This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Geometric derivation of the finite NN master loop equation

Omar Abdelghani, Ron Nissim
Abstract.

In this paper we provide a geometric derivation of the master loop equation for the lattice Yang-Mills model with structure group G{SO(N),SU(N),U(N)}G\in\{SO(N),SU(N),U(N)\}. This approach is based on integration by parts on GG. In the appendix we compare our approach to that of [Cha19b] and [Jaf16] based on Schwinger-Dyson equations, and [SSZ22] based on stochastic analysis. In particular these approaches are all easily seen to be equivalent. The novelty in our approach is the use of intrinsic geometry of GG which we believe simplifies the derivation.

1. Introduction

The study of a Quantum Yang-Mills theory is of great importance for understanding the standard model of particle physics. Although the physically relevant theory takes place in Minkowski space, standard arguments indicate that it is sufficient to study the Euclidean/probabilistic theory. This paper will only deal with the Euclidean theory, for a general survey paper see [Cha19c].

Specifically, we will be dealing with the the lattice Yang-Mills model with structure group G{SO(N),SU(N),U(N)}G\in\{SO(N),SU(N),U(N)\}. One approach to ’solving’ the lattice Yang-Mills model is through computing Wilson loop expectations. Wilson loop expectations are known to satisfy an equation known as a master loop equation.

Master loop equations for lattice gauge theories were first published by Makeenko and Migdal [MM79] in 1979. However this derivation assumed a ’factorization property’ without proof. In recent years there have been several rigorous derivations of master loop equations for classical groups such as SO(N),SU(N),U(N)SO(N),SU(N),U(N). For instance see [Cha19b], [Jaf16], [SSZ22], [PPSY23], and [CPS23].

The purpose of this paper is to provide a geometric derivation of the master loop equation for the lattice Yang-Mills model with structure group G{SO(N),SU(N),U(N)}G\in\{SO(N),SU(N),U(N)\}. This approach is based on integration by parts on GG, and is inspired by the derivations in [Cha19b] and [Jaf16]. In particular, the approaches of [Cha19b] and [Jaf16] rely on Schwinger-Dyson equations which they obtain from Stein’s idea of exchangeable pairs. As remarked in a talk of Chatterjee [Cha19a] (pointed out by Thierry Lévy), these Schwinger-Dyson equations are simply integration by parts on GG written in extrinsic coordinates. We show the equivalence of integration by parts and the Schwinger-Dyson equation in Appendix A.1 and Appendix B, and generalize this to any compact Lie group with Riemannian structure inducing the Haar measure. The main sections of the paper are devoted to deriving the master loop equation for G{SO(N),SU(N),U(N)}G\in\{SO(N),SU(N),U(N)\} directly from integration by parts, relying on the intrinsic geometry of GG in order to simplify the calculations of Chatterjee and Jafarov. Lastly in Appendix A.2 we compare our approach to the stochastic analyis approach in [SSZ22].

Acknowledgements

We thank Scott Sheffield and Sky Cao for many useful discussions.

2. Definitions and notation

2.1. Lattice gauge theory

In the following, Λ\Lambda is a finite two dimensional cell complex.

Definition 2.1.

A path γ\gamma is a sequence e1,,ene_{1},\dots,e_{n} of oriented 11-cells such that their union is connected in Λ\Lambda. The set of all paths forms a groupoid 𝒫(Λ)\mathscr{P}(\Lambda), where two paths γ1\gamma_{1} and γ2\gamma_{2} may be concatenated if

0γ2=1γ1(1)\partial_{0}\gamma_{2}=\partial_{1}\gamma_{1}(1)

The idea of a lattice gauge theory is to discretize a notion of a connection on a principal GG-bundle. By restricting paths to lie in a discrete set of 11-cells, we may identify a connection with its finite set of parallel transport maps. This leads to the following:

Definition 2.2.

Let Λ\Lambda be as before. A GG-connection or GG-gauge field is a homomorphism

Q:𝒫(Λ)GQ:\mathscr{P}(\Lambda)\to G

. In other words, if γ\gamma is a path from aa to bb, and ψ\psi is a path from bb to cc, then

Q(ψγ)=Q(ψ)Q(γ)Q(\psi\ast\gamma)=Q(\psi)Q(\gamma)

And

Q(ψ1)=Q1(ψ)Q(\psi^{-1})=Q^{-1}(\psi)

It’s clear from the definition that such a homomorphism is determined by its values on an oriented edge. Pick an arbitrary orientation for each edge. Let the set of such edges be denoted EΛ+E^{+}_{\Lambda}. Then we have

Hom(𝒫(Λ),G)GEΛ+\text{Hom}(\mathscr{P}(\Lambda),G)\cong G^{E^{+}_{\Lambda}}

This characterization will be useful in defining lattice Yang-Mills measures.

Definition 2.3.

A path 𝒫(Λ)\ell\in\mathscr{P}(\Lambda) is called a loop if its image has empty boundary.

The most important observables in a lattice gauge theory are the Wilson loops.

Definition 2.4.

Let χ\chi be an irreducible character on GG, and let 𝒫(Λ)\ell\in\mathcal{P}(\Lambda) be a loop. A Wilson loop is a functional of the form

Wχ=χ(Q())W^{\chi}_{\ell}=\chi(Q(\ell))
Remark 2.1.

For the rest of the paper we will only consider Wilson loops defined with the character χ(Q)=Tr(Q)\chi(Q)=\mathrm{Tr}(Q) for G=SO(N)G=SO(N), and χ(Q)=ReTr(Q)\chi(Q)=\mathrm{Re}\mathrm{Tr}(Q) for G{SU(N),U(N)}G\in\{SU(N),U(N)\}. The proofs do not immediately generalize to other irreducible characters.

Definition 2.5.

Let ff be any class function (for our purposes usually an irreducible character). A plaquette is a 22-cell in Λ\Lambda. Let the set of faces be denoted 𝒫(Λ)\mathcal{P}(\Lambda). Pick an arbitrary orientation, and let 𝒫Λ+\mathcal{P}^{+}_{\Lambda} denote the set of positively oriented plaquettes. The lattice Yang-Mills measure with ’t Hooft coupling is the probability measure

Zβ,Λ,N1exp(βNp𝒫Λ+f(Q(p)))eEΛdgeZ_{\beta,\Lambda,N}^{-1}\exp(\beta N\sum_{p\in\mathcal{P}^{+}_{\Lambda}}f(Q(\partial p)))\prod_{e\in E_{\Lambda}}dg_{e}

Where dgdg is the Haar measure.

2.2. Path operations

The following is a list of operations on loops that will be relevant in defining the master loop equations. The terminology and notation is based on that of [Cha19b]. The master loop equation is based around integration by parts on an edge ee in Λ\Lambda. Thus, for every path, We define a set CC_{\ell} indexing the occurrences of e±e^{\pm} in \ell. Moreover, if xCx\in C_{\ell}, then ωx{1,1}\omega_{x}\in\quantity{-1,1} is the orientation of that instance of ee.

Definition 2.6.

Let =a1eω1aneωnan+1\ell=a_{1}e^{\omega_{1}}\dots a_{n}e^{\omega_{n}}a_{n+1} be a loop. We define

ex=ax+1eωnan+1ax\ell\setminus e_{x}=a_{x+1}\dots e^{\omega_{n}}a_{n+1}\dots a_{x}

In other words, this is the string formed by excising exe_{x}, ordered starting from the edge after exe_{x}.

Definition 2.7 (Positive merger).

Let 1\ell_{1} and 2\ell_{2} be loops.

1x,y2=(1ex)eωx(2eye)ωxωy\ell_{1}\oplus_{x,y}\ell_{2}=(\ell_{1}\setminus e_{x})e^{\omega_{x}}(\ell_{2}\setminus e_{y}e)^{\omega_{x}\omega_{y}}
Definition 2.8 (Negative merger).

Let 1\ell_{1} and 2\ell_{2} be loops.

1x,y2=(1ex)(2ey)ωxωy\ell_{1}\oplus_{x,y}\ell_{2}=(\ell_{1}\setminus e_{x})(\ell_{2}\setminus e_{y})^{-\omega_{x}\omega_{y}}
Definition 2.9 (Positive split).

