This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Geometry of Prym varieties for certain bielliptic curves of genus three and five

Adrian Clingher Dept.​ of Mathematics & Statistics, University of Missouri - St. Louis, MO 63121 [email protected] Andreas Malmendier Dept.​ of Mathematics, University of Connecticut, Storrs, Connecticut 06269 [email protected]  and  Tony Shaska Dept. of Mathematics & Statistics, Oakland University, Rochester, MI 48309 [email protected]
Abstract.

We construct two pencils of bielliptic curves of genus three and genus five. The first pencil is associated with a general abelian surface with a polarization of type (1,2)(1,2). The second pencil is related to the first by an unramified double cover, the Prym variety of which is canonically isomorphic to the Jacobian of a very general curve of genus two. Our results are obtained by analyzing suitable elliptic fibrations on the associated Kummer surfaces and rational double covers among them.

Key words and phrases:
Kummer surfaces, Prym varieties, isogenies of abelian surfaces
2020 Mathematics Subject Classification:
14H40, 14J28
A.C. acknowledges support from a UMSL Mid-Career Research Grant.
A.M. acknowledges support from the Simons Foundation through grant no. 202367.

1. Introduction and statement of results

Computing isogenies between Jacobian and Prym varieties for curves of genus two and three is considered one of the fundamental problems in the context of computer algebra and encryption as it is closely related to the arithmetic and the discrete logarithm problem in class groups of such curves and Recillas’ trigonal construction [MR2406115, MR1736231, MR3389883, MR4063320]. If the curve of genus three is non-hyperelliptic, there has been no general formula relating its moduli to the moduli of a curve of genus two. In this article, we will derive explicit normal forms for the pencil of plane, bielliptic curves of genus three (and their unramified double coverings by canonical curves of genus five) such that the Prym variety of its general member is 2-isogenous to the Jacobian of a very general curve of genus two. We emphasize that our results are valid for any curve in the moduli space of curves of genus two, not only for special elements or subfamilies.

Let 𝒞\mathcal{C} be a smooth curve of genus two defined over the field of complex numbers. Consider a Göpel subgroup GJac(𝒞)[2]G^{\prime}\leqslant\operatorname{Jac}(\mathcal{C})[2], i.e., a subgroup maximally isotropic under the Weil pairing. It is then well known that the quotient Jac(𝒞)/G\operatorname{Jac}(\mathcal{C})/G^{\prime} is canonically isomorphic to the Jacobian of a second curve of genus two 𝒞\mathcal{C}^{\prime}, said to be (2,2)(2,2)-isogenous with 𝒞\mathcal{C}. Moreover, the image of Jac(𝒞)[2]\operatorname{Jac}(\mathcal{C})[2] under the projection map Ψ:Jac(𝒞)Jac(𝒞)/G\Psi^{\prime}\colon\operatorname{Jac}(\mathcal{C})\rightarrow\operatorname{Jac}(\mathcal{C})/G^{\prime} is a Göpel subgroup of Jac(𝒞)[2]\operatorname{Jac}(\mathcal{C}^{\prime})[2] and, as Jac(𝒞)/Jac(𝒞)[2]Jac(𝒞)\operatorname{Jac}(\mathcal{C})/\operatorname{Jac}(\mathcal{C})[2]\simeq\operatorname{Jac}(\mathcal{C}), one obtains a pair of dual (2,2)(2,2)-isogenies:

(1.1) Jac(𝒞)\textstyle{\operatorname{Jac}(\mathcal{C})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ψ\scriptstyle{\Psi^{\prime}}Jac(𝒞)\textstyle{\operatorname{Jac}(\mathcal{C}^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ψ\scriptstyle{\Psi}

The relation between the curves 𝒞\mathcal{C} and 𝒞\mathcal{C^{\prime}} can be made explicit via the Richelot construction [MR1578134, MR1578135].

Consider GG^{\prime}\simeq\langle\mathscr{L}\rangle\oplus\langle\mathscr{L}^{\prime}\rangle a marking of the Göpel subgroup above, with \mathscr{L}, \mathscr{L}^{\prime} line bundles of order two on the curve 𝒞\mathcal{C}. The line bundle \mathscr{L} determines a canonical étale double cover p:𝒞p\colon\mathcal{H}\rightarrow\mathcal{C}, with the total space \mathcal{H} being a smooth curve of genus three carrying a base-point free involution ı:\imath\colon\mathcal{H}\rightarrow\mathcal{H}. The hyperelliptic involution of 𝒞\mathcal{C} lifts to a second involution ȷ:\jmath\colon\mathcal{H}\rightarrow\mathcal{H} that has a fixed locus given by four points. In turn, the involution ȷ\jmath defines a canonical bielliptic structure on \mathcal{H}, with double cover π:\pi\colon\mathcal{H}\rightarrow{\mathcal{E}} mapping to an elliptic curve. The two involutions ı\imath and ȷ\jmath commute, with their composition ıȷ\imath\circ\jmath defining a hyperelliptic structure on \mathcal{H}. Also, Prym(,π:)\operatorname{Prym}(\mathcal{H},\pi\colon\mathcal{H}\rightarrow\mathcal{E}) is an abelian surface with the curve of genus three \mathcal{H} canonically embedded as a (1,2)(1,2)-polarization [MR0379510, MR572974, MR946234].

Moving up one level, the pull-back pp^{*}\mathscr{L}^{\prime} is a line-bundle of order-two on the curve \mathcal{H}. As such, it defines an étale double cover p:p^{\prime}\colon\mathcal{F}\rightarrow\mathcal{H}, with the total space \mathcal{F} given by a smooth curve of genus five, carrying a base-point free involution ı:\imath^{\prime}\colon\mathcal{F}\rightarrow\mathcal{F}. The bielliptic involution ȷ\jmath on \mathcal{H} lifts to an involution ȷ:\jmath^{\prime}\colon\mathcal{F}\rightarrow\mathcal{F} with eight fixed points, defining a second bielliptic structure π:\pi^{\prime}\colon\mathcal{F}\rightarrow\mathcal{E}^{\prime}, with \mathcal{E}^{\prime} an elliptic curve that is 2-isogenous to \mathcal{E}.

(1.2) {{\mathcal{F}}}{\ {\mathcal{H}}}𝒞{\ \mathcal{C}}{\mathcal{E}^{\prime}}{\ \mathcal{E}}p\scriptstyle{p^{\prime}}π\scriptstyle{\pi^{\prime}}j\scriptstyle{j^{\prime}}p\scriptstyle{p}π\scriptstyle{\pi}j\scriptstyle{j}2isogeny\scriptstyle{\rm{2-isogeny}}

One has, in this context, a canonical isomorphism Prym(,p:)Jac(𝒞)\operatorname{Prym}(\mathcal{F},p^{\prime}\colon\mathcal{F}\rightarrow\mathcal{H})\cong\operatorname{Jac}(\mathcal{C}^{\prime}).

Next, we note that the left half of diagram (1.2)(\ref{d1}) is actually a fiber in a one-dimensional family. In order to see this, consider the embedding 𝒞Jac(𝒞)\mathcal{C}\hookrightarrow\operatorname{Jac}(\mathcal{C}), given by a choice of Abel-Jacobi map. The theta divisor Θ=[𝒞]\Theta=[\mathcal{C}] gives a principal polarization 𝒰=𝒪𝖠(Θ)\mathscr{U}=\mathcal{O}_{\mathsf{A}}(\Theta) on 𝖠=Jac(𝒞)\mathsf{A}=\operatorname{Jac}(\mathcal{C}), which, in turn, establishes a canonical isomorphism Jac(𝒞)Jac(𝒞)\operatorname{Jac}(\mathcal{C})\cong\operatorname{Jac}(\mathcal{C})^{\vee}. Hence, points of order two in Jac(𝒞)\operatorname{Jac}(\mathcal{C}) may be viewed as line bundles of order two on Jac(𝒞)\operatorname{Jac}(\mathcal{C}). One can then repeat the construction from above, in the context of the Jacobian variety Jac(𝒞)\operatorname{Jac}(\mathcal{C}).

First, \mathscr{L} determines a 2-isogeny of abelian surfaces Φ:𝖡Jac(𝒞)\Phi\colon\mathsf{B}\rightarrow\operatorname{Jac}(\mathcal{C}). The abelian surface 𝖡\mathsf{B} carries a canonical (1,2)(1,2)-polarization 𝒱=Φ()\mathscr{V}=\Phi^{*}(\mathscr{L}) with 𝒱2=4\mathscr{V}^{2}=4 and h0(𝒱)=2h^{0}(\mathscr{V})=2. The effective divisors for 𝒱\mathscr{V} form a pencil with four fixed points. Following the work in [MR946234, MR2729013], a general member of this pencil is, in the generic case, a smooth curve of genus three 𝒟t𝖡\mathcal{D}_{t}\subset\mathsf{B}. The antipodal involution of 𝖡\mathsf{B} restricts as a bielliptic involution on 𝒟t\mathcal{D}_{t}, the quotient by which gives a double cover πt:𝒟tt\pi_{t}\colon\mathcal{D}_{t}\rightarrow\mathcal{E}_{t} mapping on an elliptic curve t\mathcal{E}_{t}. One has a canonical isomorphism of abelian surfaces Prym(𝒟t,πt:𝒟tt)𝖡\operatorname{Prym}(\mathcal{D}_{t},\pi_{t}\colon\mathcal{D}_{t}\rightarrow\mathcal{E}_{t})\cong\mathsf{B}.

Second, the pull-back Φ()\Phi^{*}(\mathscr{L}^{\prime}) is a line bundle of order two on 𝖡\mathsf{B} and, hence, it determines a 2-isogeny Φ:Jac(𝒞)𝖡\Phi^{\prime}\colon\operatorname{Jac}(\mathcal{C}^{\prime})\rightarrow\mathsf{B}. The preimage, under Φ\Phi^{\prime}, of each smooth curve 𝒟t\mathcal{D}_{t} is a smooth curve of genus five tJac(𝒞)\mathcal{F}_{t}\subset\operatorname{Jac}(\mathcal{C}^{\prime}). As before, the antipodal involution on Jac(𝒞)\operatorname{Jac}(\mathcal{C}^{\prime}) restricts to a bielliptic involution on t\mathcal{F}_{t}, leading to a bielliptic structure πt:tt\pi^{\prime}_{t}\colon\mathcal{F}_{t}\rightarrow\mathcal{E}^{\prime}_{t}.

(1.3) Jac(𝒞){\operatorname{Jac}({\mathcal{C}}^{\prime})}𝖡{\mathsf{B}}Jac(𝒞){\operatorname{Jac}(\mathcal{C})}t{{\mathcal{F}}_{t}}𝒟t{{\mathcal{D}}_{t}}t{\mathcal{E}^{\prime}_{t}}t{\mathcal{E}_{t}}Φ\scriptstyle{\Phi^{\prime}}id\scriptstyle{-{\rm id}}Φ\scriptstyle{\Phi}id\scriptstyle{-{\rm id}}πt\scriptstyle{\pi^{\prime}_{t}}ρt=Φ|t\scriptstyle{\rho^{\prime}_{t}=\Phi^{\prime}|_{\mathcal{F}_{t}}}πt\scriptstyle{\pi_{t}}2isogeny\scriptstyle{\rm{2-isogeny}}

The Prym variety Prym(t,ρt:t𝒟t)\operatorname{Prym}(\mathcal{F}_{t},\rho^{\prime}_{t}\colon\mathcal{F}_{t}\rightarrow\mathcal{D}_{t}) arises naturally in the above picture, as isomorphic to the Jacobian Jac(𝒞)\operatorname{Jac}(\mathcal{C}^{\prime}).

We note that the curve family t\mathcal{F}_{t} belongs to the linear system associated with the line bundle Φ𝒱\Phi^{\prime*}\mathscr{V}, which is of type (2,2)(2,2) and twice a principal polarization on Jac(𝒞)\operatorname{Jac}(\mathcal{C}^{\prime}). One has h0(Φ𝒱)=4h^{0}(\Phi^{\prime*}\mathscr{V})=4. The family t\mathcal{F}_{t} is parametrized by a conic curve, within the three-dimensional projective space |Φ𝒱||\Phi^{\prime*}\mathscr{V}|.

The goal of this paper is to give an explicit description for the pencils of curves 𝒟t\mathcal{D}_{t} and t\mathcal{F}_{t}. The building block for the entire construction above is simply a choice of a smooth curve of genus two 𝒞\mathcal{C}, as well as a choice of a Göpel subgroup of GJac(𝒞)[2]G^{\prime}\leqslant\operatorname{Jac}(\mathcal{C})[2]. We shall start with such a curve given explicitly in Rosenhain normal form as

(1.4) 𝒞:η2=ξ(ξ1)(ξλ1)(ξλ2)(ξλ3),\mathcal{C}:\quad\eta^{2}=\xi\,\big{(}\xi-1)\,\big{(}\xi-\lambda_{1}\big{)}\,\big{(}\xi-\lambda_{2}\big{)}\,\big{(}\xi-\lambda_{3}\big{)}\,,

such that the ordered tuple (λ1,λ2,λ3)(\lambda_{1},\lambda_{2},\lambda_{3}) – with λi\lambda_{i} pairwise distinct and different from (λ4,λ5,λ6)=(0,1,)(\lambda_{4},\lambda_{5},\lambda_{6})=(0,1,\infty) – determines a point in the moduli space 𝔐\mathfrak{M} of curves of genus two with marked level-two structure. A choice of Göpel subgroup is then equivalent to a choice of 2+2+22+2+2 partition of the six canonical branch points {λ1,λ2,λ3,λ4,λ5,λ6}\{\lambda_{1},\lambda_{2},\lambda_{3},\lambda_{4},\lambda_{5},\lambda_{6}\}. The three Rosenhain λ\lambda-parameters can be expressed as explicit ratios of even Siegel theta constants by Picard’s lemma. There are 720720 choices for such expressions: for example, one might use the choice from [MR0141643, MR2367218, MR3712162] to obtain

(1.5) λ1=θ12θ32θ22θ42,λ2=θ32θ82θ42θ102,λ3=θ12θ82θ22θ102.\lambda_{1}=\frac{\theta_{1}^{2}\theta_{3}^{2}}{\theta_{2}^{2}\theta_{4}^{2}}\,,\quad\lambda_{2}=\frac{\theta_{3}^{2}\theta_{8}^{2}}{\theta_{4}^{2}\theta_{10}^{2}}\,,\quad\lambda_{3}=\frac{\theta_{1}^{2}\theta_{8}^{2}}{\theta_{2}^{2}\theta_{10}^{2}}\,.

We consider the double cover 𝔐\mathfrak{M}^{\prime} of 𝔐\mathfrak{M} given as the set of tuples (κ1,5,λ2,λ3)(\kappa_{1,5},\lambda_{2},\lambda_{3}) such that (λ1=κ1,52,λ2,λ3)𝔐(\lambda_{1}=\kappa_{1,5}^{2},\lambda_{2},\lambda_{3})\in\mathfrak{M}. There is a good reason for the notation κ1,5\kappa_{1,5}, and the reason for it will become apparent later. For the moment, we only mention that κ1,5\kappa_{1,5} can be considered a section of a suitable line bundle over 𝔐\mathfrak{M}. We introduce the homogeneous polynomials

(1.6) Δ(t)(X,Y)=(XtY)2,r(t)(X,Y)=6λ1λ2λ3t2X2(λ1+λ2λ3)(X2+4tXY+t2Y2)+6Y2,r1(t)(X,Y)=24λ1λ2λ3(λ1+λ2λ3)t2X2+2(λ15λ2λ3)(5λ1λ2λ3)tXY+(λ12+λ22λ3234λ1λ2λ3)(X2+t2Y2)+24(λ1+λ2λ3)Y2,p(X,Y)=(λ1X2Y2)(λ2λ3X2Y2),\begin{split}\Delta^{(t)}(X,Y)&=\big{(}X-t\,Y\big{)}^{2}\,,\\ r^{(t)}(X,Y)&=6\lambda_{1}\lambda_{2}\lambda_{3}\,t^{2}X^{2}-\big{(}\lambda_{1}+\lambda_{2}\lambda_{3}\big{)}\big{(}X^{2}+4tXY+t^{2}Y^{2})+6Y^{2}\,,\\ r_{1}^{(t)}(X,Y)&=24\lambda_{1}\lambda_{2}\lambda_{3}\big{(}\lambda_{1}+\lambda_{2}\lambda_{3}\big{)}t^{2}X^{2}+2\big{(}\lambda_{1}-5\lambda_{2}\lambda_{3}\big{)}\big{(}5\lambda_{1}-\lambda_{2}\lambda_{3}\big{)}tXY\\ &+\big{(}\lambda_{1}^{2}+\lambda_{2}^{2}\lambda_{3}^{2}-34\lambda_{1}\lambda_{2}\lambda_{3}\big{)}\big{(}X^{2}+t^{2}Y^{2}\big{)}+24\big{(}\lambda_{1}+\lambda_{2}\lambda_{3}\big{)}Y^{2}\,,\\ p(X,Y)&=\big{(}\lambda_{1}X^{2}-Y^{2}\big{)}\big{(}\lambda_{2}\lambda_{3}\,X^{2}-Y^{2}\big{)}\,,\end{split}

and the parameters p0(t)=p(t,1)p_{0}^{(t)}=p(t,1) and

(1.7) c0= 2(λ15λ2λ3)(5λ1λ2λ3)κ1,5+λ13+λ22λ32λ12(34λ2λ324(λ2+λ3)1)+λ1λ2λ3(λ2λ3+24(λ2+λ3)34),c1= 8(λ1+λ2λ3)κ1,52(6(λ2+λ3)λ2λ31)λ1+2(λ12+λ2λ3),c2=λ1+12κ1,5.\begin{split}c_{0}&=\,2\big{(}\lambda_{1}-5\lambda_{2}\lambda_{3}\big{)}\big{(}5\lambda_{1}-\lambda_{2}\lambda_{3}\big{)}\,\kappa_{1,5}+\lambda_{1}^{3}+\lambda_{2}^{2}\lambda_{3}^{2}\\ &\,-\lambda_{1}^{2}\big{(}34\lambda_{2}\lambda_{3}-24(\lambda_{2}+\lambda_{3})-1\big{)}+\lambda_{1}\lambda_{2}\lambda_{3}\big{(}\lambda_{2}\lambda_{3}+24(\lambda_{2}+\lambda_{3})-34\big{)}\,,\\ c_{1}&=\,8\big{(}\lambda_{1}+\lambda_{2}\lambda_{3}\big{)}\,\kappa_{1,5}-2\big{(}6(\lambda_{2}+\lambda_{3})-\lambda_{2}\lambda_{3}-1\big{)}\lambda_{1}+2\big{(}\lambda_{1}^{2}+\lambda_{2}\lambda_{3}\big{)}\,,\\ c_{2}&=\,\lambda_{1}+1-2\,\kappa_{1,5}\,.\end{split}

We note that c2=0c_{2}=0 implies λ1=1\lambda_{1}=1 and 𝒞\mathcal{C} is singular.

Let 𝒟t\mathcal{D}_{t} be the pencil of plane quartic curves in 2=(X,Y,Z)\mathbb{P}^{2}=\mathbb{P}(X,Y,Z) given by

(1.8) 𝒟t:p0(t)Z4+(c2r1(t)+c1r(t)+c0Δ(t))Z2+9(c124c0c2)p=0,\mathcal{D}_{t}:\quad p_{0}^{(t)}Z^{4}+\Big{(}c_{2}\,r_{1}^{(t)}+c_{1}\,r^{(t)}+c_{0}\,\Delta^{(t)}\Big{)}\,Z^{2}+9\,\Big{(}c_{1}^{2}-4\,c_{0}c_{2}\Big{)}\,p=0\,,

with the involution

(1.9) ȷ:[X:Y:Z][X:Y:Z],\jmath:\quad[X:Y:Z]\mapsto[X:Y:-Z]\,,

and the degree-two quotient map πt:𝒟t𝒬t=𝒟t/ȷ\pi_{t}:\mathcal{D}_{t}\to\mathcal{Q}_{t}=\mathcal{D}_{t}/\langle\jmath\rangle. We have the following:

Theorem 1.1.

The pencil in Equation (1.8) satisfies the following:

  1. (1)

    for generic tt, the curve 𝒟t\mathcal{D}_{t} is a smooth, bielliptic curve of genus three such that the Prym variety Prym(𝒟t,πt)\operatorname{Prym}(\mathcal{D}_{t},\pi_{t}) with its natural polarization of type (1,2)(1,2) is 2-isogenous to the principally polarized Jacobian variety Jac(𝒞)\operatorname{Jac}(\mathcal{C}), i.e.,

    Prym(𝒟t,πt)Jac(𝒞),\operatorname{Prym}(\mathcal{D}_{t},\pi_{t})\ \simeq\ \operatorname{Jac}(\mathcal{C})\,,

    and 𝒟t\mathcal{D}_{t} embeds into Prym(𝒟t,πt)\operatorname{Prym}(\mathcal{D}_{t},\pi_{t}) as a curve of self-intersection four.

  2. (2)

    for t2=λ1,λ2λ3t^{2}=\lambda_{1},\lambda_{2}\lambda_{3}, the curve 𝒟t\mathcal{D}_{t} is a reducible nodal curve isomorphic to 1𝒞\mathbb{P}^{1}\cup\mathcal{C}^{\prime} where 𝒞\mathcal{C}^{\prime} is a (2,2)(2,2)-isogenous, smooth curve of genus two such that

    Jac(𝒞)=Jac(𝒞)/G,\operatorname{Jac}(\mathcal{C}^{\prime})\ =\ \operatorname{Jac}(\mathcal{C})/G^{\prime}\,,

    where GJac(𝒞)[2]G^{\prime}\subset\operatorname{Jac}(\mathcal{C})[2] is the Göpel group associated with the pairing of the Weierstrass points of 𝒞\mathcal{C} given by {λ1,λ5=1}\{\lambda_{1},\lambda_{5}=1\}, {λ2,λ3}\{\lambda_{2},\lambda_{3}\}, {λ4=0,λ6=}\{\lambda_{4}=0,\lambda_{6}=\infty\},

  3. (3)

    for t2=λ2,λ1λ3t^{2}=\lambda_{2},\lambda_{1}\lambda_{3}, and t2=λ3,λ1λ2t^{2}=\lambda_{3},\lambda_{1}\lambda_{2}, the curve 𝒟t\mathcal{D}_{t} is a singular, irreducible curve of geometric genus two with one node,

  4. (4)

    for t2=0,±λ1λ2λ3,t^{2}=0,\pm\lambda_{1}\lambda_{2}\lambda_{3},\infty, the curve 𝒟t\mathcal{D}_{t} is smooth and hyperelliptic.

Let t\mathcal{F}_{t} be the family of non-hyperelliptic curves of genus five given as the intersection of three quadrics in 4=(V,W,X,Y,Z)\mathbb{P}^{4}=\mathbb{P}(V,W,X,Y,Z) with

(1.10) t:{V2=c2e2Δ(t)+2c2er(t)+c2r1(t),W2=c2f2Δ(t)+2c2fr(t)+c2r1(t),VW=2p0(t)Z2+c0Δ(t)+c1r(t)+c2r1(t),\mathcal{F}_{t}:\quad\left\{\begin{array}[]{lcl}V^{2}&=&c_{2}e^{2}\,\Delta^{(t)}+2c_{2}e\,r^{(t)}+c_{2}\,r_{1}^{(t)}\,,\\ W^{2}&=&c_{2}f^{2}\,\Delta^{(t)}+2c_{2}f\,r^{(t)}+c_{2}\,r_{1}^{(t)}\,,\\ VW&=&2\,p_{0}^{(t)}Z^{2}+c_{0}\,\Delta^{(t)}+c_{1}\,r^{(t)}+c_{2}\,r_{1}^{(t)}\,,\end{array}\right.

and the involution

(1.11) ı:44,[V:W:X:Y:Z][V:W:X:Y:Z].\imath^{\prime}:\mathbb{P}^{4}\to\mathbb{P}^{4}\,,\quad[V:W:X:Y:Z]\mapsto[-V:-W:X:Y:Z]\,.

Here, the parameters ee and ff are determined by e+f=c1/c2e+f=c_{1}/c_{2}, ef=c0/c2ef=c_{0}/c_{2}; interchanging ee and ff amounts to the changing the sign ±κ1,5\pm\kappa_{1,5} or, equivalently, swapping the two sheets of the double cover 𝔐𝔐\mathfrak{M}^{\prime}\to\mathfrak{M}. We have the following:

Theorem 1.2.

Each smooth curve 𝒟t\mathcal{D}_{t} admits an unramified double cover ρt:t𝒟t\rho^{\prime}_{t}:\mathcal{F}_{t}\to\mathcal{D}_{t} with t\mathcal{F}_{t} smooth and bielliptic. The Prym variety Prym(t,ρt)\operatorname{Prym}(\mathcal{F}_{t},\rho^{\prime}_{t}) is canonically isomorphic to the Jacobian of a curve of genus two given by

(1.12) η2=(ξ2(λ1+λ2λ3))((ξ+λ1+λ2λ3)236λ1λ2λ3)(c2ξ2+c1ξ+c0),\eta^{2}=\Big{(}\xi-2\big{(}\lambda_{1}+\lambda_{2}\lambda_{3}\big{)}\Big{)}\Big{(}\big{(}\xi+\lambda_{1}+\lambda_{2}\lambda_{3})^{2}-36\lambda_{1}\lambda_{2}\lambda_{3}\Big{)}\Big{(}c_{2}\xi^{2}+c_{1}\xi+c_{0}\Big{)}\,,

which is isomorphic to 𝒞\mathcal{C}^{\prime} in Theorem 1.1(2), and t\mathcal{F}_{t} embeds into Prym(t,ρt)\operatorname{Prym}(\mathcal{F}_{t},\rho^{\prime}_{t}) as a curve of self-intersection eight.

