This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Global critical chart for local Calabi–Yau threefolds

Tasuki Kinjo and Naruki Masuda Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, USA [email protected] graduate school of mathematical science, the university of tokyo, 3-8-1 komaba, meguroku, tokyo 153-8914, japan. [email protected]
Abstract.

In this paper, we investigate Keller’s deformed Calabi–Yau completion of the derived category of coherent sheaves on a smooth variety. In particular, for an nn-dimensional smooth variety YY, we describe the derived category of the total space of an ωY\omega_{Y}-torsor as a certain deformed (n+1)(n+1)-Calabi–Yau completion of the derived category of YY.

As an application, we investigate the geometry of the derived moduli stack of compactly supported coherent sheaves on a local curve, i.e., a Calabi–Yau threefold of the form TotC(N)\mathrm{Tot}_{C}(N), where CC is a smooth projective curve and NN is a rank two vector bundle on CC. We show that the derived moduli stack is equivalent to the derived critical locus of a function on a certain smooth moduli space. This result will be used by the first author and Naoki Koseki in their joint work on Higgs bundles and Gopakumar–Vafa invariants.

1. Introduction

1.1. Motivations

The theory of dg-category can be regarded as a non-commutative version of derived algebraic geometry. Indeed, we can regard a derived scheme as a non-commutative space by considering its derived category of perfect complexes. As in usual algebraic geometry, Calabi–Yau structure plays an important role in dg-category theory. In the study of Calabi–Yau dg-category, Keller [Kel11] introduced the Calabi–Yau completion of a dg-category and its deformed version. More precisely, for a given small dg-category 𝒜{\mathcal{A}}, an integer nn and a negative cyclic class cHCn1(𝒜)c\in\operatorname{HC}^{-}_{n-1}({\mathcal{A}}), he defined a new small dg-category

Πn+1(𝒜,c)dgcat\Pi_{n+1}({\mathcal{A}},c)\in\operatorname{dgcat}

called the (n+1)(n+1)-deformed Calabi–Yau completion of 𝒜{\mathcal{A}}. It carries a natural left (n+1)(n+1)-Calabi–Yau structure in the sense of Brav–Dyckerhoff’s paper [BD19].

It is shown in [IQ] that the undeformed Calabi–Yau completion is a non-commutative generalization of the total space of the canonical bundle on a smooth variety. In this paper, we investigate the geometric meaning of the deformed Calabi–Yau completion.

1.2. Results

Let YY be a quasi-projective smooth variety of dimension nn over the complex number field. Take a cohomology class cH1(Y,ωY)c\in\operatorname{H}^{1}(Y,\omega_{Y}). Let XX be the total space of the ωY\omega_{Y}-torsor corresponding to cc.

Theorem 1.1 (= Theorem 4.3).

Let Perf(Y)\operatorname{Perf}(Y) (resp. Perf(X)\operatorname{Perf}(X)) be the derived dg-category of perfect complexes on YY (resp. XX). Regard cc as an (n1)(n-1)-th Hochschild homology class using the natural inclusion H1(Y,ωY)HHn1(Perf(Y))\operatorname{H}^{1}(Y,\omega_{Y})\hookrightarrow\operatorname{HH}_{n-1}(\operatorname{Perf}(Y)). One can show that cc naturally lifts to a negative cyclic class c~\tilde{c}. Then we have a natural Morita equivalence of dg-categories

Perf(X)Πn+1(Perf(Y),c~)\operatorname{Perf}(X)\simeq\Pi_{n+1}(\operatorname{Perf}(Y),\tilde{c})

preserving the natural left n+1n+1-Calabi–Yau structure.

The above theorem can be applied in the following situation. Let CC be a quasi-projective smooth projective curve and NN be a vector bundle over ZZ of rank two such that there exists an isomorphism det(N)ωC\det(N)\cong\omega_{C}. Assume that we are given a short exact sequence of locally free sheaves on CC

0L1NL200\to L_{1}\to N\to L_{2}\to 0

such that L1L_{1} and L2L_{2} are line bundles. Then TotC(N)\operatorname{Tot}_{C}(N) is the total space of an ωTotC(L2)\omega_{\operatorname{Tot}_{C}(L_{2})}-torsor on TotC(L2)\operatorname{Tot}_{C}(L_{2}). Therefore Theorem 1.1 implies that Perf(TotC(N))\operatorname{Perf}(\operatorname{Tot}_{C}(N)) is Morita equivalent to a certain deformed 33-Calabi–Yau completion of Perf(TotC(L2))\operatorname{Perf}(\operatorname{Tot}_{C}(L_{2})). Combining this result and a theorem due to Bozec–Calaque–Scherotzke [BCS, Corollary 6.19], we obtain the following Corollary:

Corollary 1.2 (=Theorem 5.6).

Let 𝕸TotC(N)\boldsymbol{{\mathfrak{M}}}_{\operatorname{Tot}_{C}(N)} (resp. 𝕸TotC(L2)\boldsymbol{{\mathfrak{M}}}_{\operatorname{Tot}_{C}(L_{2})}) be the derived moduli stack of compactly supported coherent sheaves on TotC(N)\operatorname{Tot}_{C}(N) (resp. TotC(L2)\operatorname{Tot}_{C}(L_{2})). Then there exists a regular function fΓ(𝕸TotC(L2),𝒪𝕸TotC(L2))f\in\Gamma(\boldsymbol{{\mathfrak{M}}}_{\operatorname{Tot}_{C}(L_{2})},\mathcal{O}_{\boldsymbol{{\mathfrak{M}}}_{\operatorname{Tot}_{C}(L_{2})}}) such that there exists a natural equivalence of 1-1-shifted symplectic derived Artin stacks

𝕸TotC(N)𝐂𝐫𝐢𝐭(f).\boldsymbol{{\mathfrak{M}}}_{\operatorname{Tot}_{C}(N)}\simeq\mathop{\mathbf{Crit}}\nolimits(f).

1.3. Applications to Cohomological Donaldson–Thomas theory

Corollary 1.2 has a striking application in cohomological Donaldson–Thomas (CoDT) theory. To explain this, we briefly review CoDT theory here.

Donaldson–Thomas (DT) theory studies DT invariants of a Calabi–Yau threefold XX which virtually count semistable sheaves on XX. More precisely, for a homology class γH(X)\gamma\in H_{*}(X), we can define the Donaldson–Thomas invariant

DTγ(X)\mathrm{DT}_{\gamma}(X)\in\mathbb{Q}

which virtually counts semistable sheaves with the Chern character γ\gamma. Assume that all semistable sheaves on XX with the Chern character γ\gamma is stable and we are given an orientation (in the sense of [Joy15, Definition 2.57]) of the moduli stack 𝔐X,γ{\mathfrak{M}}_{X,\gamma} of stable sheaves on XX with the Chern character γ\gamma. Then it follows from [BBD+15, Theorem 6.9] that there exists a perverse sheaf

φMX,γPerv(MX,γ)\varphi_{M_{X,\gamma}}\in\operatorname{Perv}(M_{X,\gamma})

on the good moduli space of stable sheaves on XX with the Chern character γ\gamma such that we have an equality

DTγ(X)=i(1)idimHi(MX,γ,φMX,γ).\mathrm{DT}_{\gamma}(X)=\sum_{i}(-1)^{i}\dim\operatorname{H}^{i}(M_{X,\gamma},\varphi_{M_{X,\gamma}}).

For general γ\gamma with a given orientation of the moduli stack 𝔐X,γ{\mathfrak{M}}_{X,\gamma} of semistable sheaves on XX with the Chern character γ\gamma, it also follows from [BBD+15, Theorem 6.9] that there exists a perverse sheaf

φ𝔐X,γPerv(𝔐X,γ)\varphi_{{\mathfrak{M}}_{X,\gamma}}\in\operatorname{Perv}({\mathfrak{M}}_{X,\gamma})

which recovers the Donaldson–Thomas invariant DTγ\mathrm{DT}_{\gamma}. CoDT theory aims to study the perverse sheaf φ𝔐X,γ\varphi_{{\mathfrak{M}}_{X,\gamma}}. At the time of this writing, almost nothing is known in CoDT theory for Calabi–Yau threefolds.

We can also define CoDT invariants for quivers with potentials whose dimension virtually count semistable representations of their Jacobi algebras. In contrast to the Calabi–Yau threefold case, CoDT theory for quivers with potentials is well-developed (see e.g. [KS11, DM20]) and has a striking applications in representation theory (see e.g. [Dav18]). The main obstruction of CoDT theory for Calabi–Yau threefolds is that the moduli stack 𝔐X,γ{\mathfrak{M}}_{X,\gamma} does not necessarily have a global critical locus description, whereas the moduli stack of representations of a Jacobi algebra does.

Now let us return back to the statement of Corollary 1.2. It states that the moduli stack of semistable sheaves on a local curve, i.e., Calabi–Yau threefold of the form

X=TotC(N)X=\operatorname{Tot}_{C}(N)

where CC is a smooth projective curve has a global critical locus description. This fact and several observations imply that the argument of Davison–Meinhardt’s paper [DM20] works for local curves and it is possible to establish a foundation of CoDT theory for local curves. When we have N=𝒪CωCN={\mathcal{O}}_{C}\oplus\omega_{C}, the CoDT theory for TotC(N)\operatorname{Tot}_{C}(N) is closely related to non-abelian Hodge theory (see [Kin, §5]). Therefore our result also have an application to non-abelian Hodge theory. This point of view will be investigated by the first author and Naoki Koseki [KK].

1.4. Strategy of the proof

The main point of the proof of Theorem 1.1 is to work with kk-linear presentable stable \infty-categories rather than small dg-categories (e.g. we work with the stable \infty-category of quasi-coherent sheaves rather than the dg-category of perfect complexes). We introduce a definition of the deformed Calabi–Yau completion of kk-linear stable \infty-categories as the module category over a certain monad. An advantage of this definition is that we can use the Barr–Beck–Lurie theorem to construct an equivalence between other \infty-categories. For example, one can use the Barr–Beck–Lurie theorem to show that our definition of the deformed Calabi–Yau completion is compatible with Keller’s original definition. Theorem 1.1 is also a simple application of the Barr–Beck–Lurie theorem.

1.5. Relation to earlier works

  1. (1)

    In [Hit19, §3.5], Hitchin studies the critical locus of a linear function on the Hitchin base in (a certain open subset of) the moduli space of stable SL(2,)\mathrm{SL}(2,\mathbb{C})-Higgs bundles. He shows that points in the critical locus corresponds to a one-dimensional sheaves on a certain non-compact Calabi–Yau threefold.

    Corollary 1.2 can be regarded as a GL(n,)\mathrm{GL}(n,\mathbb{C})-version of this result. Our result is stated as an equivalence of 1-1-shifted symplectic derived Artin stacks, which is crucial for applications in Donaldson–Thomas theory.

  2. (2)

    In [MS21, Theorem 4.5], Maulik and Shen describe the moduli space of stable Higgs bundles on CC as the critical locus of a certain linear function of the Hitchin base for LL-twisted Higgs bundles where degL=2g1\deg L=2g-1.

    Corollary 1.2 recovers this result as follows: Let NN be the rank two vector bundle given by the non-trivial extension

    0KCN𝒪C0.0\to K_{C}\to N\to{\mathcal{O}}_{C}\to 0.

    Then using Corollary 1.2, one can show that the critical locus of Maulik–Shen’s function is isomorphic to the moduli space of one-dimensional stable sheaves on TotC(N)\operatorname{Tot}_{C}(N). Further, one can see that the closed immersion TotC(KC)TotC(N)\operatorname{Tot}_{C}(K_{C})\hookrightarrow\operatorname{Tot}_{C}(N) induces an isomorphism of the moduli spaces of one-dimensional sheaves. Combining theses isomorphisms, we obtain the desired claim.

1.6. Structure of the paper

The paper is organized as follows:

In Section 2 we recall some basic definitions and results on kk-linear stable \infty-categories.

In Section 3 we introduce the deformed Calabi–Yau completion of a kk-linear stable \infty-categories.

In Section 4 we prove Theorem 1.1.

In Section 5 we apply Theorem 1.1 to prove that the moduli stack of coherent sheaves on a local curve is described as a global critical locus.

Acknowledgement.

The first author is very grateful to Yukinobu Toda for suggesting the possibility that the moduli stacks of coherent sheaves on local curves are described as global critical loci. He is also grateful to Naoki Koseki for the collaboration on the companion paper [KK]. We thank Junliang Shen and Yukinobu Toda for their comments on the previous version of this article.

T.K. was supported by WINGS-FMSP program at the Graduate School of Mathematical Science, the University of Tokyo and JSPS KAKENHI Grant number JP21J21118.

Notation and Convention.
  • Throughout the paper, we fix an algebraically closed field kk of characteristic zero.

  • The \infty-category of spaces is denoted by 𝒮{\mathcal{S}}.

  • The \infty-category of \infty-categories is denoted by 𝒞at\mathop{{\mathcal{C}}\mathrm{at}_{\infty}}.

  • For \infty-categories 𝒞1{\mathcal{C}}_{1} and 𝒞2{\mathcal{C}}_{2}, we let Fun(𝒞1,𝒞2)\operatorname{Fun}({\mathcal{C}}_{1},{\mathcal{C}}_{2}) denote the functor \infty-category and LFun(𝒞1,𝒞2)Fun(𝒞1,𝒞2)\operatorname{LFun}({\mathcal{C}}_{1},{\mathcal{C}}_{2})\subset\operatorname{Fun}({\mathcal{C}}_{1},{\mathcal{C}}_{2}) the full subcategory spanned by left adjoint functors.

  • For a symmetric monoidal \infty-category 𝒞{\mathcal{C}}, we let CAlg(𝒞)\operatorname{CAlg}({\mathcal{C}}) and Alg(𝒞)\operatorname{Alg}({\mathcal{C}}) denote the \infty-category of commutative algebras in 𝒞{\mathcal{C}} and the \infty-category of associative algebras in 𝒞{\mathcal{C}} respectively.

2. Preliminaries on kk-linear stable \infty-categories

2.1. Basic concepts in \infty-category theory

In this section, we recall some basic concepts in \infty-category theory. Standard references are [HTT] and [HA].

