(1+g+(x32)+xB)f+(g+(x32)+xB))\displaystyle\bigg{\{}\big{[}(g_{-}(f_{-}(1+g_{+}(x_{3}-2)+x_{B})-f_{+}(g_{+}(x_{3}-2)+x_{B}))
+\displaystyle+ f+g+((f+f)z1))ηϕ0(z)ϕPA(x3)r03η((g+g+(1x3)xB+f+z4)ϕPP(x3)\displaystyle f_{+}g_{+}((f_{+}-f_{-})z-1))\sqrt{\eta}\phi_{0}(z)\phi_{P}^{A}(x_{3})-r_{03}\eta((g_{-}+g_{+}(1-x_{3})-x_{B}+f_{+}z-4)\phi_{P}^{P}(x_{3})
+\displaystyle+ (g+g+(x31)+xB+f+z)ϕPT(x3))ϕs(z)+ff+r03((g+g+(x31)+xB\displaystyle(g_{-}+g_{+}(x_{3}-1)+x_{B}+f_{+}z)\phi_{P}^{T}(x_{3}))\phi_{s}(z)+f_{-}f_{+}r_{03}((g_{-}+g_{+}(x_{3}-1)+x_{B}
+\displaystyle+ f+z)ϕPP(x3)+(g+g+(1x3)xB+f+z)ϕPT(x3))ϕt(z)]En(tgV)hVg(αVa,βVg,bB,b)\displaystyle f_{+}z)\phi_{P}^{P}(x_{3})+(g_{-}+g_{+}(1-x_{3})-x_{B}+f_{+}z)\phi_{P}^{T}(x_{3}))\phi_{t}(z)\big{]}\;E_{n}(t_{g}^{V})\;h^{V}_{g}(\alpha^{V}_{a},\beta^{V}_{g},b_{B},b)
+\displaystyle+ [f+(g+g+)(g+x3xB+fz)ηϕ0(z)ϕPA(x3)+(r03ηϕs(z)+ff+r03ϕt(z))f+(z1)\displaystyle\big{[}f_{+}(g_{-}+g_{+})(g_{+}x_{3}-x_{B}+f_{-}z)\sqrt{\eta}\phi_{0}(z)\phi_{P}^{A}(x_{3})+(r_{03}\eta\phi_{s}(z)+f_{-}f_{+}r_{03}\phi_{t}(z))f_{+}(z-1)
×\displaystyle\times (ϕPP(x3)ϕPT(x3))+(ff+r03ϕt(z)r03ηϕs(z))(g+x3xB+f)(ϕPP(x3)+ϕPT(x3))]\displaystyle(\phi_{P}^{P}(x_{3})-\phi_{P}^{T}(x_{3}))+(f_{-}f_{+}r_{03}\phi_{t}(z)-r_{03}\eta\phi_{s}(z))(g_{+}x_{3}-x_{B}+f_{-})(\phi_{P}^{P}(x_{3})+\phi_{P}^{T}(x_{3}))\big{]}
×\displaystyle\times En(thV)hVh(αVa,βVh,bB,b)},\displaystyle E_{n}(t_{h}^{V})\;h^{V}_{h}(\alpha^{V}_{a},\beta^{V}_{h},b_{B},b)\bigg{\}},
FLLeP\displaystyle F^{LL}_{eP} =\displaystyle= 8πCFmB4F(w2)01dxBdx30bBdbBb3db3ϕB(xB,bB)\displaystyle 8\pi C_{F}m_{B}^{4}F(w^{2})\int_{0}^{1}dx_{B}dx_{3}\int_{0}^{\infty}b_{B}\;db_{B}\;b_{3}\;db_{3}\;\phi_{B}(x_{B},b_{B}) (84)
×\displaystyle\times {[(fgf+g+(1+g+x3))ϕPA(x3)+r03(f+f+(2g+x31))ϕPP(x3)\displaystyle\bigg{\{}\big{[}(f_{-}g_{-}-f_{+}g_{+}(1+g_{+}x_{3}))\phi_{P}^{A}(x_{3})+r_{03}(f_{-}+f_{+}(2g_{+}x_{3}-1))\phi_{P}^{P}(x_{3})
\displaystyle- r03(f+f+2f+g+x3)ϕPT(x3)]Ee(taP)hPa(αPe,βPa,bB,b3)St(x3)\displaystyle r_{03}(f_{-}+f_{+}-2f_{+}g_{+}x_{3})\phi_{P}^{T}(x_{3})\big{]}E_{e}(t_{a}^{P})\;h^{P}_{a}(\alpha^{P}_{e},\beta^{P}_{a},b_{B},b_{3})S_{t}(x_{3})
\displaystyle- [g+(f+g+f(xBg))ϕPA(x3)+2r03(f+g++f(xBg))ϕPP(x3)]\displaystyle\big{[}-g_{+}(f_{+}g_{-}+f_{-}(x_{B}-g_{-}))\phi_{P}^{A}(x_{3})+2r_{03}(f_{+}g_{+}+f_{-}(x_{B}-g_{-}))\phi_{P}^{P}(x_{3})\big{]}
×\displaystyle\times Ee(tbP)hPb(αPe,βPb,bB,b3)St(|xBg|)},\displaystyle\;E_{e}(t_{b}^{P})\;h^{P}_{b}(\alpha^{P}_{e},\beta^{P}_{b},b_{B},b_{3})S_{t}(|x_{B}-g_{-}|)\bigg{\}},
FLReP\displaystyle F^{LR}_{eP} =\displaystyle= FLLeP,\displaystyle F^{LL}_{eP}, (85)
FSPeP\displaystyle F^{SP}_{eP} =\displaystyle= 0,\displaystyle 0, (86)
MLLeP\displaystyle M^{LL}_{eP} =\displaystyle= 32πCFm4B/601dxBdzdx30bBdbBbdbϕB(xB,bB)ϕ0(z)\displaystyle 32\pi C_{F}m^{4}_{B}/\sqrt{6}\int_{0}^{1}dx_{B}dzdx_{3}\int_{0}^{\infty}b_{B}db_{B}\;bdb\;\phi_{B}(x_{B},b_{B})\phi_{0}(z) (87)
×\displaystyle\times {[(ff+)(fg+g+(f+(1z)+gx3xB))ϕPA(x3)+r03(f+g+x3+fxB\displaystyle\bigg{\{}\big{[}(f_{-}-f_{+})(f_{-}g_{-}+g_{+}(f_{+}(1-z)+g_{-}x_{3}-x_{B}))\phi_{P}^{A}(x_{3})+r_{03}(f_{+}g_{+}x_{3}+f_{-}x_{B}
+\displaystyle+ ff+z)ϕPP+r03(f+g+x3+f(xB+f+(z2)))ϕPT(x3)]En(tcP)hPc(αPe,βPc,bB,b)\displaystyle f_{-}f_{+}z)\phi^{P}_{P}+r_{03}(-f_{+}g_{+}x_{3}+f_{-}(x_{B}+f_{+}(z-2)))\phi_{P}^{T}(x_{3})\big{]}\;E_{n}(t_{c}^{P})\;h^{P}_{c}(\alpha^{P}_{e},\beta^{P}_{c},b_{B},b)
\displaystyle- [(fgf+g+)(f+z+g+x3xB)ϕPA(x3)+r03(f+g+x3+f(xBf+z)ϕPP(x3)\displaystyle\big{[}(f_{-}g_{-}-f_{+}g_{+})(f_{+}z+g_{+}x_{3}-x_{B})\phi_{P}^{A}(x_{3})+r_{03}(f_{+}g_{+}x_{3}+f_{-}(x_{B}-f_{+}z)\phi_{P}^{P}(x_{3})