Let =a1eω1aneωnan+1\ell=a_{1}e^{\omega_{1}}\dots a_{n}e^{\omega_{n}}a_{n+1} be a loop such that |C|>1\absolutevalue{C_{\ell}}>1. If xyCx\neq y\in C_{\ell} and ωxωy=1\omega_{x}\omega_{y}=1, the positive split at x,yx,y is the pair of loops

×x,y1\displaystyle\times^{1}_{x,y}\ell =ax+1eωx+1ay1eωy1eωy\displaystyle=a_{x+1}e^{\omega_{x+1}}\dots a_{y-1}e^{\omega_{y-1}}e^{\omega_{y}}
×x,y2\displaystyle\times^{2}_{x,y}\ell =ay+1eωy+1ax1eωx1eωx\displaystyle=a_{y+1}e^{\omega_{y+1}}\dots a_{x-1}e^{\omega_{x-1}}e^{\omega_{x}}
Definition 2.10 (Negative split).

Let =a1eω1aneωnan+1\ell=a_{1}e^{\omega_{1}}\dots a_{n}e^{\omega_{n}}a_{n+1} be a loop such that |C|>1\absolutevalue{C_{\ell}}>1. If xyCx\neq y\in C_{\ell} and ωxωy=1\omega_{x}\omega_{y}=-1, the positive split at x,yx,y is the pair of loops

×x,y1\displaystyle\times^{1}_{x,y}\ell =ax+1eωx+1ay1eωy1\displaystyle=a_{x+1}e^{\omega_{x+1}}\dots a_{y-1}e^{\omega_{y-1}}
×x,y2\displaystyle\times^{2}_{x,y}\ell =ay+1eωy+1ax1eωx1\displaystyle=a_{y+1}e^{\omega_{y+1}}\dots a_{x-1}e^{\omega_{x-1}}
Definition 2.11 (Positive twist).

Let \ell be a loop such that |C|>1\absolutevalue{C_{\ell}}>1. WLOG suppose ex×x,y1e_{x}\in\times^{1}_{x,y}\ell and ey×x,y2e_{y}\in\times^{2}_{x,y}. If xyCx\neq y\in C_{\ell} and ωxωy=1\omega_{x}\omega_{y}=-1, the positive twist of \ell at x,yx,y is the loop

x,y=(×x,y1)eωx(×x,y2)1eωy\propto_{x,y}\ell=\quantity(\times^{1}_{x,y}\ell)e^{\omega_{x}}\quantity(\times^{2}_{x,y}\ell)^{-1}e^{\omega_{y}}
Definition 2.12 (Negative twist).

Let \ell be a loop such that |C|>1\absolutevalue{C_{\ell}}>1. Let xyCx\neq y\in C_{\ell} and ωxωy=1\omega_{x}\omega_{y}=1. WLOG let ex×1)x,ye_{x}\in\times^{1})_{x,y}\ell. Then the negative twist is

x,y=×x,y1x,y(×x,y2)1\propto_{x,y}\ell=\times^{1}_{x,y}\ell\ominus_{x,y}\quantity(\times^{2}_{x,y}\ell)^{-1}

2.3. SO(N)SO(N) definitions and conventions

Recall the following:

SO(N)={gGLN()|gTg=I}SO(N)=\quantity{g\in GL_{N}(\mathbb{R})|g^{T}g=I}

The tangent space at gg is the space of matrices

TgSO(N)=g𝔰𝔬(N)={MN2|gX+XTg1=0}T_{g}SO(N)=g\mathfrak{so}(N)=\quantity{M\in\mathbb{R}^{N^{2}}|gX+X^{T}g^{-1}=0}

There is a natural bi-invariant metric on SO(N)SO(N):

Definition 2.13.

Let X,YTgSO(N)X,Y\in T_{g}SO(N). Then

X,Y=12Tr(XTY)\expectationvalue{X,Y}=\frac{1}{2}\Tr(X^{T}Y)

(Note that this is the restriction of half the Euclidean metric to SO(N)SO(N))

With respect to this metric,

Xij=g(eiejTejeiT)X_{ij}=g(e_{i}e_{j}^{T}-e_{j}e_{i}^{T})

is an orthonormal frame on TGTG.
For SO(N)SO(N) lattice gauge theory, we use the lattice Yang-Mills measure defined by the character f(Q)=TrQf(Q)=\Tr Q.

2.4. SU(N)SU(N) and U(N)U(N) definitions and conventions

Recall that

SU(N)={gGLN()|gg=I,detg=1}SU(N)=\quantity{g\in GL_{N}(\mathbb{C})|g^{\dagger}g=I,\det g=1}
U(N)={gGLN()|gg=I}U(N)=\quantity{g\in GL_{N}(\mathbb{C})|g^{\dagger}g=I}

The tangent space at gg is the space of matrices

TgSU(N)=g𝔰𝔲(N)={MN2|gX+Xg1=0,Tr(g1X)=0}T_{g}SU(N)=g\mathfrak{su}(N)=\quantity{M\in\mathbb{R}^{N^{2}}|gX+X^{\dagger}g^{-1}=0,\Tr(g^{-1}X)=0}
TgU(N)=g𝔰𝔲(N)={MN2|gX+Xg1=0}T_{g}U(N)=g\mathfrak{su}(N)=\quantity{M\in\mathbb{R}^{N^{2}}|gX+X^{\dagger}g^{-1}=0}

There is a natural bi-invariant metric on SU(N)SU(N):

Definition 2.14.

Let X,YTgSU(N)X,Y\in T_{g}SU(N) or TgU(N)T_{g}U(N). Then

X,Y=12ReTr(XY)\expectationvalue{X,Y}=\frac{1}{2}\real\Tr(X^{\dagger}Y)

(Note that this is the restriction of half the Euclidean metric to SU(N)SU(N))
For SU(N)SU(N) lattice gauge theory, we use the lattice Yang-mills measure defined by the class function f(Q)=ReTrQf(Q)=\real\Tr Q
The SU(N)SU(N) case is complicated in that the character associated with the defining representation is now complex valued. Thus we need to make sense of gradients of functions fC(SU(N),)f\in C^{\infty}(SU(N),\mathbb{C})

Definition 2.15.

Let fC(SU(N),)f\in C^{\infty}(SU(N),\mathbb{C}). Define f𝔛(SU(N))\nabla f\in\mathfrak{X}(SU(N))\otimes\mathbb{C} by

f=Ref+iImf\nabla f=\nabla\real f+i\nabla\imaginary f

In other words, we extend the gradient in the natural way to a complex-linear map of smooth functions.

Similarly, we extend the metric.

Definition 2.16.

Let X,Y𝔛(SU(N))X,Y\in\mathfrak{X}(SU(N))\otimes\mathbb{C}. Then

X,Y=ReX,ReYImX,ImY+i(ReX,ImY+ImX,ReY)\expectationvalue{X,Y}=\expectationvalue{\real X,\real Y}-\expectationvalue{\imaginary X,\imaginary Y}+i\quantity(\expectationvalue{\real X,\imaginary Y}+\expectationvalue{\imaginary X,\real Y})

With this definition in mind, we can formulate the basis of the proof of the main theorem:

Lemma 2.1 (Laplacian integration by parts).

Let f,gC(G;)f,g\in C^{\infty}(G;\mathbb{C}), with GG a compact Lie group. Equip GG with a bi-invariant metric. With respect to this metric,

GgΔf=Gf,g\int_{G}g\Delta f=-\int_{G}\expectationvalue{\nabla f,\nabla g}

In the sequel we will show that when ff and gg are Wilson loop correlation functions, laplacian integration by parts directly reduces to the master loop equation.

3. Main Results

The first main result is the master loop equation for SO(N)SO(N)

Theorem 3.1 (SO(N)SO(N) master loop equation).

