This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: These two authors contributed equally to this work.thanks: These two authors contributed equally to this work.

g+igg+ig topological superconductivity in the 30°-twisted bilayer graphene

Yu-Bo Liu School of Physics, Beijing Institute of Technology, Beijing 100081, China    Yongyou Zhang School of Physics, Beijing Institute of Technology, Beijing 100081, China    Wei-Qiang Chen Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China    Fan Yang [email protected] School of Physics, Beijing Institute of Technology, Beijing 100081, China
(December 25, 2024)
Abstract

Based on our revised perturbational-band theory, we study possible pairing states driven by interaction in the electron-doped quasicrystal 30°-twisted bilayer graphene. Our mean-field study on the related t-J model predicts that, the beneath-van-Hove and beyond-van-Hove low doping regimes are covered by the chiral d+idd+id and g+igg+ig topological superconductivities (TSCs) respectively. The g+igg+ig-TSC possesses a pairing angular momentum 4, and hence following each effective C12C_{12}- rotation by Δϕ=nπ/6\Delta\phi=n\pi/6, the pairing phase changes 4Δϕ4\Delta\phi. This intriguing TSC is novel, as it belongs to a special 2D E4E_{4}- irreducible representation of the effective D12D_{12} point group unique to this quasicystal and absent on periodic lattices. The Ginzburg-Landau theory suggested that the g+igg+ig- TSC originates from the Josephson coupling between the d+idd+id pairings on the two mono-layers.

pacs:
……

Introduction: The twisted multi-layer graphene family since synthesis have driven the revelation of such intriguing quantum phases caoyuan20181 ; caoyuan20182 ; Yankowitz2019 ; Dean2019 ; Yazdani2019 ; Efetov2019 ; David2019 ; Serlin2019 ; P_Kim2020 ; Zeldov2020 ; P_Kim2021 ; Caoyuan2021 as the superconductivity (SC), the correlated insulator, the nematic phase, the quantum anomalous Hall, etc, which have aroused great research interests Xu2018 ; Po2018 ; Yuan2018 ; YangFan2018 ; WuFeng20181 ; Kang2018 ; Isobe2018 ; Koshino2018 ; Fernandes2018 ; Kang2019 ; Po2019 ; Dai2019 ; Honerkamp20191 ; Gonzalez2019 ; Song2019 ; Ahn2019 ; Angeli2019 ; Lian2019 ; Jiangpeng2019 ; Vishwanath2019prl ; Linyuping2019 ; MingXie2020 ; Abouelkomsan2020 ; Bultinck2020prx ; Senthil2020 ; Liao2021 ; Chichinadze2020 ; Mohammad2020 ; Wuxianxin2020 . While most of these studies are focused on the low twist-angle regimes, here we consider the recently synthesized Ahn2018 ; Yao2018 ; Pezzini2020 ; Yan2019 ; Deng2020 30°-twisted bilayer graphene (TBG). This quasi-crystal TBG (QC-TBG) system hosts no real-space period and is characterized by an exact dodecagonal rotation symmetry verified by various experimentsAhn2018 ; Yao2018 ; Pezzini2020 ; Yan2019 ; Deng2020 . While the single-particle properties of this material have been widely studiedAhn2018 ; Yao2018 ; Moon2013 ; Koshino2015 ; Moon2019 ; Park2019 ; Crosse2021 ; Yuanshengjun2019 ; Yuanshengjun20201 ; Yuanshengjun20202 ; Aragon2019 , physical properties driven by electron-electron (e-e) interaction have not been investigated. Here we focus on possible exotic pairing states in the doped QC-TBG.

It has been long to search SC in the graphene family. Particularly, various groups have proposed Doniach2007 ; Gonzalez2008 ; Honerkamp2008 ; Pathak2010 ; McChesney2010 ; Nandkishore2012 ; Wang2012 ; Kiesel2012 ; Honerkamp2014 that the chiral dx2y2±idxyd_{x^{2}-y^{2}}\pm id_{xy} (abbreviated as d+idd+id below) topological SC (TSC) can be driven in the mono-layer graphene by e-e interaction near the van Hove (VH) doping. Recently, this material has been successfully doped to the beyond-VH regime exp_VHS , which puts on the agenda the search of the exotic d+idd+id chiral TSC. It’s timely now to investigate what exotic pairing states can be induced by the Josephson coupling between the d+idd+id pairing order parameters in the two mono-layers in the QC-TBG. While such weak inter-layer Josephson coupling is not expected to significantly change the TcT_{c}, certain choice of the relative phase difference between the two pairing order parameters can lead to new irreducible representation (IRRP) of the enlarged point group in QC-TBG, and hence novel TSC. Generally, TSCs on periodic lattices with at most 6- folded rotation axes can be generated from 2D E1E_{1} (p+ipp+ip) or E2E_{2} (d+idd+id) IRRPs of the point groups. However, the dodecagonal rotation symmetry in the QC-TBG allows for more 2D IRRPs and hence more novel TSCs with higher pairing angular momenta L3L\geq 3.

On the other front, the SC on QCs has recently been a hot topic DeGottardi2013 ; YuPeng2013 ; Loring2016 ; Sakai2017 ; Andrade2019 ; Sakai2019 ; Varjas2019 ; Nagai2020 ; Caoye2020 ; Sakai2020 ; YYZhang2020 ; Hauck2021 ; Zhoubin2021 , particularly after the synthesis of the QC Al-Zn-Mg superconductor exp . Presently, most of these studies are focused on the intrinsic QC such as the Penrose lattice. Instead, the QC-TBG belongs to extrinsic QC Moon2019 which hosts two perfect crystal layers with independent periods, wherein the quasi-periodic nature appears only in the perturbational coupling between the two layers. This structural character enables us to treat the system in the 𝐤\mathbf{k}- space via the perturbational band theory, which lends us more convenience and insight to understand the SC on the extrinsic QC. Besides, it’s interesting to clarify the difference between the pairing natures on intrinsic and extrinsic QCs.

In this paper, we study the pairing states in the doped QC-TBG, adopting the t-J model on this QC. We revise the perturbational band theory to suit it to the study on the finite lattice involving e-e interaction. The mean-field (MF) pairing phase diagram in the low electron-doped regime shows that the beneath-VH and beyond-VH doping regimes are covered by the d+idd+id and g+igg+ig TSCs, respectively. The g+igg+ig TSC belongs to the 2D E4E_{4}- IRRP of the effective D12D_{12} point group unique to this QC, which possesses a high L=4L=4 and its gap phase changes 2π/32\pi/3 for each 30°\degree- rotation. Such an intriguing TSC originates from the Josephson coupling between the d+idd+id pairings on the two monolayers, as suggested by the Ginzburg-Landau theory. Our results not only open the door to study e-e correlation driven phases on extrinsic QCs, but also reveal a novel TSC rare on periodic lattices.

Model and Approach: We start from the following tight-binding (TB) model for the QC-TBGMoon2019 ,

HTB=𝐢𝐣σt𝐢𝐣c𝐢σc𝐣σ,H_{\text{TB}}=-\sum_{\mathbf{ij}\sigma}t_{\mathbf{ij}}c^{\dagger}_{\mathbf{i}\sigma}c_{\mathbf{j}\sigma}, (1)

with t𝐢𝐣t_{\mathbf{ij}} provided in the SMSM adopted from Ref. Moon2019 . Eq. (S1) can be decomposed into the zeroth-order intra-layer hopping term H0H_{0} and the perturbational inter-layer tunneling term HH^{\prime} as

H0\displaystyle H_{0} =\displaystyle= 𝐤μασc𝐤μασc𝐤μασε𝐤μα,\displaystyle\sum_{\mathbf{k}\mu\alpha\sigma}c^{\dagger}_{\mathbf{k}\mu\alpha\sigma}c_{\mathbf{k}\mu\alpha\sigma}\varepsilon_{\mathbf{k}}^{\mu\alpha},
H\displaystyle H^{\prime} =\displaystyle= 𝐤𝐪αβσc𝐤tασc𝐪bβσT𝐤𝐪αβ+h.c.\displaystyle\sum_{\mathbf{kq}\alpha\beta\sigma}c^{\dagger}_{\mathbf{k}\text{t}\alpha\sigma}c_{\mathbf{q}\text{b}\beta\sigma}T^{\alpha\beta}_{\mathbf{kq}}+h.c. (2)

Here 𝐤/𝐪\mathbf{k}/\mathbf{q}, μ(=t(top),b(bottom))\mu(=\text{t(top)},\text{b(bottom)}), α/β\alpha/\beta and σ\sigma label the momentum, layer, band and spin respectively, ε𝐤μα\varepsilon_{\mathbf{k}}^{\mu\alpha} is the monolayer dispersion and T𝐤𝐪αβT^{\alpha\beta}_{\mathbf{kq}} is given byMacDonald2011 ; Castro2007 ; Castro2012 ; Bistritzer2010 ; Moon2013 ; Koshino2015 ; Moon2019

T𝐤𝐪αβ=𝐤α(t)|HTB|𝐪β(b).T^{\alpha\beta}_{\mathbf{kq}}=\left\langle\mathbf{k}\alpha^{(\text{t})}\left|H_{\text{TB}}\right|\mathbf{q}\beta^{(\text{b})}\right\rangle. (3)

In thermal dynamic limit, the nonzero T𝐤𝐪αβT^{\alpha\beta}_{\mathbf{kq}} requires 𝐤+𝐆(t)=𝐪+𝐆(b)\mathbf{k}+\mathbf{G}^{(\text{t})}=\mathbf{q}+\mathbf{G}^{(\text{b})}Ahn2018 ; Yao2018 ; Moon2013 ; Koshino2015 ; Moon2019 , where 𝐆(t/b)\mathbf{G}^{(\text{t/b})} represent the reciprocal lattice vectors for the t/b layers. Under this condition, we have T𝐤𝐪αβt(𝐤+𝐆(t))T^{\alpha\beta}_{\mathbf{kq}}\propto t\left(\mathbf{k}+\mathbf{G}^{(\text{t})}\right), which decays promptly with |𝐤+𝐆(t)||\mathbf{k+G}^{(\text{t})}|. Therefore each zeroth-order top-layer eigenstate |𝐤α(t)\left|\mathbf{k}\alpha^{(\text{t})}\right\rangle can only couple with a few isolated bottom-layer eigenstates |𝐪β(b)\left|\mathbf{q}\beta^{(\text{b})}\right\rangle, and vice versa, which justifies the perturbational treatment.

Note that on our finite lattice with discrete momentum points, for each typical 𝐤\mathbf{k} on the top layer, no 𝐪\mathbf{q} on the bottom layer can make 𝐤+𝐆(t)=𝐪+𝐆(b)\mathbf{k}+\mathbf{G}^{(\text{t})}=\mathbf{q}+\mathbf{G}^{(\text{b})} exactly satisfied. Therefore for each top-layer state |𝐤α(t)|\mathbf{k}\alpha^{(\text{t})}\rangle, we abandon this relation and directly use Eq. (3) to find the bottom-layer states |𝐪iβi(b)|\mathbf{q}_{i}\beta_{i}^{(\text{b})}\rangle which obviously couple with it. Then, for these |𝐪iβi(b)|\mathbf{q}_{i}\beta_{i}^{(\text{b})}\rangle states, we find again all the |𝐤jαj(t)|\mathbf{k}^{\prime}_{j}\alpha_{j}^{(\text{t})}\rangle states which obviously couple with them. Gathering all these states related to |𝐤α(t)|\mathbf{k}\alpha^{(\text{t})}\rangle as bases to form a close sub-space, we can write down and diagonalize the Hamiltonian matrix in this sub-space to obtain all the eigen states. Among these states, the one having the largest overlap with |𝐤α(t)|\mathbf{k}\alpha^{(\text{t})}\rangle is marked as its perturbation-corrected state |𝐤α(t)~|\widetilde{\mathbf{k}\alpha^{(\text{t})}}\rangle, whose energy is marked as ε~𝐤tα\tilde{\varepsilon}^{\text{t}\alpha}_{\mathbf{k}}. The procedure to get |𝐪β(b)~|\widetilde{\mathbf{q}\beta^{(\text{b})}}\rangle and ε~𝐪bβ\tilde{\varepsilon}^{\text{b}\beta}_{\mathbf{q}} is similar. For more details, see the Supplementary Material (SM)SM . The approach developed here is a finite-lattice version of the second-order perturbational theory in Ref. Yao2018 ; Moon2013 ; Koshino2015 .

Refer to caption
Figure 1: (Color on line) (a) High-symmetry points marked in the Brillouin zone. (b) Band structure plotted along the high-symmetry lines: solid (dashed) lines for the QC-TBG (two uncoupled graphene monolayers). (c) FSs for the doping level δ=0.32\delta=0.32. (d) DOS from the perturbational band theory, in comparison with that from real-space diagonalization on a finite lattice with 9×1049\times 10^{4} sites. The color in (b, c) represents layer component. Insets in (b) band structure near the XX point and (c) FSs crossing the Γ\Gamma-XX line (grey dotted line).

Along the lines connecting the high-symmetry points in the Brillouin zone marked in Fig. 1 (a), we plot our obtained band structure (solid lines) in Fig. 1 (b), in comparison with the uncoupled band structures (dashed lines) from the two layers. Remarkably, while there is obvious band splitting caused by inter-layer hybridization on the hole-doped side, the band structure on the electron-doped side is overall not far from simply overlaying the two uncoupled monolayer band structures, reflecting the much weaker inter-layer hybridization thereKoshino2015 ; Moon2019 , proved in the SMSM . Below, we shall focus on the electron-doped side as the weaker inter-layer coupling there validates our perturbational approach.

The main effect of the inter-layer coupling on the electron-doped side lies in that the top-layer band branches and the bottom-layer ones cross and split at the XX points, and simultaneously their layer components are exchanged (see the inset of Fig. 1 (b)). Actually, such band crossing and splitting takes place on all the Γ\Gamma-XX lines: For each 𝐤\mathbf{k} on these lines, by symmetry, the states |𝐤α(t)|\mathbf{k}\alpha^{(\text{t})}\rangle and |𝐤α(b)|\mathbf{k}\alpha^{(\text{b})}\rangle possess degenerate zeroth-order energy. They are further coupled via 𝐤+𝐆(t)=𝐤+𝐆(b)\mathbf{k}+\mathbf{G}^{(\text{t})}=\mathbf{k}+\mathbf{G}^{(\text{b})} by setting 𝐆(t)=𝐆(b)=0\mathbf{G}^{(\text{t})}=\mathbf{G}^{(\text{b})}=0, leading to their hybridization and the resulting band splitting. Consequently, the FSs contributed from the two layers also cross and split upon crossing these lines, and simultaneously the layer components are exchanged, see Fig. 1 (c). The emergent FSs with dodecagonal symmetry can be viewed as the inter-layer bonding- and anti-bonding- FSs.

The density of state (DOS) obtained by our approach is well consistent with that obtained by directly diagonalizing the real-space Hamiltonian, particularly in the electron-doped side, as shown in Fig. 1(d). We have further checked that the obtained set of states {|𝐤α(μ)~}\{|\widetilde{\mathbf{k}\alpha^{(\mu)}}\rangle\} are almost mutually orthogonal. These properties well qualify them as a good set of single-particle bases for succeeding studies involving e-e interaction.

Now we come to the e-e interaction. As the local Hubbard UU for the graphene family can vary from 10 eV to 17 eVgraphene_RMP , comparable with the total band width Wb18W_{b}\approx 18 eV, the weak-coupling approach might not be suitable here. For simplicity, we take the strong-coupling limit, wherein the strong on-site repulsion induces the following superexchange interaction

HJ=(𝐢,𝐣)J𝐢𝐣𝐒𝐢𝐒𝐣,H_{J}=\sum_{(\mathbf{i,j})}J_{\mathbf{ij}}\mathbf{S}_{\mathbf{i}}\cdot\mathbf{S}_{\mathbf{j}}, (4)

with J𝐢𝐣=4t𝐢𝐣2/UJ_{\mathbf{ij}}=4t_{\mathbf{ij}}^{2}/U and U=10U=10 eV. Here the sum (𝐢,𝐣)\sum_{(\mathbf{i,j})} goes through the (𝐢,𝐣)(\mathbf{i,j}) pairs on the bilayer. The total Hamiltonian is then given by the following t-J model,

H=HTB+HJ.H=H_{\text{TB}}+H_{J}. (5)

Eq. (5) is solved in the SMSM by the MF or the Gutzwiller MF approaches, which yield the same pairing symmetry. Focusing on the intra-band pairing between opposite momenta, we obtain the pairing potential Vνβμα(𝐤,𝐪)V^{\mu\alpha}_{\nu\beta}(\mathbf{k},\mathbf{q}) and the linearized gap equation near TcT_{c},

Vαβμν\displaystyle V^{\mu\nu}_{\alpha\beta} (𝐤,𝐪)=32N(𝐢,𝐣)J𝐢𝐣Re(ξ~𝐢,𝐤μαξ~𝐣,𝐤μα)Re(ξ~𝐢,𝐪νβξ~𝐣,𝐪νβ),\displaystyle(\mathbf{k},\mathbf{q})=\frac{-3}{2N}\sum_{(\mathbf{i,j})}J_{\mathbf{ij}}\text{Re}\left(\tilde{\xi}_{\mathbf{i},\mathbf{k}\mu\alpha}\tilde{\xi}^{*}_{\mathbf{j},\mathbf{k}\mu\alpha}\right)\text{Re}\left(\tilde{\xi}_{\mathbf{i},\mathbf{q}\nu\beta}\tilde{\xi}^{*}_{\mathbf{j},\mathbf{q}\nu\beta}\right), (6)
1(2π)2νβVαβμν(𝐤,𝐪)vFνβ(𝐪)Δνβ(𝐪)𝑑q=λΔμα(𝐤).\displaystyle-\frac{1}{(2\pi)^{2}}\sum_{\nu\beta}\oint\frac{V^{\mu\nu}_{\alpha\beta}(\mathbf{k},\mathbf{q})}{v_{F}^{\nu\beta}(\mathbf{q})}\Delta_{\nu\beta}(\mathbf{q})dq_{\parallel}=\lambda\Delta_{\mu\alpha}(\mathbf{k}).

Here ξ~𝐢,𝐤μα/N\tilde{\xi}_{\mathbf{i},\mathbf{k}\mu\alpha}/\sqrt{N} denotes the wave function of |𝐤α(μ)~|\widetilde{\mathbf{k}\alpha^{(\mu)}}\rangle, vFνβ(𝐪)v_{F}^{\nu\beta}(\mathbf{q}) is the Fermi velocity and qq_{\parallel} denotes the component along the tangent of the FS. The pairing symmetry is determined by the gap form factor Δμα(𝐤)\Delta_{\mu\alpha}(\mathbf{k}) corresponding to the largest pairing eigenvalue λ\lambda solved for Eq. (6).

Phase diagram and Ginzburg-Landau theory: The pairing symmetries can be classified according to the IRRPs of the point group D6dD_{6d}, or effectively D12D_{12} if we redefine the Cπ6C_{\frac{\pi}{6}} as the combination of it and the succeeding layer exchange. The D12D_{12} possesses six singlet IRRPs and three triplet ones, see the SMSM . The antiferromagnetic superexchange interaction here only allows for singlet pairings, including four 1D IRRPs: ss, ii, ii^{\prime} and iii*i^{\prime}, and two 2D IRRPs: dd and gg. The doping dependences of the largest λ\lambda of these pairing symmetries within the experimentally accessible doping regime δ(0,0.4)\delta\in(0,0.4) are shown in Fig. 2(a). Note that the regime very close to the VHS is excluded in this phase diagram, as the divergent DOS there might have led to other instabilities.

