This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Glassey-Strauss representation of Vlasov-Maxwell systems in a Half Space

Abstract.

Following closely the classical works [8]-[12] by Glassey, Strauss, and Schaeffer, we present a version of the Glassey-Strauss representation for the Vlasov-Maxwell systems in a 3D half space when the boundary is the perfect conductor.

Key words and phrases:
Vlasov-Maxwell system, Glassey-Strauss representation, half space, perfect conductor, electromagnetic fields.
1991 Mathematics Subject Classification:
Primary: 35Q61, 35Q83; Secondary: 35Q70.
CK is supported in part by National Science Foundation under Grant No. 19009231900923 and the Brain Pool program (NRF-2021H1D3A2A01039047) of the Ministry of Science and ICT in Korea.

Yunbai Cao

Department of Mathematics

Rutgers University

Piscataway, NJ 08854, USA

Chanwoo Kim

Department of Mathematics

University of Wisconsin-Madison

Madison, WI 53717, USA

&\&

Department of Mathematical Sciences

Seoul National University

Seoul 08826, Korea


This paper is dedicated to the memory of the late Bob Glassey.

1. Vlasov-Maxwell systems

Consider the plasma particles of several species with masses mβm_{\beta} and charges eβe_{\beta} for β=1,2,,N,\beta=1,2,\cdots,N, which occupy the half space

Ω=+3={(x1,x2,x3)3:x3>0}x.\Omega=\mathbb{R}^{3}_{+}=\{(x_{1},x_{2},x_{3})\in\mathbb{R}^{3}:x_{3}>0\}\ni x. (1)

The relativistic velocity for each particle is, for the speed of light cc,

v^β=vmβ2+|v|2/c2forv3.\hat{v}_{\beta}=\frac{v}{\sqrt{m_{\beta}^{2}+|v|^{2}/c^{2}}}\ \ \ \text{for}\ \ v\in\mathbb{R}^{3}. (2)

Denote by fβ(t,x,v)f_{\beta}(t,x,v) the particle densities of the species. The total electric charge density (total charge per unit volume) ρ\rho and the total electric current density (total current per unit area) JJ are given by

ρ(t,x)\displaystyle\rho(t,x) =3βeβfβ(t,x,v)dv,\displaystyle=\int_{\mathbb{R}^{3}}\sum_{\beta}e_{\beta}f_{\beta}(t,x,v)dv, (3)
J(t,x)\displaystyle J(t,x) =3βv^βeβfβ(t,x,v)dv.\displaystyle=\int_{\mathbb{R}^{3}}\sum_{\beta}\hat{v}_{\beta}e_{\beta}f_{\beta}(t,x,v)dv. (4)

The relativistic Vlasov-Maxwell system governs the evolution of fβ(t,x,v)f_{\beta}(t,x,v) (see page 140 of the Glassey’s book [8]): for (t,x,v)[0,T]×Ω×3(t,x,v)\in[0,T]\times\Omega\times\mathbb{R}^{3},

tfβ+v^βxfβ+(eβE+eβv^βc×Bmβg𝐞3)vfβ=0,\partial_{t}f_{\beta}+\hat{v}_{\beta}\cdot\nabla_{x}f_{\beta}+(e_{\beta}E+e_{\beta}\frac{\hat{v}_{\beta}}{c}\times B-m_{\beta}g\mathbf{e}_{3})\cdot\nabla_{v}f_{\beta}=0, (5)

where gg is the gravitational constant (we can easily treat a general given external field). The electromagnetic fields (E,B)(E,B) is determined by the Maxwell’s equations in a vacuum (in Gaussian units)

xE\displaystyle\nabla_{x}\cdot E =4πρ,\displaystyle=4\pi\rho, (6)
x×E\displaystyle\nabla_{x}\times E =1ctB,\displaystyle=-\frac{1}{c}\partial_{t}B, (7)
xB\displaystyle\nabla_{x}\cdot B =0,\displaystyle=0, (8)
x×B\displaystyle\nabla_{x}\times B =4πcJ+1ctE.\displaystyle=\frac{4\pi}{c}J+\frac{1}{c}\partial_{t}E. (9)

2. Boundaries

Plasma particles can face various forms of boundaries in different scales from the astronomic one to the laboratory ([1, 2]). In particular, we are interested in the plasma inside the fusion reactors in this paper. So-called plasma-facing materials, the materials that line the vacuum vessel of the fusion reactors, experience violent conditions as they are subjected to high-speed particle and neutron flux and high heat loads. These require several challenging conditions for the boundary materials, namely high thermal conductivity for efficient heat transport, high cohesive energy for low erosion by particle bombardment, and low atomic number to minimize plasma cooling. Traditionally sturdy metals and alloys such as stainless steel, tungsten, titanium, beryllium, and molybdenum have been used for the boundary material [4]. As these metals have very high electric conductivity, we can regard them as the perfect conductor. This boundary condition is the major interest of the paper (see Section 2.1).

On the other hand, carbon/carbon composites such as refined graphite have excellent thermal and mechanical properties: eroded carbon atoms are fully stripped in the plasma core, thus reducing core radiation. In addition, the surface does not melt but simply sublimes if overheated. For this reason, the majority of the latest machines have expanded graphite coverage tile to include all of the vacuum vessel walls [4]. Graphite is an allotrope of carbon, existing as the collection of thin layers of a giant carbon atoms’ covalent lattice. As there is one delocalized electron per carbon atom, graphite does conduct electricity throughout each layer of the graphite lattice but poorly across different layers. Due to the anisotropic electric conductivity of graphite, one has to employ different boundary conditions from one for the metal boundary.

2.1. Perfect conductor boundary

In this section, we consider the boundary conditions of (E,B)(E,B) at the boundary Ω:={(x1,x2,x3)3:x3=0}\partial\Omega:=\{(x_{1},x_{2},x_{3})\in\mathbb{R}^{3}:x_{3}=0\}. For that, actually we consider more general situation: two different media occupy +3\mathbb{R}^{3}_{+} and 3:={(x1,x2,x3)3:x3<0}\mathbb{R}^{3}_{-}:=\{(x_{1},x_{2},x_{3})\in\mathbb{R}^{3}:x_{3}<0\} separately. In case that media are subject to electric and magnetic polarization, it is much more convenient to write the Maxwell’s equations only for the free charges and free currents in terms of SI units (see Chapter 7 in [5]):

xD\displaystyle\nabla_{x}\cdot D =ρfree,\displaystyle=\rho_{\text{free}}, (10)
x×E\displaystyle\nabla_{x}\times E =tB,\displaystyle=-\partial_{t}B, (11)
xB\displaystyle\nabla_{x}\cdot B =0,\displaystyle=0, (12)
x×H\displaystyle\nabla_{x}\times H =Jfree+tD,\displaystyle=J_{\text{free}}+\partial_{t}D, (13)

where ϵ0\epsilon_{0} is the permittivity of free space and μ0\mu_{0} is the permeability of free space (note that the speed of light c=1ϵ0μ0c=\frac{1}{\sqrt{\epsilon_{0}\mu_{0}}}). Here, D=ϵ0E+PD=\epsilon_{0}E+P and H=1μ0BMH=\frac{1}{\mu_{0}}B-M, while an electric polarization PP and a magnetic polarization MM are determined by appropriate constitutive relations in terms of EE and BB. For example, a linear medium has

P=ε0χeE,M=χmH.P=\varepsilon_{0}\chi_{e}E,\ \ \ M=\chi_{m}H. (14)

Here, χe\chi_{e} and χm\chi_{m} are called the electric susceptibility and magnetic susceptibility, respectively. In a vacuum, as χe=0=χm\chi_{e}=0=\chi_{m} and ρ=ρfree\rho=\rho_{\text{free}} and J=JfreeJ=J_{\text{free}} (all plasma particles/charges are free to move), we recover 6-9.

Denote by nn the outward unit normal of Ω\Omega (which is n=𝐞3n=-\mathbf{e}_{3} for our case); [V][V] the jump of VV across Ω\partial\Omega: [V](x1,x2)=limx30V(x1,x2,x3)limx30V(x1,x2,x3)[V](x_{1},x_{2})=\lim_{x_{3}\downarrow 0}V(x_{1},x_{2},x_{3})-\lim_{x_{3}\uparrow 0}V(x_{1},x_{2},x_{3}). Then from 11 and 12 we derive the jump conditions

n×[E]=0,n[B]=0.n\times[E]=0,\ \ \ n\cdot[B]=0. (15)

In other words, the tangential electric fields E1E_{1}, E2E_{2}, and the normal magnetic field B3B_{3} are continuous across the interface Ω\partial\Omega. We note that 15 hold in general, no matter what constitutive relations hold ([3, 6]). (In special circumstances (e.g. electromagnetic band gap structures), one has to consider a non-zero surface magnetic charge and current, in which 15 should be replaced by discontinuous jump conditions [14]. Such cases are out of our interest in the paper.)

Now we come back to the original situation that the plasma particles stay in a vacuum of the upper half space Ω=+3\Omega=\mathbb{R}^{3}_{+}, while some matter fills the lower half space 3\mathbb{R}^{3}_{-}. We assume that the current follows the Ohm’s law in the matter:

Jfree=σ{Lorentz force},J_{\text{free}}=\sigma\{\text{Lorentz force}\}, (16)

where Lorentz force equals eβE+eβv^βc×Be_{\beta}E+e_{\beta}\frac{\hat{v}_{\beta}}{c}\times B as the gravitation effect is negligible inside the matter. Here, σ\sigma is the conductivity of the matter, which equals the reciprocal of the resistivity. The perfect conductors have σ=\sigma=\infty and the dielectrics get σ=0\sigma=0, while most of real matter is between them. As the drift speed of electrons/ions in the matter is slow (typical drift speed of electrons is few millimeters per second), we ignore the magnetic effect in the Lorentz force to derive that xJfree=σxE\nabla_{x}\cdot J_{\text{free}}=\sigma\nabla_{x}\cdot E. We assume that the matter is the linear medium 14 and hence D=ϵ0(1+χe)ED=\epsilon_{0}(1+\chi_{e})E. We derive that, from the continuity equation and 10,

tρfree=xJfree=σxE=σϵ0(1+χe)xD=σϵ0(1+χe)ρfree.\partial_{t}\rho_{\text{free}}=-\nabla_{x}\cdot J_{\text{free}}=-\sigma\nabla_{x}\cdot E=-\frac{\sigma}{\epsilon_{0}(1+\chi_{e})}\nabla_{x}\cdot D=-\frac{\sigma}{\epsilon_{0}(1+\chi_{e})}\rho_{\text{free}}.

Hence the charge density ρfree\rho_{\text{free}} vanishes in the time scale of 1/σ1/\sigma, which implies ρfree0\rho_{\text{free}}\equiv 0 inside the perfect conductor (σ=)(\sigma=\infty). As a consequence, the charge density and current density accumulate only on the surface/boundary/interface (“Skin effect” [13]). Moreover, 13 and 16 formally imply that E0E\equiv 0, and then 11 forces tB=0\partial_{t}B=0 inside the perfect conductor. Therefore by assuming the initial datum of BB vanishes in 3\mathbb{R}^{3}_{-}, we have B0B\equiv 0 in 3\mathbb{R}^{3}_{-}. On the other hand, the superconductor has B0B\equiv 0 no matter what initial datum of BB is (the Meissner effect).

We summarize the above discussion about E1,E2,B3E_{1},E_{2},B_{3} in 17 and will derive the boundary conditions for E3E_{3} and B1,B2B_{1},B_{2} using the equations:

Definition 2.1 (Perfect conductor (or superconductor) boundary condition).

Assume the lower half space 3\mathbb{R}^{3}_{-} consists of a linear medium 14 of the perfect conductor σ=\sigma=\infty satisfying the Ohm’s law 16. We further assume either the initial magnetic field BB totally vanishes or the matter of 3\mathbb{R}^{3}_{-} is the superconductor. Then E0BE\equiv 0\equiv B in 3\mathbb{R}^{3}_{-}. Therefore, from 15 we derive boundary conditions of the solutions (E,B)(E,B) to 6-9:

E1=0=E2,B3=0onΩ.E_{1}=0=E_{2},\ \ \ B_{3}=0\ \ \ \text{on}\ \ \ \partial\Omega. (17)

Moreover,

3E3=4πρ\displaystyle\partial_{3}E_{3}=4\pi\rho\ \ \ onΩ,\displaystyle\text{on}\ \ \ \partial\Omega, (18)
3B1=4πJ2,3B2=4πJ1\displaystyle\partial_{3}B_{1}=4\pi J_{2},\ \ \partial_{3}B_{2}=-4\pi J_{1}\ \ \ onΩ.\displaystyle\text{on}\ \ \ \partial\Omega. (19)

We only need to derive the boundary conditions for E3E_{3}, B1B_{1}, and B2B_{2}. We achieve them by using the equations 6 and 9. From 6, we have 3E3=1E12E2+4πρ.\partial_{3}E_{3}=-\partial_{1}E_{1}-\partial_{2}E_{2}+4\pi\rho. Then 17 formally implies 18.