Let (1n)(\ell_{1}\dots\ell_{n}) be a sequence of loops. Let ee be an edge that lies in at least one of i\ell_{i}. Let 𝔼\mathbb{E} denote expectations with respect to the SO(N)SO(N) lattice yang mills measure. Let 𝒫+(e)\mathcal{P}^{+}(e) denote the set of positively oriented plaquettes containing ee. Finally, let AiA_{i} be the set of occurrences of the edge eEΛ+e\in E_{\Lambda}^{+} in i\ell_{i}, BiB_{i} the set of occurrences of e1e^{-1}, and Ci=AiBiC_{i}=A_{i}\cup B_{i}. Then

(1) (N1)m𝔼[W1Wn]=xyC1,ωxωy=1𝔼[Wx,y1W2Wn]xyC1,ωxωy=1𝔼[Wx,y1W2Wn]+x,yC1,ωxωy=1𝔼[W×x,y11W×x,y21W2Wn]xyC1,ωxωy=1𝔼[W×x,y11W×x,y21W2Wn]+i=2nxC1,yCi𝔼[W1x,yij1,iWj]i=2nxC1,yCi𝔼[W1x,yiji,1Wj]+Nβp𝒫+(e)xC1𝔼[W1xpW2Wn]Nβp𝒫+(e)xC1𝔼[W1xpW2Wn]\displaystyle\begin{split}&(N-1)m\mathbb{E}[W_{\ell_{1}}\dots W_{\ell_{n}}]=\sum_{x\neq y\in C_{1},\omega_{x}\omega_{y}=1}\mathbb{E}[W_{\propto_{x,y}\ell_{1}}W_{\ell_{2}}\dots W_{\ell_{n}}]\\ &-\sum_{x\neq y\in C_{1},\omega_{x}\omega_{y}=-1}\mathbb{E}[W_{\propto_{x,y}\ell_{1}}W_{\ell_{2}}\dots W_{\ell_{n}}]+\sum_{x,y\in C_{1},\omega_{x}\omega_{y}=-1}\mathbb{E}[W_{\times^{1}_{x,y}\ell_{1}}W_{\times^{2}_{x,y}\ell_{1}}W_{\ell_{2}}\dots W_{\ell_{n}}]\\ &-\sum_{x\neq y\in C_{1},\omega_{x}\omega_{y}=1}\mathbb{E}[W_{\times^{1}_{x,y}\ell_{1}}W_{\times^{2}_{x,y}\ell_{1}}W_{\ell_{2}}\dots W_{\ell_{n}}]+\sum_{i=2}^{n}\sum_{x\in C_{1},y\in C_{i}}\mathbb{E}\quantity[W_{\ell_{1}\ominus_{x,y}\ell_{i}}\prod_{j\neq 1,i}W_{\ell_{j}}]\\ &-\sum_{i=2}^{n}\sum_{x\in C_{1},y\in C_{i}}\mathbb{E}\quantity[W_{\ell_{1}\oplus_{x,y}\ell_{i}}\prod_{j\neq i,1}W_{\ell_{j}}]+N\beta\sum_{p\in\mathcal{P}^{+}(e)}\sum_{x\in C_{1}}\mathbb{E}[W_{\ell_{1}\ominus_{x}p}W_{\ell_{2}}\dots W_{\ell_{n}}]\\ &-N\beta\sum_{p\in\mathcal{P}^{+}(e)}\sum_{x\in C_{1}}\mathbb{E}[W_{\ell_{1}\oplus_{x}p}W_{\ell_{2}}\dots W_{\ell_{n}}]\end{split}
Theorem 3.2 (SU(N)SU(N) and U(N)U(N) master loop equation).

Let (1,,n)(\ell_{1},\dots,\ell_{n}) be a sequence of loops. Let ee be an edge that lies in at least one of i\ell_{i}. Let η=0\eta=0 for G=U(N)G=U(N) and η=1\eta=1 when G=SU(N)G=SU(N). Let AiA_{i}, BiB_{i}, CiC_{i}, 𝒫+(e)\mathcal{P}^{+}(e) be as before. In addition, let 𝒫(e)\mathcal{P}(e) be the set of plaquettes containing ee. Finally, let ti=|Ai||Bi|t_{i}=\absolutevalue{A_{i}}-\absolutevalue{B_{i}} and t=itit=\sum_{i}t_{i}. Then

(mNηt1tN)𝔼[W1Wn]=x,yC1,ωxωy=1𝔼[W×x,y11W×x,y21W2Wn]\displaystyle\quantity(mN-\frac{\eta t_{1}t}{N})\mathbb{E}\quantity[W_{\ell_{1}}\dots W_{\ell_{n}}]=\sum_{x,y\in C_{1},\omega_{x}\omega_{y}=-1}\mathbb{E}\quantity[W_{\times^{1}_{x,y}\ell_{1}}W_{\times^{2}_{x,y}\ell_{1}}W_{\ell_{2}}\dots W_{\ell_{n}}]
xyC1,ωxωy=1𝔼[W×x,y11W×x,y21W2Wn]+i=2nxC1,yCi,ωxωy=1𝔼[W1x,yiji,1Wj]\displaystyle-\sum_{x\neq y\in C_{1},\omega_{x}\omega_{y}=1}\mathbb{E}\quantity[W_{\times^{1}_{x,y}\ell_{1}}W_{\times^{2}_{x,y}\ell_{1}}W_{\ell_{2}}\dots W_{\ell_{n}}]+\sum_{i=2}^{n}\sum_{x\in C_{1},y\in C_{i},\omega_{x}\omega_{y}=-1}\mathbb{E}\quantity[W_{\ell_{1}\ominus_{x,y}\ell_{i}}\prod_{j\neq i,1}W_{\ell_{j}}]
i=2nxC1,yCi,ωxωy=1𝔼[W1x,yiji,1Wj]+βN2i=2np𝒫+(e),xC1𝔼[W1xpW2Wn]\displaystyle-\sum_{i=2}^{n}\sum_{x\in C_{1},y\in C_{i},\omega_{x}\omega_{y}=1}\mathbb{E}\quantity[W_{\ell_{1}\oplus_{x,y}\ell_{i}}\prod_{j\neq i,1}W_{\ell_{j}}]+\frac{\beta N}{2}\sum_{i=2}^{n}\sum_{p\in\mathcal{P}^{+}(e),x\in C_{1}}\mathbb{E}\quantity[W_{\ell_{1}\ominus_{x}p}W_{\ell_{2}}\dots W_{\ell_{n}}]
βN2i=2np𝒫+(e),xC1𝔼[W1xpW2Wn]ηβp𝒫(e)t1tp𝔼[W1Wp1W2Wn]\displaystyle-\frac{\beta N}{2}\sum_{i=2}^{n}\sum_{p\in\mathcal{P}^{+}(e),x\in C_{1}}\mathbb{E}\quantity[W_{\ell_{1}\oplus_{x}p}W_{\ell_{2}}\dots W_{\ell_{n}}]-\eta\beta\sum_{p\in\mathcal{P}(e)}t_{1}t_{p}\mathbb{E}[W_{\ell_{1}}W_{p^{-1}}W_{\ell_{2}}\dots W_{\ell_{n}}]

4. SO(N)SO(N) analysis

The goal of this section is to prove theorem 3.1

4.1. Gradient identities for Wilson loops

Lemma 4.1.

Let \ell be a Wilson loop. Let CC denote the set of occurrences of the edge ee in \ell. Let e\nabla_{e} denote the gradient with respect to the edge ee. Then

(2) eW=xCQexωxQeQexωxQe\nabla_{e}W_{\ell}=\sum_{x\in C}Q_{\ell\setminus e_{x}}^{-\omega_{x}}-Q_{e}Q_{\ell\setminus e_{x}}^{\omega_{x}}Q_{e}
Proof.

WW_{\ell} extends to a smooth function in a neighborhood of SO(N)SO(N) in the obvious way. We may thus first compute the euclidean differential:

deW=xCdxWd_{e}W_{\ell}=\sum_{x\in C}d_{x}W_{\ell}

For dxd_{x}, we may rewrite W=Tr(Qexgωx)W_{\ell}=\Tr(Q_{\ell\setminus e_{x}}g^{\omega_{x}}). By orthogonality,

=Tr(Qexωxg)=\Tr(Q_{\ell\setminus e_{x}}^{\omega_{x}}g)

Thus, the euclidean differential is

deW(H)=xCTr(QexωxH)d_{e}W_{\ell}(H)=\sum_{x\in C}\Tr(Q_{\ell\setminus e_{x}}^{\omega_{x}}H)

Recall that the gradient is defined by the identity f,H=12Tr(fTH)=df(H)\expectationvalue{\nabla f,H}=\frac{1}{2}\Tr(\nabla f^{T}H)=df(H). Therefore, the euclidean gradient is

eeuclideanW(g)=xC2Qexωx\nabla^{euclidean}_{e}W_{\ell}(g)=\sum_{x\in C}2Q_{\ell\setminus e_{x}}^{-\omega_{x}}

Recall that the tangent projection onto SO(N)SO(N) is

Pg(X)=12X12gXTgP_{g}(X)=\frac{1}{2}X-\frac{1}{2}gX^{T}g

Setting g=Qeg=Q_{e}, we finally arrive at the result:

eW=xCQexωxQeQexωxQe\nabla_{e}W_{\ell}=\sum_{x\in C}Q_{\ell\setminus e_{x}}^{-\omega_{x}}-Q_{e}Q_{\ell\setminus e_{x}}^{\omega_{x}}Q_{e}

Lemma 4.2.