Refer to caption
Figure 2: (Color on line) (a)Doping δ\delta dependences of the largest pairing eigenvalues λ\lambda for the ss-, ii-, the degenerate dd- and gg- wave pairing symmetries for δ(0,0.4)\delta\in(0,0.4). The VH doping regime marked grey has been excluded. (b)Mixing-phase-angle θ\theta dependences of the energies for the degenerate dd- and gg- wave pairings for δ=0.32\delta=0.32. The energies of the ss- and ii- wave pairings are also shown in comparison.

Figure 2(a) shows that the beneath-VH and beyond-VH doping regimes are covered by the degenerate (dx2y2,dxy)(d_{x^{2}-y^{2}},d_{xy})- and (gx46x2y2+y4,gx3yxy3)(g_{x^{4}-6x^{2}y^{2}+y^{4}},g_{x^{3}y-xy^{3}})- doublets belonging to the 2D E2E_{2}- and E4E_{4}- IRRPs, respectively. The ss-wave SC can emerge for δ>0.4\delta>0.4, and the other symmetries including the shown ii-wave are always suppressed. The gap functions of these pairing states are provided in the SMSM . The two components of the dd- or gg-wave pairings are mixed as 1:αeiθ1:\alpha e^{i\theta}, and consequently the ground-state energies shown in Fig. 2(b) are minimized at α=1\alpha=1 and θ=±π/2\theta=\pm\pi/2SM , leading to the d+idd+id- or g+igg+ig- SCs, which can be well understood by the G-L theorySM .

Note that each possible ground-state gap function Δ(𝐤)\Delta(\mathbf{k}) forms a 1D IRRP of the C12C_{12} sub-groupSM : for each rotation by the angle Δϕ=nπ/6\Delta\phi=n\pi/6, we have Δ(𝐤)eiΔϕSCΔ(𝐤)=eiLΔϕΔ(𝐤)\Delta(\mathbf{k})\to e^{-i\Delta\phi_{SC}}\Delta(\mathbf{k})=e^{-iL\Delta\phi}\Delta(\mathbf{k}), with L=0L=0 for the ss and iii*i^{\prime}, L=2L=2 for the d+idd+id, L=4L=4 for the g+igg+ig and L=6L=6 for the ii and ii^{\prime}. Fig. 2 suggests that the cases L=2,4L=2,4 are realized in the QC-TBG. Interestingly, this result can be understood by the following G-L theory from the weak Josephson coupling between the previously obtained d+idd+id pairings in the two monolayers Doniach2007 ; Gonzalez2008 ; Honerkamp2008 ; Pathak2010 ; McChesney2010 ; Nandkishore2012 ; Wang2012 ; Kiesel2012 ; Honerkamp2014 .

Suppose the normalized gap form factors (either in the real or 𝐤\mathbf{k} space) on the t/b layers are Δd+id(t/b)\Delta^{(\text{t/b})}_{d+id}, we havefootnote2

Δd+id(b)=P^π6Δd+id(t),P^π3Δd+id(μ)=ei2π3Δd+id(μ).\Delta^{(\text{b})}_{d+id}=\hat{P}_{\frac{\pi}{6}}\Delta^{(\text{t})}_{d+id},\leavevmode\nobreak\ \leavevmode\nobreak\ \hat{P}_{\frac{\pi}{3}}\Delta^{(\mu)}_{d+id}=e^{-i\frac{2\pi}{3}}\Delta^{(\mu)}_{d+id}. (7)

Here P^ϕ\hat{P}_{\phi} denotes the rotation by ϕ\phi. Setting the global “complex amplitudes” of the pairing gap functions on the t/b layers as ψt/b\psi_{\text{t/b}} footnote3 , the free energy function FF satisfying all the symmetries of QC-TBG reads (see the SMSM ),

F(ψt,ψb)=\displaystyle F\left(\psi_{\text{t}},\psi_{\text{b}}\right)= F\displaystyle F (|ψt|2)0+F0(|ψb|2){}_{0}(\left|\psi_{\text{t}}\right|^{2})+F_{0}(\left|\psi_{\text{b}}\right|^{2}) (8)
\displaystyle- A(eiθψtψb+c.c)+O(ψ4).\displaystyle A\left(e^{i\theta}\psi_{\text{t}}\psi_{\text{b}}^{*}+c.c\right)+O\left(\psi^{4}\right).

Here the F0F_{0}- and the AA- terms denote the contributions from each monolayer and their Josephson coupling respectively. The A>0A>0 and θ(π,π]\theta\in(-\pi,\pi] are real numbers.

Refer to caption
Figure 3: (Color on line) The distributions of the gap phases for the d+idd+id- (a) and the g+igg+ig- (b) TSCs within a narrow energy shell near the FS. The real-space distributions of the spontaneous super current (c) and a typical Majorana zero mode (d). The doping level is δ=0.32\delta=0.32.

Now let’s rotate the system by Δϕ=π6\Delta\phi=\frac{\pi}{6}, followed by a succeeding layer exchange, under which Eq. (7) dictates

ψbψb~=ψt,ψtψt~=ei2π3ψb.\psi_{\text{b}}\to\tilde{\psi_{\text{b}}}=\psi_{\text{t}},\psi_{\text{t}}\to\tilde{\psi_{\text{t}}}=e^{-i\frac{2\pi}{3}}\psi_{\text{b}}. (9)

Here we use the convention with fixed Δd+id(μ)\Delta^{(\mu)}_{d+id}. By symmetry, we have F(ψt~,ψb~)=F(ψt,ψb)F(\tilde{\psi_{\text{t}}},\tilde{\psi_{\text{b}}})=F(\psi_{\text{t}},\psi_{\text{b}}), dictating

ei(θ2π/3)=eiθθ=π3 or 2π3e^{i(\theta-2\pi/3)}=e^{-i\theta}\Rightarrow\theta=\frac{\pi}{3}\text{\leavevmode\nobreak\ or\leavevmode\nobreak\ }-\frac{2\pi}{3} (10)

Under A>0A>0, as the two layers are identical, FF should be minimized at ψb=eiθψt\psi_{\text{b}}=e^{i\theta}\psi_{\text{t}}. The solution θ=π/3\theta=\pi/3 or 2π/3-2\pi/3 makes (ψt~,ψb~)=eiπ3(ψt,ψb)(\tilde{\psi_{\text{t}}},\tilde{\psi_{\text{b}}})=e^{-i\frac{\pi}{3}}(\psi_{\text{t}},\psi_{\text{b}}) or ei2π3(ψt,ψb)e^{i\frac{2\pi}{3}}(\psi_{\text{t}},\psi_{\text{b}}), corresponding to L=π3/Δϕ=2L=\frac{\pi}{3}/\Delta\phi=2 or 2π3/Δϕ=4\frac{-2\pi}{3}/\Delta\phi=-4, respectively. Both solutions are supported by our microscopic calculations in different doping regimes.

More heuristically, our results can also be understood directly by the definition L=ΔϕSC/ΔϕL=\Delta\phi_{SC}/\Delta\phi. As there is a 2nπ2n\pi uncertainty in ΔϕSC\Delta\phi_{SC}, we should investigate the rotation by the minimum angle Δϕm\Delta\phi_{m}. For each monolayer with D6D_{6} symmetry, Δϕm=π/3\Delta\phi_{m}=\pi/3. If we rotate the QC-TBG by π/3\pi/3, then the d+idd+id pairing with L=2L=2 within each mono-layer causes ΔϕSC=2π/3\Delta\phi_{SC}=2\pi/3 in that layer, as well as in the coupled system. This ΔϕSC\Delta\phi_{SC} can also be indistinguishably viewed as 4π/3-4\pi/3. However, the emergent D12D_{12} symmetry in the QC-TBG allows for the rotation by Δϕm=π/6\Delta\phi_{m}=\pi/6, under which we have either ΔϕSC=π/3\Delta\phi_{SC}=\pi/3 causing L=2L=2, or ΔϕSC=2π/3\Delta\phi_{SC}=-2\pi/3 causing L=4L=-4, which are distinguishable now. Our microscopic calculation results allow for both phases in different doping regimes.

Novel TSC: The distributions of the gap amplitudes of the obtained d+idd+id- and g+igg+ig- SCs on the FSs are fully gappedSM , and those of their gap phases are shown in Figs. 3 (a) and (b) on the inner pocket for δ=0.32\delta=0.32 (those on the outer pocket are shown in the SMSM ). Clearly for each run around the pocket, the gap phases of the d+idd+id- and g+igg+ig- TSCs changes 4π4\pi and 8π8\pi, leading to the winding numbers 22 and 44, and hence the Chern- numbers C=2C=2 and 44 per pocket respectivelySM .

The g+igg+ig- TSC obtained here is novel, as it belongs to the 2D E4E_{4}- IRRP absent for the typical D2nD_{2n} point group on periodic lattices. Generally, the 2D IRRPs of D2nD_{2n} include the ELE_{L} with Ln1L\leq n-1SM . For periodic lattices, we have n3n\leq 3 and hence L2L\leq 2, corresponding to the p+ipp+ip and d+idd+id. Here in the QC-TBG, we have n=6n=6 and hence L5L\leq 5, including the g+igg+ig. Although on periodic lattices with, say D6D_{6} symmetry, the g+igg+ig can also emerge as a higher-harmonics basis function of the E2E_{2}- IRRP, it’s generally mixed with the d+idd+id as both belong to the E2E_{2}. Occasionally, the mixing weight of the d+idd+id- component vanishes and one gets the g+igg+igChichinadze2020 , which is accidental and rare. Here, the g+igg+ig TSC is protected by symmetry not to mix with the d+idd+id one.

The difference between the properties of the TSCs on extrinsic and intrinsic QCs is clarified here. It’s illustrated in Ref. Caoye2020 that on such intrinsic QC as the Penrose lattice, the lack of translational symmetry causes spontaneous bulk super current in chiral TSCs. However, as shown in Fig. 3(c) for the chiral g+igg+ig TSC obtained with open boundary condition, the super current only distributes at the edge with chiral pattern. As proved in the SMSM , the bulk current vanishes in the case of intra-band pairing between opposite momenta, caused by the nearly translational symmetry here. Similarly, the Majorana zero modesSM are also localized at the edge, as shown in Fig. 3(d). These properties make the TSCs on extrinsic QCs different from those on intrinsic QCs.

Conclusion and Discussions: In conclusion, we have revised the perturbational band theory to suit it for the study of e-e interaction driven SCs on extrinsic QCs. This 𝐤\mathbf{k}-space approach is more convenient than the real-space onesLoring2016 ; Sakai2017 ; Andrade2019 ; Sakai2019 ; Nagai2020 ; Caoye2020 ; Sakai2020 ; YYZhang2020 to study the properties of the pairing states, as we can intuitively examine the distribution of the pairing gap functions on the FS. Consequently, this work for the QC-TBG reveals a novel g+igg+ig TSC with L=4L=4 rare on periodic lattices, whose physical origin can be well understood from the G-L theory.

This approach also applies to other extrinsic QCs. One example is the 45°-twisted bilayer cuprate film. While Ref. cuprates_QC has studied the cases with commensurate twist angle θ\theta, the case of θ=45°\theta=45\degree can be studied by our approach. This approach can also be used to study other instabilities. One example is the spin density wave (SDW) in the VH-doped QC-TBG induced by the weak coupling between the chiral SDW ordersWang2012 ; Li2012 in the two mono-layers. Finally, since our approach is fully microscopic, we can use it to control electron phases through tuning such parameters as the inter-layer coupling or the displacement field, to achieve more exotic phases.

Acknowledgements

We acknowledge stimulating discussions with Cheng-Cheng Liu, Ye Cao, Zheng-Cheng Gu and Yan-Xia Xing. This work is supported by the NSFC under the Grant Nos. 12074031, 12074037, 11674025,11861161001. W.-Q. Chen is supported by the Science, Technology and Innovation Commission of Shenzhen Municipality (No. ZDSYS20190902092905285), Guangdong Basic and Applied Basic Research Foundation under Grant No. 2020B1515120100 and Center for Computational Science and Engineering of Southern University of Science and Technology.

References

  • (1) Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Nature 556, 80 (2018).
  • (2) Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature 556, 43 (2018).
  • (3) M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Science 363, 1059 (2019).
  • (4) A. Kerelsky, L. J. McGilly, D. M. Kennes, L. Xian, M. Yankowitz, S. Chen, K. Watanabe, T. Taniguchi, J. Hone, C. Dean, A. Rubio, and A. N. Pasupathy, Nature 572, 95 (2019).
  • (5) Y. Xie, B. Lian, B. Jäck, X. Liu, C.-L. Chiu, K. Watanabe, T. Taniguchi, B. A. Bernevig, and A. Yazdani, Nature 572,101 (2019).
  • (6) X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang, A. Bachtold, A. H. MacDonald, and D. K. Efetov, Nature 574, 653 (2019).
  • (7) A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney, K. Watanabe, T. Taniguchi, M. A. Kastner, D. Goldhaber-Gordon, Science 365, 605 (2019).
  • (8) M. Serlin, C. L. Tschirhart, H. Polshyn, et al, Science 367,6480 (2019).
  • (9) X. Liu, Z. Hao, E. Khalaf, J. Y. Lee, K. Watanabe, T. Taniguchi, A. Vishwanath, and P. Kim, Nature 583, 221 (2020).
  • (10) A. Uri, S. Grover, Y. Cao, J. A. Crosse, K. Bagani, D. Rodan-Legrain, Y. Myasoedov, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero and E. Zeldov, Nature 581,47 (2020).
  • (11) Z. Hao, A. M. Zimmerman, P. Ledwith, E. Khalaf, D. H. Najafabadi, K. Watanabe, T. Taniguchi, A. Vishwanath, and P. Kim, Science 371, 1133 (2021).
  • (12) Y. Cao, D. Rodan-Legrain, J. M. Park, N. F. Yuan, K. Watanabe, T. Taniguchi, R. M. Fernandes, L. Fu, and P. Jarillo-Herrero, Science 372, 264 (2021).
  • (13) C. Xu and L. Balents, Phys. Rev. Lett. 121, 087001 (2018).
  • (14) H. C. Po, L. Zou, A. Vishwanath, and T. Senthil, Phys. Rev. X 8, 031089 (2018).
  • (15) N. F. Q. Yuan and L. Fu, Phys. Rev. B 98, 045103 (2018).
  • (16) C.-C. Liu, L.-D. Zhang, W.-Q. Chen, and F. Yang, Phys. Rev. Lett. 121, 217001 (2018).
  • (17) F. Wu, A. H. MacDonald, and I. Martin, Phys. Rev. Lett. 121, 257001 (2018).
  • (18) J. Kang and O. Vafek, Phys. Rev. X 8, 031088 (2018).
  • (19) H. Isobe, N. F. Yuan, and L. Fu, Phys. Rev. X 8, 041041 (2018).
  • (20) M. Koshino, N. F. Yuan, T. Koretsune, M. Ochi, K. Kuroki, and L. Fu, Phys. Rev. X 8, 031087 (2018).
  • (21) J. W. Venderbos and R. M. Fernandes, Phys. Rev. B 98, 245103 (2018).
  • (22) J. Kang and O. Vafek, Phys. Rev. Lett. 122, 246401 (2019).
  • (23) H. C. Po, L. Zou, T. Senthil, and A. Vishwanath, Phys. Rev. B 99, 195455 (2019).
  • (24) J. Liu, Z. Ma, J. Gao, and X. Dai, Phys. Rev. X 9, 031021 (2019).
  • (25) L. Klebl and C. Honerkamp, Phys. Rev. B 100, 155145 (2019).
  • (26) J. Gonzalez and T. Stauber, Phys. Rev. Lett. 122, 026801 (2019).
  • (27) Z. Song, Z. Wang, W. Shi, G. Li, C. Fang, and B. A. Bernevig, Phys. Rev. Lett. 123, 036401 (2019).
  • (28) J. Ahn, S. Park, and B.-J. Yang, Phys. Rev. X 9, 021013 (2019).
  • (29) M. Angeli, E. Tosatti, and M. Fabrizio, Phys. Rev. X 9, 041010 (2019).
  • (30) B. Lian, Z. Wang, and B. A. Bernevig, Phys. Rev. Lett. 122, 257002 (2019).
  • (31) J. Liu, J. Liu, and Xi Dai, Phys. Rev. B 99, 155415 (2019).
  • (32) G. Tarnopolsky, A. J. Kruchkov, and A. Vishwanath, Phys. Rev. Lett. 122, 106405 (2019).
  • (33) Y.-P. Lin and R. M. Nandkishore, Phys. Rev. B 100, 085136 (2019); ibid, Phys. Rev. B 102, 245122 (2020).
  • (34) Ming Xie, A. H. MacDonald, Phys. Rev. Lett. 124, 097601 (2020)
  • (35) A. Abouelkomsan, Z. Liu, and E. J. Bergholtz, Phys. Rev. Lett. 124, 106803 (2020).
  • (36) N. Bultinck, E. Khalaf, S. Liu, S. Chatterjee, A. Vishwanath, and M. P. Zaletel, Phys. Rev. X 10, 031034 (2020).
  • (37) C. Repellin, Z. Dong, Y.-H. Zhang, and T. Senthil, Phys. Rev. Lett. 124, 187601 (2020).
  • (38) Y. D. Liao, J. Kang, C. N. Brei, X. Y. Xu, H.-Q. Wu, B. M. Andersen, R. M. Fernandes, and Z. Y. Meng, Phys. Rev. X 11, 011014 (2021).
  • (39) D. V. Chichinadze, L. Classen, and A. V. Chubukov, Phys. Rev. B 101, 224513 (2020).
  • (40) M. Alidoust, A.-P. Jauho, and J. Akola, Phys. Rev. Res. 2, 032074(R) (2020).
  • (41) X. Wu, W. Hanke, M. Fink, M. Klett and R. Thomale, Phys. Rev. B 101, 134517 (2020).
  • (42) S. J. Ahn, P. Moon, T.-H. Kim, H.-W. Kim, H.-C. Shin, E. H. Kim, H. W. Cha, S.-J. Kahng, P. Kim, M. Koshino, Y.-W. Son, C.-W. Yang, J. R. Ahn, Science 361, 782 (2018).
  • (43) W. Yao, E. Wang, C. Bao, Y. Zhang, K. Zhang, K. Bao, C. K. Chan, C. Chen, J. Avila, M. C. Asensio, J. Zhu, and S. Zhou, PNAS 115, 6928 (2018).
  • (44) C. Yan, D.-L. Ma, J.-B. Qiao, H.-Y. Zhong, L. Yang, S.-Y. Li, Z.-Q. Fu, Y. Zhang and L. He, 2D Mater. 6, 045041 (2019).
  • (45) S. Pezzini, V. Miseikis, G. Piccinini, S. Forti, S. Pace, R. Engelke, F. Rossella, K. Watanabe, T. Taniguchi, P. Kim and C. Coletti, Nano Lett. 20, 3313 (2020).
  • (46) B. Deng, B. Wang, N. Li, R. Li, Y. Wang, J. Tang, Q. Fu, Z. Tian, P. Gao, J. Xue and H. Peng, ACS Nano 14, 1656 (2020).
  • (47) P. Moon, M. Koshino, Phys. Rev. B 87, 205404 (2013).
  • (48) M. Koshino, New J. Phys. 17, 015014 (2015).
  • (49) P. Moon, M. Koshino, and Y.-W. Son, Phys. Rev. B 99, 165430 (2019).
  • (50) M. J. Park, H. S. Kim and S. Lee, Phys. Rev. B 99, 245401(2019).
  • (51) J. A. Crosse and Pilkyung Moon, Phys. Rev. B 103, 045408 (2021).
  • (52) G. Yu, Z. Wu, Z. Zhan, M. I. Katsnelson and S. Yuan, npj Comput Mater 5, 122 (2019).
  • (53) G. Yu, M. I. Katsnelson and S. Yuan, Phys. Rev. B 102, 045113 (2020).
  • (54) G. Yu, Z. Wu, Z. Zhan, M. I. Katsnelson and S. Yuan, Phys. Rev. B 102, 115123 (2020).
  • (55) J. L. Aragon, G. G. Naumis and A. Gomez-Rodriguez, Crystals 9, 519 (2019).
  • (56) A. M. Black-Schaffer, and S. Doniach, Phys. Rev. B 75, 134512 (2007).
  • (57) J. Gonzalez, Phys. Rev. B 78, 205431 (2008).
  • (58) C. Honerkamp, Phys. Rev. Lett. 100, 146404 (2008).
  • (59) S. Pathak, V. B. Shenoy, and G. Baskaran, Phys. Rev. B 81, 085431 (2010).
  • (60) J. L. McChesney, A. Bostwick, T. Ohta, T. Seyller, K. Horn, J. Gonzalez, and E. Rotenberg, Phys. Rev. Lett. 104, 136803 (2010).
  • (61) R. Nandkishore, L. S. Levitov, and A. V. Chubukov, Nat. Phys. 8, 158 (2012).
  • (62) W.-S. Wang, Y.-Y. Xiang, Q.-H. Wang, F. Wang, F. Yang, and D.-H. Lee, Phys. Rev. B 85, 035414 (2012).
  • (63) M. Kiesel, C. Platt, W. Hanke, D. A. Abanin, R. Thomale, Phys. Rev. B 86, 020507 (2012).
  • (64) A. M. Black-Schaffer and C. Honerkamp, J. Phys. Condens. Matter 26, 423201 (2014).
  • (65) P. Rosenzweig, H. Karakachian, D. Marchenko, K. Kuster, and U. Starke, Phys. Rev. Lett. 125, 176403 (2020).
  • (66) W. DeGottardi, D. Sen, and S. Vishveshwara, Phys. Rev. Lett. 110, 146404 (2013).
  • (67) X. Cai, L.-J. Lang, S. Chen, and Y. Wang, Phys. Rev. Lett. 110, 176403 (2013).
  • (68) I. C. Fulga, D. I. Pikulin, and T. A. Loring, Phys. Rev. Lett. 116, 257002 (2016).
  • (69) S. Sakai, N. Takemori, A. Koga, and R. Arita, Phys. Rev. B 95,024509 (2017).
  • (70) R. N. Araújo and E. C. Andrade, Phys. Rev. B 100, 014510 (2019).
  • (71) S. Sakai and R. Arita, Phys. Rev. Res. 1, 022002(R) (2019).
  • (72) D. Varjas, A. Lau, K. Poyhonen, A. R. Akhmerov, D. I. Pikulin and I. C. Fulga, Phys. Rev. Lett. 123, 196401 (2019).
  • (73) Y. Nagai, J. Phys. Soc. Jpn. 89, 074703 (2020).
  • (74) Y. Cao, Y. Zhang, Y.-B. Liu, C.-C. Liu, W.-Q. Chen, and F. Yang, Phys. Rev. Lett. 125, 017002 (2020).
  • (75) N. Takemori, R. Arita, and S. Sakai, Phys. Rev. B 102, 115108 (2020).
  • (76) Y.-Y. Zhang, Y.-B. Liu, Y. Cao, W.-Q. Chen, and F. Yang, arXiv:2002.06485.
  • (77) J. B. Hauck, C. Honerkamp, S. Achilles, and D. M. Kennes, Phys. Rev. Res. 3, 023180 (2021).
  • (78) C.-B. Hua, Z.-R. Liu, T. Peng, R. Chen, D.-H. Xu and B. Zhou, arXiv:2107.01439.
  • (79) K. Kamiya, T. Takeuchi, N. Kabeya, N. Wada, T. Ishimasa, A. Ochiai, K. Deguchi, K. Imura, and N. K. Sato, Nat. Commun. 9, 154 (2018).
  • (80) See the Supplementary Material for the details of the band structure, the MF approach, the pairing-symmetry classification, more informatios on the obtained gap functions, the two Ginzburg-Landau theory based analysises, and the topological properties of the system.
  • (81) R. Bistritzer and A. H. MacDonald, Proc. Natl. Acad. Sci. 108, 12233 (2011).
  • (82) J. M. B. L. dos Santos, N. M. R. Peres, and A. H. Castro Neto, Phys. Rev. Lett. 99, 256802 (2007).
  • (83) E. S. Morell, and L. E. F. Foa, Phys. Rev. B 86, 155449 (2012).
  • (84) R. Bistritzer and A. H. MacDonald, Phys. Rev. B. 81, 245412 (2010).
  • (85) A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
  • (86) As the intra-layer hopping and interaction strengths are much stronger than the inter-layer ones, one can reasonably first let each two degenerate dd-wave pairings on one mono-layer mix as d±idd\pm id, and then consider their inter-layer coupling. Further more, we only consider the cases wherein the pairings from the two layers are both d+idd+id or didd-id, because otherwise the system cannot gain energy from the inter-layer Josephson coupling. See the SMSM .
  • (87) The pairing gap functions on the t/b layers are written as ψt/bΔd+id(t/b)\psi_{\text{t/b}}\Delta^{(\text{t/b})}_{d+id}, where ψt/b\psi_{\text{t/b}} are complex-valued “amplitudes”.
  • (88) O. Can, T. Tummuru, R. P. Day, I. Elfimov, A. Damascelli, and M. Franz, Nat. Phys. 17, 519(2021).
  • (89) T. Li, Europhys. Lett. 97, 37001 (2012).