Now from 9, we have, for n=𝐞3n=-\mathbf{e}_{3},

1cn×tE+4πcn×Jn×(x×B)=0.\frac{1}{c}n\times\partial_{t}E+\frac{4\pi}{c}n\times J-n\times(\nabla_{x}\times B)=0.

From 17, on Ω\partial\Omega we deduce that n×tE=0n\times\partial_{t}E=0 and hence

0=4π[J2J10][001]×[2B33B2(1B33B1)1B22B1]=4π[J2J10][3B13B20].\begin{split}0=4\pi\begin{bmatrix}J_{2}\\ -J_{1}\\ 0\end{bmatrix}-\begin{bmatrix}0\\ 0\\ -1\end{bmatrix}\times\begin{bmatrix}\partial_{2}B_{3}-\partial_{3}B_{2}\\ -(\partial_{1}B_{3}-\partial_{3}B_{1})\\ \partial_{1}B_{2}-\partial_{2}B_{1}\end{bmatrix}=4\pi\begin{bmatrix}J_{2}\\ -J_{1}\\ 0\end{bmatrix}-\begin{bmatrix}\partial_{3}B_{1}\\ \partial_{3}B_{2}\\ 0\end{bmatrix}.\end{split}

Therefore, we conclude 19.

2.2. Surface charge and surface current

To consider general jump conditions across the interface 20, we need to count a surface charge with density σfree\sigma_{\text{free}} and a surface current with density KfreeK_{\text{free}} which are “concentrated” on the interface Ω\partial\Omega (see [13, 5]). Physically, a non-zero surface charge and current exist on the surface of the perfect conductor as the interior electric field is zero (see a survey on the concept of the “perfect” conductor and the surface charge and current in history [16]). Then from 9 and 6, we formally get

n×[H]=n×Kfree,n[D]=σfree.n\times[H]=n\times K_{\text{free}},\ \ \ n\cdot[D]=\sigma_{\text{free}}. (20)

For example, if both media are linear 14 then 20 implies that

n×(1μ+B+1μB)=n×Kfree,n(ϵ+E+ϵE)=σfree,n\times(\frac{1}{\mu_{+}}B_{+}-\frac{1}{\mu_{-}}B_{-})=n\times K_{\text{free}},\ \ \ n\cdot(\epsilon_{+}E_{+}-\epsilon_{-}E_{-})=\sigma_{\text{free}}, (21)

where ϵ±=ϵ0(1+χe,±)\epsilon_{\pm}=\epsilon_{0}(1+\chi_{e,\pm}) and μ±=μ0(1+χm,±)\mu_{\pm}=\mu_{0}(1+\chi_{m,\pm}) are the permittivity and permeability for the upper and lower media. In the case of Definition 2.1, the upper half is the vacuum and the lower half is a perfect conductor with B0B\equiv 0, then 20 implies that

Kfree=1μ0B|Ω,σfree=ε0E3|Ω.K_{\text{free}\parallel}=\frac{1}{\mu_{0}}B_{\parallel}|_{\partial\Omega},\ \ \ \ \sigma_{\text{free}}=\varepsilon_{0}E_{3}|_{\partial\Omega}. (22)

We note that 22 is not the boundary condition, but one can measure the surface charge and surface current on the surface of the perfect conductor by evaluating EE and BB.

On the other hand, unless the dielectric media can be polarized on the interface, both surface charge and current vanish on the interface. This results in the dielectric boundary condition, which is 20 with Kfree=0=σfreeK_{\text{free}}=0=\sigma_{\text{free}} ([3]). When the media have anisotropic conductivities as graphite, the surface charge and current would not be prescribed simply but determined by PDEs.

3. The Glassey-Strauss representation in 3\mathbb{R}^{3} ([9])

In the whole space, EE and BB solve

t2EΔxE\displaystyle\partial_{t}^{2}E-\Delta_{x}E =4πxρ4πtJ,\displaystyle=-4\pi\nabla_{x}\rho-4\pi\partial_{t}J, (23)
t2BΔxB\displaystyle\partial_{t}^{2}B-\Delta_{x}B =4πx×J,\displaystyle=4\pi\nabla_{x}\times J, (24)

with the initial data

E|t=0=E0,tE|t=0=tE0:=x×B04πJ|t=0,B|t=0=B0,tB|t=0=tB0:=x×E0.\begin{split}E|_{t=0}=E_{0},\ \ \partial_{t}E|_{t=0}=\partial_{t}E_{0}:=\nabla_{x}\times B_{0}-4\pi J|_{t=0},\\ B|_{t=0}=B_{0},\ \ \partial_{t}B|_{t=0}=\partial_{t}B_{0}:=-\nabla_{x}\times E_{0}.\end{split} (25)

Obviously the wave equations suffer from the “loss of derivatives” of (E,B)(E,B) with respect to the regularity of the source terms ρ\rho and JJ. As Glassey mentions in his book [8], the key idea of the Glassey-Strauss representation is replacing the derivatives t,x\partial_{t},\nabla_{x} by a geometric operator TT in 27 and a kinetic transport operator SS in 28:

t=Sv^T1+v^ω,i=ωiS1+v^ω+(δijωiv^j1+v^ω)Tj,\begin{split}\partial_{t}=\frac{S-\hat{v}\cdot T}{1+\hat{v}\cdot\omega},\ \ \partial_{i}=\frac{\omega_{i}S}{1+\hat{v}\cdot\omega}+\left(\delta_{ij}-\frac{\omega_{i}\hat{v}_{j}}{1+\hat{v}\cdot\omega}\right)T_{j},\end{split} (26)

while, for ω=ω(x,y)=yx|yx|\omega=\omega(x,y)=\frac{y-x}{|y-x|},

Ti\displaystyle T_{i} :=iωit,\displaystyle:=\partial_{i}-\omega_{i}\partial t, (27)
S\displaystyle S :=t+v^x.\displaystyle:=\partial_{t}+\hat{v}\cdot\nabla_{x}. (28)

Note that

Tjf(t|yx|,y,v)=yj[f(t|yx|,y,v)],T_{j}f(t-|y-x|,y,v)=\partial_{y_{j}}[f(t-|y-x|,y,v)], (29)

which is a tangential derivative along the surface of a backward light cone [8]. On the other hand, the Vlasov equation 5 implies that

Sf=v[(E+v^×Bg𝐞3)f].Sf=-\nabla_{v}\cdot[(E+\hat{v}\times B-g\mathbf{e}_{3})f]. (30)

Therefore, in [9, 8], they can take off the derivatives TjT_{j}, SS from ff using the integration by parts within the Green’s formula of 23-24 by connecting the source terms to ff via 3-4. We refer to [15] for the recent development in the whole space case.

4. Derivation of the Representations in a half space

In this section we review the original Glassey-Strauss representation of (E,B)(E,B) in a whole space and then generalize the representation to the half space problem when the perfect conductor boundary condition 17-19 of Definition 2.1 holds at the boundary Ω\partial\Omega. For the sake of simplicity, we may assume a single species case {β}={1}\{\beta\}=\{1\} and mβ=eβ=c=1m_{\beta}=e_{\beta}=c=1 by the renormalization.

Consider the perfect conductor boundary condition of Definition 2.1. We derive the representation of EE and BB satisfying the perfect conductor boundary condition at the boundary Ω\partial\Omega. We adopt convenient notations: E=(E,E3)=(E1,E2,E3)E=(E_{\parallel},E_{3})=(E_{1},E_{2},E_{3}), B=(B,B3)=(B1,B2,B3)B=(B_{\parallel},B_{3})=(B_{1},B_{2},B_{3}), =(,3)=(1,2,3)\nabla=(\nabla_{\parallel},\partial_{3})=(\partial_{1},\partial_{2},\partial_{3}), and

x¯=(x,x3)forx=(x,x3)=(x1,x2,x3).\begin{split}\bar{x}=(x_{\parallel},-x_{3})\ \ \ \text{for}\ \ x=(x_{\parallel},x_{3})=(x_{1},x_{2},x_{3}).\end{split} (31)

We refere to [7] for previous study on Vlasov equations in half space. We also refer to [11, 12, 17] for the lower dimensional cases.

4.1. Tangential components of the Electronic field in a half space

From 23, 17, and 25, we recall that, in Ω\Omega,

t2EΔxE=G:=4πρ4πtJ,E|t=0=E0,tE|t=0=tE0,\begin{split}\partial_{t}^{2}E_{\parallel}-\Delta_{x}E_{\parallel}=G_{\parallel}:=-4\pi\nabla_{\parallel}\rho-4\pi\partial_{t}J_{\parallel},\\ E_{\parallel}|_{t=0}=E_{0\parallel},\ \partial_{t}E_{\parallel}|_{t=0}=\partial_{t}E_{0\parallel},\end{split} (32)

and

E=0 on Ω.E_{\parallel}=0\ \ \text{ on }\ \partial\Omega. (33)

To solve the Dirichlet boundary condition, we employ the odd extension of the data: for i=1,2i=1,2, and x3x\in\mathbb{R}^{3},

Gi(t,x,x3)=𝟏x3>0Gi(t,x)𝟏x3<0Gi(t,x¯),E0i(x,x3)=𝟏x3>0E0i(x)𝟏x3<0E0i(x¯),tE0i(x,x3)=𝟏x3>0tE0i(x)𝟏x3<0tE0i(x¯).\begin{split}G_{i}(t,x_{\parallel},x_{3})=&\mathbf{1}_{x_{3}>0}G_{i}(t,x)-\mathbf{1}_{x_{3}<0}G_{i}(t,\bar{x}),\\ E_{0i}(x_{\parallel},x_{3})=&\mathbf{1}_{x_{3}>0}E_{0i}(x)-\mathbf{1}_{x_{3}<0}E_{0i}(\bar{x}),\\ \partial_{t}E_{0i}(x_{\parallel},x_{3})=&\mathbf{1}_{x_{3}>0}\partial_{t}E_{0i}(x)-\mathbf{1}_{x_{3}<0}\partial_{t}E_{0i}(\bar{x}).\end{split} (34)

Then the weak solution of E(t,x)E_{\parallel}(t,x) to 32 with data 34 in the whole space 3\mathbb{R}^{3} takes a form of, for i=1,2,i=1,2,

Ei(t,x)=14πt2B(x;t){y3>0}(ttE0i(y)+E0i(y)+E0i(y)(yx))𝑑Sy\displaystyle E_{i}(t,x)=\frac{1}{4\pi t^{2}}\int_{\partial B(x;t)\cap\{y_{3}>0\}}\left(t\partial_{t}E_{0i}(y)+E_{0i}(y)+\nabla E_{0i}(y)\cdot(y-x)\right)dS_{y}
+14πt2B(x;t){y3<0}(ttE0i(y¯)E0i(y¯)E0i(y¯)(y¯x¯))𝑑Sy\displaystyle\ \ \ \ \ +\frac{1}{4\pi t^{2}}\int_{\partial B(x;t)\cap\{y_{3}<0\}}\big{(}-t\partial_{t}E_{0i}(\bar{y})-E_{0i}(\bar{y})-\nabla E_{0i}(\bar{y})\cdot(\bar{y}-\bar{x})\big{)}dS_{y}
+14πB(x;t){y3>0}Gi(t|yx|,y)|yx|𝑑y\displaystyle\ \ \ \ \ +\frac{1}{4\pi}\int_{B(x;t)\cap\{y_{3}>0\}}\frac{G_{i}(t-|y-x|,y)}{|y-x|}dy (35)
+14πB(x;t){y3<0}Gi(t|yx|,y¯)|yx|𝑑y,\displaystyle\ \ \ \ \ +\frac{1}{4\pi}\int_{B(x;t)\cap\{y_{3}<0\}}\frac{-G_{i}(t-|y-x|,\bar{y})}{|y-x|}dy, (36)

where B(x,t)={y3:|xy|<t}B(x,t)=\{y\in\mathbb{R}^{3}:|x-y|<t\} and B(x,t)={y3:|xy|=t}\partial B(x,t)=\{y\in\mathbb{R}^{3}:|x-y|=t\}. Clearly the above form satisfies the zero Dirichlet boundary condition 33 at x3=0x_{3}=0 formally. From now one we regard the above form as the weak solution of 32-33. The rest of task is to express 35 and 36.