An \infty-category 𝒞{\mathcal{C}} with a zero object is called stable if it admits finite limits and colimits and a square in 𝒞{\mathcal{C}} is a pushout square if and only if it is a pullback square. The homotopy category of a stable \infty-category carries a natural triangulated structure.

An \infty-category 𝒞{\mathcal{C}} is called presentable if it admits all small colimits and it satisfies a certain set-theoretic assumption called accessibility (see [HTT, §5.5] for the detail). It is shown in [HTT, Corollary 5.5.2.4] that a presentable \infty-category admits all small limits. The adjoint functor theorem [HTT, Corollary 5.5.2.9] states that a functor between presentable \infty-categories F:𝒞𝒟F\colon{\mathcal{C}}\to{\mathcal{D}} has a right adjoint precisely when it preserves small colimits, and has a left adjoint precisely when it is accessible and it preserves small limits. For presentable \infty-categories 𝒞1{\mathcal{C}}_{1} and 𝒞2{\mathcal{C}}_{2}, the \infty-category LFun(𝒞1,𝒞2)\operatorname{LFun}({\mathcal{C}}_{1},{\mathcal{C}}_{2}) is again presentable (see [HTT, Proposition 5.5.3.8]).

An object xx in an \infty-category 𝒞{\mathcal{C}} is called compact if the functor

Map𝒞(x,):𝒞𝒮\operatorname{Map}_{{\mathcal{C}}}(x,-)\colon{\mathcal{C}}\to{\mathcal{S}}

preserves small filtered colimits. An \infty-category 𝒞{\mathcal{C}} is compactly generated if it admits small colimits and it is generated under colimits by a set of compact objects. Compactly generated \infty-categories are presentable.

We let 𝒫rL𝒞at\mathop{{\mathcal{P}}\mathrm{r}^{L}}\subset\mathop{{\mathcal{C}}\mathrm{at}_{\infty}} (resp. 𝒫rR𝒞at\mathop{{\mathcal{P}}\mathrm{r}^{R}}\subset\mathop{{\mathcal{C}}\mathrm{at}_{\infty}}) denote the subcategory consisting of presentable \infty-categories and left (resp. right) adjoint functors. We have a natural equivalence (𝒫rL)op𝒫rR(\mathop{{\mathcal{P}}\mathrm{r}^{L}})^{\mathrm{op}}\simeq\mathop{{\mathcal{P}}\mathrm{r}^{R}}. We let 𝒫rωL𝒫rL\mathop{{\mathcal{P}}\mathrm{r}^{L}_{\omega}}\subset\mathop{{\mathcal{P}}\mathrm{r}^{L}} (resp. 𝒫rωR𝒫rR\mathop{{\mathcal{P}}\mathrm{r}^{R}_{\omega}}\subset\mathop{{\mathcal{P}}\mathrm{r}^{R}}) denote the subcategory consisting of compactly generated \infty-categories and left adjoint functors that preserve the compact objects (resp. right adjoint functors which preserves small filtered colimits). The above equivalence restricts to (𝒫rωL)op𝒫rωR(\mathop{{\mathcal{P}}\mathrm{r}^{L}_{\omega}})^{\operatorname{op}}\simeq\mathop{{\mathcal{P}}\mathrm{r}^{R}_{\omega}}. We let 𝒫rstL𝒫rL\mathop{{\mathcal{P}}\mathrm{r}^{L}_{\mathrm{st}}}\subset\mathop{{\mathcal{P}}\mathrm{r}^{L}} denote the full subcategory spanned by presentable stable \infty-categories. We define 𝒫rst,ωL𝒫rωL𝒫rstL\mathop{{\mathcal{P}}\mathrm{r}^{L}_{\mathrm{st},\omega}}\coloneqq\mathop{{\mathcal{P}}\mathrm{r}^{L}_{\omega}}\cap\mathop{{\mathcal{P}}\mathrm{r}^{L}_{\mathrm{st}}}.

In [HA, §4.8], Lurie defines a natural closed symmetric monoidal structure on 𝒫rL\mathop{{\mathcal{P}}\mathrm{r}^{L}} with LFun\operatorname{LFun} being the internal hom, i.e., the tensor product is characterized by LFun(𝒞𝒟,)LFun(𝒞,LFun(𝒟,))\operatorname{LFun}({\mathcal{C}}\otimes{\mathcal{D}},{\mathcal{E}})\simeq\operatorname{LFun}({\mathcal{C}},\operatorname{LFun}({\mathcal{D}},{\mathcal{E}})). The unit is the \infty-category 𝒮{\mathcal{S}} of spaces.

It is shown in [HA, §4.8.2] that 𝒫rstL\mathop{{\mathcal{P}}\mathrm{r}^{L}_{\mathrm{st}}} inherits a symmetric monoidal structure from that of 𝒫rL\mathop{{\mathcal{P}}\mathrm{r}^{L}}. The unit is the \infty-category Sp\operatorname{Sp} of spectra. A compactly generated stable \infty-category is dualizable in 𝒫rstL\mathop{{\mathcal{P}}\mathrm{r}^{L}_{\mathrm{st}}} (see [SAG, Proposition D.7.2.3]).

2.2. kk-linear stable \infty-categories

Recall that we have fixed an algebraically closed field kk of characteristic zero. We let Modk\operatorname{Mod}_{k} denote the derived \infty-category of differential graded kk-modules. The \infty-category Modk\operatorname{Mod}_{k} is stable and compactly generated, and its symmetric monoidal structure defines a commutative algebra object ModkCAlg(𝒫rst,ωL)\operatorname{Mod}_{k}\in\operatorname{CAlg}(\mathop{{\mathcal{P}}\mathrm{r}^{L}_{\mathrm{st},\omega}}). We define LinCatkStModModk(𝒫rstL)\mathop{\mathrm{LinCat}_{k}^{\mathrm{St}}}\coloneqq\operatorname{Mod}_{\operatorname{Mod}_{k}}(\mathop{{\mathcal{P}}\mathrm{r}^{L}_{\mathrm{st}}}) and call its object a kk-linear stable \infty-category and its morphism a kk-linear functor. The \infty-category LinCatkSt\mathop{\mathrm{LinCat}_{k}^{\mathrm{St}}} inherits a symmetric monoidal closed structure from 𝒫rL\mathop{{\mathcal{P}}\mathrm{r}^{L}}. Explicitly, the relative tensor product is the colimit of the simplicial object 𝒞1Modk𝒞2{\mathcal{C}}_{1}\otimes\operatorname{Mod}_{k}^{\otimes\bullet}\otimes{\mathcal{C}}_{2} in 𝒫rL\mathop{{\mathcal{P}}\mathrm{r}^{L}}, and the internal hom, which is denoted by LFunk(𝒞1,𝒞2)\operatorname{LFun}_{k}({\mathcal{C}}_{1},{\mathcal{C}}_{2}), is the limit of the cosimplicial object LFun(𝒞1Modk,𝒞2)LFun(𝒞1,LFun(Modk,𝒞2))\operatorname{LFun}({\mathcal{C}}_{1}\otimes\operatorname{Mod}_{k}^{\otimes\bullet},{\mathcal{C}}_{2})\simeq\operatorname{LFun}({\mathcal{C}}_{1},\operatorname{LFun}(\operatorname{Mod}_{k}^{\otimes\bullet},{\mathcal{C}}_{2})). The space of objects (the maximal sub \infty-groupoid) of LFunk(𝒞1,𝒞2)\operatorname{LFun}_{k}({\mathcal{C}}_{1},{\mathcal{C}}_{2}) is MapLinCatkSt(𝒞1,𝒞2)\operatorname{Map}_{\mathop{\mathrm{LinCat}_{k}^{\mathrm{St}}}}({\mathcal{C}}_{1},{\mathcal{C}}_{2}).

We let LinCatkSt,ωLinCatkSt×𝒫rstL𝒫rst,ωLLinCatkSt\mathop{\mathrm{LinCat}_{k}^{\mathrm{St},\omega}}\coloneqq\mathop{\mathrm{LinCat}_{k}^{\mathrm{St}}}\times_{\mathop{{\mathcal{P}}\mathrm{r}^{L}_{\mathrm{st}}}}\mathop{{\mathcal{P}}\mathrm{r}^{L}_{\mathrm{st},\omega}}\subset\mathop{\mathrm{LinCat}_{k}^{\mathrm{St}}} denote the subcategory consisting of compactly generated kk-linear stable \infty-categories and kk-linear functors preserving compact objects. This category is equivalent to ModModk(𝒫rst,ωL)\operatorname{Mod}_{\operatorname{Mod}_{k}}(\mathop{{\mathcal{P}}\mathrm{r}^{L}_{\mathrm{st},\omega}}).

The following statement is a consequence of [GR17, Capter 1, 9.3.6 and 3.5.3]:

Proposition 2.1.

Let F:𝒞𝒟F\colon{\mathcal{C}}\to{\mathcal{D}} be a kk-linear functor (in particular, it is a morphism of 𝒫rL\mathop{{\mathcal{P}}\mathrm{r}^{L}}).

  1. (1)

    Assume that the right adjoint functor FRF^{R} of FF preserves small colimits. Then FRF^{R} has a natural kk-linear structure.

  2. (2)

    Assume that FF has a left adjoint functor FLF^{L}. Then FLF^{L} has a natural kk-linear structure.

2.3. Dg-categories and kk-linear stable \infty-categories

Here we recall the relation between small dg-categories and kk-linear stable \infty-categories.

A small dg-category is a small category enriched over the symmetric monoidal category of complexes of kk-vector spaces. In other words, a small dg-category 𝒜{\mathcal{A}} consists of a set of objects Obj(𝒜)\operatorname{Obj}({\mathcal{A}}), a dg-vector space of morphisms 𝒜(a,a){\mathcal{A}}(a,a^{\prime}) for each a,aObj(𝒜)a,a^{\prime}\in\operatorname{Obj}({\mathcal{A}}), and the identity and the composition maps satisfying the associativity relation. A dg-functor F:𝒜1𝒜2F\colon{\mathcal{A}}_{1}\to{\mathcal{A}}_{2} between small dg-categories is given by a map of sets F:Obj(𝒜1)Obj(𝒜2)F\colon\operatorname{Obj}({\mathcal{A}}_{1})\to\operatorname{Obj}({\mathcal{A}}_{2}) and maps of dg-vector space 𝒜1(a,a)𝒜2(F(a),F(a)){\mathcal{A}}_{1}(a,a^{\prime})\to{\mathcal{A}}_{2}(F(a),F(a^{\prime})) preserving the identity and the composition maps.

For small dg-categories 𝒜1{\mathcal{A}}_{1} and 𝒜2{\mathcal{A}}_{2}, the tensor product 𝒜1k𝒜2{\mathcal{A}}_{1}\otimes_{k}{\mathcal{A}}_{2} is defined as follows:

  • The set of objects Obj(𝒜1k𝒜2)\mathrm{Obj}({\mathcal{A}}_{1}\otimes_{k}{\mathcal{A}}_{2}) is the product Obj(𝒜1)×Obj(𝒜2)\mathrm{Obj}({\mathcal{A}}_{1})\times\mathrm{Obj}({\mathcal{A}}_{2}).

  • For a pair of objects (x,y),(x,y)Obj(𝒜1k𝒜2)(x,y),(x^{\prime},y^{\prime})\in\mathrm{Obj}({\mathcal{A}}_{1}\otimes_{k}{\mathcal{A}}_{2}), the morphism dg-vector space is defined by the tensor product

    Mor((x,y),(x,y))=Mor(x,y)kMor(x,y).\mathrm{Mor}((x,y),(x^{\prime},y^{\prime}))=\mathrm{Mor}(x,y)\otimes_{k}\mathrm{Mor}(x^{\prime},y^{\prime}).
  • The composition is defined in the natural manner.

We can also define the internal mapping space Fundg(𝒜1,𝒜2)\operatorname{Fun}_{\operatorname{dg}}({\mathcal{A}}_{1},{\mathcal{A}}_{2}) as follows:

  • The set of objects Fundg(𝒜1,𝒜2)\operatorname{Fun}_{\operatorname{dg}}({\mathcal{A}}_{1},{\mathcal{A}}_{2}) is the set of dg-functors.

  • For a pair of objects F,GObj(Fundg(𝒜1,𝒜2))F,G\in\mathrm{Obj}(\operatorname{Fun}_{\operatorname{dg}}({\mathcal{A}}_{1},{\mathcal{A}}_{2})), the morphism dg-vector space Mor(F,G)\mathrm{Mor}(F,G) is defined as the dg-vector space of natural transformations.

  • The composition is defined in the natural manner.

We let Modkdg\operatorname{Mod}_{k}^{\operatorname{dg}} the dg-category of complexes of kk-vector spaces. For a small dg-category 𝒜{\mathcal{A}}, we define

RMod𝒜dgFundg(𝒜op,Modkdg)\operatorname{RMod}^{\operatorname{dg}}_{{\mathcal{A}}}\coloneqq\operatorname{Fun}_{\operatorname{dg}}({\mathcal{A}}^{\operatorname{op}},\operatorname{Mod}_{k}^{\operatorname{dg}})

and an object in RMod𝒜dg\operatorname{RMod}^{\operatorname{dg}}_{{\mathcal{A}}} is called right 𝒜{\mathcal{A}}-module. We let RMod𝒜ord\operatorname{RMod}_{{\mathcal{A}}}^{\operatorname{ord}} the underlying ordinary category of RMod𝒜dg\operatorname{RMod}^{\operatorname{dg}}_{{\mathcal{A}}}. The category RMod𝒜ord\operatorname{RMod}_{{\mathcal{A}}}^{\operatorname{ord}} carries a combinatorial model structure induced by the projective model structure on Modkord\operatorname{Mod}_{k}^{\operatorname{ord}}. The weak equivalences of right 𝒜{\mathcal{A}}-modules with respect to this model structure are the objectwise quasi-isomorphisms. We define the derived \infty-category RMod𝒜\operatorname{RMod}_{{\mathcal{A}}} by the underlying \infty-category of the model category RMod𝒜ord\operatorname{RMod}_{{\mathcal{A}}}^{\operatorname{ord}}, i.e., the \infty-categorical localization

𝒩(RMod𝒜ord)[W1]\mathcal{N}(\operatorname{RMod}_{{\mathcal{A}}}^{\operatorname{ord}})[W^{-1}]

where 𝒩\mathcal{N} denotes the ordinary nerve functor and WW is the class of quasi-isomorphisms.