I perturbational band theory

This section provides some details of the perturbational-band-theory approach adopted in our study for the free-electron part of the quasi-crystal twisted bilayer graphene (QC-TBG). We will provide here detailed information of the band structure, the Fermi surface (FS) and density of state (DOS) thus obtained for the system.

We start from the following tight-binding (TB) model of the QC-TBG,

HTB=𝐢𝐣σt𝐢𝐣c𝐢σc𝐣σ,H_{\text{TB}}=-\sum_{\mathbf{ij}\sigma}t_{\mathbf{ij}}c^{\dagger}_{\mathbf{i}\sigma}c_{\mathbf{j}\sigma}, (S1)

where σ\sigma labels spin and the hopping integral t𝐢𝐣t_{\mathbf{ij}} between site 𝐢\mathbf{i} and site 𝐣\mathbf{j} is given as 1

t𝐢𝐣=t𝐢𝐣π[1(𝐑𝐢𝐣𝐞𝐳R)2]+t𝐢𝐣σ(𝐑𝐢𝐣𝐞𝐳R)2,-t_{\mathbf{ij}}=t_{\mathbf{ij}\pi}\left[1-\left(\frac{\mathbf{R}_{\mathbf{ij}}\cdot\mathbf{e}_{\mathbf{z}}}{R}\right)^{2}\right]+t_{\mathbf{ij}\sigma}\left(\frac{\mathbf{R}_{\mathbf{ij}}\cdot\mathbf{e}_{\mathbf{z}}}{R}\right)^{2}, (S2)

with

t𝐢𝐣π=tπe(R𝐢𝐣a/3)/r0,t𝐢𝐣σ=tσe(R𝐢𝐣d)/r0.t_{\mathbf{ij}\pi}=t_{\pi}e^{-\left(R_{\mathbf{ij}}-a/\sqrt{3}\right)/r_{0}},\quad t_{\mathbf{ij}\sigma}=t_{\sigma}e^{-(R_{\mathbf{ij}}-d)/r_{0}}.

Here, R𝐢𝐣R_{\mathbf{ij}} is the length of the vector 𝐑𝐢𝐣\mathbf{R}_{\mathbf{ij}}, pointing from site 𝐢\mathbf{i} to site 𝐣\mathbf{j}, and 𝐞𝐳\mathbf{e}_{\mathbf{z}} is the unit vector perpendicular to the graphene layer. The lattice constant and interlayer spacing are given by a0.246a\approx 0.246 nm and d0.335d\approx 0.335 nm, respectively. The parameters tπ2.7t_{\pi}\approx-2.7 eV, tσ0.48t_{\sigma}\approx 0.48 eV and r00.0453r_{0}\approx 0.0453 nm are taken according to Ref. 1 .

The Hamiltonian (S1) could be decomposed into the zeroth-order intralayer hopping term H0H_{0} and perturbational inter-layer tunneling term HH^{\prime}, namely,

H0=kμασckμασckμασεkμα,H=kqαβσcktασcqbβσTkqαβ+h.c.,\displaystyle H_{0}=\sum_{\textbf{k}\mu\alpha\sigma}c_{\textbf{k}\mu\alpha\sigma}^{\dagger}c_{\textbf{k}\mu\alpha\sigma}\varepsilon_{\textbf{k}}^{\mu\alpha},\qquad H^{\prime}=\sum_{\textbf{kq}\alpha\beta\sigma}c_{\textbf{k}{\rm t}\alpha\sigma}^{\dagger}c_{\textbf{q}{\rm b}\beta\sigma}T_{\textbf{kq}}^{\alpha\beta}+h.c., (S3)

where μ[=t (top),b (bottom)]\mu\ [=\rm\text{t (top)},\text{b (bottom)}] and α(=1,2)\alpha\ (=1,2) are the layer and band indices, respectively, k and q label the momentum, and εkμα\varepsilon_{\textbf{k}}^{\mu\alpha} is the dispersion of single-layer graphene. The eigenstate of H0H_{0} is denoted as |kα(μ)|\textbf{k}\alpha^{(\mu)}\rangle (here we omit the spin index for simplicity, since the following treatment has nothing to do with the spin degree of freedom), representing a monolayer state on the layer μ\mu. The interlayer tunneling matrix element TkqαβT_{\textbf{kq}}^{\alpha\beta} reads

Tkqαβ=kα(t)|HTB|qβ(b)=1Nijξi,ktαξj,qbβt𝐢𝐣,\displaystyle T_{\textbf{kq}}^{\alpha\beta}=\langle\textbf{k}\alpha^{(\rm t)}|H_{\text{TB}}|\textbf{q}\beta^{(\rm b)}\rangle=-\frac{1}{N}\sum_{\textbf{ij}}\xi_{\textbf{i},\textbf{k}{\rm t}\alpha}^{*}\xi_{\textbf{j},\textbf{q}{\rm b}\beta}t_{\mathbf{ij}}, (S4)

where ξ/N\xi/\sqrt{N} (NN is the number of unit cells on each monolayer, i.e. 14\frac{1}{4} of the total site number) represents the real-space wave function for the monolayer state |kα(μ)|\textbf{k}\alpha^{(\mu)}\rangle.

Our perturbational-band theory is a numerical version of the usual analytical second-order perturbational theory. Given a zeroth-order state |𝐤α(μ)|\mathbf{k}\alpha^{(\mu)}\rangle with the zeroth-order energy εkμα\varepsilon_{\textbf{k}}^{\mu\alpha}, we provide in the following our procedure to obtain its perturbation-corrected state |𝐤α(μ)~|\widetilde{\mathbf{k}\alpha^{(\mu)}}\rangle, and the perturbation-corrected energy ε~𝐤μα\tilde{\varepsilon}^{\mu\alpha}_{\mathbf{k}}. For a state |kα(t)|\textbf{k}\alpha^{(\rm t)}\rangle in the top layer, one can find some states |qβ(b)|\textbf{q}\beta^{(\rm b)}\rangle in the bottom layer which couple with it through Eq. (S4). In thermal dynamic limit, the nonzero coupling matrix element T𝐤𝐪αβT^{\alpha\beta}_{\mathbf{kq}} requires 1 ; 2 ; 3

𝐤+𝐆(t)=𝐪+𝐆(b),\mathbf{k}+\mathbf{G}^{(\text{t})}=\mathbf{q}+\mathbf{G}^{(\text{b})}, (S5)

where 𝐆(t/b)\mathbf{G}^{(\text{t/b})} represent the reciprocal lattice vectors of the top/bottom layers. However, on our finite lattice with discrete momentum points, for each typical 𝐤\mathbf{k} on the top layer, no 𝐪\mathbf{q} on the bottom layer can make the relation (S5) exactly satisfied unless 𝐤=𝐪=𝐆(t)=𝐆(b)=0\mathbf{k}=\mathbf{q}=\mathbf{G}^{(\text{t})}=\mathbf{G}^{(\text{b})}=0, as the two sets of relatively 30°30\degree rotated lattices are mutually incommensurate with each other. Therefore for each |𝐤α(t)|\mathbf{k}\alpha^{(\text{t})}\rangle state on the top layer, we abandon this relation and directly use Eq. (S4) to numerically find the |𝐪iβi(b)|\mathbf{q}_{i}\beta_{i}^{(\text{b})}\rangle states on the bottom layer which obviously couple with this state. Here we only keep those |𝐪iβi(b)|\mathbf{q}_{i}\beta_{i}^{(\text{b})}\rangle states when their tunneling strengths TkqαβT_{\textbf{kq}}^{\alpha\beta} with |𝐤α(t)|\mathbf{k}\alpha^{(\text{t})}\rangle are more than 0.20.2 times of the maximum one in all TkqαβT_{\textbf{kq}}^{\alpha\beta}. One can imagine that the momenta of these kept states only make the relation (S5) nearly satisfied. Then, for these |𝐪iβi(b)|\mathbf{q}_{i}\beta_{i}^{(\text{b})}\rangle states, we find again all the |𝐤jαj(t)|\mathbf{k}^{\prime}_{j}\alpha_{j}^{(\text{t})}\rangle states on the top layer which obviously couple with them. Gathering all these states related to |𝐤α(t)|\mathbf{k}\alpha^{(\text{t})}\rangle as bases to form a close sub-space, we can write down and diagonalize the Hamiltonian matrix in this sub-space to obtain all the eigen states. Among these states, the one having the largest overlap with |𝐤α(t)|\mathbf{k}\alpha^{(\text{t})}\rangle is marked as its perturbation-corrected state |𝐤α(t)~|\widetilde{\mathbf{k}\alpha^{(\text{t})}}\rangle, whose energy is marked as ε~𝐤tα\tilde{\varepsilon}^{\text{t}\alpha}_{\mathbf{k}}. The procedure to get |𝐪β(b)~|\widetilde{\mathbf{q}\beta^{(\text{b})}}\rangle and ε~𝐪bβ\tilde{\varepsilon}^{\text{b}\beta}_{\mathbf{q}} is similar.

Refer to caption
Figure S1: (a) High-symmetry points marked in the Brillouin zone. (b) Band structures of the QC-TBG with inter-layer tunneling (solid lines) and without inter-layer tunneling (dashed lines) along the high-symmetry lines in (a). (c) DOS calculated by the perturbational-band theory in comparison with that obtained by real-space diagonalization on a finite lattice with 90000 sites. (d) Enlarged view of the DOS around δ=0.9\delta=-0.9, presenting the twice step-like drops of the DOS.

Along the lines connecting the high-symmetry points in the Brillouin zone marked in Fig. S1(a), we plot our obtained band structure (solid lines) in Fig. S1(b), in comparison with the uncoupled band structures (dashed lines) from the two layers. A remarkable feature of Fig. S1(b) is the obvious particle-hole (p-h) asymmetry: while the band structure on the electron-doped side is overall not far from simply overlaying the two sets of uncoupled monolayer band structures, there is strong interlayer hybridization and split within the band-bottom regime near the Γ\Gamma-point on the hole-doped side. This split is reflected by the twice step-like drops in the density of states at the lower filling region (with doping level δ0.9\delta\approx-0.9) in the hole-doped side, as shown in Figs. S1(c) and S1(d), which is different from the monolayer graphene and is consistent with the result from Ref. 3 . Such a p-h asymmetry is caused by the relatively weaker interlayer coupling on the electron-doped side, as was revealed in Refs. 1 ; 3 and proved in the following.

Near the Γ\Gamma point, the band structure on each layer comprises two bands: one band labeled as “++” originates from the bonding between the A and B sublattices, while the other labeled as “-” originates from the anti-bonding between the two sublattices. The formula of the four zeroth-order states near the Γ\Gamma point for the two layers are as following,

|k+(t)\displaystyle|\textbf{k}+^{(\text{t})}\rangle \displaystyle\approx 12(|kA(t)+|kB(t)),|k(t)12(|kA(t)|kB(t)),\displaystyle\frac{1}{\sqrt{2}}\left(|\textbf{k}A^{(\text{t})}\rangle+|\textbf{k}B^{(\text{t})}\rangle\right),\qquad|\textbf{k}-^{(\text{t})}\rangle\approx\frac{1}{\sqrt{2}}\left(|\textbf{k}A^{(\text{t})}\rangle-|\textbf{k}B^{(\text{t})}\rangle\right),
|q+(b)\displaystyle|\textbf{q}+^{(\text{b})}\rangle \displaystyle\approx 12(|qA(b)+|qB(b)),|q(b)12(|qA(b)|qB(b)).\displaystyle\frac{1}{\sqrt{2}}\left(|\textbf{q}A^{(\text{b})}\rangle+|\textbf{q}B^{(\text{b})}\rangle\right),\qquad|\textbf{q}-^{(\text{b})}\rangle\approx\frac{1}{\sqrt{2}}\left(|\textbf{q}A^{(\text{b})}\rangle-|\textbf{q}B^{(\text{b})}\rangle\right). (S6)

On each layer, the energy of the state labeled by “++” is lower than that of the state labeled by “-”. Therefore, the former occupies the band bottom regime and the latter occupies the band top regime. Then we consider the interlayer couplings between each two zeroth-order states from different layers. Before that, we first evaluate the coupling between the states |kX(t)|\textbf{k}X^{{(\rm t)}}\rangle and |qY(b)|\textbf{q}Y^{(\rm b)}\rangle 1 [here XX and Y(=A,B)Y(=\rm A,\ B) are sublattice indices],

kX(t)|HTB|qY(b)=𝐆(t)𝐆(b)t(𝐤+𝐆(t))ei𝐆(t)τXi𝐆(b)τYδ𝐤+𝐆(t),𝐪+𝐆(b)\displaystyle\langle\textbf{k}X^{{(\rm t)}}|H_{\text{TB}}|\textbf{q}Y^{(\rm b)}\rangle=-\sum_{\mathbf{G}^{(\rm t)}\mathbf{G}^{(\rm b)}}t(\mathbf{k}+\mathbf{G}^{(\rm t)})e^{i\mathbf{G}^{(\rm t)}\mathbf{\tau}_{X}-i\mathbf{G}^{(\rm b)}\mathbf{\tau}_{Y}}\delta_{\mathbf{k}+\mathbf{G}^{(\rm t)},\mathbf{q}+\mathbf{G}^{(\rm b)}} (S7)

with

t(𝐤+𝐆(t))=1N𝐢𝐣t𝐢𝐣ei(𝐤+𝐆(t))𝐑𝐢𝐣\displaystyle t(\mathbf{k}+\mathbf{G}^{(\rm t)})=\frac{1}{N}\sum_{\mathbf{i}\mathbf{j}}t_{\mathbf{i}\mathbf{j}}e^{-i(\mathbf{k}+\mathbf{G}^{(\rm t)})\mathbf{R}_{\mathbf{i}\mathbf{j}}} (S8)

where τ\mathbf{\tau} is the sublattice position. Since t(𝐤+𝐆(t))t(\mathbf{k}+\mathbf{G}^{(\rm t)}) decays exponentially for large 𝐤+𝐆(t)\mathbf{k}+\mathbf{G}^{(\rm t)}, we only consider G(t)=0\textbf{G}^{(\rm t)}=0. Further more, the nonzero value of the δ𝐤+𝐆(t),𝐪+𝐆(b)\delta_{\mathbf{k}+\mathbf{G}^{(\rm t)},\mathbf{q}+\mathbf{G}^{(\rm b)}} function requires G(b)=0\textbf{G}^{(\rm b)}=0 for 𝐤/𝐪0\mathbf{k}/\mathbf{q}\approx 0 near the Γ\Gamma point. Then, equation (S7) can be written as

kX(t)|HTB|qY(b)t(𝐤)δ𝐤,𝐪.\displaystyle\langle\textbf{k}X^{{(\rm t)}}|H_{\text{TB}}|\textbf{q}Y^{(\rm b)}\rangle\approx-t(\mathbf{k})\delta_{\mathbf{k},\mathbf{q}}. (S9)

From Eq. (I) and Eq. (S9), one gets

k+(t)|HTB|q+(b)2t(𝐤)δ𝐤,𝐪,\displaystyle\langle\textbf{k}+^{{(\rm t)}}|H_{\text{TB}}|\textbf{q}+^{(\rm b)}\rangle\approx-2t(\mathbf{k})\delta_{\mathbf{k},\mathbf{q}},\qquad k(t)|HTB|q(b)0,\displaystyle\langle\textbf{k}-^{(\rm t)}|H_{\rm TB}|\textbf{q}-^{(\rm b)}\rangle\approx 0, (S10)
k+(t)|HTB|q(b)0,\displaystyle\langle\textbf{k}+^{(\rm t)}|H_{\rm TB}|\textbf{q}-^{(\rm b)}\rangle\approx 0,\qquad\qquad\qquad\ k(t)|HTB|q+(b)0.\displaystyle\langle\textbf{k}-^{(\rm t)}|H_{\rm TB}|\textbf{q}+^{(\rm b)}\rangle\approx 0.