Let 1\ell_{1} and 2\ell_{2} be Wilson loops.

(3) W1,W2=xC1,yC2W1x,y2xC1,yC2W1x,y2\expectationvalue{\nabla W_{\ell_{1}},\nabla W_{\ell_{2}}}=\sum_{x\in C_{1},y\in C_{2}}W_{\ell_{1}\ominus_{x,y}\ell_{2}}-\sum_{x\in C_{1},y\in C_{2}}W_{\ell_{1}\oplus_{x,y}\ell_{2}}
Proof.
W1,W2=xC1,yC2Q1exωxgQ1exωxg,Q2eyωygQ2eyωyg\displaystyle\expectationvalue{\nabla W_{\ell_{1}},\nabla W_{\ell_{2}}}=\sum_{x\in C_{1},y\in C_{2}}\expectationvalue{Q_{\ell_{1}\setminus e_{x}}^{-\omega_{x}}-gQ_{\ell_{1}\setminus e_{x}}^{\omega_{x}}g,Q_{\ell_{2}\setminus e_{y}}^{-\omega_{y}}-gQ_{\ell_{2}\setminus e_{y}}^{\omega_{y}}g}
=xC1,yC212(Tr(Q1exωxQ2eyωy)+Tr(g1Q1exωxQ2eyωyg))12(Tr(g1Q1exωxg1Q2eyωy)+Tr(Q1exωxgQ2eyωyg))\displaystyle=\sum_{x\in C_{1},y\in C_{2}}\frac{1}{2}\quantity(\Tr(Q_{\ell_{1}\setminus e_{x}}^{\omega_{x}}Q_{\ell_{2}\setminus e_{y}}^{-\omega_{y}})+\Tr(g^{-1}Q_{\ell_{1}\setminus e_{x}}^{-\omega_{x}}Q_{\ell_{2}\setminus e_{y}}^{\omega_{y}}g))-\frac{1}{2}\quantity(\Tr(g^{-1}Q_{\ell_{1}\setminus e_{x}}^{-\omega_{x}}g^{-1}Q_{\ell_{2}\setminus e_{y}}^{-\omega_{y}})+\Tr(Q_{\ell_{1}\setminus e_{x}}^{\omega_{x}}gQ_{\ell_{2}\setminus e_{y}}^{\omega_{y}}g))
=xC1,yC2Tr(Q1exωxQ2eyωy)Tr(Q1exωxgQ2eyωyg)=xC1,yC2W1x,y2W1x,y2\displaystyle=\sum_{x\in C_{1},y\in C_{2}}\Tr(Q_{\ell_{1}\setminus e_{x}}^{\omega_{x}}Q_{\ell_{2}\setminus e_{y}}^{-\omega_{y}})-\Tr(Q_{\ell_{1}\setminus e_{x}}^{\omega_{x}}gQ_{\ell_{2}\setminus e_{y}}^{\omega_{y}}g)=\sum_{x\in C_{1},y\in C_{2}}W_{\ell_{1}\ominus_{x,y}\ell_{2}}-W_{\ell_{1}\oplus_{x,y}\ell_{2}}

4.2. Laplacian of Wilson loops

Lemma 4.3.

Let PgP_{g} denote the tangent projection. Let LXL_{X} and RXR_{X} denote left and right multiplication, respectively. Then

(4) Tr(PgLXRYPg)=12TrXTrY12Tr(g1XTgY)\Tr(P_{g}L_{X}R_{Y}P_{g})=\frac{1}{2}\Tr X\Tr Y-\frac{1}{2}\Tr(g^{-1}X^{T}gY)
Proof.
Tr(PgLXRYPg)=i<jgeiejTgejeiT,X(geiejTgejeiT)Y\displaystyle\Tr(P_{g}L_{X}R_{Y}P_{g})=\sum_{i<j}\expectationvalue{ge_{i}e_{j}^{T}-ge_{j}e_{i}^{T},X(ge_{i}e_{j}^{T}-ge_{j}e_{i}^{T})Y}
=12i<j[Tr(ejeiTg1XgeiejTY)Tr(eiejTg1XgeiejTY)Tr(ejeiTg1XgejeiTY)+Tr(eiejTg1XgejeiTY)]\displaystyle=\frac{1}{2}\sum_{i<j}\quantity[\Tr(e_{j}e_{i}^{T}g^{-1}Xge_{i}e_{j}^{T}Y)-\Tr(e_{i}e_{j}^{T}g^{-1}Xge_{i}e_{j}^{T}Y)-\Tr(e_{j}e_{i}^{T}g^{-1}Xge_{j}e_{i}^{T}Y)+\Tr(e_{i}e_{j}^{T}g^{-1}Xge_{j}e_{i}^{T}Y)]
=12i<j[(g1Xg)iiYjj+(g1Xg)jjYii(g1Xg)ijYij(g1Xg)jiYji]\displaystyle=\frac{1}{2}\sum_{i<j}\quantity[(g^{-1}Xg)_{ii}Y_{jj}+(g^{-1}Xg)_{jj}Y_{ii}-(g^{-1}Xg)_{ij}Y_{ij}-(g^{-1}Xg)_{ji}Y_{ji}]
=12Tr(X)Tr(Y)12Tr(g1XTgY)\displaystyle=\frac{1}{2}\Tr(X)\Tr(Y)-\frac{1}{2}\Tr(g^{-1}X^{T}gY)

Lemma 4.4.

Let WW_{\ell} be a Wilson loop and Δe\Delta_{e} the Laplace-Beltrami operator at the edge ee. Let mm be the number of occurrences of ±e\pm e in \ell. Then

(5) ΔeW=(N1)mWxyC,ωxωy=1W×x,y1W×x,y2+xyC,ωxωy=1Wx,y+x,yC,ωxωy=1W×x,y1W×x,y2x,yC,ωxωy=1Wx,y\begin{split}\Delta_{e}W_{\ell}=-(N-1)mW_{\ell}-\sum_{x\neq y\in C,\omega_{x}\omega_{y}=1}W_{\ell\times^{1}_{x,y}}W_{\ell\times^{2}_{x,y}}+\sum_{x\neq y\in C,\omega_{x}\omega_{y}=1}W_{\ell\propto_{x,y}}\\ +\sum_{x,y\in C,\omega_{x}\omega_{y}=-1}W_{\ell\times^{1}_{x,y}}W_{\ell\times^{2}_{x,y}}-\sum_{x,y\in C,\omega_{x}\omega_{y}=-1}W_{\ell\propto_{x,y}}\end{split}
Proof.

Recall that for a vector field XX,  divX=TrX\text{ div}X=\Tr\nabla X where X\nabla X is the covariant derivative of XX. On a submanifold, the covariant derivative is the tangent projection of the ambient covariant derivative. Thus it suffices to compute

 divX=Tr(PgDXPg)\text{ div}X=\Tr(P_{g}DXP_{g})

Where DXDX is the euclidean covariant derivative. Now, by lemma 4.1:

DeW=xCDQexωxxCD(gQexωxg)D\nabla_{e}W_{\ell}=\sum_{x\in C}DQ_{\ell\setminus e_{x}}^{-\omega_{x}}-\sum_{x\in C}D(gQ^{\omega_{x}}_{\ell\setminus e_{x}}g)
DeW(H)=xyCDyQexωx(H)xC(HQexωxg+gQexωxH)xyCgDyQexωx(H)gD\nabla_{e}W_{\ell}(H)=\sum_{x\neq y\in C}D_{y}Q^{-\omega_{x}}_{\ell\setminus e_{x}}(H)-\sum_{x\in C}\quantity(HQ^{\omega_{x}}_{\ell\setminus e_{x}}g+gQ^{\omega_{x}}_{\ell\setminus e_{x}}H)-\sum_{x\neq y\in C}gD_{y}Q^{\omega_{x}}_{\ell\setminus e_{x}}(H)g