Given the marking of a Göpel group, Equation (1.12) can be brought into the form

(1.13) η2=(ξ2D24)(16ξ3+4Aξ2+4ξ+AB2),\eta^{2}=\Big{(}\xi^{2}-\frac{D^{2}}{4}\Big{)}\Big{(}16\xi^{3}+4A\xi^{2}+4\xi+A-B^{2}\Big{)}\,,

commonly referred to as Kovalevaskaya curve, where A,B,D2A,B,D^{2} are interpreted as physical quantities, namely the constants of motions of the Kovalevskaya top.

We also have the following:

Corollary 1.3.

The Jacobian variety Jac(𝒟t)\operatorname{Jac}(\mathcal{D}_{t}) for t=0,t=0,\infty is isogenous to the Jacobian Jac()\operatorname{Jac}(\mathcal{H}) where \mathcal{H} is the bielliptic, hyperelliptic curve of genus three

(1.14) :υ2=(ζ21)(ζ2λ1)(ζ2λ2)(ζ2λ3).\mathcal{H}:\quad\upsilon^{2}=\big{(}\zeta^{2}-1)\,\big{(}\zeta^{2}-\lambda_{1}\big{)}\,\big{(}\zeta^{2}-\lambda_{2}\big{)}\,\big{(}\zeta^{2}-\lambda_{3}\big{)}\,.
Remark 1.4.

There is a second choice for 𝔐\mathfrak{M}^{\prime} given by an extension of the function field of 𝔐\mathfrak{M} with κ2,32=λ2λ3\kappa_{2,3}^{2}=\lambda_{2}\lambda_{3} that yields analogous results in Theorem 1.1 and Corollary 1.2. In this case, c0,c1,c2c_{0},c_{1},c_{2} are given by Equation (2.7).

1.1. Discussion and overview

Barth studied abelian surfaces with a polarization of type (1,2)(1,2) and proved their close connection with Prym varieties of smooth, bielliptic curves of genus three [MR946234]. An excellent summary of Barth’s construction was given in [Garbagnati08, MR3010125]. Moreover, the fibers of the Prym map were considered in [MR1188194, MR422289, MR875339, MR2406115, MR3781951]. Abelian surfaces with (1,2)(1,2)-polarization were also discussed in [MR2306633, MR2804549, MR2729013] and by the authors in [Clingher:2017aa, Clingher:2018aa, CMS:2019]. An algebraic-geometric approach for studying 2-isogenous abelian surfaces was introduced in [MR2457735]. Bielliptic curves of genus three and abelian surfaces with (1,2)(1,2)-polarization have also appeared as spectral curves of Lax representations of certain algebraic integrable systems and the Kovalevskaya top [MR912838, MR923636, MR990136, MR3798190]. Solving the equations of motion for the Kovalevskaya top is equivalent to a linear flow on an abelian surface with (1,2)(1,2)-polarization. On the other hand, Kovalevskaya presented in her celebrated paper [MR1554772] a separation of variables of the corresponding integrable system using the (hyperelliptic) curve of genus two in Equation (1.13) whose Jacobian is associated with the integrals of motion of the Kovalevskaya top. In this article, we will derive explicit normal forms for the pencil of plane, bielliptic curves of genus three (and their unramified double coverings by canonical curves of genus five) such that the Prym variety of its general member is 2-isogenous to the Jacobian of a very general curve of genus two in 𝔐\mathfrak{M} (or the Richelot isogenous curve).

The main difficulty in describing explicitly the items of diagram (1.3)(\ref{d2}), in terms of the Rosenhain λ\lambda-parameters, stems from the inherent laboriousness of computing or describing curves within abelian surfaces. Our approach, which fixes most of this problem, is to push and understand (1.3)(\ref{d2}) to level of the Kummer surfaces.

(1.15) Jac(𝒞){\operatorname{Jac}({\mathcal{C}}^{\prime})}𝖡{\mathsf{B}}Jac(𝒞){\operatorname{Jac}(\mathcal{C})}t{{\mathcal{F}}_{t}}𝒟t{{\mathcal{D}}_{t}}t{\mathcal{E}^{\prime}_{t}}t{\mathcal{E}_{t}}Kum(Jac𝒞){\operatorname{Kum}\left(\operatorname{Jac}{\mathcal{C}^{\prime}}\right)}Kum(𝖡){\ \operatorname{Kum}\left(\mathsf{B}\right)}Kum(Jac𝒞){\ \operatorname{Kum}\left(\operatorname{Jac}{\mathcal{C}}\right)}Φ\scriptstyle{\Phi^{\prime}}id\scriptstyle{-{\rm id}}Φ\scriptstyle{\Phi}id\scriptstyle{-{\rm id}}πt\scriptstyle{\pi^{\prime}_{t}}ρt=Φ|t\scriptstyle{\rho^{\prime}_{t}=\Phi^{\prime}|_{\mathcal{F}_{t}}}πt\scriptstyle{\pi_{t}}2isogeny\scriptstyle{\rm{2-isogeny}}ϕ\scriptstyle{\phi^{\prime}}ϕ\scriptstyle{\phi}

Using this point of view, as outlined in diagram (1.15)(\ref{d3}), the pencils t\mathcal{E}_{t} and t\mathcal{E}^{\prime}_{t} correspond to Jacobian elliptic fibrations on the Kummer surfaces Kum(Jac𝒞)\operatorname{Kum}\left(\operatorname{Jac}{\mathcal{C}^{\prime}}\right) and Kum(𝖡)\operatorname{Kum}\left(\mathsf{B}\right). The rich geometry of these objects is quite well understood, in particular the sequence of rational maps

(1.16) Kum(Jac𝒞)Kum(𝖡)Kum(Jac𝒞)\operatorname{Kum}\left(\operatorname{Jac}{\mathcal{C}^{\prime}}\right)\ \dasharrow\ \operatorname{Kum}\left(\mathsf{B}\right)\ \dasharrow\ \operatorname{Kum}\left(\operatorname{Jac}\mathcal{C}\right)

can be described in terms of even-eight curve configurations introduced in [MR2804549, MR0429917].

This article is structured as follows: in Section 2 we establish convenient normal forms for certain abelian surfaces with polarizations of type (1,1)(1,1), (1,2)(1,2), (2,2)(2,2), and their associated Kummer surfaces. In Section 3 we construct a pencil of plane, bielliptic curves of genus three and an induced genus-one fibration from the Abel-Jacobi map of a single smooth quartic curve. This quartic curve is determined by the point of order two pJac(𝒞)[2]p\in\operatorname{Jac}(\mathcal{C})[2] and a Göpel group GpG^{\prime}\ni p. We then show that the obtained genus-one fibration is isomorphic to a Jacobian elliptic fibration on Kum(𝖡)\operatorname{Kum}(\mathsf{B}). We also prove certain properties for the special members of the pencil of curves of genus three, and we construct their unramified coverings by curves of genus five which we also prove to be bielliptic. In Section 4 we combine these results to prove Theorem 1.1, Theorem 1.2, and Corollary 1.3.

Acknowledgments

We would like to thank the referee for their thoughtful comments and efforts towards improving our manuscript.

2. Plane curves and associated K3 surfaces

Polarizations on an abelian surface 𝖠2/Λ\mathsf{A}\cong\mathbb{C}^{2}/\Lambda are known to correspond to positive definite hermitian forms HH on 2\mathbb{C}^{2}, satisfying E=ImH(Λ,Λ)E=\operatorname{Im}H(\Lambda,\Lambda)\subset\mathbb{Z}. In turn, such a hermitian form determines the first Chern class of a line bundle in the Néron-Severi group NS(𝖠)\mathrm{NS}(\mathsf{A}). The bundle itself is then determined only up to a degree zero line bundle. We will assume that the Picard number ρ(𝖠)=1\rho(\mathsf{A})=1, so that the Néron-Severi group of 𝖠\mathsf{A} is generated by this line bundle [MR2062673]. One may always choose a basis of Λ\Lambda such that EE is given by a matrix (0DD0)\bigl{(}\begin{smallmatrix}0&D\\ -D&0\end{smallmatrix}\bigr{)} with D=(d100d2)D=\bigl{(}\begin{smallmatrix}d_{1}&0\\ 0&d_{2}\end{smallmatrix}\bigr{)} where d1,d2d_{1},d_{2}\in\mathbb{N}, d1,d2>0d_{1},d_{2}>0, and d1d_{1} divides d2d_{2}. The pair (d1,d2)(d_{1},d_{2}) gives the type of the polarization.

Let 𝒞\mathcal{C} be a smooth curve of genus two. On its Jacobian 𝖠=Jac(𝒞)\mathsf{A}=\operatorname{Jac}(\mathcal{C}) the divisor class Θ=[𝒞]\Theta=[\mathcal{C}] is an effective divisor such that the hermitian form associated with the line bundle 𝒰=𝒪𝖠(Θ)\mathscr{U}=\mathcal{O}_{\mathsf{A}}(\Theta) is a polarization of type (1,1)(1,1), also called a principal polarization. We will also consider an abelian surface 𝖡\mathsf{B} with a (1,2)(1,2)-polarization given by an ample symmetric line bundle 𝒱\mathscr{V} such that 𝒱2=4\mathscr{V}^{2}=4. In this case, the linear system |𝒱||\mathscr{V}| is a pencil on 𝖡\mathsf{B} of generically smooth, bielliptic curves of genus three; see [MR946234].

2.1. Abelian and Kummer surfaces with principal polarization

Let a smooth curve of genus two 𝒞\mathcal{C} be given in affine coordinates (ξ,η)(\xi,\eta) by the Rosenhain normal form

(2.1) 𝒞:η2=ξ(ξ1)(ξλ1)(ξλ2)(ξλ3).\mathcal{C}:\quad\eta^{2}=\xi\,\big{(}\xi-1)\,\big{(}\xi-\lambda_{1}\big{)}\,\big{(}\xi-\lambda_{2}\big{)}\,\big{(}\xi-\lambda_{3}\big{)}\,.

We denote the hyperelliptic involution on 𝒞\mathcal{C} by ı𝒞\imath_{\mathcal{C}}. An ordered tuple (λ1,λ2,λ3)(\lambda_{1},\lambda_{2},\lambda_{3}) – where the λi\lambda_{i} are pairwise distinct and different from (λ4,λ5,λ6)=(0,1,)(\lambda_{4},\lambda_{5},\lambda_{6})=(0,1,\infty) – determines a point in the moduli space 𝔐\mathfrak{M} of curves of genus two with marked level-two structure. The Weierstrass points of 𝒞\mathcal{C} are the six points pi:(ξ,η)=(λi,0)p_{i}:(\xi,\eta)=(\lambda_{i},0) for i=1,,5i=1,\dots,5, and the point p6p_{6} at infinity. Unless stated otherwise, we assume that 𝒞\mathcal{C} is a very general curve of genus two.

Translations of the Jacobian 𝖠=Jac(𝒞)\mathsf{A}=\operatorname{Jac}(\mathcal{C}) by a point of order two of 𝖠\mathsf{A} are isomorphisms of the Jacobian and map the set of 2-torsion points to itself. In fact, for any isotropic two-dimensional subspace G(/2)2G^{\prime}\cong(\mathbb{Z}/2\mathbb{Z})^{2} of 𝖠[2]\mathsf{A}[2], also called Göpel group, it is well known that 𝖠=𝖠/G\mathsf{A}^{\prime}=\mathsf{A}/G^{\prime} is again a principally polarized abelian surface [MR2514037]*Sec. 23. The corresponding isogeny Ψ:𝖠𝖠\Psi^{\prime}:\mathsf{A}\to\mathsf{A}^{\prime} between principally polarized abelian surfaces has as its kernel G𝖠[2]G^{\prime}\leqslant\mathsf{A}[2] and is called a (2,2)(2,2)-isogeny.

In the case of the Jacobian of a curve of genus two, every nontrivial 2-torsion point is the difference of Weierstrass points on 𝒞\mathcal{C}. In fact, the sixteen points of order two of 𝖠=Jac(𝒞)\mathsf{A}=\operatorname{Jac}(\mathcal{C}) are obtained using the embedding of the curve into the connected component of the identity in the Picard group, i.e., 𝒞Jac(𝒞)Pic0(𝒞)\mathcal{C}\hookrightarrow\operatorname{Jac}(\mathcal{C})\cong\operatorname{Pic}^{0}(\mathcal{C}) with p[pp6]p\mapsto[p-p_{6}]. We obtain 15 elements pij𝖠[2]p_{ij}\in\mathsf{A}[2] with 1i<j51\leq i<j\leq 5 as

(2.2) pi6=[pip6]for 1i5,pij=[pi+pj2p6]for 1i<j5,p_{i6}=[p_{i}-p_{6}]\;\text{for $1\leq i\leq 5$}\,,\qquad p_{ij}=[p_{i}+p_{j}-2\,p_{6}]\;\text{for $1\leq i<j\leq 5$}\,,

and set p0=p66=[0]p_{0}=p_{66}=[0]. For {i,j,k,l,m,n}={1,,6}\{i,j,k,l,m,n\}=\{1,\dots,6\}, the group law on 𝖠[2]\mathsf{A}[2] is given by the relations

(2.3) p0+pij=pij,pij+pij=p0,pij+pkl=pmn,pij+pjk=pik.p_{0}+p_{ij}=p_{ij}\,,\quad p_{ij}+p_{ij}=p_{0}\,,\quad p_{ij}+p_{kl}=p_{mn},\quad p_{ij}+p_{jk}=p_{ik}\,.

The space 𝖠[2]\mathsf{A}[2] of 2-torsion points admits a symplectic bilinear form, called the Weil pairing. The Weil pairing is induced by the pairing

(2.4) [pipj],[pkpl]=#{pi,pj}{pk,pl}mod2,\langle[p_{i}-p_{j}],[p_{k}-p_{l}]\rangle=\#\{p_{i},p_{j}\}\cap\{p_{k},p_{l}\}\mod{2}\,,

such that the two-dimensional, maximal isotropic subspaces of 𝖠[2]\mathsf{A}[2] with respect to the Weil pairing are the Göpel groups. Then, it is easy to check that there are exactly 15 inequivalent Göpel groups. We will fix a point of order two, say p=p46𝖠[2]p=p_{46}\in\mathsf{A}[2], and a Göpel group G={0,p15,p23,p46}pG^{\prime}=\{0,p_{15},p_{23},p_{46}\}\ni p. Using the embedding of the curve into the Picard group, we associate GG^{\prime} with the pairing of the Weierstrass points of 𝒞\mathcal{C} given by (λ1,λ5=1)(\lambda_{1},\lambda_{5}=1), (λ2,λ3)(\lambda_{2},\lambda_{3}), (λ4=0,λ6=)(\lambda_{4}=0,\lambda_{6}=\infty). Using GG^{\prime} we can construct two natural covering spaces of the moduli space 𝔐\mathfrak{M}, namely the set 𝔐p23\mathfrak{M}^{\prime}_{p_{23}} of tuples (λ1,κ2,3,λ3)(\lambda_{1},\kappa_{2,3},\lambda_{3}) with λ2λ3=κ2,32\lambda_{2}\lambda_{3}=\kappa_{2,3}^{2} and the set 𝔐p15\mathfrak{M}^{\prime}_{p_{15}} of tuples (κ1,5,λ2,λ3)(\kappa_{1,5},\lambda_{2},\lambda_{3}) with λ1=κ1,52\lambda_{1}=\kappa_{1,5}^{2} such that (λ1,λ2,λ3)𝔐(\lambda_{1},\lambda_{2},\lambda_{3})\in\mathfrak{M}. In turn, both 𝔐p23\mathfrak{M}^{\prime}_{p_{23}} and 𝔐p15\mathfrak{M}^{\prime}_{p_{15}} are covered by the set of tuples (κ1,5,κ2,3,λ3)(\kappa_{1,5},\kappa_{2,3},\lambda_{3}). Moreover, we introduce the convenient moduli Λ1=(λ1+λ2λ3)/l\Lambda_{1}=(\lambda_{1}+\lambda_{2}\lambda_{3})/l, Λ2=(λ2+λ1λ3)/l\Lambda_{2}=(\lambda_{2}+\lambda_{1}\lambda_{3})/l, Λ3=(λ2+λ1λ3)/l\Lambda_{3}=(\lambda_{2}+\lambda_{1}\lambda_{3})/l with l=κ1,5κ2,3l=\kappa_{1,5}\kappa_{2,3}. The work of the authors in [Clingher:2018aa] proved that κ1,5,κ2,3,l\kappa_{1,5},\kappa_{2,3},l are rational functions of the Siegel theta functions.

In the case 𝖠=Jac(𝒞)\mathsf{A}=\operatorname{Jac}(\mathcal{C}) one knows that the (2,2)(2,2)-isogenous abelian surface 𝖠=𝖠/G\mathsf{A}^{\prime}=\mathsf{A}/G^{\prime} satisfies 𝖠=Jac(𝒞)\mathsf{A}^{\prime}=\operatorname{Jac}(\mathcal{C}^{\prime}) for some smooth curve of genus two 𝒞\mathcal{C}^{\prime}. The question is how to describe the curve 𝒞\mathcal{C}^{\prime} explicitly. The relationship between the geometric moduli of the two curves was found by Richelot [MR1578135]; see also [MR970659]: if we choose for 𝒞\mathcal{C} a sextic equation η2=f6(ξ)\eta^{2}=f_{6}(\xi), then any factorization f6=ABCf_{6}=A\cdot B\cdot C into three degree-two polynomials A,B,CA,B,C defines a new curve of genus two 𝒞\mathcal{C}^{\prime} given by

(2.5) 𝒞:ΔABCη2=[A,B][A,C][B,C]\mathcal{C}^{\prime}:\quad\Delta_{ABC}\cdot\eta^{2}=[A,B]\,[A,C]\,[B,C]

where we have set [A,B]=BξAAξB[A,B]=B\,\partial_{\xi}A-A\,\partial_{\xi}B with ξ\partial_{\xi} denoting the derivative with respect to ξ\xi and ΔABC\Delta_{ABC} is the determinant of (A,B,C)(A,B,C) with respect to the basis ξ2,ξ,1\xi^{2},\xi,1. We have the following:

Proposition 2.1.

Let 𝒞\mathcal{C} be the smooth curve of genus two in Equation (2.1) and GG^{\prime} be the Göpel group G={0,p15,p23,p46}Jac(𝒞)[2]G^{\prime}=\{0,p_{15},p_{23},p_{46}\}\leqslant\operatorname{Jac}(\mathcal{C})[2]. Over 𝔐p\mathfrak{M}^{\prime}_{p} with p{p15,p23}p\in\{p_{15},p_{23}\} the curve 𝒞\mathcal{C}^{\prime} with Jac(𝒞)=Jac(𝒞)/G\operatorname{Jac}(\mathcal{C}^{\prime})=\operatorname{Jac}(\mathcal{C})/G^{\prime} is given by

(2.6) 𝒞:η2=(ξ2(λ1+λ2λ3))((ξ+λ1+λ2λ3)236λ1λ2λ3)(c2ξ2+c1ξ+c0),\mathcal{C}^{\prime}:\quad\eta^{2}=\Big{(}\xi-2\big{(}\lambda_{1}+\lambda_{2}\lambda_{3}\big{)}\Big{)}\Big{(}\big{(}\xi+\lambda_{1}+\lambda_{2}\lambda_{3})^{2}-36\lambda_{1}\lambda_{2}\lambda_{3}\Big{)}\Big{(}c_{2}\xi^{2}+c_{1}\xi+c_{0}\Big{)}\,,

where for 𝔐p23\mathfrak{M}^{\prime}_{p_{23}} we have κ2,32=λ2λ3\kappa_{2,3}^{2}=\lambda_{2}\lambda_{3} and

(2.7) c0= 2(λ15λ2λ3)(5λ1λ2λ3)κ2,3+(24λ2λ3+λ2+λ3)λ12+2λ1λ2λ3(12λ2λ317(λ2+λ3)+12)+λ22λ32(λ2+λ3+24),c1= 8(λ1+λ2λ3)κ2,32(6λ2λ3λ2λ3)λ1+2(λ2+λ36)λ2λ3,c2=λ2+λ32κ2,3,\begin{split}c_{0}&=\,2\big{(}\lambda_{1}-5\lambda_{2}\lambda_{3}\big{)}\big{(}5\lambda_{1}-\lambda_{2}\lambda_{3}\big{)}\kappa_{2,3}+\big{(}24\lambda_{2}\lambda_{3}+\lambda_{2}+\lambda_{3}\big{)}\lambda_{1}^{2}\\ &\,+2\lambda_{1}\lambda_{2}\lambda_{3}\big{(}12\lambda_{2}\lambda_{3}-17(\lambda_{2}+\lambda_{3})+12\big{)}+\lambda_{2}^{2}\lambda_{3}^{2}\big{(}\lambda_{2}+\lambda_{3}+24\big{)}\,,\\ c_{1}&=\,8\big{(}\lambda_{1}+\lambda_{2}\lambda_{3}\big{)}\kappa_{2,3}-2\big{(}6\lambda_{2}\lambda_{3}-\lambda_{2}-\lambda_{3}\big{)}\lambda_{1}+2\big{(}\lambda_{2}+\lambda_{3}-6\big{)}\lambda_{2}\lambda_{3}\,,\\ c_{2}&=\,\lambda_{2}+\lambda_{3}-2\,\kappa_{2,3}\,,\end{split}

and for 𝔐p15\mathfrak{M}^{\prime}_{p_{15}} we have κ1,52=λ1\kappa_{1,5}^{2}=\lambda_{1} and

(2.8) c0= 2(λ15λ2λ3)(5λ1λ2λ3)κ1,5+λ13+λ22λ32λ12(34λ2λ324(λ2+λ3)1)+λ1λ2λ3(λ2λ3+24(λ2+λ3)34),c1= 8(λ1+λ2λ3)κ1,52(6(λ2+λ3)λ2λ31)λ1+2(λ12+λ2λ3),c2=λ1+12κ1,5,\begin{split}c_{0}&=\,2\big{(}\lambda_{1}-5\lambda_{2}\lambda_{3}\big{)}\big{(}5\lambda_{1}-\lambda_{2}\lambda_{3}\big{)}\kappa_{1,5}+\lambda_{1}^{3}+\lambda_{2}^{2}\lambda_{3}^{2}\\ &\,-\lambda_{1}^{2}\big{(}34\lambda_{2}\lambda_{3}-24(\lambda_{2}+\lambda_{3})-1\big{)}+\lambda_{1}\lambda_{2}\lambda_{3}\big{(}\lambda_{2}\lambda_{3}+24(\lambda_{2}+\lambda_{3})-34\big{)}\,,\\ c_{1}&=\,8\big{(}\lambda_{1}+\lambda_{2}\lambda_{3}\big{)}\kappa_{1,5}-2\big{(}6(\lambda_{2}+\lambda_{3})-\lambda_{2}\lambda_{3}-1\big{)}\lambda_{1}+2\big{(}\lambda_{1}^{2}+\lambda_{2}\lambda_{3}\big{)}\,,\\ c_{2}&=\,\lambda_{1}+1-2\,\kappa_{1,5}\,,\end{split}

with c124c0c2=144κp2(λ21)(λ31)(λ2λ1)(λ3λ1)c_{1}^{2}-4c_{0}c_{2}=144\kappa_{p}^{2}(\lambda_{2}-1)(\lambda_{3}-1)(\lambda_{2}-\lambda_{1})(\lambda_{3}-\lambda_{1}).

Remark 2.2.

In Proposition 2.1 it is assumed that the curve 𝒞\mathcal{C} is smooth and very general. This is necessary to guarantee that the quintic in ξ\xi has distinct roots. For example, c2=0c_{2}=0 implies λ2=λ3\lambda_{2}=\lambda_{3} and 𝒞\mathcal{C} not smooth. Moreover, λ1=λ2λ3\lambda_{1}=\lambda_{2}\lambda_{3} implies ΔABC=0\Delta_{ABC}=0 in Equation (2.5) since 𝒞\mathcal{C} then admits an elliptic involution.

Proof.

One checks that

[A,C]=x2λ1,[B,C]=x2λ2λ3,\displaystyle[A,C]=x^{2}-\lambda_{1}\,,\qquad[B,C]=x^{2}-\lambda_{2}\lambda_{3}\,,
[A,B]=(1+λ1λ2λ3)x22(λ1λ2λ3)x+λ1λ2+λ1λ3λ2λ3λ1λ2λ3,\displaystyle[A,B]=(1+\lambda_{1}-\lambda_{2}-\lambda_{3})\,x^{2}-2(\lambda_{1}-\lambda_{2}\lambda_{3})\,x+\lambda_{1}\lambda_{2}+\lambda_{1}\lambda_{3}-\lambda_{2}\lambda_{3}-\lambda_{1}\lambda_{2}\lambda_{3}\,,

and ΔABC=λ1λ2λ3\Delta_{ABC}=\lambda_{1}-\lambda_{2}\lambda_{3}. We compute its Igusa-Clebsch invariants, using the same normalization as in [MR3712162, MR3731039]. Denoting the Igusa-Clebsch invariants of the curve of genus two in Equation (2.5) and Equation (2.6) by [I2:I4:I6:I10](2,4,6,10)[I_{2}:I_{4}:I_{6}:I_{10}]\in\mathbb{P}(2,4,6,10) and [I2:I4:I6:I10][I^{\prime}_{2}:I^{\prime}_{4}:I^{\prime}_{6}:I^{\prime}_{10}], respectively, one checks that

(2.9) [I2:I4:I6:I10]=[r2I2:r4I4:r6I6:r10I10]=[I2:I4:I6:I10],[I_{2}:I_{4}:I_{6}:I_{10}]=[r^{2}I^{\prime}_{2}\ :\ r^{4}I^{\prime}_{4}\ :\ r^{6}I^{\prime}_{6}\ :\ r^{10}I^{\prime}_{10}]=[I^{\prime}_{2}:I^{\prime}_{4}:I^{\prime}_{6}:I^{\prime}_{10}]\,,

with r=18(λ1λ2λ3)ϵr=18(\lambda_{1}-\lambda_{2}\lambda_{3})\epsilon with ϵ=κ2,3\epsilon=\kappa_{2,3} for Equation (2.7) and ϵ=κ1,5\epsilon=\kappa_{1,5} for Equation (2.8). Since the Igusa-Clebsch invariants for the two curves give the same point in weighted projective space, the claims follows. ∎

Remark 2.3.