Therefore, one can see that the strong interlayer coupling only takes place in the band bottom regime of the band structure. This explains the p-h asymmetry character of the band structure. Below, we shall focus on the electron-doped side as the weaker interlayer coupling there validates our perturbational approach.

The main effect of the interlayer coupling on the electron-doped side lies in that the top-layer band branches and the bottom-layer ones cross and split at the XX-point, after which they exchange their layer components, as shown in the inset of Fig. S1(b). Actually, such band crossing and splitting take place on the whole Γ\Gamma-XX line: for each 𝐤\mathbf{k} on this line, by symmetry, the states |𝐤α(t)|\mathbf{k}\alpha^{(\text{t})}\rangle and |𝐤α(b)|\mathbf{k}\alpha^{(\text{b})}\rangle possess degenerate zeroth-order energy. They are further coupled via 𝐤+𝐆(t)=𝐤+𝐆(b)\mathbf{k}+\mathbf{G}^{(\text{t})}=\mathbf{k}+\mathbf{G}^{(\text{b})} by setting 𝐆(t)=𝐆(b)=0\mathbf{G}^{(\text{t})}=\mathbf{G}^{(\text{b})}=0. The perturbational coupling between the two degenerate states |𝐤α(t)|\mathbf{k}\alpha^{(\text{t})}\rangle and |𝐤α(b)|\mathbf{k}\alpha^{(\text{b})}\rangle leads to their hybridization into bonding and anti-bonding states with an energy split between each other, causing the band splitting. Consequently, the FSs contributed from the two layers also cross and split upon crossing that line, after which they exchange their layer components, as shown in the insets of Fig. S2 for different dopings. As a consequence of this interlayer coupling, the emergent bonding and anti-bonding FSs possess dodecagonal symmetry. Besides, our calculation reveals tiny gaps (about 0.1eV) at the points 𝐌0(t/b)=𝐆(b/t)/2\mathbf{M}_{0}^{(\rm t/b)}=\mathbf{G}^{(\rm b/t)}/2 shown in the inset of Fig. S1(b). These gaps are caused by the second-order perturbational coupling between the states |𝐌0(μ)α(μ)\left|\mathbf{M}_{0}^{(\mu)}\alpha^{(\mu)}\right\rangle and |𝐌0(μ)α(μ)\left|-\mathbf{M}_{0}^{(\mu)}\alpha^{(\mu)}\right\rangle, consistent with Ref. 2 .

Refer to caption
Figure S2: Fermi surfaces below (a), at (b), and above (c) the von Hove singularity (VHS) denoted in Fig. S1(c). The blue and red dashed hexagons represent Brillouin zones of the top and bottom graphene layers, respectively. The color on the Fermi surfaces represents the occupation ratio of the top-graphene-layer bands.

In Fig. S2(a-c), we plot the FSs below, at, and above the VHS. As introduced on the above, due to the interlayer coupling, the inner and outer FSs formed from the hybridization of the FSs of the two mono-layers possess 12-folded symmetry, which is absent in a single monolayer FS. Note that the VH doping represents the doping level where the outer FS experiences the Lifshitz transition, which takes place at the 𝐌\mathbf{M} points on the outer FS, and changes the topology of the outer FS.

II Mean-field Theory

This section provides some details of the mean-field calculations for the t-J model in the QC-TBG.

As a start point, the superexchange interaction part of the Hamiltonian can be separated into the spin singlet- and triplet-pairing channels, i.e.,

HJ\displaystyle H_{J} =\displaystyle= (𝐢,𝐣)J𝐢𝐣𝐒𝐢𝐒𝐣\displaystyle\sum_{(\mathbf{i,j})}J_{\mathbf{ij}}\mathbf{S}_{\mathbf{i}}\cdot\mathbf{S}_{\mathbf{j}}
=\displaystyle= (𝐢,𝐣)J𝐢𝐣[12(c𝐢c𝐢c𝐣c𝐣+c𝐢c𝐢c𝐣c𝐣)+14(c𝐢c𝐢c𝐢c𝐢)(c𝐣c𝐣c𝐣c𝐣)]\displaystyle\sum_{(\mathbf{i,j})}J_{\mathbf{ij}}\left[\frac{1}{2}\left(c_{\mathbf{i}\uparrow}^{\dagger}c_{\mathbf{i}\downarrow}c_{\mathbf{j}\downarrow}^{\dagger}c_{\mathbf{j}\uparrow}+c_{\mathbf{i}\downarrow}^{\dagger}c_{\mathbf{i}\uparrow}c_{\mathbf{j}\uparrow}^{\dagger}c_{\mathbf{j}\downarrow}\right)+\frac{1}{4}\left(c_{\mathbf{i}\uparrow}^{\dagger}c_{\mathbf{i}\uparrow}-c_{\mathbf{i}\downarrow}^{\dagger}c_{\mathbf{i}\downarrow}\right)\left(c_{\mathbf{j}\uparrow}^{\dagger}c_{\mathbf{j}\uparrow}-c_{\mathbf{j}\downarrow}^{\dagger}c_{\mathbf{j}\downarrow}\right)\right]
=\displaystyle= (𝐢,𝐣)J𝐢𝐣(34Δ𝐢𝐣(0,0)Δ𝐢𝐣(0,0)+14Δ𝐢𝐣(1,1)Δ𝐢𝐣(1,1)+14Δ𝐢𝐣(1,0)Δ𝐢𝐣(1,0)+14Δ𝐢𝐣(1,1)Δ𝐢𝐣(1,1)),\displaystyle\sum_{(\mathbf{i,j})}J_{\mathbf{ij}}\left(-\frac{3}{4}\Delta_{\mathbf{ij}(0,0)}^{\dagger}\Delta_{\mathbf{ij}(0,0)}+\frac{1}{4}\Delta_{\mathbf{ij}(1,-1)}^{\dagger}\Delta_{\mathbf{ij}(1,-1)}+\frac{1}{4}\Delta_{\mathbf{ij}(1,0)}^{\dagger}\Delta_{\mathbf{ij}(1,0)}+\frac{1}{4}\Delta_{\mathbf{ij}(1,1)}^{\dagger}\Delta_{\mathbf{ij}(1,1)}\right), (S11)

where J𝐢𝐣=4t𝐢𝐣2/UJ_{\mathbf{ij}}=4t_{\mathbf{ij}}^{2}/U and U=10U=10 eV. The singlet-pairing channel Δ𝐢𝐣(0,0)\Delta_{\mathbf{ij}(0,0)} reads as

Δ𝐢𝐣(0,0)=12(c𝐢c𝐣c𝐢c𝐣)\Delta_{\mathbf{ij}(0,0)}=\frac{1}{\sqrt{2}}\left(c_{\mathbf{i}\uparrow}c_{\mathbf{j}\downarrow}-c_{\mathbf{i}\downarrow}c_{\mathbf{j}\uparrow}\right) (S12)

and the three degenerate components of the triplet pairing are as following,

Δ𝐢𝐣(1,1)=c𝐢c𝐣,Δ𝐢𝐣(1,0)=12(c𝐢c𝐣+c𝐢c𝐣),Δ𝐢𝐣(1,1)=c𝐢c𝐣.\displaystyle\Delta_{\mathbf{ij}(1,1)}=c_{\mathbf{i}\uparrow}c_{\mathbf{j}\uparrow},\quad\Delta_{\mathbf{ij}(1,0)}=\frac{1}{\sqrt{2}}\left(c_{\mathbf{i}\uparrow}c_{\mathbf{j}\downarrow}+c_{\mathbf{i}\downarrow}c_{\mathbf{j}\uparrow}\right),\quad\Delta_{\mathbf{ij}(1,-1)}=c_{\mathbf{i}\downarrow}c_{\mathbf{j}\downarrow}. (S13)

Due to J𝐢𝐣>0J_{\mathbf{ij}}>0, the triplet-pairing channels are always suppressed and thus only the singlet-pairing channel is considered, that is,

HJ(s)=34(𝐢,𝐣)J𝐢𝐣Δ𝐢𝐣(0,0)Δ𝐢𝐣(0,0)=38(𝐢,𝐣)J𝐢𝐣(c𝐣c𝐢c𝐣c𝐢)(c𝐢c𝐣c𝐢c𝐣).\displaystyle H_{J}^{(s)}=-\frac{3}{4}\sum_{(\mathbf{i,j})}J_{\mathbf{ij}}\Delta_{\mathbf{ij}(0,0)}^{\dagger}\Delta_{\mathbf{ij}(0,0)}=-\frac{3}{8}\sum_{(\mathbf{i,j})}J_{\mathbf{ij}}\left(c_{\mathbf{j}\downarrow}^{\dagger}c_{\mathbf{i}\uparrow}^{\dagger}-c_{\mathbf{j}\uparrow}^{\dagger}c_{\mathbf{i}\downarrow}^{\dagger}\right)\left(c_{\mathbf{i}\uparrow}c_{\mathbf{j}\downarrow}-c_{\mathbf{i}\downarrow}c_{\mathbf{j}\uparrow}\right). (S14)

This interaction Hamiltonian can be transformed to the eigen basis expanded by the perturbation-corrected eigenstates {|𝐤α(μ)~}\left\{|\widetilde{\mathbf{k}\alpha^{(\rm\mu)}}\rangle\right\}. Our numerical results verify that each two states within this set are almost orthogonal to each other, which justifies this set as a good basis for the following study involving interaction. Writing the creation (annihilation) operator of the eigenstate |𝐤α(μ)~|\widetilde{\mathbf{k}\alpha^{(\rm\mu)}}\rangle for the spin σ\sigma as c~𝐤μασ\tilde{c}^{\dagger}_{\mathbf{k}\mu\alpha\sigma} (c~𝐤μασ\tilde{c}_{\mathbf{k\mu}\alpha\sigma}), we have

c𝐢σ=1N𝐤μαc~𝐤μασξ~𝐢,𝐤μαc_{\mathbf{i}\sigma}=\frac{1}{\sqrt{N}}\sum_{\mathbf{k\mu}\alpha}\tilde{c}_{\mathbf{k\mu}\alpha\sigma}\tilde{\xi}_{\mathbf{i},\mathbf{k\mu}\alpha} (S15)

where ξ~𝐢,𝐤μα/N\tilde{\xi}_{\mathbf{i},\mathbf{k\mu}\alpha}/\sqrt{N} represents the real-space wave function for the perturbation-corrected eigenstate |𝐤α(μ)~|\widetilde{\mathbf{k}\alpha^{(\rm\mu)}}\rangle. Substituting Eq. (S15) back to Eq. (S14), we get the following BCS Hamiltonian,

HJ(s)\displaystyle H_{J}^{(s)} =\displaystyle= 38N2(𝐢,𝐣)J𝐢𝐣𝐤μα𝐪νβc~𝐤μαc~𝐤μαc~𝐪νβc~𝐪νβ(ξ~𝐣,𝐤μαξ~𝐢,𝐤μα+ξ~𝐢,𝐤μαξ~𝐣,𝐤μα)(ξ~𝐢,𝐪νβξ~𝐣,𝐪νβ+ξ~𝐣,𝐪νβξ~𝐢,𝐪νβ)\displaystyle-\frac{3}{8N^{2}}\sum_{(\mathbf{i,j})}J_{\mathbf{ij}}\sum_{\mathbf{k}\mu\alpha\atop\mathbf{q}\nu\beta}\tilde{c}_{\mathbf{k\mu\alpha}\downarrow}^{\dagger}\tilde{c}_{\mathbf{-k\mu\alpha}\uparrow}^{\dagger}\tilde{c}_{\mathbf{-q\nu\beta}\uparrow}\tilde{c}_{\mathbf{q\nu\beta}\downarrow}\left(\tilde{\xi}_{\mathbf{j},\mathbf{k}\mu\alpha}^{*}\tilde{\xi}_{\mathbf{i},-\mathbf{k}\mu\alpha}^{*}+\tilde{\xi}_{\mathbf{i},\mathbf{k}\mu\alpha}^{*}\tilde{\xi}_{\mathbf{j},-\mathbf{k}\mu\alpha}^{*}\right)\left(\tilde{\xi}_{\mathbf{i},-\mathbf{q}\nu\beta}\tilde{\xi}_{\mathbf{j},\mathbf{q}\nu\beta}+\tilde{\xi}_{\mathbf{j},-\mathbf{q}\nu\beta}\tilde{\xi}_{\mathbf{i},\mathbf{q}\nu\beta}\right)
=\displaystyle= 𝐤μα𝐪νβ1Nc~𝐤μαc~𝐤μαc~𝐪νβc~𝐪νβ[32N(𝐢,𝐣)J𝐢𝐣𝐑𝐞(ξ~𝐢,𝐤μαξ~𝐣,𝐤μα)𝐑𝐞(ξ~𝐢,𝐪νβξ~𝐣,𝐪νβ)]\displaystyle\sum_{\mathbf{k}\mu\alpha\atop\mathbf{q}\nu\beta}\frac{1}{N}\tilde{c}_{\mathbf{k\mu\alpha}\downarrow}^{\dagger}\tilde{c}_{\mathbf{-k\mu\alpha}\uparrow}^{\dagger}\tilde{c}_{\mathbf{-q\nu\beta}\uparrow}\tilde{c}_{\mathbf{q\nu\beta}\downarrow}\left[-\frac{3}{2N}\sum_{(\mathbf{i,j})}J_{\mathbf{ij}}\mathbf{Re}(\tilde{\xi}_{\mathbf{i},\mathbf{k}\mu\alpha}\tilde{\xi}_{\mathbf{j},\mathbf{k}\mu\alpha}^{*})\mathbf{Re}(\tilde{\xi}_{\mathbf{i},\mathbf{q}\nu\beta}\tilde{\xi}_{\mathbf{j},\mathbf{q}\nu\beta}^{*})\right]
=\displaystyle= 𝐤μα𝐪νβ1Nc~𝐤μαc~𝐤μαc~𝐪νβc~𝐪νβVαβμν(𝐤,𝐪),\displaystyle\sum_{\mathbf{k}\mu\alpha\atop\mathbf{q}\nu\beta}\frac{1}{N}\tilde{c}_{\mathbf{k\mu\alpha}\downarrow}^{\dagger}\tilde{c}_{\mathbf{-k\mu\alpha}\uparrow}^{\dagger}\tilde{c}_{\mathbf{-q\nu\beta}\uparrow}\tilde{c}_{\mathbf{q\nu\beta}\downarrow}V^{\mu\nu}_{\alpha\beta}(\mathbf{k},\mathbf{q}), (S16)

with the pairing potential Vαβμν(𝐤,𝐪)V^{\mu\nu}_{\alpha\beta}(\mathbf{k},\mathbf{q}) defined as

Vαβμν(𝐤,𝐪)=32N(𝐢,𝐣)J𝐢𝐣𝐑𝐞(ξ~𝐢,𝐤μαξ~𝐣,𝐤μα)𝐑𝐞(ξ~𝐢,𝐪νβξ~𝐣,𝐪νβ).V^{\mu\nu}_{\alpha\beta}(\mathbf{k},\mathbf{q})=-\frac{3}{2N}\sum_{(\mathbf{i,j})}J_{\mathbf{ij}}\mathbf{Re}(\tilde{\xi}_{\mathbf{i},\mathbf{k}\mu\alpha}\tilde{\xi}_{\mathbf{j},\mathbf{k}\mu\alpha}^{*})\mathbf{Re}(\tilde{\xi}_{\mathbf{i},\mathbf{q}\nu\beta}\tilde{\xi}_{\mathbf{j},\mathbf{q}\nu\beta}^{*}). (S17)

Here 𝐑𝐞(z)\mathbf{Re}(z) indicates the real part of zz. Note that we only consider the intra-band pairing with opposite momenta and spin here, i.e. the pairing between the time-reversal pair |𝐤α(μ)~|\widetilde{\mathbf{k}\alpha^{(\rm\mu)}}\uparrow\rangle and |𝐤α(μ)~|\widetilde{-\mathbf{k}\alpha^{(\rm\mu)}}\downarrow\rangle.