Let 𝒜1{\mathcal{A}}_{1} and 𝒜2{\mathcal{A}}_{2} be small dg-categories. A dg-functor F:𝒜1𝒜2F\colon{\mathcal{A}}_{1}\to{\mathcal{A}}_{2} is called Morita equivalence if the restriction functor

F:RMod𝒜2RMod𝒜1F^{*}\colon\operatorname{RMod}_{{\mathcal{A}}_{2}}\to\operatorname{RMod}_{{\mathcal{A}}_{1}}

defines an equivalence of \infty-categories.

For small dg-categories 𝒜1{\mathcal{A}}_{1} and 𝒜2{\mathcal{A}}_{2}, we define the dg-category BMod𝒜2dg𝒜1{}_{{\mathcal{A}}_{1}}\mathrm{BMod}_{{\mathcal{A}}_{2}}^{\operatorname{dg}} of 𝒜1{\mathcal{A}}_{1}-𝒜2{\mathcal{A}}_{2}-bimodules by

BMod𝒜2dg𝒜1RMod𝒜1opk𝒜2dg.{}_{{\mathcal{A}}_{1}}\mathrm{BMod}_{{\mathcal{A}}_{2}}^{\operatorname{dg}}\coloneqq\operatorname{RMod}_{{\mathcal{A}}_{1}^{\operatorname{op}}\otimes_{k}{\mathcal{A}}_{2}}^{\operatorname{dg}}.

For an 𝒜1{\mathcal{A}}_{1}-𝒜2{\mathcal{A}}_{2}-bimodule MM and objects a1𝒜1a_{1}\in{\mathcal{A}}_{1} and a2𝒜2a_{2}\in{\mathcal{A}}_{2}, we let Ma2a1{}_{a_{1}}M_{a_{2}} the value of the functor MM at a1a2Obj(𝒜1opk𝒜2)a_{1}\otimes a_{2}\in\operatorname{Obj}({\mathcal{A}}_{1}^{\operatorname{op}}\otimes_{k}{\mathcal{A}}_{2}).

Let 𝒜i{\mathcal{A}}_{i} (i=1,2,3i=1,2,3) be a small dg-category and MM (resp. NN) be an 𝒜1{\mathcal{A}}_{1}-𝒜2{\mathcal{A}}_{2}-bimodule (resp. 𝒜2{\mathcal{A}}_{2}-𝒜3{\mathcal{A}}_{3}-bimodule). We define the 𝒜1{\mathcal{A}}_{1}-𝒜3{\mathcal{A}}_{3}-bimodule M𝒜2NM\otimes_{{\mathcal{A}}_{2}}N in a natural way such that for a1Obj(𝒜1)a_{1}\in\operatorname{Obj}({\mathcal{A}}_{1}) and a3Obj(𝒜3)a_{3}\in\operatorname{Obj}({\mathcal{A}}_{3}), the following equality holds:

(M𝒜2N)a3a1=a2Obj(𝒜2)(Ma2a1)k(Na3a2).{}_{a_{1}}(M\otimes_{{\mathcal{A}}_{2}}N)_{a_{3}}=\int^{a_{2}\in\operatorname{Obj}({\mathcal{A}}_{2})}({}_{a_{1}}M_{a_{2}})\otimes_{k}({}_{a_{2}}N_{a_{3}}).

Let dgcatkord\operatorname{dgcat}_{k}^{\operatorname{ord}} be the ordinary category of small dg-categories whose morphisms are dg-functors. In [Tab05] Tabuada constructed a model structure called Morita model structure on dgcatkord\operatorname{dgcat}_{k}^{\operatorname{ord}} whose weak equivalences are Morita equivalences. We let dgcatkM\operatorname{dgcat}_{k}^{\mathrm{M}} denote the underlying \infty-category of this model category.

Consider the assignment

𝒜RMod𝒜{\mathcal{A}}\mapsto\operatorname{RMod}_{{\mathcal{A}}}

for small dg-category 𝒜{\mathcal{A}}. This assignment can be made \infty-functorial, and it is shown in [Coh, Corollary 5.7] that it induces an equivalence of \infty-categories

(2.1) dgcatkMLinCatkSt,ω\operatorname{dgcat}_{k}^{\mathrm{M}}\simeq\mathop{\mathrm{LinCat}_{k}^{\mathrm{St},\omega}}

Under this equivalence, an 𝒜1{\mathcal{A}}_{1}-𝒜2{\mathcal{A}}_{2}-bimodule X:𝒜1RMod𝒜2dgX:{\mathcal{A}}_{1}\to\operatorname{RMod}^{\operatorname{dg}}_{{\mathcal{A}}_{2}} corresponds to a kk-linear functor RMod𝒜1RMod𝒜2\operatorname{RMod}_{{\mathcal{A}}_{1}}\to\operatorname{RMod}_{{\mathcal{A}}_{2}} via left Kan extension. The tensor product of bimodules corresponds to the composition of kk-linear functors.

2.4. Monads and Barr–Beck theorem

Let 𝒞{\mathcal{C}} be a kk-linear stable \infty-category. The functor category LFunk(𝒞,𝒞)\operatorname{LFun}_{k}({\mathcal{C}},{\mathcal{C}}) carries a natural monoidal structure whose monoidal product is given by the composition. We let

Mndk(𝒞)Alg(LFunk(𝒞,𝒞))\operatorname{Mnd}_{k}({\mathcal{C}})\coloneqq\operatorname{Alg}(\operatorname{LFun}_{k}({\mathcal{C}},{\mathcal{C}}))

be the category of (kk-linear) monads acting on 𝒞{\mathcal{C}}. Note that the \infty-category 𝒞{\mathcal{C}} is left-tensored over LFunk(𝒞,𝒞)\operatorname{LFun}_{k}({\mathcal{C}},{\mathcal{C}}). Therefore for a monad TMndk(𝒞)T\in\operatorname{Mnd}_{k}({\mathcal{C}}), we can define the \infty-category LModT(𝒞)\operatorname{LMod}_{T}({\mathcal{C}}) of left TT-modules in 𝒞{\mathcal{C}}. It follows from [HA, Corollary 4.2.3.7(1)] that the \infty-category LModT(𝒞)\operatorname{LMod}_{T}({\mathcal{C}}) is presentable. One can see that it is also naturally a kk-linear stable \infty-category.

A morphism of monads T1T2T_{1}\to T_{2} induces a forgetful functor

LModT2(𝒞)LModT1(𝒞).\operatorname{LMod}_{T_{2}}({\mathcal{C}})\to\operatorname{LMod}_{T_{1}}({\mathcal{C}}).

It preserves limits and colimits by [HA, Corollary 4.2.3.7(2)]. One can also show that it has a natural kk-linear structure. Therefore, the adjoint functor theorem and Proposition 2.1 imply that we have a kk-linear adjunction

LModT2(𝒞)LModT1(𝒞).\leavevmode\hbox to135.02pt{\vbox to20.02pt{\pgfpicture\makeatletter\hbox{\hskip 67.51146pt\lower-11.13454pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-67.51146pt}{-8.88193pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 27.75574pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-23.4502pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\operatorname{LMod}_{T_{2}}({\mathcal{C}})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 27.75574pt\hfil&\hfil\hskip 51.7557pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-23.4502pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\operatorname{LMod}_{T_{1}}({\mathcal{C}})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 27.75574pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{}{{{}{}}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{{{}}}{{{}}}}{{}}{{{}}{{}}}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{{{}}{{}}}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{{ {\pgfsys@beginscope \pgfsys@setdash{}{0.0pt}\pgfsys@roundcap\pgfsys@roundjoin{} {}{}{} {}{}{} \pgfsys@moveto{-2.07988pt}{2.39986pt}\pgfsys@curveto{-1.69989pt}{0.95992pt}{-0.85313pt}{0.27998pt}{0.0pt}{0.0pt}\pgfsys@curveto{-0.85313pt}{-0.27998pt}{-1.69989pt}{-0.95992pt}{-2.07988pt}{-2.39986pt}\pgfsys@stroke\pgfsys@endscope}} }{}{}{{}}{}{}{{}}\pgfsys@moveto{-11.79999pt}{-8.5347pt}\pgfsys@lineto{11.40002pt}{-8.5347pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.6pt}{-8.5347pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{}{{{}{}}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{{{}}}{{{}}}}{{}}{{{}}{{}}}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{{{}}{{}}}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{11.79999pt}{-2.07639pt}\pgfsys@lineto{-11.40002pt}{-2.07639pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{-11.6pt}{-2.07639pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{ {}{}{}}{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{}{{{}{}}}\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{{{}}}{{{}}}}{{}}{{{}}{{}}}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{{{}}{{}}}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{}{}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{{}} {}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.94444pt}{-7.25691pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\scriptscriptstyle\boldsymbol{\bot}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

We collect some useful lemmas on monads and its modules:

Lemma 2.2.

Let 𝒞{\mathcal{C}} be a compactly generated kk-linear stable \infty-category and TMndk(𝒞)T\in\operatorname{Mnd}_{k}({\mathcal{C}}) be a monad. Then LModT(𝒞)\operatorname{LMod}_{T}({\mathcal{C}}) is compactly generated.

Proof.

We let F:LModT(𝒞)𝒞F\colon\operatorname{LMod}_{T}({\mathcal{C}})\to{\mathcal{C}} be the forgetful functor and FL:𝒞LModT(𝒞)F^{L}\colon{\mathcal{C}}\to\operatorname{LMod}_{T}({\mathcal{C}}) be its left adjoint. Take a set of compact generators {xi}iI\{x_{i}\}_{i\in I} in 𝒞{\mathcal{C}}. Since FF preserves filtered colimits, its left-adjoint FLF^{L} preserves compact objects. Therefore {FL(xi)}iI\{F^{L}(x_{i})\}_{i\in I} is a set of compact objects in LModT(𝒞)\operatorname{LMod}_{T}({\mathcal{C}}). Thus the claim follows from [Yan, Corollary 2.5] and the fact that FF is conservative. ∎

Lemma 2.3.

Let 𝒞{\mathcal{C}} be a kk-linear compactly generated stable \infty-category and T1T2T_{1}\to T_{2} and T1T3T_{1}\to T_{3} be morphisms of monads acting on 𝒞{\mathcal{C}}. Write T4T2T1T3T_{4}\coloneqq T_{2}\coprod_{T_{1}}T_{3}. Then the following diagram is a pushout square in LinCatkSt,ω\mathop{\mathrm{LinCat}_{k}^{\mathrm{St},\omega}}:

LModT1(𝒞)\textstyle{\operatorname{LMod}_{T_{1}}({\mathcal{C}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}LModT2(𝒞)\textstyle{\operatorname{LMod}_{T_{2}}({\mathcal{C}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}LModT3(𝒞)\textstyle{\operatorname{LMod}_{T_{3}}({\mathcal{C}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}LModT4(𝒞).\textstyle{\operatorname{LMod}_{T_{4}}({\mathcal{C}}).}
Proof.

As the forgetful functor LinCatkSt,ω𝒫rωL\mathop{\mathrm{LinCat}_{k}^{\mathrm{St},\omega}}\to\mathop{{\mathcal{P}}\mathrm{r}^{L}_{\omega}} is conservative and preserves small colimits, it suffices to show that the above square is a pushout square in 𝒫rωL\mathop{{\mathcal{P}}\mathrm{r}^{L}_{\omega}}, or equivalently, that the following is a pullback square in 𝒫rωR\mathop{{\mathcal{P}}\mathrm{r}^{R}_{\omega}}:

LModT4(𝒞)\textstyle{\operatorname{LMod}_{T_{4}}({\mathcal{C}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}LModT2(𝒞)\textstyle{\operatorname{LMod}_{T_{2}}({\mathcal{C}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}LModT3(𝒞)\textstyle{\operatorname{LMod}_{T_{3}}({\mathcal{C}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}LModT1(𝒞).\textstyle{\operatorname{LMod}_{T_{1}}({\mathcal{C}}).}

Using [HTT, Proposition 4.4.2.9], it suffices to prove that the above diagram is a pullback square in the category 𝒫rωR/𝒞\mathop{{\mathcal{P}}\mathrm{r}^{R}_{\omega}}_{/{\mathcal{C}}}.

Let U:𝒟𝒞U\colon{\mathcal{D}}\to{\mathcal{C}} be a morphism in 𝒫rωR\mathop{{\mathcal{P}}\mathrm{r}^{R}_{\omega}}. We wish to show that the following diagram is a pullback square:

(2.2) Map𝒫rωR/𝒞(𝒟,LModT4(𝒞))\textstyle{\operatorname{Map}_{\mathop{{\mathcal{P}}\mathrm{r}^{R}_{\omega}}_{/{\mathcal{C}}}}({\mathcal{D}},\operatorname{LMod}_{T_{4}}({\mathcal{C}}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Map𝒫rωR/𝒞(𝒟,LModT2(𝒞))\textstyle{\operatorname{Map}_{\mathop{{\mathcal{P}}\mathrm{r}^{R}_{\omega}}_{/{\mathcal{C}}}}({\mathcal{D}},\operatorname{LMod}_{T_{2}}({\mathcal{C}}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Map𝒫rωR/𝒞(𝒟,LModT3(𝒞))\textstyle{\operatorname{Map}_{\mathop{{\mathcal{P}}\mathrm{r}^{R}_{\omega}}_{/{\mathcal{C}}}}({\mathcal{D}},\operatorname{LMod}_{T_{3}}({\mathcal{C}}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Map𝒫rωR/𝒞(𝒟,LModT1(𝒞))\textstyle{\operatorname{Map}_{\mathop{{\mathcal{P}}\mathrm{r}^{R}_{\omega}}_{/{\mathcal{C}}}}({\mathcal{D}},\operatorname{LMod}_{T_{1}}({\mathcal{C}}))}

Now let TAlg(Fun(𝒞,𝒞))T\in\operatorname{Alg}(\operatorname{Fun}({\mathcal{C}},{\mathcal{C}})) be an arbitrary monad acting on 𝒞{\mathcal{C}} and TUT_{U} be the endomorphism monad of UU (see [HA, Definition 4.7.3.2, Proposition 4.7.3.3]). By the definition of the endomorphism monad and [HA, Corollary 4.7.1.41], we have an equivalence

MapAlg(Fun(𝒞,𝒞))(T,TU)Map𝒞at/𝒞(𝒟,LModT(𝒞)).\operatorname{Map}_{\operatorname{Alg}(\operatorname{Fun}({\mathcal{C}},{\mathcal{C}}))}(T,T_{U})\simeq\operatorname{Map}_{\mathop{{\mathcal{C}}\mathrm{at}_{\infty}}_{/{\mathcal{C}}}}({\mathcal{D}},\operatorname{LMod}_{T}({\mathcal{C}})).