There are exactly three Göpel groups that contain the fixed element p46Jac(𝒞)[2]p_{46}\in\operatorname{Jac}(\mathcal{C})[2], namely the groups

(2.10) G={0,p15,p23,p46},G={0,p13,p25,p46},G={0,p12,p35,p46},G^{\prime}=\{0,p_{15},p_{23},p_{46}\}\,,\quad G^{\prime\prime}=\{0,p_{13},p_{25},p_{46}\}\,,\quad G^{\prime\prime\prime}=\{0,p_{12},p_{35},p_{46}\}\,,

with Richelot isogenous curves of genus two 𝒞,𝒞,𝒞\mathcal{C}^{\prime},\mathcal{C}^{\prime\prime},\mathcal{C}^{\prime\prime\prime}. Convenient normal forms for 𝒞,𝒞\mathcal{C}^{\prime\prime},\mathcal{C}^{\prime\prime\prime} are obtained from Equations (2.6) by interchanging indices 121\leftrightarrow 2 or 131\leftrightarrow 3, respectively. By construction, the abelian surfaces Jac(𝒞)\operatorname{Jac}(\mathcal{C}^{\prime}), Jac(𝒞)\operatorname{Jac}(\mathcal{C}^{\prime\prime}), Jac(𝒞)\operatorname{Jac}(\mathcal{C}^{\prime\prime\prime}) are all principally polarized and (2,2)(2,2)-isogenous to Jac(𝒞)\operatorname{Jac}(\mathcal{C}).

Remark 2.4.

The Richelot isogeny in Equation (2.5) constructs a model for 𝒞\mathcal{C}^{\prime} such that the symmetric polynomials of the coordinates of pairs of Weierstrass points are rational over 𝔐\mathfrak{M}. Our model for 𝒞\mathcal{C}^{\prime} in Proposition 2.1 over 𝔐p\mathfrak{M}^{\prime}_{p} with p{p15,p23}p\in\{p_{15},p_{23}\} has in addition two rational Weierstrass points. It was shown in [Clingher:2018aa] that this guarantees that a dual Göpel group GJac(𝒞)[2]G\leqslant\operatorname{Jac}(\mathcal{C}^{\prime})[2] can be constructed from points of order two with rational coefficients over 𝔐p\mathfrak{M}^{\prime}_{p} that induces the dual (2,2)(2,2)-isogeny Ψ:𝖠𝖠=𝖠/G\Psi:\mathsf{A}^{\prime}\to\mathsf{A}=\mathsf{A}^{\prime}/G.

The element p46Jac(𝒞)[2]p_{46}\in\operatorname{Jac}(\mathcal{C})[2] determines a partition of the six Weierstrass points of 𝒞\mathcal{C} in Equation (2.1) into sets of two, four, and all six points. We obtain three double covers of the projective line ξ\mathbb{P}_{\xi} with affine coordinate ξ\xi, branched respectively at the marked sets of two, four, and all six points of genus zero, one, and two, respectively. The three double covers have a common double cover \mathcal{H}, which is the fiber product over 1\mathbb{P}^{1} of any two of the curves. Equivalently, the point of order two p46p_{46} determines a divisor D\mathrm{D} of degree zero with the associated line bundle =𝒪𝒞(D)\mathscr{L}=\mathcal{O}_{\mathcal{C}}(\mathrm{D}) satisfying 2=𝒪𝒞\mathscr{L}^{\otimes 2}=\mathcal{O}_{\mathcal{C}}. The zero section of the line bundle then determines the unramified double cover p:𝒞p:\mathcal{H}\to\mathcal{C}. Moreover, every unramified double cover of a hyperelliptic curve of genus two is obtained in this way [MR990136]*p. 387 and [MR770932]. The following lemma was proved in [beshaj2014decomposition]*Thm. 1:

Lemma 2.5.

The curve \mathcal{H}, given by

(2.11) υ2=(ζ21)(ζ2λ1)(ζ2λ2)(ζ2λ3),\begin{split}&\upsilon^{2}=\big{(}\zeta^{2}-1)\,\big{(}\zeta^{2}-\lambda_{1}\big{)}\,\big{(}\zeta^{2}-\lambda_{2}\big{)}\,\big{(}\zeta^{2}-\lambda_{3}\big{)}\,,\end{split}

is a hyperelliptic, bielliptic curve of genus three such that its Jacobian is isogenous to the product of a Jacobian of a smooth curve of genus two 𝒞\mathcal{C} and an elliptic curve \mathcal{E}, i.e.,

(2.12) Jac()Jac(𝒞)×,\operatorname{Jac}{(\mathcal{H})}\ \simeq\ \operatorname{Jac}{(\mathcal{C})}\times\mathcal{E}\,,

where \mathcal{E} is the elliptic curve with the jj-invariant

(2.13) j=256(σ12σ1σ23σ1σ3+σ223σ2+9σ3)3(λ11)2(λ21)2(λ31)2(λ1λ2)2(λ1λ3)2(λ2λ3)2,j=\frac{256\big{(}\sigma_{1}^{2}-\sigma_{1}\sigma_{2}-3\sigma_{1}\sigma_{3}+\sigma_{2}^{2}-3\sigma_{2}+9\sigma_{3}\big{)}^{3}}{(\lambda_{1}-1)^{2}(\lambda_{2}-1)^{2}(\lambda_{3}-1)^{2}(\lambda_{1}-\lambda_{2})^{2}(\lambda_{1}-\lambda_{3})^{2}(\lambda_{2}-\lambda_{3})^{2}}\,,

for σ1=λ1+λ2+λ3\sigma_{1}=\lambda_{1}+\lambda_{2}+\lambda_{3}, σ2=λ1λ2+λ1λ3+λ2λ3\sigma_{2}=\lambda_{1}\lambda_{2}+\lambda_{1}\lambda_{3}+\lambda_{2}\lambda_{3}, σ3=λ1λ2λ3\sigma_{3}=\lambda_{1}\lambda_{2}\lambda_{3}.

We have the following:

Remark 2.6.

Within the coarse moduli space 𝔐3\mathfrak{M}_{3} of curves of genus three, the hyperelliptic locus 𝔐h3\mathfrak{M}^{\mathrm{h}}_{3} is an irreducible five-dimensional sub-variety. We recall that the set of bielliptic curves of genus three 𝔐be3\mathfrak{M}^{\mathrm{be}}_{3} form an irreducible four-dimensional sub-variety of 𝔐3\mathfrak{M}_{3} [MR932781]. Moreover, it was proven in [MR1816214] that 𝔐be3\mathfrak{M}^{\mathrm{be}}_{3} is rational and 𝔐be3𝔐h3\mathfrak{M}^{\mathrm{be}}_{3}\cap\mathfrak{M}^{\mathrm{h}}_{3} is an irreducible, rational sub-variety of 𝔐be3\mathfrak{M}^{\mathrm{be}}_{3} of codimension one. Each isomorphism class [][\mathcal{H}] of 𝔐be3𝔐h3\mathfrak{M}^{\mathrm{be}}_{3}\cap\mathfrak{M}^{\mathrm{h}}_{3} can be represented as an unramified double covering of a curve of genus two 𝒞\mathcal{C}. Equation (2.11) then provides a normal form for \mathcal{H}.

Remark 2.7.

The curve in Equation (2.11) admits the base-point free involution ı:\imath\colon\mathcal{H}\rightarrow\mathcal{H} with (ζ,υ)(ζ,υ)(\zeta,\upsilon)\mapsto(-\zeta,-\upsilon) covering p:𝒞p\colon\mathcal{H}\rightarrow\mathcal{C} with (ξ,η)=(ζ2,ζυ)(\xi,\eta)=(\zeta^{2},\zeta\upsilon). It also admits the involution ȷ:\jmath\colon\mathcal{H}\rightarrow\mathcal{H} with (ζ,υ)(ζ,υ)(\zeta,\upsilon)\mapsto(-\zeta,\upsilon) covering the double cover π:\pi\colon\mathcal{H}\rightarrow{\mathcal{E}} with Prym(,p:𝒞)\operatorname{Prym}(\mathcal{H},p\colon\mathcal{H}\rightarrow\mathcal{C})\cong\mathcal{E}. The involutions ı\imath and ȷ\jmath commute, and their composition ıȷ\imath\circ\jmath defines a hyperelliptic structure on \mathcal{H}.

The quotient 𝖠/id\mathsf{A}/\langle-{\rm id}\rangle (where id-{\rm id} is the antipodal involution on an abelian surface 𝖠\mathsf{A} with ρ(𝖠)=1\rho(\mathsf{A})=1) has sixteen ordinary double points, called the nodes. The double points are the images of the points of order two pij𝖠[2]p_{ij}\in\mathsf{A}[2] for 1i<j61\leq i<j\leq 6. The minimum resolution of 𝖠/id\mathsf{A}/\langle-{\rm id}\rangle, denoted by Kum(𝖠)\operatorname{Kum}(\mathsf{A}), is a K3 surface known as the Kummer surface associated with 𝖠\mathsf{A}. It contains an even set of 16 disjoint rational curves Eij\mathrm{E}_{ij} which are the exceptional divisors introduced in the blow-up process. A second set of 16 disjoint rational curves Tij\mathrm{T}_{ij} are the images of the translates pij+Θp_{ij}+\Theta of the theta divisor Θ=[𝒞]\Theta=[\mathcal{C}] in Kum(𝖠)\operatorname{Kum}(\mathsf{A}); they are called tropes. The two sets of rational curves, {Eij}\{\mathrm{E}_{ij}\} and {Tij}\{\mathrm{T}_{ij}\}, have a rich symmetry, called the 16616_{6}-symmetry of a Kummer surface. We call the Kummer surface Kum(𝖠)\operatorname{Kum}(\mathsf{A}) generic if 𝖠\mathsf{A} has no extra endomorphisms.

For the symmetric product 𝒞(2)\mathcal{C}^{(2)}, the quotient 𝒞(2)/ı𝒞×ı𝒞\mathcal{C}^{(2)}/\langle\imath_{\mathcal{C}}\times\imath_{\mathcal{C}}\rangle is realized as a variety in terms of U=x(1)x(2)U=x^{(1)}x^{(2)}, X=x(1)+x(2)X=x^{(1)}+x^{(2)}, and Y=y(1)y(2)Y=y^{(1)}y^{(2)} and the affine equation

(2.14) Y2=U(UX+1)i=13(λi2UλiX+1).Y^{2}=U\big{(}U-X+1\big{)}\prod_{i=1}^{3}\big{(}\lambda_{i}^{2}\,U-\lambda_{i}\,X+1\big{)}\,.

The affine variety in Equation (2.14) completes to a hypersurface in (1,1,1,3)\mathbb{P}(1,1,1,3) called the Shioda sextic [MR2296439] and is birational to the Kummer surface Kum(Jac𝒞)\operatorname{Kum}(\operatorname{Jac}\mathcal{C}). In fact, Equation (2.14) corresponds to the double cover of the projective plane branched on six lines tangent to a common conic; see [Clingher:2018aa]. Moreover, the corresponding Kummer surface has sixteen rational tropes.

It was shown in [Clingher:2017aa, MR4015343] that the Shioda sextic in Equation (2.14) equips the Kummer surface 𝒳=Kum(Jac𝒞)\mathcal{X}=\operatorname{Kum}(\operatorname{Jac}\mathcal{C}) with a Jacobian elliptic fibration, i.e., an elliptic fibration π𝒳:𝒳1\pi_{\mathcal{X}}:\mathcal{X}\to\mathbb{P}^{1} with section σ𝒳\sigma_{\mathcal{X}} such that π𝒳σ𝒳=id\pi_{\mathcal{X}}\circ\sigma_{\mathcal{X}}=\operatorname{id}. This becomes obvious when bringing Equation (2.14) into the equivalent form

(2.15) 𝒳:y2=x(xu(u2uΛ3+1)(Λ1Λ2)(Λ2Λ3))(xu(u2uΛ2+1)(Λ1Λ3)(Λ2Λ3)).\mathcal{X}:\quad y^{2}=x\left(x-\frac{u\left(u^{2}-u\,\Lambda_{3}+1\right)\left(\Lambda_{1}-\Lambda_{2}\right)}{\left(\Lambda_{2}-\Lambda_{3}\right)}\right)\,\left(x-\frac{u\left(u^{2}-u\,\Lambda_{2}+1\right)\left(\Lambda_{1}-\Lambda_{3}\right)}{\left(\Lambda_{2}-\Lambda_{3}\right)}\right)\,.

Here, the section σ𝒳\sigma_{\mathcal{X}} is given by the point at infinity in each fiber, and a 2-torsion section is τ𝒳:(x,y)=(0,0)\tau_{\mathcal{X}}:(x,y)=(0,0), and U=lu=κ1,5κ2,3uU=lu=\kappa_{1,5}\kappa_{2,3}u. Using the Kodaira classification for singular fibers of Jacobian elliptic fibrations [MR0184257], we have the following:

Lemma 2.8.

Equation (2.15) determines a Jacobian elliptic fibration on the Kummer surface 𝒳=Kum(Jac𝒞)\mathcal{X}=\operatorname{Kum}(\operatorname{Jac}\mathcal{C}). Generically, the Weierstrass model has two singular fibers of Kodaira type I0I_{0}^{*} at u=0,u=0,\infty, six singular fibers of type I2I_{2}, and the Mordell-Weil group of sections MW(𝒳,π𝒳)=(/2)21\operatorname{MW}(\mathcal{X},\pi_{\mathcal{X}})=(\mathbb{Z}/2\mathbb{Z})^{2}\oplus\langle 1\rangle.

In the statement above the symbol m\langle m\rangle stands for a rank 1 lattice x\mathbb{Z}x satisfying x,x=m\langle x,x\rangle=m with respect to the height pairing.

Proof.

One easily identifies the collection of singular fibers and the torsion part of the Mordell-Weil group. From a comparison with the results in [MR3263663] one then determines the full Mordell-Weil group. ∎

We make the following:

Remark 2.9.

The established normal form for the Jacobian elliptic fibration in Equation (2.15) involves an additional choice: with (λ4,λ6)=(0,)(\lambda_{4},\lambda_{6})=(0,\infty) the grouping of the remaining Weierstrass points as {λ1,λ5=1}\{\lambda_{1},\lambda_{5}=1\} and {λ2,λ3}\{\lambda_{2},\lambda_{3}\} marks a 2-torsion section, namely τ𝒳\tau_{\mathcal{X}}. This choice is equivalent to selecting GG^{\prime}, i.e., one out of three Göpel groups containing the point p46Jac(𝒞)[2]p_{46}\in\operatorname{Jac}(\mathcal{C})[2]; see Remark 2.3.

2.2. Abelian and Kummer surfaces with (1,2)(1,2)-polarization

Let us also consider abelian surfaces 𝖡\mathsf{B} with a polarization of type (d1,d2)=(1,2)(d_{1},d_{2})=(1,2) given by an ample symmetric line bundle 𝒱\mathscr{V} with 𝒱2=4\mathscr{V}^{2}=4.

As for principally polarized abelian surfaces, the quotient 𝖡/id\mathsf{B}/\langle-{\rm id}\rangle has sixteen ordinary double points and a minimal resolution, denoted by Kum(𝖡)\operatorname{Kum}(\mathsf{B}). The double points are again the images of the points of order two {q0,,q15}\{q_{0},\dots,q_{15}\} on 𝖡\mathsf{B}, and the disjoint rational curves {K0,,K15}\{\mathrm{K}_{0},\dots,\mathrm{K}_{15}\} are the exceptional divisors introduced in the blow-up process such that KiKj=2δij\mathrm{K}_{i}\circ\mathrm{K}_{j}=-2\delta_{ij} for 0i150\leq i\leq 15. They are contained in a minimal primitive sub-lattice of the Néron-Severi lattice of Kum(𝖡)\operatorname{Kum}(\mathsf{B}), known as Kummer lattice. In particular, they form an even set in the Néron-Severi lattice, and the class K^=12(K0++K15)\hat{\mathrm{K}}=\frac{1}{2}(\mathrm{K}_{0}+\dots+\mathrm{K}_{15}) is an element of this lattice with K^2=8\hat{\mathrm{K}}^{2}=-8. In fact, the Néron-Severi lattice NS(Kum𝖡)\mathrm{NS}(\operatorname{Kum}\mathsf{B}) is generated over \mathbb{Q} by the classes Ki\mathrm{K}_{i}, K^\hat{\mathrm{K}}, and one additional class H\mathrm{H} with H2=8\mathrm{H}^{2}=8 and HKi=0\mathrm{H}\circ\mathrm{K}_{i}=0 for 0i150\leq i\leq 15.

The polarization line bundle 𝒱\mathscr{V} defines a canonical map φ𝒱:𝖡d1d21=1\varphi_{\mathscr{V}}:\mathsf{B}\to\mathbb{P}^{d_{1}d_{2}-1}=\mathbb{P}^{1}, such that the linear system |𝒱||\mathscr{V}| is a pencil on 𝖡\mathsf{B}, and each curve in |𝒱||\mathscr{V}| has self-intersection equal to 44. Since we assume ρ(𝖡)=1\rho(\mathsf{B})=1, the abelian surface 𝖡\mathsf{B} cannot be a product of two elliptic curves or isogenous to a product of two elliptic curves. It was proven in [MR2062673]*Prop. 4.1.6, Lemma 10.1.2 that the linear system |𝒱||\mathscr{V}| has exactly four base points. To characterize these four base points, Barth proved in [MR946234] that the base points form the group Tr(𝒱)={p𝖡trp𝒱=𝒱}(/2)2\operatorname{Tr}(\mathscr{V})=\{p\in\mathsf{B}\mid\,\operatorname{tr}_{p}^{*}\mathscr{V}=\mathscr{V}\}\cong(\mathbb{Z}/2\mathbb{Z})^{2} where elements of 𝖡\mathsf{B} act by translation trp(x)=x+p\operatorname{tr}_{p}(x)=x+p. Thus, the base points have order two on the abelian surface 𝖡\mathsf{B}; we will choose them to be {q0,q1,q2,q3}\{q_{0},q_{1},q_{2},q_{3}\}. A curve in the pencil |𝒱||\mathscr{V}| is never singular at any of the base points {q0,q1,q2,q3}\{q_{0},q_{1},q_{2},q_{3}\}; see [MR2729013]*Lemma 3.2. Barth’s seminal duality theorem in [MR946234] can then be stated as follows:

Theorem 2.10 (Barth).

In the situation above, let 𝒟|𝒱|\mathcal{D}\in|\mathscr{V}| be a smooth curve of genus three in the pencil |𝒱||\mathscr{V}|. There exists a bielliptic involution ȷ\jmath on 𝒟\mathcal{D} with degree-two quotient map π:𝒟𝒬=𝒟/ȷ\pi:\mathcal{D}\to\mathcal{Q}=\mathcal{D}/\langle\jmath\rangle onto an elliptic curve 𝒬\mathcal{Q} such that 𝖡\mathsf{B} is naturally isomorphic to the Prym variety Prym(𝒟,π)\operatorname{Prym}(\mathcal{D},\pi) and the involution id-{\rm id} restrict to ȷ\jmath.

Conversely, if 𝒟\mathcal{D} is a smooth bielliptic curve of genus three with degree-two quotient map π:𝒟𝒬=𝒟/ȷ\pi:\mathcal{D}\to\mathcal{Q}=\mathcal{D}/\langle\jmath\rangle then 𝒟\mathcal{D} is embedded in Prym(𝒟,π)\operatorname{Prym}(\mathcal{D},\pi) as a curve of self-intersection four. The Prym variety Prym(𝒟,π)\operatorname{Prym}(\mathcal{D},\pi) is an abelian surface with a polarization of type (1,2)(1,2).

We will denote the exceptional curves associated with the base points on the Kummer surface Kum(𝖡)\operatorname{Kum}(\mathsf{B}) by {K0,K1,K2,K3}\{\mathrm{K}_{0},\mathrm{K}_{1},\mathrm{K}_{2},\mathrm{K}_{3}\}. The map φ𝒱:𝖡1\varphi_{\mathscr{V}}:\mathsf{B}\to\mathbb{P}^{1} induces a Jacobian elliptic fibration on π𝒴:𝒴=Kum(𝖡)1\pi_{\mathcal{Y}}:\mathcal{Y}=\operatorname{Kum}(\mathsf{B})\to\mathbb{P}^{1} with section σ𝒴\sigma_{\mathcal{Y}} as follows: first, a fibration is obtained by blowing up the base points of the pencil |𝒱||\mathscr{V}|. The fibers of this fibration are the strict transform of the curves 𝒟|𝒱|\mathcal{D}\in|\mathscr{V}| and so the general fiber is a smooth curve of genus three. The involution ı\imath lifts to an involution on this fibration whose fixed points are the exceptional curves over {q0,q1,q2,q3}\{q_{0},q_{1},q_{2},q_{3}\}. We then take as the general fiber of π𝒴\pi_{\mathcal{Y}} the quotient of the general fiber of ϕ𝒱\phi_{\mathscr{V}} by the bielliptic involution. Since a curve in the pencil |𝒱||\mathscr{V}| is never singular at any of the base points {q0,q1,q2,q3}\{q_{0},q_{1},q_{2},q_{3}\}, we can take as zero-section σ𝒴\sigma_{\mathcal{Y}} the exceptional curve over q0q_{0} such that the divisor class of the section is [σ𝒴]=K0[\sigma_{\mathcal{Y}}]=\mathrm{K}_{0}. Garbagnati [Garbagnati08, MR3010125] proved:

Proposition 2.11 (Garbagnati).

The fibration π𝒴:𝒴=Kum(𝖡)1\pi_{\mathcal{Y}}:\mathcal{Y}=\operatorname{Kum}(\mathsf{B})\to\mathbb{P}^{1} has twelve singular fibers of Kodaira type I2I_{2} and no other singular fibers. The Mordell-Weil group satisfies MW(𝒴,π𝒴)tor=(/2)2\operatorname{MW}(\mathcal{Y},\pi_{\mathcal{Y}})_{\mathrm{tor}}=(\mathbb{Z}/2\mathbb{Z})^{2} and rankMW(𝒴,π𝒴)=3\operatorname{rank}\operatorname{MW}(\mathcal{Y},\pi_{\mathcal{Y}})=3. The smooth fiber class F\mathrm{F} with F2=0\mathrm{F}^{2}=0 and FK0\mathrm{F}\circ\mathrm{K}_{0}=1 is given by

(2.16) F=HK0K1K2K32.\mathrm{F}=\frac{\mathrm{H}-\mathrm{K}_{0}-\mathrm{K}_{1}-\mathrm{K}_{2}-\mathrm{K}_{3}}{2}\,.

The twelve non-neutral components of the reducible fibers of Kodaira type A1A_{1} represent the classes K4,,K15\mathrm{K}_{4},\dots,\mathrm{K}_{15} of the Kummer lattice and are not intersected by the class of the zero section given by K0\mathrm{K}_{0}. In fact, the remaining four classes Ki\mathrm{K}_{i} with 0i30\leq i\leq 3 satisfy FKi=1\mathrm{F}\circ\mathrm{K}_{i}=1 and KiKj=0\mathrm{K}_{i}\circ\mathrm{K}_{j}=0 with 4j154\leq j\leq 15. Thus, they represent sections of the Jacobian elliptic fibration which intersect only neutral components of the reducible fibers, given by the divisor classes FKj\mathrm{F}-\mathrm{K}_{j} with 0i30\leq i\leq 3 and 4j154\leq j\leq 15.