Now expanding further requires casework. In particular, in the first term, the yyth occurrence of ee is gg if ωxωy=1\omega_{x}\omega_{y}=1 and is g1g^{-1} otherwise. The opposite is true for the third term. Recall that

D(gg1)(H)=g1Hg1D(g\mapsto g^{-1})(H)=-g^{-1}Hg^{-1}

Let W(gxH)W_{\ell}(g_{x}\to H) denote the linear map formed by substituting HH for the xxth occurrence of ee. We thus have

(6) DeW(H)=x,yC,ωxωy=1Qexωx(gyH)xyC,ωxωy=1Qexωx(gy1g1Hg1)xC(HQexωxg+gQexωxH)xyC,ωxωy=1gQexωx(gyH)g+x,yC,ωxωy=1gQexωx(gyg1Hg1)g\begin{split}D\nabla_{e}W_{\ell}(H)&=\sum_{x,y\in C,\omega_{x}\omega_{y}=-1}Q_{\ell\setminus e_{x}}^{-\omega_{x}}(g_{y}\mapsto H)-\sum_{x\neq y\in C,\omega_{x}\omega_{y}=1}Q_{\ell\setminus e_{x}}^{-\omega_{x}}(g_{y}^{-1}\mapsto g^{-1}Hg^{-1})\\ &-\sum_{x\in C}\quantity(HQ^{\omega_{x}}_{\ell\setminus e_{x}}g+gQ^{\omega_{x}}_{\ell\setminus e_{x}}H)-\sum_{x\neq y\in C,\omega_{x}\omega_{y}=1}gQ^{\omega_{x}}_{\ell\setminus e_{x}}(g_{y}\mapsto H)g\\ &+\sum_{x,y\in C,\omega_{x}\omega_{y}=-1}gQ^{\omega_{x}}_{\ell\setminus e_{x}}(g_{y}\mapsto g^{-1}Hg^{-1})g\end{split}

We can now apply lemma 4.3, as every term in this sum is an operator of the form LXRYL_{X}R_{Y}. We can first consider

Tr(HPgQexωx(gyH)Pg)\Tr(H\mapsto P_{g}Q^{-\omega_{x}}_{\ell\setminus e_{x}}(g_{y}\to H)P_{g})

We can write Qex=P+gωyPQ_{\ell\setminus e_{x}}=P_{+}g^{\omega_{y}}P_{-}. Then Qexωx=PωxωxgPωxωxQ_{\ell\setminus e_{x}}^{-\omega_{x}}=P_{-\omega_{x}}^{-\omega_{x}}gP^{-\omega_{x}}_{\omega_{x}} and so the trace is

12Tr(P+)Tr(P)12Tr(g1P+1gP)=12W×x,y1W×x,y212Wx,y\frac{1}{2}\Tr(P_{+})\Tr(P_{-})-\frac{1}{2}\Tr(g^{-1}P_{+}^{-1}gP_{-})=\frac{1}{2}W_{\times^{1}_{x,y}\ell}W_{\times^{2}_{x,y}\ell}-\frac{1}{2}W_{\propto_{x,y}\ell}

Similarly, for the case ωxωy=1\omega_{x}\omega_{y}=1, Qexωx=Pωxωxg1PωxωxQ_{\ell\setminus e_{x}}^{-\omega_{x}}=P^{-\omega_{x}}_{-\omega_{x}}g^{-1}P^{-\omega_{x}}_{\omega_{x}}. So we compute the trace of Pωxωxg1Hg1PωxωxP^{-\omega_{x}}_{-\omega_{x}}g^{-1}Hg^{-1}P^{-\omega_{x}}_{\omega_{x}} Which equals

12Tr(Pωxωxg1)Tr(g1Pωxωx)12Tr(PωxωxPωxωx)=12W×x,y1W×x,y212Wx,y\frac{1}{2}\Tr(P^{-\omega_{x}}_{-\omega_{x}}g^{-1})\Tr(g^{-1}P^{-\omega_{x}}_{\omega_{x}})-\frac{1}{2}\Tr(P^{\omega_{x}}_{-\omega_{x}}P^{-\omega_{x}}_{\omega_{x}})=\frac{1}{2}W_{\times^{1}_{x,y}\ell}W_{\times^{2}_{x,y}\ell}-\frac{1}{2}W_{\propto_{x,y}\ell}

Next we have

Tr(HHQexωxg+gQexωxH)\Tr(H\mapsto HQ^{\omega_{x}}_{\ell\setminus e_{x}}g+gQ^{\omega_{x}}_{\ell\setminus e_{x}}H)

By lemma 4.3,

=N2Tr(Qexωxg)12Tr(Qexωxg)+N2Tr(Qexωxg)12Tr(Qexωxg)\displaystyle=\frac{N}{2}\Tr(Q^{\omega_{x}}_{\ell\setminus e_{x}}g)-\frac{1}{2}\Tr(Q^{\omega_{x}}_{\ell\setminus e_{x}}g)+\frac{N}{2}\Tr(Q^{\omega_{x}}_{\ell\setminus e_{x}}g)-\frac{1}{2}\Tr(Q^{\omega_{x}}_{\ell\setminus e_{x}}g)
=(N1)W\displaystyle=(N-1)W_{\ell}

We finally come to our last type of expression.

Tr(HgQexωx(gyH)g)\Tr(H\mapsto gQ^{\omega_{x}}_{\ell\setminus e_{x}}(g_{y}\mapsto H)g)

Writing Qex=P+gωyPQ_{\ell\setminus e_{x}}=P_{+}g^{\omega_{y}}P_{-}, we have gQexωxg(H)=gPωxωxHPωxωxggQ^{\omega_{x}}_{\ell\setminus e_{x}}g(H)=gP^{\omega_{x}}_{\omega_{x}}HP^{\omega_{x}}_{-\omega_{x}}g Thus, the trace is

=12Tr(gPωxωx)Tr(Pωxωxg)12Tr(g1Pωxωxg1gPωxωxg)=12W×x,y1W×x,y212Wx,y=\frac{1}{2}\Tr(gP^{\omega_{x}}_{\omega_{x}})\Tr(P^{\omega_{x}}_{-\omega_{x}}g)-\frac{1}{2}\Tr(g^{-1}P^{-\omega_{x}}_{\omega_{x}}g^{-1}gP^{\omega_{x}}_{-\omega_{x}}g)=\frac{1}{2}W_{\times^{1}_{x,y}}W_{\times^{2}_{x,y}\ell}-\frac{1}{2}W_{\propto_{x,y}\ell}

For ωxωy=1\omega_{x}\omega_{y}=-1, gQexωxg(H)=gPωxωxg1Hg1PωxωxggQ^{\omega_{x}}_{\ell\setminus e_{x}}g(H)=gP^{\omega_{x}}_{\omega_{x}}g^{-1}Hg^{-1}P^{\omega_{x}}_{-\omega_{x}}g. Thus the final trace is

12Tr(gPωxωxg1)Tr(g1Pωxωxg)12Tr(g1gPωxωxg1gg1Pωxωxg)\frac{1}{2}\Tr(gP^{\omega_{x}}_{\omega_{x}}g^{-1})\Tr(g^{-1}P^{\omega_{x}}_{-\omega_{x}}g)-\frac{1}{2}\Tr(g^{-1}gP^{-\omega_{x}}_{\omega_{x}}g^{-1}gg^{-1}P^{\omega_{x}}_{-\omega_{x}}g)
=12Tr(Pωxωx)Tr(Pωxωx)12Tr(Pωxωxg1Pωxωxg)=12W×x,y1W×x,y212Wx,y=\frac{1}{2}\Tr(P^{\omega_{x}}_{\omega_{x}})\Tr(P^{\omega_{x}}_{-\omega_{x}})-\frac{1}{2}\Tr(P^{-\omega_{x}}_{\omega_{x}}g^{-1}P^{\omega_{x}}_{-\omega_{x}}g)=\frac{1}{2}W_{\times^{1}_{x,y}\ell}W_{\times^{2}_{x,y}\ell}-\frac{1}{2}W_{\propto_{x,y}\ell}

We can now insert these identities back into eq. 6.