+\displaystyle+ r03(f+g+x3f(xBf+z)))ϕPT(x3)]En(tdP)hPd(αPe,βPd,bB,b)},\displaystyle r_{03}(f_{+}g_{+}x_{3}-f_{-}(x_{B}-f_{+}z)))\phi_{P}^{T}(x_{3})\big{]}\;E_{n}(t_{d}^{P})\;h^{P}_{d}(\alpha^{P}_{e},\beta^{P}_{d},b_{B},b)\bigg{\}},
MLReP\displaystyle M^{LR}_{eP} =\displaystyle= 32πCFm4B/6/η01dxBdzdx30bBdbBbdbϕB(xB,bB)\displaystyle 32\pi C_{F}m^{4}_{B}/\sqrt{6}/\sqrt{\eta}\int_{0}^{1}dx_{B}dzdx_{3}\int_{0}^{\infty}b_{B}db_{B}\;bdb\;\phi_{B}(x_{B},b_{B}) (88)
×\displaystyle\times {[(fg+g+(f++gx3xBf+z))ηϕPA(x3)ϕs(z)+ff+(fg+g+(gx3+xB\displaystyle\bigg{\{}\big{[}-(f_{-}g_{-}+g_{+}(f_{+}+g_{-}x_{3}-x_{B}-f_{+}z))\eta\phi_{P}^{A}(x_{3})\phi_{s}(z)+f_{-}f_{+}(f_{-}g_{-}+g_{+}(g_{-}x_{3}+x_{B}
+\displaystyle+ f+(1+z)))ϕPA(x3)ϕt(z)+r03ϕPP(x3)((f+f+(1z)+g+x3xB)ηϕs(z)+ff+(f+g+x3\displaystyle f_{+}(-1+z)))\phi_{P}^{A}(x_{3})\phi_{t}(z)+r_{03}\phi_{P}^{P}(x_{3})(-(f_{-}+f_{+}(1-z)+g_{+}x_{3}-x_{B})\eta\phi_{s}(z)+f_{-}f_{+}(f_{-}+g_{+}x_{3}
+\displaystyle+ xB+f+(1+z))ϕt(z))+r03ϕPT(x3)((f+g+x3+xB+f+(1+z))ηϕs(z)\displaystyle x_{B}+f_{+}(-1+z))\phi_{t}(z))+r_{03}\phi_{P}^{T}(x_{3})(-(f_{-}+g_{+}x_{3}+x_{B}+f_{+}(-1+z))\eta\phi_{s}(z)
+\displaystyle+ ff+(f+f+(1z)+g+x3xB)ϕt(z))]En(tcP)hPc(αPe,βPc,bB,b)\displaystyle f_{-}f_{+}(f_{-}+f_{+}(1-z)+g_{+}x_{3}-x_{B})\phi_{t}(z))\big{]}\;E_{n}(t_{c}^{P})\;h^{P}_{c}(\alpha^{P}_{e},\beta^{P}_{c},b_{B},b)
+\displaystyle+ [g+ϕPA(x3)((gx3xB+f+z)ηϕs(z)+ff+(gx3+xBf+z)ϕt(z))\displaystyle\big{[}g_{+}\phi_{P}^{A}(x_{3})((g_{-}x_{3}-x_{B}+f_{+}z)\eta\phi_{s}(z)+f_{-}f_{+}(g_{-}x_{3}+x_{B}-f_{+}z)\phi_{t}(z))
+\displaystyle+ r03ϕPP(x3)((g+x3xB+f+z)ηϕs(z)+ff+(g+x3+xBf+z)ϕt(z))\displaystyle r_{03}\phi_{P}^{P}(x_{3})((g_{+}x_{3}-x_{B}+f_{+}z)\eta\phi_{s}(z)+f_{-}f_{+}(g_{+}x_{3}+x_{B}-f_{+}z)\phi_{t}(z))
+\displaystyle+ r03ϕPT(x3)((g+x3+xBf+z)ηϕs(z)+ff+(g+x3xB+f+z)ϕt(z))]\displaystyle r_{03}\phi_{P}^{T}(x_{3})((g_{+}x_{3}+x_{B}-f_{+}z)\eta\phi_{s}(z)+f_{-}f_{+}(g_{+}x_{3}-x_{B}+f_{+}z)\phi_{t}(z))\big{]}
×\displaystyle\times En(tdP)hPd(αPe,βPd,bB,b)},\displaystyle\;E_{n}(t_{d}^{P})\;h^{P}_{d}(\alpha^{P}_{e},\beta^{P}_{d},b_{B},b)\bigg{\}},
MSPeP\displaystyle M^{SP}_{eP} =\displaystyle= 32πCFm4B/601dxBdzdx30bBdbBbdbϕB(xB,bB)ϕ0(z)\displaystyle 32\pi C_{F}m^{4}_{B}/\sqrt{6}\int_{0}^{1}dx_{B}dzdx_{3}\int_{0}^{\infty}b_{B}db_{B}\;bdb\;\phi_{B}(x_{B},b_{B})\phi_{0}(z) (89)
×\displaystyle\times {[(fgf+g+)(f+f+(1z)+g+x3xB)ϕPA(x3)+r03(f+g+x3+fxB\displaystyle\bigg{\{}\big{[}(f_{-}g_{-}-f_{+}g_{+})(f_{-}+f_{+}(1-z)+g_{+}x_{3}-x_{B})\phi_{P}^{A}(x_{3})+r_{03}(f_{+}g_{+}x_{3}+f_{-}x_{B}
+\displaystyle+ ff+z)ϕPP(x3)+r03(f+g+x3f(xB+f+(z2)))ϕPT(x3)]En(tcP)hPc(αPe,βPc,bB,b)\displaystyle f_{-}f_{+}z)\phi_{P}^{P}(x_{3})+r_{03}(f_{+}g_{+}x_{3}-f_{-}(x_{B}+f_{+}(z-2)))\phi_{P}^{T}(x_{3})\big{]}\;E_{n}(t_{c}^{P})\;h^{P}_{c}(\alpha^{P}_{e},\beta^{P}_{c},b_{B},b)
\displaystyle- [(ff+)g+(gx3xB+f+z)ϕPA(x3)+r03(f+g+x3+fxBff+z)ϕPP(x3)\displaystyle\big{[}(f_{-}-f_{+})g_{+}(g_{-}x_{3}-x_{B}+f_{+}z)\phi_{P}^{A}(x_{3})+r_{03}(f_{+}g_{+}x_{3}+f_{-}x_{B}-f_{-}f_{+}z)\phi_{P}^{P}(x_{3})
\displaystyle- r03(f+g+x3+f(f+zxB))ϕPT(x3)]En(tdP)hPd(αPe,βPd,bB,b)},\displaystyle r_{03}(f_{+}g_{+}x_{3}+f_{-}(f_{+}z-x_{B}))\phi_{P}^{T}(x_{3})\big{]}E_{n}(t_{d}^{P})\;h^{P}_{d}(\alpha^{P}_{e},\beta^{P}_{d},b_{B},b)\bigg{\}},
FLLaP\displaystyle F^{LL}_{aP} =\displaystyle= 8πCFm4BfB01dzdx30bdbb3db3\displaystyle-8\pi C_{F}m^{4}_{B}f_{B}\int_{0}^{1}dzdx_{3}\int_{0}^{\infty}bdb\;b_{3}db_{3}\; (90)
×\displaystyle\times {[(fg+f+g+(g+x31))ϕ0(z)ϕPA(x3)+2r03(g+x32)ηϕPP(x3)ϕs(z)2g+r03x3ηϕPT(x3)ϕs(z)]\displaystyle\bigg{\{}\big{[}(f_{-}g_{-}+f_{+}g_{+}(g_{+}x_{3}-1))\phi_{0}(z)\phi_{P}^{A}(x_{3})+2r_{03}(g_{+}x_{3}-2)\sqrt{\eta}\phi_{P}^{P}(x_{3})\phi_{s}(z)-2g_{+}r_{03}x_{3}\sqrt{\eta}\phi_{P}^{T}(x_{3})\phi_{s}(z)\big{]}