We now construct a Weierstrass model for the fibration in Proposition 2.11 as follows: Mehran proved in [MR2804549] that there are fifteen distinct isomorphism classes of rational double covers ϕ:𝒴𝒳\phi:\mathcal{Y}\dasharrow\mathcal{X} of the Kummer surface 𝒳=Kum(𝖠)\mathcal{X}=\operatorname{Kum}(\mathsf{A}) associated with the principal polarized abelian surface 𝖠=Jac(𝒞)\mathsf{A}=\operatorname{Jac}(\mathcal{C}), such that the preimage is a Kummer surface 𝒴=Kum(𝖡)\mathcal{Y}=\operatorname{Kum}(\mathsf{B}) associated with an abelian surface 𝖡\mathsf{B} with the polarization of type (1,2)(1,2). Mehran computed that the branching loci giving rise to these 15 distinct isomorphism classes of double covers are even eights of exceptional curves on the Kummer surface Kum(𝖠)\operatorname{Kum}(\mathsf{A}) [MR2804549]*Prop. 4.2: each even eight is itself enumerated by a point of order two pij𝖠[2]p_{ij}\in\mathsf{A}[2] with 1i<j61\leq i<j\leq 6, and given as a sum in the Néron-Severi lattice of the form

(2.17) Δpij=Ei1++Eij^++Ei6+Ej1++Eij^++Ej6,\Delta_{p_{ij}}=\mathrm{E}_{i1}+\dots+\widehat{\mathrm{E}_{ij}}+\dots+\mathrm{E}_{i6}+\mathrm{E}_{j1}+\dots+\widehat{\mathrm{E}_{ij}}+\dots+\mathrm{E}_{j6}\,,

where Eii=0\mathrm{E}_{ii}=0, and Eij\mathrm{E}_{ij} are the exceptional divisors obtained by resolving the nodes pijp_{ij}; the hat indicates divisors that are not part of the even eight. Moreover, Mehran proved that each rational map ϕΔ:Kum(𝖡)Kum(𝖠)\phi_{\Delta}:\operatorname{Kum}(\mathsf{B})\dashrightarrow\operatorname{Kum}(\mathsf{A}) branched on such an even eight Δ\Delta is induced by an isogeny ΦΔ:𝖡𝖠\Phi_{\Delta}:\mathsf{B}\to\mathsf{A} of abelian surfaces of degree two and vice versa [MR2804549]. We call such an isogeny Φ\Phi a (1,2)(1,2)-isogeny. We have the following:

Remark 2.12.

In terms of the 16616_{6}-configuration, the zero section σ𝒳\sigma_{\mathcal{X}} of the elliptic fibration in Lemma 2.8 and the 2-torsion section τ𝒳:(x,y)=(0,0)\tau_{\mathcal{X}}:(x,y)=(0,0) are identified with the tropes T5=T56\mathrm{T}_{5}=\mathrm{T}_{56} and T1=T16\mathrm{T}_{1}=\mathrm{T}_{16}, respectively. The eight non-central components of the two reducible fibers of type D4D_{4} in the elliptic fibration in Equation (2.15) form the even eight Δ46\Delta_{46} on Kum(Jac𝒞)\operatorname{Kum}(\operatorname{Jac}\mathcal{C}), consisting of the exceptional divisors for the nodes {pi4}\{p_{i4}\} and {pi6}\{p_{i6}\} with i=1,2,3,5i=1,2,3,5. Their central components are the tropes T4=T46\mathrm{T}_{4}=\mathrm{T}_{46} and T6=T66\mathrm{T}_{6}=\mathrm{T}_{66} since the fibers are located over u=0u=0 and u=u=\infty, respectively. There are exactly six more exceptional divisors from nodes that occur as components of reducible fibers; see [MR2804549, MR2306633]. The situation is depicted in Figure 1.

Refer to caption
Figure 1. Reducible fibers in Lemma 2.8

Let 𝒴=Kum(𝖡p46)\mathcal{Y}=\operatorname{Kum}(\mathsf{B}_{p_{46}}) be the Kummer surface associated with the abelian surface 𝖡p46\mathsf{B}_{p_{46}} with the polarization of type (1,2)(1,2) induced by the even eight Δp46\Delta_{p_{46}}. That is, let 𝒴\mathcal{Y} be the preimage of the rational double cover ϕΔp46:𝒴𝒳=Kum(Jac𝒞)\phi_{\Delta_{p_{46}}}:\mathcal{Y}\dasharrow\mathcal{X}=\operatorname{Kum}(\operatorname{Jac}\mathcal{C}) branched on the even eight Δp46NS(𝒳)\Delta_{p_{46}}\subset\operatorname{NS}(\mathcal{X}). Because of Remark 2.12 the degree-two rational map ϕΔp46\phi_{\Delta_{p_{46}}} is induced by the double cover of 1\mathbb{P}^{1} branched over u=0u=0 and u=u=\infty. We then have

(2.18) ϕΔp46:𝒴𝒳,(v,X,Y)(u,x,y)=(v2,v2X,v3Y).\phi_{\Delta_{p_{46}}}:\mathcal{Y}\dasharrow\mathcal{X}\,,\quad(v,X,Y)\mapsto(u,x,y)=(v^{2},v^{2}X,v^{3}Y)\,.

Accordingly, a Weierstrass equation for 𝒴\mathcal{Y} is immediately found to be

(2.19) 𝒴:Y2=X(X(v4v2Λ3+1)(Λ1Λ2)(Λ2Λ3))(X(v4v2Λ2+1)(Λ1Λ3)(Λ2Λ3)),\mathcal{Y}:\quad Y^{2}=X\left(X-\frac{\left(v^{4}-v^{2}\Lambda_{3}+1\right)\left(\Lambda_{1}-\Lambda_{2}\right)}{\left(\Lambda_{2}-\Lambda_{3}\right)}\right)\left(X-\frac{\left(v^{4}-v^{2}\Lambda_{2}+1\right)\left(\Lambda_{1}-\Lambda_{3}\right)}{\left(\Lambda_{2}-\Lambda_{3}\right)}\right),

with zero section σ𝒴\sigma_{\mathcal{Y}} and a 2-torsion section τ𝒴:(X,Y)=(0,0)\tau_{\mathcal{Y}}:(X,Y)=(0,0). According to Mehran’s result, there is a corresponding isogeny ΦΔp46:𝖡p46𝖠\Phi_{\Delta_{p_{46}}}:\mathsf{B}_{p_{46}}\to\mathsf{A} which induces ϕΔp46\phi_{\Delta_{p_{46}}}. We have the following:

Proposition 2.13.

Equation (2.19) determines the Jacobian elliptic fibration on the Kummer surface 𝒴=Kum(𝖡p46)\mathcal{Y}=\operatorname{Kum}(\mathsf{B}_{p_{46}}) from Proposition 2.11. Generically, the Weierstrass model has 12 singular fibers of Kodaira type I2I_{2}, and the Mordell-Weil group MW(𝒴,π𝒴)=(/2)2122\operatorname{MW}(\mathcal{Y},\pi_{\mathcal{Y}})=(\mathbb{Z}/2\mathbb{Z})^{2}\oplus\langle 1\rangle^{\oplus 2}\oplus\langle 2\rangle.

Proof.

One easily identifies the collection of singular fibers and the torsion part of the Mordell-Weil group. A complete set of generators for the Mordell-Weil group was provided in [MR3995925, CMS:2019]. In [MR3995925] three pairwise orthogonal, non-torsion sections of the elliptic fibration (π𝒴,σ𝒴)(\pi_{\mathcal{Y}},\sigma_{\mathcal{Y}}) of minimal height were constructed that generate a rank-three sub-lattice of the Mordell-Weil group of sections. It was proved in [Garbagnati08]*Prop. ​2.2.4 that the transcendental lattice of the Kummer surface Kum(𝖡)\operatorname{Kum}(\mathsf{B}) with polarization of type (1,2)(1,2) is isometric to U(2)U(2)8U(2)\oplus U(2)\oplus\langle-8\rangle and the determinant of the discriminant form equals 272^{7} where UU is the standard rank-two hyperbolic lattice. This is in agreement with the determinant of the discriminant form for the Néron-Severi lattice obtained from an elliptic fibration with section, twelve singular fibers of Kodaira type I2I_{2}, and a Mordell-Weil group of sections (/2)2122(\mathbb{Z}/2\mathbb{Z})^{2}\oplus\langle 1\rangle^{\oplus 2}\oplus\langle 2\rangle. ∎

2.3. Kummer surfaces with (2,2)(2,2)-polarization

On 𝒴=Kum(𝖡p46)\mathcal{Y}=\operatorname{Kum}(\mathsf{B}_{p_{46}}) we can construct another even eight of exceptional curves Δ\Delta^{\prime} as follows: the fibration in Equation (2.19) has eight reducible fibers of type A1A_{1} where the 2-torsion section τ𝒴:(X,Y)=(0,0)\tau_{\mathcal{Y}}:(X,Y)=(0,0) intersects the non-neutral component, i.e., the component of the fiber not met by the zero-section σ𝒴\sigma_{\mathcal{Y}}. These divisors from an even eight which is precisely the even eight Δ=ΔG\Delta^{\prime}=\Delta_{G^{\prime}} determined by the Göpel group G={0,p15,p23,p46}Jac(𝒞)[2]G^{\prime}=\{0,p_{15},p_{23},p_{46}\}\subset\operatorname{Jac}(\mathcal{C})[2], namely the union of the non-neutral components of the preimages of the four reducible A1A_{1}-fibers in the fibration (2.15) on Kum(Jac𝒞)\operatorname{Kum}(\operatorname{Jac}\mathcal{C}) not containing p15p_{15}, p23p_{23} under the double cover ϕΔp46:𝒴𝒳=Kum(Jac𝒞)\phi_{\Delta_{p_{46}}}:\mathcal{Y}\dasharrow\mathcal{X}=\operatorname{Kum}(\operatorname{Jac}\mathcal{C}); see Figure 1. We then obtain a new K3 surface 𝒳\mathcal{X}^{\prime} as the preimage of the rational double cover ϕΔG:𝒳𝒴\phi_{\Delta_{G^{\prime}}}:\mathcal{X}^{\prime}\dasharrow\mathcal{Y} branched on ΔGNS(𝒴)\Delta_{G^{\prime}}\subset\operatorname{NS}(\mathcal{Y}). Since the even eight consists only of non-neutral components of reducible fibers, the new K3 surface 𝒳\mathcal{X}^{\prime} carries an induced elliptic fibration with section and 2-torsion section. In fact, using the results in [MR3995925] a Weierstrass model for 𝒳\mathcal{X}^{\prime} is found to be

(2.20) 𝒳:y2=x3+(v2+v2Λ1)2v4x+(2Λ1Λ2Λ3)(v2+v2)+2Λ2Λ3Λ1Λ2Λ1Λ3Λ2Λ3v2x2,\begin{split}&\qquad\mathcal{X}^{\prime}:\qquad\,y^{2}=x^{3}+(v^{2}+v^{-2}-\Lambda_{1})^{2}\,v^{4}x\\ +&\;\frac{(2\Lambda_{1}-\Lambda_{2}-\Lambda_{3})(v^{2}+v^{-2})+2\Lambda_{2}\Lambda_{3}-\Lambda_{1}\Lambda_{2}-\Lambda_{1}\Lambda_{3}}{\Lambda_{2}-\Lambda_{3}}\,v^{2}x^{2}\,,\end{split}

with zero section σ𝒳\sigma_{\mathcal{X}^{\prime}} and 2-torsion section τ𝒳:(x,y)=(0,0)\tau_{\mathcal{X}^{\prime}}:(x,y)=(0,0). Thus, we are in the situation where both K3 surfaces 𝒳\mathcal{X}^{\prime} and 𝒴\mathcal{Y} are endowed with Jacobian elliptic fibrations which, in addition to trivial sections, each carry a section that makes an element of order two in the Mordell-Weil group. Fiberwise translations by these 2-torsion sections are then known to define involutions ı𝒳\imath_{\mathcal{X}^{\prime}} on 𝒳\mathcal{X}^{\prime} and ı𝒴\imath_{\mathcal{Y}} on 𝒴\mathcal{Y}, respectively, called van Geemen-Sarti involutions [MR2274533, MR2824841]. The involutions are special Nikulin involutions, and from the Nikulin construction we obtain a pair of dual geometric 2-isogenies between 𝒳\mathcal{X}^{\prime} and 𝒴\mathcal{Y}:

(2.21) 𝒴\textstyle{\mathcal{Y}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ı𝒴\scriptstyle{\imath_{\mathcal{Y}}}ϕ\scriptstyle{\phi^{\prime\prime}}𝒳\textstyle{\mathcal{X}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ı𝒳\scriptstyle{\imath_{\mathcal{X}^{\prime}}}ϕ\scriptstyle{\phi^{\prime}}

We have the following:

Proposition 2.14.

Equation (2.20) determines a Jacobian elliptic fibration on the Kummer surface 𝒳=Kum(Jac𝒞)\mathcal{X}^{\prime}=\operatorname{Kum}(\operatorname{Jac}\mathcal{C}^{\prime}) for 𝒞\mathcal{C}^{\prime} given in Proposition 2.1. Generically, the Weierstrass model has 4 singular fibers of Kodaira type I4I_{4}, 8 singular fibers of type I1I_{1}, and the Mordell-Weil group MW(𝒳,π𝒳)=/213\operatorname{MW}(\mathcal{X}^{\prime},\pi_{\mathcal{X}^{\prime}})=\mathbb{Z}/2\mathbb{Z}\oplus\langle 1\rangle^{\oplus 3}.

Proof.

Rosenhain moduli Λ1,Λ2,Λ3\Lambda^{\prime}_{1},\Lambda^{\prime}_{2},\Lambda^{\prime}_{3} for the curve of genus two 𝒞\mathcal{C}^{\prime} in Proposition 2.1 were computed as rational functions of the moduli Λ1,Λ2,Λ3\Lambda_{1},\Lambda_{2},\Lambda_{3} of 𝒞\mathcal{C} and vice versa in [Clingher:2018aa]. Substituting these relations into Equation (2.20), one recovers the Weierstrass model of the elliptic fibration (7) in the list of all elliptic fibrations on Kum(Jac𝒞)\operatorname{Kum}(\operatorname{Jac}\mathcal{C}^{\prime}) in [MR3263663]*Thm. 2. ∎

We have the following:

Remark 2.15.

In the situation above, it follows ϕ=ϕΔG\phi^{\prime}=\phi_{\Delta_{G^{\prime}}}, i.e., the rational double cover branched on ΔGNS(𝒴)\Delta_{G^{\prime}}\subset\operatorname{NS}(\mathcal{Y}) is precisely the 2-isogeny covered by the van Geemen-Sarti involution ı𝒳\imath_{\mathcal{X}^{\prime}}. On the one hand, the even eight Δ=ΔG\Delta^{\prime}=\Delta_{G^{\prime}} determined by the Göpel group G={0,p15,p23,p46}Jac(𝒞)[2]G^{\prime}=\{0,p_{15},p_{23},p_{46}\}\leqslant\operatorname{Jac}(\mathcal{C})[2] as the union of the non-neutral components in the preimages of the four reducible A1A_{1}-fibers in the fibration (2.15) on 𝒳=Kum(Jac𝒞)\mathcal{X}=\operatorname{Kum}(\operatorname{Jac}\mathcal{C}) not containing p15p_{15}, p23p_{23} under ϕΔp46:𝒴𝒳\phi_{\Delta_{p_{46}}}:\mathcal{Y}\dasharrow\mathcal{X}. On the other hand, the van Geemen-Sarti involution ı𝒳\imath_{\mathcal{X}^{\prime}} was the fiberwise translation by the 2-torsion section τ𝒴:(X,Y)=(0,0)\tau_{\mathcal{Y}}:(X,Y)=(0,0) in the fibration (2.19) on 𝒴=Kum(𝖡)\mathcal{Y}=\operatorname{Kum}(\mathsf{B}) which in turn was determined by the Göpel group GG^{\prime} as well; see Remark 2.9.

We also make the following:

Remark 2.16.

It was shown in [Clingher:2017aa] that the dual isogeny ϕ\phi^{\prime\prime} in Equation (2.21) is branched on the even eight of exceptional curves Δp46NS(Kum(Jac𝒞))\Delta_{p^{\prime}_{46}}\subset\operatorname{NS}(\operatorname{Kum}(\operatorname{Jac}\mathcal{C}^{\prime})). Accordingly, 𝒴\mathcal{Y} is the Kummer surface associated with two different abelian surfaces with a polarization of type (1,2)(1,2). One is obtained from the double cover of Kum(Jac𝒞)\operatorname{Kum}(\operatorname{Jac}\mathcal{C}) branched on Δp46\Delta_{p_{46}}, the other from the double cover of Kum(Jac𝒞)\operatorname{Kum}(\operatorname{Jac}\mathcal{C}^{\prime}) branched on Δp46\Delta_{p^{\prime}_{46}}. Thus, we have 𝒴Kum(𝖡p46)Kum(𝖡p46)\mathcal{Y}\cong\operatorname{Kum}(\mathsf{B}_{p_{46}})\cong\operatorname{Kum}(\mathsf{B}_{p^{\prime}_{46}}).

3. Abel-Jacobi map, canonical curves, and associated K3 surfaces

In this section we will construct a pencil of plane, bielliptic curves of genus three and its induced genus-one fibration from the Abel-Jacobi map of a single smooth quartic curve. We then show that the obtained genus-one fibration always admits four rational sections and is isomorphic to a Jacobian elliptic fibration on a K3 surface of Picard-rank 17. We also prove certain properties for special members of the pencil and the close relation to a linear system of quadrics in 4\mathbb{P}^{4}.

3.1. The Abel-Jacobi map

Let 𝒬\mathcal{Q} be a smooth curve of genus one given by the quartic equation w2=P(x)=i=04aix4iw^{2}=P(x)=\sum_{i=0}^{4}a_{i}x^{4-i}, using the affine coordinates (x,w)2(x,w)\in\mathbb{C}^{2}. Given a point (x0,w0)𝒬(x_{0},-w_{0})\in\mathcal{Q} we consider the Abel-Jacobi map J(x0,w0):𝒬Jac(𝒬)J_{(x_{0},-w_{0})}:\mathcal{Q}\to\operatorname{Jac}(\mathcal{Q}) which relates the algebraic curve 𝒬\mathcal{Q} to its Jacobian variety Jac(𝒬)\operatorname{Jac}(\mathcal{Q}), i.e., an elliptic curve. A classical result due to Hermite states that Jac(𝒬)\operatorname{Jac}(\mathcal{Q})\cong\mathcal{E} where \mathcal{E} is the elliptic curve given by

(3.1) :η2=S(ξ)=ξ3+fξ+g.\mathcal{E}:\quad\eta^{2}=S(\xi)=\xi^{3}+f\,\xi+g\,.

Here, we are using the affine coordinates (ξ,η)2(\xi,\eta)\in\mathbb{C}^{2} and

(3.2) f=4a0a4+a1a313a22,g=83a0a2a4+a0a32+a12a413a1a2a3+227a23;f=-4a_{0}a_{4}+a_{1}a_{3}-\frac{1}{3}a_{2}^{2}\,,\qquad g=-\frac{8}{3}a_{0}a_{2}a_{4}+a_{0}a_{3}^{2}+a_{1}^{2}a_{4}-\frac{1}{3}a_{1}a_{2}a_{3}+\frac{2}{27}a_{2}^{3}\,;

the construction was reviewed in [MR2166182, MR3995925]. We introduce the polynomial

(3.3) R(x,x0)=a4x2x02+a32xx0(x+x0)+a26(x2+x02)+2a23xx0+a12(x+x0)+a0,R(x,x_{0})=a_{4}\,x^{2}x_{0}^{2}+\frac{a_{3}}{2}xx_{0}\big{(}x+x_{0}\big{)}+\frac{a_{2}}{6}\big{(}x^{2}+x_{0}^{2}\big{)}+\frac{2a_{2}}{3}xx_{0}+\frac{a_{1}}{2}\big{(}x+x_{0}\big{)}+a_{0}\,,\\

such that R(x,x)=P(x)R(x,x)=P(x). It turns out that the polynomial P(x)P(x0)R(x,x0)2P(x)P(x_{0})-R(x,x_{0})^{2} factors. There is a polynomial R1(x,x0)R_{1}(x,x_{0}) of bi-degree (2,2)(2,2) such that

(3.4) x,x0:R(x,x0)2+R1(x,x0)(xx0)2P(x)P(x0)=0,\forall x,x_{0}:\quad R(x,x_{0})^{2}+R_{1}(x,x_{0})\,\big{(}x-x_{0}\big{)}^{2}-P(x)\,P(x_{0})=0\,,

and we set Q(x)=R1(x,x)Q(x)=R_{1}(x,x). In particular, we have

(3.5) Q(x)=13P(x)P(x)14P(x)2.Q(x)=\frac{1}{3}P(x)P^{\prime\prime}(x)-\frac{1}{4}P^{\prime}(x)^{2}\,.

We denote the discriminants of 𝒬\mathcal{Q} and \mathcal{E} by Δ𝒬=Discrx(P)\Delta_{\mathcal{Q}}=\operatorname{Discr}_{x}(P) and Δ=Discrξ(S)\Delta_{\mathcal{E}}=\operatorname{Discr}_{\xi}(S), respectively, such that Δ𝒬=Δ\Delta_{\mathcal{Q}}=\Delta_{\mathcal{E}} by construction. One also checks Discrx(Q)=S(0)2Discrx(P)\operatorname{Discr}_{x}(Q)=S(0)^{2}\operatorname{Discr}_{x}(P). From now on, we will assume that

(3.6) Discrx(Q)=S(0)2Discrx(P)0.\operatorname{Discr}_{x}(Q)=S(0)^{2}\operatorname{Discr}_{x}(P)\not=0\,.

As before, we also set [P,Q]=xPQPxQ[P,Q]=\partial_{x}P\cdot Q-P\cdot\partial_{x}Q. A tedious but straightforward computation yields the following:

Lemma 3.1.

For a smooth curve of genus one 𝒬\mathcal{Q} given by w2=i=04aix4iw^{2}=\sum_{i=0}^{4}a_{i}x^{4-i}, the Abel-Jacobi map J(x0,w0):𝒬Jac(𝒬)J_{(x_{0},-w_{0})}:\mathcal{Q}\to\mathcal{E}\cong\operatorname{Jac}(\mathcal{Q}) maps (x,y)(ξ,η)(x,y)\mapsto(\xi,\eta) with

(3.7) ξ=2R(x,x0)ww0(xx0)2,η=4ww0(ww0)(xx0)3P(x)w0+P(x0)w(xx0)2for xx0,\xi=2\frac{R(x,x_{0})-ww_{0}}{(x-x_{0})^{2}}\,,\quad\eta=\frac{4ww_{0}(w-w_{0})}{(x-x_{0})^{3}}-\frac{P^{\prime}(x)w_{0}+P^{\prime}(x_{0})w}{(x-x_{0})^{2}}\quad\text{for $x\not=x_{0}$}\,,

the point (x0,w0)𝒬(x_{0},-w_{0})\in\mathcal{Q} to the point at infinity on \mathcal{E}, and (x0,w0)(x_{0},w_{0}) to the point with ξ=Q(x0)/P(x0)\xi=-Q(x_{0})/P(x_{0}), η=[P,Q]x0/(2w03)\eta=[P,Q]_{x_{0}}/(2w_{0}^{3}) if w00w_{0}\not=0.

Remark 3.2.

Equation (3.1) is independent of the chosen point (x0,w0)(x_{0},-w_{0}). Thus, the Jacobian elliptic curve of a quartic curve exists independently of whether the quartic itself admits a rational point.

It follows easily from Equation (3.7) that the coordinates xx and ξ\xi in the Abel-Jacobi map (ξ,η)=J(x0,y0)(x,y)(\xi,\eta)=J_{(x_{0},-y_{0})}(x,y) are related by the bi-quadratic polynomial

(3.8) ξ2(xx0)24ξR(x,x0)4R1(x,x0)=0.\xi^{2}(x-x_{0})^{2}-4\,\xi R(x,x_{0})-4R_{1}(x,x_{0})=0\,.

This equation defines an algebraic correspondence between points of the two projective lines with affine coordinates ξ\xi and xx, respectively, where – given a point xx – there are two solutions for ξ\xi in Equation (3.8) and vice versa.

3.2. Associated K3 surfaces

We now construct a family of curves of genus one 𝒬x0\mathcal{Q}_{x_{0}} over the projective line x0\mathbb{P}_{x_{0}} (with affine coordinate x0x_{0}) from two copies of Equation (3.8). Let the curves of genus one 𝒬x0\mathcal{Q}_{x_{0}} be given by

(3.9) 𝒬x0:w2=q1(x,x0)q2(x,x0),\mathcal{Q}_{x_{0}}:\quad w^{2}=q_{1}(x,x_{0})\,q_{2}(x,x_{0})\,,

where q1,q2q_{1},q_{2} are the two conics Ci=V(qi)\mathrm{C}_{i}=\mathrm{V}(q_{i}) for i=1,2i=1,2 with

(3.10) q1=γ2(xx0)24γR(x,x0)4R1(x,x0),q2=δ2(xx0)24δR(x,x0)4R1(x,x0).\begin{split}q_{1}&=\gamma^{2}(x-x_{0})^{2}-4\gamma R(x,x_{0})-4R_{1}(x,x_{0})\,,\\ q_{2}&=\delta^{2}(x-x_{0})^{2}-4\delta R(x,x_{0})-4R_{1}(x,x_{0})\,.\end{split}

Thus, the general element 𝒬x0\mathcal{Q}_{x_{0}} is the double cover χ:𝒬x01\chi:\mathcal{Q}_{x_{0}}\to\mathbb{P}^{1} of the projective line 1\mathbb{P}^{1} (with affine coordinate xx) branched on points xnx^{\prime}_{n} with n=1,,4n=1,\dots,4 satisfying

(3.11) ξ2(xnx0)24ξR(xn,x0)4R1(xn,x0)=0,\xi^{2}(x^{\prime}_{n}-x_{0})^{2}-4\,\xi R(x^{\prime}_{n},x_{0})-4R_{1}(x^{\prime}_{n},x_{0})=0\,,

where n=1,2n=1,2 and n=3,4n=3,4 correspond to the solutions of Equation (3.11) for ξ=γ\xi=\gamma and ξ=δ\xi=\delta, respectively. We denote the four ramification points of χ\chi by pn:(x,w)=(xn,0)𝒬x0p^{\prime}_{n}:(x,w)=(x^{\prime}_{n},0)\in\mathcal{Q}_{x_{0}} with 1n41\leq n\leq 4.