ΔeW\displaystyle\Delta_{e}W_{\ell} =x,yCωxωy=1(12W×x,y1W×x,y212Wx,y)xyC,ωxωy=1(12W×x,y1W×x,y212Wx,y)\displaystyle=\sum_{x,y\in C\omega_{x}\omega_{y}=-1}\quantity(\frac{1}{2}W_{\times^{1}_{x,y}\ell}W_{\times^{2}_{x,y}\ell}-\frac{1}{2}W_{\propto_{x,y}\ell})-\sum_{x\neq y\in C,\omega_{x}\omega_{y}=1}\quantity(\frac{1}{2}W_{\times^{1}_{x,y}\ell}W_{\times^{2}_{x,y}\ell}-\frac{1}{2}W_{\propto_{x,y}\ell})
xC(N1)WxyC,ωxωy=1(12W×x,y1W×x,y212Wx,y)\displaystyle-\sum_{x\in C}(N-1)W_{\ell}-\sum_{x\neq y\in C,\omega_{x}\omega_{y}=1}\quantity(\frac{1}{2}W_{\times^{1}_{x,y}\ell}W_{\times^{2}_{x,y}\ell}-\frac{1}{2}W_{\propto_{x,y}\ell})
+x,yCωxωy=1(12W×x,y1W×x,y212Wx,y)\displaystyle+\sum_{x,y\in C\omega_{x}\omega_{y}=-1}\quantity(\frac{1}{2}W_{\times^{1}_{x,y}\ell}W_{\times^{2}_{x,y}\ell}-\frac{1}{2}W_{\propto_{x,y}\ell})
=(N1)mW+x,yC,ωxωy=1(W×x,y1W×x,y2Wx,y)xyC,ωxωy=1(W×x,y1W×x,y2Wx,y)\displaystyle=-(N-1)mW_{\ell}+\sum_{x,y\in C,\omega_{x}\omega_{y}=-1}\quantity(W_{\times^{1}_{x,y}\ell}W_{\times^{2}_{x,y}\ell}-W_{\propto_{x,y}\ell})-\sum_{x\neq y\in C,\omega_{x}\omega_{y}=1}\quantity(W_{\times^{1}_{x,y}\ell}W_{\times^{2}_{x,y}\ell}-W_{\propto_{x,y}\ell})

4.3. SO(N)SO(N) master loop equation

Proof of theorem 3.1..

Let (1,n)(\ell_{1},\dots\ell_{n}) be a sequence of loops. We apply Laplace integration by parts to the Wilson loop correlation function:

𝔼[(ΔeW1)W2Wn]=Z1GEΛ+(ΔeW1)W2Wnexp(βNp𝒫Λ+Tr(Qp))𝑑μ\displaystyle-\mathbb{E}[(\Delta_{e}W_{\ell_{1}})W_{\ell_{2}}\dots W_{\ell_{n}}]=Z^{-1}\int_{G^{E^{+}_{\Lambda}}}(\Delta_{e}W_{\ell_{1}})W_{\ell_{2}}\dots W_{\ell_{n}}\exp(\beta N\sum_{p\in\mathcal{P}^{+}_{\Lambda}}\Tr(Q_{p}))d\mu
=Z1GEΛ+W1,(W2Wnexp(βNp𝒫Λ+Tr(Qp)))𝑑μ\displaystyle=Z^{-1}\int_{G^{E^{+}_{\Lambda}}}\expectationvalue{\nabla W_{\ell_{1}},\nabla\quantity(W_{\ell_{2}}\dots W_{\ell_{n}}\exp(\beta N\sum_{p\in\mathcal{P}^{+}_{\Lambda}}\Tr(Q_{p})))}d\mu
=i=2n𝔼[W1,Wij1,iWj]+βNp𝒫Λ+𝔼[W1,WpW2Wn]\displaystyle=\sum_{i=2}^{n}\mathbb{E}\quantity[\expectationvalue{\nabla W_{\ell_{1}},\nabla W_{\ell_{i}}}\prod_{j\neq 1,i}W_{\ell_{j}}]+\beta N\sum_{p\in\mathcal{P}^{+}_{\Lambda}}\mathbb{E}[\expectationvalue{\nabla W_{\ell_{1}},\nabla W_{p}}W_{\ell_{2}}\dots W_{\ell_{n}}]
=i=2nxC1,yCi𝔼[W1x,yij1,iWj]i=2nxC1,yCi𝔼[W1x,yij1,iWj]\displaystyle=\sum_{i=2}^{n}\sum_{x\in C_{1},y\in C_{i}}\mathbb{E}\quantity[W_{\ell_{1}\ominus_{x,y}\ell_{i}}\prod_{j\neq 1,i}W_{\ell_{j}}]-\sum_{i=2}^{n}\sum_{x\in C_{1},y\in C_{i}}\mathbb{E}\quantity[W_{\ell_{1}\oplus_{x,y}\ell_{i}}\prod_{j\neq 1,i}W_{\ell_{j}}]
+βNi=2nxC1,yCi𝔼[W1x,ypW2Wn]βNi=2nxC1,yCi𝔼[W1x,ypW2Wn]\displaystyle+\beta N\sum_{i=2}^{n}\sum_{x\in C_{1},y\in C_{i}}\mathbb{E}\quantity[W_{\ell_{1}\ominus_{x,y}p}W_{\ell_{2}}\dots W_{\ell_{n}}]-\beta N\sum_{i=2}^{n}\sum_{x\in C_{1},y\in C_{i}}\mathbb{E}\quantity[W_{\ell_{1}\oplus_{x,y}p}W_{\ell_{2}}\dots W_{\ell_{n}}]

On the left hand side, we have

𝔼[(ΔeW1)W2Wn]\displaystyle-\mathbb{E}[(\Delta_{e}W_{\ell_{1}})W_{\ell_{2}}\dots W_{\ell_{n}}]
=(N1)m𝔼[W1Wn]+xyC1,ωxωy=1(𝔼[W×x,y11W×x,y21W2Wn]𝔼[Wx,y1W2Wn])\displaystyle=(N-1)m\mathbb{E}[W_{\ell_{1}}\dots W_{\ell_{n}}]+\sum_{x\neq y\in C_{1},\omega_{x}\omega_{y}=1}\quantity(\mathbb{E}[W_{\times^{1}_{x,y}\ell_{1}}W_{\times^{2}_{x,y}\ell_{1}}W_{\ell_{2}}\dots W_{\ell_{n}}]-\mathbb{E}[W_{\propto_{x,y}\ell_{1}}W_{\ell_{2}}\dots W_{\ell_{n}}])
x,yC1,ωxωy=1(𝔼[W×x,y11W×x,y21W2Wn]𝔼[Wx,y1W2Wn])\displaystyle-\sum_{x,y\in C_{1},\omega_{x}\omega_{y}=-1}\quantity(\mathbb{E}[W_{\times^{1}_{x,y}\ell_{1}}W_{\times^{2}_{x,y}\ell_{1}}W_{\ell_{2}}\dots W_{\ell_{n}}]-\mathbb{E}[W_{\propto_{x,y}\ell_{1}}W_{\ell_{2}}\dots W_{\ell_{n}}])

Setting the two sides equal and rearranging terms gives the result:

(N1)m𝔼[W1Wn]=x,yC1,ωxωy=1(𝔼[W×x,y11W×x,y21W2Wn]𝔼[Wx,y1W2Wn])\displaystyle(N-1)m\mathbb{E}[W_{\ell_{1}}\dots W_{\ell_{n}}]=\sum_{x,y\in C_{1},\omega_{x}\omega_{y}=-1}\quantity(\mathbb{E}[W_{\times^{1}_{x,y}\ell_{1}}W_{\times^{2}_{x,y}\ell_{1}}W_{\ell_{2}}\dots W_{\ell_{n}}]-\mathbb{E}[W_{\propto_{x,y}\ell_{1}}W_{\ell_{2}}\dots W_{\ell_{n}}])
xyC1,ωxωy=1(𝔼[W×x,y11W×x,y21W2Wn]𝔼[Wx,y1W2Wn])\displaystyle-\sum_{x\neq y\in C_{1},\omega_{x}\omega_{y}=1}\quantity(\mathbb{E}[W_{\times^{1}_{x,y}\ell_{1}}W_{\times^{2}_{x,y}\ell_{1}}W_{\ell_{2}}\dots W_{\ell_{n}}]-\mathbb{E}[W_{\propto_{x,y}\ell_{1}}W_{\ell_{2}}\dots W_{\ell_{n}}])
=i=2nxC1,yCi𝔼[W1x,yij1,iWj]i=2nxC1,yCi𝔼[W1x,yij1,iWj]\displaystyle=\sum_{i=2}^{n}\sum_{x\in C_{1},y\in C_{i}}\mathbb{E}\quantity[W_{\ell_{1}\ominus_{x,y}\ell_{i}}\prod_{j\neq 1,i}W_{\ell_{j}}]-\sum_{i=2}^{n}\sum_{x\in C_{1},y\in C_{i}}\mathbb{E}\quantity[W_{\ell_{1}\oplus_{x,y}\ell_{i}}\prod_{j\neq 1,i}W_{\ell_{j}}]
+βNi=2nxC1,yCi𝔼[W1x,ypW2Wn]βNi=2nxC1,yCi𝔼[W1x,ypW2Wn]\displaystyle+\beta N\sum_{i=2}^{n}\sum_{x\in C_{1},y\in C_{i}}\mathbb{E}\quantity[W_{\ell_{1}\ominus_{x,y}p}W_{\ell_{2}}\dots W_{\ell_{n}}]-\beta N\sum_{i=2}^{n}\sum_{x\in C_{1},y\in C_{i}}\mathbb{E}\quantity[W_{\ell_{1}\oplus_{x,y}p}W_{\ell_{2}}\dots W_{\ell_{n}}]