On the other hand, since the forgetful functor LModT(𝒞)𝒞\operatorname{LMod}_{T}({\mathcal{C}})\to{\mathcal{C}} is conservative and preserves small limits and small filtered colimits (so it reflects them), any functor 𝒟LModT(𝒞){\mathcal{D}}\to\operatorname{LMod}_{T}({\mathcal{C}}) lifting UU preserves small limits and small filtered colimits, i.e., we have an equivalence

Map𝒞at/𝒞(𝒟,LModT(𝒞))Map𝒫rωR/𝒞(𝒟,LModT(𝒞)).\operatorname{Map}_{\mathop{{\mathcal{C}}\mathrm{at}_{\infty}}_{/{\mathcal{C}}}}({\mathcal{D}},\operatorname{LMod}_{T}({\mathcal{C}}))\simeq\operatorname{Map}_{\mathop{{\mathcal{P}}\mathrm{r}^{R}_{\omega}}_{/{\mathcal{C}}}}({\mathcal{D}},\operatorname{LMod}_{T}({\mathcal{C}})).

Thus the square (2.2) is identified with the square

MapAlg(Fun(𝒞,𝒞))(T4,TU)\textstyle{\operatorname{Map}_{\operatorname{Alg}(\operatorname{Fun}({\mathcal{C}},{\mathcal{C}}))}(T_{4},T_{U})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}MapAlg(Fun(𝒞,𝒞))(T2,TU)\textstyle{\operatorname{Map}_{\operatorname{Alg}(\operatorname{Fun}({\mathcal{C}},{\mathcal{C}}))}(T_{2},T_{U})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}MapAlg(Fun(𝒞,𝒞))(T3,TU)\textstyle{\operatorname{Map}_{\operatorname{Alg}(\operatorname{Fun}({\mathcal{C}},{\mathcal{C}}))}(T_{3},T_{U})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}MapAlg(Fun(𝒞,𝒞))(T1,TU),\textstyle{\operatorname{Map}_{\operatorname{Alg}(\operatorname{Fun}({\mathcal{C}},{\mathcal{C}}))}(T_{1},T_{U}),}

which is a pullback square, as the forgetful functor Mndk(𝒞)Alg(Fun(𝒞,𝒞))\operatorname{Mnd}_{k}({\mathcal{C}})\to\operatorname{Alg}(\operatorname{Fun}({\mathcal{C}},{\mathcal{C}})) preserves pushouts (notice that the monoidal functor LFunk(𝒞,𝒞)Fun(𝒞,𝒞)\operatorname{LFun}_{k}({\mathcal{C}},{\mathcal{C}})\to\operatorname{Fun}({\mathcal{C}},{\mathcal{C}}) admits a right adjoint by [HTT, Remark 5.5.2.10], which passes to the category of algebras). ∎

Lemma-Definition 2.4.

Let 𝒞{\mathcal{C}} be a kk-linear stable \infty-category and FLFunk(𝒞,𝒞)F\in\operatorname{LFun}_{k}({\mathcal{C}},{\mathcal{C}}) be a kk-linear functor. Then there exists a free monad TFMndk(𝒞)TF\in\operatorname{Mnd}_{k}({\mathcal{C}}) with the following property:

  • For an arbitrary monad MMndk(𝒞)M\in\operatorname{Mnd}_{k}({\mathcal{C}}), we have a natural equivalence

    MapMndk(𝒞)(TF,M)MapLFunk(𝒞,𝒞)(F,T).\operatorname{Map}_{\operatorname{Mnd}_{k}({\mathcal{C}})}(TF,M)\simeq\operatorname{Map}_{\operatorname{LFun}_{k}({\mathcal{C}},{\mathcal{C}})}(F,T).
  • As a kk-linear functor, we have an equivalence

    TFId𝒞FF2.TF\simeq\operatorname{Id}_{{\mathcal{C}}}\oplus F\oplus F^{2}\oplus\cdots.
Proof.

Note that the \infty-category LFunk(𝒞,𝒞)\operatorname{LFun}_{k}({\mathcal{C}},{\mathcal{C}}) has small colimits (which is computed pointwise) and its monoidal product preserves small colimits separately in each variable. Therefore the claim follows from [HA, Proposition 4.1.1.18]. ∎

Now we recall Lurie’s \infty-categorical version of the Barr–Beck theorem [HA, Theorem 4.7.3.5]. Let U:𝒟𝒞U\colon{\mathcal{D}}\to{\mathcal{C}} be a kk-linear functor between kk-linear stable \infty-categories which admits a left adjoint functor ULU^{L}. Then the endomorphism monad TT of UU ([HA, Definition 4.7.3.2]) exists, and its underlying functor is UULU\circ U^{L}. One can show that UU naturally lifts to a kk-linear functor U¯:𝒟LModT(𝒞)\bar{U}\colon{\mathcal{D}}\to\operatorname{LMod}_{T}({\mathcal{C}}) such that the following diagram commutes:

LModT(𝒞)\textstyle{\operatorname{LMod}_{T}({\mathcal{C}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒟\textstyle{{\mathcal{D}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}U\scriptstyle{U}U¯\scriptstyle{\bar{U}}𝒞\textstyle{\mathcal{C}}

We say that UU is monadic if U¯\bar{U} is an equivalence of \infty-categories.

Theorem 2.5 (Barr–Beck–Lurie, [HA, Theorem 4.7.3.5]).

Let U:𝒟𝒞U\colon{\mathcal{D}}\to{\mathcal{C}} be a kk-linear functor which admits a left adjoint functor. Then UU is monadic if and only if it is conservative.

2.5. Hochschild homology and negative cyclic homology

Let 𝒞{\mathcal{C}} be a compactly generated (hence dualizable) kk-linear stable \infty-category. Consider the following composition

Modkcoev𝒞𝒞𝒞𝒞𝒞ev𝒞Modk\operatorname{Mod}_{k}\xrightarrow[]{\operatorname{coev}_{{\mathcal{C}}}}{\mathcal{C}}\otimes{\mathcal{C}}^{\vee}\simeq{\mathcal{C}}^{\vee}\otimes{\mathcal{C}}\xrightarrow[]{\operatorname{ev}_{{\mathcal{C}}}}\operatorname{Mod}_{k}

where coev𝒞\operatorname{coev}_{{\mathcal{C}}} denotes the coevaluation functor and ev𝒞\operatorname{ev}_{{\mathcal{C}}} denotes the evaluation functor. We define the Hochschild homology complex of 𝒞{\mathcal{C}}, denoted by HH(𝒞)\operatorname{HH}({\mathcal{C}}), to be the image of the one-dimensional vector space under the above composition. It follows from [HSS17, Theorem 2.14] that the Hochschild homology complex HH(𝒞)\operatorname{HH}({\mathcal{C}}) carries a natural S1S^{1}-action hence a mixed differential δ:HH(𝒞)HH(𝒞)[1]\delta\colon\operatorname{HH}({\mathcal{C}})\to\operatorname{HH}({\mathcal{C}})[-1]. We define the negative cyclic complex HC(𝒞)\operatorname{HC}^{-}({\mathcal{C}}) to be the homotopy S1S^{1}-fixed point of HH(𝒞)\operatorname{HH}({\mathcal{C}}). It is shown in [HSS17, Theorem 2.14] that if we are given a kk-linear functor between kk-linear stable \infty-categories F:𝒞𝒟F\colon{\mathcal{C}}\to{\mathcal{D}} which preserves the compact objects, we have a natural map HH(F):HH(𝒞)HH(𝒟)\operatorname{HH}(F)\colon\operatorname{HH}({\mathcal{C}})\to\operatorname{HH}({\mathcal{D}}) of S1S^{1}-equivariant complexes.

Example 2.6.

Let XX be a smooth variety over kk. Then the HKR decomposition implies an isomorphism

HHn(Qcoh(X))n=qpHp(X,qΩX).\operatorname{HH}_{n}(\operatorname{Qcoh}(X))\simeq\bigoplus_{n=q-p}H^{p}(X,\wedge^{q}\Omega_{X}).

If we are given a morphism between smooth varieties f:XYf\colon X\to Y, the map HH(f)\operatorname{HH}(f^{*}) is given by the pullback map of differential forms.

For later use, we recall some basic facts about negative cyclic homology. Firstly, by a generality of mixed complexes (see [Lod98, §2.5.13]) we obtain the Connes exact sequence

HCn+2(𝒞)HCn(𝒞)𝜋HHn(𝒞)δ~HCn+1(𝒞)\cdots\to\operatorname{HC}^{-}_{n+2}({\mathcal{C}})\to\operatorname{HC}^{-}_{n}({\mathcal{C}})\xrightarrow[]{\pi}\operatorname{HH}_{n}({\mathcal{C}})\xrightarrow[]{\tilde{\delta}}\operatorname{HC}^{-}_{n+1}({\mathcal{C}})\to\cdots

where π\pi is the map forgetting the S1S^{1}-fixed point structure and δ~\tilde{\delta} is a natural lift of the mixed differential. Now take 𝒞=Qcoh(X){\mathcal{C}}=\operatorname{Qcoh}(X) for some dd-dimensional smooth variety XX. It is shown in [BD19, Lemma 5.10] that for i>di>d the negative cyclic homology group HCi(Qcoh(X))\operatorname{HC}^{-}_{i}(\operatorname{Qcoh}(X)) vanishes. Therefore we have natural isomorphisms

(2.3) HCd(Qcoh(X))HHd(Qcoh(X))H0(X,ωX)\operatorname{HC}^{-}_{d}(\operatorname{Qcoh}(X))\cong\operatorname{HH}_{d}(\operatorname{Qcoh}(X))\cong H^{0}(X,\omega_{X})

and a natural short exact sequence

(2.4) 0HCd1(Qcoh(X))HHd1(Qcoh(X))𝛿HHd(Qcoh(X)).0\to\operatorname{HC}^{-}_{d-1}(\operatorname{Qcoh}(X))\to\operatorname{HH}_{d-1}(\operatorname{Qcoh}(X))\xrightarrow[]{\delta}\operatorname{HH}_{d}(\operatorname{Qcoh}(X)).

We now discuss Hochschild homology for a special class of kk-linear stable \infty-categories called smooth. A kk-linear stable \infty-category 𝒞{\mathcal{C}} is called smooth if the evaluation map

ev𝒞:𝒞𝒞Modk\operatorname{ev}_{{\mathcal{C}}}\colon{\mathcal{C}}^{\vee}\otimes{\mathcal{C}}\to\operatorname{Mod}_{k}

has a left adjoint ev𝒞L\operatorname{ev}_{{\mathcal{C}}}^{L}. In this case, we define the inverse dualizing functor Id𝒞!:𝒞𝒞\operatorname{Id}_{{\mathcal{C}}}^{!}\colon{\mathcal{C}}\to{\mathcal{C}} to be the image of the one-dimensional vector space under the functor

Modkev𝒞L𝒞𝒞LFunk(𝒞,𝒞).\operatorname{Mod}_{k}\xrightarrow[]{\operatorname{ev}_{{\mathcal{C}}}^{L}}{{\mathcal{C}}}^{\vee}\otimes{\mathcal{C}}\simeq\operatorname{LFun}_{k}({\mathcal{C}},{\mathcal{C}}).
Example 2.7.

Let XX be a smooth variety over kk. Then Qcoh(X)\operatorname{Qcoh}(X) is compactly generated kk-linear stable \infty-category. Further, it is shown in [BZFN10, Proposition 4.7, Corollary 4.8] that we have equivalences

Qcoh(X×X)Qcoh(X)Qcoh(X)LFunk(Qcoh(X),Qcoh(X))\operatorname{Qcoh}(X\times X)\simeq\operatorname{Qcoh}(X)^{\vee}\otimes\operatorname{Qcoh}(X)\simeq\operatorname{LFun}_{k}(\operatorname{Qcoh}(X),\operatorname{Qcoh}(X))

which maps 𝒫Qcoh(X×X){\mathcal{P}}\in\operatorname{Qcoh}(X\times X) to the Fourier–Mukai transform with the kernel 𝒫{\mathcal{P}}. Under this identification, the evaluation map is given by the composition

evQcoh(X):Qcoh(X×X)ΔQcoh(X)ΓModk\operatorname{ev}_{\operatorname{Qcoh}(X)}\colon\operatorname{Qcoh}(X\times X)\xrightarrow[]{\Delta^{*}}\operatorname{Qcoh}(X)\xrightarrow[]{\Gamma}\operatorname{Mod}_{k}

where Δ:XX×X\Delta\colon X\to X\times X is the diagonal map. Using the Grothendieck duality, we see that the left adjoint to the evaluation functor is given by

VΔ(aXVωX1[dimX])V\mapsto\Delta_{*}(a_{X}^{*}V\otimes\omega_{X}^{-1}[-\dim X])

where aXa_{X} is the constant map from XX to a point. Therefore we have

IdQcoh(X)!=ωX1[dimX].\operatorname{Id}^{!}_{\operatorname{Qcoh}(X)}=-\otimes\omega_{X}^{-1}[-\dim X].

By the definition of the inverse dualizing functor, we have a natural equivalence

HH(𝒞)MapLFunk(Id𝒞!,Id𝒞).\operatorname{HH}({\mathcal{C}})\simeq\operatorname{Map}_{\operatorname{LFun}_{k}}(\operatorname{Id}_{{\mathcal{C}}}^{!},\operatorname{Id}_{{\mathcal{C}}}).