We also introduce 𝒵=x0𝒬x0\mathcal{Z}=\coprod_{x_{0}}\mathcal{Q}_{x_{0}}, i.e., the total space of the genus-one fibration obtained by varying the parameter x0x_{0} in Equation (3.9). The discriminant of the fiber is easily checked to be a polynomial of degree 24, namely

(3.12) Δ𝒵=220ν2(μ2νκ)P(x0)2(κP(x0)2+2μP(x0)Q(x0)+νQ(x0)2)2.\Delta_{\mathcal{Z}}=2^{20}\nu^{2}(\mu^{2}-\nu\kappa)P(x_{0})^{2}\,\big{(}\kappa\,P(x_{0})^{2}+2\mu\,P(x_{0})Q(x_{0})+\nu\,Q(x_{0})^{2}\big{)}^{2}\,.

It follows that the minimal resolution of the total space 𝒵\mathcal{Z} is an elliptic K3 surface (not necessarily with section) with an obvious projection map π𝒵:𝒵x0\pi_{\mathcal{Z}}:\mathcal{Z}\to\mathbb{P}_{x_{0}}. Here, we have set

(3.13) κ=(γδ)22γδS(0)2(γ+δ)S(0)+S(0)22,μ=γδ(γ+δ)2+(γ+δ)2S(0)+S(0),ν=(γδ)22,\begin{split}&\kappa=\frac{(\gamma\delta)^{2}}{2}-\gamma\delta\,S^{\prime}(0)-2(\gamma+\delta)\,S(0)+\frac{S^{\prime}(0)^{2}}{2}\,,\\ \mu=&\,\frac{\gamma\delta(\gamma+\delta)}{2}+\frac{(\gamma+\delta)}{2}\,S^{\prime}(0)+S(0)\,,\qquad\nu=\frac{(\gamma-\delta)^{2}}{2}\,,\end{split}

with S(ξ)S(\xi) given in Equation (3.1). For γ=δ\gamma=\delta, the curve 𝒬x0\mathcal{Q}_{x_{0}} is reducible. Hence, we will always assume that γ,δ\gamma,\delta\in\mathbb{C} are chosen such that

(3.14) ν0,μ2νκ0.\nu\not=0\,,\qquad\mu^{2}-\nu\kappa\not=0\,.

If we consider two pairs of points ±qγ,±qδ\pm q_{\gamma},\pm q_{\delta}\in\mathcal{E} on the elliptic curve in Equation (3.1) with coordinates (ξqγ=γ,±ηqγ)(\xi_{q_{\gamma}}=\gamma,\,\pm\eta_{q_{\gamma}}) with ηqγ2=S(γ)\eta_{q_{\gamma}}^{2}=S(\gamma) and (ξqδ=δ,±ηqδ)(\xi_{q_{\delta}}=\delta,\,\pm\eta_{q_{\delta}}) with ηqδ2=S(δ)\eta_{q_{\delta}}^{2}=S(\delta), respectively, we find μ2νκ=ηqγ2ηqδ2\mu^{2}-\nu\kappa=\eta_{q_{\gamma}}^{2}\eta_{q_{\delta}}^{2}. The constraint μ2νκ0\mu^{2}-\nu\kappa\not=0 implies that neither qγq_{\gamma} nor qδq_{\delta} is a 2-torsion point of \mathcal{E}, i.e., 2qγ,2qδ02q_{\gamma},2q_{\delta}\not=0 where 00\in\mathcal{E} denotes the neutral element of the elliptic curve. Thus, the constraints in Equation (3.14) are equivalent to requiring

(3.15) qγ±qδ,andqγ+qδ±(qγqδ).q_{\gamma}\not=\pm q_{\delta}\,,\qquad\text{and}\qquad q_{\gamma}+q_{\delta}\not=\pm\big{(}q_{\gamma}-q_{\delta}\big{)}\,.

We have the following crucial lemma:

Lemma 3.3.

The elliptic fibration π𝒵:𝒵x0\pi_{\mathcal{Z}}:\mathcal{Z}\to\mathbb{P}_{x_{0}} admits four sections – rational over (x0)\mathbb{C}(x_{0}) – given by pn:(x,w)=(xn,B(xn,x0))p^{\prime\prime}_{n}:(x,w)=(x^{\prime\prime}_{n},B(x^{\prime\prime}_{n},x_{0})) with 1n41\leq n\leq 4 and

(3.16) B(x,x0)=γδ(xx0)24R1(x,x0)2(γ+δ)R(x,x0),B(x,x_{0})=\gamma\delta\,(x-x_{0})^{2}-4\,R_{1}(x,x_{0})-2(\gamma+\delta)\,R(x,x_{0})\,,

where {xn}n=14\{x^{\prime\prime}_{n}\}_{n=1}^{4} are the roots of P(x)=0P(x)=0.

Proof.

The proof follows by checking that (x,w)=(xn,B(xn,x0))(x,w)=(x^{\prime\prime}_{n},B(x^{\prime\prime}_{n},x_{0})) is a polynomial solution of Equation (3.9) for 1n41\leq n\leq 4

Proposition 3.4.

The elliptic fibration π𝒵:𝒵x0\pi_{\mathcal{Z}}:\mathcal{Z}\to\mathbb{P}_{x_{0}} is birationally equivalent to a Jacobian elliptic K3 surface with a Weierstrass model given by

(3.17) Y2=X32(μP(x0)+νQ(x0))X2+((μP(x0)+νQ(x0))2(μ2κν)P(x0)2)X,Y^{2}=X^{3}-2\Big{(}\mu P(x_{0})+\nu Q(x_{0})\Big{)}\,X^{2}+\Big{(}\big{(}\mu P(x_{0})+\nu Q(x_{0})\big{)}^{2}-\big{(}\mu^{2}-\kappa\nu\big{)}P(x_{0})^{2}\Big{)}X\,,

with zero section σ𝒵\sigma_{\mathcal{Z}} and a 2-torsion section τ𝒵:(X,Y)=(0,0)\tau_{\mathcal{Z}}:(X,Y)=(0,0). Generically, the Weierstrass model has 12 singular fibers of Kodaira type I2I_{2}, and a Mordell-Weil group with MW(𝒵,π𝒵)tor=(/2)2\operatorname{MW}(\mathcal{Z},\pi_{\mathcal{Z}})_{\mathrm{tor}}=(\mathbb{Z}/2\mathbb{Z})^{2} and rankMW(𝒵,π𝒵)=3\operatorname{rank}\operatorname{MW}(\mathcal{Z},\pi_{\mathcal{Z}})=3.

Proof.

A Weierstrass model for the Jacobian Jac(𝒬x0)\operatorname{Jac}(\mathcal{Q}_{x_{0}}) of the curve of genus one 𝒬x0\mathcal{Q}_{x_{0}} can be constructed using Hermite’s equations in Section 3.1. Accordingly, the minimal resolution of the total space 𝒵=x0Jac(𝒬x0)\mathcal{Z}^{\prime\prime}=\coprod_{x_{0}}\operatorname{Jac}(\mathcal{Q}_{x_{0}}) is a Jacobian elliptic K3 surface (𝒵,π𝒵,σ𝒵)(\mathcal{Z}^{\prime\prime},\pi_{\mathcal{Z}^{\prime\prime}},\sigma_{\mathcal{Z}^{\prime\prime}}) where π𝒵:𝒵x0\pi_{\mathcal{Z}^{\prime\prime}}:\mathcal{Z}^{\prime\prime}\to\mathbb{P}_{x_{0}} is the projection map and the section σ𝒵\sigma_{\mathcal{Z}^{\prime\prime}} is given by the smooth point at infinity in each fiber. One also checks that the discriminant of the Jacobian elliptic fibration is given by Δ𝒵=218Δ𝒵\Delta_{\mathcal{Z}^{\prime\prime}}=2^{-18}\Delta_{\mathcal{Z}}. The resulting equation is easily seen to admit three 2-torsion sections T1,T2,T3T_{1},T_{2},T_{3} (as we vary x0x_{0}), and accordingly the equation can be brought into the form of Equation (3.17). The torsion sections are given by T1=τ𝒵:(X,Y)=(0,0)T_{1}=\tau_{\mathcal{Z}}:(X,Y)=(0,0) and

T2,3:(X,Y)=((μ±μ2κν)P(x0)νQ(x0),0).T_{2,3}:\quad(X,Y)=\Big{(}(-\mu\pm\sqrt{\mu^{2}-\kappa\nu})P(x_{0})-\nu Q(x_{0}),0\Big{)}\,.

For P(x)=n(xxn)P(x)=\prod_{n}(x-x^{\prime\prime}_{n}), the fibration in Equation (3.9) has four rational sections given by (x,w)=(xn,wn)(x,w)=(x^{\prime\prime}_{n},w^{\prime\prime}_{n}) with 1n41\leq n\leq 4 where wn=B(xn,x0)w^{\prime\prime}_{n}=B(x^{\prime\prime}_{n},x_{0}) is the polynomial in x0x_{0}. The existence of at least one rational section implies an isomorphism 𝒵𝒵\mathcal{Z}^{\prime\prime}\cong\mathcal{Z} as elliptic K3 surfaces; see [MR3995925]*Thm. 3.4. This can be seen as follows: we consider Equation (3.9) – when expanded in terms of xx – an equation of the form

(3.18) 𝒬x0:w2=a~0(x0)x4++a~4(x0),\mathcal{Q}_{x_{0}}:\quad w^{2}=\tilde{a}_{0}(x_{0})\,x^{4}+\dots+\tilde{a}_{4}(x_{0})\,,

with polynomials a~i(x0)\tilde{a}_{i}(x_{0}) of degree four. On 𝒬x0\mathcal{Q}_{x_{0}} the point (x,w)=(x1,w1)(x,w)=(x^{\prime\prime}_{1},w^{\prime\prime}_{1}) is a rational point for every x0x_{0} and can be used to construct a (fiberwise) Abel-Jacobi map as in Lemma 3.1. The Abel-Jacobi map, viewed as a birational map (x0,x,w)(x0,X,Y)(x_{0},x,w)\mapsto(x_{0},X,Y), then induces the isomorphism 𝒵𝒵\mathcal{Z}^{\prime\prime}\cong\mathcal{Z} and maps (x1,w1)(x^{\prime\prime}_{1},w^{\prime\prime}_{1}) to the section σ𝒵\sigma_{\mathcal{Z}}, given by the point at infinity in each fiber. One checks that this isomorphism maps the other three sections (x,w)=(xn,wn)(x,w)=(x^{\prime\prime}_{n},w^{\prime\prime}_{n}) for n=2,3,4n=2,3,4 to the non-torsion sections Sm:(X,Y)=(Xm(x0),Ym(x0))S_{m}:(X,Y)=(X^{\prime\prime}_{m}(x_{0}),Y^{\prime\prime}_{m}(x_{0})) with m=n1m=n-1 where Xm(x0)X^{\prime\prime}_{m}(x_{0}) and Ym(x0)Y^{\prime\prime}_{m}(x_{0}) are certain polynomials with coefficients in [γ,δ,x1,x4]\mathbb{Q}[\gamma,\delta,x_{1}^{\prime\prime},\dots x^{\prime\prime}_{4}] of degree four and six, respectively. The same computation as in [CMS:2019] then shows that the three sections SmS_{m} are combinations of sections of minimal height that generate a Mordell-Weil group with rankMW(𝒵,π𝒵)=3\operatorname{rank}\operatorname{MW}(\mathcal{Z},\pi_{\mathcal{Z}})=3. ∎

For two arbitrary sections SS^{\prime} and SS^{\prime\prime} of a Jacobian elliptic fibration, one defines the height pairing using the formula

(3.19) S,S=χhol+σ𝒵S+σ𝒵SSS{x0|Δ𝒵=0}Cx01(S,S),\langle S^{\prime},S^{\prime\prime}\rangle=\chi^{\text{hol}}+\sigma_{\mathcal{Z}}\circ S^{\prime}+\sigma_{\mathcal{Z}}\circ S^{\prime\prime}-S^{\prime}\circ S^{\prime\prime}-\sum_{\{x_{0}|\Delta_{\mathcal{Z}}=0\}}C_{x_{0}}^{-1}(S^{\prime},S^{\prime\prime})\,,

where the holomorphic Euler characteristic is χhol=2\chi^{\text{hol}}=2, and Cx01C_{x_{0}}^{-1} is the inverse Cartan matrix of the reducible fiber at x0x_{0}. In our case, Cx01C_{x_{0}}^{-1} is the inverse Cartan matrix of a fibre of type A1A_{1} located over the points x0x_{0} with Δ𝒵=0\Delta_{\mathcal{Z}}=0 in Equation (3.12) and contributes (12)(\frac{1}{2}) if and only if both SS^{\prime} and SS^{\prime\prime} intersect the non-neutral component of this fiber, i.e., the component not met by the zero-section σ𝒵\sigma_{\mathcal{Z}}. The non-neutral components constitute twelve rational divisors K4,,K15\mathrm{K}_{4},\dots,\mathrm{K}_{15} of NS(𝒵)\operatorname{NS}(\mathcal{Z}) with KnF=0\mathrm{K}_{n}\circ\mathrm{F}=0 and KmKn=2δmn\mathrm{K}_{m}\circ\mathrm{K}_{n}=-2\delta_{mn} for 4m,n154\leq m,n\leq 15. We have the following:

Corollary 3.5.

Under the equivalence in Proposition 3.4, the four sections {pn}n=14\{p^{\prime\prime}_{n}\}_{n=1}^{4} from Lemma 3.3 are mapped to the zero-section σ𝒵\sigma_{\mathcal{Z}} and three non-torsion sections {Sm}m=13\{S_{m}\}_{m=1}^{3} of π𝒵\pi_{\mathcal{Z}}. The sections define divisor classes K0=[σ𝒵]\mathrm{K}_{0}=[\sigma_{\mathcal{Z}}] and Km=[Sm]\mathrm{K}_{m}=[S_{m}] with KmF=1\mathrm{K}_{m}\circ\mathrm{F}=1 and KmKn=2δmn\mathrm{K}_{m}\circ\mathrm{K}_{n}=-2\delta_{mn} for 0m30\leq m\leq 3 and 0n150\leq n\leq 15 where K4,,K15\mathrm{K}_{4},\dots,\mathrm{K}_{15} are the non-neutral components of the reducible fibers of type A1A_{1}. In particular, the Jacobian elliptic fibration is never singular along σ𝒵,S1,S2,S3\sigma_{\mathcal{Z}},S_{1},S_{2},S_{3}.

Proof.

By a direct computation one shows that the sections S1,S2,S3S_{1},S_{2},S_{3} do not intersect each other, nor σ𝒵\sigma_{\mathcal{Z}}, nor any non-neutral components of the reducible fibers. ∎

The 2-torsion sections T1=τ𝒵,T2,T3T_{1}=\tau_{\mathcal{Z}},T_{2},T_{3}, spanning MW(𝒵,π𝒵)tor\operatorname{MW}(\mathcal{Z},\pi_{\mathcal{Z}})_{\mathrm{tor}}, each intersect the non-neutral components of eight reducible fibers of type A1A_{1} – partitioning the twelve rational curves (of the non-neutral components) into three sets of eight curves with pairwise intersections consisting of four curves and no triple intersection. The 2-torsion sections do not intersect the zero section, but each 2-torsion section intersects each of the sections S1,S2,S3S_{1},S_{2},S_{3} twice. The intersection pairings for all aforementioned divisor classes and height pairings of the corresponding sections are given in Table 1.

\circ FF σ𝒵\sigma_{\mathcal{Z}} T1T_{1} T2T_{2} T3T_{3} S1S_{1} S2S_{2} S3S_{3} FF 0 11 11 11 11 11 11 11 σ𝒵\sigma_{\mathcal{Z}} 11 2-2 0 0 0 0 0 0 T1T_{1} 11 0 2-2 0 0 22 22 22 T2T_{2} 11 0 0 2-2 0 22 22 22 T3T_{3} 11 0 0 0 2-2 22 22 22 S1S_{1} 11 0 22 22 22 2-2 0 0 S2S_{2} 11 0 22 22 22 0 2-2 0 S3S_{3} 11 0 22 22 22 0 0 2-2

,\langle\bullet,\bullet\rangle σ𝒵\sigma_{\mathcal{Z}} T1T_{1} T2T_{2} T3T_{3} S1S_{1} S2S_{2} S3S_{3} σ𝒵\sigma_{\mathcal{Z}} 0 0 0 0 0 0 0 T1T_{1} 0 0 0 0 0 0 0 T2T_{2} 0 0 0 0 0 0 0 T3T_{3} 0 0 0 0 0 0 0 S1S_{1} 0 0 0 0 44 22 22 S2S_{2} 0 0 0 0 22 44 22 S3S_{3} 0 0 0 0 22 22 44

Table 1. Intersection and Height Pairings

We make the following:

Remark 3.6.

A second Jacobian elliptic K3 surface π𝒵:𝒵1\pi_{\mathcal{Z}^{\prime}}:\mathcal{Z}^{\prime}\to\mathbb{P}^{1} is given by the Weierstrass model

(3.20) y2=x3+4(μP(x0)+νQ(x0))x2+4(μ2κν)P(x0)2x,y^{2}=x^{3}+4\Big{(}\mu\,P(x_{0})+\nu\,Q(x_{0})\Big{)}\,x^{2}+4\Big{(}\mu^{2}-\kappa\nu\Big{)}P(x_{0})^{2}x\,,

with zero section σ𝒵\sigma_{\mathcal{Z}^{\prime}} and the 2-torsion section τ𝒵:(x,y)=(0,0)\tau_{\mathcal{Z}^{\prime}}:(x,y)=(0,0). Generically, the model has four singular fibers of Kodaira type I4I_{4}, eight singular fibers of type I1I_{1}, and a Mordell-Weil group with MW(𝒵,π𝒵)tor=/2\operatorname{MW}(\mathcal{Z}^{\prime},\pi_{\mathcal{Z}^{\prime}})_{\mathrm{tor}}=\mathbb{Z}/2\mathbb{Z} and rankMW(𝒵,π𝒵)=3\operatorname{rank}\operatorname{MW}(\mathcal{Z}^{\prime},\pi_{\mathcal{Z}^{\prime}})=3.

The K3 surfaces 𝒵\mathcal{Z} in Proposition 3.4 and 𝒵\mathcal{Z}^{\prime} are related by a pair of dual geometric 2-isogenies similar to Equation (2.21), i.e.,

(3.21) 𝒵\textstyle{\mathcal{Z}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ı𝒵\scriptstyle{\imath_{\mathcal{Z}}}𝒵\textstyle{\mathcal{Z}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ı𝒵\scriptstyle{\imath_{\mathcal{Z}^{\prime}}}

The isogenies are covered by the van Geemen-Sarti involutions ı𝒵\imath_{\mathcal{Z}} and ı𝒵\imath_{\mathcal{Z}^{\prime}} obtained as translations by the 2-torsion section τ𝒵:(X,Y)=(0,0)\tau_{\mathcal{Z}}:(X,Y)=(0,0) on 𝒵\mathcal{Z} and τ𝒵:(x,y)=(0,0)\tau_{\mathcal{Z}^{\prime}}:(x,y)=(0,0) on 𝒵\mathcal{Z}^{\prime}, respectively.

3.3. Canonical curves of genus three

We will now construct a family of plane, quartic curves 𝒟x0\mathcal{D}_{x_{0}} with a bielliptic involution ȷ\jmath over the projective line x0\mathbb{P}_{x_{0}}. Generically 𝒟x0\mathcal{D}_{x_{0}} is a smooth curve of genus three. We have the following:

Proposition 3.7.

Assuming Equations (3.6) and (3.15), the family {𝒟x0}x0x0\{\mathcal{D}_{x_{0}}\}_{x_{0}\in\mathbb{P}_{x_{0}}} over the projective line x0\mathbb{P}_{x_{0}} given by

(3.22) 𝒟x0:z4+2B(x,x0)z2+4(γδ)2P(x0)P(x)=0,\mathcal{D}_{x_{0}}:\quad\,z^{4}+2\,B(x,x_{0})\,z^{2}+4\,\big{(}\gamma-\delta\big{)}^{2}\,P(x_{0})\,P(x)=0\,,

is a linear pencil of plane, quartic curves with affine coordinates x,zx,z, B(x,x0)B(x,x_{0}) given in Equation (3.16), and bielliptic involution ȷ:(x,z)(x,z)\jmath:(x,z)\mapsto(x,-z) covering the degree-two map πx0:𝒟x0𝒬x0=𝒟x0/ȷ\pi_{x_{0}}:\mathcal{D}_{x_{0}}\to\mathcal{Q}_{x_{0}}=\mathcal{D}_{x_{0}}/\langle\jmath\rangle such that

  1. (1)

    𝒟x0\mathcal{D}_{x_{0}} is a smooth curve of genus three if and only if Δ𝒵0\Delta_{\mathcal{Z}}\not=0 in Equation (3.12),

  2. (2)

    the pencil induces the elliptic fibration 𝒵=x0𝒬x0x0\mathcal{Z}=\coprod_{x_{0}}\mathcal{Q}_{x_{0}}\to\mathbb{P}_{x_{0}} in Equation (3.9),

  3. (3)

    the branch locus of ψ\psi is given by the divisors K0,K1,K2,K3\mathrm{K}_{0},\mathrm{K}_{1},\mathrm{K}_{2},\mathrm{K}_{3} or, equivalently, pnp^{\prime\prime}_{n} in Corollary 3.5.

Proof.

For P(x0)=0P(x_{0})=0 the curve 𝒟x0\mathcal{D}_{x_{0}} is reducible: it consists of a rational component z=0z=0 of multiplicity two and the conic z2=2B(x,x0)z^{2}=-2B(x,x_{0}). The latter is irreducible since the discriminant DiscrxB(x,x0)\operatorname{Discr}_{x}B(x,x_{0}) does not vanish at a root of P(x0)=0P(x_{0})=0. Now assume P0=P(x0)0P_{0}=P(x_{0})\not=0: Equation (3.22) cannot have a singularity for z=0z=0 since Discrx(P)0\operatorname{Discr}_{x}(P)\not=0 whence z0z\not=0. Taking the derivative of Equation (3.22) with respect to zz at a singular point (x,z)(x,z) yields z2=B(x)z^{2}=-B(x), and B(x)24P0P(x)=0B(x)^{2}-4P_{0}P(x)=0 from Equation (3.22). The vanishing of the derivative of Equation (3.22) with respect to xx yields 2B(x)B(x)4(γδ)2P0P(x)=02\,B(x)\,B^{\prime}(x)-4(\gamma-\delta)^{2}P_{0}\,P^{\prime}(x)=0. Thus, for 𝒟x0\mathcal{D}_{x_{0}} to be reducible or to have a singular point, we must have

(3.23) 0=Discrx(B(x)24(γδ)2P0P(x))=Δ𝒵.0=\operatorname{Discr}_{x}\Big{(}B(x)^{2}-4\,(\gamma-\delta)^{2}P_{0}P(x)\Big{)}=\Delta_{\mathcal{Z}}\,.

This proves (1). We obtain a double cover πx0𝒟x0𝒬x0\pi_{x_{0}}\mathcal{D}_{x_{0}}\to\mathcal{Q}_{x_{0}} by setting w=z2+B(x,x0)w=z^{2}+B(x,x_{0}) in Equation (3.9) giving Equation (3.22). It follows that 𝒟x0\mathcal{D}_{x_{0}} is the double cover of the curve 𝒬x0\mathcal{Q}_{x_{0}} branched over four points, and the two sheets of the covering are interchanged by the involution ȷ:(x,z)(x,z)\jmath:(x,z)\mapsto(x,-z). Thus, the pencil induces the elliptic fibration 𝒵=x0𝒬x0x0\mathcal{Z}=\coprod_{x_{0}}\mathcal{Q}_{x_{0}}\to\mathbb{P}_{x_{0}} in Equation (3.9) by means of the quotient 𝒬x0𝒟x0/ȷ\mathcal{Q}_{x_{0}}\cong\mathcal{D}_{x_{0}}/\langle\jmath\rangle. This proves (2). Finally, (3) follows from Lemma 3.3 and Corollary 3.5. ∎

We have the following:

Proposition 3.8.

For any smooth curve 𝒟x0\mathcal{D}_{x_{0}} in Equation (3.22) with bielliptic structure the map πx0:𝒟x0𝒬x0\pi_{x_{0}}:\mathcal{D}_{x_{0}}\to\mathcal{Q}_{x_{0}} induces an isogeny

(3.24) Jac(𝒟x0)Prym(𝒟x0,πx0)×Jac(𝒬x0),\operatorname{Jac}{(\mathcal{D}_{x_{0}})}\ \simeq\ \operatorname{Prym}{(\mathcal{D}_{x_{0}},\pi_{x_{0}})}\times\operatorname{Jac}(\mathcal{Q}_{x_{0}})\,,

where Prym(𝒟x0,πx0)\operatorname{Prym}{(\mathcal{D}_{x_{0}},\pi_{x_{0}})} is the Prym variety with a polarization of type (1,2)(1,2). In particular, 𝒟x0\mathcal{D}_{x_{0}} is embedded into Prym(𝒟x0,πx0)\operatorname{Prym}{(\mathcal{D}_{x_{0}},\pi_{x_{0}})} as a curve of self-intersection four.

Proof.