Expression of 35: We follow the idea of the Glassey-Strauss (Section 3). From 3-4 and 26,

35=B(x;t){y3>0}(iρ+tJi)(t|yx|,y)|yx|dy\displaystyle\ref{Eexpanmajor1}=-\int_{B(x;t)\cap\{y_{3}>0\}}\frac{(\partial_{i}\mathbf{\rho}+\partial_{t}{J}_{i})(t-|y-x|,y)}{|y-x|}\mathrm{d}y
=B(x;t){y3>0}3(if+v^itf)(t|yx|,y,v)dvdy|yx|\displaystyle\ \ =-\int_{B(x;t)\cap\{y_{3}>0\}}\int_{\mathbb{R}^{3}}(\partial_{i}f+\hat{v}_{i}\partial_{t}f)(t-|y-x|,y,v)\mathrm{d}v\frac{\mathrm{d}y}{|y-x|}
=B(x;t){y3>0}3ωi+v^i1+v^ω(Sf)(t|yx|,y,v)dvdy|yx|\displaystyle\ \ =-\int_{B(x;t)\cap\{y_{3}>0\}}\int_{\mathbb{R}^{3}}\frac{\omega_{i}+\hat{v}_{i}}{1+\hat{v}\cdot\omega}(Sf)(t-|y-x|,y,v)\mathrm{d}v\frac{\mathrm{d}y}{|y-x|} (37)
B(x;t){y3>0}3(δij(ωi+v^i)v^j1+v^ω)Tjf(t|yx|,y,v)dvdy|yx|.\displaystyle\ \ \ \ \ -\int_{\begin{subarray}{c}B(x;t)\\ \cap\{y_{3}>0\}\end{subarray}}\int_{\mathbb{R}^{3}}\left(\delta_{ij}-\frac{(\omega_{i}+\hat{v}_{i})\hat{v}_{j}}{1+\hat{v}\cdot\omega}\right)T_{j}f(t-|y-x|,y,v)\mathrm{d}v\frac{\mathrm{d}y}{|y-x|}. (38)

Here, we followed the Einstein convention (when an index variable appears twice, it implies summation of that term over all the values of the index) and will do throughout the paper.

For 37, we replace SfSf with 30 and apply the integration by parts in vv to derive that 37 equals

B(x;t){y3>0}3aiE(v,ω)(E+v^×Bg𝐞3)f(t|yx|,y,v)dvdy|yx|,\begin{split}\int_{B(x;t)\cap\{y_{3}>0\}}\int_{\mathbb{R}^{3}}a^{E}_{i}(v,\omega)\cdot(E+\hat{v}\times B-g\mathbf{e}_{3})f(t-|y-x|,y,v)\mathrm{d}v\frac{\mathrm{d}y}{|y-x|},\end{split} (39)

where

aiE(v,ω):=v(ωi+v^i1+v^ω)=(eiv^iv^)(1+v^ω)(ωi+v^i)(ω(ωv^)v^)v(1+v^ω)2.a^{E}_{i}(v,\omega):=\nabla_{v}\left(\frac{\omega_{i}+\hat{v}_{i}}{1+\hat{v}\cdot\omega}\right)=\frac{(e_{i}-\hat{v}_{i}\hat{v})(1+\hat{v}\cdot\omega)-(\omega_{i}+\hat{v}_{i})(\omega-(\omega\cdot\hat{v})\hat{v})}{\langle v\rangle(1+\hat{v}\cdot\omega)^{2}}. (40)

For 38, we replace TjfT_{j}f with 29 and apply the integration by parts to get 38 equals

B(x;t){y3>0}ωj(δij(ωi+v^i)v^j1+v^ω)f(0,y,v)dvdSy|yx|+B(x;t){y3=0}3(δi3(ωi+v^i)v^31+v^ω)f(t|yx|,y,0,v)dvdy|yx|+B(x;t){y3>0}3(|v^|21)(v^i+ωi)(1+v^ω)2f(t|yx|,y,v)dvdy|yx|2.\begin{split}&-\int_{\partial B(x;t)\cap\{y_{3}>0\}}\omega_{j}\left(\delta_{ij}-\frac{(\omega_{i}+\hat{v}_{i})\hat{v}_{j}}{1+\hat{v}\cdot\omega}\right)f(0,y,v)\mathrm{d}v\frac{\mathrm{d}S_{y}}{|y-x|}\\ &+\int_{B(x;t)\cap\{y_{3}=0\}}\int_{\mathbb{R}^{3}}\left(\delta_{i3}-\frac{(\omega_{i}+\hat{v}_{i})\hat{v}_{3}}{1+\hat{v}\cdot\omega}\right)f(t-|y-x|,y_{\parallel},0,v)\mathrm{d}v\frac{\mathrm{d}y_{\parallel}}{|y-x|}\\ &+\int_{\begin{subarray}{c}B(x;t)\\ \cap\{y_{3}>0\}\end{subarray}}\int_{\mathbb{R}^{3}}\frac{(|\hat{v}|^{2}-1)(\hat{v}_{i}+\omega_{i})}{(1+\hat{v}\cdot\omega)^{2}}f(t-|y-x|,y,v)\mathrm{d}v\frac{\mathrm{d}y}{|y-x|^{2}}.\end{split} (41)

where we have used that, from [9, 8],

yj[1|yx|(δij(ωi+v^i)v^j1+v^ω)]=(|v^|21)(v^i+ωi)|yx|2(1+v^ω)2.\frac{\partial}{\partial y_{j}}\left[\frac{1}{|y-x|}\left(\delta_{ij}-\frac{(\omega_{i}+\hat{v}_{i})\hat{v}_{j}}{1+\hat{v}\cdot\omega}\right)\right]=\frac{(|\hat{v}|^{2}-1)(\hat{v}_{i}+\omega_{i})}{|y-x|^{2}(1+\hat{v}\cdot\omega)^{2}}.

Expression of 36: In order to study the expression in the lower half space we modify the idea of Glassey-Strauss slightly. Define

ω¯=[ω1ω2ω3]T.\bar{\omega}=\begin{bmatrix}\omega_{1}&\omega_{2}&-\omega_{3}\end{bmatrix}^{T}. (42)

We use the same SS of 28 but

T¯3f=y3[f(t|yx|,y,y3,v)]=y3fω¯3tf,T¯if=yi[f(t|yx|,y,y3,v)]=yifω¯itf for i=1,2.\begin{split}\bar{T}_{3}f&=-\partial_{y_{3}}[f(t-|y-x|,y_{\parallel},-y_{3},v)]=\partial_{y_{3}}f-\bar{\omega}_{3}\partial_{t}f,\\ \bar{T}_{i}f&=\partial_{y_{i}}[f(t-|y-x|,y_{\parallel},-y_{3},v)]=\partial_{y_{i}}f-\bar{\omega}_{i}\partial_{t}f\,\text{ for }\ i=1,2.\end{split} (43)

Then we get

t\displaystyle\partial_{t} =Sv^T¯1+v^ω¯,\displaystyle=\frac{S-\hat{v}\cdot\bar{T}}{1+\hat{v}\cdot\bar{\omega}}, (44)
yi\displaystyle\partial_{y_{i}} =T¯i+ω¯iSv^T¯1+v^ω¯=ω¯iS1+v^ω¯+T¯iω¯iv^T¯1+v^ω¯.\displaystyle=\bar{T}_{i}+\bar{\omega}_{i}\frac{S-\hat{v}\cdot\bar{T}}{1+\hat{v}\cdot\bar{\omega}}=\frac{\bar{\omega}_{i}S}{1+\hat{v}\cdot\bar{\omega}}+\bar{T}_{i}-\bar{\omega}_{i}\frac{\hat{v}\cdot\bar{T}}{1+\hat{v}\cdot\bar{\omega}}. (45)

Therefore, we derive

i+v^it=ω¯i+v^i1+v^ω¯S+(δijω¯iv^j+v^iv^j1+v^ω¯)T¯j.\begin{split}\partial_{i}+\hat{v}_{i}\partial_{t}=\frac{\bar{\omega}_{i}+\hat{v}_{i}}{1+\hat{v}\cdot\bar{\omega}}S+\left(\delta_{ij}-\frac{\bar{\omega}_{i}\hat{v}_{j}+\hat{v}_{i}\hat{v}_{j}}{1+\hat{v}\cdot\bar{\omega}}\right)\bar{T}_{j}.\end{split} (46)

Now we consider 36. From 46,

36=B(x;t){y3<0}3(if+v^itf)(t|yx|,y¯,v)dvdy|yx|\displaystyle\ref{Eexpanmajor2}=\int_{B(x;t)\cap\{y_{3}<0\}}\int_{\mathbb{R}^{3}}(\partial_{i}f+\hat{v}_{i}\partial_{t}f)(t-|y-x|,\bar{y},v)\mathrm{d}v\frac{\mathrm{d}y}{|y-x|}
=B(x;t){y3<0}3ω¯i+v^i1+v^ω¯(Sf)(t|yx|,y¯,v)dvdy|yx|\displaystyle\ \ =\int_{B(x;t)\cap\{y_{3}<0\}}\int_{\mathbb{R}^{3}}\frac{\bar{\omega}_{i}+\hat{v}_{i}}{1+\hat{v}\cdot\bar{\omega}}(Sf)(t-|y-x|,\bar{y},v)\mathrm{d}v\frac{\mathrm{d}y}{|y-x|} (47)
+B(x;t){y3<0}3(δijω¯iv^j+v^iv^j1+v^ω¯)T¯jf(t|yx|,y¯,v)dvdy|yx|.\displaystyle\ \ +\int_{\begin{subarray}{c}B(x;t)\\ \cap\{y_{3}<0\}\end{subarray}}\int_{\mathbb{R}^{3}}\Big{(}\delta_{ij}-\frac{\bar{\omega}_{i}\hat{v}_{j}+\hat{v}_{i}\hat{v}_{j}}{1+\hat{v}\cdot\bar{\omega}}\Big{)}\bar{T}_{j}f(t-|y-x|,\bar{y},v)\mathrm{d}v\frac{\mathrm{d}y}{|y-x|}. (48)

As getting 39, we derive that, with aiEa_{i}^{E} of 40, 47 equals

B(x;t){y3<0}3aiE(v,ω¯)(E+v^×Bg𝐞3)f(t|yx|,y¯,v)dvdy|yx|.\int_{B(x;t)\cap\{y_{3}<0\}}\int_{\mathbb{R}^{3}}a^{E}_{i}(v,\bar{\omega})\cdot(E+\hat{v}\times B-g\mathbf{e}_{3})f(t-|y-x|,\bar{y},v)\mathrm{d}v\frac{\mathrm{d}y}{|y-x|}. (49)

For 48, applying 43 and the integration by parts, we derive that 48 equals

B(x;t){y3<0}3ω¯j(δijω¯iv^j+v^iv^j1+v^ω¯)f(0,y¯,v)dvdSy|yx|+B(x;t){y3=0}3ι3(δi3ω¯iv^3+v^iv^31+v^ω¯)f(t|yx|,y,0,v)dvdy|yx|B(x;t){y3<0}3(|v^|21)(v^i+ω¯i)(1+v^ω¯)2f(t|yx|,y¯,v)dvdy|yx|2,\begin{split}&\int_{\partial B(x;t)\cap\{y_{3}<0\}}\int_{\mathbb{R}^{3}}\bar{\omega}_{j}\Big{(}\delta_{ij}-\frac{\bar{\omega}_{i}\hat{v}_{j}+\hat{v}_{i}\hat{v}_{j}}{1+\hat{v}\cdot\bar{\omega}}\Big{)}f(0,\bar{y},v)\mathrm{d}v\frac{\mathrm{d}S_{y}}{|y-x|}\\ &+\int_{B(x;t)\cap\{y_{3}=0\}}\int_{\mathbb{R}^{3}}\iota_{3}\Big{(}\delta_{i3}-\frac{\bar{\omega}_{i}\hat{v}_{3}+\hat{v}_{i}\hat{v}_{3}}{1+\hat{v}\cdot\bar{\omega}}\Big{)}f(t-|y-x|,y_{\parallel},0,v)\mathrm{d}v\frac{\mathrm{d}y}{|y-x|}\\ &-\int_{B(x;t)\cap\{y_{3}<0\}}\int_{\mathbb{R}^{3}}\frac{(|\hat{v}|^{2}-1)(\hat{v}_{i}+\bar{\omega}_{i})}{(1+\hat{v}\cdot\bar{\omega})^{2}}f(t-|y-x|,\bar{y},v)\mathrm{d}v\frac{\mathrm{d}y}{|y-x|^{2}},\end{split} (50)

where we have utilized the notation

ιi=+1 for i=1,2,ι3=1,\iota_{i}=+1\ \ \text{ for }\ i=1,2,\ \ \iota_{3}=-1, (51)

and the direct computation

ιjyj[1|yx|(δijιiωiv^j+v^iv^j1+v^ω¯)]=(|v^|21)(v^i+ω¯i)|yx|2(1+v^ω¯)2.\iota_{j}\frac{\partial}{\partial y_{j}}\left[\frac{1}{|y-x|}\Big{(}\delta_{ij}-\frac{\iota_{i}\omega_{i}\hat{v}_{j}+\hat{v}_{i}\hat{v}_{j}}{1+\hat{v}\cdot\bar{\omega}}\Big{)}\right]=\frac{(|\hat{v}|^{2}-1)(\hat{v}_{i}+\bar{\omega}_{i})}{|y-x|^{2}(1+\hat{v}\cdot\bar{\omega})^{2}}. (52)