The Hamiltonian in Eq. (II) can be mean-field decoupled in the BCS channel to get the following mean-field Hamiltonian,

HMF=𝐤μα,σ(ε~𝐤μαμc)c~𝐤μασc~𝐤μασ+𝐤μα[Δμα(𝐤)c~𝐤μαc~𝐤μα+h.c.]\displaystyle H_{\rm MF}=\sum_{\mathbf{k}\mu\alpha,\sigma}(\tilde{\varepsilon}^{\mu\alpha}_{\mathbf{k}}-\mu_{c})\tilde{c}^{\dagger}_{\mathbf{k}\mu\alpha\sigma}\tilde{c}_{\mathbf{k}\mu\alpha\sigma}+\sum_{\mathbf{k}\mu\alpha}\left[\Delta_{\mu\alpha}(\mathbf{k})\tilde{c}^{\dagger}_{\mathbf{k}\mu\alpha\downarrow}\tilde{c}^{\dagger}_{-\mathbf{k}\mu\alpha\uparrow}+h.c.\right] (S18)

where μc\mu_{c} is the chemical potential. The superconductor pairing gap Δμα(𝐤)\Delta_{\mu\alpha}(\mathbf{k}) reads

Δμα(𝐤)=\displaystyle\Delta_{\mu\alpha}(\mathbf{k})= 1N𝐪νβVαβμν(𝐤,𝐪)c~𝐪νβc~𝐪νβ\displaystyle\frac{1}{N}\sum_{\mathbf{q}\nu\beta}V^{\mu\nu}_{\alpha\beta}(\mathbf{k},\mathbf{q})\langle\tilde{c}_{-\mathbf{q}\nu\beta\uparrow}\tilde{c}_{\mathbf{q}\nu\beta\downarrow}\rangle
=\displaystyle= 1N𝐪νβVαβμν(𝐤,𝐪)Δνβ(𝐪)2|ε~𝐪νβμc|2+|Δνβ(𝐪)|2{12f[|ε~𝐪νβμc|2+|Δνβ(𝐪)|2]}.\displaystyle-\frac{1}{N}\sum_{\mathbf{q}\nu\beta}V^{\mu\nu}_{\alpha\beta}(\mathbf{k},\mathbf{q})\frac{\Delta_{\nu\beta}(\mathbf{q})}{2\sqrt{\left|\tilde{\varepsilon}^{\nu\beta}_{\mathbf{q}}-\mu_{c}\right|^{2}+\left|\Delta_{\nu\beta}(\mathbf{q})\right|^{2}}}\left\{1-2f\left[\sqrt{\left|\tilde{\varepsilon}^{\nu\beta}_{\mathbf{q}}-\mu_{c}\right|^{2}+|\Delta_{\nu\beta}(\mathbf{q})|^{2}}\right]\right\}. (S19)

Here, f[x]f[x] is the Fermi distribution function. Since Δμα(𝐤)0\Delta_{\mu\alpha}(\mathbf{k})\rightarrow 0 when TTcT\rightarrow T_{c}, Eq. (II) leads to

Δμα(𝐤)=\displaystyle\Delta_{\mu\alpha}(\mathbf{k})= 1N𝐪νβVαβμν(𝐤,𝐪)Δνβ(𝐪)2|ε~𝐪νβμc|tanh(|ε~𝐪νβμc|2kBTc)\displaystyle-\frac{1}{N}\sum_{\mathbf{q}\nu\beta}V^{\mu\nu}_{\alpha\beta}(\mathbf{k},\mathbf{q})\frac{\Delta_{\nu\beta}(\mathbf{q})}{2|\tilde{\varepsilon}^{\nu\beta}_{\mathbf{q}}-\mu_{c}|}\tanh\left(\frac{|\tilde{\varepsilon}^{\nu\beta}_{\mathbf{q}}-\mu_{c}|}{2k_{B}T_{c}}\right)
=\displaystyle= 1(2π)2νβ𝑑𝐪2Vαβμν(𝐤,𝐪)Δνβ(𝐪)2|ε~𝐪νβμc|tanh(|ε~𝐪νβμc|2kBTc).\displaystyle-\frac{1}{(2\pi)^{2}}\sum_{\nu\beta}\int d\mathbf{q}^{2}V^{\mu\nu}_{\alpha\beta}(\mathbf{k},\mathbf{q})\frac{\Delta_{\nu\beta}(\mathbf{q})}{2|\tilde{\varepsilon}^{\nu\beta}_{\mathbf{q}}-\mu_{c}|}\tanh\left(\frac{|\tilde{\varepsilon}^{\nu\beta}_{\mathbf{q}}-\mu_{c}|}{2k_{B}T_{c}}\right). (S20)

After some further derivations 4 ; 5 , we have

1(2π)2νβ𝑑qVαβμν(𝐤,𝐪)vFνβ(𝒒)Δνβ(𝐪)=λΔμα(𝐤),\displaystyle-\frac{1}{(2\pi)^{2}}\sum_{\nu\beta}\oint dq_{\parallel}\frac{V^{\mu\nu}_{\alpha\beta}(\mathbf{k},\mathbf{q})}{v^{\nu\beta}_{F}(\bm{q})}\Delta_{\nu\beta}(\mathbf{q})=\lambda\Delta_{\mu\alpha}(\mathbf{k}), (S21)

where vFνβ(𝐪)v_{F}^{\nu\beta}(\mathbf{q}) is the Fermi velocity and qq_{\parallel} denotes the component along the tangent of the FS. The pairing symmetry is determined by the gap form factor Δμα(𝐤)\Delta_{\mu\alpha}(\mathbf{k}) corresponding to the largest pairing eigenvalue λ\lambda solved for this equation. The superconducting critical temperature TcT_{c} is related to λ\lambda via the relation Tce1/λT_{c}\sim e^{-1/\lambda}.

Note that on the above mean-field treatment, we have not considered the no-double-occupance constraint. This constraint can be treated by the Gutzwiller approximation, under which the free-electron part of the Hamiltonian will be renormalized by the Gutzwiller factor δ\delta. Under such treatment, the only revision of the above Eq. (S21) lies in that the Fermi velocity vFνβ(𝒒)v^{\nu\beta}_{F}(\bm{q}) should be renormalized by the factor δ\delta. Under such revision of Eq. (S21), the pairing symmetry would not be changed. Therefore, the no-double-occupance constraint would not change the pairing symmetry obtained by our mean-field calculations. The influence of this constraint on the superconducting TcT_{c} is as follow. Firstly, as vFνβ(𝒒)δvFνβ(𝒒)v^{\nu\beta}_{F}(\bm{q})\to\delta v^{\nu\beta}_{F}(\bm{q}), we have λλ/δ\lambda\to\lambda/\delta. Secondly, under the no-double-occupance constraint, the TcT_{c} obtained via the relation Tce1/λT_{c}\sim e^{-1/\lambda} only represents the temperature for the pseudo gap. As the Gutzwiller approximation renormalizes the pairing order parameter by the factor δ\delta, the real TcT_{c} should also be renormalized by this factor. As a result, we have Tcδeδ/λT_{c}\sim\delta e^{-\delta/\lambda}. For δ0\delta\to 0, as λρEFδ\lambda\propto\rho_{E_{F}}\propto\delta, we have TcδT_{c}\propto\delta. Here ρEF\rho_{E_{F}} represents for the DOS on the FS. Near the VH doping, the TcT_{c} estimated under our choice of interaction parameters, i.e. U=10U=10 eV, is slightly lower than that obtained by the mean-field calculation. Overall, the TcδT_{c}\sim\delta curve after the Gutzwiller projection is qualitatively similar with that of the mean-field result. Note that as the accurate interaction strength of the real material cannot be exactly known, the strength of the superexchange coefficients J𝐢𝐣J_{\mathbf{ij}} can vary by several times from the adopted values in our study, which will considerably influence the obtained TcT_{c}. Physically, the superconducting TcT_{c} of the QC-TBG should be near that of the monolayer graphene studied previously, as the pairing eigenvalue λ\lambda obtained here is close to the value obtained for the case with the interlayer coupling turned off, as suggested by our numerical results.

III Pairing symmetry classification

In the linearized gap equation (S21), as the pairing potential Vαβμν(𝐤,𝐪)V^{\mu\nu}_{\alpha\beta}(\mathbf{k},\mathbf{q}) is invariant under the point-group symmetry of the system, all the obtained normalized gap function {Δμα(𝐤)}\left\{\Delta_{\mu\alpha}(\mathbf{k})\right\} corresponding to the same eigenvalue λ\lambda form an irreducible representation (IRRP) of the point group. Therefore, the pairing symmetries of the QC-TBG can be classified according to the IRRPs of the D6dD_{6d} point group. Redefining the 30-rotation about the centric axis (normal to the QC-TBG plane) as the combination of it and a succeeding layer exchange, the D6dD_{6d} point group can be redefined as the D12D_{12} point group, whose IRRPs are shown in Table S1 x3 .

Table S1: IRRPs of the D12D_{12} point group and classification of the pairing symmetries in the QC-TBG. The operator P^θ\hat{P}_{\theta} denotes the rotation by the angle θ=nπ/6\theta=n\pi/6 (n=0,1,,11n=0,1,\cdots,11) about the centric axis (normal to the QC-TBG plane) and the operator σ^\hat{\sigma} reflects the QC-TBG about any of the twelve symmetric axes (in the QC-TBG plane). D(O^)D_{(\hat{O})} is the matrix representation of D12D_{12} group operators O^\hat{O}. Cπ/6C_{\pi/6} and σx\sigma_{x} are the two generators of D12D_{12}. For 2D IRRPs, Δ𝐤=Δ1𝐤±iΔ2𝐤\Delta_{\mathbf{k}}=\Delta_{1\mathbf{k}}\pm i\Delta_{2\mathbf{k}} with Δ1𝐤\Delta_{1\mathbf{k}} and Δ2𝐤\Delta_{2\mathbf{k}} being the basis functions of the 2D IRRPs.
IRRPs D(Cπ/6)D_{(C_{\pi/6})} D(σx)D_{(\sigma_{x})} Pairing symmetries Ground-state gap functions
1D A1A_{1} II II ss ΔP^θ𝐤=Δ𝐤\Delta_{\hat{P}_{\theta}\mathbf{k}}=\Delta_{\mathbf{k}}, Δσ^𝐤=Δ𝐤\Delta_{\hat{\sigma}\mathbf{k}}=\Delta_{\mathbf{k}}
A2A_{2} I-I I-I i=i3(x5y+xy5)+10x3y3i^{\prime}=i_{3(x^{5}y+xy^{5})+10x^{3}y^{3}} ΔP^θ𝐤=Δ𝐤\Delta_{\hat{P}_{\theta}\mathbf{k}}=-\Delta_{\mathbf{k}}, Δσ^𝐤=Δ𝐤\Delta_{\hat{\sigma}\mathbf{k}}=-\Delta_{\mathbf{k}}
B1B_{1} I-I II i=ix6y6+15(x2y4x4y2)i=i_{x^{6}-y^{6}+15(x^{2}y^{4}-x^{4}y^{2})} ΔP^θ𝐤=Δ𝐤\Delta_{\hat{P}_{\theta}\mathbf{k}}=-\Delta_{\mathbf{k}}, Δσ^𝐤=Δ𝐤\Delta_{\hat{\sigma}\mathbf{k}}=\Delta_{\mathbf{k}}
B2B_{2} II I-I iii*i^{\prime} ΔP^θ𝐤=Δ𝐤\Delta_{\hat{P}_{\theta}\mathbf{k}}=\Delta_{\mathbf{k}}, Δσ^𝐤=Δ𝐤\Delta_{\hat{\sigma}\mathbf{k}}=-\Delta_{\mathbf{k}}
2D E1E_{1} Icosπ6iσysinπ6I\cos\frac{\pi}{6}-i\sigma_{y}\sin\frac{\pi}{6} σz-\sigma_{z} (px,py)(p_{x},p_{y}) ΔP^θ𝐤=e±iπ6Δ𝐤\Delta_{\hat{P}_{\theta}\mathbf{k}}=e^{\pm i{\pi\over 6}}\Delta_{\mathbf{k}}, Δσ^𝐤Δ𝐤\Delta_{\hat{\sigma}\mathbf{k}}\neq\Delta_{\mathbf{k}}
E2E_{2} Icosπ3iσysinπ3I\cos\frac{\pi}{3}-i\sigma_{y}\sin\frac{\pi}{3} σz\sigma_{z} (dx2y2,dxy)(d_{x^{2}-y^{2}},d_{xy}) ΔP^θ𝐤=e±iπ3Δ𝐤\Delta_{\hat{P}_{\theta}\mathbf{k}}=e^{\pm i{\pi\over 3}}\Delta_{\mathbf{k}}, Δσ^𝐤Δ𝐤\Delta_{\hat{\sigma}\mathbf{k}}\neq\Delta_{\mathbf{k}}
E3E_{3} iσy-i\sigma_{y} σz-\sigma_{z} (fx33xy2,f3x2yy3)(f_{x^{3}-3xy^{2}},f_{3x^{2}y-y^{3}}) ΔP^θ𝐤=e±iπ2Δ𝐤\Delta_{\hat{P}_{\theta}\mathbf{k}}=e^{\pm i{\pi\over 2}}\Delta_{\mathbf{k}}, Δσ^𝐤Δ𝐤\Delta_{\hat{\sigma}\mathbf{k}}\neq\Delta_{\mathbf{k}}
E4E_{4} Icos2π3iσysin2π3I\cos\frac{2\pi}{3}-i\sigma_{y}\sin\frac{2\pi}{3} σz\sigma_{z} (gx4+y46x2y2,gx3yxy3)(g_{x^{4}+y^{4}-6x^{2}y^{2}},g_{x^{3}y-xy^{3}}) ΔP^θ𝐤=e±i2π3Δ𝐤\Delta_{\hat{P}_{\theta}\mathbf{k}}=e^{\pm i{2\pi\over 3}}\Delta_{\mathbf{k}}, Δσ^𝐤Δ𝐤\Delta_{\hat{\sigma}\mathbf{k}}\neq\Delta_{\mathbf{k}}
E5E_{5} Icos5π6iσysin5π6I\cos\frac{5\pi}{6}-i\sigma_{y}\sin\frac{5\pi}{6} σz-\sigma_{z} (hx5+5xy410x3y2,hy5+5x4y10x2y3)(h_{x^{5}+5xy^{4}-10x^{3}y^{2}},h_{y^{5}+5x^{4}y-10x^{2}y^{3}}) ΔP^θ𝐤=e±i5π6Δ𝐤\Delta_{\hat{P}_{\theta}\mathbf{k}}=e^{\pm i{5\pi\over 6}}\Delta_{\mathbf{k}}, Δσ^𝐤Δ𝐤\Delta_{\hat{\sigma}\mathbf{k}}\neq\Delta_{\mathbf{k}}

In Table S1, the second and third columns list the representation matrices of the two generators of the D12D_{12} point group up to a global unitary transformation. In the fourth column, we list all the possible pairing symmetries, in which the 1D IRRPs includes the ss-wave with angular momentum L=0L=0, the i=ix6y6+15(x2y4x4y2)i=i_{x^{6}-y^{6}+15(x^{2}y^{4}-x^{4}y^{2})} and i=i3(x5y+xy5)+10x3y3i^{\prime}=i_{3(x^{5}y+xy^{5})+10x^{3}y^{3}} waves with L=6L=6, and the iii*i^{\prime} wave with L=0L=0, and the 2D IRRPs include the (px,py)(p_{x},p_{y}) wave with L=1L=1, the (dx2y2,dxy)(d_{x^{2}-y^{2}},d_{xy}) wave with L=2L=2, the (fx33xy2,f3x2yy3)(f_{x^{3}-3xy^{2}},f_{3x^{2}y-y^{3}}) wave with L=3L=3, the (gx4+y46x2y2,gx3yxy3)(g_{x^{4}+y^{4}-6x^{2}y^{2}},g_{x^{3}y-xy^{3}}) wave with L=4L=4, and the (hx5+5xy410x3y2,hy5+5x4y10x2y3)(h_{x^{5}+5xy^{4}-10x^{3}y^{2}},h_{y^{5}+5x^{4}y-10x^{2}y^{3}}) wave with L=5L=5. Note that as we only consider the intra-band pairing between opposite momenta, the spin statistics and the pairing angular momentum are mutually determined: for the spin-singlet pairings, LL should be even, while for the spin-triplet pairings, LL should be odd. This point is in contrast with the intrinsic QC wherein the spin statistics and the pairing angular momentum are independent x1 . In the t-J model studied here, only the singlet pairings with even LL are possible, including the ss-, (dx2y2,dxy)(d_{x^{2}-y^{2}},d_{xy})-, (gx4+y46x2y2,gx3yxy3)(g_{x^{4}+y^{4}-6x^{2}y^{2}},g_{x^{3}y-xy^{3}})-, ix6y6+15(x2y4x4y2)i_{x^{6}-y^{6}+15(x^{2}y^{4}-x^{4}y^{2})}-, i3(x5y+xy5)+10x3y3i_{3(x^{5}y+xy^{5})+10x^{3}y^{3}}-, and the iii*i^{\prime}- wave pairing symmetries. However, in other model, such as the Hubbard model, all the other triplet pairings with odd LL are also possible, which are not studied in the present work.

In the last column of Table S1, we show the properties of the ground-state wave function of each pairing symmetry. For the 1D IRRPs, the symmetries of the ground-state wave functions are the same as those obtained from solving Eq. (S21) at TcT_{c}. For a 2D IRRP, the ground-state wave function is the mixing of the two basis functions of that IRRP. From the Ginzburg-Landau theory provided in the next section in combination with our numerical calculations for the cases of degenerate dx2y2d_{x^{2}-y^{2}} and dxyd_{xy} waves or degenerate gx4+y46x2y2g_{x^{4}+y^{4}-6x^{2}y^{2}} and gx3yxy3g_{x^{3}y-xy^{3}} waves, the two basis functions would always be mixed as 1:±i1:\pm i. Under such a mixing manner, the ground-state wave functions are complex, whose complex phases change ±Lθ\pm L\theta with each rotation by the angle θ\theta, where θ=nπ/6\theta=n\pi/6. In the meantime, the mirror reflection symmetry σ\sigma is broken in these 2D IRRPs ground states. For the other cases of 2D IRRPs, including the (px,py)(p_{x},p_{y}), the (fx33xy2,f3x2yy3)(f_{x^{3}-3xy^{2}},f_{3x^{2}y-y^{3}}) and the (hx5+5xy410x3y2,hy5+5x4y10x2y3)(h_{x^{5}+5xy^{4}-10x^{3}y^{2}},h_{y^{5}+5x^{4}y-10x^{2}y^{3}}) which can emerge in other models, the situations are similar. The Ginzburg-Landau theory for arguing the 1:±i1:\pm i mixing for these cases also applies. Although no numerical calculation is available for these cases, the general physical reason for this mixing is the same: the 1:±i1:\pm i mixing manner can lead to a full pairing gap to minimize the free energy, while other solutions for the minimum of the Ginzburg-Landau free energy cannot.