This concludes the proof of the SO(N)SO(N) master loop equation. ∎

5. SU(N)SU(N) and U(N)U(N) analysis

We now move on to the proof of theorem 3.2

The procedure is mostly analogous. However unlike SO(N)SO(N), not every element of these groups is conjugate to its inverse. Thus, the orientations of Wilson loops will become more relevant in the analysis. This is reflected in the fact that Wilson loops are now complex valued. We will introduce a parameter η\eta that vanishes when G=U(N)G=U(N) and is 11 when G=SU(N)G=SU(N).

5.1. Gradients of Wilson loops

Lemma 5.1.

Let \ell be a loop.

(7) ReW=xCQexωxQeQexωxQe+η2iωxNImWQe\nabla\real W_{\ell}=\sum_{x\in C_{\ell}}Q_{\ell\setminus e_{x}}^{-\omega_{x}}-Q_{e}Q_{\ell\setminus e_{x}}^{\omega_{x}}Q_{e}+\eta\frac{2i\omega_{x}}{N}\imaginary W_{\ell}Q_{e}
Proof.

As before, the differential is

dReW(H)=xCdxReW(H)=xCReTr(QexωxH)d\real W_{\ell}(H)=\sum_{x\in C_{\ell}}d_{x}\real W_{\ell}(H)=\sum_{x\in C_{\ell}}\real\Tr(Q^{\omega_{x}}_{\ell\setminus e_{x}}H)

Thus,

eeucReW=xC2Qexωx\nabla^{euc}_{e}\real W_{\ell}=\sum_{x\in C_{\ell}}2Q_{\ell\setminus e_{x}}^{-\omega_{x}}

Recalling that the tangent projection is

PgX=12X12gXgη2NImTr(g1XXg1)gP_{g}X=\frac{1}{2}X-\frac{1}{2}gX^{\dagger}g-\frac{\eta}{2N}\imaginary\Tr(g^{-1}X-X^{\dagger}g^{-1})g

We thus get

ReW(g)\displaystyle\nabla\real W_{\ell}(g) =xCQexωxgQexωxg+η2iNImTr(Qexωxg)g\displaystyle=\sum_{x\in C_{\ell}}Q_{\ell\setminus e_{x}}^{-\omega_{x}}-gQ_{\ell\setminus e_{x}}^{\omega_{x}}g+\eta\frac{2i}{N}\imaginary\Tr(Q_{\ell\setminus e_{x}}^{\omega_{x}}g)g
=xCQexωxgQexωxg+η2iωxNImWg\displaystyle=\sum_{x\in C_{\ell}}Q_{\ell\setminus e_{x}}^{-\omega_{x}}-gQ_{\ell\setminus e_{x}}^{\omega_{x}}g+\eta\frac{2i\omega_{x}}{N}\imaginary W_{\ell}g

Lemma 5.2.

Let \ell be a loop.

ImW=xCωxiQexωx+iQeωxQexωxQeη2iωxNReWQe\nabla\imaginary W_{\ell}=\sum_{x\in C_{\ell}}\omega_{x}iQ_{\ell\setminus e_{x}}^{-\omega_{x}}+iQ_{e}\omega_{x}Q_{\ell\setminus e_{x}}^{\omega_{x}}Q_{e}-\eta\frac{2i\omega_{x}}{N}\real W_{\ell}Q_{e}
Proof.

Recall that ImW=Re(iW)\imaginary W_{\ell}=\real(-iW_{\ell}). Note that

ImTr(AgωB)=ImTr((BA)gω)=ωImTr((BA)ωg)\imaginary\Tr(Ag^{\omega}B)=\imaginary\Tr((BA)g^{\omega})=\omega\imaginary\Tr((BA)^{\omega}g)

Thus,

dImW(H)=xCωxReTr(iQexωxH)d\imaginary W_{\ell}(H)=\sum_{x\in C_{\ell}}\omega_{x}\real\Tr(-iQ_{\ell\setminus e_{x}}^{\omega_{x}}H)

and the euclidean gradient is

xC2iωxQexωx\sum_{x\in C_{\ell}}2i\omega_{x}Q^{-\omega_{x}}_{\ell\setminus e_{x}}

Applying the tangent projection again finally gives for

ImW=xCωxiQexωx+igωxQexωxgη2iωxNReWg\nabla\imaginary W_{\ell}=\sum_{x\in C_{\ell}}\omega_{x}iQ_{\ell\setminus e_{x}}^{-\omega_{x}}+ig\omega_{x}Q_{\ell\setminus e_{x}}^{\omega_{x}}g-\eta\frac{2i\omega_{x}}{N}\real W_{\ell}g

Lemma 5.3.

Let 1\ell_{1} and 2\ell_{2} be loops. Then

W1,W2=xC1,yC2,ωxωy=12W1x,y2ωxωy=12W1x,y2+η2t1t2NW1W2\expectationvalue{\nabla W_{\ell_{1}},\nabla W_{\ell_{2}}}=\sum_{x\in C_{1},y\in C_{2},\omega_{x}\omega_{y}=-1}2W_{\ell_{1}\ominus_{x,y}\ell_{2}}-\sum_{\omega_{x}\omega_{y}=1}2W_{\ell_{1}\oplus_{x,y}\ell_{2}}+\eta\frac{2t_{1}t_{2}}{N}W_{\ell_{1}}W_{\ell_{2}}
Proof.

Note that because ReTr(X)=ReTr(X)\real\Tr(X)=\real\Tr(X^{\dagger}), the first part of the gradient has algebra identical to that of the SO(N)SO(N) case. Thus

fR,fR=xC1,yC2Re(W1x,y2)Re(W1x,y2)+η2iωxNImW1g,Q2eyωygQeyωyg\expectationvalue{\nabla f^{R},\nabla f^{\prime R}}=\sum_{x\in C_{1},y\in C_{2}}\real(W_{\ell_{1}\ominus_{x,y}\ell_{2}})-\real(W_{\ell_{1}\oplus_{x,y}\ell_{2}})+\eta\expectationvalue{\frac{2i\omega_{x}}{N}\imaginary W_{\ell_{1}}g,Q_{\ell_{2}\setminus e_{y}}^{-\omega_{y}}-gQ_{\ell\setminus e_{y}}^{\omega_{y}}g}
+ηQ1exωxgQ1exωxg,2iωyNImW2g+η2iωxNImW1g,2iωyNImW2g+\eta\expectationvalue{Q_{\ell_{1}\setminus e_{x}}^{-\omega_{x}}-gQ_{\ell_{1}\setminus e_{x}}^{\omega_{x}}g,\frac{2i\omega_{y}}{N}\imaginary W_{\ell_{2}}g}+\eta\expectationvalue{\frac{2i\omega_{x}}{N}\imaginary W_{\ell_{1}}g,\frac{2i\omega_{y}}{N}\imaginary W_{\ell_{2}}g}