×\displaystyle\times Ea(teP)hPe(αPa,βPe,b,b3)St(x3)\displaystyle\;E_{a}(t_{e}^{P})\;h^{P}_{e}(\alpha^{P}_{a},\beta^{P}_{e},b,b_{3})S_{t}(x_{3})
+\displaystyle+ [g+(f+(g+f+z)fg)ϕ0(z)ϕPA(x3)+2r03ϕPP(x3)((g+g++f+z)ηϕs(z)\displaystyle\big{[}g_{+}(f_{+}(g_{-}+f_{+}z)-f_{-}g_{-})\phi_{0}(z)\phi_{P}^{A}(x_{3})+2r_{03}\phi_{P}^{P}(x_{3})((g_{-}+g_{+}+f_{+}z)\sqrt{\eta}\phi_{s}(z)
+\displaystyle+ ff+(gg++f+z)ϕt(z)/η)]Ea(tfP)hPf(αPa,βPf,b,b3)St(|g+zf+|)},\displaystyle f_{-}f_{+}(g_{-}-g_{+}+f_{+}z)\phi_{t}(z)/\sqrt{\eta})\big{]}\;E_{a}(t_{f}^{P})\;h^{P}_{f}(\alpha^{P}_{a},\beta^{P}_{f},b,b_{3})S_{t}(|g_{-}+zf_{+}|)\bigg{\}},
FLRaP\displaystyle F^{LR}_{aP} =\displaystyle= FLLaP,\displaystyle-F^{LL}_{aP}, (91)
FSPaP\displaystyle F^{SP}_{aP} =\displaystyle= 16πCFm4BfB01dzdx30bdbb3db3\displaystyle 16\pi C_{F}m^{4}_{B}f_{B}\int_{0}^{1}dzdx_{3}\int_{0}^{\infty}bdb\;b_{3}db_{3}\; (92)
×\displaystyle\times {[2(g(g+x31)g+)ηϕPA(x3)ϕs(z)+r03(f+f+(g+x31))ϕ0(z)ϕPP(x3)r03(f+f+\displaystyle\bigg{\{}\big{[}2(g_{-}(g_{+}x_{3}-1)-g_{+})\sqrt{\eta}\phi_{P}^{A}(x_{3})\phi_{s}(z)+r_{03}(f_{-}+f_{+}(g_{+}x_{3}-1))\phi_{0}(z)\phi_{P}^{P}(x_{3})-r_{03}(f_{-}+f_{+}
\displaystyle- f+g+x3)ϕ0(z)ϕPT(x3)]Ea(teP)hPe(αPa,βPe,b,b3)St(x3)\displaystyle f_{+}g_{+}x_{3})\phi_{0}(z)\phi_{P}^{T}(x_{3})\big{]}\;E_{a}(t_{e}^{P})\;h^{P}_{e}(\alpha^{P}_{a},\beta^{P}_{e},b,b_{3})S_{t}(x_{3})
+\displaystyle+ [ϕPA(x3)(2gg+ηϕs(z)+f+g+z(ff+ϕt(z)ηϕs(z)))/η+2r03(f+g++f(g+f+z))ϕ0(z)ϕPP(x3)]\displaystyle\big{[}\phi_{P}^{A}(x_{3})(-2g_{-}g_{+}\eta\phi_{s}(z)+f_{+}g_{+}z(f_{-}f_{+}\phi_{t}(z)-\eta\phi_{s}(z)))/\sqrt{\eta}+2r_{03}(-f_{+}g_{+}+f_{-}(g_{-}+f_{+}z))\phi_{0}(z)\phi_{P}^{P}(x_{3})\big{]}
×\displaystyle\times Ea(tfP)hPf(αPa,βPf,b,b3)St(|g+zf+|)},\displaystyle\;E_{a}(t_{f}^{P})\;h^{P}_{f}(\alpha^{P}_{a},\beta^{P}_{f},b,b_{3})S_{t}(|g_{-}+zf_{+}|)\bigg{\}},
MLLaP\displaystyle M^{LL}_{aP} =\displaystyle= 32πCFm4B/6/η01dxBdzdx30bBdbBbdbϕB(xB,bB)\displaystyle 32\pi C_{F}m^{4}_{B}/\sqrt{6}/\sqrt{\eta}\int_{0}^{1}dx_{B}dzdx_{3}\int_{0}^{\infty}b_{B}db_{B}\;bdb\;\phi_{B}(x_{B},b_{B}) (93)
×\displaystyle\times {[(f2gf(g(1+f+g+x3)+g+(xB+f+(z1)))+f+g+(1gx3+xB\displaystyle\bigg{\{}\big{[}(f_{-}^{2}g_{-}-f_{-}(g_{-}(1+f_{+}-g_{+}x_{3})+g_{+}(x_{B}+f_{+}(z-1)))+f_{+}g_{+}(1-g_{-}x_{3}+x_{B}
+\displaystyle+ f+(z1)))ηϕ0(z)ϕPA(x3)+r03ϕPP(x3)((4+f+f+(1z)+g+x3xB)ηϕs(z)+ff+(f\displaystyle f_{+}(z-1)))\sqrt{\eta}\phi_{0}(z)\phi_{P}^{A}(x_{3})+r_{03}\phi_{P}^{P}(x_{3})(-(-4+f_{-}+f_{+}(1-z)+g_{+}x_{3}-x_{B})\eta\phi_{s}(z)+f_{-}f_{+}(f_{-}
+\displaystyle+ g+x3+xB+f+(z1))ϕt(z))+r03ϕPT(x3)((f+g+x3+xB+f+(z1))ηϕs(z)\displaystyle g_{+}x_{3}+x_{B}+f_{+}(z-1))\phi_{t}(z))+r_{03}\phi_{P}^{T}(x_{3})(-(f_{-}+g_{+}x_{3}+x_{B}+f_{+}(z-1))\eta\phi_{s}(z)
+\displaystyle+ ff+(f+f+(1z)+g+x3xB)ϕt(z))]En(tgP)hPg(αPa,βPg,bB,b)\displaystyle f_{-}f_{+}(f_{-}+f_{+}(1-z)+g_{+}x_{3}-x_{B})\phi_{t}(z))\big{]}\;E_{n}(t_{g}^{P})\;h^{P}_{g}(\alpha^{P}_{a},\beta^{P}_{g},b_{B},b)
+\displaystyle+ [(g+g+)(f+g+(x31)+f(gxB+f+z))ηϕ0(z)ϕPA(x3)+r03ϕPP(x3)((g+g+(1x3)\displaystyle\big{[}(g_{-}+g_{+})(f_{+}g_{+}(x_{3}-1)+f_{-}(g_{-}-x_{B}+f_{+}z))\sqrt{\eta}\phi_{0}(z)\phi_{P}^{A}(x_{3})+r_{03}\phi_{P}^{P}(x_{3})(-(g_{-}+g_{+}(1-x_{3})
\displaystyle- xB+f+z)ηϕs(z)+ff+(g+g+(x31)xB+f+z)ϕt(z))+r03ϕPT(x3)((g+g+(1x3)\displaystyle x_{B}+f_{+}z)\eta\phi_{s}(z)+f_{-}f_{+}(g_{-}+g_{+}(x_{3}-1)-x_{B}+f_{+}z)\phi_{t}(z))+r_{03}\phi_{P}^{T}(x_{3})((-g_{-}+g_{+}(1-x_{3})