The main features exhibited in Table S1 also apply to other 2D lattices with D2nD_{2n} point group, including periodic lattices with n3n\leq 3. The D2nD_{2n} point group possesses 4n4n elements, which are divided into (n+3)(n+3) classes. It possesses four 1D IRRPs and (n1)(n-1) 2D IRRPs, satisfying 4+(n1)=n+34+(n-1)=n+3 and 4×12+(n1)×22=4n4\times 1^{2}+(n-1)\times 2^{2}=4n. The four 1D IRRPs include the A1,A2,B1A_{1},A_{2},B_{1}, and B2B_{2} representations. The A1A_{1} representation is the identity one, corresponding to the ss-wave. The B1B_{1} and A2A_{2} representations correspond to the pairing states with the largest angular momentum L=nL=n, similar to the ii- and ii^{\prime}-wave pairings here. The B2B_{2} representation is the product representation of B1B_{1} and A2A_{2}. The (n1)(n-1) 2D IRRPs are marked as ELE_{L}, with L=1,,(n1)L=1,\cdots,(n-1). The two lowest-harmonics basis functions of the ELE_{L} IRRP can be chosen as the real and imaginary parts of (x+yi)L(x+yi)^{L}, respectively. When they are 1:±i1:\pm i mixed, the resulting complex gap function behaves as such: with every π/n\pi/n rotation, the phase angle of the complex pairing gap function changes ±Lπ/n\pm L\pi/n. Therefore, the index LL is just the pairing angular momentum of the topological superconductivity (TSC) on a 2D lattice hosting the D2nD_{2n} point group, which is at most (n1)(n-1). On periodic lattices, since n3n\leq 3, one can only get p+ipp+ip TSC with L=1L=1 or d+idd+id TSC with L=2L=2. For example, on square lattices with D4D_{4} point group, since n=2n=2, the largest pairing angular momentum of the TSCs on square lattice is L=n1=1L=n-1=1, which only includes the p+ipp+ip TSC. On the honeycomb lattices with D6D_{6} point group, since n=3n=3, the largest L=n1=2L=n-1=2. Therefore, the TSCs on the honeycomb lattices can be either p+ipp+ip (L=1L=1) or d+idd+id (L=2L=2). Occasionally, the gap functions belonging to the ELE_{L} IRRP can take higher-harmonics formulism such as (x+yi)L±n(x+yi)^{L\pm n}, (x+yi)L±2n(x+yi)^{L\pm 2n}, ……. In such cases, on, say the honeycomb lattice, the g+igg+ig can also emerge as the higher-harmonics component of the E2E_{2} IRRP 8 . However, since the g+igg+ig and the d+idd+id on the honeycomb lattice both belong to E2E_{2}, they would generally be mixed. For a pairing gap function with mixed d+idd+id and g+igg+ig components belonging to the same E2E_{2} IRRP of D6D_{6}, one usually attributes its pairing symmetry to the lowest-harmonics component, i.e. d+idd+id, unless the weight of that component is zero or extremely low 8 . Such situation only happens occasionally since no symmetry can guarantee it. Therefore, on the honeycomb lattice, we can only have accidental g+igg+ig TSC for the E2E_{2} IRRP, or accidental h+ihh+ih TSC for the E1E_{1} IRRP. Similarly, on the square lattice, we can only have accidental f+iff+if TSC for the E1E_{1} IRRP. However, on the QC-TBG with effective D12D_{12} point-group symmetry, the d+idd+id and g+igg+ig belong to E2E_{2} and E4E_{4} IRRPs respectively, which by symmetry will not be mixed. Therefore, the g+igg+ig obtained in the QC-TBG is protected by symmetry, instead of being accidental.

Refer to caption
Figure S3: Distributions of paring gap functions for ss- and ii-waves on the Fermi surfaces when δ=0.20\delta=0.20 and 0.320.32.
Refer to caption
Figure S4: Distributions of paring gap functions for dd- and gg-waves on the inner and outer Fermi surfaces when δ=0.20\delta=0.20 and 0.320.32.

IV More informations on gap functions

This section provides more informations about the four leading gap functions obtained from solving the linearized gap equation (S21). Here we will show the gap functions of the ss-, the ix6y6+15(x2y4x4y2)i_{x^{6}-y^{6}+15(x^{2}y^{4}-x^{4}y^{2})}-, the (dx2y2,dxy)(d_{x^{2}-y^{2}},d_{xy}), and the (gx4+y46x2y2,gx3yxy3)(g_{x^{4}+y^{4}-6x^{2}y^{2}},g_{x^{3}y-xy^{3}}) wave pairings for two typical doping levels, i.e. δ=0.20\delta=0.20 below the VH doping and δ=0.32\delta=0.32 above the VH doping. The other two pairing symmetries, i.e. the i3(x5y+xy5)+10x3y3i_{3(x^{5}y+xy^{5})+10x^{3}y^{3}} and iii*i^{\prime} are not shown as their pairing eigenvalues are lower than the four shown symmetries. For the degenerate (dx2y2,dxy)(d_{x^{2}-y^{2}},d_{xy})- and degenerate (gx4+y46x2y2,gx3yxy3)(g_{x^{4}+y^{4}-6x^{2}y^{2}},g_{x^{3}y-xy^{3}})- wave pairings, we shall determine how the two basis functions are mixed to minimize the ground-state energy by numerical calculations.

Figure S3 shows the leading gap functions of the ss- and ix6y6+15(x2y4x4y2)i_{x^{6}-y^{6}+15(x^{2}y^{4}-x^{4}y^{2})}-wave pairings corresponding to the largest pairing eigenvalues of the two pairing symmetries under δ=0.20\delta=0.20 and 0.32. Obviously, the ss-wave pairing gap function is invariant under the D12D_{12} point group. The ii-wave pairing gap function changes sign for every 30°30\degree rotation. The gap function of this pairing symmetry is reflection even about the axes with azimuthal angles θ=nπ/6\theta=n\pi/6 (n=5,,6n=-5,\cdots,6) and reflection odd about the axes with azimuthal angles θ=(2n1)π/12\theta=(2n-1)\pi/12 (n=5,,6n=-5,\cdots,6). The nodal directions of the pairing gap function for this pairing symmetry are at θ=(2n1)π/12\theta=(2n-1)\pi/12 (n=5,,6n=-5,\cdots,6). These two pairing symmetries are consistent with the A1A_{1} and B1B_{1} IRRPs listed in Table S1, respectively.

Figure S4 shows the leading gap functions of the degenerate (dx2y2,dxy)(d_{x^{2}-y^{2}},d_{xy})- and (gx4+y46x2y2,gx3yxy3)(g_{x^{4}+y^{4}-6x^{2}y^{2}},g_{x^{3}y-xy^{3}})- wave pairing symmetries corresponding to their largest pairing eigenvalues under δ=0.20\delta=0.20 and 0.32. As the two pockets are close in the Brillioun zone, we plot the distributions of the gap functions on the inner and outer pockets separately to enhance the visibility. Figure S4 informs us the following characters of these gap functions. Firstly, while the dx2y2d_{x^{2}-y^{2}}- and the gx4+y46x2y2g_{x^{4}+y^{4}-6x^{2}y^{2}}- wave pairing gap functions are reflection even about the xx- and yy- axes, the dxyd_{xy}- and the gx3yxy3g_{x^{3}y-xy^{3}}- wave ones are reflection odd about these axes. Secondly, while the two dd-wave pairing gap functions change sign for every 90°rotation, the two gg-wave ones keep unchanged for such rotation. Thirdly, while each dd-wave pairing gap function possesses four nodal points on each pocket, each gg-wave pairing gap function possesses eight nodal points on each pocket. Finally, the nodal points for the two dd-wave gap functions don’t coincide with each other, and neither do those for the two gg- wave ones.

Since the two dd- and gg- wave pairing gap functions each are doubly degenerate, we shall mix the two basis functions for each case to minimize the ground-state energy. The start point is the Hamiltonian of the system,

H=𝐤μα,σε~𝐤μαc~𝐤μασc~𝐤μασ+1N𝐤μα𝐪νβVαβμν(𝐤,𝐪)c~𝐤μαc~𝐤μαc~𝐪νβc~𝐪νβ.\displaystyle H=\sum_{\mathbf{k}\mu\alpha,\sigma}\tilde{\varepsilon}^{\mu\alpha}_{\mathbf{k}}\tilde{c}^{\dagger}_{\mathbf{k}\mu\alpha\sigma}\tilde{c}_{\mathbf{k}\mu\alpha\sigma}+\frac{1}{N}\sum_{\mathbf{k}\mu\alpha\atop\mathbf{q}\nu\beta}V^{\mu\nu}_{\alpha\beta}(\mathbf{k},\mathbf{q})\tilde{c}^{\dagger}_{\mathbf{k}\mu\alpha\downarrow}\tilde{c}^{\dagger}_{-\mathbf{k}\mu\alpha\uparrow}\tilde{c}_{-\mathbf{q}\nu\beta\uparrow}\tilde{c}_{\mathbf{q}\nu\beta\downarrow}. (S22)

We introduce the following pairing gap function,

Δμα(𝐤)=ψ1Δμα(1)(𝐤)+ψ2Δμα(2)(𝐤).\displaystyle\Delta_{\mu\alpha}(\mathbf{k})=\psi_{1}\Delta^{(1)}_{\mu\alpha}(\mathbf{k})+\psi_{2}\Delta^{(2)}_{\mu\alpha}(\mathbf{k}). (S23)

where ψ1\psi_{1} and ψ2\psi_{2} are two complex numbers. The Δμα(1)(𝐤)\Delta^{(1)}_{\mu\alpha}(\mathbf{k}) and Δμα(2)(𝐤)\Delta^{(2)}_{\mu\alpha}(\mathbf{k}) represent the two degenerate normalized basis functions of the dd- wave or gg- wave pairing symmetries obtained from solving the linearized gap equation (S21). Using Eq. (S23), we obtain the following mean-field Hamiltonian,

HMF=𝐤μα,σ(ε~𝐤μαμc)c~𝐤μασc~𝐤μασ+𝐤μα(Δμα(𝐤)c~𝐤μαc~𝐤μα+h.c.)\displaystyle H_{\rm MF}=\sum_{\mathbf{k}\mu\alpha,\sigma}\left(\tilde{\varepsilon}^{\mu\alpha}_{\mathbf{k}}-\mu_{c}\right)\tilde{c}^{\dagger}_{\mathbf{k}\mu\alpha\sigma}\tilde{c}_{\mathbf{k}\mu\alpha\sigma}+\sum_{\mathbf{k}\mu\alpha}\left(\Delta_{\mu\alpha}(\mathbf{k})\tilde{c}^{\dagger}_{\mathbf{k}\mu\alpha\downarrow}\tilde{c}^{\dagger}_{-\mathbf{k}\mu\alpha\uparrow}+h.c.\right) (S24)

This Hamiltonian can be diagonalized to obtain the mean-field BCS ground state. Then ψ1\psi_{1} and ψ2\psi_{2} are determined by minimizing the ground-state energy, i.e. the expectation value EE of the Hamiltonian Eq. (S22) in the mean-field BCS ground state,

E=\displaystyle E= 𝐤μα,σε~𝐤μαc~𝐤μασc~𝐤μασ+1N𝐤μα𝐪νβVαβμν(𝐤,𝐪)c~𝐤μαc~𝐤μαc~𝐪νβc~𝐪νβ\displaystyle\sum_{\mathbf{k}\mu\alpha,\sigma}\tilde{\varepsilon}^{\mu\alpha}_{\mathbf{k}}\left\langle\tilde{c}^{\dagger}_{\mathbf{k}\mu\alpha\sigma}\tilde{c}_{\mathbf{k}\mu\alpha\sigma}\right\rangle+\frac{1}{N}\sum_{\mathbf{k}\mu\alpha\atop\mathbf{q}\nu\beta}V^{\mu\nu}_{\alpha\beta}(\mathbf{k},\mathbf{q})\left\langle\tilde{c}^{\dagger}_{\mathbf{k}\mu\alpha\downarrow}\tilde{c}^{\dagger}_{-\mathbf{k}\mu\alpha\uparrow}\right\rangle\left\langle\tilde{c}_{-\mathbf{q}\nu\beta\uparrow}\tilde{c}_{\mathbf{q}\nu\beta\downarrow}\right\rangle
=\displaystyle= 𝐤μαε~𝐤μα[1ε~𝐤μαμc(ε~𝐤μαμc)2+|Δμα(𝐤)|2]\displaystyle\sum_{\mathbf{k}\mu\alpha}\tilde{\varepsilon}^{\mu\alpha}_{\mathbf{k}}\left[1-\frac{\tilde{\varepsilon}^{\mu\alpha}_{\mathbf{k}}-\mu_{c}}{\sqrt{(\tilde{\varepsilon}^{\mu\alpha}_{\mathbf{k}}-\mu_{c})^{2}+|\Delta_{\mu\alpha}(\mathbf{k})|^{2}}}\right]
+14N𝐤μα𝐪νβVαβμν(𝐤,𝐪)Δμα(𝐤)(ε~𝐤μαμc)2+|Δμα(𝐤)|2Δνβ(𝐪)(ε~𝐪νβμc)2+|Δνβ(𝐪)|2.\displaystyle+\frac{1}{4N}\sum_{\mathbf{k}\mu\alpha\atop\mathbf{q}\nu\beta}V^{\mu\nu}_{\alpha\beta}(\mathbf{k},\mathbf{q})\frac{\Delta^{*}_{\mu\alpha}(\mathbf{k})}{\sqrt{(\tilde{\varepsilon}^{\mu\alpha}_{\mathbf{k}}-\mu_{c})^{2}+|\Delta_{\mu\alpha}(\mathbf{k})|^{2}}}\frac{\Delta_{\nu\beta}(\mathbf{q})}{\sqrt{(\tilde{\varepsilon}^{\nu\beta}_{\mathbf{q}}-\mu_{c})^{2}+|\Delta_{\nu\beta}(\mathbf{q})|^{2}}}. (S25)

Note that the chemical potential μc\mu_{c} is determined by fixing the total electron number when varying ψ1\psi_{1} and ψ2\psi_{2}.

Refer to caption
Figure S5: Variations of the energies EE with the mixing-phase-angle θ\theta for the degenerate dd- and gg-wave pairings, with their global pairing amplitudes optimized for the energy minimization. The dashed lines represent the fittings of the cosine functions with the formula E(θ)=E0+ηcos2θE\left(\theta\right)=E_{0}+\eta\cos 2\theta, with η>0\eta>0.

Our numerical results for the energy minimization are as follow. Setting ψ1:ψ2=1:αeiθ\psi_{1}:\psi_{2}=1:\alpha e^{i\theta}, our results suggest α=1\alpha=1 and EE as functions of θ\theta, i.e. E(θ)E(\theta) are shown in Fig. S5 for both the dd- and gg- wave pairings. We can verify that both EθE\sim\theta relation curve can be well fitted by the dashed lines described by the relations

E(θ)=E0+ηcos2θE\left(\theta\right)=E_{0}+\eta\cos 2\theta (S26)

with η>0\eta>0. Consequently, the minimized energy is realized at θ=π/2\theta=\pi/2 or 3π/23\pi/2, leading to ψ1:ψ2=1:±i\psi_{1}:\psi_{2}=1:\pm i. Therefore, the ground-state pairing gap functions of the two pairing symmetries take the form of dx2y2±idxyd_{x^{2}-y^{2}}\pm id_{xy}- and gx4+y46x2y2±igx3yxy3g_{x^{4}+y^{4}-6x^{2}y^{2}}\pm ig_{x^{3}y-xy^{3}}, abbreviated as d+idd+id and g+igg+ig. For this result, we will provide an understanding based on the Ginzburg-Landau theory in the next section.

V The Ginzburg-Landau theory

In this section, we provide two Ginzburg-Landau (G-L) theory based analysises toward the above numerical results obtained by our MF calculations. In the first G-L theory, we provide an understanding for why the two basis functions of the obtained degenerate (dx2y2,idxy)(d_{x^{2}-y^{2}},id_{xy})- or (gx4+y46x2y2,igx3yxy3)(g_{x^{4}+y^{4}-6x^{2}y^{2}},ig_{x^{3}y-xy^{3}})- wave pairings in the QC-TBG should be mixed as 1:±i1:\pm i. In the second one, we provide an understanding for why the coupling between the d+idd+id pairing order parameters in the two mono-layers can lead to either d+idd+id or g+igg+ig TSCs in the QC-TBG.

The first Ginzburg-Landau theory based analysis is as follow. We rewrite the Eq. (S23) into the following form as

Δμα(𝐤)=(ψ1ψ2)(Δμα(1)(𝐤)Δμα(2)(𝐤))𝚿T(Δμα(1)(𝐤)Δμα(2)(𝐤)),\displaystyle\Delta_{\mu\alpha}(\mathbf{k})=\left(\begin{array}[]{cc}\psi_{1}&\psi_{2}\end{array}\right)\left(\begin{array}[]{c}\Delta_{\mu\alpha}^{(1)}(\mathbf{k})\\ \Delta_{\mu\alpha}^{(2)}(\mathbf{k})\end{array}\right)\equiv{\bf\Psi}^{T}\left(\begin{array}[]{c}\Delta_{\mu\alpha}^{(1)}(\mathbf{k})\\ \Delta_{\mu\alpha}^{(2)}(\mathbf{k})\end{array}\right), (S32)

with 𝚿(ψ𝟏,ψ𝟐)𝐓\bf{\Psi}\equiv(\psi_{1},\psi_{2})^{T}. The free energy function FF can be expanded up to O(|ψ|4|\psi|^{4}) as follow,

F(𝚿)\displaystyle F({\bf\Psi}) =\displaystyle= C1(|ψ1|2+|ψ2|2)+C2(|ψ1|2|ψ2|2)+C3(ψ1ψ2+ψ1ψ2)+C4|ψ12+ψ22|2+C5|ψ12ψ22|2\displaystyle C_{1}\left(|\psi_{1}|^{2}+|\psi_{2}|^{2}\right)+C_{2}\left(|\psi_{1}|^{2}-|\psi_{2}|^{2}\right)+C_{3}\left(\psi_{1}^{*}\psi_{2}+\psi_{1}\psi_{2}^{*}\right)+C_{4}\left|\psi_{1}^{2}+\psi_{2}^{2}\right|^{2}+C_{5}\left|\psi_{1}^{2}-\psi_{2}^{2}\right|^{2} (S33)
+C6(ψ1ψ2+ψ1ψ2)(|ψ1|2+|ψ2|2)+C7(ψ1ψ2+ψ1ψ2)(|ψ1|2|ψ2|2)\displaystyle+C_{6}(\psi_{1}^{*}\psi_{2}+\psi_{1}\psi_{2}^{*})\left(|\psi_{1}|^{2}+|\psi_{2}|^{2}\right)+C_{7}(\psi_{1}^{*}\psi_{2}+\psi_{1}\psi_{2}^{*})\left(|\psi_{1}|^{2}-|\psi_{2}|^{2}\right)
+C8(|ψ1|2+|ψ2|2)2+C9(|ψ1|2|ψ2|2)2+O(|ψ|6)\displaystyle+C_{8}\left(\left|\psi_{1}\right|^{2}+\left|\psi_{2}\right|^{2}\right)^{2}+C_{9}\left(\left|\psi_{1}\right|^{2}-\left|\psi_{2}\right|^{2}\right)^{2}+O(|\psi|^{6})
=\displaystyle= C1𝚿𝚿+C2𝚿σz𝚿+C3𝚿σx𝚿+C4|𝚿T𝚿|2+C5|𝚿Tσz𝚿|2+C6(𝚿σx𝚿)(𝚿𝚿)\displaystyle C_{1}\mathbf{\Psi}^{\dagger}\mathbf{\Psi}+C_{2}\mathbf{\Psi}^{\dagger}\sigma_{z}\mathbf{\Psi}+C_{3}\mathbf{\Psi}^{\dagger}\sigma_{x}\mathbf{\Psi}+C_{4}\left|\mathbf{\Psi}^{T}\mathbf{\Psi}\right|^{2}+C_{5}\left|\mathbf{\Psi}^{T}\sigma_{z}\mathbf{\Psi}\right|^{2}+C_{6}\left(\mathbf{\Psi}^{\dagger}\sigma_{x}\mathbf{\Psi}\right)\left(\mathbf{\Psi}^{\dagger}\mathbf{\Psi}\right)
+C7(𝚿σx𝚿)(𝚿σz𝚿)+C8(𝚿𝚿)2+C9(𝚿σz𝚿)2+O(|ψ|6),\displaystyle+C_{7}\left(\mathbf{\Psi}^{\dagger}\sigma_{x}\mathbf{\Psi}\right)\left(\mathbf{\Psi}^{\dagger}\sigma_{z}\mathbf{\Psi}\right)+C_{8}\left(\mathbf{\Psi}^{\dagger}\mathbf{\Psi}\right)^{2}+C_{9}\left(\mathbf{\Psi}^{\dagger}\sigma_{z}\mathbf{\Psi}\right)^{2}+O(|\psi|^{6}),

with Ci(i=1,2,,9)RC_{i}\ (i=1,2,\cdots,9)\in R. In obtaining this formula, we have used the U(1)-gauge and the time-reversal symmetries of the free energy which requires invariance of FF under the transformation 𝚿eiθ𝚿\mathbf{\Psi}\to e^{i\theta}\mathbf{\Psi} and and the one 𝚿𝚿\mathbf{\Psi}\to\mathbf{\Psi}^{*}.