Assuming Equations (3.6) and (3.15), 𝒟x0\mathcal{D}_{x_{0}} in Equation (3.22) is smooth, bielliptic with genus three if and only if Δ𝒵0\Delta_{\mathcal{Z}}\not=0 in Equation (3.12). 𝒟x0\mathcal{D}_{x_{0}} is the double cover of the curve 𝒬x0\mathcal{Q}_{x_{0}} branched over four points. The double covering ψ\psi induces an associated norm morphism Jac(𝒟x0)Jac(𝒬x0)\operatorname{Jac}{(\mathcal{D}_{x_{0}})}\to\operatorname{Jac}(\mathcal{Q}_{x_{0}}). The involution ı\imath extends to an involution on Jac(𝒟x0)Jac(𝒬x0)\operatorname{Jac}{(\mathcal{D}_{x_{0}})}\to\operatorname{Jac}(\mathcal{Q}_{x_{0}}). Then Jac(𝒟x0)\operatorname{Jac}{(\mathcal{D}_{x_{0}})} splits into an even part and an odd part. By definition the latter is the Prym variety. It follows from [MR946234]*Sec. 1.4 that the Prym has a natural polarization on it, induced by the theta divisor on Jac(𝒬x0)\operatorname{Jac}{(\mathcal{Q}_{x_{0}})}, which is the theta divisor {[pp6]|pJac(𝒬x0)}\{[p-p_{6}]|\,p\in\operatorname{Jac}{(\mathcal{Q}_{x_{0}})}\} where p6p_{6} defines the neutral element of the elliptic group law such that

(3.25) Prym(𝒟x0,πx0)Jac(𝒟x0)/πx0Jac(𝒬x0).\operatorname{Prym}{(\mathcal{D}_{x_{0}},\pi_{x_{0}})}\cong\operatorname{Jac}{(\mathcal{D}_{x_{0}})}/\pi_{x_{0}}^{*}\operatorname{Jac}(\mathcal{Q}_{x_{0}})\,.

Barth also proved that a smooth, bielliptic curve of genus three is embedded into Prym(𝒟x0,πx0)\operatorname{Prym}{(\mathcal{D}_{x_{0}},\pi_{x_{0}})} as a curve of self-intersection four. ∎

Remark 3.9.

The notion of Prym variety in Proposition 3.8 can be generalized to include the singular covers πx0:𝒟x0𝒬x0\pi_{x_{0}}:\mathcal{D}_{x_{0}}\to\mathcal{Q}_{x_{0}} using the results of [MR572974]*Prop. 3.5 and [MR1736231]*Lemma 1. The Prym is then replaced by a generalized Prym variety for an allowable cover birational to the singular cover πx0:𝒟x0𝒬x0\pi_{x_{0}}:\mathcal{D}_{x_{0}}\to\mathcal{Q}_{x_{0}}.

3.4. Singular and hyperelliptic fibers

In this section, we shall examine the singular and hyperelliptic elements of the pencil of curves of genus three after some elementary modifications. Substituting w=y+B(x,x0)w=y+B(x,x_{0}) into Equation (3.9) we obtain its equivalent form

(3.26) 𝒬x0:y2+2B(x,x0)y+4(γδ)2P(x0)P(x)=0.\mathcal{Q}_{x_{0}}:\quad\,y^{2}\ +2\,B(x,x_{0})\,y\ +4\,(\gamma-\delta)^{2}\,P(x_{0})\,P(x)=0\,.

The double cover πx0:𝒟x0𝒬x0\pi_{x_{0}}:\mathcal{D}_{x_{0}}\to\mathcal{Q}_{x_{0}} is then simply given by y=z2y=z^{2}, and the four branch points are (x,y)=(xn,0)(x,y)=(x^{\prime\prime}_{n},0) with P(xn)=0P(x^{\prime\prime}_{n})=0 for 1n41\leq n\leq 4. Blowing up at the points P(x0)=0P(x_{0})=0, we set y=2P(x0)y~y=2\,P(x_{0})\,\tilde{y} and take the strict transform to obtain

(3.27) 𝒬~x0:P(x0)y~2+B(x,x0)y~+(γδ)2P(x)=0,\widetilde{\mathcal{Q}}_{x_{0}}:\quad\,P(x_{0})\,\tilde{y}^{2}\ +B(x,x_{0})\,\tilde{y}\ +(\gamma-\delta)^{2}\,P(x)=0\,,

and a double cover πx0:𝒟~x0𝒬~x0\pi_{x_{0}}:\widetilde{\mathcal{D}}_{x_{0}}\to\widetilde{\mathcal{Q}}_{x_{0}} given by y~=z~2\tilde{y}=\tilde{z}^{2} with

(3.28) 𝒟~x0:P(x0)z~4+B(x,x0)z~2+(γδ)2P(x)=0,\widetilde{\mathcal{D}}_{x_{0}}:\quad P(x_{0})\,\tilde{z}^{4}\ +B(x,x_{0})\,\tilde{z}^{2}\ +(\gamma-\delta)^{2}P(x)=0\,,

and the bielliptic involution ȷ:(x,z~)(x,z~)\jmath:(x,\tilde{z})\mapsto(x,-\tilde{z}). We have the following:

Proposition 3.10.

For Δ𝒵0\Delta_{\mathcal{Z}}\not=0 in Equation (3.12) the curve 𝒟~x0\widetilde{\mathcal{D}}_{x_{0}} is a smooth irreducible curve of genus three isomorphic to 𝒟x0\mathcal{D}_{x_{0}}. For Δ𝒵=0\Delta_{\mathcal{Z}}=0 there are twelve singular curves forming three sets of four isomorphic curves over the roots of κP(x0)+(μ±μ2κν)Q(x0)=0\kappa P(x_{0})+(\mu\pm\sqrt{\mu^{2}-\kappa\nu})Q(x_{0})=0 and P(x0)=0P(x_{0})=0, respectively. The former eight are irreducible curves of geometric genus two with one node. The latter four are reducible nodal curves isomorphic to 1𝒞\mathbb{P}^{1}\cup\mathcal{C}^{\prime} where 𝒞\mathcal{C}^{\prime} is the curve of genus two given by

(3.29) 𝒞:η2=(ξγ)(ξδ)S(ξ).\mathcal{C}^{\prime}:\quad\eta^{2}=\big{(}\xi-\gamma\big{)}\big{(}\xi-\delta\big{)}\,S(\xi)\,.

Here, (ξ,η)2(\xi,\eta)\in\mathbb{C}^{2} are affine coordinates and S(ξ)S(\xi) is given in Equation (3.1).

Proof.

One checks that the general element 𝒟x0\mathcal{D}_{x_{0}} is smooth and irreducible. It is bielliptic and of genus three by construction. For P(x0)0P(x_{0})\not=0 we obviously have 𝒟~x0𝒟x0\widetilde{\mathcal{D}}_{x_{0}}\cong\mathcal{D}_{x_{0}} and 𝒬~x0𝒬x0\widetilde{\mathcal{Q}}_{x_{0}}\cong\mathcal{Q}_{x_{0}}. Equation (3.12) shows that there are twelve singular curves and one checks by an explicit coordinate transformation that the singular curves form three sets of four isomorphic curves. A curve over a root of κP(x0)+(μ±μ2κν)Q(x0)=0\kappa P(x_{0})+(\mu\pm\sqrt{\mu^{2}-\kappa\nu})Q(x_{0})=0 is an irreducible curve of geometric genus two with one double point, which is easily seen to be a node.

Let the polynomial P(x)P(x) be given by P(x)=n(xxn)P(x)=\prod_{n}(x-x^{\prime\prime}_{n}). Setting x0=xnx_{0}=x^{\prime\prime}_{n} in Equation (3.28) and rescaling z~=iZ/(3(γδ)B(x,x0))\tilde{z}=iZ/(3(\gamma-\delta)B(x,x_{0})) yields

(3.30) Z2=(γδ)P(x)(3(xxn)γ+αx+β)(3(xxn)δ+αx+β),Z^{2}=\big{(}\gamma-\delta\big{)}\,P(x)\,\Big{(}3\,(x-x^{\prime\prime}_{n})\gamma+\alpha\,x+\beta\Big{)}\Big{(}3\,(x-x^{\prime\prime}_{n})\delta+\alpha\,x+\beta\Big{)}\,,

where α\alpha and β\beta are cubic and quadratic polynomials in the coefficients x1,,x4x^{\prime\prime}_{1},\dots,x^{\prime\prime}_{4}, respectively, symmetric in {xm}mn\{x^{\prime\prime}_{m}\}_{m\not=n}. Equation (3.29) obviously defines a curve of genus two. We compute its Igusa-Clebsch invariants, using the same normalization as in [MR3712162, MR3731039]. Denoting the Igusa-Clebsch invariants of the curve of genus two in Equation (3.30) and Equation (3.29) by [I2:I4:I6:I10](2,4,6,10)[I_{2}:I_{4}:I_{6}:I_{10}]\in\mathbb{P}(2,4,6,10) and [I2:I4:I6:I10][I^{\prime}_{2}:I^{\prime}_{4}:I^{\prime}_{6}:I^{\prime}_{10}], respectively, one checks that

(3.31) [I2:I4:I6:I10]=[r2I2:r4I4:r6I6:r10I10]=[I2:I4:I6:I10],[I_{2}:I_{4}:I_{6}:I_{10}]=[r^{2}I^{\prime}_{2}\ :\ r^{4}I^{\prime}_{4}\ :\ r^{6}I^{\prime}_{6}\ :\ r^{10}I^{\prime}_{10}]=[I^{\prime}_{2}:I^{\prime}_{4}:I^{\prime}_{6}:I^{\prime}_{10}]\,,

with r=9(γδ)(x1x2)(x1x3)(x1x4)r=9(\gamma-\delta)(x^{\prime\prime}_{1}-x^{\prime\prime}_{2})(x^{\prime\prime}_{1}-x^{\prime\prime}_{3})(x^{\prime\prime}_{1}-x^{\prime\prime}_{4}). Thus, the two curves of genus two are isomorphic. ∎

We also have the following:

Proposition 3.11.

The curve 𝒟~x0\widetilde{\mathcal{D}}_{x_{0}} in Equation (3.28) admits a hyperelliptic involution if and only if x0x_{0} is a root of [P,Q]x0=0[P,Q]_{x_{0}}=0. There are six such hyperelliptic elements, and they are smooth if and only if 2(qγ±qδ)02(q_{\gamma}\pm q_{\delta})\not=0 in Equation (3.15).

Proof.

If 𝒟~x0\widetilde{\mathcal{D}}_{x_{0}} admits a hyperelliptic involution kk it commutes with the bielliptic involution ȷ\jmath. As the two involutions commute, kk induces a permutation on the fixed points of ȷ\jmath. For P(x)=n(xxn)P(x)=\prod_{n}(x-x^{\prime\prime}_{n}) as in the proof of Proposition 3.10, we define the fractional linear map TT given by

(3.32) xT(x)=(abcd)x+(abc+abdacdbcd)(a+bcd)x+(abcd),x\mapsto T(x)=\frac{-(ab-cd)x+(abc+abd-acd-bcd)}{-(a+b-c-d)x+(ab-cd)}\,,

such that x=T(T(x))x=T(T(x)), T(a)=bT(a)=b, T(b)=aT(b)=a, T(c)=dT(c)=d, T(d)=cT(d)=c. We then set a=x1a=x^{\prime\prime}_{1}, b=x2b=x^{\prime\prime}_{2}, c=x3c=x^{\prime\prime}_{3}, d=x4d=x^{\prime\prime}_{4} such that

(3.33) P(T(x))=(x1x3)2(x1x4)2(x2x3)2(x2x4)2((x1+x2x3x4)x(x1x2x3x4))4=:C(x)4P(x).P\Big{(}T(x)\Big{)}=\underbrace{\frac{(x^{\prime\prime}_{1}-x^{\prime\prime}_{3})^{2}(x^{\prime\prime}_{1}-x^{\prime\prime}_{4})^{2}(x^{\prime\prime}_{2}-x^{\prime\prime}_{3})^{2}(x^{\prime\prime}_{2}-x^{\prime\prime}_{4})^{2}}{\big{(}(x^{\prime\prime}_{1}+x^{\prime\prime}_{2}-x^{\prime\prime}_{3}-x^{\prime\prime}_{4})x-(x^{\prime\prime}_{1}x^{\prime\prime}_{2}-x^{\prime\prime}_{3}x^{\prime\prime}_{4})\big{)}^{4}}}_{=:\,C(x)^{4}}\,P(x)\,.

It follows that if 𝒟~x0\widetilde{\mathcal{D}}_{x_{0}} admits a hyperelliptic involution, it is of the form

(3.34) k:(x,z)((abcd)x+(abc+abdacdbcd)(a+bcd)x+(abcd),z).k:\quad\Big{(}x,z\Big{)}\mapsto\left(\frac{-(ab-cd)x+(abc+abd-acd-bcd)}{-(a+b-c-d)x+(ab-cd)},z\right)\,.

The rational functions B(T(x))C(x)2B(x)B\big{(}T(x)\big{)}-C(x)^{2}\,B(x) and P(T(x))C(x)4P(x)P\big{(}T(x)\big{)}-C(x)^{4}\,P(x) have the only common factor

(3.35) r1234(x0)=(x1+x2x3x4)x022(x1x2x3x4)x0+x1x2(x3+x4)(x1+x2)x3x4.r_{1234}(x_{0})=\big{(}x^{\prime\prime}_{1}+x^{\prime\prime}_{2}-x^{\prime\prime}_{3}-x^{\prime\prime}_{4}\big{)}x_{0}^{2}-2\big{(}x^{\prime\prime}_{1}x^{\prime\prime}_{2}-x^{\prime\prime}_{3}x^{\prime\prime}_{4}\big{)}x_{0}+x^{\prime\prime}_{1}x^{\prime\prime}_{2}\big{(}x^{\prime\prime}_{3}+x^{\prime\prime}_{4}\big{)}-\big{(}x^{\prime\prime}_{1}+x^{\prime\prime}_{2}\big{)}x^{\prime\prime}_{3}x^{\prime\prime}_{4}\,.

One then checks that a permutation of the roots yields

(3.36) r1234(x0)r1324(x0)r1423(x0)=4[P,Q]x0.r_{1234}(x_{0})\,r_{1324}(x_{0})\,r_{1423}(x_{0})=-4\,[P,Q]_{x_{0}}\,.

Moreover, [P,Q]x[P,Q]_{x} is a polynomial of degree six.

It easily follows that P(x0)P(x_{0}) and [P,Q]x0[P,Q]_{x_{0}} never vanish at the same time, given our assumption in Equation (3.6). One then checks that for α,β\alpha,\beta\in\mathbb{C} with β0\beta\not=0, the resultant satisfies

(3.37) Resx(αP+βQ,[P,Q])=28Discrx(P)3β6S(αβ)2.\operatorname{Res}_{x}\Big{(}\alpha P+\beta Q,[P,Q]\Big{)}=2^{-8}\operatorname{Discr}_{x}(P)^{3}\,\beta^{6}S\left(\frac{\alpha}{\beta}\right)^{2}\,.

Thus, αP(x0)+βQ(x0)\alpha P(x_{0})+\beta Q(x_{0}) and [P,Q]x0[P,Q]_{x_{0}} vanish simultaneously, if and only if S(α/β)=0S(\alpha/\beta)=0 where S(ξ)S(\xi) was given in Equation (3.1).

We use the elliptic group law on \mathcal{E} to compute the coordinates of the points ±(qγ+qδ),±(qγqδ)\pm(q_{\gamma}+q_{\delta}),\pm(q_{\gamma}-q_{\delta})\in\mathcal{E} with coordinates (ξqγ+qδ,±ηqγ+qδ)(\xi_{q_{\gamma}+q_{\delta}},\,\pm\eta_{q_{\gamma}+q_{\delta}}) and (ξqγqδ,±ηqγqδ)(\xi_{q_{\gamma}-q_{\delta}},\,\pm\eta_{q_{\gamma}-q_{\delta}}), respectively. It follows that

(3.38) {ξqγ+qδ,ξqγqδ}={μ+μ2κνν,μμ2κνν}.\Big{\{}\xi_{q_{\gamma}+q_{\delta}},\ \xi_{q_{\gamma}-q_{\delta}}\Big{\}}=\left\{\frac{\mu+\sqrt{\mu^{2}-\kappa\nu}}{\nu},\frac{\mu-\sqrt{\mu^{2}-\kappa\nu}}{\nu}\right\}\,.

The second factor of the discriminant in Equation (3.12) is

(3.39) κP(x0)2+2μP(x0)Q(x0)+νQ(x0)2=ν(μ+μ2κννP(x0)+Q(x0))(μμ2κννP(x0)+Q(x0)).\begin{split}&\quad\qquad\qquad\kappa\,P(x_{0})^{2}+2\mu\,P(x_{0})Q(x_{0})+\nu\,Q(x_{0})^{2}\\ =&\,\nu\left(\frac{\mu+\sqrt{\mu^{2}-\kappa\nu}}{\nu}P(x_{0})+Q(x_{0})\right)\left(\frac{\mu-\sqrt{\mu^{2}-\kappa\nu}}{\nu}P(x_{0})+Q(x_{0})\right)\,.\end{split}

Using Equation (3.37) it follows that [P,Q]x0[P,Q]_{x_{0}} and the discriminant Δ𝒬x0\Delta_{\mathcal{Q}_{x_{0}}} do not have a common factor if and only if S(ξqγ+qδ)0S(\xi_{q_{\gamma}+q_{\delta}})\not=0 and S(ξqγ+qδ)0S(\xi_{q_{\gamma}+q_{\delta}})\not=0. This is equivalent to the points qγ±qδq_{\gamma}\pm q_{\delta} not being 2-torsion points of \mathcal{E}. ∎

3.5. Canonical curves of genus five

We identify the smooth curve of genus three 𝒟=𝒟~x0\mathcal{D}=\widetilde{\mathcal{D}}_{x_{0}} in Equation (3.28) with its canonical model in the plane 2=(X,Y,Z)\mathbb{P}^{2}=\mathbb{P}(X,Y,Z) given by 2|𝒦𝒟|\mathbb{P}^{2}\cong|\mathcal{K}_{\mathcal{D}}|^{*}, and write

(3.40) 𝒟:a0Z4+b2(X,Y)Z2+c4(X,Y)=0,\mathcal{D}:\quad a_{0}\,Z^{4}+b_{2}(X,Y)\,Z^{2}+c_{4}(X,Y)=0\,,

such that a0=P(x0)a_{0}=P(x_{0}), b2(x,1)=B(x,x0)b_{2}(x,1)=B(x,x_{0}), and c4(x,1)=(γδ)2P(x)c_{4}(x,1)=(\gamma-\delta)^{2}P(x). We will also assume a0=P(x0)0a_{0}=P(x_{0})\not=0.

We set 𝒬=𝒬~x0\mathcal{Q}=\widetilde{\mathcal{Q}}_{x_{0}} and the bielliptic involution is ȷ:[X:Y:Z][X:Y:Z]\jmath:[X:Y:Z]\mapsto[X:Y:-Z] covers π:𝒟𝒬\pi:\mathcal{D}\to\mathcal{Q} with branch locus B=p1+p2+p3+p4𝒬\mathrm{B}=p^{\prime\prime}_{1}+p^{\prime\prime}_{2}+p^{\prime\prime}_{3}+p^{\prime\prime}_{4}\subset\mathcal{Q} given in Lemma 3.3 which is an effective divisor of degree four without multiple points. Let 𝒩\mathscr{N} be the line bundle corresponding to half of the divisor class of B\mathrm{B}, then 𝒩2=𝒪𝒬(B)\mathscr{N}^{2}=\mathcal{O}_{\mathcal{Q}}(\mathrm{B}). Conversely, the data of (𝒬,𝒩,B)(\mathcal{Q},\mathscr{N},\mathrm{B}) determines the double cover 𝒟\mathcal{D} uniquely up to isomorphism. By slight abuse of notation, we set {p1,,p4}=π1(B)𝒟\{p^{\prime\prime}_{1},\dots,p^{\prime\prime}_{4}\}=\pi^{-1}(\mathrm{B})\subset\mathcal{D} with pn:[X:Y:Z]=[xn:1:0]p^{\prime\prime}_{n}:[X:Y:Z]=[x^{\prime\prime}_{n}:1:0] and P(xn)=0P(x^{\prime\prime}_{n})=0 or, equivalently, c4(xn,1)=0c_{4}(x^{\prime\prime}_{n},1)=0 for 1n41\leq n\leq 4.

The adjunction formula implies that the linear systems |𝒦𝒬||\mathcal{K}_{\mathcal{Q}}|^{*} and |𝒩||\mathscr{N}|^{*} can be identified in the projective plane |𝒦𝒟||\mathcal{K}_{\mathcal{D}}|^{*} with a point O\mathrm{O} and a line L0\mathrm{L}_{0}, respectively [MR1816214]. There is a classical characterization of the data (O,L0)(\mathrm{O},\mathrm{L}_{0}): it is well known that ȷ\jmath on a canonical curve of genus three is induced by a projective involution ȷ~\tilde{\jmath} whose set of fixed points consists of a point O\mathrm{O} and a line L0\mathrm{L}_{0} such that the intersection L0𝒟\mathrm{L}_{0}\cap\mathcal{D} are the fixed points of ȷ\jmath. Since the points pn:[X:Y:Z]=[xn:1:0]p^{\prime\prime}_{n}:[X:Y:Z]=[x^{\prime\prime}_{n}:1:0] in Equation (3.40) with c(xn,1)=0c(x^{\prime\prime}_{n},1)=0 for 1n41\leq n\leq 4 are the ramification points of π:𝒟𝒬\pi:\mathcal{D}\to\mathcal{Q}, we obtain L0=V(Z)\mathrm{L}_{0}=\mathrm{V}(Z) and 𝒟L0=p1++p4\mathcal{D}\cap\mathrm{L}_{0}=p^{\prime\prime}_{1}+\dots+p^{\prime\prime}_{4}. The tangent lines at the points pnp^{\prime\prime}_{n} are V(XxnY)\mathrm{V}(X-x^{\prime\prime}_{n}\,Y) for 1n41\leq n\leq 4, and they all must pass through the point O\mathrm{O} [MR1816214]*Thm. 2.5 whence O:[X:Y:Z]=[0:0:1]\mathrm{O}:[X:Y:Z]=[0:0:1].

On the other hand, χ:𝒬1\chi:\mathcal{Q}\to\mathbb{P}^{1} has the ramification divisor p1+p2+p3+p4𝒬p^{\prime}_{1}+p^{\prime}_{2}+p^{\prime}_{3}+p^{\prime}_{4}\subset\mathcal{Q}; see Section 3.2. The preimages of pnp^{\prime}_{n} in 𝒟\mathcal{D} are pairs of points pn,±:[X:Y:Z]=[xn:1:±zn]p^{\prime}_{n,\pm}:[X:Y:Z]=[x^{\prime}_{n}:1:\pm z^{\prime}_{n}] with 4a0c4(xn,1)b2(xn,1)2=04\,a_{0}c_{4}(x^{\prime}_{n},1)-b_{2}(x^{\prime}_{n},1)^{2}=0 and 2a0(zn)2+b2(xn,1)=02a_{0}(z^{\prime}_{n})^{2}+b_{2}(x^{\prime}_{n},1)=0 for 1n41\leq n\leq 4. The tangent line Ln\mathrm{L}_{n} at pn,±p^{\prime}_{n,\pm} is given by Ln=V(XxnY)\mathrm{L}_{n}=\mathrm{V}(X-x^{\prime}_{n}Y), and all Ln\mathrm{L}_{n} pass through the same point O:[X:Y:Z]=[0:0:1]\mathrm{O}:[X:Y:Z]=[0:0:1]. The lines Ln\mathrm{L}_{n} are in fact bitangents with intersection divisors 𝒟Ln=2pn,++2pn,\mathcal{D}\cap\mathrm{L}_{n}=2p^{\prime}_{n,+}+2p^{\prime}_{n,-}. This characterization of the bielliptic structure in terms of bitangents is originally due to Kovalevskaya; see Dolgachev [dolgachev2014endomorphisms] and work by the authors [CMS:2019]:

Theorem 3.12 (Kovalevskaya).

The point O\mathrm{O} is the intersection point of four distinct bitangents Ln\mathrm{L}_{n} of 𝒟\mathcal{D} with 1n41\leq n\leq 4. Conversely, if a plane quartic has four bitangents Ln\mathrm{L}_{n} intersecting at a point O\mathrm{O}, then there exists a bielliptic involution ı\imath of 𝒟\mathcal{D} such that the projective involution ı~\tilde{\imath} has O\mathrm{O} as its isolated fixed point.