+\displaystyle+ xBf+z)ηϕs(z)+ff+(g+g+(1x3)xB+f+z)ϕt(z))]\displaystyle x_{B}-f_{+}z)\eta\phi_{s}(z)+f_{-}f_{+}(g_{-}+g_{+}(1-x_{3})-x_{B}+f_{+}z)\phi_{t}(z))\big{]}
×\displaystyle\times En(thP)hPh(αPa,βPh,bB,b)},\displaystyle\;E_{n}(t_{h}^{P})\;h^{P}_{h}(\alpha^{P}_{a},\beta^{P}_{h},b_{B},b)\bigg{\}},
MLRaP\displaystyle M^{LR}_{aP} =\displaystyle= 32πCFm4B/6/η01dxBdzdx30bBdbBbdbϕB(xB,bB)\displaystyle 32\pi C_{F}m^{4}_{B}/\sqrt{6}/\sqrt{\eta}\int_{0}^{1}dx_{B}dzdx_{3}\int_{0}^{\infty}b_{B}db_{B}\;bdb\;\phi_{B}(x_{B},b_{B}) (94)
×\displaystyle\times {[ϕPA(x3)(g(1+f+g+x3)(ff+ϕt(z)ηϕs(z))+g+(1+xB+f+(z1))(ηϕs(z)\displaystyle\bigg{\{}\big{[}\phi_{P}^{A}(x_{3})(g_{-}(1+f_{-}+g_{+}x_{3})(f_{-}f_{+}\phi_{t}(z)-\eta\phi_{s}(z))+g_{+}(-1+x_{B}+f_{+}(z-1))(\eta\phi_{s}(z)
+\displaystyle+ ff+ϕt(z)))+r03(f+(1+g+x3)+f(xB+f+z1))ηϕ0(z)ϕPP(x3)+r03(f+(1\displaystyle f_{-}f_{+}\phi_{t}(z)))+r_{03}(f_{+}(1+g_{+}x_{3})+f_{-}(x_{B}+f_{+}z-1))\sqrt{\eta}\phi_{0}(z)\phi_{P}^{P}(x_{3})+r_{03}(-f_{+}(1
+\displaystyle+ g+x3)+f(1+xB+f+(z2)))ηϕ0(z)ϕPT(x3)]En(tgP)hPg(αPa,βPg,bB,b)\displaystyle g_{+}x_{3})+f_{-}(-1+x_{B}+f_{+}(z-2)))\sqrt{\eta}\phi_{0}(z)\phi_{P}^{T}(x_{3})\big{]}E_{n}(t_{g}^{P})\;h^{P}_{g}(\alpha^{P}_{a},\beta^{P}_{g},b_{B},b)
\displaystyle- [g+ϕPA(x3)((g(x32)+xBf+z)ηϕs(z)+ff+(gx3xB+f+z)ϕt(z))\displaystyle\big{[}g_{+}\phi_{P}^{A}(x_{3})(-(g_{-}(x_{3}-2)+x_{B}-f_{+}z)\eta\phi_{s}(z)+f_{-}f_{+}(g_{-}x_{3}-x_{B}+f_{+}z)\phi_{t}(z))
+\displaystyle+ r03(f+g+(x31)+f(gxB+f+z))ηϕ0(z)ϕPP(x3)+r03(f+g+(x31)\displaystyle r_{03}(f_{+}g_{+}(x_{3}-1)+f_{-}(g_{-}-x_{B}+f_{+}z))\sqrt{\eta}\phi_{0}(z)\phi_{P}^{P}(x_{3})+r_{03}(-f_{+}g_{+}(x_{3}-1)
+\displaystyle+ f(gxB+f+z))ηϕ0(z)ϕPT(x3)]En(thP)hPh(αPa,βPh,bB,b)},\displaystyle f_{-}(g_{-}-x_{B}+f_{+}z))\sqrt{\eta}\phi_{0}(z)\phi_{P}^{T}(x_{3})\big{]}E_{n}(t_{h}^{P})\;h^{P}_{h}(\alpha^{P}_{a},\beta^{P}_{h},b_{B},b)\bigg{\}},
MSPaP\displaystyle M^{SP}_{aP} =\displaystyle= 32πCFm4B/6/η01dxBdzdx30bBdbBbdbϕB(xB,bB)\displaystyle 32\pi C_{F}m^{4}_{B}/\sqrt{6}/\sqrt{\eta}\int_{0}^{1}dx_{B}dzdx_{3}\int_{0}^{\infty}b_{B}db_{B}\;bdb\;\phi_{B}(x_{B},b_{B}) (95)
×\displaystyle\times {[(f+g+(1+(g+g+)x3)+f(g(1+xB)+g+xB+f+(g+g+)z))ηϕ0(z)ϕPA(x3)\displaystyle\bigg{\{}\big{[}(f_{+}g_{+}(-1+(g_{-}+g_{+})x_{3})+f_{-}(g_{-}(1+x_{B})+g_{+}x_{B}+f_{+}(g_{-}+g_{+})z))\sqrt{\eta}\phi_{0}(z)\phi_{P}^{A}(x_{3})
+\displaystyle+ r03ϕPP(x3)((4+f+f+(1z)+g+x3xB)ηϕs(z)+ff+(f+g+x3+xB+f+(1\displaystyle r_{03}\phi_{P}^{P}(x_{3})((-4+f_{-}+f_{+}(1-z)+g_{+}x_{3}-x_{B})\eta\phi_{s}(z)+f_{-}f_{+}(f_{-}+g_{+}x_{3}+x_{B}+f_{+}(-1
+\displaystyle+ z))ϕt(z))+r03ϕPT(x3)((f+g+x3+xB+f+(z1))ηϕs(z)ff+(f+f+(1z)\displaystyle z))\phi_{t}(z))+r_{03}\phi_{P}^{T}(x_{3})(-(f_{-}+g_{+}x_{3}+x_{B}+f_{+}(z-1))\eta\phi_{s}(z)-f_{-}f_{+}(f_{-}+f_{+}(1-z)
+\displaystyle+ g+x3xB)ϕt(z))]En(tgP)hPg(αPa,βPg,bB,b)\displaystyle g_{+}x_{3}-x_{B})\phi_{t}(z))\big{]}E_{n}(t_{g}^{P})\;h^{P}_{g}(\alpha^{P}_{a},\beta^{P}_{g},b_{B},b)
+\displaystyle+ [(ff+)g+(g(x32)+xBf+z)ηϕ0(z)ϕPA(x3)+r03ϕPP(x3)((g+g+(1x3)xB\displaystyle\big{[}(f_{-}-f_{+})g_{+}(g_{-}(x_{3}-2)+x_{B}-f_{+}z)\sqrt{\eta}\phi_{0}(z)\phi_{P}^{A}(x_{3})+r_{03}\phi_{P}^{P}(x_{3})((g_{-}+g_{+}(1-x_{3})-x_{B}
+\displaystyle+ f+z)ηϕs(z)+ff+(g+g+(x31)xB+f+z)ϕt(z))+r03ϕPT(x3)((g+g+(1x3)\displaystyle f_{+}z)\eta\phi_{s}(z)+f_{-}f_{+}(g_{-}+g_{+}(x_{3}-1)-x_{B}+f_{+}z)\phi_{t}(z))+r_{03}\phi_{P}^{T}(x_{3})((-g_{-}+g_{+}(1-x_{3})
+\displaystyle+ xBf+z)ηϕs(z)ff+(g+g+(1x3)xB+f+z)ϕt(z))]En(thP)hPh(αPa,βPh,bB,b)},\displaystyle x_{B}-f_{+}z)\eta\phi_{s}(z)-f_{-}f_{+}(g_{-}+g_{+}(1-x_{3})-x_{B}+f_{+}z)\phi_{t}(z))\big{]}E_{n}(t_{h}^{P})\;h^{P}_{h}(\alpha^{P}_{a},\beta^{P}_{h},b_{B},b)\bigg{\}},