Let F:𝒞𝒟F\colon{\mathcal{C}}\to{\mathcal{D}} be a kk-linear functor between smooth kk-linear stable \infty-categories with a kk-linear right adjoint FR:𝒟𝒞F^{R}\colon{\mathcal{D}}\to{\mathcal{C}}. We can define a natural transformation

(2.5) η:Id𝒟!FId𝒞!FR\eta\colon\operatorname{Id}_{{\mathcal{D}}}^{!}\to F\circ\operatorname{Id}_{{\mathcal{C}}}^{!}\circ F^{R}

as follows: Firstly note that we have a natural transformation

α:ev𝒞ev𝒟((FR)F)\alpha\colon\operatorname{ev}_{{\mathcal{C}}}\to\operatorname{ev}_{{\mathcal{D}}}\circ((F^{R})^{\vee}\otimes F)

where ev𝒞:𝒞𝒞Modk\operatorname{ev}_{{\mathcal{C}}}\colon{\mathcal{C}}^{\vee}\otimes{\mathcal{C}}\to\operatorname{Mod}_{k} and ev𝒟:𝒟𝒟Modk\operatorname{ev}_{{\mathcal{D}}}\colon{\mathcal{D}}^{\vee}\otimes{\mathcal{D}}\to\operatorname{Mod}_{k} are evaluation functors. Then consider the following composition

ev𝒟Lev𝒟Lev𝒞ev𝒞Lev𝒟Lαev𝒞Lev𝒟Lev𝒟((FR)F)ev𝒞L((FR)F)ev𝒞L.\displaystyle\operatorname{ev}_{{\mathcal{D}}}^{L}\to\operatorname{ev}_{{\mathcal{D}}}^{L}\circ\operatorname{ev}_{{\mathcal{C}}}\circ\operatorname{ev}_{{\mathcal{C}}}^{L}\xrightarrow{\operatorname{ev}_{{\mathcal{D}}}^{L}\alpha\operatorname{ev}_{{\mathcal{C}}}^{L}}\operatorname{ev}_{{\mathcal{D}}}^{L}\circ\operatorname{ev}_{{\mathcal{D}}}\circ((F^{R})^{\vee}\otimes F)\circ\operatorname{ev}_{{\mathcal{C}}}^{L}\to((F^{R})^{\vee}\otimes F)\circ\operatorname{ev}_{{\mathcal{C}}}^{L}.

By evaluating this natural transformation at kk, we obtain the desired map (2.5). It is shown in [BD, Proposition 4.4] that the map HH(F)\operatorname{HH}(F) is given by the following composition

Hom(Id𝒞!,Id𝒞)Hom(FId𝒞!FR,FFR)Hom(Id𝒟!,Id𝒟)\operatorname{Hom}(\operatorname{Id}_{{\mathcal{C}}}^{!},\operatorname{Id}_{{\mathcal{C}}})\to\operatorname{Hom}(F\circ\operatorname{Id}_{{\mathcal{C}}}^{!}\circ F^{R},F\circ F^{R})\to\operatorname{Hom}(\operatorname{Id}_{{\mathcal{D}}}^{!},\operatorname{Id}_{{\mathcal{D}}})

where the latter map is defined using η\eta and the counit map.

3. Deformed Calabi–Yau completion of kk-linear stable \infty-categories

Let 𝒜{\mathcal{A}} be a smooth small dg-category, nn be an integer and cHCn1(𝒜)c\in\operatorname{HC}^{-}_{n-1}({\mathcal{A}}) be a negative cyclic homology class. In [Kel11], Keller introduced a new dg-category Πn+1(𝒜,c)\Pi_{n+1}({\mathcal{A}},c) called the deformed (n+1)(n+1)-Calabi–Yau completion of 𝒜{\mathcal{A}}.

In this section, we develop the theory of deformed Calabi–Yau completion using the language of kk-linear stable \infty-category rather than small dg-category. Our description of the Calabi–Yau completion is given by the \infty-category of left modules over a certain free monad. We will compare our description and Keller’s original definition using the Barr–Beck–Lurie theorem.

3.1. Tensor algebra category and deformed Calabi–Yau completion

Let 𝒞{\mathcal{C}} be a kk-linear stable \infty-category and F:𝒞𝒞F\colon{\mathcal{C}}\to{\mathcal{C}} be a kk-linear endofunctor. As is shown in Lemma-Definition 2.4, we can construct the free monad TFAlg(LFunk(𝒞,𝒞))TF\in\operatorname{Alg}(\operatorname{LFun}_{k}({\mathcal{C}},{\mathcal{C}})) generated by FF. We define the tensor algebra \infty-category T𝒞(F)LinCatkStT_{{\mathcal{C}}}(F)\in\mathop{\mathrm{LinCat}_{k}^{\mathrm{St}}} by

T𝒞(F)LModTF(𝒞).T_{{\mathcal{C}}}(F)\coloneqq\operatorname{LMod}_{TF}({\mathcal{C}}).

Let us see that our definition of tensor algebra \infty-category is compatible with Keller’s definition of tensor dg-category [Kel11, §4.1]. Let 𝒜{\mathcal{A}} be a small dg-category and XX be a 𝒜{\mathcal{A}}-𝒜{\mathcal{A}}-bimodule. Consider the following 𝒜{\mathcal{A}}-𝒜{\mathcal{A}}-bimodule

T𝒜dg(X)𝒜X(X𝒜X).T_{{\mathcal{A}}}^{\operatorname{dg}}(X)\coloneqq{\mathcal{A}}\oplus X\oplus(X\otimes_{{\mathcal{A}}}X)\oplus\cdots.

For objects ai𝒜a_{i}\in{\mathcal{A}} (i = 1, 2, 3), we have a natural morphism of dg-vector spaces

(T𝒜dga3(X)a2)k(T𝒜dga2(X)a1)T𝒜dga3(X)a1.({}_{a_{3}}T_{{\mathcal{A}}}^{\operatorname{dg}}(X)_{a_{2}})\otimes_{k}({}_{a_{2}}T_{{\mathcal{A}}}^{\operatorname{dg}}(X)_{a_{1}})\to{}_{a_{3}}T_{{\mathcal{A}}}^{\operatorname{dg}}(X)_{a_{1}}.

Therefore T𝒜(X)T_{{\mathcal{A}}}(X) carries a dg-category structure, whose set of objects are Obj(𝒜)\operatorname{Obj}({\mathcal{A}}) and the dg-vector space of morphisms is defined by

T𝒜(X)dg(a1,a2)=T𝒜dga2(X)a1.T_{{\mathcal{A}}}(X)^{\operatorname{dg}}(a_{1},a_{2})={}_{a_{2}}T_{{\mathcal{A}}}^{\operatorname{dg}}(X)_{a_{1}}.

The dg-category T𝒜(X)T_{{\mathcal{A}}}(X) is called tensor dg-category.

Proposition 3.1.

Let 𝒜{\mathcal{A}} be a small dg-category and XX be a cofibrant 𝒜{\mathcal{A}}-𝒜{\mathcal{A}}-bimodule. We let FX:RMod𝒜RMod𝒜F_{X}\colon\operatorname{RMod}_{{\mathcal{A}}}\to\operatorname{RMod}_{{\mathcal{A}}} be the \infty-functor given by tensoring XX. Then we have an equivalence

RModT𝒜dg(X)TRMod𝒜(FX).\operatorname{RMod}_{T_{{\mathcal{A}}}^{\operatorname{dg}}(X)}\simeq T_{\operatorname{RMod}_{{\mathcal{A}}}}(F_{X}).
Proof.

Consider the forgetful functor U:RModT𝒜dg(X)RMod𝒜U\colon\operatorname{RMod}_{T_{{\mathcal{A}}}^{\operatorname{dg}}(X)}\to\operatorname{RMod}_{{\mathcal{A}}}. It admits a left adjoint UL=𝒜T𝒜dg(X)U^{L}=-\otimes_{{\mathcal{A}}}T_{{\mathcal{A}}}^{\operatorname{dg}}(X). Since UU is conservative and colimit preserving, the Barr–Beck–Lurie theorem implies that UU is monadic. Therefore if we write MUULM\coloneqq U\circ U^{L} for the endomorphism monad, we need to show an equivalence of monads MTFXM\simeq TF_{X}. This follows immediately from [HA, Proposition 4.1.1.18]. ∎

Now we introduce the notion of Calabi–Yau completion as a special case of tensor algebra kk-linear \infty-category.

Definition 3.2 ([Kel11]).

Let 𝒞{\mathcal{C}} be a smooth kk-linear stable \infty-category. For an integer nn, we define the nn-Calabi–Yau completion Πn(𝒞)\Pi_{n}({\mathcal{C}}) of 𝒞{\mathcal{C}} by

Πn(𝒞)T𝒞(Id𝒞![n1]).\Pi_{n}({\mathcal{C}})\coloneqq T_{{\mathcal{C}}}(\operatorname{Id}^{!}_{{\mathcal{C}}}[n-1]).

It follows from Proposition 3.1 that our definition of Calabi–Yau completion is compatible with Keller’s definition in [Kel11, §4.1].

3.2. Deformed Calabi–Yau completion

Let 𝒞{\mathcal{C}} be a smooth kk-linear stable \infty-category and take a Hochschild homology class c:k[n1]HH(𝒞)Map(Id𝒞!,Id𝒞)c\colon k[n-1]\to\operatorname{HH}({\mathcal{C}})\simeq\operatorname{Map}(\operatorname{Id}_{{\mathcal{C}}}^{!},\operatorname{Id}_{{\mathcal{C}}}). We let ic#i_{c}^{\#} be the morphism of monads TId𝒞![n1]Id𝒞T\operatorname{Id}_{{\mathcal{C}}}^{!}[n-1]\to\operatorname{Id}_{{\mathcal{C}}} induced by cc. It defines a kk-linear functor Πn(𝒞)𝒞\Pi_{n}({\mathcal{C}})\to{\mathcal{C}} which we denote by ici_{c}^{*}. We define the deformed (n+1)(n+1)-Calabi–Yau completion Πn+1(𝒞,c)\Pi_{n+1}({\mathcal{C}},c) of 𝒞{\mathcal{C}} associated with cc by the following pushout square in LinCatkSt,ω\mathop{\mathrm{LinCat}_{k}^{\mathrm{St},\omega}}:

(3.1) Πn(𝒞)\textstyle{\Pi_{n}({\mathcal{C}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i0\scriptstyle{i_{0}^{*}}ic\scriptstyle{i_{c}^{*}}𝒞\textstyle{{\mathcal{C}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒞\textstyle{{\mathcal{C}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Πn+1(𝒞,c).\textstyle{\Pi_{n+1}({\mathcal{C}},c)\ignorespaces.}

It follows from [Kel11, Proposition 5.5] that our definition of the deformed Calabi–Yau completion is compatible with Keller’s definition in [Kel11, §5.1].

Remark 3.3.

For a Hochschild homology class c:k[n1]HH(𝒞)c\colon k[n-1]\to\operatorname{HH}({\mathcal{C}}) we define the monad TcId𝒞![n]Alg(LFunk(𝒞,𝒞))T_{c}\operatorname{Id}_{{\mathcal{C}}}^{!}[n]\in\operatorname{Alg}(\operatorname{LFun}_{k}({\mathcal{C}},{\mathcal{C}})) by the following pushout square:

TId𝒞![n1]\textstyle{T\operatorname{Id}_{{\mathcal{C}}}^{!}[n-1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i0#\scriptstyle{i_{0}^{\#}}ic#\scriptstyle{i_{c}^{\#}}Id𝒞\textstyle{\operatorname{Id}_{{\mathcal{C}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Id𝒞\textstyle{\operatorname{Id}_{{\mathcal{C}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}TcId𝒞![n].\textstyle{T_{c}\operatorname{Id}_{{\mathcal{C}}}^{!}[n]\ignorespaces.}

Then it follows from Lemma 2.3 that we have an equivalence

Πn+1(𝒞,c)LModTcId𝒞![n](𝒞).\Pi_{n+1}({\mathcal{C}},c)\simeq\operatorname{LMod}_{T_{c}\operatorname{Id}_{{\mathcal{C}}}^{!}[n]}({\mathcal{C}}).

When c=0c=0, we have a natural equivalence T0Id𝒞![n]TId𝒞![n]T_{0}\operatorname{Id}_{{\mathcal{C}}}^{!}[n]\simeq T\operatorname{Id}_{{\mathcal{C}}}^{!}[n]. This is a consequence of the fact that the free monad functor

Free:LFunk(𝒞,𝒞)Alg(LFunk(𝒞,𝒞))\mathrm{Free}\colon\operatorname{LFun}_{k}({\mathcal{C}},{\mathcal{C}})\to\operatorname{Alg}(\operatorname{LFun}_{k}({\mathcal{C}},{\mathcal{C}}))

preserves colimits. Therefore we obtain an equivalence

(3.2) Πn+1(𝒞,0)Πn+1(𝒞).\Pi_{n+1}({\mathcal{C}},0)\simeq\Pi_{n+1}({\mathcal{C}}).

3.3. Relative Calabi–Yau structure

We recall the notion of left Calabi–Yau structure and its relative version introduced in [BD19].

Definition 3.4.

Let 𝒞{\mathcal{C}} be a smooth kk-linear stable \infty-category. A negative cyclic class c:k[n]HC(𝒞)c\colon k[n]\to\operatorname{HC}^{-}({\mathcal{C}}) is called a left Calabi–Yau structure if its underlying Hochschild homology class HHn(𝒞)Hom(Id𝒞[n],Id𝒞!)\operatorname{HH}_{n}({\mathcal{C}})\simeq\operatorname{Hom}(\operatorname{Id}_{{\mathcal{C}}}[n],\operatorname{Id}_{{\mathcal{C}}}^{!}) induces an equivalence of functors

Id𝒞[n]Id𝒞!.\operatorname{Id}_{{\mathcal{C}}}[n]\simeq\operatorname{Id}_{{\mathcal{C}}}^{!}.
Example 3.5.

Let XX be a smooth variety of dimension nn. Then it is shown in [BD19, Lemma 5.12] that an nn-form

cH0(X,ωX)HHn(Qcoh(X))HCn(Qcoh(X))c\in H^{0}(X,\omega_{X})\cong\operatorname{HH}_{n}(\operatorname{Qcoh}(X))\cong\operatorname{HC}^{-}_{n}(\operatorname{Qcoh}(X))

corresponds to a left Calabi–Yau structures if it defines a trivialization of the line bundle ωX\omega_{X}.