4.2. Normal components of the Electronic field in a half space

From 23, 18 and 25, we have

t2E3ΔxE3=G3:=4π3ρ4πtJ3,E3|t=0=E03,tE3|t=0=tE03,\begin{split}\partial_{t}^{2}E_{3}-\Delta_{x}E_{3}=G_{3}:=-4\pi\partial_{3}\rho-4\pi\partial_{t}J_{3},\\ E_{3}|_{t=0}=E_{03},\ \partial_{t}E_{3}|_{t=0}=\partial_{t}E_{03},\end{split} (53)

and

3E3=4πρ on Ω.\partial_{3}E_{3}=4\pi\rho\ \ \text{ on }\ \ \partial\Omega. (54)

It is convenient to decompose the solution into two parts: one with the Neumann boundary condition of 53 and the zero forcing term and initial data

t2wΔxw=0 in Ω,w|t=0=0,tw|t=0=0 in Ω,3w=4πρ on Ω,\begin{split}\partial_{t}^{2}w-\Delta_{x}w=0\ \ &\text{ in }\ \ \Omega,\\ w|_{t=0}=0,\ \partial_{t}w|_{t=0}=0\ \ &\text{ in }\ \ \Omega,\\ \partial_{3}w=4\pi\rho\ \ &\text{ on }\ \ \partial\Omega,\end{split} (55)

and the other part E~3\tilde{E}_{3} with the initial data of 53 and the zero Neumann boundary condition. We achieve it by the even extension trick. Recall x¯\bar{x} in 31. For x3x\in\mathbb{R}^{3}, define

G3(t,x)=𝟏x3>0G3(t,x)+𝟏x3<0G3(t,x¯),E03(x)=𝟏x3>0E03(x)+𝟏x3<0E03(x¯),tE03(x)=𝟏x3>0tE03(x)+𝟏x3<0tE03(x¯).\begin{split}G_{3}(t,x)=&\mathbf{1}_{x_{3}>0}G_{3}(t,x)+\mathbf{1}_{x_{3}<0}G_{3}(t,\bar{x}),\\ E_{03}(x)=&\mathbf{1}_{x_{3}>0}E_{03}(x)+\mathbf{1}_{x_{3}<0}E_{03}(\bar{x}),\\ \partial_{t}E_{03}(x)=&\mathbf{1}_{x_{3}>0}\partial_{t}E_{03}(x)+\mathbf{1}_{x_{3}<0}\partial_{t}E_{03}(\bar{x}).\end{split} (56)

The weak solution E~3\tilde{E}_{3} to 53 with the data 56 in the whole space 3\mathbb{R}^{3} take a form of

E~3(t,x)\displaystyle\tilde{E}_{3}(t,x) =14πt2B(x;t){y3>0}(ttE03(y)+E03(y)+E03(y)(yx))𝑑Sy\displaystyle=\frac{1}{4\pi t^{2}}\int_{\begin{subarray}{c}\partial B(x;t)\\ \cap\{y_{3}>0\}\end{subarray}}\left(t\partial_{t}E_{03}(y)+E_{03}(y)+\nabla E_{03}(y)\cdot(y-x)\right)dS_{y}
+14πt2B(x;t){y3<0}(ttE03(y¯)+E03(y¯)+E03(y¯)(y¯x¯))𝑑Sy\displaystyle+\frac{1}{4\pi t^{2}}\int_{\begin{subarray}{c}\partial B(x;t)\\ \cap\{y_{3}<0\}\end{subarray}}\big{(}t\partial_{t}E_{03}(\bar{y})+E_{03}(\bar{y})+\nabla E_{03}(\bar{y})\cdot(\bar{y}-\bar{x})\big{)}dS_{y}
+14πB(x;t){y3>0}G3(t|yx|,y)|yx|𝑑y\displaystyle+\frac{1}{4\pi}\int_{\begin{subarray}{c}B(x;t)\\ \cap\{y_{3}>0\}\end{subarray}}\frac{G_{3}(t-|y-x|,y)}{|y-x|}dy (57)
+14πB(x;t){y3<0}G3(t|yx|,y¯)|yx|𝑑y.\displaystyle+\frac{1}{4\pi}\int_{\begin{subarray}{c}B(x;t)\\ \cap\{y_{3}<0\}\end{subarray}}\frac{G_{3}(t-|y-x|,\bar{y})}{|y-x|}dy. (58)

Following the same argument to expand 35 into 37-41 and 36 into 47-50, we derive that

57=B(x;t){y3>0}3a3E(v,ω)(E+v^×Bg𝐞3)f(t|yx|,y,v)dvdy|yx|+B(x;t){y3>0}3(|v^|21)(v^3+ω3)(1+v^ω)2f(t|yx|,y,v)dvdy|yx|2B(x;t){y3>0}ωj(δ3j(ω3+v^3)v^j1+v^ω)f(0,y,v)dvdSy|yx|+B(x;t){y3=0}3(1(ω3+v^3)v^31+v^ω)f(t|yx|,y,0,v)dvdy|yx|,\begin{split}&\ref{tildeE3formula1}\\ &=\int_{\begin{subarray}{c}B(x;t)\\ \cap\{y_{3}>0\}\end{subarray}}\int_{\mathbb{R}^{3}}a^{E}_{3}(v,\omega)\cdot(E+\hat{v}\times B-g\mathbf{e}_{3})f(t-|y-x|,y,v)\mathrm{d}v\frac{\mathrm{d}y}{|y-x|}\\ &+\int_{B(x;t)\cap\{y_{3}>0\}}\int_{\mathbb{R}^{3}}\frac{(|\hat{v}|^{2}-1)(\hat{v}_{3}+\omega_{3})}{(1+\hat{v}\cdot\omega)^{2}}f(t-|y-x|,y,v)\mathrm{d}v\frac{\mathrm{d}y}{|y-x|^{2}}\\ &-\int_{\partial B(x;t)\cap\{y_{3}>0\}}\omega_{j}\left(\delta_{3j}-\frac{(\omega_{3}+\hat{v}_{3})\hat{v}_{j}}{1+\hat{v}\cdot\omega}\right)f(0,y,v)\mathrm{d}v\frac{\mathrm{d}S_{y}}{|y-x|}\\ &+\int_{B(x;t)\cap\{y_{3}=0\}}\int_{\mathbb{R}^{3}}\left(1-\frac{(\omega_{3}+\hat{v}_{3})\hat{v}_{3}}{1+\hat{v}\cdot\omega}\right)f(t-|y-x|,y_{\parallel},0,v)\mathrm{d}v\frac{\mathrm{d}y_{\parallel}}{|y-x|},\end{split} (59)
58=B(x;t){y3<0}3a3E(v,ω¯)(E+v^×Bg𝐞3)f(t|yx|,y¯,v)dvdy|yx|+B(x;t){y3<0}3(|v^|21)(v^3+ω¯3)(1+v^ω¯)2f(t|yx|,y¯,v)dvdy|yx|2B(x;t){y3<0}3ω¯j(δ3jω¯3v^j+v^3v^j1+v^ω¯)f(0,y¯,v)dvdSy|yx|+B(x;t){y3=0}3(1(ω¯3+v^3)v^31+v^ω¯)f(t|yx|,y,0,v)dvdy|yx|.\begin{split}&\ref{tildeE3formula2}\\ &=-\int_{\begin{subarray}{c}B(x;t)\\ \cap\{y_{3}<0\}\end{subarray}}\int_{\mathbb{R}^{3}}a^{E}_{3}(v,\bar{\omega})\cdot(E+\hat{v}\times B-g\mathbf{e}_{3})f(t-|y-x|,\bar{y},v)\mathrm{d}v\frac{\mathrm{d}y}{|y-x|}\\ &+\int_{B(x;t)\cap\{y_{3}<0\}}\int_{\mathbb{R}^{3}}\frac{(|\hat{v}|^{2}-1)(\hat{v}_{3}+\bar{\omega}_{3})}{(1+\hat{v}\cdot\bar{\omega})^{2}}f(t-|y-x|,\bar{y},v)\mathrm{d}v\frac{\mathrm{d}y}{|y-x|^{2}}\\ &-\int_{\partial B(x;t)\cap\{y_{3}<0\}}\int_{\mathbb{R}^{3}}\bar{\omega}_{j}\Big{(}\delta_{3j}-\frac{\bar{\omega}_{3}\hat{v}_{j}+\hat{v}_{3}\hat{v}_{j}}{1+\hat{v}\cdot\bar{\omega}}\Big{)}f(0,\bar{y},v)\mathrm{d}v\frac{\mathrm{d}S_{y}}{|y-x|}\\ &+\int_{B(x;t)\cap\{y_{3}=0\}}\int_{\mathbb{R}^{3}}\Big{(}1-\frac{(\bar{\omega}_{3}+\hat{v}_{3})\hat{v}_{3}}{1+\hat{v}\cdot\bar{\omega}}\Big{)}f(t-|y-x|,y_{\parallel},0,v)\mathrm{d}v\frac{\mathrm{d}y}{|y-x|}.\end{split} (60)

Note that the weak derivative 3\partial_{3} to the form of E~3\tilde{E}_{3} solves the linear wave equation 53 with oddly extended forcing term and the initial data in the sense of distributions. From the argument of Section 4.1, we conclude that

3E~3=0 on Ω.\partial_{3}\tilde{E}_{3}=0\ \ \text{ on }\ \ \partial\Omega. (61)

4.2.1. Wave equation with the Neumann boundary condition

Now we consider 55. We assume ρ(t,x)\rho(t,x) for all t0t\leq 0, which implies w(t,x)=0w(t,x)=0 for all t0t\leq 0. Define the Laplace transformation:

W(p,x)=eptw(t,x)𝑑t,R(p,x)=eptρ(t,x)𝑑t.W(p,x)=\int^{\infty}_{-\infty}e^{-pt}w(t,x)dt,\ \ \ \ R(p,x)=\int^{\infty}_{-\infty}e^{-pt}\rho(t,x)dt. (62)

Then WW solves the Helmholtz equation with the same Neumann boundary condition:

p2WΔxW=0 in Ω,nW=4πR on Ω.\begin{split}p^{2}W-\Delta_{x}W=0&\ \ \text{ in }\ \Omega,\\ \partial_{n}W=4\pi R&\ \ \text{ on }\ \partial\Omega.\end{split} (63)

The solution for (p2Δx)Φ(x)=δ(x)(p^{2}-\Delta_{x})\Phi(x)=\delta(x) in 3\mathbb{R}^{3} is known as 14πe±p|x||x|\frac{1}{4\pi}\frac{e^{\pm p|x|}}{|x|}. We choose

Φ(x)=14πep|x||x|.\Phi(x)=\frac{1}{4\pi}\frac{e^{-p|x|}}{|x|}. (64)

We have the following identities:

Lemma 4.1.

Suppose uC2(Ω¯)u\in C^{2}(\bar{\Omega}) is an arbitrary function. For a fixed xΩx\in\Omega and Φ\Phi in 64, we have

u(x)=ΩΦ(yx)(p2Δx)u(y)𝑑y+Ω[Φ(yx)nu(y)u(y)nΦ(yx)]𝑑Sy.\begin{split}u(x)&=\int_{\Omega}\Phi(y-x)(p^{2}-\Delta_{x})u(y)dy\\ &+\int_{\partial\Omega}\left[\Phi(y-x)\partial_{n}u(y)-u(y)\partial_{n}\Phi(y-x)\right]dS_{y}.\end{split} (65)
Proof.