Applying an arbitrary operator P^\hat{P} within the point group D12D_{12} to the pairing gap function, we get

P^Δμα(𝐤)=𝚿TP^(Δμα(1)(𝐤)Δμα(2)(𝐤))=𝚿T(Δμα(1)(𝐤)Δμα(2)(𝐤))𝚿~T(Δμα(1)(𝐤)Δμα(2)(𝐤)),\displaystyle\hat{P}\Delta_{\mu\alpha}(\mathbf{k})={\bf\Psi}^{T}\hat{P}\left(\begin{array}[]{c}\Delta_{\mu\alpha}^{(1)}(\mathbf{k})\\ \Delta_{\mu\alpha}^{(2)}(\mathbf{k})\end{array}\right)={\bf\Psi}^{T}\left(\begin{array}[]{c}\Delta_{\mu\alpha}^{(1)^{\prime}}(\mathbf{k})\\ \Delta_{\mu\alpha}^{(2)^{\prime}}(\mathbf{k})\end{array}\right)\equiv\tilde{\bf\Psi}^{T}\left(\begin{array}[]{c}\Delta_{\mu\alpha}^{(1)}(\mathbf{k})\\ \Delta_{\mu\alpha}^{(2)}(\mathbf{k})\end{array}\right), (S40)

with 𝚿~PT𝚿\tilde{\bf\Psi}\equiv P^{T}\bf\Psi, where PP is the matrix representation of P^\hat{P}. For the pure rotation part of D12D_{12} with angle θ\theta, we have PT(θ)=cosθ+iσysinθP^{T}(\theta)=\cos\theta+i\sigma_{y}\sin\theta. Since the symmetry operator P^\hat{P} does not change the free energy function, i.e., F(𝚿)=F(𝚿~)F(\mathbf{\Psi})=F(\tilde{\mathbf{\Psi}}), one can immediately obtain C2=C3=C5=C6=C7=C9=0C_{2}=C_{3}=C_{5}=C_{6}=C_{7}=C_{9}=0 because σx\sigma_{x} and σz\sigma_{z} in these terms do not commute with σy\sigma_{y}. As a result, the free energy function can be simplified as,

F(𝚿)=C1(|ψ1|2+|ψ2|2)+C4|ψ12+ψ22|2+C8(|ψ1|2+|ψ2|2)2+O(|ψ|6).\displaystyle F(\mathbf{\Psi})=C_{1}\left(|\psi_{1}|^{2}+|\psi_{2}|^{2}\right)+C_{4}\left|\psi_{1}^{2}+\psi_{2}^{2}\right|^{2}+C_{8}\left(\left|\psi_{1}\right|^{2}+\left|\psi_{2}\right|^{2}\right)^{2}+O(|\psi|^{6}). (S41)

Notice that this formula is consistent with that obtained in Ref x2 for the honeycomb lattice with D6D_{6} point-group. We neglect the O(|ψ|6)O(|\psi|^{6}) term and assume the minimized free energy is realized at ψ2=eiθψ1\psi_{2}=e^{i\theta}\psi_{1}, then

F(𝚿)=2C1|ψ1|2+2C4|ψ1|4[cos(2θ)+1]+4C8|ψ1|4.\displaystyle F(\mathbf{\Psi})=2C_{1}|\psi_{1}|^{2}+2C_{4}|\psi_{1}|^{4}[\cos(2\theta)+1]+4C_{8}|\psi_{1}|^{4}. (S42)

When C4>0C_{4}>0 the minimization of FF requires θ=π2\theta={\pi\over 2} or 3π2{3\pi\over 2}, that is, ψ1:ψ2=1:(±i)\psi_{1}:\psi_{2}=1:(\pm i). This is why our calculation results can well be fitted with the cosine function, as shown in Fig. S5. When C4<0C_{4}<0 the minimization of FF requires θ=0\theta=0 or π\pi, that is, ψ1:ψ2=1:(±1)\psi_{1}:\psi_{2}=1:(\pm 1). Although from the G-L theory alone, one doesn’t know the sign of C4C_{4}, physically the solution ψ1:ψ2=1:(±i)\psi_{1}:\psi_{2}=1:(\pm i) is more reasonable because in such cases the obtained pairing gap function is fully gapped, which benefits the energy gain. This Ginzburg-Landau theory based argument also applies to other degenerate pairing symmetries listed in the Table. S1, which can emerge in other models such as the Hubbard model on the QC-TBG.

The second G-L theory based analysis is as follow. In the QC-TBG, there are two graphene mono-layers which are weakly coupled. It’s known that the electron-electron interaction within each mono-layer can induce degenerate (dxy,dx2y2)(d_{xy},d_{x^{2}-y^{2}})- wave pairing. Therefore, if we turn off the inter-layer coupling, we would obtain four degenerate dd-wave pairings, i.e. (dxy(t),dx2y2(t),dxy(b),dx2y2(b))(d^{(\text{t})}_{xy},d^{(\text{t})}_{x^{2}-y^{2}},d^{(\text{b})}_{xy},d^{(\text{b})}_{x^{2}-y^{2}}). As the intra-layer hopping and interaction strengths are much stronger than the inter-layer ones, one can reasonably first let each two degenerate dd-wave pairings on one mono-layer mix as d±idd\pm id, and then consider their inter-layer Josephson coupling. Further more, we only consider the cases wherein the pairings from the two mono-layers are both d+idd+id or didd-id, because otherwise the system cannot gain energy from the inter-layer Josephson coupling. The argument for this point is as follow.

Physically, the coupling between the d±idd\pm id pairing order parameters from the two layers mainly originates from the inter-layer Josephson coupling. Formally, this coupling can be understood as the consequence of the second-order perturbational process, if one takes the inter-layer tunneling term HH^{\prime} in Eq. (S3) as the perturbation. The contribution of this second-order perturbation to the energy or the free energy can be roughly taken as

FinterlayerH22Δ,H=ijσcitσcjbσtij+h.c.,\displaystyle F_{inter-layer}\approx-\frac{\left\langle H^{\prime 2}\right\rangle}{2\Delta},H^{\prime}=-\sum_{\textbf{i}\textbf{j}\sigma}c_{\textbf{i}\rm{t}\sigma}^{\dagger}c_{\textbf{j}\rm{b}\sigma}t_{\textbf{i}\textbf{j}}+h.c., (S43)

where Δ\Delta denotes the averaged pairing-gap amplitude and tijt_{\textbf{i}\textbf{j}} is symmetric under the 6-folded rotation. From Eq. (S43), we have

Finterlayer\displaystyle F_{inter-layer} \displaystyle\approx 12Δ𝐢𝐣σ𝐢~𝐣~σ~(citσcjbσtij+h.c.)(ci~tσ~cj~bσ~ti~j~+h.c.)\displaystyle-\frac{1}{2\Delta}\sum_{\mathbf{i}\mathbf{j}\sigma\atop\tilde{\mathbf{i}}\tilde{\mathbf{j}}\tilde{\sigma}}\left\langle\left(c_{\textbf{i}\rm{t}\sigma}^{{\dagger}}c_{\textbf{j}\rm{b}\sigma}t_{\textbf{i}\textbf{j}}+h.c.\right)\left(c_{\tilde{\textbf{i}}\rm{t}\tilde{\sigma}}^{{\dagger}}c_{\tilde{\textbf{j}}\rm{b}\tilde{\sigma}}t_{\tilde{\textbf{i}}\tilde{\textbf{j}}}+h.c.\right)\right\rangle (S44)
\displaystyle\approx 12Δ𝐢𝐣𝐢~𝐣~σcitσci~tσ¯cj~bσ¯cjbσtijti~j~+c.c.=12Δ𝐢𝐣𝐢~𝐣~Δ𝐢𝐢~(t)Δ𝐣𝐣~(b)tijti~j~+c.c.\displaystyle-\frac{1}{2\Delta}\sum_{\mathbf{i}\mathbf{j}\tilde{\mathbf{i}}\tilde{\mathbf{j}}\sigma}\left\langle c_{\textbf{i}\rm{t}\sigma}^{{\dagger}}c_{\tilde{\textbf{i}}\rm{t}\bar{\sigma}}^{{\dagger}}\right\rangle\left\langle c_{\tilde{\textbf{j}}\rm{b}\bar{\sigma}}c_{\textbf{j}\rm{b}\sigma}\right\rangle t_{\textbf{i}\textbf{j}}t_{\tilde{\textbf{i}}\tilde{\textbf{j}}}+c.c.=-\frac{1}{2\Delta}\sum_{\mathbf{i}\mathbf{j}\tilde{\mathbf{i}}\tilde{\mathbf{j}}}\Delta_{\mathbf{i}\tilde{\mathbf{i}}}^{(\rm t)*}\Delta_{\mathbf{j}\tilde{\mathbf{j}}}^{(\rm b)}t_{\textbf{i}\textbf{j}}t_{\tilde{\textbf{i}}\tilde{\textbf{j}}}+c.c.

Note that on the above Wick decomposition, we have only taken the parts relevant to the coupling between the pairing order parameters on the two mono-layers. Now if the pairing chiralities for Δ𝐣𝐣~(b)\Delta^{(\text{b})}_{\mathbf{j}\tilde{\mathbf{j}}} and Δ𝐢𝐢~(t)\Delta^{(\text{t})}_{\mathbf{i}\tilde{\mathbf{i}}} are opposite, we can, without lossing generality, let Δ𝐣𝐣~(b)Δd+id\Delta^{(\text{b})}_{\mathbf{j}\tilde{\mathbf{j}}}\sim\Delta_{d+id} and Δ𝐢𝐢~(t)Δdid\Delta^{(\text{t})}_{\mathbf{i}\tilde{\mathbf{i}}}\sim\Delta_{d-id}. By symmetry, we have

ΔP^π3𝐣P^π3𝐣~(b)=ei2π3Δ𝐣𝐣~(b),ΔP^π3𝐢P^π3𝐢~(t)=ei2π3Δ𝐢𝐢~(t),tP^π3𝐢P^π3𝐣=t𝐢𝐣,tP^π3𝐢~P^π3𝐣~=t𝐢~𝐣~.\displaystyle\Delta^{(\text{b})}_{\hat{P}_{\frac{\pi}{3}}\mathbf{j}\hat{P}_{\frac{\pi}{3}}\tilde{\mathbf{j}}}=e^{i\frac{2\pi}{3}}\Delta^{(\text{b})}_{\mathbf{j}\tilde{\mathbf{j}}},\Delta^{(\text{t})}_{\hat{P}_{\frac{\pi}{3}}\mathbf{i}\hat{P}_{\frac{\pi}{3}}\tilde{\mathbf{i}}}=e^{-i\frac{2\pi}{3}}\Delta^{(\text{t})}_{\mathbf{i}\tilde{\mathbf{i}}},t_{\hat{P}_{\frac{\pi}{3}}\mathbf{i}\hat{P}_{\frac{\pi}{3}}\mathbf{j}}=t_{\mathbf{i}\mathbf{j}},t_{\hat{P}_{\frac{\pi}{3}}\tilde{\mathbf{i}}\hat{P}_{\frac{\pi}{3}}\tilde{\mathbf{j}}}=t_{\tilde{\mathbf{i}}\tilde{\mathbf{j}}}. (S45)

Then from Eq. (S44), we have

Finterlayer12Δn=16ei4π3n𝐢𝐣𝐢~𝐣~Δ𝐢𝐢~(t)Δ𝐣𝐣~(b)tijti~j~+c.c.=0+c.c.=0,\displaystyle F_{inter-layer}\approx-\frac{1}{2\Delta}\sum_{n=1}^{6}e^{i\frac{4\pi}{3}n}{\sum_{\mathbf{i}}}^{\prime}\sum_{\mathbf{j}\tilde{\mathbf{i}}\tilde{\mathbf{j}}}\Delta_{\mathbf{i}\tilde{\mathbf{i}}}^{(\rm t)*}\Delta_{\mathbf{j}\tilde{\mathbf{j}}}^{(\rm b)}t_{\textbf{i}\textbf{j}}t_{\tilde{\textbf{i}}\tilde{\textbf{j}}}+c.c.=0+c.c.=0, (S46)

where 𝐢{\sum_{\mathbf{i}}}^{\prime} represents the sum of one-sixth of all the sites 𝐢\mathbf{i}. Eq. (S46) suggests that if the chiralities of the pairing order parameters from the two mono-layers are opposite, the system could not gain energy from the inter-layer Josephson coupling. Therefore, we only consider the case wherein the pairings in the two mono-layers are both d+idd+id or didd-id.

When the pairing order parameters on both mono-layers of the QC-TBG are d+idd+id, we can let them satisfy the following relation

Δd+id(b)=P^π6Δd+id(t),P^π3Δd+id(μ)=ei2π3Δd+id(μ),\displaystyle\Delta_{d+id}^{(\rm b)}=\hat{P}_{\frac{\pi}{6}}\Delta_{d+id}^{(\rm t)},\leavevmode\nobreak\ \leavevmode\nobreak\ \hat{P}_{\frac{\pi}{3}}\Delta_{d+id}^{(\rm\mu)}=e^{-i\frac{2\pi}{3}}\Delta_{d+id}^{(\rm\mu)}, (S47)

where μ=(t,b)\mu=(\rm t,\rm b) is the layer index, P^ϕ\hat{P}_{\phi} denotes the rotation by the angle ϕ\phi and Δd+id(t/b)\Delta^{(\text{t/b})}_{d+id} represent for the normalized gap form factors (either in the real- or 𝐤\mathbf{k} space) on the top/bottom layers. Setting the “complex amplitudes” of the gap functions on the top/bottom laters as ψt/b\psi_{\rm t/\rm b}, the free energy function FF reads,

Fd+id(ψt,ψb)=F0(|ψt|2)+F0(|ψb|2)A(eiθψtψb+c.c)+O(ψ4).\displaystyle F_{d+id}(\psi_{\rm t},\psi_{\rm b})=F_{0}(|\psi_{\rm t}|^{2})+F_{0}(|\psi_{\rm b}|^{2})-A(e^{i\theta}\psi_{\rm t}\psi_{\rm b}^{*}+c.c)+O(\psi^{4}). (S48)

Here by the phrase “complex amplitudes” we mean that the pairing gap functions on the t/b layers are ψt/bΔd+id(t/b)\psi_{\rm t/\rm b}\Delta_{d+id}^{(\rm t/\rm b)}, where ψt/b\psi_{\rm t/\rm b} are the global amplitudes which are generally complex numbers. In Eq. (S48), the F0F_{0}- and the A- terms denote the contributions from each monolayer and their Josephson coupling respectively. The A>0A>0 and θ(π,π]\theta\in(-\pi,\pi] are real numbers. From the time-reversal symmetry, we know that when the pairing order parameters on both mono-layers of the QC-TBG are didd-id, the free energy should be

Fdid(ψt,ψb)=F0(|ψt|2)+F0(|ψb|2)A(eiθψtψb+c.c)+O(ψ4)\displaystyle F_{d-id}(\psi_{\rm t},\psi_{\rm b})=F_{0}(|\psi_{\rm t}|^{2})+F_{0}(|\psi_{\rm b}|^{2})-A(e^{-i\theta}\psi_{\rm t}\psi_{\rm b}^{*}+c.c)+O(\psi^{4}) (S49)

In the following, we verify that Eq. (S48) and Eq. (S49) satisfy all symmetries of the system, including the time-reversal symmetry, the U(1)-gauge symmetry, and the point-group symmetry.

The time-reversal operation dictates

ψ(t/b)ψ~(t/b)=ψ(t/b),Δd+id(t/b)Δd+id(t/b)=Δdid(t/b).\displaystyle\psi_{(\rm t/\rm b)}\rightarrow\tilde{\psi}_{(\rm t/\rm b)}=\psi_{(\rm t/\rm b)}^{*},\Delta_{d+id}^{(\rm t/\rm b)}\rightarrow\Delta_{d+id}^{(\rm t/\rm b)*}=\Delta_{d-id}^{(\rm t/\rm b)}. (S50)

Therefore, the time-reversal symmetry of the system requires

Fd+id(ψt,ψb)=Fdid(ψt,ψb)\displaystyle F_{d+id}(\psi_{\rm t},\psi_{\rm b})=F_{d-id}(\psi_{\rm t}^{*},\psi_{\rm b}^{*}) (S51)

It can be seen that the free energy function given by Eq. (S48) and Eq. (S49) satisfies the time-reversal symmetry.

Similarly, the U(1)-gauge transformation dictates

ψ(t/b)ψ~(t/b)=eiηψ(t/b),\displaystyle\psi_{(\rm t/\rm b)}\rightarrow\tilde{\psi}_{(\rm t/\rm b)}=e^{i\eta}\psi_{(\rm t/\rm b)}, (S52)

where η\eta is an arbitrary phase angle. Therefore the global U(1)-gauge symmetry of the system requires,

Fd±id(ψt,ψb)=Fd±id(eiηψt,eiηψb)\displaystyle F_{d\pm id}(\psi_{\rm t},\psi_{\rm b})=F_{d\pm id}(e^{i\eta}\psi_{\rm t},e^{i\eta}\psi_{\rm b}) (S53)

Because ψ\psi and ψ\psi^{*} always come in pair in Eq. (S48) and Eq. (S49), Eq. (S53) is satisfied.

Finally, let’s consider the point-group operations. We only need to consider the two generators of this group: one is the rotation by the angle ϕ=π6\phi=\frac{\pi}{6}, followed by a succeeding layer exchange, and the other can be chosen as the specular reflection operation σ\sigma that changes the layer index. The former generator dictates

ψtψ~t=ei2π3ψb,ψbψ~b=ψt.\displaystyle\psi_{\rm t}\rightarrow\tilde{\psi}_{\rm t}=e^{-i\frac{2\pi}{3}}\psi_{\rm b},\psi_{\rm b}\rightarrow\tilde{\psi}_{\rm b}=\psi_{\rm t}. (S54)

The symmetry under this combined rotation and layer-exchange operation requires

Fd+id(ψt,ψb)=Fd+id(ei2π3ψb,ψt).\displaystyle F_{d+id}(\psi_{\rm t},\psi_{\rm b})=F_{d+id}(e^{-i\frac{2\pi}{3}}\psi_{\rm b},\psi_{\rm t}). (S55)

Eq. (S55) is used in the main text to obtain θ=π3\theta=\frac{\pi}{3} or 2π3\frac{-2\pi}{3}, under which this equation is satisfied. The latter generator dictates

ψtψ~t=ψb,ψbψ~b=ψt,Δd+id(t/b)Δdid(t/b).\displaystyle\psi_{\rm t}\rightarrow\tilde{\psi}_{\rm t}=\psi_{\rm b},\psi_{\rm b}\rightarrow\tilde{\psi}_{\rm b}=\psi_{\rm t},\Delta_{d+id}^{(\rm t/\rm b)}\rightarrow\Delta_{d-id}^{(\rm t/\rm b)}. (S56)

The symmetry under this specular reflection operation requires

Fd+id(ψt,ψb)=Fdid(ψb,ψt)\displaystyle F_{d+id}(\psi_{\rm t},\psi_{\rm b})=F_{d-id}(\psi_{\rm b},\psi_{\rm t}) (S57)

Clearly, the free energy formula (S48) and (S49) satisfy Eq. (S57).