It is well known that a smooth plane quartic has exactly 28 bitangents; together with the points of order two on Jac(𝒟)\operatorname{Jac}(\mathcal{D}) they have a rich symmetry, called the 642864_{28}-symmetry. The established normal form for 𝒟~x0\widetilde{\mathcal{D}}_{x_{0}} in Equation (3.40) determines a grouping of four bielliptic tangents into two pairs as follows: because of 𝒟Ln=2pn,++2pn,\mathcal{D}\cap\mathrm{L}_{n}=2p^{\prime}_{n,+}+2p^{\prime}_{n,-}, each divisor 2pn,++2pn,2p^{\prime}_{n,+}+2p^{\prime}_{n,-} for 1n41\leq n\leq 4 is a canonical divisor, and Θn=pn,++pn,\Theta_{n}=p^{\prime}_{n,+}+p^{\prime}_{n,-} is a theta divisor, i.e., a point in Pic2(𝒟)\operatorname{Pic}^{2}(\mathcal{D}) such that 2Θn𝒦𝒟2\,\Theta_{n}\sim\mathcal{K}_{\mathcal{D}}. The difference of any pair of theta divisors ΘnΘm\Theta_{n}-\Theta_{m} is a point of order two in Jac(𝒟)\operatorname{Jac}(\mathcal{D}). Since nΘn2K𝒟\sum_{n}\Theta_{n}\sim 2K_{\mathcal{D}} there exists a conic C0\mathrm{C}_{0} that cuts out the divisor npn,++pn,\sum_{n}p^{\prime}_{n,+}+p^{\prime}_{n,-} on 𝒟\mathcal{D}. Since 2C02\,\mathrm{C}_{0} and L1++L4\mathrm{L}_{1}+\dots+\mathrm{L}_{4} cut out the same divisor on 𝒟\mathcal{D}, the equation for 𝒟\mathcal{D} can be re-written as

(3.41) 𝒟:q02=l1l4,\mathcal{D}:\quad q_{0}^{2}=l_{1}\cdots l_{4}\,,

where Ln=V(ln)\mathrm{L}_{n}=\mathrm{V}(l_{n}) and C0=V(q0)\mathrm{C}_{0}=\mathrm{V}(q_{0}) with q0(X,Y,Z)=2a0Z2+b2(X,Y)q_{0}(X,Y,Z)=2a_{0}Z^{2}+b_{2}(X,Y). Notice that because of ΘnΘmΘn+ΘmK𝒟\Theta_{n}-\Theta_{m}\sim\Theta_{n}+\Theta_{m}-K_{\mathcal{D}}, the differences of any two pairs of theta divisors always add up to zero, i.e., for {m,n,r,s}={1,2,3,4}\{m,n,r,s\}=\{1,2,3,4\} we have

(3.42) (ΘmΘn)+(ΘrΘs)4n=1Θn2K𝒟=0.\Big{(}\Theta_{m}-\Theta_{n}\Big{)}+\Big{(}\Theta_{r}-\Theta_{s}\Big{)}\sim\sum^{4}_{n=1}\Theta_{n}-2\,K_{\mathcal{D}}=0\,.

On the other hand, grouping the four bitangents from Theorem 3.12 into two pairs or, equivalently, the choice of ±(ΘmΘn)Jac(𝒟)[2]\pm(\Theta_{m}-\Theta_{n})\in\operatorname{Jac}(\mathcal{D})[2] (or ±(ΘrΘs)\pm(\Theta_{r}-\Theta_{s})), amounts to combining pairs of lines into two quadrics q1=lmlnq_{1}=l_{m}l_{n} and q2=lrlsq_{2}=l_{r}l_{s} and writing the bielliptic curve 𝒟\mathcal{D} as plane projective model

(3.43) q0(X,Y,Z)2=q1(X,Y)q2(X,Y).q_{0}\big{(}X,Y,Z\big{)}^{2}=q_{1}\big{(}X,Y\big{)}\,q_{2}\big{(}X,Y\big{)}\,.

Our construction in Section 3.2 naturally provides such a grouping of bitangents into two pairs for 𝒟=𝒟~x0\mathcal{D}=\widetilde{\mathcal{D}}_{x_{0}}. In fact, for the normal form given in Equation (3.40) the three conics Ci=V(qi)\mathrm{C}_{i}=\mathrm{V}(q_{i}) with 0i20\leq i\leq 2 are given by

(3.44) q1(x,1)=γ2(xx0)24γR(x,x0)4R1(x,x0)q2(x,1)=δ2(xx0)24δR(x,x0)4R1(x,x0)q0(x,1,z~)=2P(x0)z~2+γδ(xx0)22(γ+δ)R(x,x0)4R1(x,x0).\begin{split}q_{1}(x,1)&=\gamma^{2}(x-x_{0})^{2}-4\,\gamma\,R(x,x_{0})-4R_{1}(x,x_{0})\,\\ q_{2}(x,1)&=\delta^{2}(x-x_{0})^{2}-4\,\delta\,R(x,x_{0})-4R_{1}(x,x_{0})\,\\ q_{0}(x,1,\tilde{z})&=2\,P(x_{0})\,\tilde{z}^{2}+\gamma\delta\,(x-x_{0})^{2}-2(\gamma+\delta)\,R(x,x_{0})-4R_{1}(x,x_{0})\,.\end{split}

It was proven in [MR2406115] that the curves of genus three of the form (3.43) admit an unramified double cover ρx0:x0𝒟~x0\rho^{\prime}_{x_{0}}:\mathcal{F}_{x_{0}}\to\widetilde{\mathcal{D}}_{x_{0}} where the double cover x0\mathcal{F}_{x_{0}} is a non-hyperelliptic curve of genus five given as the intersection of the three quadrics QiQ_{i} with 0i20\leq i\leq 2 in 4=(V,W,X,Y,Z)\mathbb{P}^{4}=\mathbb{P}(V,W,X,Y,Z) given by

(3.45) x0:{0=Q0(V,W,X,Y,Z)=q0(X,Y,Z)VW0=Q1(V,W,X,Y)=q1(X,Y)V20=Q2(V,W,X,Y)=q2(X,Y)W2.\mathcal{F}_{x_{0}}:\quad\left\{\begin{array}[]{lclcl}0&=&Q_{0}(V,W,X,Y,Z)&=&q_{0}(X,Y,Z)-VW\\ 0&=&Q_{1}(V,W,X,Y)&=&q_{1}(X,Y)-V^{2}\\ 0&=&Q_{2}(V,W,X,Y)&=&q_{2}(X,Y)-W^{2}\end{array}\right..

The involution

(3.46) ı:44,[V:W:X:Y:Z][V:W:X:Y:Z],\imath^{\prime}:\mathbb{P}^{4}\to\mathbb{P}^{4}\,,\quad[V:W:X:Y:Z]\mapsto[-V:-W:X:Y:Z]\,,

interchanges the sheets of the double cover ρx0:x0𝒟~x0\rho^{\prime}_{x_{0}}:\mathcal{F}_{x_{0}}\to\widetilde{\mathcal{D}}_{x_{0}}. Conversely, the canonical model of any non-hyperelliptic, (non-trigonal) curve of genus five is the intersection of three quadrics in 4\mathbb{P}^{4} by Petri’s Theorem [MR770932]*p. 131. We have the following:

Lemma 3.13.

The involution ı\imath has no fixed points iff Δ𝒵x00\Delta_{\mathcal{Z}}\!\!\mid_{x_{0}}\not=0 in Equation (3.12).

Proof.

First assume P(x0)0P(x_{0})\not=0: the quadrics q1q_{1} and q2q_{2} have a common zero if Δ𝒵x0=0\Delta_{\mathcal{Z}}\mid_{x_{0}}=0. Since

(3.47) q0(x,1,z~)=2P(x0)z~2+12(q1(x,1)+q2(x,1)(γδ)2(xx0)2),q_{0}(x,1,\tilde{z})=2\,P(x_{0})\,\tilde{z}^{2}+\frac{1}{2}\Big{(}q_{1}(x,1)+q_{2}(x,1)-(\gamma-\delta)^{2}(x-x_{0})^{2}\Big{)}\,,

we can then solve q0=0q_{0}=0 to find the fixed points of the involution. Next, we observe that the discriminants Discrx(q1)\operatorname{Discr}_{x}(q_{1}) and Discrx(q2)\operatorname{Discr}_{x}(q_{2}) and the resultant Resx(R,xx0)\operatorname{Res}_{x}(R,x-x_{0}) are all proportional to P(x0)P(x_{0}). Using Equation (3.4) we thus have a fixed locus for the involution for P(x)=P(x0)=0P(x)=P(x_{0})=0. ∎

Remark 3.14.

The constructed unramified double cover ρx0:x0𝒟~x0\rho^{\prime}_{x_{0}}:\mathcal{F}_{x_{0}}\to\widetilde{\mathcal{D}}_{x_{0}} corresponds to choosing one out of three possible groupings of the four marked bielliptic tangents into two pairs. Each choice is determined by an element D=±(ΘmΘn)Jac(𝒟)[2]\mathrm{D}=\pm(\Theta_{m}-\Theta_{n})\in\operatorname{Jac}(\mathcal{D})[2], or, equivalently, D=±(ΘkΘl)\mathrm{D}=\pm(\Theta_{k}-\Theta_{l}) with {k,l,m,n}={1,2,3,4}\{k,l,m,n\}=\{1,2,3,4\}; see Equation (3.42). In turn, D\mathrm{D} is a divisor of degree zero with associated line bundle =𝒪𝒟(D)\mathscr{L}^{\prime}=\mathcal{O}_{\mathcal{D}}(\mathrm{D}) satisfying 2=𝒪𝒟\mathscr{L}^{\prime\,\otimes 2}=\mathcal{O}_{\mathcal{D}}. The zero section of \mathscr{L}^{\prime} then determines the unramified double cover ρx0:x0𝒟~x0\rho^{\prime}_{x_{0}}:\mathcal{F}_{x_{0}}\to\widetilde{\mathcal{D}}_{x_{0}} uniquely (up to isomorphism).

We also have the analogue of Lemma 3.3:

Lemma 3.15.

On x0\mathcal{F}_{x_{0}} there are eight points – rational over (x0)\mathbb{Q}(x_{0}) – with X=xnX=x^{\prime\prime}_{n}, Y=1Y=1, Z=0Z=0 where {xn}n=14\{x^{\prime\prime}_{n}\}_{n=1}^{4} are the roots of P(x)=0P(x)=0.

Proof.

The proof follows by checking that for X=xnX=x^{\prime\prime}_{n}, Y=1Y=1 the quadrics q1,q2q_{1},q_{2} in Equation (3.44) are perfect squares with roots ±V\pm V and ±W\pm W such VW=q0(X,Y,0)VW=q_{0}(X,Y,0). ∎

Using the Riemann-Roch theorem, it follows that the hypernet Q(α0,α1,α2)=α0Q0+α1Q1+α2Q2Q(\alpha_{0},\alpha_{1},\alpha_{2})=\alpha_{0}Q_{0}+\alpha_{1}Q_{1}+\alpha_{2}Q_{2} is precisely the linear system of all quadrics in 4\mathbb{P}^{4} containing x0\mathcal{F}_{x_{0}} in Equation (3.45). Let Γ\Gamma be the locus of quadrics of rank less or equal to four, i.e.,

(3.48) Γ={[α0:α1:α2]2|detQ(α0,α1,α2)=0},\Gamma=\Big{\{}[\alpha_{0}:\alpha_{1}:\alpha_{2}]\in\mathbb{P}^{2}\ \Big{|}\ \det{Q(\alpha_{0},\alpha_{1},\alpha_{2})}=0\Big{\}}\,,

where the quadrics QiQ_{i} for 0i20\leq i\leq 2 are identified with the symmetric five-by-five matrices corresponding to the quadratic forms they represent. A simple computation shows that Γ=Γ+Γ\Gamma=\Gamma^{+}\cup\Gamma^{-} is one-dimensional with

(3.49) Γ+=V(det(α0q0+α1q1+α2q2)),Γ=V(det(α112α012α0α2))=V(α024α1α2).\Gamma^{+}=\mathrm{V}\Big{(}\det{\big{(}\alpha_{0}\,q_{0}+\alpha_{1}\,q_{1}+\alpha_{2}\,q_{2}\big{)}}\Big{)}\,,\quad\Gamma^{-}=\mathrm{V}\left(\det{\left(\begin{smallmatrix}\alpha_{1}&\frac{1}{2}\alpha_{0}\\ \frac{1}{2}\alpha_{0}&\alpha_{2}\end{smallmatrix}\right)}\right)=\mathrm{V}\Big{(}\alpha_{0}^{2}-4\alpha_{1}\alpha_{2}\Big{)}\,.

Thus, Γ\Gamma consists of a cubic curve Γ+\Gamma^{+} and a conic Γ\Gamma^{-} without multiple components. The singular locus of Γ\Gamma is the zero-dimensional locus ΓΓ\Gamma^{\prime}\subset\Gamma of quadrics of rank less or equal to three, and the singularities of Γ\Gamma are all ordinary nodes. We also consider the scheme of special divisors on x0\mathcal{F}_{x_{0}}, given by

(3.50) W14(x0)={DPic4(x0)|h0(x0,𝒪x0(D))2},W^{1}_{4}(\mathcal{F}_{x_{0}})=\Big{\{}\mathrm{D}\in\operatorname{Pic}^{4}(\mathcal{F}_{x_{0}})\;\Big{|}\;h^{0}(\mathcal{F}_{x_{0}},\mathcal{O}_{\mathcal{F}_{x_{0}}}(D))\geq 2\Big{\}}\,,

which is equipped with a natural map ϕ:W14(x0)Γ\phi:W^{1}_{4}(\mathcal{F}_{x_{0}})\to\Gamma of degree two branched exactly over Γ\Gamma^{\prime} [MR2406115]*Cor. 4.2.

One irreducible component of W14(x0)W^{1}_{4}(\mathcal{F}_{x_{0}}) is 𝒞=ϕ1(Γ)\mathcal{C}^{\prime}=\phi^{-1}(\Gamma^{-}), i.e., the double cover of 1Γ\mathbb{P}^{1}\cong\Gamma^{-} branched on the six points of Γ+Γ\Gamma^{+}\cap\Gamma^{-}. One can show that the Jacobian of 𝒞\mathcal{C}^{\prime} spans a two-dimensional abelian sub-variety in Jac(x0)\operatorname{Jac}(\mathcal{F}_{x_{0}}) [MR770932]. In fact, using the rational parametrization [α0:α1:α2]=[2ξ:1:ξ2][\alpha_{0}:\alpha_{1}:\alpha_{2}]=[2\xi:1:\xi^{2}] for Γ\Gamma^{-} we obtain an explicit equation for 𝒞\mathcal{C}^{\prime}. The following was proved in [MR422289], [MR770932]*Ex. VI.F and in [MR2406115] over a general field of characteristic zero:

Proposition 3.16.

In the situation above, we have

(3.51) Prym(x0,ρx0)=Jac(𝒞),\operatorname{Prym}(\mathcal{F}_{x_{0}},\rho^{\prime}_{x_{0}})=\operatorname{Jac}(\mathcal{C}^{\prime})\,,

where the smooth curve 𝒞\mathcal{C}^{\prime} of genus two is given by

(3.52) 𝒞:η2=det(2ξq0+q1+ξ2q2),\mathcal{C}^{\prime}:\quad\eta^{2}=-\det{\Big{(}2\,\xi\,q_{0}+q_{1}+\xi^{2}\,q_{2}\Big{)}}\,,

and the conics qiq_{i} for 0i20\leq i\leq 2 are considered symmetric three-by-three matrices corresponding to the quadratic forms they represent.

For the curves of genus five x0\mathcal{F}_{x_{0}} over 𝒟~x0\widetilde{\mathcal{D}}_{x_{0}} we have the following:

Corollary 3.17.

For Δ𝒵0\Delta_{\mathcal{Z}}\not=0 the curve x0\mathcal{F}_{x_{0}} in Equation (3.45) is a smooth curve of genus five admitting the unramified double cover ρx0:x0𝒟~x0\rho^{\prime}_{x_{0}}:\mathcal{F}_{x_{0}}\to\widetilde{\mathcal{D}}_{x_{0}}. The Prym variety is canonically isomorphic to the principally polarized abelian surface Prym(x0,ρx0)=Jac(𝒞)\operatorname{Prym}(\mathcal{F}_{x_{0}},\rho^{\prime}_{x_{0}})=\operatorname{Jac}(\mathcal{C}^{\prime}) where 𝒞\mathcal{C}^{\prime} is isomorphic to the smooth curve of genus two in Equation (3.29).

Proof.

We compute the Igusa-Clebsch invariants, using the same normalization as in [MR3712162, MR3731039]. Denoting the Igusa-Clebsch invariants of the curves of genus two in Equation (3.29) and (3.52) by [I2:I4:I6:I10](2,4,6,10)[I_{2}:I_{4}:I_{6}:I_{10}]\in\mathbb{P}(2,4,6,10) and [I2:I4:I6:I10][I^{\prime}_{2}:I^{\prime}_{4}:I^{\prime}_{6}:I^{\prime}_{10}], respectively, one checks that

(3.53) [I2:I4:I6:I10]=[r2I2:r4I4:r6I6:r10I10]=[I2:I4:I6:I10],[I_{2}:I_{4}:I_{6}:I_{10}]=[r^{2}I^{\prime}_{2}\ :\ r^{4}I^{\prime}_{4}\ :\ r^{6}I^{\prime}_{6}\ :\ r^{10}I^{\prime}_{10}]=[I^{\prime}_{2}:I^{\prime}_{4}:I^{\prime}_{6}:I^{\prime}_{10}]\,,

with r=32(γδ)P(x0)2r=32\,(\gamma-\delta)\,P(x_{0})^{2}. Thus, the curves are isomorphic. ∎

Because of Lemma 3.15 we can embed x0\mathcal{F}_{x_{0}} into Jac(x0)\operatorname{Jac}(\mathcal{F}_{x_{0}}). We then combine this map with the projection map idȷ:Jac(x0)Prym(x0,ρx0)\mathrm{id}_{*}-\jmath_{*}:\operatorname{Jac}(\mathcal{F}_{x_{0}})\to\operatorname{Prym}(\mathcal{F}_{x_{0}},\rho^{\prime}_{x_{0}}), which is called the Abel-Prym map. We have the following:

Lemma 3.18.

Each smooth curve x0\mathcal{F}_{x_{0}} embeds into Jac(𝒞)\operatorname{Jac}(\mathcal{C}^{\prime}) via the Abel-Prym map.

Proof.

The curve x0\mathcal{F}_{x_{0}} is embeds into Jac(x0)\operatorname{Jac}(\mathcal{F}_{x_{0}}) which decomposes into Prym(x0,ρx0)\operatorname{Prym}{(\mathcal{F}_{x_{0}},\rho^{\prime}_{x_{0}})} and Jac(𝒟~x0)\operatorname{Jac}(\widetilde{\mathcal{D}}_{x_{0}}). It was proved in [MR422289]*Prop. 5.3 that for an unramified double cover ρx0:x0𝒟~x0\rho^{\prime}_{x_{0}}:\mathcal{F}_{x_{0}}\to\widetilde{\mathcal{D}}_{x_{0}} this embedding misses Jac(𝒟~x0)\operatorname{Jac}(\widetilde{\mathcal{D}}_{x_{0}}). Verra proves that the curves of genus five x0Jac(𝒞)\mathcal{F}_{x_{0}}\subset\operatorname{Jac}(\mathcal{C}^{\prime}) of the form in Equation (3.45), up to translation by a 2-torsion point, are Abel-Prym embeddings [MR875339]. ∎

In Equation (3.45) q1,q2q_{1},q_{2} do not depend on the variable ZZ; thus, Γ+=LC\Gamma^{+}=\mathrm{L}\cup\mathrm{C} decomposes into a line component L\mathrm{L} and another irreducible conic C\mathrm{C}. In general, there is a bijection between lines in Γ\Gamma and bielliptic structures on \mathcal{F}. In fact, the following was proved in [MR770932]*Ex. VI.F:

Lemma 3.19.

If LΓ\mathrm{L}\subset\Gamma is a line component and L\mathcal{E}^{\prime}\to\mathrm{L} the double cover branched on the four points of L(ΓL)\mathrm{L}\cap(\Gamma-\mathrm{L}), then \mathcal{F} is the double cover of \mathcal{E}^{\prime}.

We have the following:

Proposition 3.20.

Let x0\mathcal{F}_{x_{0}} be a smooth curve of genus five and L\mathrm{L}, CΓ+\mathrm{C}\subset\Gamma^{+} as above. The double cover of 1\mathbb{P}^{1} branched on the four point of L(CΓ)\mathrm{L}\cap(\mathrm{C}\cup\Gamma^{-}) is an irreducible component of W14(x0)W^{1}_{4}(\mathcal{F}_{x_{0}}), and x0=ϕ1(L)\mathcal{E}^{\prime}_{x_{0}}=\phi^{-1}(\mathrm{L}) is the elliptic curve

(3.54) x0:y2=S(γ)P(x0)x3+(2μP(x0)+(γδ)2Q(x0))x2+S(δ)P(x0)x,\mathcal{E}^{\prime}_{x_{0}}:\quad y^{2}=S(\gamma)\,P(x_{0})\,x^{3}+\Big{(}2\,\mu\,P(x_{0})+(\gamma-\delta)^{2}\,Q(x_{0})\Big{)}\,x^{2}+S(\delta)\,P(x_{0})\,x\,,

where S(ξ)S(\xi), P(x)P(x), Q(x)Q(x), μ\mu are defined in Section 3.1 and Equation (3.13). Moreover, each curve x0\mathcal{F}_{x_{0}} admits a double cover πx0:x0x0\pi^{\prime}_{x_{0}}:\mathcal{F}_{x_{0}}\to\mathcal{E}^{\prime}_{x_{0}}.

Proof.

One checks that Γ+=LC\Gamma^{+}=\mathrm{L}\cup\mathrm{C} decomposes into the line component L\mathrm{L} and another irreducible conic C\mathrm{C} with L=V(α0)\mathrm{L}=\mathrm{V}(\alpha_{0}) and C=V(q(α0,α1,α2))\mathrm{C}=\mathrm{V}(q(\alpha_{0},\alpha_{1},\alpha_{2})) for a certain conic qq. The double cover of 1\mathbb{P}^{1} branched on the four points of ΓC\Gamma^{-}\cap\mathrm{C} is then given by

(3.55) ((α024α1α2)q(α0,α1,α2))|[α0:α1:α2]=[0:x:z]=S(γ)P(x0)x3+(2μP(x0)+(γδ)2Q(x0))x2z+S(δ)P(x0)xz2,\begin{split}&\left.\Big{(}\big{(}\alpha_{0}^{2}-4\alpha_{1}\alpha_{2}\Big{)}\;q(\alpha_{0},\alpha_{1},\alpha_{2})\Big{)}\right|_{[\alpha_{0}:\alpha_{1}:\alpha_{2}]=[0:x:z]}\\ =&\;S(\gamma)\,P(x_{0})\,x^{3}+\Big{(}2\,\mu\,P(x_{0})+(\gamma-\delta)^{2}\,Q(x_{0})\Big{)}\,x^{2}z+S(\delta)\,P(x_{0})\,xz^{2}\,,\end{split}

which agrees with Equation (3.54) in the affine coordinate chart z=1z=1. ∎

We also introduce 𝒵=x0x0\mathcal{Z}^{\prime}=\coprod_{x_{0}}\mathcal{E}^{\prime}_{x_{0}}, i.e., the total space of the elliptic fibration obtained by varying the parameter x0x_{0} in Equation (3.54). We have the following:

Corollary 3.21.

The total space of the elliptic fibration 𝒵=x0x0\mathcal{Z}^{\prime}=\coprod_{x_{0}}\mathcal{E}^{\prime}_{x_{0}} is birationally equivalent to the Jacobian elliptic fibration in Equation (3.20).

Proof.

Using μ2νκ=S(γ)S(δ)\mu^{2}-\nu\kappa=S(\gamma)\,S(\delta) the map (x,y)(4P(x0)S(γ)x, 22P(x0)S(γ)y)(x,y)\mapsto(4P(x_{0})\,S(\gamma)\,x,\ 2\sqrt{2}\,P(x_{0})\,S(\gamma)\,y) provides a birationally equivalence of the Jacobian elliptic fibration in Equation (3.20) with Equation (3.54). ∎

We also describe the remaining irreducible component of W14(x0)W^{1}_{4}(\mathcal{F}_{x_{0}}) which is 𝒞~x0=ϕ1(C)\widetilde{\mathcal{C}}_{x_{0}}=\phi^{-1}(\mathrm{C}). There is a classification of the singular fibers of pencils of curves of genus two due to Namikawa and Ueno [MR0369362] analogous to the Kodaira classification of singular fibers of Jacobian elliptic fibrations [MR0184257]. We have the following:

Proposition 3.22.

Let x0\mathcal{F}_{x_{0}} be a smooth curve of genus five and L\mathrm{L}, CΓ+\mathrm{C}\subset\Gamma^{+} as above. The double cover of 1C\mathbb{P}^{1}\cong\mathrm{C} branched on the six points of C(LΓ)\mathrm{C}\cap(\mathrm{L}\cup\Gamma^{-}) is an irreducible component of W14(x0)W^{1}_{4}(\mathcal{F}_{x_{0}}), and 𝒞~x0=ϕ1(C)\widetilde{\mathcal{C}}_{x_{0}}=\phi^{-1}(\mathrm{C}) is the curve of genus two

(3.56) 𝒞~x0:η2=((γξ+1)P(x0)+ξQ(x0))(S(γ)ξ3+(3γ2+S(0))ξ2+3γξ)×((S(γ)ξ2+(2γ2+γδ+S(0))ξ2+γ+δ)P(x0)((γδ)ξ+1)Q(x0)),\begin{split}\widetilde{\mathcal{C}}_{x_{0}}:&\quad\eta^{2}=\Big{(}\big{(}\gamma\xi+1\big{)}P(x_{0})+\xi\,Q(x_{0})\Big{)}\Big{(}S(\gamma)\,\xi^{3}+\big{(}3\gamma^{2}+S^{\prime}(0)\big{)}\xi^{2}+3\gamma\xi\Big{)}\\ \times&\Big{(}\big{(}S(\gamma)\,\xi^{2}+(2\gamma^{2}+\gamma\delta+S^{\prime}(0))\,\xi^{2}+\gamma+\delta\big{)}\,P(x_{0})-\big{(}(\gamma-\delta)\xi+1\big{)}\,Q(x_{0})\Big{)}\,,\end{split}

where S(ξ)S(\xi), P(x)P(x), Q(x)Q(x) are defined in Section 3.1 and Equation (3.13). Moreover, the family 𝒞~x0\widetilde{\mathcal{C}}_{x_{0}} has six singular fibers of Namikawa-Ueno type [I0I00][I_{0}-I_{0}^{*}-0] over the roots of [P,Q]x0[P,Q]_{x_{0}}.

Proof.