The proof is rather standard. Fix xΩx\in\Omega. Let 0<ε10<\varepsilon\ll 1, and B(x,ε)B(x,\varepsilon) be a ball centered at xx with radius ε\varepsilon such that B(x,ε)ΩB(x,\varepsilon)\subset\Omega. Let Vε=ΩB(x,ε)V_{\varepsilon}=\Omega-B(x,\varepsilon). Then, by the integration by parts,

VεΦ(yx)(Δyp2)u(y)𝑑y=Ωu(y)nΦ(yx)dSy+B(x,ε)u(y)nΦ(yx)dSyΩΦ(yx)nu(y)dSyB(x,ε)Φ(yx)nu(y)dSy.\begin{split}&-\int_{V_{\varepsilon}}\Phi(y-x)(\Delta_{y}-p^{2})u(y)dy\\ &=\int_{\partial\Omega}u(y)\partial_{n}\Phi(y-x)dS_{y}+\int_{\partial B(x,\varepsilon)}u(y)\partial_{n}\Phi(y-x)dS_{y}\\ &\ \ -\int_{\partial\Omega}\Phi(y-x)\partial_{n}u(y)dS_{y}-\int_{\partial B(x,\varepsilon)}\Phi(y-x)\partial_{n}u(y)dS_{y}.\end{split}

From 64, B(x,ε)Φ(yx)nu(y)dSy4πε2e|p|ε4πε0,\int_{\partial B(x,\varepsilon)}\Phi(y-x)\partial_{n}u(y)dS_{y}\lesssim 4\pi\varepsilon^{2}\frac{e^{|p|\varepsilon}}{4\pi\varepsilon}\to 0, as ε0.\varepsilon\to 0. And by direct computation,

B(x,ε)u(y)nΦ(yx)dSy=B(x,ε)u(y)(yx)|yx|Φ(yx)𝑑Sy=14πB(x,ε)u(y)(yx)|yx|(ip|yx|1)eip|yx|(yx)|yx|3𝑑Sy=14πB(x,ε)((p|yx|1)ep|yx||yx|2)u(y)𝑑Sy=((1(p)ε)epε)(14πε2B(x,ε)u(y)𝑑Sy)u(x), as ε0.\begin{split}&\int_{\partial B(x,\varepsilon)}u(y)\partial_{n}\Phi(y-x)dS_{y}=\int_{\partial B(x,\varepsilon)}u(y)\frac{-(y-x)}{|y-x|}\cdot\nabla\Phi(y-x)dS_{y}\\ =&\frac{1}{4\pi}\int_{\partial B(x,\varepsilon)}u(y)\frac{-(y-x)}{|y-x|}\cdot(-ip|y-x|-1)\frac{e^{-ip|y-x|}(y-x)}{|y-x|^{3}}dS_{y}\\ =&\frac{1}{4\pi}\int_{\partial B(x,\varepsilon)}\left(-(-p|y-x|-1)\frac{e^{-p|y-x|}}{|y-x|^{2}}\right)u(y)dS_{y}\\ =&\left((1-(-p)\varepsilon)e^{-p\varepsilon}\right)\left(\frac{1}{4\pi\varepsilon^{2}}\int_{\partial B(x,\varepsilon)}u(y)dS_{y}\right)\to u(x),\text{ as }\varepsilon\to 0.\end{split}

Combining all together, and letting ε0\varepsilon\to 0 we get 65.∎

Next for xΩx\in\Omega, let ϕx(y)\phi^{x}(y) be the function such that

(Δyp2)ϕNx(y)=0 in Ω,nϕNx(y)=nΦ(yx) on Ω.\begin{split}(\Delta_{y}-p^{2})\phi_{N}^{x}(y)=0\ \ &\text{ in }\ \ \Omega,\\ \partial_{n}\phi_{N}^{x}(y)=\partial_{n}\Phi(y-x)\ \ &\text{ on }\ \ \partial\Omega.\end{split} (66)

The integration by parts implies

0=Ω(Δyp2)ϕNx(y)u(y)𝑑y=Ω(Δyp2)u(y)ϕNx(y)𝑑y+Ω[nϕNx(y)u(y)ϕNx(y)nu(y)]𝑑Sy=Ω(Δyp2)u(y)ϕNx(y)𝑑y+Ω[nΦ(yx)u(y)ϕNx(y)nu(y)]𝑑Sy.\begin{split}0=&\int_{\Omega}(\Delta_{y}-p^{2})\phi_{N}^{x}(y)u(y)dy\\ =&\int_{\Omega}(\Delta_{y}-p^{2})u(y)\phi_{N}^{x}(y)dy+\int_{\partial\Omega}[\partial_{n}\phi_{N}^{x}(y)u(y)-\phi_{N}^{x}(y)\partial_{n}u(y)]dS_{y}\\ =&\int_{\Omega}(\Delta_{y}-p^{2})u(y)\phi_{N}^{x}(y)dy+\int_{\partial\Omega}[\partial_{n}\Phi(y-x)u(y)-\phi_{N}^{x}(y)\partial_{n}u(y)]dS_{y}.\end{split} (67)

By adding 67 to 65, we derive that

u(x)=Ω(Φ(yx)ϕNx(y))(Δyp2)u(y)𝑑y+Ω(Φ(yx)ϕNx(y))nu(y)dSy.\begin{split}u(x)=&-\int_{\Omega}\left(\Phi(y-x)-\phi_{N}^{x}(y)\right)(\Delta_{y}-p^{2})u(y)dy\\ &+\int_{\partial\Omega}(\Phi(y-x)-\phi_{N}^{x}(y))\partial_{n}u(y)dS_{y}.\end{split} (68)

For the half space Ω=+3\Omega=\mathbb{R}_{+}^{3}, we have, with x¯\bar{x} in 31,

ϕNx(y)=Φ(yx¯).\phi_{N}^{x}(y)=-\Phi(y-\bar{x}). (69)

Finally, we derive that, from 68 and 69:

Lemma 4.2.

For Ω=+3\Omega=\mathbb{R}^{3}_{+}, and Φ\Phi in 64,

u(x)=Ω(Φ(yx)+Φ(yx¯))(Δyp2)u(y)𝑑y+Ω(Φ(yx)+Φ(yx¯))nu(y)dSy.\begin{split}u(x)=&-\int_{\Omega}\left(\Phi(y-x)+\Phi(y-\bar{x})\right)(\Delta_{y}-p^{2})u(y)dy\\ &+\int_{\partial\Omega}(\Phi(y-x)+\Phi(y-\bar{x}))\partial_{n}u(y)dS_{y}.\end{split} (70)

By applying 69 to 63, we derive that

W(p,x)=Ω(Φ(yx)+Φ(yx¯))4πR(y)𝑑Sy=22ep((y1x1)2+(y2x2)2+x32)1/2(y1x1)2+((y2x2)2+x32)1/2R(y1,y2)𝑑y1𝑑y2.\begin{split}W(p,x)&=\int_{\partial\Omega}(\Phi(y-x)+\Phi(y-\bar{x}))4\pi R(y)dS_{y}\\ &=2\int_{\mathbb{R}^{2}}\frac{e^{-p((y_{1}-x_{1})^{2}+(y_{2}-x_{2})^{2}+x_{3}^{2})^{1/2}}}{(y_{1}-x_{1})^{2}+((y_{2}-x_{2})^{2}+x_{3}^{2})^{1/2}}R(y_{1},y_{2})dy_{1}dy_{2}.\end{split} (71)

Using the inverse Laplace transform, we derive that

w(t,x)=12πe(p1+ip2)tW(p1+ip2,x)𝑑p2=1π𝑑p2e(p1+ip2)t2𝑑y1𝑑y2e(p1+ip2)((y1x1)2+(y2x2)2+x32)1/2(y1x1)2+((y2x2)2+x32)1/2×dse(p1+ip2)s(ρ(s,y1,y2)).\begin{split}&w(t,x)=\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{(p_{1}+ip_{2})t}W(p_{1}+ip_{2},x)dp_{2}\\ &\ \ =\frac{1}{\pi}\int_{-\infty}^{\infty}dp_{2}\ e^{(p_{1}+ip_{2})t}\int_{\mathbb{R}^{2}}dy_{1}dy_{2}\frac{e^{-(p_{1}+ip_{2})((y_{1}-x_{1})^{2}+(y_{2}-x_{2})^{2}+x_{3}^{2})^{1/2}}}{(y_{1}-x_{1})^{2}+((y_{2}-x_{2})^{2}+x_{3}^{2})^{1/2}}\\ &\ \ \ \ \ \ \times\int_{-\infty}^{\infty}ds\ e^{-(p_{1}+ip_{2})s}(-\rho(s,y_{1},y_{2})).\end{split} (72)

Finally, we derive that, using the identity eip2t𝑑p2=2πδ(t)\int_{-\infty}^{\infty}e^{ip_{2}t}dp_{2}=2\pi\delta(t),

w(t,x)=1π2e(p1+ip2)(ts|yx|2+x32)|yx|2+x32ρ(s,y)𝑑p2𝑑s𝑑y=22ep1(ts|yx|2+x32)δ(ts|yx|2+x32)|yx|2+x32ρ(s,y)𝑑s𝑑y=2|yx|2+x32<tρ(t|yx|2+x32,y)|yx|2+x32𝑑y.\begin{split}&w(t,x)=\frac{-1}{\pi}\int_{\mathbb{R}^{2}}\int_{\mathbb{R}}\int_{\mathbb{R}}\frac{e^{(p_{1}+ip_{2})(t-s-\sqrt{|y_{\parallel}-x_{\parallel}|^{2}+x_{3}^{2}})}}{\sqrt{|y_{\parallel}-x_{\parallel}|^{2}+x_{3}^{2}}}\rho(s,y_{\parallel})dp_{2}dsdy_{\parallel}\\ &=-2\int_{\mathbb{R}^{2}}\int_{\mathbb{R}}\frac{e^{p_{1}(t-s-\sqrt{|y_{\parallel}-x_{\parallel}|^{2}+x_{3}^{2}})}\delta(t-s-\sqrt{|y_{\parallel}-x_{\parallel}|^{2}+x_{3}^{2}})}{\sqrt{|y_{\parallel}-x_{\parallel}|^{2}+x_{3}^{2}}}\rho(s,y_{\parallel})dsdy_{\parallel}\\ &=-2\int_{\sqrt{|y_{\parallel}-x_{\parallel}|^{2}+x_{3}^{2}}<t}\frac{\rho(t-\sqrt{|y_{\parallel}-x_{\parallel}|^{2}+x_{3}^{2}},y_{\parallel})}{\sqrt{|y_{\parallel}-x_{\parallel}|^{2}+x_{3}^{2}}}dy_{\parallel}.\end{split} (73)

4.3. Summary

Collecting the terms, we conclude the following formula.