Now we discuss the relative version.

Definition 3.6.

Let F:𝒞𝒟F\colon{\mathcal{C}}\to{\mathcal{D}} be a kk-linear functor between smooth kk-linear stable \infty-categories with a kk-linear right adjoint FrF^{r}. A relative left nn-Calabi–Yau structure is a pair of a left nn-Calabi–Yau structure c:k[n]HC(𝒞)c\colon k[n]\to\operatorname{HC}^{-}({\mathcal{C}}) and a homotopy τ:HC(F)(c)0\tau\colon\operatorname{HC}^{-}(F)(c)\simeq 0 such that the map

cofib(Id𝒟![n]FId𝒞![n]Fr)Id𝒟\mathrm{cofib}(\operatorname{Id}_{{\mathcal{D}}}^{!}[n]\to F\circ\operatorname{Id}_{{\mathcal{C}}}^{!}[n]\circ F^{r})\to\operatorname{Id}_{{\mathcal{D}}}

induced by the map FId𝒞![n]FrFcFrFFrId𝒟F\circ\operatorname{Id}_{{\mathcal{C}}}^{!}[n]\circ F^{r}\xrightarrow{FcF^{r}}F\circ F^{r}\to\operatorname{Id}_{{\mathcal{D}}} and the null-homotopy τ\tau is an equivalence.

Let Fi:𝒞𝒟iF_{i}\colon{\mathcal{C}}\to{\mathcal{D}}_{i} be a kk-linear functor between smooth kk-linear stable \infty-categories with kk-linear right adjoints for i=1,2i=1,2. Write {\mathcal{E}} for the pushout of F1F_{1} and F2F_{2} i.e. {\mathcal{E}} fits into the following pushout square

𝒞\textstyle{{\mathcal{C}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}F1\scriptstyle{F_{1}}F2\scriptstyle{F_{2}}𝒟1\textstyle{{\mathcal{D}}_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒟2\textstyle{{\mathcal{D}}_{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}.\textstyle{{\mathcal{E}}\ignorespaces.}

Assume that we are given relative nn-Calabi–Yau structures for F1F_{1} and F2F_{2}. Then we obtain a loop at 0 in the space |HC()[n]||\operatorname{HC}^{-}({\mathcal{E}})[-n]| hence a map c~:k[n+1]HC()\tilde{c}\colon k[n+1]\to\operatorname{HC}^{-}({\mathcal{E}}). It is shown in [BD19, Theorem 6.2] that c~\tilde{c} defines an n+1n+1-Calabi–Yau structure on {\mathcal{E}}.

3.4. Calabi–Yau structure on the deformed Calabi–Yau completion

It is shown in [Kel] that deformed Calabi–Yau completion of a small dg-category carries a left Calabi–Yau structure. In this section, we will give a construction of the left Calabi–Yau structure using the language of kk-linear stable \infty-categories rather than small dg-categories as in the original paper [Kel].

Let 𝒞{\mathcal{C}} be a kk-linear stable \infty-category and let X:𝒞𝒞X\colon{\mathcal{C}}\to{\mathcal{C}} be a kk-linear functor. We let π:T𝒞(X)𝒞\pi_{*}\colon T_{{\mathcal{C}}}(X)\to{\mathcal{C}} denote the forgetful functor and π:𝒞T𝒞(X)\pi^{*}\colon{\mathcal{C}}\to T_{{\mathcal{C}}}(X) denote its left adjoint functor. We define the tautological map

uMapLFunk(T𝒞(X),T𝒞(X))(πXπ,IdT𝒞(X))u\in\operatorname{Map}_{\operatorname{LFun}_{k}(T_{{\mathcal{C}}}(X),T_{{\mathcal{C}}}(X))}(\pi^{*}\circ X\circ\pi_{*},\operatorname{Id}_{T_{{\mathcal{C}}}(X)})

by the composition

πXππ(Xππ)πππππIdT𝒞(X)\pi^{*}\circ X\circ\pi_{*}\xrightarrow[]{\pi^{*}(X\hookrightarrow\pi_{*}\pi^{*})\pi_{*}}\pi^{*}\circ\pi_{*}\circ\pi^{*}\circ\pi_{*}\to\operatorname{Id}_{T_{{\mathcal{C}}}(X)}

where the latter map is defined by the counit map. Now consider the case where 𝒞{\mathcal{C}} is smooth and X=Id𝒞![n1]X=\operatorname{Id}_{{\mathcal{C}}}^{!}[n-1]. We have seen in (2.5) that we have a natural transform

(3.3) IdΠn(𝒞)!πId𝒞!π.\operatorname{Id}_{\Pi_{n}({\mathcal{C}})}^{!}\to\pi^{*}\circ\operatorname{Id}_{{\mathcal{C}}}^{!}\circ\pi_{*}.

Now we define the tautological Hochschild homology class θΠn(𝒞):k[n1]HH(Πn(𝒞))\theta_{\Pi_{n}({\mathcal{C}})}\colon k[n-1]\to\operatorname{HH}(\Pi_{n}({\mathcal{C}})) by the map corresponding to the following composition

IdΠn(𝒞)![n1](3.3)πId𝒞![n1]π𝑢IdΠn(𝒞).\operatorname{Id}_{\Pi_{n}({\mathcal{C}})}^{!}[n-1]\xrightarrow[]{\eqref{eq:pullHoch}}\pi^{*}\circ\operatorname{Id}_{{\mathcal{C}}}^{!}[n-1]\circ\pi_{*}\xrightarrow[]{u}\operatorname{Id}_{\Pi_{n}({\mathcal{C}})}.

It is clear that this Hochschild homology class is naturally equivalent to the one constructed in [Kel, Theorem 1.1]. Therefore it follows that δ~θΠn(𝒞):k[n]HC(𝒞)\tilde{\delta}\theta_{\Pi_{n}({\mathcal{C}})}\colon k[n]\to\operatorname{HC}^{-}({\mathcal{C}}) defines a left nn-Calabi–Yau structure on Πn(𝒞)\Pi_{n}({\mathcal{C}}) which will be denoted by ηΠn(𝒞)\eta_{\Pi_{n}({\mathcal{C}})}.

Example 3.7.

Let Y=SpecAY=\operatorname{Spec}A be a smooth affine scheme of dimension nn over kk and take 𝒞=Qcoh(Y){\mathcal{C}}=\operatorname{Qcoh}(Y). Write XTotY(ωY)X\coloneqq\operatorname{Tot}_{Y}(\omega_{Y}). Then Proposition 3.1 and Example 2.7 implies an equivalence

Πn+1(Qcoh(Y))Qcoh(X).\Pi_{n+1}(\operatorname{Qcoh}(Y))\simeq\operatorname{Qcoh}(X).

Under this equivalence and the HKR decomposition, the tautological Hochschild homology class k[n]HH(Πn+1(Qcoh(Y)))k[n]\to\operatorname{HH}(\Pi_{n+1}(\operatorname{Qcoh}(Y))) corresponds to the tautological nn-form on XX. Therefore the left n+1n+1-Calabi–Yau structure on Πn+1(Qcoh(Y))\Pi_{n+1}(\operatorname{Qcoh}(Y)) corresponds to the natural Calabi–Yau form on XX.

Now we discuss the deformed case. Let 𝒞{\mathcal{C}} be a smooth kk-linear stable \infty-category and take a Hochschild homology class c:k[n1]HH(𝒞)c\colon k[n-1]\to\operatorname{HH}({\mathcal{C}}) with a negative cyclic lift c~\tilde{c}. Recall that the class cc induces a kk-linear functor ic:Πn(𝒞)𝒞i_{c}^{*}\colon\Pi_{n}({\mathcal{C}})\to{\mathcal{C}}. Clearly, we have a natural homotopy

HH(ic)(θΠn(𝒞))c.\operatorname{HH}(i_{c}^{*})(\theta_{\Pi_{n}({\mathcal{C}})})\sim c.

Therefore we obtain a natural homotopy

HC(ic)(ηΠn(𝒞))δ~c0.\operatorname{HC}^{-}(i_{c}^{*})(\eta_{\Pi_{n}({\mathcal{C}})})\sim\tilde{\delta}c\sim 0.

where the latter homotopy is defined by the negative cyclic lift c~\tilde{c}. It is shown in [BCS, Proposition 5.17] that the above homotopy defines a relative Calabi–Yau structure on ici_{c}^{*}. Therefore using the result of §3.3, we see that the deformed Calabi–Yau completion Πn(𝒞,c~)Πn(𝒞,c)\Pi_{n}({\mathcal{C}},\tilde{c})\coloneqq\Pi_{n}({\mathcal{C}},c) carries a natural left Calabi–Yau structure denoted by ηΠn(𝒞,c~)\eta_{\Pi_{n}({\mathcal{C}},\tilde{c})} (depending on c~\tilde{c}).

Remark 3.8.

Recall that we have seen in (3.2) that there exists a natural equivalence Πn(𝒞,0)Πn(𝒞)\Pi_{n}({\mathcal{C}},0)\simeq\Pi_{n}({\mathcal{C}}). This equivalence identifies left Calabi–Yau structures ηΠn(𝒞,0)\eta_{\Pi_{n}({\mathcal{C}},0)} and ηΠn(𝒞)\eta_{\Pi_{n}({\mathcal{C}})}.

4. Deformed Calabi–Yau completion and torsor

The aim of this section is to prove Theorem 1.1. To do this, we first describe the nn-Calabi–Yau completion of Qcoh(Y)\operatorname{Qcoh}(Y) for smooth variety YY in §4.1. We deduce the deformed version from the undeformed version in §4.2.

4.1. Calabi–Yau completion of Qcoh(Y)\operatorname{Qcoh}(Y)

Let YY be a smooth variety of dimension dd. We let 𝒜nAlg(Qcoh(Y)){\mathcal{A}}_{n}\in\operatorname{Alg}(\operatorname{Qcoh}(Y)) be the free algebra generated by ωY1[n]\omega_{Y}^{-1}[-n]. We prove the following statement which generalizes a result of Ikeda–Qiu [IQ, §2.5]:

Proposition 4.1.

We have an equivalence of kk-linear stable \infty-categories

Πn(Qcoh(Y))RMod𝒜nd1(Qcoh(Y)).\Pi_{n}(\operatorname{Qcoh}(Y))\simeq\operatorname{RMod}_{{\mathcal{A}}_{n-d-1}}(\operatorname{Qcoh}(Y)).
Proof.

Let U:RMod𝒜nd1(Qcoh(Y))Qcoh(Y)U\colon\operatorname{RMod}_{{\mathcal{A}}_{n-d-1}}(\operatorname{Qcoh}(Y))\to\operatorname{Qcoh}(Y) be the forgetful functor. The functor UU admits a left adjoint ULU^{L} given by tensoring 𝒜nd1{\mathcal{A}}_{n-d-1}. It is clear that UU is conservative and colimit preserving. Therefore UU is monadic. Now we need to show that the monad M=UULM=U\circ U^{L} is equivalent to the monad TIdQcoh(X)![n1]T_{\operatorname{Id}_{\operatorname{Qcoh}(X)}^{!}[n-1]}. This follows immediately from Example 2.7 and [HA, 4.1.1.18]. ∎

Corollary 4.2 ([IQ, §2.5]).

Write XTotY(ωY)X\coloneqq\operatorname{Tot}_{Y}(\omega_{Y}). Then we have an equivalence of kk-linear stable \infty-categories

(4.1) Πd+1(Qcoh(Y))Qcoh(X).\Pi_{d+1}(\operatorname{Qcoh}(Y))\simeq\operatorname{Qcoh}(X).

Further, this equivalence identifies the left Calabi–Yau structure ηΠd+1(Qcoh(Y))\eta_{\Pi_{d+1}(\operatorname{Qcoh}(Y))} and the Calabi–Yau structure on Qcoh(X)\operatorname{Qcoh}(X) induced by the natural Calabi–Yau form on XX.

Proof.

The equivalence (4.1) follows immediately from [SAG, Proposition 6.3.4.6] and Proposition 4.1. To prove that this equivalence preserves the left Calabi–Yau structure, we may assume YY is affine since the negative cyclic homology group HCd+1(Qcoh(X))H0(X,ωX)\operatorname{HC}^{-}_{d+1}(\operatorname{Qcoh}(X))\cong H^{0}(X,\omega_{X}) satisfies the sheaf property. In this case the claim follows from Example 3.7. ∎

4.2. Deformed Calabi–Yau completion of Qcoh(Y)\operatorname{Qcoh}(Y)

Let YY be a smooth variety of dimension dd. Take a cohomology class cH1(Y,ωY)c\in H^{1}(Y,\omega_{Y}). Using the natural inclusion H1(Y,ωY)HHd1(Qcoh(Y))H^{1}(Y,\omega_{Y})\hookrightarrow\operatorname{HH}_{d-1}(\operatorname{Qcoh}(Y)), we can regard cc as a (d1)(d-1)-th Hochschild homology class. Further, the short exact sequence (2.4) implies that cc naturally lifts to a negative cyclic class c~\tilde{c}.

Let XX be the total space of the ωY\omega_{Y}-torsor corresponding to cc. Then we have the following statement:

Theorem 4.3.

We have an equivalence of kk-linear stable \infty-categories

(4.2) Πd+1(Qcoh(Y),c~)Qcoh(X).\Pi_{d+1}(\operatorname{Qcoh}(Y),\tilde{c})\simeq\operatorname{Qcoh}(X).

Further, this equivalence identifies the left Calabi–Yau structure ηΠd+1(Qcoh(Y))\eta_{\Pi_{d+1}(\operatorname{Qcoh}(Y))} and the Calabi–Yau structure on Qcoh(X)\operatorname{Qcoh}(X) induced by the natural Calabi–Yau form on XX.

Proof.