One checks that the component C=V(q(α0,α1,α2))Γ+\mathrm{C}=\mathrm{V}(q(\alpha_{0},\alpha_{1},\alpha_{2}))\subset\Gamma^{+} contains the rational point [α0:α1:α2]=[2:1:1][\alpha_{0}:\alpha_{1}:\alpha_{2}]=[-2:1:1], and a rational parametrization is given by setting α1=α2+(1+(γδ)ξ/2)(α0+2α2)\alpha_{1}=\alpha_{2}+(-1+(\gamma-\delta)\xi/2)(\alpha_{0}+2\alpha_{2}). We obtain the double cover of 1C\mathbb{P}^{1}\cong\mathrm{C} branched on the six intersection points of LΓ\mathrm{L}\cup\Gamma^{-}, by substituting the rational parametrization into α0(α024α1α2)\alpha_{0}(\alpha_{0}^{2}-4\alpha_{1}\alpha_{2}). We obtain

(3.57) η2=((γξ+1)P(x0)+ξ(x0))=:p1(ξ)(S(γ)ξ3+(3γ2+S(0))ξ2+3γξ)=:p2(ξ)×((S(γ)ξ2+(2γ2+γδ+S(0))ξ2+γ+δ)P(x0)((γδ)ξ+1)Q(x0))=:p3(ξ).\begin{split}\eta^{2}=&\underbrace{\Big{(}\big{(}\gamma\xi+1\big{)}P(x_{0})+\xi\,(x_{0})\Big{)}}_{=:\,p_{1}(\xi)}\underbrace{\Big{(}S(\gamma)\,\xi^{3}+\big{(}3\gamma^{2}+S^{\prime}(0)\big{)}\xi^{2}+3\gamma\xi\Big{)}}_{=:\,p_{2}(\xi)}\\ \times&\underbrace{\Big{(}\big{(}S(\gamma)\,\xi^{2}+(2\gamma^{2}+\gamma\delta+S^{\prime}(0))\,\xi^{2}+\gamma+\delta\big{)}\,P(x_{0})-\big{(}(\gamma-\delta)\xi+1\big{)}\,Q(x_{0})\Big{)}}_{=:\,p_{3}(\xi)}\,.\end{split}

We compute the following resultants

Resξ(p1(ξ),p2(ξ))=S(γ)S(δ)(S(0)P(x0)3S(0)P(x0)2Q(x0)Q(x0)3),Resξ(p1(ξ),p3(ξ))=Resξ(p2(ξ),p3(ξ))=S(0)P(x0)3S(0)P(x0)2Q(x0)Q(x0)3.\begin{split}\operatorname{Res}_{\xi}\Big{(}p_{1}(\xi),p_{2}(\xi)\Big{)}&=S(\gamma)\,S(\delta)\,\Big{(}S(0)\,P(x_{0})^{3}-S^{\prime}(0)\,P(x_{0})^{2}Q(x_{0})-Q(x_{0})^{3}\Big{)}\,,\\ \operatorname{Res}_{\xi}\Big{(}p_{1}(\xi),p_{3}(\xi)\Big{)}&=\operatorname{Res}_{\xi}\Big{(}p_{2}(\xi),p_{3}(\xi)\Big{)}=S(0)\,P(x_{0})^{3}-S^{\prime}(0)\,P(x_{0})^{2}Q(x_{0})-Q(x_{0})^{3}\,.\end{split}

We then compute the Igusa-Clebsch invariants of the curve of genus two, using the same normalization as in [MR3712162, MR3731039]. Denoting the Igusa-Clebsch invariants of the curve of genus two in Equation (3.57) by [I2:I4:I6:I10](2,4,6,10)[I_{2}:I_{4}:I_{6}:I_{10}]\in\mathbb{P}(2,4,6,10), one checks that for

(3.58) ϵ=4(S(0)P(x0)3S(0)P(x0)2Q(x0)Q(x0)3)=([P,Q]x0)2.\epsilon=4\Big{(}S(0)\,P(x_{0})^{3}-S^{\prime}(0)\,P(x_{0})^{2}Q(x_{0})-Q(x_{0})^{3}\Big{)}=\Big{(}\,[P,Q]_{x_{0}}\Big{)}^{2}\,.

we obtain

(3.59) [I2:I4:I6:I10]=[I2:ϵ2I4:ϵ2I6:ϵ6I10],[I_{2}:I_{4}:I_{6}:I_{10}]=\Big{[}I_{2}\ :\ \epsilon^{2}I^{\prime}_{4}\ :\ \epsilon^{2}I^{\prime}_{6}\ :\ \epsilon^{6}I^{\prime}_{10}\Big{]}\,,

where I2,I4,I6,I10I_{2},I^{\prime}_{4},I^{\prime}_{6},I^{\prime}_{10} are polynomials in x0x_{0} that do not have a common factor with [P,Q]x0[P,Q]_{x_{0}}. Using the results of Namikawa and Ueno [MR0369362] we conclude that a local model for 𝒞~x0\widetilde{\mathcal{C}}_{x_{0}} near ϵ=0\epsilon=0 is given by

(3.60) η2=(ξ3+αξ+1)(ξ3+ϵ2βξ+ϵ3),\eta^{2}=\Big{(}\xi^{3}+\alpha\,\xi+1\Big{)}\Big{(}\xi^{3}+\epsilon^{2}\beta\,\xi+\epsilon^{3}\Big{)}\,,

where α,β\alpha,\beta are suitable rational functions that do not vanish for ϵ=0\epsilon=0. ∎

4. Proof of the main results

We have the following:

Proposition 4.1.

For

(4.1) P(x)=x4Λ1x2+1,R(x,x0)=x2x02Λ16(x2+4x0x+x02)+1,R1(x,x0)=23Λ1x2x02+(2518Λ12)xx0+(1136Λ12)(x2+x02)23Λ1,\begin{split}P(x)=x^{4}-\Lambda_{1}x^{2}+1\,,\qquad R(x,x_{0})=x^{2}x_{0}^{2}-\frac{\Lambda_{1}}{6}\big{(}x^{2}+4x_{0}x+x_{0}^{2}\big{)}+1\,,\\ R_{1}(x,x_{0})=-\frac{2}{3}\Lambda_{1}\,x^{2}x_{0}^{2}+\left(2-\frac{5}{18}\Lambda_{1}^{2}\right)\,xx_{0}+\left(1-\frac{1}{36}\Lambda_{1}^{2}\right)\big{(}x^{2}+x_{0}^{2}\big{)}-\frac{2}{3}\Lambda_{1}\,,\end{split}

and parameters

(4.2) γ+δ=c13κ1,5κ2,3c2,γδ=c09λ1λ2λ3c2,\gamma+\delta=-\frac{c_{1}}{3\kappa_{1,5}\kappa_{2,3}c_{2}}\,,\qquad\gamma\delta=\frac{c_{0}}{9\lambda_{1}\lambda_{2}\lambda_{3}c_{2}}\,,

with c0,c1,c2c_{0},c_{1},c_{2} given by either Equation (2.7) or Equation (2.8), the Jacobian elliptic K3 surfaces 𝒴\mathcal{Y} and 𝒵\mathcal{Z} in Equation (2.19) and Equation (3.17) coincide for v=x0v=x_{0}. In particular, the Jacobian elliptic fibrations realize the fibration from Proposition 2.11 where K0,,K3\mathrm{K}_{0},\dots,\mathrm{K}_{3} are the divisor classes from Corollary 3.5. The same applies to the Jacobian elliptic K3 surfaces 𝒳\mathcal{X}^{\prime} and 𝒵\mathcal{Z}^{\prime} in Equation (2.20) and Equation (3.20)/Equation (3.54), respectively.

Proof.

We have the two (pairs of) points ±qγ,±qδ\pm q_{\gamma},\pm q_{\delta}\in\mathcal{E} on the elliptic curve in Equation (3.1) with coordinates (ξqγ=γ,±ηqγ)(\xi_{q_{\gamma}}=\gamma,\,\pm\eta_{q_{\gamma}}) with ηqγ2=S(γ)\eta_{q_{\gamma}}^{2}=S(\gamma) and (ξqδ=δ,±ηqδ)(\xi_{q_{\delta}}=\delta,\,\pm\eta_{q_{\delta}}) with ηqδ2=S(δ)\eta_{q_{\delta}}^{2}=S(\delta). One then checks that μ2κν=S(γ)S(δ)\mu^{2}-\kappa\nu=S(\gamma)S(\delta). By a rescaling one obtains from Equation (3.17) the Weierstrass model

(4.3) Y2=X32(μP(x0)ηqγηqδ+νQ(x0)ηqγηqδ)X2+((μP(x0)ηqγηqδ+νQ(x0)ηqγηqδ)2P(x0)2)X.Y^{2}=X^{3}-2\left(\frac{\mu\,P(x_{0})}{\eta_{q_{\gamma}}\eta_{q_{\delta}}}+\frac{\nu\,Q(x_{0})}{\eta_{q_{\gamma}}\eta_{q_{\delta}}}\right)\,X^{2}+\left(\left(\frac{\mu\,P(x_{0})}{\eta_{q_{\gamma}}\eta_{q_{\delta}}}+\frac{\nu\,Q(x_{0})}{\eta_{q_{\gamma}}\eta_{q_{\delta}}}\right)^{2}-P(x_{0})^{2}\right)X.

with

(4.4) μηqγηqδ=ξqγ+qδ+ξqγqδξqγ+qδξqγqδ,νηqγηqδ=2ξqγ+qδξqγqδ.\begin{split}\frac{\mu}{\eta_{q_{\gamma}}\eta_{q_{\delta}}}=\frac{\xi_{q_{\gamma}+q_{\delta}}+\xi_{q_{\gamma}-q_{\delta}}}{\xi_{q_{\gamma}+q_{\delta}}-\xi_{q_{\gamma}-q_{\delta}}}\,,\qquad\frac{\nu}{\eta_{q_{\gamma}}\eta_{q_{\delta}}}=\frac{2}{\xi_{q_{\gamma}+q_{\delta}}-\xi_{q_{\gamma}-q_{\delta}}}\,.\end{split}

The choice of sign ±ηqγ\pm\eta_{q_{\gamma}} and ±ηqγ\pm\eta_{q_{\gamma}} does not matter as it can always be absorbed in a rescaling (X,Y)(X,iY)(X,Y)\mapsto(-X,iY). Plugging in P(x)P(x) and γ,δ\gamma,\delta, one checks that the Weierstrass models in Equation (2.19) and Equation (4.3) are identical for v=x0v=x_{0}. In particular, it follows that Equation (2.7) and (2.8) are the only solutions that make the Jacobian elliptic K3 surfaces 𝒴\mathcal{Y} and 𝒵\mathcal{Z} coincide up to a sign change ±κp\pm\kappa_{p}. ∎

According to Remark 2.3 there are exactly three inequivalent Göpel groups containing a given point of order two p46Jac(𝒞)[2]p_{46}\in\operatorname{Jac}(\mathcal{C})[2]. The point of order two determines a rational double cover ϕΔp46:𝒴𝒳=Kum(Jac𝒞)\phi_{\Delta_{p_{46}}}:\mathcal{Y}\dasharrow\mathcal{X}=\operatorname{Kum}(\operatorname{Jac}\mathcal{C}). Remark 2.9 shows that the full Göpel group Gp46G^{\prime}\ni p_{46} also determines Weierstrass models in Equation (2.15) and Equation (2.19), together with a marked 2-torsion section. Following Remark 2.16, the marked 2-torsion section on 𝒴\mathcal{Y} defines an even eight ΔG\Delta_{G^{\prime}} of exceptional curves on 𝒴=Kum(𝖡)\mathcal{Y}=\operatorname{Kum}(\mathsf{B}) which in turn determines a rational double cover ϕΔG:𝒳𝒴\phi_{\Delta_{G^{\prime}}}:\mathcal{X}^{\prime}\dasharrow\mathcal{Y}. Thus, the Kummer surface 𝒳=Kum(Jac𝒞)\mathcal{X}^{\prime}=\operatorname{Kum}(\operatorname{Jac}\mathcal{C}^{\prime}) is obtained from the Göpel group GG^{\prime} such that Jac(𝒞)=Jac(𝒞)/G\operatorname{Jac}(\mathcal{C}^{\prime})=\operatorname{Jac}(\mathcal{C})/G^{\prime}. As ϕΔG\phi_{\Delta_{G^{\prime}}} is associated with a van Geemen-Sarti involution this establishes a Jacobian elliptic fibration on 𝒳\mathcal{X}^{\prime}.

4.1. Proof of Theorem 1.1

Let us first explain the rescaling that yields the pencil 𝒟~x0\widetilde{\mathcal{D}}_{x_{0}} in Equation (1.8) from Equation (3.28) using the parameters in Equation (4.1) and Equation (4.2). We set x=lXx=\sqrt{l}X, x0=ltx_{0}=\sqrt{l}t, z~=Z/9c2l\tilde{z}=Z/\sqrt{9c_{2}l} with l=κ1,5κ2,3l=\kappa_{1,5}\kappa_{2,3}, and

(4.5) p(X,Y)=P(lXY)Y4,Δ(t)(X,Y)=(XtY)2,r(t)(X,Y)=6R(lXY,lt)Y2,r(t)1(X,Y)=36lR1(lXY,lt)Y2,\begin{array}[]{rclcrcl}p(X,Y)&=&P\left(\frac{\sqrt{l}X}{Y}\right)Y^{4}\,,&&\Delta^{(t)}(X,Y)&=&\big{(}X-t\,Y\big{)}^{2}\,,\\ r^{(t)}(X,Y)&=&6\,R\left(\frac{\sqrt{l}X}{Y},\sqrt{l}t\right)Y^{2}\,,&&r^{(t)}_{1}(X,Y)&=&-36\,l\,R_{1}\left(\frac{\sqrt{l}X}{Y},\sqrt{l}t\right)Y^{2}\,,\\ \end{array}

multiply Equation (3.28) with (9c2l)2(9c_{2}l)^{2} to obtain the equation for 𝒟t:=𝒟~x0\mathcal{D}_{t}:=\widetilde{\mathcal{D}}_{x_{0}} given by

(4.6) 𝒟t:p0(t)Z4+(c2r1(t)+c1r(t)+c0Δ(t))Z2+9(c124c0c2)p=0,\mathcal{D}_{t}:\quad p_{0}^{(t)}\,Z^{4}+\Big{(}c_{2}r_{1}^{(t)}+c_{1}r^{(t)}+c_{0}\Delta^{(t)}\Big{)}\,Z^{2}+9\,\Big{(}c_{1}^{2}-4c_{0}c_{2}\Big{)}\,p=0\,,

where c0,c1,c2c_{0},c_{1},c_{2} are given by Equation (2.7) or Equation (2.8), and κp2=λ2λ3\kappa_{p}^{2}=\lambda_{2}\lambda_{3} or κp2=λ1\kappa_{p}^{2}=\lambda_{1}, respectively. Note that changing from 𝒟x0\mathcal{D}_{x_{0}} to 𝒟~x0\widetilde{\mathcal{D}}_{x_{0}} in Equation (3.28) does not affect the smooth fibers – this also applies to Sections 4.2/4.3. In the following, we will restrict ourselves to the case of Equation (2.8), i.e., κ1,52=λ1\kappa_{1,5}^{2}=\lambda_{1}, and 𝔐=𝔐p15\mathfrak{M}^{\prime}=\mathfrak{M}^{\prime}_{p_{15}}. The other case is completely analogous.

(1) It follows from Proposition 4.1 that the Jacobian elliptic K3 surfaces 𝒵\mathcal{Z} and 𝒴\mathcal{Y} in Equation (3.17) and Equation (2.19) coincide for x0=vx_{0}=v. It was proven in Proposition 2.13 that the K3 surface 𝒴\mathcal{Y} is the Kummer surface of an abelian surface 𝖡p46\mathsf{B}_{p_{46}} with a polarization of type (1,2)(1,2). Proposition 3.7 then shows that the pencil of curves of genus three 𝒟x0\mathcal{D}_{x_{0}} is obtained as double cover of 𝒵=x0𝒬x0\mathcal{Z}=\coprod_{x_{0}}\mathcal{Q}_{x_{0}} branched on the divisor classes K0,,K3\mathrm{K}_{0},\dots,\mathrm{K}_{3} in Corollary 3.5. According to Theorem 2.10, this is precisely the pencil on 𝖡\mathsf{B} realizing the linear system |𝒱||\mathscr{V}| for the (1,2)(1,2)-polarization on 𝖡\mathsf{B} given by an ample symmetric line bundle 𝒱\mathscr{V} with 𝒱2=4\mathscr{V}^{2}=4. Thus, the claim follows.

(2) and (3) One checks that the discriminant in Equation (3.12) vanishes for t2=λ1,λ2λ3t^{2}=\lambda_{1},\lambda_{2}\lambda_{3}, t2=λ2,λ1λ3t^{2}=\lambda_{2},\lambda_{1}\lambda_{3}, and t2=λ3,λ1λ2t^{2}=\lambda_{3},\lambda_{1}\lambda_{2}. The proof then follows from Proposition 3.10 together with Proposition 2.1.

(4) The claims follows from Proposition 3.11 as follows: one checks that the roots of [P,Q]x0=0[P,Q]_{x_{0}}=0 are given by t2=0,±λ1λ2λ3,t^{2}=0,\pm\lambda_{1}\lambda_{2}\lambda_{3},\infty and that for γ,δ\gamma,\delta given by Equations (4.2), the condition 2(qγ±qδ)02(q_{\gamma}\pm q_{\delta})\not=0 is satisfied. ∎

4.2. Proof of Theorem 1.2

The point p46Jac(𝒞)[2]p_{46}\in\operatorname{Jac}(\mathcal{C})[2] determines a 2-isogeny Φ:𝖡Jac(𝒞)\Phi:\mathsf{B}\to\operatorname{Jac}(\mathcal{C}) which covers ϕΔp46:𝒴𝒳\phi_{\Delta_{p_{46}}}:\mathcal{Y}\dasharrow\mathcal{X}. The Weierstrass model (with marked 2-torsion) on 𝒴𝒵\mathcal{Y}\cong\mathcal{Z} in Equation (2.19) is then used in Proposition 3.7 to construct the pencil 𝒟x0\mathcal{D}_{x_{0}} of bielliptic curves of genus three realizing |𝒱||\mathscr{V}| where 𝒱\mathscr{V} is the polarization line bundle on 𝖡\mathsf{B} induced by pull-back. The equivalent pencil 𝒟~x0\widetilde{\mathcal{D}}_{x_{0}} has the property that the normalization of four singular fibers is given by the (2,2)(2,2)-isogenous curve 𝒞\mathcal{C}^{\prime}; see Proposition 3.10. The normal form for 𝒟~x0\widetilde{\mathcal{D}}_{x_{0}} in Equation (3.40) also determines an unramified double cover ρx0:x0𝒟~x0\rho^{\prime}_{x_{0}}:\mathcal{F}_{x_{0}}\to\widetilde{\mathcal{D}}_{x_{0}} by a non-hyperelliptic curve of genus five x0\mathcal{F}_{x_{0}}; see Remark 3.14. Its Prym variety is the principally polarized abelian surface Prym(x0,ρx0)=Jac(𝒞)\operatorname{Prym}(\mathcal{F}_{x_{0}},\rho^{\prime}_{x_{0}})=\operatorname{Jac}(\mathcal{C}^{\prime}); see Corollary 3.17. Proposition 3.20 proves that the curves of genus five x0\mathcal{F}_{x_{0}} also admit a double cover πx0:x0x0\pi^{\prime}_{x_{0}}:\mathcal{F}_{x_{0}}\to\mathcal{E}^{\prime}_{x_{0}} onto the elliptic curves x0\mathcal{E}^{\prime}_{x_{0}} such that 𝒵=x0x0\mathcal{Z}^{\prime}=\coprod_{x_{0}}\mathcal{E}^{\prime}_{x_{0}} is the Jacobian elliptic fibration (2.20) on the Kummer surface 𝒳=Kum(Jac𝒞)\mathcal{X}^{\prime}=\operatorname{Kum}(\operatorname{Jac}\mathcal{C}^{\prime}). We have the following:

Lemma 4.2.

Assuming Equations (4.1) and (4.2), the curves of genus five x0\mathcal{F}_{x_{0}} admitting the unramified cover ρx0:x0𝒟~x0\rho^{\prime}_{x_{0}}:\mathcal{F}_{x_{0}}\to\widetilde{\mathcal{D}}_{x_{0}} form a pencil on Jac(𝒞)\operatorname{Jac}(\mathcal{C}^{\prime}), and x0\mathcal{F}_{x_{0}} embeds into Prym(x0,ρx0)Jac(𝒞)\operatorname{Prym}{(\mathcal{F}_{x_{0}},\rho^{\prime}_{x_{0}})}\cong\operatorname{Jac}(\mathcal{C}^{\prime}) as a curve of self-intersection eight.

Proof.

The proof follows from Lemma 3.18. Since x0\mathcal{F}_{x_{0}} represents the pull-back of a theta divisor via a degree-two map the self-intersection is eight. ∎

We make the following:

Remark 4.3.

Geometrically, 𝒟~x0\widetilde{\mathcal{D}}_{x_{0}} is obtained as follows: given the curve of genus two 𝒞\mathcal{C}^{\prime} and its Kummer quartic K=Jac(𝒞)/id3\mathrm{K}^{\prime}=\operatorname{Jac}(\mathcal{C}^{\prime})/\langle-{\rm id}\rangle\subset\mathbb{P}^{3}, we can always find a plane Vx03\mathrm{V}_{x_{0}}\subset\mathbb{P}^{3} such that 𝒟~x0=Vx0K\widetilde{\mathcal{D}}_{x_{0}}=\mathrm{V}_{x_{0}}\cap\mathrm{K}^{\prime} is a non-singular quartic curve not meeting the ramification locus of π:Jac(𝒞)K\pi:\operatorname{Jac}(\mathcal{C}^{\prime})\to\mathrm{K}^{\prime}. Then, x0=π1(𝒞)\mathcal{F}_{x_{0}}=\pi^{-1}(\mathcal{C}^{\prime}) is an unramified double cover of 𝒞\mathcal{C}^{\prime} and connected, whence of genus five. This model of 𝒟~x0\widetilde{\mathcal{D}}_{x_{0}} as a plane section of K\mathrm{K}^{\prime} also determines the 28 bitangents of 𝒟~x0\widetilde{\mathcal{D}}_{x_{0}}. The tropes on K\mathrm{K}^{\prime} cut out sixteen bitangents; the remaining twelve come in pairs from singular conics in Γ\Gamma. Our model for 𝒟~x0\widetilde{\mathcal{D}}_{x_{0}} in Equation (3.40) has only six rational tangents over 𝔐\mathfrak{M}^{\prime}; see Remark 2.4 and [Clingher:2018aa]*Table 3. However, there are additional bitangents coming from singular conics which determine q1,q2q_{1},q_{2} in Equation (3.43): they are in general not rational over 𝔐\mathfrak{M}^{\prime}, but their product always is. In fact, only γ+δ\gamma+\delta and γδ\gamma\delta in Equation (3.44) are rational over 𝔐\mathfrak{M}^{\prime}; see Equation (4.2).

We use the same identification of moduli as in Section 4.1. In addition, we rescale V,WV/(3lc2),W/(3lc2)V,W\mapsto V/(3\sqrt{lc_{2}}),W/(3\sqrt{lc_{2}}) with l=κ1,5κ2,3l=\kappa_{1,5}\kappa_{2,3}. Note that l=0l=0 or c2=0c_{2}=0 implies that 𝒞\mathcal{C} is singular. We then introduce the parameters e=γ/(3l)e=-\gamma/(3l) and f=δ/(3l)f=-\delta/(3l) such that Equation (4.2) becomes e+f=c1/c2e+f=c_{1}/c_{2}, ef=c0/c2ef=c_{0}/c_{2} and Equation (3.45) becomes Equation (1.10). Interchanging ee and ff amounts to the changing the sign of c124c0c2\sqrt{c_{1}^{2}-4c_{0}c_{2}} which is easily checked to correspond to a sign change ±κ1,5\pm\kappa_{1,5} or, equivalently, swapping the two sheets of the double cover 𝔐𝔐\mathfrak{M}^{\prime}\to\mathfrak{M}. A computation then shows that the curves of genus two in Proposition 2.1 and Proposition 3.16/Corollary 3.17 coincide. Upon re-scaling of variables we obtain Equation (1.12). The fact that the curve is an Abel-Prym embedding and also bielliptic was proved in Lemma 3.18 and Proposition 3.20; finally, we use Lemma 4.2. ∎

4.3. Proof of Corollary 1.3

Theorem 1.1 already proves that for a smooth curve 𝒟x0\mathcal{D}_{x_{0}} the Prym variety Prym(𝒟x0,πx0)\operatorname{Prym}(\mathcal{D}_{x_{0}},\pi_{x_{0}}) with its polarization of type (1,2)(1,2) is 2-isogenous to the principally polarized Jacobian variety Jac(𝒞)\operatorname{Jac}(\mathcal{C}). The proof of the corollary then follows from Lemma 2.5 and Proposition 3.8 after observing that for x0=0x_{0}=0 the curve 𝒟x0\mathcal{D}_{x_{0}} is smooth and for its bielliptic quotient 𝒬x0=𝒟x0/ȷ\mathcal{Q}_{x_{0}}=\mathcal{D}_{x_{0}}/\langle\jmath\rangle the Jacobian Jac(𝒬x0)\operatorname{Jac}(\mathcal{Q}_{x_{0}}) has the same jj-invariant as the one in Equation (2.13). The same argument applies for x0=x_{0}=\infty. ∎

References