with the color factor CF=4/3C_{F}=4/3 and the mass ratio r03=m03/mB(s)r_{03}=m_{03}/m_{B_{(s)}}.

The evolution factors Ei(t)E_{i}(t), i=e,a,ni=e,a,n, in the above factorization formulas are written as

Ee(t)\displaystyle E_{e}(t) =\displaystyle= αs(t)exp[SB(t)SV(t)],\displaystyle\alpha_{s}(t)\exp[-S_{B}(t)-S_{V}(t)],
Ea(t)\displaystyle E_{a}(t) =\displaystyle= αs(t)exp[SP(t)SV(t)],\displaystyle\alpha_{s}(t)\exp[-S_{P}(t)-S_{V}(t)],
En(t)\displaystyle E_{n}(t) =\displaystyle= αs(t)exp[SB(t)SV(t)SP(t)],\displaystyle\alpha_{s}(t)\exp[-S_{B}(t)-S_{V}(t)-S_{P}(t)], (96)

where the Sudakov exponents SB,P,VS_{B,P,V} are given by

SB\displaystyle S_{B} =\displaystyle= s(xBmB2,bB)+53t1/bBdμ¯μ¯γq(αs(μ¯)),\displaystyle s(x_{B}\frac{m_{B}}{\sqrt{2}},b_{B})+\frac{5}{3}\int^{t}_{1/b_{B}}\frac{d\bar{\mu}}{\bar{\mu}}\gamma_{q}(\alpha_{s}(\bar{\mu})),
SV\displaystyle S_{V} =\displaystyle= s(mB2zf+,b)+s(mB2(1z)f+,b)+2t1/bdμ¯μ¯γq(αs(μ¯)),\displaystyle s(\frac{m_{B}}{\sqrt{2}}zf_{+},b)+s(\frac{m_{B}}{\sqrt{2}}(1-z)f_{+},b)+2\int^{t}_{1/b}\frac{d\bar{\mu}}{\bar{\mu}}\gamma_{q}(\alpha_{s}(\bar{\mu})),
SP\displaystyle S_{P} =\displaystyle= s(mB2x3g+,b3)+s(mB2(1x3)g+,b3)+2t1/b3dμ¯μ¯γq(αs(μ¯)),\displaystyle s(\frac{m_{B}}{\sqrt{2}}x_{3}g_{+},b_{3})+s(\frac{m_{B}}{\sqrt{2}}(1-x_{3})g_{+},b_{3})+2\int^{t}_{1/b_{3}}\frac{d\bar{\mu}}{\bar{\mu}}\gamma_{q}(\alpha_{s}(\bar{\mu})), (97)

with the quark anomalous dimension γq=αs/π\gamma_{q}=-\alpha_{s}/\pi. The explicit expressions of the functions s(Q,b)s(Q,b) can be found in the Appendix of Ref. prd76-074018 .

The threshold resummation factor St(x)S_{t}(x) takes the form

St(x)=21+2cΓ(3/2+c)πΓ(1+c)[x(1x)]c,\displaystyle S_{t}(x)=\frac{2^{1+2c}\Gamma(3/2+c)}{\sqrt{\pi}\Gamma(1+c)}[x(1-x)]^{c}, (98)

where c=0.3c=0.3 is adopted in our numerical analysis.

The hard functions hV(P)ih^{V(P)}_{i}, i=ai=a-hh, in the factorization formulas are written as

hV(P)i(αV(P)j,βV(P)i,b1,b2)\displaystyle h^{V(P)}_{i}(\alpha^{V(P)}_{j},\beta^{V(P)}_{i},b_{1},b_{2}) =\displaystyle= h1(αV(P)j,b1)h2(βV(P)i,b1,b2),j=e,a,\displaystyle h_{1}(\alpha^{V(P)}_{j},b_{1})h_{2}(\beta^{V(P)}_{i},b_{1},b_{2}),\quad j=e,a,
h1(αV(P)j,b1)\displaystyle h_{1}(\alpha^{V(P)}_{j},b_{1}) =\displaystyle= {K0(αV(P)jb1),αV(P)j>0K0(iαV(P)jb1),αV(P)j<0\displaystyle\left\{\begin{array}[]{ll}K_{0}(\sqrt{\alpha^{V(P)}_{j}}b_{1}),&\quad\quad\alpha^{V(P)}_{j}>0\\ K_{0}(i\sqrt{-\alpha^{V(P)}_{j}}b_{1}),&\quad\quad\alpha^{V(P)}_{j}<0\end{array}\right. (101)
h2(βV(P)i,b1,b2)\displaystyle h_{2}(\beta^{V(P)}_{i},b_{1},b_{2}) =\displaystyle= {θ(b1b2)I0(βV(P)ib2)K0(βV(P)ib1)+(b1b2),βV(P)i>0θ(b1b2)I0(βV(P)ib2)K0(iβV(P)ib1)+(b1b2),βV(P)i<0\displaystyle\left\{\begin{array}[]{ll}\theta(b_{1}-b_{2})I_{0}(\sqrt{\beta^{V(P)}_{i}}b_{2})K_{0}(\sqrt{\beta^{V(P)}_{i}}b_{1})+(b_{1}\leftrightarrow b_{2}),&\quad\beta^{V(P)}_{i}>0\\ \theta(b_{1}-b_{2})I_{0}(\sqrt{-\beta^{V(P)}_{i}}b_{2})K_{0}(i\sqrt{-\beta^{V(P)}_{i}}b_{1})+(b_{1}\leftrightarrow b_{2}),&\quad\beta^{V(P)}_{i}<0\end{array}\right. (104)

with the Bessel function K0(ix)=π[N0(x)+iJ0(x)]/2K_{0}(ix)=\pi[-N_{0}(x)+iJ_{0}(x)]/2, and the virtuality αV(P)j\alpha^{V(P)}_{j} (βV(P)i\beta^{V(P)}_{i}) of the internal gluon (quark) in the diagrams:

αVe\displaystyle\alpha^{V}_{e} =\displaystyle= f+zxB,αVa=f+(z1)(f+g+x3),\displaystyle f_{+}zx_{B},\quad\quad\alpha^{V}_{a}=f_{+}(z-1)(f_{-}+g_{+}x_{3}),
βVa\displaystyle\beta^{V}_{a} =\displaystyle= zf+,βVb=(xBf)f+\displaystyle zf_{+},~{}\quad\quad\quad\beta^{V}_{b}=(x_{B}-f_{-})f_{+}
βVc\displaystyle\beta^{V}_{c} =\displaystyle= (g+f+z)(xB+g+(x31)),βVd=f+z(xBg+x3),\displaystyle(g_{-}+f_{+}z)(x_{B}+g_{+}(x_{3}-1)),\quad\quad\quad\quad\beta^{V}_{d}=f_{+}z(x_{B}-g_{+}x_{3}),
βVe\displaystyle\beta^{V}_{e} =\displaystyle= (f+g+)(f+(1z)+g),βVf=(f+g+x3)f+,\displaystyle-(f_{-}+g_{+})(f_{+}(1-z)+g_{-}),~{}\,\quad\quad\quad\quad\beta^{V}_{f}=-(f_{-}+g_{+}x_{3})f_{+},
βVg\displaystyle\beta^{V}_{g} =\displaystyle= 1+(g+f+z)(xB+g+(x31),βVh=f+(z1)(fxB+g+x3),\displaystyle 1+(g_{-}+f_{+}z)(x_{B}+g_{+}(x_{3}-1),~{}~{}\,\quad\quad\beta^{V}_{h}=f_{+}(z-1)(f_{-}-x_{B}+g_{+}x_{3}), (105)

and

αPe\displaystyle\alpha^{P}_{e} =\displaystyle= g+x3xB,αPa=g+(x31)(g+f+z),\displaystyle g_{+}x_{3}x_{B},\quad\quad\quad\alpha^{P}_{a}=g_{+}(x_{3}-1)(g_{-}+f_{+}z),
βPa\displaystyle\beta^{P}_{a} =\displaystyle= x3g+,βPb=(xBg)g+\displaystyle x_{3}g_{+},~{}\quad\quad\quad\quad\beta^{P}_{b}=(x_{B}-g_{-})g_{+}
βPc\displaystyle\beta^{P}_{c} =\displaystyle= (f+g+x3)(xB+f+(z1)),βPd=g+x3(xBf+z),\displaystyle(f_{-}+g_{+}x_{3})(x_{B}+f_{+}(z-1)),\quad\quad\quad\quad\beta^{P}_{d}=g_{+}x_{3}(x_{B}-f_{+}z),
βPe\displaystyle\beta^{P}_{e} =\displaystyle= x3g+1,βPf=(g+f+z)g+,\displaystyle x_{3}g_{+}-1,\quad\quad\quad\beta^{P}_{f}=-(g_{-}+f_{+}z)g_{+},
βPg\displaystyle\beta^{P}_{g} =\displaystyle= 1+(f+g+x3)(xB+f+(z1),βPh=g+(x31)(gxB+f+z).\displaystyle 1+(f_{-}+g_{+}x_{3})(x_{B}+f_{+}(z-1),~{}~{}\,\quad\quad\beta^{P}_{h}=g_{+}(x_{3}-1)(g_{-}-x_{B}+f_{+}z). (106)

The hard scales tV(P)it^{V(P)}_{i}, i=ai=a-hh, are chosen as the maxima of the virtualities involved in the decays described by Fig. 1 (Fig. 2):

tVa,b\displaystyle t^{V}_{a,b} =\displaystyle= max{mB|αVe|,mB|βVa,b|,1/b,1/bB},\displaystyle\max\{m_{B}\sqrt{|\alpha^{V}_{e}|},m_{B}\sqrt{|\beta^{V}_{a,b}|},1/b,1/b_{B}\},
tVc,d\displaystyle t^{V}_{c,d} =\displaystyle= max{mB|αVe|,mB|βVc,d|,1/b3,1/bB},\displaystyle\max\{m_{B}\sqrt{|\alpha^{V}_{e}|},m_{B}\sqrt{|\beta^{V}_{c,d}|},1/b_{3},1/b_{B}\},
tVe,f\displaystyle t^{V}_{e,f} =\displaystyle= max{mB|αVa|,mB|βVe,f|,1/b,1/b3},\displaystyle\max\{m_{B}\sqrt{|\alpha^{V}_{a}|},m_{B}\sqrt{|\beta^{V}_{e,f}|},1/b,1/b_{3}\},
tVg,h\displaystyle t^{V}_{g,h} =\displaystyle= max{mB|αVa|,mB|βVg,h|,1/b,1/bB},\displaystyle\max\{m_{B}\sqrt{|\alpha^{V}_{a}|},m_{B}\sqrt{|\beta^{V}_{g,h}|},1/b,1/b_{B}\}, (107)

and

tPa,b\displaystyle t^{P}_{a,b} =\displaystyle= max{mB|αPe|,mB|βPa,b|,1/b3,1/bB},\displaystyle\max\{m_{B}\sqrt{|\alpha^{P}_{e}|},m_{B}\sqrt{|\beta^{P}_{a,b}|},1/b_{3},1/b_{B}\},
tPc,d\displaystyle t^{P}_{c,d} =\displaystyle= max{mB|αPe|,mB|βPc,d|,1/b,1/bB},\displaystyle\max\{m_{B}\sqrt{|\alpha^{P}_{e}|},m_{B}\sqrt{|\beta^{P}_{c,d}|},1/b,1/b_{B}\},
tPe,f\displaystyle t^{P}_{e,f} =\displaystyle= max{mB|αPa|,mB|βPe,f|,1/b,1/b3},\displaystyle\max\{m_{B}\sqrt{|\alpha^{P}_{a}|},m_{B}\sqrt{|\beta^{P}_{e,f}|},1/b,1/b_{3}\},
tPg,h\displaystyle t^{P}_{g,h} =\displaystyle= max{mB|αPa|,mB|βPg,h|,1/b,1/bB}.\displaystyle\max\{m_{B}\sqrt{|\alpha^{P}_{a}|},m_{B}\sqrt{|\beta^{P}_{g,h}|},1/b,1/b_{B}\}. (108)