It follows from the diagram (3.1) and Proposition 4.1 that we have the following pushout square:

RMod𝒜1(Qcoh(Y))\textstyle{\operatorname{RMod}_{{\mathcal{A}}_{1}}(\operatorname{Qcoh}(Y))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i0\scriptstyle{i_{0}^{*}}ic\scriptstyle{i_{c}^{*}}Qcoh(Y)\textstyle{\operatorname{Qcoh}(Y)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Qcoh(Y)\textstyle{\operatorname{Qcoh}(Y)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Πd+1(Qcoh(Y),c).\textstyle{\Pi_{d+1}(\operatorname{Qcoh}(Y),c)\ignorespaces.}

Now define an algebra object 𝒜0,cAlg(Qcoh(Y)){\mathcal{A}}_{0,c}\in\operatorname{Alg}(\operatorname{Qcoh}(Y)) by the pushout

𝒜1\textstyle{{\mathcal{A}}_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i0#\scriptstyle{i_{0}^{\#}}ic#\scriptstyle{i_{c}^{\#}}𝒪Y\textstyle{{\mathcal{O}}_{Y}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒪Y\textstyle{{\mathcal{O}}_{Y}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒜0,c.\textstyle{{\mathcal{A}}_{0,c}\ignorespaces.}

Then it follows from [HA, Corollary 4.8.5.13] that there exists an equivalence

Πd+1(Qcoh(Y),c)RMod𝒜0,c(Qcoh(Y)).\Pi_{d+1}(\operatorname{Qcoh}(Y),c)\simeq\operatorname{RMod}_{{\mathcal{A}}_{0,c}}(\operatorname{Qcoh}(Y)).

Let π:XY\pi\colon X\to Y be the natural projection. Then it is enough to show the following equivalence in Alg(Qcoh(Y))\operatorname{Alg}(\operatorname{Qcoh}(Y))

𝒜0,cπ𝒪X.{\mathcal{A}}_{0,c}\simeq\pi_{*}{\mathcal{O}}_{X}.

To do this, consider the following diagram

X\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π\scriptstyle{\pi}π\scriptstyle{\pi}Y\textstyle{Y\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\scriptstyle{0}Y\textstyle{Y\ignorespaces\ignorespaces\ignorespaces\ignorespaces}c\scriptstyle{c}[Y/ωY].\textstyle{[Y/\omega_{Y}].}

Here [Y/ωY][Y/\omega_{Y}] is the quotient stack by the trivial action of TotY(ωY)\operatorname{Tot}_{Y}(\omega_{Y}) on YY. By pushing down the structure sheaves of schemes and stacks appearing in the above diagram to YY, we obtain the following commutative diagram in Alg(Qcoh(Y))\operatorname{Alg}(\operatorname{Qcoh}(Y)):

Sym𝒪Y(ωY1[1])\textstyle{\operatorname{Sym}_{{\mathcal{O}}_{Y}}(\omega_{Y}^{-1}[-1])\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒪Y\textstyle{{\mathcal{O}}_{Y}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒪Y\textstyle{{\mathcal{O}}_{Y}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π𝒪X.\textstyle{\pi_{*}{\mathcal{O}}_{X}.}

By precomposing the natural map 𝒜1Sym𝒪Y(ωY1[1]){\mathcal{A}}_{1}\to\operatorname{Sym}_{{\mathcal{O}}_{Y}}(\omega_{Y}^{-1}[-1]), we obtain the following diagram

𝒜1\textstyle{{\mathcal{A}}_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒪Y\textstyle{{\mathcal{O}}_{Y}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒪Y\textstyle{{\mathcal{O}}_{Y}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π𝒪X.\textstyle{\pi_{*}{\mathcal{O}}_{X}.}

To prove the equivalence (4.2) it is enough to show that this diagram is a pushout square. To do this, we may assume that YY is affine in which case cc is automatically equivalent to zero. In this case, the algebra π𝒪X\pi_{*}{\mathcal{O}}_{X} is the free algebra generated by ωY1\omega_{Y}^{-1}. Therefore the claim follows from the fact that the formation of the free algebra commutes with the pushout.

Now we need to show that the equivalence (4.2) preserves left Calabi–Yau structure. To do this, we may assume YY is affine. In this case the cohomology class cH1(Y,ωY)c\in H^{1}(Y,\omega_{Y}) automatically vanishes. Then the claim follows from Remark 3.8 and Example 3.7.

5. Application to local curves

We now apply Theorem 4.3 to the geometry of the derived moduli stack of coherent sheaves on local curves. Here local curve is a Calabi–Yau threefold of the form TotC(N)\operatorname{Tot}_{C}(N) where CC is a smooth projective curve and NN is a rank two vector bundle with det(N)ωC\det(N)\cong\omega_{C}.

5.1. Shifted symplectic structure

Here we briefly recall the theory of shifted symplectic structure introduced in [PTVV13]. Let XX be a derived Artin stack over kk. Define the space of nn-shifted pp-forms on XX by

𝒜p(X,n)Γ(X,2𝕃X[n]).{\mathcal{A}}^{p}(X,n)\coloneqq\Gamma(X,\wedge^{2}\mathbb{L}_{X}[n]).

where 𝕃X\mathbb{L}_{X} is the cotangent complex of XX. We can also define the space of nn-shifted closed pp-forms 𝒜p,cl(X,n){\mathcal{A}}^{p,\operatorname{cl}}(X,n). See [PTVV13, Definition 1.12] for the detail. Roughly speaking, an nn-shifted closed pp-form is given by an nn-shifted pp-form ω0\omega_{0}, a homotopy ω1:ddRω00\omega_{1}\colon d_{\mathrm{dR}}\omega_{0}\sim 0, a homotopy ddRω2:dω10d_{\mathrm{dR}}\omega_{2}\colon d\omega_{1}\sim 0 and so on. We have a forgetful map

π:𝒜p,cl(X,n)𝒜p(X,n)\pi\colon{\mathcal{A}}^{p,\operatorname{cl}}(X,n)\to{\mathcal{A}}^{p}(X,n)

and the de Rham differential map

ddR:𝒜p(X,n)𝒜p+1,cl(X,n).d_{\mathrm{dR}}\colon{\mathcal{A}}^{p}(X,n)\to{\mathcal{A}}^{p+1,\operatorname{cl}}(X,n).
Definition 5.1.

Let XX be a derived Artin stack. An nn-shifted symplectic structure is an nn-shifted closed 22-form ω\omega on XX whose underlying nn-shifted 22-form ω0\omega_{0} induces an equivalence

𝕃X𝕃X[n].\mathbb{L}_{X}^{\vee}\xrightarrow[]{\simeq}\mathbb{L}_{X}[n].
Example 5.2.

Let XX be a derived Artin stack and fΓ(X,𝒪X)f\in\Gamma(X,{\mathcal{O}}_{X}) be a function on it. The derived critical locus Crit(f)\operatorname{Crit}(f) is given by the following Cartesian square

Crit(f)\textstyle{\operatorname{Crit}(f)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\scriptstyle{0}X\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ddRf\scriptstyle{d_{\mathrm{dR}}f}TotX(𝕃X)\textstyle{\operatorname{Tot}_{X}(\mathbb{L}_{X})}

Then it follows from [BCS, §4.2.1] that Crit(f)\operatorname{Crit}(f) carries a canonical 1-1-shifted symplectic structure.

5.2. Moduli of objects in a Calabi–Yau category

Let 𝒞{\mathcal{C}} be a compactly generated kk-linear stable \infty-category. Following [TV07], we define the moduli of objects in 𝒞{\mathcal{C}} to be the prestack 𝔐C{\mathfrak{M}}_{C} whose value on a commutative dg-algebra AA is the space

𝔐𝒞(A)=LFunkω(C,ModA){\mathfrak{M}}_{{\mathcal{C}}}(A)=\operatorname{LFun}_{k}^{\omega}(C,\operatorname{Mod}_{A})

where LFunkω\operatorname{LFun}_{k}^{\omega} denotes the space of kk-linear functors which preserves compact objects. Assume that 𝒞{\mathcal{C}} is of finite type, i.e., a compact object in the \infty-category LinCatkSt,ω\mathop{\mathrm{LinCat}_{k}^{\mathrm{St},\omega}} of compactly generated kk-linear stable \infty-category with kk-linear functors which preserves compact objects. Then it is shown in [TV07, Proposition 2.14, Theorem 3.6] respectively that 𝒞{\mathcal{C}} is smooth and the prestack 𝔐𝒞{\mathfrak{M}}_{{\mathcal{C}}} is locally an Artin stack of finite presentation over kk.

Theorem 5.3 ([BD, Theorem 5.5]).

Let 𝒞{\mathcal{C}} be a finite type kk-linear stable \infty-category and c:k[n]HC(𝒞)c\colon k[n]\to\operatorname{HC}^{-}({\mathcal{C}}) be a left Calabi–Yau structure. Then 𝔐𝒞{\mathfrak{M}}_{{\mathcal{C}}} carries a natural (2n)(2-n)-shifted symplectic structure.

Example 5.4.

Let XX be a smooth variety of dimension nn. In this case, the moduli space 𝔐X𝔐Qcoh(X){\mathfrak{M}}_{X}\coloneqq{\mathfrak{M}}_{\operatorname{Qcoh}(X)} of objects in Qcoh(X)\operatorname{Qcoh}(X) parametrizes compactly supported perfect complexes on XX. Assume that XX carries a Calabi–Yau form. As we have seen in Example 3.5, the Calabi–Yau form induces a left nn-Calabi–Yau structure on Qcoh(X)\operatorname{Qcoh}(X) and the above theorem implies that 𝔐X{\mathfrak{M}}_{X} carries a natural (2n)(2-n)-shifted symplectic structure.

Let 𝒞{\mathcal{C}} be a kk-linear stable \infty-category of finite type and c:k[n1]HC(𝒞)c\colon k[n-1]\to\operatorname{HC}^{-}({\mathcal{C}}) be a negative cyclic homology class. Then it is shown in [Yeu16, §3.3] that Πn+1(𝒞,c)\Pi_{n+1}({\mathcal{C}},c) is of finite type.

The following theorem, which is a special case of [BCS, Corollary 6.19], describes the moduli space of objects in a certain deformed 33-Calabi–Yau completion:

Theorem 5.5 ([BCS, Corollary 6.19]).

Let 𝒞{\mathcal{C}} be a kk-linear stable \infty-category of finite type and c:kHH(𝒞)c\colon k\to\operatorname{HH}({\mathcal{C}}) be a zeroth Hochschild homology class. Let δ:HH(𝒞)[1]HC(𝒞)\delta\colon\operatorname{HH}({\mathcal{C}})[1]\to\operatorname{HC}^{-}({\mathcal{C}}) be the map induced from the mixed differential. Then there exists a natural function ff on 𝔐𝒞{\mathfrak{M}}_{{\mathcal{C}}} such that there exists a natural equivalence of 1-1-shifted symplectic derived locally Artin stacks

𝔐Π3(𝒞,δc)Crit(f).{\mathfrak{M}}_{\Pi_{3}({\mathcal{C}},\delta c)}\simeq\operatorname{Crit}(f).

For a point x𝔐𝒞x\in{\mathfrak{M}}_{{\mathcal{C}}}, the value of the function ff is computed as follows: Recall that xx corresponds to a kk-linear functor x:𝒞Modkx\colon{\mathcal{C}}\to\operatorname{Mod}_{k} which preserves compact objects. Therefore we obtain a map

HH(𝒞)HH(Modk)k.\operatorname{HH}({\mathcal{C}})\to\operatorname{HH}(\operatorname{Mod}_{k})\simeq k.

Then the value f(x)kf(x)\in k is given by the image of cc under the above map.

5.3. Local curve as deformed Calabi–Yau completion

Let CC be a smooth projective curve and NN be a rank two vector bundle on CC with an isomorphism det(N)ωC\det(N)\cong\omega_{C}. Assume that we are given a short exact sequence

0L1NL200\to L_{1}\to N\to L_{2}\to 0

where L1L_{1} and L2L_{2} are line bundles. Write XTotC(N)X\coloneqq\operatorname{Tot}_{C}(N) and YTotC(L2)Y\coloneqq\operatorname{Tot}_{C}(L_{2}). Then we have the following statement:

Theorem 5.6.

There exists a function ff on the derived moduli stack 𝔐Y{\mathfrak{M}}_{Y} of compactly supported prefect complexes on YY such that there exists a natural equivalence of 1-1-shifted symplectic derived Artin stacks

𝔐XCrit(f).{\mathfrak{M}}_{X}\simeq\operatorname{Crit}(f).
Proof.

Note that XX is the total space of an ωY\omega_{Y}-torsor. We let cH1(Y,ωY)c\in H^{1}(Y,\omega_{Y}) be the class corresponding to the torsor. Then Theorem 4.3 implies an equivalence of left 33-Calabi–Yau categories

Qcoh(X)Π3(Qcoh(Y),c).\operatorname{Qcoh}(X)\simeq\Pi_{3}(\operatorname{Qcoh}(Y),c).

Now using Theorem 5.5 and the injectivity of the map HC1(Qcoh(Y))HH1(Qcoh(Y))\operatorname{HC}^{-}_{1}(\operatorname{Qcoh}(Y))\to\operatorname{HH}_{1}(\operatorname{Qcoh}(Y)) we have seen in (2.4), it is enough to prove that there exists a Hochschild homology class cHH0(Qcoh(Y))c^{\prime}\in\operatorname{HH}_{0}(\operatorname{Qcoh}(Y)) such that we have an equality of the Hochschild homology classes c=δcc=\delta c^{\prime}.

Let αExt1(L2,L1)H1(C,ωCL22)\alpha\in\operatorname{Ext}^{1}(L_{2},L_{1})\cong H^{1}(C,\omega_{C}\otimes L_{2}^{\otimes^{-2}}) the class corresponding to the extension 0L1NL200\to L_{1}\to N\to L_{2}\to 0. Let π:XY\pi\colon X\to Y and p:YCp\colon Y\to C be the projection. Consider the following composition:

τ:H1(C,ωCL22)H1(Y,pωC)H1(Y,ΩY)HH0(Qcoh(Y))\tau\colon H^{1}(C,\omega_{C}\otimes L_{2}^{\otimes^{-2}})\to H^{1}(Y,p^{*}\omega_{C})\to H^{1}(Y,\Omega_{Y})\subset\operatorname{HH}_{0}(\operatorname{Qcoh}(Y))

Here the first map is defined using the inclusion ωCL22ppωC\omega_{C}\otimes L_{2}^{\otimes^{-2}}\hookrightarrow p_{*}p^{*}\omega_{C}. We set c1/2τ(α)c^{\prime}\coloneqq 1/2\cdot\tau(\alpha). Now we claim the equality c=δcc=\delta c^{\prime}. To do this, we first describe the class cc. Consider the following short exact sequence:

0𝒪Yπ𝒪Xπ𝒪X/𝒪Y0.0\to\mathcal{O}_{Y}\to\pi_{*}\mathcal{O}_{X}\to\pi_{*}\mathcal{O}_{X}/\mathcal{O}_{Y}\to 0.