Proposition 1.
Ei(t,x)=14πt2B(x;t){y3>0}(ttE0i(y)+E0i(y)+E0i(y)(yx))𝑑Sy+14πt2B(x;t){y3<0}ιi(ttE0i(y¯)E0i(y¯)E0i(y¯)(y¯x¯))𝑑Sy+B(x;t){y3>0}3(|v^|21)(v^i+ωi)|yx|2(1+v^ω)2f(t|yx|,y,v)dvdyB(x;t){y3<0}3ιi(|v^|21)(v^i+ω¯i)|yx|2(1+v^ω¯)2f(t|yx|,y¯,v)dvdy+B(x;t){y3>0}3aiE(v,ω)(E+v^×Bg𝐞3)f(t|yx|,y,v)dvdy|yx|B(x;t){y3<0}3ιiaiE(v,ω¯)(E+v^×Bg𝐞3)f(t|yx|,y¯,v)dvdy|yx|+B(x;t){y3=0}3(δi3(ωi+v^i)v^31+v^ω)f(t|yx|,y,0,v)dvdy|yx|B(x;t){y3=0}3ιi(δi3ω¯iv^3+v^iv^31+v^ω¯)f(t|yx|,y,0,v)dvdy|yx|B(x;t){y3>0}3ωj(δij(ωi+v^i)v^j1+v^ω)f(0,y,v)dvdSy|yx|+B(x;t){y3<0}3ιiω¯j(δijω¯iv^j+v^iv^j1+v^ω¯)f(0,y¯,v)dvdSy|yx|δi3B(x;t){y3=0}32f(t|yx|,y,0,v)|yx|𝑑v𝑑Sy.\begin{split}&E_{i}(t,x)=\frac{1}{4\pi t^{2}}\int_{\partial B(x;t)\cap\{y_{3}>0\}}\left(t\partial_{t}E_{0i}(y)+E_{0i}(y)+\nabla E_{0i}(y)\cdot(y-x)\right)dS_{y}\\ &+\frac{1}{4\pi t^{2}}\int_{\partial B(x;t)\cap\{y_{3}<0\}}\iota_{i}\big{(}-t\partial_{t}E_{0i}(\bar{y})-E_{0i}(\bar{y})-\nabla E_{0i}(\bar{y})\cdot(\bar{y}-\bar{x})\big{)}dS_{y}\\ &+\int_{B(x;t)\cap\{y_{3}>0\}}\int_{\mathbb{R}^{3}}\frac{(|\hat{v}|^{2}-1)(\hat{v}_{i}+\omega_{i})}{|y-x|^{2}(1+\hat{v}\cdot\omega)^{2}}f(t-|y-x|,y,v)\mathrm{d}v\mathrm{d}y\\ &-\int_{B(x;t)\cap\{y_{3}<0\}}\int_{\mathbb{R}^{3}}\iota_{i}\frac{(|\hat{v}|^{2}-1)(\hat{v}_{i}+\bar{\omega}_{i})}{|y-x|^{2}(1+\hat{v}\cdot\bar{\omega})^{2}}f(t-|y-x|,\bar{y},v)\mathrm{d}v\mathrm{d}y\\ &+\int_{B(x;t)\cap\{y_{3}>0\}}\int_{\mathbb{R}^{3}}a^{E}_{i}(v,\omega)\cdot(E+\hat{v}\times B-g\mathbf{e}_{3})f(t-|y-x|,y,v)\mathrm{d}v\frac{\mathrm{d}y}{|y-x|}\\ &-\int_{B(x;t)\cap\{y_{3}<0\}}\int_{\mathbb{R}^{3}}\iota_{i}a^{E}_{i}(v,\bar{\omega})\cdot(E+\hat{v}\times B-g\mathbf{e}_{3})f(t-|y-x|,\bar{y},v)\mathrm{d}v\frac{\mathrm{d}y}{|y-x|}\\ &+\int_{B(x;t)\cap\{y_{3}=0\}}\int_{\mathbb{R}^{3}}\left(\delta_{i3}-\frac{(\omega_{i}+\hat{v}_{i})\hat{v}_{3}}{1+\hat{v}\cdot\omega}\right)f(t-|y-x|,y_{\parallel},0,v)\mathrm{d}v\frac{\mathrm{d}y_{\parallel}}{|y-x|}\\ &-\int_{B(x;t)\cap\{y_{3}=0\}}\int_{\mathbb{R}^{3}}\iota_{i}\left(\delta_{i3}-\frac{\bar{\omega}_{i}\hat{v}_{3}+\hat{v}_{i}\hat{v}_{3}}{1+\hat{v}\cdot\bar{\omega}}\right)f(t-|y-x|,y_{\parallel},0,v)\mathrm{d}v\frac{\mathrm{d}y_{\parallel}}{|y-x|}\\ &-\int_{\partial B(x;t)\cap\{y_{3}>0\}}\int_{\mathbb{R}^{3}}\omega_{j}\left(\delta_{ij}-\frac{(\omega_{i}+\hat{v}_{i})\hat{v}_{j}}{1+\hat{v}\cdot\omega}\right)f(0,y,v)\mathrm{d}v\frac{\mathrm{d}S_{y}}{|y-x|}\\ &+\int_{\partial B(x;t)\cap\{y_{3}<0\}}\int_{\mathbb{R}^{3}}\iota_{i}\bar{\omega}_{j}\Big{(}\delta_{ij}-\frac{\bar{\omega}_{i}\hat{v}_{j}+\hat{v}_{i}\hat{v}_{j}}{1+\hat{v}\cdot\bar{\omega}}\Big{)}f(0,\bar{y},v)\mathrm{d}v\frac{\mathrm{d}S_{y}}{|y-x|}\\ &-\delta_{i3}\int_{B(x;t)\cap\{y_{3}=0\}}\int_{\mathbb{R}^{3}}\frac{2f(t-|y-x|,y_{\parallel},0,v)}{|y-x|}dvdS_{y}.\end{split} (74)

4.4. Representation of the Magnetic field in a half space

Next, we solve for BB. For B1,B2B_{1},B_{2} we have, for i=1,2,i=1,2,

t2BiΔxBi=4π(x×J)i:=Hi in Ω,x3B1=4πJ2,x3B2=4πJ1 on Ω,Bi(0,x)=B0i,tBi(0,x)=tB0i in Ω.\begin{split}\partial_{t}^{2}B_{i}-\Delta_{x}B_{i}=&4\pi(\nabla_{x}\times J)_{i}:=H_{i}\ \ \text{ in }\ \ \Omega,\\ \partial_{x_{3}}B_{1}=&4\pi J_{2},\ \partial_{x_{3}}B_{2}=4\pi J_{1}\ \ \text{ on }\ \ \partial\Omega,\\ B_{i}(0,x)=&B_{0i},\partial_{t}B_{i}(0,x)=\partial_{t}B_{0i}\ \ \text{ in }\ \ \Omega.\end{split} (75)

To solve 75 we write Bi=B~i+BbiB_{i}=\tilde{B}_{i}+B_{bi} with B~i\tilde{B}_{i} satisfies the wave equation in (0,)×3(0,\infty)\times\mathbb{R}^{3} with even extension in x3x_{3}:

t2B~iΔxB~i=𝟏x3>0Hi(t,x)+𝟏x3<0Hi(t,x¯),B~i(0,x)=𝟏x3>0B0i(x)+𝟏x3<0B0i(x¯),tB~i(0,x)=𝟏x3>0tB0i(x)+𝟏x3<0tB0i(x¯).\begin{split}\partial_{t}^{2}\tilde{B}_{i}-\Delta_{x}\tilde{B}_{i}=&\mathbf{1}_{x_{3}>0}H_{i}(t,x)+\mathbf{1}_{x_{3}<0}H_{i}(t,\bar{x}),\\ \tilde{B}_{i}(0,x)=&\mathbf{1}_{x_{3}>0}B_{0i}(x)+\mathbf{1}_{x_{3}<0}B_{0i}(\bar{x}),\\ \partial_{t}\tilde{B}_{i}(0,x)=&\mathbf{1}_{x_{3}>0}\partial_{t}B_{0i}(x)+\mathbf{1}_{x_{3}<0}\partial_{t}B_{0i}(\bar{x}).\end{split} (76)

And BbiB_{bi} satisfies

t2BbiΔxBbi=0 in Ω,Bbi(0,x)=0,tBbi=0 in Ω,x3Bb1=4πJ2,x3Bb2=4πJ1 on Ω.\begin{split}\partial_{t}^{2}B_{bi}-\Delta_{x}B_{bi}=0&\text{ in }\Omega,\\ B_{bi}(0,x)=0,\partial_{t}B_{bi}=0&\text{ in }\Omega,\\ \partial_{x_{3}}B_{b1}=4\pi J_{2},\ \partial_{x_{3}}B_{b2}=-4\pi J_{1}&\text{ on }\Omega.\end{split} (77)

Then from 76,

B~i(t,x)=14πt2B(x;t){y3>0}(ttB0i(y)+B0i(y)+B0i(y)(yx))𝑑Sy+14πt2B(x;t){y3<0}(ttB0i(y¯)+B0i(y¯)+B0i(y¯)(y¯x¯))𝑑Sy+14πB(x;t){y3>0}Hi(t|yx|,y)|yx|𝑑y+14πB(x;t){y3<0}Hi(t|yx|,y¯)|yx|𝑑y.\begin{split}&\tilde{B}_{i}(t,x)\\ =&\frac{1}{4\pi t^{2}}\int_{\partial B(x;t)\cap\{y_{3}>0\}}\left(t\partial_{t}B_{0i}(y)+B_{0i}(y)+\nabla B_{0i}(y)\cdot(y-x)\right)dS_{y}\\ &+\frac{1}{4\pi t^{2}}\int_{\partial B(x;t)\cap\{y_{3}<0\}}\big{(}t\partial_{t}B_{0i}(\bar{y})+B_{0i}(\bar{y})+\nabla B_{0i}(\bar{y})\cdot(\bar{y}-\bar{x})\big{)}dS_{y}\\ &+\frac{1}{4\pi}\int_{B(x;t)\cap\{y_{3}>0\}}\frac{H_{i}(t-|y-x|,y)}{|y-x|}dy+\frac{1}{4\pi}\int_{B(x;t)\cap\{y_{3}<0\}}\frac{H_{i}(t-|y-x|,\bar{y})}{|y-x|}dy.\end{split}

Applying 73 to 77,

Bbi(t,x)=(1)i2B(x;t){y3=0}3v^i¯f(t|yx|,y,0,v)|yx|𝑑v𝑑Sy,\begin{split}B_{bi}(t,x)=(-1)^{i}2\int_{B(x;t)\cap\{y_{3}=0\}}\int_{\mathbb{R}^{3}}\frac{\hat{v}_{\underline{i}}f(t-|y-x|,y_{\parallel},0,v)}{|y-x|}dvdS_{y},\end{split} (78)

where we define

i¯={2, if i=1,1, if i=2.\underline{i}=\begin{cases}2,\text{ if }i=1,\\ 1,\text{ if }i=2.\end{cases}

Thus,

Bi(t,x)=14πt2B(x;t){y3>0}(ttB0i(y)+B0i(y)+B0i(y)(yx))𝑑Sy+14πt2B(x;t){y3<0}(ttB0i(y¯)+B0i(y¯)+B0i(y¯)(y¯x¯))𝑑Sy+14πB(x;t){y3>0}Hi(t|yx|,y)|yx|𝑑y+14πB(x;t){y3<0}Hi(t|yx|,y¯)|yx|𝑑y+(1)i2B(x;t){y3=0}3v^i¯f(t|yx|,y,0,v)|yx|𝑑v𝑑Sy.\begin{split}&B_{i}(t,x)\\ =&\frac{1}{4\pi t^{2}}\int_{\partial B(x;t)\cap\{y_{3}>0\}}\left(t\partial_{t}B_{0i}(y)+B_{0i}(y)+\nabla B_{0i}(y)\cdot(y-x)\right)dS_{y}\\ &+\frac{1}{4\pi t^{2}}\int_{\partial B(x;t)\cap\{y_{3}<0\}}\big{(}t\partial_{t}B_{0i}(\bar{y})+B_{0i}(\bar{y})+\nabla B_{0i}(\bar{y})\cdot(\bar{y}-\bar{x})\big{)}dS_{y}\\ &+\frac{1}{4\pi}\int_{B(x;t)\cap\{y_{3}>0\}}\frac{H_{i}(t-|y-x|,y)}{|y-x|}dy+\frac{1}{4\pi}\int_{B(x;t)\cap\{y_{3}<0\}}\frac{H_{i}(t-|y-x|,\bar{y})}{|y-x|}dy\\ &+(-1)^{i}2\int_{B(x;t)\cap\{y_{3}=0\}}\int_{\mathbb{R}^{3}}\frac{\hat{v}_{\underline{i}}f(t-|y-x|,y_{\parallel},0,v)}{|y-x|}dvdS_{y}.\end{split} (79)

On the other hand, B3(t,x)B_{3}(t,x) satisfies

t2B3ΔxB3=4π(x×j)3:=H3 in Ω,B3(0,x)=B03,tB3(0,x)=tB03 in Ω,B3=0 on Ω.\begin{split}\partial_{t}^{2}B_{3}-\Delta_{x}B_{3}=&4\pi(\nabla_{x}\times j)_{3}:=H_{3}\text{ in }\Omega,\\ B_{3}(0,x)=&B_{03},\partial_{t}B_{3}(0,x)=\partial_{t}B_{03}\text{ in }\Omega,\\ B_{3}=&0\text{ on }\partial\Omega.\end{split}

Using the odd extension in x3x_{3}:

H3(t,x)=𝟏x3>0H3(t,x)𝟏x3<0H3(t,x¯),B03(x)=𝟏x3>0B03(x)𝟏x3<0B03(x¯),tB03(0,x)=𝟏x3>0tB03(x)𝟏x3<0tB03(x¯),\begin{split}H_{3}(t,x)=&\mathbf{1}_{x_{3}>0}H_{3}(t,x)-\mathbf{1}_{x_{3}<0}H_{3}(t,\bar{x}),\\ B_{03}(x)=&\mathbf{1}_{x_{3}>0}B_{03}(x)-\mathbf{1}_{x_{3}<0}B_{03}(\bar{x}),\\ \partial_{t}B_{03}(0,x)=&\mathbf{1}_{x_{3}>0}\partial_{t}B_{03}(x)-\mathbf{1}_{x_{3}<0}\partial_{t}B_{03}(\bar{x}),\end{split}

we get the expression for B3B_{3}:

B3(t,x)=14πt2B(x;t){y3>0}(ttB03(y)+B30(y)+B03(y)(yx))𝑑Sy14πt2B(x;t){y3<0}(ttB03(y¯)+B03(y¯)+B03(y¯)(y¯x¯))𝑑Sy+14πB(x;t){y3>0}H3(t|yx|,y)|yx|𝑑y14πB(x;t){y3<0}H3(t|yx|,y¯)|yx|𝑑y.\begin{split}&B_{3}(t,x)\\ =&\frac{1}{4\pi t^{2}}\int_{\partial B(x;t)\cap\{y_{3}>0\}}\left(t\partial_{t}B_{03}(y)+B_{30}(y)+\nabla B_{03}(y)\cdot(y-x)\right)dS_{y}\\ &-\frac{1}{4\pi t^{2}}\int_{\partial B(x;t)\cap\{y_{3}<0\}}\big{(}t\partial_{t}B_{03}(\bar{y})+B_{03}(\bar{y})+\nabla B_{03}(\bar{y})\cdot(\bar{y}-\bar{x})\big{)}dS_{y}\\ &+\frac{1}{4\pi}\int_{B(x;t)\cap\{y_{3}>0\}}\frac{H_{3}(t-|y-x|,y)}{|y-x|}dy-\frac{1}{4\pi}\int_{B(x;t)\cap\{y_{3}<0\}}\frac{H_{3}(t-|y-x|,\bar{y})}{|y-x|}dy.\end{split} (80)

Combining 79 and 80, we get for i=1,2,3i=1,2,3,

Bi(t,x)=\displaystyle B_{i}(t,x)= 14πt2B(x;t){y3>0}(ttB0i(y)+B0i(y)+B0i(y)(yx))𝑑Sy\displaystyle\frac{1}{4\pi t^{2}}\int_{\partial B(x;t)\cap\{y_{3}>0\}}\left(t\partial_{t}B_{0i}(y)+B_{0i}(y)+\nabla B_{0i}(y)\cdot(y-x)\right)dS_{y}
+ιi4πt2B(x;t){y3<0}(ttB0i(y¯)+B0i(y¯)+B0i(y¯)(y¯x¯))𝑑Sy\displaystyle+\frac{\iota_{i}}{4\pi t^{2}}\int_{\partial B(x;t)\cap\{y_{3}<0\}}\big{(}t\partial_{t}B_{0i}(\bar{y})+B_{0i}(\bar{y})+\nabla B_{0i}(\bar{y})\cdot(\bar{y}-\bar{x})\big{)}dS_{y}
+14πB(x;t){y3>0}Hi(t|yx|,y)|yx|𝑑y\displaystyle+\frac{1}{4\pi}\int_{B(x;t)\cap\{y_{3}>0\}}\frac{H_{i}(t-|y-x|,y)}{|y-x|}dy (81)
+ιi4πB(x;t){y3<0}Hi(t|yx|,y¯)|yx|𝑑y\displaystyle+\frac{\iota_{i}}{4\pi}\int_{B(x;t)\cap\{y_{3}<0\}}\frac{H_{i}(t-|y-x|,\bar{y})}{|y-x|}dy (82)
+(1)i2(1δi3)B(x;t){y3=0}3v^i¯f(t|yx|,y,0,v)|yx|𝑑v𝑑Sy.\displaystyle+(-1)^{i}2(1-\delta_{i3})\int_{B(x;t)\cap\{y_{3}=0\}}\int_{\mathbb{R}^{3}}\frac{\hat{v}_{\underline{i}}f(t-|y-x|,y_{\parallel},0,v)}{|y-x|}dvdS_{y}.

Using 26, we have

81=\displaystyle\ref{Bexpanmajor1}= B(x;t){y3>0}3(xf×v^)i(t|yx|,y,v)|yx|𝑑y\displaystyle\int_{B(x;t)\cap\{y_{3}>0\}}\int_{\mathbb{R}^{3}}\frac{(\nabla_{x}f\times\hat{v})_{i}(t-|y-x|,y,v)}{|y-x|}dy
=\displaystyle= B(x;t){y3>0}3(ω×v^)i1+v^ωSf(t|yx|,y,v)𝑑vdy|yx|\displaystyle\int_{B(x;t)\cap\{y_{3}>0\}}\int_{\mathbb{R}^{3}}\frac{(\omega\times\hat{v})_{i}}{1+\hat{v}\cdot\omega}Sf(t-|y-x|,y,v)dv\frac{dy}{|y-x|} (83)
+B(x;t){y3>0}3((T×v^)i(ω×v^)iv^T1+v^ω)f(t|yx|,y,v)𝑑vdy|yx|.\displaystyle+\int_{B(x;t)\cap\{y_{3}>0\}}\int_{\mathbb{R}^{3}}\left((T\times\hat{v})_{i}-\frac{(\omega\times\hat{v})_{i}\hat{v}\cdot T}{1+\hat{v}\cdot\omega}\right)f(t-|y-x|,y,v)dv\frac{dy}{|y-x|}. (84)

For 83, we replace SfSf with 30 and apply the integration by parts in vv to derive that 83 equals

B(x;t){y3>0}3aiB(v,ω)(E+v^×Bg𝐞3)f(t|yx|,y,v)dvdy|yx|,\begin{split}\int_{B(x;t)\cap\{y_{3}>0\}}\int_{\mathbb{R}^{3}}a^{B}_{i}(v,\omega)\cdot(E+\hat{v}\times B-g\mathbf{e}_{3})f(t-|y-x|,y,v)\mathrm{d}v\frac{\mathrm{d}y}{|y-x|},\end{split} (85)

where

aiB(v,ω):=v((ω×v^)i1+v^ω)=v[(ω×v)i]1+|v|2(1+v^ω)+(ω×v)i(v^+ω)(1+|v|2(1+v^ω))2.a^{B}_{i}(v,\omega):=\nabla_{v}\left(\frac{(\omega\times\hat{v})_{i}}{1+\hat{v}\cdot\omega}\right)=\frac{\nabla_{v}[(\omega\times v)_{i}]}{\sqrt{1+|v|^{2}}(1+\hat{v}\cdot\omega)}+\frac{(\omega\times v)_{i}(\hat{v}+\omega)}{(\sqrt{1+|v|^{2}}(1+\hat{v}\cdot\omega))^{2}}. (86)

For 84, we replace TjfT_{j}f with 29 and apply the integration by parts to get 84 equals

B(x;t){y3>0}3(ω×v^)i(1v^ω1+v^ω)f(0,y,v)𝑑vdSyt+B(x;t){y3=0}3((e3×v^)i+(ω×v^)i1+v^ω(v^e3))f(t|yx|,y,0,v)𝑑vdy|yx|+B(x;t){y3>0}3(ω×v^)i(1|v^|2)(1+v^ω)2|yx|2f(t|yx|,y,v)𝑑v𝑑y.\begin{split}&\int_{\partial B(x;t)\cap\{y_{3}>0\}}\int_{\mathbb{R}^{3}}(\omega\times\hat{v})_{i}\left(1-\frac{\hat{v}\cdot\omega}{1+\hat{v}\cdot\omega}\right)f(0,y,v)dv\frac{dS_{y}}{t}\\ &+\int_{B(x;t)\cap\{y_{3}=0\}}\int_{\mathbb{R}^{3}}\left(-(e_{3}\times\hat{v})_{i}+\frac{(\omega\times\hat{v})_{i}}{1+\hat{v}\cdot\omega}(\hat{v}\cdot e_{3})\right)f(t-|y-x|,y_{\parallel},0,v)dv\frac{dy_{\parallel}}{|y-x|}\\ &+\int_{B(x;t)\cap\{y_{3}>0\}}\int_{\mathbb{R}^{3}}\frac{(\omega\times\hat{v})_{i}\left(1-|\hat{v}|^{2}\right)}{(1+\hat{v}\cdot\omega)^{2}|y-x|^{2}}f(t-|y-x|,y,v)dvdy.\end{split} (87)

where we have used that, from [9, 8],

yj((ω×v^)v^j(1+v^ω)|yx|)=(ω×v^)((ωv^)(1+ωv^)(ωv^)(1+ωv^)|v^|2+(ωv^)2)(1+v^ω)2|yx|2=(ω×v^)(2(ωv^)|v^|2(ωv^)2)(1+v^ω)2|yx|2,\begin{split}&\partial_{y_{j}}\left(\frac{(\omega\times\hat{v})\hat{v}_{j}}{(1+\hat{v}\cdot\omega)|y-x|}\right)\\ =&\frac{(\omega\times\hat{v})\left(-(\omega\cdot\hat{v})(1+\omega\cdot\hat{v})-(\omega\cdot\hat{v})(1+\omega\cdot\hat{v})-|\hat{v}|^{2}+(\omega\cdot\hat{v})^{2}\right)}{(1+\hat{v}\cdot\omega)^{2}|y-x|^{2}}\\ =&\frac{(\omega\times\hat{v})\left(-2(\omega\cdot\hat{v})-|\hat{v}|^{2}-(\omega\cdot\hat{v})^{2}\right)}{(1+\hat{v}\cdot\omega)^{2}|y-x|^{2}},\end{split}

and

y(1|yx|)×v^+yj((ω×v^)v^j(1+v^ω)|yx|)=(ω×v^)((1+v^ω)22(ωv^)|v^|2(ωv^)2)(1+v^ω)2|yx|2=(ω×v^)(1|v^|2)(1+v^ω)2|yx|2.\begin{split}&-\nabla_{y}(\frac{1}{|y-x|})\times\hat{v}+\partial_{y_{j}}\left(\frac{(\omega\times\hat{v})\hat{v}_{j}}{(1+\hat{v}\cdot\omega)|y-x|}\right)\\ &=\frac{(\omega\times\hat{v})\left((1+\hat{v}\cdot\omega)^{2}-2(\omega\cdot\hat{v})-|\hat{v}|^{2}-(\omega\cdot\hat{v})^{2}\right)}{(1+\hat{v}\cdot\omega)^{2}|y-x|^{2}}=\frac{(\omega\times\hat{v})\left(1-|\hat{v}|^{2}\right)}{(1+\hat{v}\cdot\omega)^{2}|y-x|^{2}}.\end{split}

Now we consider 82. From 46,

82 =ιiB(x;t){y3<0}3(xf×v^)i(t|yx|,y¯,v)|yx|𝑑y\displaystyle=\iota_{i}\int_{B(x;t)\cap\{y_{3}<0\}}\int_{\mathbb{R}^{3}}\frac{(\nabla_{x}f\times\hat{v})_{i}(t-|y-x|,\bar{y},v)}{|y-x|}dy
=ιiB(x;t){y3<0}3(ω¯×v^)i1+v^ω¯Sf(t|yx|,y¯,v)𝑑vdy|yx|\displaystyle=\iota_{i}\int_{B(x;t)\cap\{y_{3}<0\}}\int_{\mathbb{R}^{3}}\frac{(\bar{\omega}\times\hat{v})_{i}}{1+\hat{v}\cdot\bar{\omega}}Sf(t-|y-x|,\bar{y},v)dv\frac{dy}{|y-x|} (88)
+ιiB(x;t){y3<0}3((T¯×v^)i(v^T¯)(ω¯×v^)i1+v^ω¯)f(t|yx|,y¯,v)𝑑vdy|yx|.\displaystyle+\iota_{i}\int_{B(x;t)\cap\{y_{3}<0\}}\int_{\mathbb{R}^{3}}\left((\bar{T}\times\hat{v})_{i}-\frac{(\hat{v}\cdot\bar{T})(\bar{\omega}\times\hat{v})_{i}}{1+\hat{v}\cdot\bar{\omega}}\right)f(t-|y-x|,\bar{y},v)dv\frac{dy}{|y-x|}. (89)

As getting 85, we derive that, with aiBa_{i}^{B} of 86, 88 equals

ιiB(x;t){y3<0}3aiB(v,ω¯)(E+v^×Bg𝐞3)f(t|yx|,y¯,v)dvdy|yx|.\iota_{i}\int_{B(x;t)\cap\{y_{3}<0\}}\int_{\mathbb{R}^{3}}a^{B}_{i}(v,\bar{\omega})\cdot(E+\hat{v}\times B-g\mathbf{e}_{3})f(t-|y-x|,\bar{y},v)\mathrm{d}v\frac{\mathrm{d}y}{|y-x|}. (90)