References

  • (1) C.H. Chen and H.n. Li, Three body nonleptonic BB decays in perturbative QCD, Phys. Lett. B 561, 258 (2003) [hep-ph/0209043].
  • (2) Z. Rui, Y. Li, and W.F. Wang, The SS-wave resonance contributions in the Bs0B_{s}^{0} decays into ψ(2S,3S)\psi(2S,3S) plus pion pair, Eur. Phys. J. C 77, 199 (2017) [arXiv:1701.02941].
  • (3) Z. Rui, Y.Q. Li, and J. Zhang, Isovector scalar a0(980)a_{0}(980) and a0(1450)a_{0}(1450) resonances in the Bψ(KK¯,πη)B\rightarrow\psi(K\bar{K},\pi\eta) decays, Phys. Rev. D 99, 093007 (2019) [arXiv:1811.12738].
  • (4) Z. Rui, Y. Li, and H. Li, Studies of the resonance components in the BsB_{s} decays into charmonia plus kaon pair, Eur. Phys. J. C 79, 792 (2019) [arXiv:1907.04128].
  • (5) Y. Xing and Z.P. Xing, SS-wave contributions in B¯0s(D0,D¯0)π+π\bar{B}^{0}_{s}\rightarrow(D^{0},\bar{D}^{0})\pi^{+}\pi^{-} within perturbative QCD approach, Chin. Phys. C 43, 073103 (2019) [arXiv:1903.04255].
  • (6) Z.T. Zou, Y. Li, Q.X. Li, and X. Liu, Resonant contributions to three-body BKKKB\rightarrow KKK decays in perturbative QCD approach, Eur. Phys. J. C 80, 394 (2020) [arXiv:2003.03754].
  • (7) Z.T. Zou, Y. Li, and X. Liu, Branching fractions and CPCP asymmetries of the quasi-two-body decays in BsK0(K¯0)K±πB_{s}\rightarrow K^{0}(\bar{K}^{0})K^{\pm}\pi^{\mp} within PQCD approach, Eur. Phys. J. C 80, 517 (2020) [arXiv:2005.02097].
  • (8) Z.T. Zou, L. Yang, Y. Li, and X. Liu, Study of quasi-two-body B(s)ϕ(f0(980)/f2(1270))ππB_{(s)}\rightarrow\phi(f_{0}(980)/f_{2}(1270)\rightarrow)\pi\pi decays in perturbative QCD approach, Eur. Phys. J. C 81, 91 (2021) [arXiv:2011.07676].
  • (9) Z.T. Zou, Y. Li, and H.n. Li, Is fX(1500)f_{X}(1500) observed in the Bπ(K)KKB\rightarrow\pi(K)KK decays ρ0(1450)\rho^{0}(1450)?, Phys. Rev. D 103, 013005 (2021) [arXiv: 2007.13141].
  • (10) Y. Li, A.J. Ma, W.F. Wang, and Z.J. Xiao, Quasi-two-body decays B(s)PρPππB_{(s)}\rightarrow P\rho\rightarrow P\pi\pi in perturbative QCD approach, Phys. Rev. D 95, 056008 (2017) [arXiv:1612.05934].
  • (11) Y. Li, W.F. Wang, A.J. Ma, and Z.J. Xiao, Quasi-two-body decays B(s)K(892)hKπhB_{(s)}\rightarrow K^{*}(892)h\rightarrow K\pi h in perturbative QCD approach, Eur. Phys. J. C 79, 37 (2019) [arXiv:1809.09816].
  • (12) A.J. Ma and W.F. Wang, Contributions of the kaon pair from ρ(770)\rho(770) for the three-body decays BDKK¯B\rightarrow DK\bar{K}, Phys. Rev. D 103, 016002 (2021) [arXiv:2010.12906].
  • (13) Y.Y. Fan and W.F. Wang, Resonance contributions ϕ(1020,1680)KK¯\phi(1020,1680)\rightarrow K\bar{K} for the three-body decays BKK¯hB\rightarrow K\bar{K}h, Eur. Phys. J. C 80, 815 (2020) [arXiv:2006.08223].
  • (14) W.F. Wang, Will the subprocesses ρ(770,1450)0K+K\rho(770,1450)^{0}\to K^{+}K^{-} contribute large branching fractions for B±π±K+KB^{\pm}\to\pi^{\pm}K^{+}K^{-} decays?, Phys. Rev. D 101, 111901(R) (2020) [arXiv: 2004.09027].
  • (15) N. Wang, Q. Chang, Y.L. Yang, and J.F. Sun, Study of the Bsϕf0(980)ϕπ+πB_{s}\rightarrow\phi f_{0}(980)\rightarrow\phi\pi^{+}\pi^{-} decay with perturbative QCD approach, J. Phys. G 46, 095001 (2019) [arXiv: 1803.02656].
  • (16) A.G. Grozin, On wave functions of meson pairs and meson resonances, Sov. J. Nucl. Phys. 38, 289 (1983).
  • (17) A.G. Grozin, One- and two-particle wave functions of multihadron systems, Theor. Math. Phys. 69, 1109 (1986).
  • (18) D. Müller, D. Robaschik, B. Geyer, F.M. Dittes, and J. Hořejši, Wave functions, evolution equations and evolution kernels from light ray operators of QCD, Fortschr. Physik. 42, 101 (1994) [hep-ph/9812448].
  • (19) M. Diehl, T. Gousset, B. Pire, and O. Teryaev, Probing partonic structure in γγππ\gamma^{*}\gamma\rightarrow\pi\pi near threshold, Phys. Rev. Lett. 81, 1782 (1998) [ hep-ph/9805380].
  • (20) M. Diehl, T. Gousset, and B. Pire, Exclusive production of pion pairs in γγ\gamma^{*}\gamma collisions at large Q2Q^{2}, Phys. Rev. D 62, 073014 (2000) [hep-ph/0003233].
  • (21) B. Pire and L. Szymanowski, Impact representation of generalized distribution amplitudes, Phys. Lett. B 556,129 (2003) [hep-ph/0212296].
  • (22) M.V. Polyakov, Hard exclusive electroproduction of two pions and their resonances, Nucl. Phys. B555, 231 (1999) [hep-ph/9809483].
  • (23) Z. Rui, Y. Li, and H.n. Li, Four-body decays B(s)(Kπ)S/P(Kπ)S/PB_{(s)}\rightarrow(K\pi)_{S/P}(K\pi)_{S/P} in the perturbative QCD approach, J. High Energy Phys. 05, 082 (2021) [arXiv:2103.00642].
  • (24) V.L. Chernyak and A.R. Zhitnitsky, Asymptotic Behavior of Hadron Form-Factors in Quark Model.(In Russian), JETP Lett 25, 510 (1977); Pisma Zh.Eksp.Teor.Fiz 25, 544 (1977).
  • (25) G.P. Lepage and S.J. Brodsky, Exclusive Processes in Quantum Chromodynamics: Evolution Equations for Hadronic Wave Functions and the Form-Factors of Mesons, Phys. Lett. B 87, 359 (1979).
  • (26) A.V. Efremov and A.V. Radyushkin, Factorization and Asymptotical Behavior of Pion Form-Factor in QCD, Phys. Lett. B 94, 245 (1980).