From the above analysis, we know that the free energy function provided by Eq. (S48) and Eq. (S49) satisfies all the symmetries of the system. Through minimization of the free energy function, we can obtain the d±idd\pm id or g±igg\pm ig pairing symmetries of the QC-TBG, as has already been provided in the main text.

Refer to caption
Figure S6: Distributions of the amplitude and phase of paring gap functions d+idd+id- and g+igg+ig-waves on the inner and outer Fermi surfaces when δ=0.32\delta=0.32. The figure shows the distributions of the gap functions within a narrow energy shell near the Fermi level.

VI Topological properties

This section provides detailed informations about the topological properties of the obtained d+idd+id and g+igg+ig TSCs, including their winding numbers, Chern numbers, the spontaneous super current and the Majorana edge states.

The distributions of the gap amplitudes of the obtained d+idd+id- and g+igg+ig-wave pairing gap functions for the typical doping level δ=0.32\delta=0.32 are shown on the two Fermi pockets separately in Fig. S6. It suggests that the two pairing states are fully gapped. This is due to that the gap nodal directions don’t coincide with each other for the two basis functions of the degenerate dd- or gg-wave pairings, as shown in Fig. S4. This property provides the foundation for the two pairing states to be topologically nontrivial. We further plot the distributions of the phase angles of the complex d+idd+id- and g+igg+ig-wave pairing gap functions on the two Fermi pockets separately in Fig. S6. Obviously, the complex gap phase angle for the d+idd+id-wave pairing changes 4π4\pi for each run around each pocket, leading to the winding number 2. The topological Chern number is equal to the summation of the winding numbers of each pocket 6 ; 7 . Considering the presence of two pockets, the Chern number should be 2×2=42\times 2=4. In contrast, the gap phase angle for the g+igg+ig changes 8π8\pi for each run around each pocket, leading to the winding number 4, and hence the Chern number 2×4=82\times 4=8.

The topological properties of the obtained TSCs are robust against slight deviation of the twist angle from 30°30\degree to, say 29.9°\degree. Under such deviation, the point group decays to D6D_{6}, and our solution of Eq. (S21) at, say the doping level δ=0.32\delta=0.32, yields a leading pairing symmetry belonging to the 2D IRRP of D6D_{6} with L=2L=2. The 1:±i1:\pm i mixing of the two obtained degenerate basis functions leads to a distribution of the gap phase angles on the FS very similar as that of the g+igg+ig-wave pairing shown in Fig. S6, yielding the same topological Chern numbers. The obtained state can be thought of as an approximate g+igg+ig-wave TSC. The cases for other dopings are similar. Therefore, the pairing phase diagram for the case with the twist angle 29.9°is topologically the same as that for the case with the twist angle 30°.

The details for calculating the Majorana edge states are as follow. We transform Eq. (S18) into the real space and get the BdG Hamiltonian,

HMF\displaystyle H_{\rm MF} =\displaystyle= 𝐢𝐣σ(t𝐢𝐣μcδ𝐢𝐣)c𝐢σc𝐣σ+𝐢𝐣(Δ~𝐢𝐣c𝐢c𝐣+h.c.)\displaystyle\sum_{\mathbf{ij}\sigma}(-t_{\mathbf{ij}}-\mu_{c}\delta_{\mathbf{ij}})c^{\dagger}_{\mathbf{i}\sigma}c_{\mathbf{j}\sigma}+\sum_{\mathbf{ij}}\left(\tilde{\Delta}_{\mathbf{ij}}c^{\dagger}_{\mathbf{i}\uparrow}c^{\dagger}_{\mathbf{j}\downarrow}+h.c.\right)
=\displaystyle= (𝐜𝐜)(tμcIΔ~Δ~t+μcI)(𝐜𝐜)\displaystyle\left(\begin{array}[]{cc}\mathbf{c}_{\uparrow}^{\dagger}&\mathbf{c}_{\downarrow}\end{array}\right)\left(\begin{array}[]{cc}-t-\mu_{c}I&\tilde{\Delta}\\ \text{$\tilde{\Delta}^{\dagger}$}&t+\mu_{c}I\end{array}\right)\left(\begin{array}[]{c}\mathbf{c}_{\uparrow}\\ \mathbf{c}_{\downarrow}^{\dagger}\end{array}\right) (S63)
=\displaystyle= (𝐜𝐜)HBdG(𝐜𝐜)\displaystyle\left(\begin{array}[]{cc}\mathbf{c}_{\uparrow}^{\dagger}&\mathbf{c}_{\downarrow}\end{array}\right)H_{\rm BdG}\left(\begin{array}[]{c}\mathbf{c}_{\uparrow}\\ \mathbf{c}_{\downarrow}^{\dagger}\end{array}\right) (S67)
=\displaystyle= XHBdGX=m=12NsEmγmγm.\displaystyle X^{\dagger}H_{\rm BdG}X=\sum_{m=1}^{2N_{s}}E_{m}\mathbf{\gamma}_{m}^{\dagger}\mathbf{\gamma}_{m}. (S68)

where μc\mu_{c} is the chemical potential, II is the identity matrix, 𝐜σ=(c1σ,c2σ,),XT=(𝐜𝐜),X=ωγ,ωHBdGω=diag(E1,E2,,E2Ns)\mathbf{c}_{\sigma}=\left(c_{1\sigma},c_{2\sigma},\cdots\right),X^{T}=\left(\begin{array}[]{cc}\mathbf{c}_{\uparrow}&\mathbf{c}_{\downarrow}^{\dagger}\end{array}\right),X=\omega\mathbf{\gamma},\\ \omega^{\dagger}H_{\rm BdG}\omega=diag(E_{1},E_{2},...,E_{2N_{s}}), and

Δ~𝐢𝐣=1N𝐤μαξ~𝐢,𝐤μαξ~𝐣,𝐤μαΔ𝐤μα.\tilde{\Delta}_{\mathbf{ij}}=-\frac{1}{N}\sum_{\mathbf{k}\mu\alpha}\tilde{\xi}_{\mathbf{i},\mathbf{k}\mu\alpha}\tilde{\xi}^{*}_{\mathbf{j},\mathbf{k}\mu\alpha}\Delta_{\mathbf{k}\mu\alpha}. (S69)

Under the open boundary condition, the eigenstates of HMFH_{\rm MF} with eigenvalue Em=0E_{m}=0 are the Majorana edge states, whose creation operators are

γm=i=1Ns(ωi,m𝐜i+ωi+Ns,m𝐜i).\mathbf{\gamma}_{m}^{\dagger}=\sum_{i=1}^{N_{s}}\left(\omega_{i,m}\mathbf{c}_{i\uparrow}^{\dagger}+\omega_{i+N_{s},m}\mathbf{c}_{i\downarrow}\right). (S70)

where NsN_{s} is the total site number, ωi,m(ωi+Ns,m)\omega_{i,m}(\omega_{i+N_{s},m}) represents the particle(hole) part of the Majorana edge states. In Fig. 3(d) of the main text, we show the probability distribution of the Majorana edge states in real space, i.e. |ωi,m|2+|ωi+N,m|2|\omega_{i,m}|^{2}+|\omega_{i+N,m}|^{2}.

In the following, we provide the details for the calculation of the spontaneous super current. The α\alpha-component (α=x,y\alpha=x,y) of the vectorial current operator at site 𝐢\mathbf{i} is defined as

J𝐢α[𝐀]=δHMF[𝐀]δA𝐢α=δHTB[𝐀]δA𝐢α,J_{\mathbf{i}\alpha}[\mathbf{A}]=-\frac{\delta H_{\rm MF}[\mathbf{A}]}{\delta A_{\mathbf{i}\alpha}}=-\frac{\delta H_{\mathrm{TB}}[\mathbf{A}]}{\delta A_{\mathbf{i}\alpha}}, (S71)

where 𝐀\mathbf{A} is the vector potential with component A𝐢αA_{\mathbf{i}\alpha}. It appears in H^MF[𝐀]\hat{H}_{\rm MF}[\mathbf{A}] through a modification of H^TB\hat{H}_{\mathrm{TB}} into

HTB[𝐀]\displaystyle H_{\mathrm{TB}}[\mathbf{A}] =\displaystyle= 𝐢𝐣σt𝐢𝐣exp(i𝐢𝐣𝐀𝑑𝐥)c𝐢σc𝐣σ.\displaystyle-\sum_{\mathbf{ij}\sigma}t_{\mathbf{ij}}\exp({i\int_{\mathbf{i}}^{\mathbf{j}}}\mathbf{A}\cdot d\mathbf{l})c_{\mathbf{i}\sigma}^{\dagger}c_{\mathbf{j}\sigma}. (S72)

For the study of the spontaneous super current, the field 𝐀\mathbf{A} goes to 0. In such a case, one gets x1 ,

lim𝐀0J𝐢α[𝐀]\displaystyle\lim_{\mathbf{A}\rightarrow 0}J_{\mathbf{i}\alpha}[\mathbf{A}] =\displaystyle= i2𝐣σt𝐢𝐣R𝐢𝐣,αc𝐢σc𝐣σ+h.c.,\displaystyle\frac{i}{2}\sum_{\mathbf{j}\sigma}t_{\mathbf{ij}}R_{\mathbf{ij},\alpha}c_{\mathbf{i}\sigma}^{\dagger}c_{\mathbf{j}\sigma}+h.c., (S73)

where R𝐢𝐣,αR_{\mathbf{ij},\alpha} is the α\alpha-component of 𝐑𝐢𝐣\mathbf{R}_{\mathbf{ij}}. After some derivations, one can get

J𝐢α\displaystyle J_{\mathbf{i}\alpha} =\displaystyle= i2N𝐣σt𝐢𝐣R𝐢𝐣,α𝐤μα𝐪νβσξ~𝐢,𝐤μαξ~𝐣,𝐪νβc~𝐤μασc~𝐪νβσ+h.c.\displaystyle\frac{i}{2N}\sum_{\mathbf{j}\sigma}t_{\mathbf{ij}}R_{\mathbf{ij},\alpha}\sum_{\mathbf{k}\mu\alpha\atop\mathbf{q}\nu\beta\sigma}\tilde{\xi}_{\mathbf{i},\mathbf{k}\mu\alpha}^{*}\tilde{\xi}_{\mathbf{j},\mathbf{q}\nu\beta}\tilde{c}_{\mathbf{k}\mu\alpha\sigma}^{\dagger}\tilde{c}_{\mathbf{q}\nu\beta\sigma}+h.c.
=\displaystyle= i2N𝐣t𝐢𝐣R𝐢𝐣,α(𝐤μα𝐪νβξ~𝐢,𝐤μαξ~𝐣,𝐪νβc~𝐤μαc~𝐪νβ+𝐤μα𝐪νβξ~𝐢,𝐤μαξ~𝐣,𝐪νβc~𝐤μαc~𝐪νβ)+h.c.\displaystyle\frac{i}{2N}\sum_{\mathbf{j}}t_{\mathbf{ij}}R_{\mathbf{ij},\alpha}\left(\sum_{\mathbf{k}\mu\alpha\atop\mathbf{q}\nu\beta}\tilde{\xi}_{\mathbf{i},\mathbf{k}\mu\alpha}^{*}\tilde{\xi}_{\mathbf{j},\mathbf{q}\nu\beta}\tilde{c}_{\mathbf{k}\mu\alpha\uparrow}^{\dagger}\tilde{c}_{\mathbf{q}\nu\beta\uparrow}+\sum_{\mathbf{-k}\mu\alpha\atop\mathbf{-q}\nu\beta}\tilde{\xi}_{\mathbf{i},\mathbf{k}\mu\alpha}\tilde{\xi}_{\mathbf{j},\mathbf{q}\nu\beta}^{*}\tilde{c}_{\mathbf{-k}\mu\alpha\downarrow}^{\dagger}\tilde{c}_{\mathbf{-q}\nu\beta\downarrow}\right)+h.c. (S74)

We prove below that the expectation values of the super currents on each site are always zero under the periodic boundary condition for each layer, that is

J𝐢α\displaystyle\langle J_{\mathbf{i}\alpha}\rangle =\displaystyle= i2N𝐣t𝐢𝐣R𝐢𝐣,α(𝐤αμξ~𝐢,𝐤μαξ~𝐣,𝐤μαc~𝐤μαc~𝐤μα+𝐤αμξ~𝐢,𝐤μαξ~𝐣,𝐤μαc~𝐤μαc~𝐤μα)+c.c.\displaystyle\frac{i}{2N}\sum_{\mathbf{j}}t_{\mathbf{ij}}R_{\mathbf{ij},\alpha}\left(\sum_{\mathbf{k}\alpha\mu}\tilde{\xi}_{\mathbf{i},\mathbf{k}\mu\alpha}^{*}\tilde{\xi}_{\mathbf{j},\mathbf{k}\mu\alpha}\left\langle\tilde{c}_{\mathbf{k}\mu\alpha\uparrow}^{\dagger}\tilde{c}_{\mathbf{k}\mu\alpha\uparrow}\right\rangle+\sum_{\mathbf{-k}\alpha\mu}\tilde{\xi}_{\mathbf{i},\mathbf{k}\mu\alpha}\tilde{\xi}_{\mathbf{j},\mathbf{k}\mu\alpha}^{*}\left\langle\tilde{c}_{\mathbf{-k}\mu\alpha\downarrow}^{\dagger}\tilde{c}_{\mathbf{-k}\mu\alpha\downarrow}\right\rangle\right)+c.c.
=\displaystyle= i2N𝐣t𝐢𝐣R𝐢𝐣,α(𝐤αμξ~𝐢,𝐤μαξ~𝐣,𝐤μαv𝐤μα2+𝐤αμξ~𝐢,𝐤μαξ~𝐣,𝐤μαv𝐤μα2)+c.c.\displaystyle\frac{i}{2N}\sum_{\mathbf{j}}t_{\mathbf{ij}}R_{\mathbf{ij},\alpha}\left(\sum_{\mathbf{k}\alpha\mu}\tilde{\xi}_{\mathbf{i},\mathbf{k}\mu\alpha}^{*}\tilde{\xi}_{\mathbf{j},\mathbf{k}\mu\alpha}v_{\mathbf{k}\mu\alpha}^{2}+\sum_{\mathbf{-k}\alpha\mu}\tilde{\xi}_{\mathbf{i},\mathbf{k}\mu\alpha}\tilde{\xi}_{\mathbf{j},\mathbf{k}\mu\alpha}^{*}v_{\mathbf{k}\mu\alpha}^{2}\right)+c.c.
=\displaystyle= iN𝐣t𝐢𝐣R𝐢𝐣,α𝐤αμ𝐑𝐞(ξ~𝐢,𝐤μα+ξ~𝐣,𝐤μα)v𝐤μα2+c.c.\displaystyle\frac{i}{N}\sum_{\mathbf{j}}t_{\mathbf{ij}}R_{\mathbf{ij},\alpha}\sum_{\mathbf{k}\alpha\mu}\mathbf{Re}\left(\tilde{\xi}_{\mathbf{i},\mathbf{k}\mu\alpha}^{*}+\tilde{\xi}_{\mathbf{j},\mathbf{k}\mu\alpha}\right)v_{\mathbf{k}\mu\alpha}^{2}+c.c.
=\displaystyle= iN𝐣t𝐢𝐣R𝐢𝐣,α𝐤αμ𝐑𝐞(ξ~𝐢,𝐤μα+ξ~𝐣,𝐤μα)v𝐤μα2iN𝐣t𝐢𝐣R𝐢𝐣,α𝐤αμ𝐑𝐞(ξ~𝐢,𝐤μα+ξ~𝐣,𝐤μα)v𝐤μα2\displaystyle\frac{i}{N}\sum_{\mathbf{j}}t_{\mathbf{ij}}R_{\mathbf{ij},\alpha}\sum_{\mathbf{k}\alpha\mu}\mathbf{Re}\left(\tilde{\xi}_{\mathbf{i},\mathbf{k}\mu\alpha}^{*}+\tilde{\xi}_{\mathbf{j},\mathbf{k}\mu\alpha}\right)v_{\mathbf{k}\mu\alpha}^{2}-\frac{i}{N}\sum_{\mathbf{j}}t_{\mathbf{ij}}R_{\mathbf{ij},\alpha}\sum_{\mathbf{k}\alpha\mu}\mathbf{Re}\left(\tilde{\xi}_{\mathbf{i},\mathbf{k}\mu\alpha}^{*}+\tilde{\xi}_{\mathbf{j},\mathbf{k}\mu\alpha}\right)v_{\mathbf{k}\mu\alpha}^{2} (S75)
=\displaystyle= 0,\displaystyle 0,

with

v𝐤μα2=12(1ε~𝐤μαμc|ε~𝐤μαμc|2+|Δμα(𝐤)|2).v_{\mathbf{k}\mu\alpha}^{2}=\frac{1}{2}\left(1-\frac{\tilde{\varepsilon}^{\mu\alpha}_{\mathbf{k}}-\mu_{c}}{\sqrt{\left|\tilde{\varepsilon}^{\mu\alpha}_{\mathbf{k}}-\mu_{c}\right|^{2}+\left|\Delta_{\mu\alpha}(\mathbf{k})\right|^{2}}}\right). (S76)

Note that the intra-band pairing has been taken in the above derivation, which is usually physical. Therefore, the spontaneous super current cannot emerge under the periodic boundary condition for each layer, if only the intra-band pairing is considered. However, under the open boundary condition, the spontaneous super current can emerge at the edge.

Our numerical results reveal the existence of the Majorana edge states and spontaneous edge currents in the d+idd+id and g+igg+ig TSC states, with the latter case shown in the main text. These properties further justify the topological properties of the obtained TSCs.

References

  • (1) P. Moon, M. Koshino and Y.-W. Son, Phys. Rev. B 99, 165430 (2019).
  • (2) W. Yao, E. Wang, C. Bao, Y. Zhang, K. Zhang, K. Bao, C.-K. Chan, C. Chen, J. Avila, M. C. Asensio, J. Zhu and S. Zhou, PNAS 115, 6928 (2018).
  • (3) M. Koshino, New J. Phys. 17, 015014 (2015).
  • (4) S. Graser, T. A. Maier, P. J. Hirschfeld and D. J.Scalapino, New J. Phys. 11, 025016 (2009).
  • (5) T. A. Maier, S. Graser, P. J. Hirschfeld and D. J. Scalapino, Phys. Rev. B 83, 100515(R) (2011).
  • (6) W. Xu and X. Ka, "Group Theory and Application in Solid State Physics", Higher Education Press, Beijing (1999).
  • (7) Y. Cao, Y. Zhang, Y.-B. Liu, C.-C. Liu, W.-Q. Chen and F. Yang, Phys. Rev. Lett. 125, 017002 (2020).
  • (8) D. V. Chichinadze, L. Classen and A. V. Chubukov, Phys. Rev. B 101, 224513 (2020).
  • (9) R. Nandkishore, L. S. Levitov and A. V. Chubukov, Nat. Phys. 8, 158 (2012).
  • (10) X.-L. Qi, T. L. Hughes and S.-C. Zhang, Phys.Rev.B 82, 184516 (2010).
  • (11) J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).