For 89, applying 43 and the integration by parts, we derive that 89 equals

ιiB(x;t){y3<0}3(ω¯×v^)i(1v^ω¯1+v^ω¯)f(0,y¯,v)𝑑vdSyt+ιiB(x;t){y3=0}3((e3×v^)i+(ω¯×v^)i1+v^ω¯(v^e3))f(t|yx|,y,0,v)|yx|𝑑v𝑑y+ιiB(x;t){y3<0}3((ω¯×v^)i(1|v^|2)(1+v^ω¯)2|yx|2)f(t|yx|,y¯,v)𝑑v𝑑y,\begin{split}&\iota_{i}\int_{\partial B(x;t)\cap\{y_{3}<0\}}\int_{\mathbb{R}^{3}}(\bar{\omega}\times\hat{v})_{i}\left(1-\frac{\hat{v}\cdot\bar{\omega}}{1+\hat{v}\cdot\bar{\omega}}\right)f(0,\bar{y},v)dv\frac{dS_{y}}{t}\\ +&\iota_{i}\int_{B(x;t)\cap\{y_{3}=0\}}\int_{\mathbb{R}^{3}}\left(-(e_{3}\times\hat{v})_{i}+\frac{(\bar{\omega}\times\hat{v})_{i}}{1+\hat{v}\cdot\bar{\omega}}(\hat{v}\cdot e_{3})\right)\frac{f(t-|y-x|,y_{\parallel},0,v)}{|y-x|}dvdy_{\parallel}\\ +&\iota_{i}\int_{B(x;t)\cap\{y_{3}<0\}}\int_{\mathbb{R}^{3}}\left(\frac{(\bar{\omega}\times\hat{v})_{i}\left(1-|\hat{v}|^{2}\right)}{(1+\hat{v}\cdot\bar{\omega})^{2}|y-x|^{2}}\right)f(t-|y-x|,\bar{y},v)dvdy,\end{split} (91)

where we have used the direct computation

ιjyj((ω¯×v^)v^j(1+v^ω¯)|yx|)=(ω¯×v^)((v^ω¯)(1+v^ω¯)v^ω¯|v^|2)(1+v^ω¯)2|yx|2=(ω¯×v^)(2(v^ω¯)|v^|2(v^ω¯)2)(1+v^ω¯)2|yx|2,\begin{split}\iota_{j}\partial_{y_{j}}\left(\frac{(\bar{\omega}\times\hat{v})\hat{v}_{j}}{(1+\hat{v}\cdot\bar{\omega})|y-x|}\right)=&\frac{(\bar{\omega}\times\hat{v})\left(-(\hat{v}\cdot\bar{\omega})(1+\hat{v}\cdot\bar{\omega})-\hat{v}\cdot\bar{\omega}-|\hat{v}|^{2}\right)}{(1+\hat{v}\cdot\bar{\omega})^{2}|y-x|^{2}}\\ =&\frac{(\bar{\omega}\times\hat{v})\left(-2(\hat{v}\cdot\bar{\omega})-|\hat{v}|^{2}-(\hat{v}\cdot\bar{\omega})^{2}\right)}{(1+\hat{v}\cdot\bar{\omega})^{2}|y-x|^{2}},\end{split}

and

y(|yx|1)¯×v^+ιjyj((ω¯×v^)v^j(1+v^ω¯)|yx|)=(ω¯×v^)((1+v^ω¯)22(v^ω¯)|v^|2(v^ω¯)2)(1+v^ω¯)2|yx|2=(ω¯×v^)(1|v^|2)(1+v^ω¯)2|yx|2.\begin{split}&-\overline{\nabla_{y}(|y-x|^{-1})}\times\hat{v}+\iota_{j}\partial_{y_{j}}\left(\frac{(\bar{\omega}\times\hat{v})\hat{v}_{j}}{(1+\hat{v}\cdot\bar{\omega})|y-x|}\right)\\ &=\frac{(\bar{\omega}\times\hat{v})\left((1+\hat{v}\cdot\bar{\omega})^{2}-2(\hat{v}\cdot\bar{\omega})-|\hat{v}|^{2}-(\hat{v}\cdot\bar{\omega})^{2}\right)}{(1+\hat{v}\cdot\bar{\omega})^{2}|y-x|^{2}}=\frac{(\bar{\omega}\times\hat{v})\left(1-|\hat{v}|^{2}\right)}{(1+\hat{v}\cdot\bar{\omega})^{2}|y-x|^{2}}.\end{split}

Collecting the terms, we conclude the following formula:

Proposition 2.
Bi(t,x)=14πt2B(x;t){y3>0}(ttB0i(y)+B0i(y)+B0i(y)(yx))𝑑Sy+ιi4πt2B(x;t){y3<0}(ttB0i(y¯)+B0i(y¯)+B0i(y¯)(y¯x¯))𝑑Sy+B(x;t){y3>0}3(ω×v^)i(1|v^|2)(1+v^ω)2|yx|2f(t|yx|,y,v)𝑑v𝑑y+B(x;t){y3<0}3ιi(ω¯×v^)i(1|v^|2)(1+v^ω¯)2|yx|2f(t|yx|,y¯,v)𝑑v𝑑y+B(x;t){y3>0}3aiB(v,ω)(E+v^×Bg𝐞3)f(t|yx|,y,v)dvdy|yx|+B(x;t){y3<0}3ιiaiB(v,ω¯)(E+v^×Bg𝐞3)f(t|yx|,y¯,v)dvdy|yx|+B(x;t){y3=0}3((e3×v^)i+(ω×v^)iv^31+v^ω)f(t|yx|,y,0,v)𝑑vdy|yx|+B(x;t){y3=0}3ιi((e3×v^)i+(ω¯×v^)iv^31+v^ω¯)f(t|yx|,y,0,v)𝑑vdy|yx|+B(x;t){y3>0}3((ω×v^)i1+v^ω)f(0,y,v)𝑑vdSyt+B(x;t){y3<0}3ιi((ω¯×v^)i1+v^ω¯)f(0,y¯,v)𝑑vdSyt+(1)i2(1δi3)B(x;t){y3=0}3v^i¯f(t|yx|,y,0,v)|yx|𝑑v𝑑Sy.\begin{split}&B_{i}(t,x)=\frac{1}{4\pi t^{2}}\int_{\partial B(x;t)\cap\{y_{3}>0\}}\left(t\partial_{t}B_{0i}(y)+B_{0i}(y)+\nabla B_{0i}(y)\cdot(y-x)\right)dS_{y}\\ &+\frac{\iota_{i}}{4\pi t^{2}}\int_{\partial B(x;t)\cap\{y_{3}<0\}}\big{(}t\partial_{t}B_{0i}(\bar{y})+B_{0i}(\bar{y})+\nabla B_{0i}(\bar{y})\cdot(\bar{y}-\bar{x})\big{)}dS_{y}\\ &+\int_{B(x;t)\cap\{y_{3}>0\}}\int_{\mathbb{R}^{3}}\frac{(\omega\times\hat{v})_{i}\left(1-|\hat{v}|^{2}\right)}{(1+\hat{v}\cdot\omega)^{2}|y-x|^{2}}f(t-|y-x|,y,v)dvdy\\ &+\int_{B(x;t)\cap\{y_{3}<0\}}\int_{\mathbb{R}^{3}}\iota_{i}\frac{(\bar{\omega}\times\hat{v})_{i}\left(1-|\hat{v}|^{2}\right)}{(1+\hat{v}\cdot\bar{\omega})^{2}|y-x|^{2}}f(t-|y-x|,\bar{y},v)dvdy\\ &+\int_{B(x;t)\cap\{y_{3}>0\}}\int_{\mathbb{R}^{3}}a^{B}_{i}(v,\omega)\cdot(E+\hat{v}\times B-g\mathbf{e}_{3})f(t-|y-x|,y,v)\mathrm{d}v\frac{\mathrm{d}y}{|y-x|}\\ &+\int_{B(x;t)\cap\{y_{3}<0\}}\int_{\mathbb{R}^{3}}\iota_{i}a^{B}_{i}(v,\bar{\omega})\cdot(E+\hat{v}\times B-g\mathbf{e}_{3})f(t-|y-x|,\bar{y},v)\mathrm{d}v\frac{\mathrm{d}y}{|y-x|}\\ &+\int_{B(x;t)\cap\{y_{3}=0\}}\int_{\mathbb{R}^{3}}\left(-(e_{3}\times\hat{v})_{i}+\frac{(\omega\times\hat{v})_{i}\hat{v}_{3}}{1+\hat{v}\cdot\omega}\right)f(t-|y-x|,y_{\parallel},0,v)dv\frac{dy_{\parallel}}{|y-x|}\\ &+\int_{B(x;t)\cap\{y_{3}=0\}}\int_{\mathbb{R}^{3}}\iota_{i}\left(-(e_{3}\times\hat{v})_{i}+\frac{(\bar{\omega}\times\hat{v})_{i}\hat{v}_{3}}{1+\hat{v}\cdot\bar{\omega}}\right)f(t-|y-x|,y_{\parallel},0,v)dv\frac{dy_{\parallel}}{|y-x|}\\ &+\int_{\partial B(x;t)\cap\{y_{3}>0\}}\int_{\mathbb{R}^{3}}\left(\frac{(\omega\times\hat{v})_{i}}{1+\hat{v}\cdot\omega}\right)f(0,y,v)dv\frac{dS_{y}}{t}\\ &+\int_{\partial B(x;t)\cap\{y_{3}<0\}}\int_{\mathbb{R}^{3}}\iota_{i}\left(\frac{(\bar{\omega}\times\hat{v})_{i}}{1+\hat{v}\cdot\bar{\omega}}\right)f(0,\bar{y},v)dv\frac{dS_{y}}{t}\\ &+(-1)^{i}2(1-\delta_{i3})\int_{B(x;t)\cap\{y_{3}=0\}}\int_{\mathbb{R}^{3}}\frac{\hat{v}_{\underline{i}}f(t-|y-x|,y_{\parallel},0,v)}{|y-x|}dvdS_{y}.\end{split} (92)

References

  • [1] Y. Cao, C. Kim and D. Lee, Global strong solutions of the Vlasov-Poisson-Boltzmann system in bounded domains, Arch. Rational Mech. Anal., 233 (2019), 1027–1130.
  • [2] Y. Cao and C.Kim, On some recent progress in the Vlasov-Poisson-Boltzmann system with diffuse reflection boundary, Recent Advances in Kinetic Equations and Applications, Springer INdAM Series, 48 (2021).
  • [3] J. Cooper and W. Strauss, The initial boundary problem for the Maxwell equations in the presence of a moving body, SIAM J. Math. Anal., 16 (1985), 1165–1179.
  • [4] G. Federici et al, Plasma-material interactions in current tokamaks and their implications for next step fusion reactors, Nucl. Fusion, 41 (2001).
  • [5] D. Griffith, Introduction to Electrodynamics, Cambridge University Press, 4th edition, 2017.
  • [6] Y. Guo, Global weak solutions of the Vlasov-Maxwell system with boundary conditions, Comm. Math. Phys., 154 (1993), 245–263.
  • [7] Y. Guo, Regularity for the Vlasov equations in a half space, Indiana Univ. Math. J., 43 (1994), 255–320.
  • [8] R. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics, 1996.
  • [9] R. Glassey and W. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal., 92 (1986), 59–90.
  • [10] R. Glassey and W. Strauss, High velocity particles in a collisionless plasma, Math. Methods Appl. Sci., 9 (1987), 46–52.
  • [11] R. Glassey and J. Schaeffer, The relativistic Vlasov-Maxwell system in two space dimensions. I, Arch. Rational Mech. Anal., 141 (1998), 331–354.
  • [12] R. Glassey and J. Schaeffer, The relativistic Vlasov-Maxwell system in two space dimensions. II, Arch. Rational Mech. Anal., 141 (1998), 355–374.
  • [13] D. Jackson, Classical Electrodynamics, Wiley, 3rd edition, 1998.
  • [14] X. Liu, F. Yang, M. Li and S. Xu, Generalized boundary conditions in surface electromagnetics: fundamental theorems and surface characterizations, Appl. Sci., 9 (2019).
  • [15] J. Luk and R. Strain, A new continuation criterion for the relativistic Vlasov-Maxwell system, Comm. Math. Phys., 331 (2014), 1005–1027.
  • [16] K. McDonald, Electromagnetic Fields inside a Perfect Conductor, unpublished note.
  • [17] T. Nguyen, T. Nguyen and W. Strauss, Global magnetic confinement for the 1.5D Vlasov-Maxwell system, Kinetic and Related Models, 8 (2015), 153–168.