  • (27) V.L. Chernyak, V.G. Serbo, and A.R. Zhitnitsky, Asymptotic hadronic form-factors in quantum chromodynamics, JETP Lett 26, 594 (1977).
  • (28) C. Hambrock and A. Khodjamirian, Form factors in B¯0ππν¯\bar{B}^{0}\to\pi\pi\ell\bar{\nu}_{\ell} from QCD light-cone sum rules, Nucl. Phys. B 905, 373-390 (2016).
  • (29) J.P. Lees, et al. (BABAR Collaboration), Precise measurement of the e+eπ+π(γ)e^{+}e^{-}\to\pi^{+}\pi^{-}(\gamma) cross section with the initial-state radiation method at BABAR, Phys. Rev. D 86, 032013 (2012) [arXiv:1205.2228].
  • (30) W.F. Wang and H.n. Li, Quasi-two-body decays BKρKππB\to K\rho\to K\pi\pi in perturbative QCD approach, Phys. Lett. B 763, 29 (2016) [arXiv:1609.04614].
  • (31) J. Hua, H. n. Li, C. D. Lu, W. Wang and Z. P. Xing, Global analysis of hadronic two-body B decays in the perturbative QCD approach, Phys. Rev. D 104, no.1, 016025 (2021).
  • (32) H.n. Li and S. Mishima, Penguin-dominated BPVB\to PV decays in NLO perturbative QCD, Phys. Rev. D 74, 094020 (2006) [hep-ph/0608277].
  • (33) Z. Rui, X.D. Gao, and C.D. Lü, Revisiting the Bπρ,πωB\to\pi\rho,\pi\omega Decays in the Perturbative QCD Approach Beyond the Leading Order, Eur. Phys. J. C 72, 1923 (2012) [arXiv:1111.0181].
  • (34) H.n. Li, Y.L. Shen and Y.M. Wang, Next-to-leading-order corrections to BπB\to\pi form factors in kTk_{T} factorization, Phys. Rev. D 85, 074004 (2012) [hep-ph/1201.5066].
  • (35) R. Aaij et al. (LHCb Collaboration), Evidence for an ηc(1S)π\eta_{c}(1S)\pi^{-} resonance in B0ηc(1S)K+πB^{0}\to\eta_{c}(1S)K^{+}\pi^{-} decays, Eur. Phys. J. C 78, 1019 (2018) [arXiv:1809.07416].
  • (36) G.J. Gounaris and J.J. Sakurai, Finite-width corrections to the vector-meson-dominance prediction for ρe+e\rho\to e^{+}e^{-}, Phys. Rev. Lett. 21, 244 (1968).
  • (37) P.A. Zyla et al. (Particle Data Group), Review of Particle Physics, Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
  • (38) Y.Y. Keum, H.n. Li, and A.I. Sanda, Penguin enhancement and BKπB\to K\pi decays in perturbative QCD, Phys. Rev. D 63, 054008 (2001) [hep-ph/0004173].
  • (39) T. Kurimoto, H.n. Li, and A.I. Sanda, Leading-power contributions to Bπ,ρB\to\pi,\rho transition form factors, Phys. Rev. D 65, 014007 (2001) [hep-ph/0105003].
  • (40) C.D. Lü and M.Z. Yang, BB to light meson transition form factors calculated in perturbative QCD approach, Eur. Phys. J. C 28, 515 (2003) [hep-ph/0212373].
  • (41) H.n. Li, QCD aspects of exclusive B meson decays, Prog. Part. &\& Nucl. Phys. 51, 85 (2003) [hep-ph/0303116] and references therein.
  • (42) Z.J. Xiao, W.F. Wang, and Y.Y. Fan, Revisiting the pure annihilation decays Bsπ+πB_{s}\to\pi^{+}\pi^{-} and B0K+KB^{0}\to K^{+}K^{-}: the data and the pQCD predictions, Phys. Rev. D 85, 094003 (2012) [arXiv: 1111.6264 ].
  • (43) A.G. Grozin and M. Neubert, Phys. Rev. D 55, 272 (1997).
  • (44) Y.L. Yang, L. Lang, X.L. Zhao, J.S. Huang, and J.F. Sun, Reinvestigating the BPPB\to PP decays by including the contributions from ϕB2{\phi}_{B2} Phys. Rev. D 103, 056006 (2021) [arXiv: 2012.10581].
  • (45) V.M. Braun, Y. Ji, and A.N. Manashov, Higher-twist B-meson distribution amplitudes in HQET, J. High Energy Phys. 05 (2017) 022 [arXiv:1703.02446].
  • (46) H.n. Li, Y.L. Shen and Y.M. Wang, Resummation of rapidity logarithms in BB meson wave functions, J. High Energy Phys. 02, 008 (2013) [arXiv:1210.2978].
  • (47) Y.Y. Keum, H.n. Li, and A.I. Sanda, Fat penguins and imaginary penguins in perturbative QCD, Phys. Lett. B 504, 6 (2001) [hep-ph/0004004].
  • (48) C.D. Lü, K. Ukai, and M.Z. Yang, Branching ratio and CPCP violation of BππB\to\pi\pi decays in perturbative QCD approach, Phys. Rev. D 63, 074009 (2001) [hep-ph/0004213].
  • (49) A. Ali, G. Kramer, Y. Li, C.D. Lü, Y.L. Shen, W. Wang, and Y.M. Wang, Charmless non-leptonic BsB_{s} decays to PP,PVPP,PV and VVVV final states in the pQCD approach, Phys. Rev. D 76, 074018 (2007) [hep-ph/0703162].
  • (50) K.M. Watson, The effect of final state interactions on reaction cross sections, Phys. Rev. 88, 1163 (1952).
  • (51) G. Breit and E. Wigner, Capture of Slow Neutrons, Phys. Rev. 49, 519 (1936).
  • (52) M. Tanabashi et al. (Particle Data Group), Review of Particle Physics, Phys. Rev. D 98, 030001 (2018) and 2019 update.
  • (53) P. Lepage and C. Gohlke, gplepage/lsqfit: lsqfit version 11.7, Zenodo. http://doi.org/10.5281/zenodo.4037174.
  • (54) H.n. Li, S. Mishima, and A.I. Sanda, Resolution to the BπKB\to\pi K puzzle, Phys. Rev. D 72, 114005 (2005) [hep-ph/0508041].
  • (55) P. Ball, V.M. Braun, Y. Koike, and K. Tanaka, Higher twist distribution amplitudes of vector mesons in QCD: Formalism and twist three distributions, Nucl. Phys. B529, 323 (1998) [hep-ph/9802299].
  • (56) Y. Li, Z. Rui, and Z.J. Xiao, PP-wave contributions to B(s)ψKπB_{(s)}\to\psi K\pi decays in perturbative QCD approach, Chin. Phys. C 44, no.7, 073102 (2020) [arXiv:1907.10422].
  • (57) H.Y. Cheng, CPCP violation in B±ρ0π±B^{\pm}\to\rho^{0}\pi^{\pm} and B±σπ±B^{\pm}\to\sigma\pi^{\pm} decays, arXiv:2005.06080 [hep-ph].