This gives a map π𝒪X/𝒪Y𝒪Y[1]\pi_{*}\mathcal{O}_{X}/\mathcal{O}_{Y}\to{\mathcal{O}}_{Y}[1]. Precomposing the natural map pL11π𝒪X/𝒪Yp^{*}L_{1}^{-1}\to\pi_{*}\mathcal{O}_{X}/\mathcal{O}_{Y} to this, we obtain a map pL11𝒪Y[1]p^{*}L_{1}^{-1}\to{\mathcal{O}}_{Y}[1]. This map corresponds to the class cc. Note that we have the following map between short exact sequences

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}L21\textstyle{L_{2}^{-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}N\textstyle{N^{\vee}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}L11\textstyle{L_{1}^{-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p𝒪Y\textstyle{p_{*}\mathcal{O}_{Y}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}pπ𝒪X\textstyle{p_{*}\pi_{*}\mathcal{O}_{X}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p(π𝒪X/𝒪Y)\textstyle{p_{*}(\pi_{*}\mathcal{O}_{X}/\mathcal{O}_{Y})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0.\textstyle{0.}

Therefore the composition

pL11pαpL21[1]𝒪Y[1],p^{*}L_{1}^{-1}\xrightarrow[]{p^{*}\alpha}p^{*}L_{2}^{-1}[1]\to\mathcal{O}_{Y}[1],

corresponds to the class cc. Now it is enough to show that δc\delta c^{\prime} also corresponds to the above map. Consider the following diagram:

ppωC\textstyle{p_{*}p^{*}\omega_{C}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}pΩY\textstyle{p_{*}\Omega_{Y}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}dDR\scriptstyle{d_{\mathrm{DR}}}pωY\textstyle{p_{*}\omega_{Y}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\sim}ppL1\textstyle{p_{*}p^{*}L_{1}}ωCL22\textstyle{\omega_{C}\otimes L_{2}^{\otimes^{-2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}2\scriptstyle{\cdot 2}ωCL22\textstyle{\omega_{C}\otimes L_{2}^{\otimes^{-2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\sim}L1L21\textstyle{L_{1}\otimes L_{2}^{{-1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}

It is clear that this diagram commutes. Then the claim follows from that fact that the mixed differential corresponds to the de Rham differential under the HKR isomorphism.

We now describe the function ff in the above theorem when we have deg(L2)>2g(C)2\deg(L_{2})>2g(C)-2.

Proposition 5.7.

Let (E,ϕ)(E,\phi) be a pair of a vector bundle EE on CC and a map ϕ:EEL2\phi\colon E\to E\otimes L_{2}. The value of the function f:𝔐Y𝔸1f\colon{\mathfrak{M}}_{Y}\to\mathbb{A}^{1} introduced in Corollary 5.6 at [(E,ϕ)]𝔐Y[(E,\phi)]\in{\mathfrak{M}}_{Y} is

(1/2)αTr(ϕ2)k,(1/2)\cdot\alpha\cdot\operatorname{Tr}(\phi^{2})\in k,

where αH0(C,L22)Ext1(L2,L1)\alpha\in\operatorname{H}^{0}(C,L_{2}^{\otimes 2})^{\vee}\cong\operatorname{Ext}^{1}(L_{2},L_{1}) is the extension class of the short exact sequence 0L1NL200\to L_{1}\to N\to L_{2}\to 0.

Proof.

Let (grHN(E),(grHN(ϕ))(\mathrm{gr}_{\mathrm{HN}}(E),(\mathrm{gr}_{\mathrm{HN}}(\phi)) be the associated graded of the Harder–Narashimhan filtration of (E,ϕ)(E,\phi). It is clear that the value of ff at [(E,ϕ)][(E,\phi)] and [(grHN(E),(grHN(ϕ))][(\mathrm{gr}_{\mathrm{HN}}(E),(\mathrm{gr}_{\mathrm{HN}}(\phi))] is equal. Therefore we may assume that (E,ϕ)(E,\phi) is a direct sum of semistable objects. Using the additivity of ff, we may further assume (E,ϕ)(E,\phi) is semistable. Furthermore, the local irreducibility of 𝔐Yss{\mathfrak{M}}_{Y}^{\mathrm{ss}} proved in [MS20, Proposition 2.9] implies that the locus 𝒰𝔐Yss\mathcal{U}\subset{\mathfrak{M}}_{Y}^{\mathrm{ss}} consisting of sheaves with smooth supports on SS is dense in 𝔐Yss{\mathfrak{M}}_{Y}^{\mathrm{ss}}. Therefore we may assume that the one-dimensional sheaf E~\widetilde{E} on YY corresponding to (E,ϕ)(E,\phi) is of the form iLi_{*}L, where i:C~Yi\colon\widetilde{C}\hookrightarrow Y is a closed immersion from a smooth projective curve and LL is a line bundle on C~\widetilde{C}.

What we need to compute is the value at cHH0(Qcoh(Y))c\in\operatorname{HH}_{0}(\operatorname{Qcoh}(Y)) of the function

HH0(Qcoh(Y))HH0(Modk)k\operatorname{HH}_{0}(\operatorname{Qcoh}(Y))\to\operatorname{HH}_{0}(\operatorname{Mod}_{k})\cong k

induced by the functor HomY(iL,)\operatorname{Hom}_{Y}(i_{*}L,-). Since tensoring line bundles on C~\widetilde{C} acts trivially on H0(C~,𝒪C~)HH0(C~)\operatorname{H}^{0}(\widetilde{C},\mathcal{O}_{\widetilde{C}})\subset\operatorname{HH}_{0}(\widetilde{C}), we may assume L=ωC~L=\omega_{\widetilde{C}} and what we need to compute is the image of cHH0(Qcoh(Y))c\in\operatorname{HH}_{0}(\operatorname{Qcoh}(Y)) under the map

HH0(Qcoh(Y))iHH0(Qcoh(C~))(C~Speck)k.\operatorname{HH}_{0}(\operatorname{Qcoh}(Y))\xrightarrow[]{i^{*}}\operatorname{HH}_{0}(\operatorname{Qcoh}(\widetilde{C}))\xrightarrow[]{(\widetilde{C}\to\operatorname{Spec}k)_{*}}k.

Here the class cc^{\prime} is defined in the proof of the previous theorem. It follows from [BZN, Theorem 2.21, Remark 2.22] that the composite of the inclusion H1(Y,ΩY)HH0(Qcoh(Y))\operatorname{H}^{1}(Y,\Omega_{Y})\hookrightarrow\operatorname{HH}_{0}(\operatorname{Qcoh}(Y)) and the above map is given by the following composition:

H1(Y,ΩY)iH1(C~,ωC~)C~k.\operatorname{H}^{1}(Y,\Omega_{Y})\xrightarrow[]{i^{*}}\operatorname{H}^{1}(\widetilde{C},\omega_{\widetilde{C}})\xrightarrow[]{\int_{\widetilde{C}}}k.

Now consider the following diagram:

ππωC\textstyle{\pi_{*}\pi^{*}\omega_{C}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}πiiπωC\textstyle{\pi_{*}i_{*}i^{*}\pi^{*}\omega_{C}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}πiωC~\textstyle{\pi_{*}i_{*}\omega_{\widetilde{C}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ωCL22\textstyle{\omega_{C}\otimes L_{2}^{\otimes^{-2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Tr(ϕ2)\scriptstyle{\operatorname{Tr}(\phi^{2})}ωC.\textstyle{\omega_{C}.}

It is clear that the above diagram commutes. This implies that the following diagram commutes:

H1(Y,πωC)\textstyle{\operatorname{H}^{1}(Y,\pi^{*}\omega_{C})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H1(Y,ΩY)\textstyle{\operatorname{H}^{1}(Y,\Omega_{Y})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i\scriptstyle{i^{*}}H1(C~,ωC~)\textstyle{\operatorname{H}^{1}(\widetilde{C},\omega_{\widetilde{C}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\sim}C~\scriptstyle{\int_{\widetilde{C}}}k\textstyle{k\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H1(C,ωCL22)\textstyle{\operatorname{H}^{1}(C,\omega_{C}\otimes L_{2}^{\otimes^{-2}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Tr(ϕ2)\scriptstyle{\cdot\operatorname{Tr}(\phi^{2})}H1(C,ωC)\textstyle{\operatorname{H}^{1}(C,\omega_{C})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}C\scriptstyle{\int_{C}}\scriptstyle{\sim}k\textstyle{k}

Thus we obtain the desired identity

C~(ic)=(1/2)αTr(ϕ2).\int_{\widetilde{C}}(i^{*}c^{\prime})=(1/2)\cdot\alpha\cdot\operatorname{Tr}(\phi^{2}).

References

  • [BBD+15] C. Brav, V. Bussi, D. Dupont, D. Joyce, and B. Szendrői, Symmetries and stabilization for sheaves of vanishing cycles, J. Singul. 11 (2015), 85–151, With an appendix by Jörg Schürmann. MR 3353002
  • [BCS] T. Bozec, D. Calaque, and S. Scherotzke, Relative critical loci and quiver moduli, arXiv preprint arXiv:2006.01069 (2020).
  • [BD] C. Brav and T. Dyckerhoff, Relative Calabi-Yau structures ii: Shifted Lagrangians in the moduli of objects, arXiv preprint arXiv:1812.11913 (2018).
  • [BD19] by same author, Relative Calabi-Yau structures, Compos. Math. 155 (2019), no. 2, 372–412. MR 3911626
  • [BZFN10] David Ben-Zvi, John Francis, and David Nadler, Integral transforms and Drinfeld centers in derived algebraic geometry, J. Amer. Math. Soc. 23 (2010), no. 4, 909–966. MR 2669705
  • [BZN] D. Ben-Zvi and D. Nadler, Nonlinear traces, arXiv preprint arXiv:1305.7175 (2013).
  • [Coh] L. Cohn, Differential graded categories are k-linear stable infinity categories, arXiv preprint arXiv:1308.2587 (2013).
  • [Dav18] Ben Davison, Positivity for quantum cluster algebras, Ann. of Math. (2) 187 (2018), no. 1, 157–219. MR 3739230
  • [DM20] B. Davison and S. Meinhardt, Cohomological Donaldson-Thomas theory of a quiver with potential and quantum enveloping algebras, Invent. Math. 221 (2020), no. 3, 777–871. MR 4132957
  • [GR17] Dennis Gaitsgory and Nick Rozenblyum, A study in derived algebraic geometry. Vol. I. Correspondences and duality, Mathematical Surveys and Monographs, vol. 221, American Mathematical Society, Providence, RI, 2017. MR 3701352
  • [Hit19] Nigel Hitchin, Critical loci for Higgs bundles, Communications in Mathematical Physics 366.2 (2019): 841–864. MR 3922539.
  • [HSS17] Marc Hoyois, Sarah Scherotzke, and Nicolò Sibilla, Higher traces, noncommutative motives, and the categorified Chern character, Adv. Math. 309 (2017), 97–154. MR 3607274
  • [IQ] A. Ikeda and Y. Qiu, qq-stability conditions on Calabi-Yau-𝕏\mathbb{X} categories and twisted periods, arXiv preprint arXiv:1807.00469 (2018).
  • [Joy15] D. Joyce, A classical model for derived critical loci, Journal of Differential Geometry 101 (2015), no. 2, 289–367.
  • [Kel11] B. Keller, Deformed Calabi-Yau completions, J. Reine Angew. Math. 654 (2011), 125–180, With an appendix by Michel Van den Bergh. MR 2795754
  • [Kel] Bernhard Keller, Erratum to" deformed calabi-yau completions", arXiv preprint arXiv:1809.01126 (2018).
  • [Kin] T. Kinjo, Dimensional reduction in cohomological Donaldson-Thomas theory, arXiv preprint arXiv:2102.01568. To appear in Compos. Math.
  • [KK] T Kinjo and K Koseki, Cohomological χ\chi-independence for Higgs bundles and Gopakumar–Vafa invariants, arXiv preprint (2021).
  • [KS11] Maxim Kontsevich and Yan Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Commun. Number Theory Phys. 5 (2011), no. 2, 231–352. MR 2851153
  • [Lod98] Jean-Louis Loday, Cyclic homology, second ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1998, Appendix E by María O. Ronco, Chapter 13 by the author in collaboration with Teimuraz Pirashvili. MR 1600246
  • [HTT] J. Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659
  • [HA] by same author, Higher algebra (2017), Preprint, available at http://www. math. harvard. edu/~ lurie (2016).
  • [SAG] by same author, Spectral algebraic geometry, preprint (2018).
  • [MS20] D. Maulik and J. Shen, Cohomological χ\chi-independence for moduli of one-dimensional sheaves and moduli of Higgs bundles, arXiv preprint arXiv:2012.06627 (2020).
  • [MS21] D. Maulik and J. Shen, Endoscopic decompositions and the Hausel–Thaddeus conjecture, Forum of Mathematics, Pi. Vol. 9. Cambridge University Press, 2021.
  • [PTVV13] T. Pantev, B. Toën, M. Vaquié, and G. Vezzosi, Shifted symplectic structures, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 271–328. MR 3090262
  • [Tab05] G. Tabuada, Invariants additifs de DG-catégories, Int. Math. Res. Not. (2005), no. 53, 3309–3339. MR 2196100
  • [TV07] B. Toën and M. Vaquié, Moduli of objects in dg-categories, Ann. Sci. École Norm. Sup. (4) 40 (2007), no. 3, 387–444. MR 2493386
  • [Yan] Lior Yanovski, The monadic tower for \infty-categories, arXiv preprint arXiv:2104.01816.
  • [Yeu16] W. Yeung, Relative Calabi-Yau completions, arXiv preprint arXiv:1612.06352 (2016).