The first term after the mergers equals

ηωxNImW1ImTr(g1Q2eyωyQ2eyωyg)=η2ωxωyNImW1ImW2\eta\frac{\omega_{x}}{N}\imaginary W_{\ell_{1}}\imaginary\Tr(g^{-1}Q_{\ell_{2}\setminus e_{y}}^{-\omega_{y}}-Q_{\ell_{2}\setminus e_{y}}^{\omega_{y}}g)=-\eta\frac{2\omega_{x}\omega_{y}}{N}\imaginary W_{\ell_{1}}\imaginary W_{\ell_{2}}

Similarly, the second term after mergers is

ηωyNImTr(Q2eyωyg)ReTr(iQ1exωxgig1Q1exωx)=η2ωxωyNImW1W2\eta\frac{\omega_{y}}{N}\imaginary\Tr(Q_{\ell_{2}\setminus e_{y}}^{\omega_{y}}g)\real\Tr(iQ_{\ell_{1}\setminus e_{x}}^{\omega_{x}}g-ig^{-1}Q_{\ell_{1}\setminus e_{x}}^{-\omega_{x}})=-\eta\frac{2\omega_{x}\omega_{y}}{N}\imaginary W_{\ell_{1}}W_{\ell_{2}}

Finally, the last term is

η4ωxωyN2ImW1ImW2g,g=2ωxωyNImW1W2\eta\frac{4\omega_{x}\omega_{y}}{N^{2}}\imaginary W_{\ell_{1}}\imaginary W_{\ell_{2}}\expectationvalue{g,g}=\frac{2\omega_{x}\omega_{y}}{N}\imaginary W_{\ell_{1}}W_{\ell_{2}}

In total,

fR,fR=xCRe(W1x,y2)Re(W1x,y2)η2ωxωyNImW1W2\expectationvalue{\nabla f^{R},\nabla f^{\prime R}}=\sum_{x\in C_{\ell}}\real(W_{\ell_{1}\ominus_{x,y}\ell_{2}})-\real(W_{\ell_{1}\oplus_{x,y}\ell_{2}})-\eta\frac{2\omega_{x}\omega_{y}}{N}\imaginary W_{\ell_{1}}W_{\ell_{2}}

Now for fIf^{I}. The first term is almost algebraically identical (the iis cancel and ω\omegas factor out). But the negative sign is gone. So

fI,fI=xC1,yC2ωxωyRe(W1x,y2)+ωxωyRe(W1x,y2)η2ωxωyNReW1ReW2\expectationvalue{\nabla f^{I},\nabla f^{\prime I}}=\sum_{x\in C_{1},y\in C_{2}}\omega_{x}\omega_{y}\real(W_{\ell_{1}\ominus_{x,y}\ell_{2}})+\omega_{x}\omega_{y}\real(W_{\ell_{1}\oplus_{x,y}\ell_{2}})-\eta\frac{2\omega_{x}\omega_{y}}{N}\real W_{\ell_{1}}\real W_{\ell_{2}}
η2ωxωyNReW2ReW2+η2ωxωyNReW1ReW2-\eta\frac{2\omega_{x}\omega_{y}}{N}\real W_{\ell_{2}}\real W_{\ell_{2}}+\eta\frac{2\omega_{x}\omega_{y}}{N}\real W_{\ell_{1}}\real W_{\ell_{2}}
=xC1,yC2ωxωyReW1x,y2+ωxωyReW1x,y2η2ωxωyNReW1ReW2=\sum_{x\in C_{1},y\in C_{2}}\omega_{x}\omega_{y}\real W_{\ell_{1}\ominus_{x,y}\ell_{2}}+\omega_{x}\omega_{y}\real W_{\ell_{1}\oplus_{x,y}\ell_{2}}-\eta\frac{2\omega_{x}\omega_{y}}{N}\real W_{\ell_{1}}\real W_{\ell_{2}}

In total then we have

ReW1,W2\real\expectationvalue{\nabla W_{\ell_{1}},\nabla W_{\ell_{2}}}
=xC1,yC2(1ωxωy)Re(W1x,y2)(1+ωxωy)ReW1x,y2+η2ωxωyN(ReW1ReW2ηImW1ImW2)=\sum_{x\in C_{1},y\in C_{2}}(1-\omega_{x}\omega_{y})\real(W_{\ell_{1}\ominus_{x,y}\ell_{2}})-(1+\omega_{x}\omega_{y})\real W_{\ell_{1}\oplus_{x,y}\ell_{2}}+\eta\frac{2\omega_{x}\omega_{y}}{N}\quantity(\real W_{\ell_{1}}\real W_{\ell_{2}}-\eta\imaginary W_{\ell_{1}}\imaginary W_{\ell_{2}})
=xC1,yC2(1ωxωy)Re(W1x,y2)(1+ωxωy)ReW1x,y2+η2ωxωyNRe(W1W2)=\sum_{x\in C_{1},y\in C_{2}}(1-\omega_{x}\omega_{y})\real(W_{\ell_{1}\ominus_{x,y}\ell_{2}})-(1+\omega_{x}\omega_{y})\real W_{\ell_{1}\oplus_{x,y}\ell_{2}}+\eta\frac{2\omega_{x}\omega_{y}}{N}\real(W_{\ell_{1}}W_{\ell_{2}})

Now for the imaginary part.

Q1exωxgQ1ωxg,iωyQ2eyωy+iωygQ2eyωyg=\expectationvalue{Q_{\ell_{1}\setminus e_{x}}^{-\omega_{x}}-gQ_{\ell_{1}}^{\omega_{x}}g,i\omega_{y}Q_{\ell_{2}\setminus e_{y}}^{-\omega_{y}}+i\omega_{y}gQ_{\ell_{2}\setminus e_{y}}^{\omega_{y}}g}=
ωy2ReTr(iQ1exωxQ2eYωy+iQ1exωxgQ2eyωygig1Q1exωxg1Q2eyωy\frac{\omega_{y}}{2}\real\text{Tr}(iQ_{\ell_{1}\setminus e_{x}}^{\omega_{x}}Q_{\ell_{2}\setminus e_{Y}}^{-\omega_{y}}+iQ_{\ell_{1}\setminus e_{x}}^{\omega_{x}}gQ_{\ell_{2}\setminus e_{y}}^{\omega_{y}}g-ig^{-1}Q_{\ell_{1}\setminus e_{x}}^{-\omega_{x}}g^{-1}Q_{\ell_{2}\setminus e_{y}}^{-\omega_{y}}
ig1Q1exωxQ2eyωyg)-ig^{-1}Q_{\ell_{1}\setminus e_{x}}^{-\omega_{x}}Q_{\ell_{2}\setminus e_{y}}^{\omega_{y}}g)
=ωy2ImTr(Q1exωxQ2eyωyQ1exωxQ2eyωy)=-\frac{\omega_{y}}{2}\imaginary\Tr(Q_{\ell_{1}\setminus e_{x}}^{\omega_{x}}Q_{\ell_{2}\setminus e_{y}}^{-\omega_{y}}-Q_{\ell_{1}\setminus e_{x}}^{-\omega_{x}}Q_{\ell_{2}\setminus e_{y}}^{\omega_{y}})
ωy2ImTr(Q1exωxgQ2eyωygg1Q1exωxg1Q2eYωy)-\frac{\omega_{y}}{2}\imaginary\Tr(Q_{\ell_{1}\setminus e_{x}}^{\omega_{x}}gQ_{\ell_{2}\setminus e_{y}}^{\omega_{y}}g-g^{-1}Q_{\ell_{1}\setminus e_{x}}^{-\omega_{x}}g^{-1}Q_{\ell_{2}\setminus e_{Y}}^{-\omega_{y}})
=ωyImTr(Q1exωxQ2eyωy)ωyImTr(Q1exωxgQ2eyωyg)=\omega_{y}\imaginary\Tr(Q_{\ell_{1}\setminus e_{x}}^{-\omega_{x}}Q_{\ell_{2}\setminus e_{y}}^{\omega_{y}})-\omega_{y}\imaginary\Tr(Q_{\ell_{1}\setminus e_{x}}^{\omega_{x}}gQ_{\ell_{2}\setminus e_{y}}^{\omega_{y}}g)

Recall that in the definition of 12\ell_{1}\oplus\ell_{2} or 12\ell_{1}\ominus\ell_{2}, the orientation of the first term does not change. As a result,

=ωxωyImW1x,y2ωxωyImW1x,y2=-\omega_{x}\omega_{y}\imaginary W_{\ell_{1}\ominus_{x,y}\ell_{2}}-\omega_{x}\omega_{y}\imaginary W_{\ell_{1}\oplus_{x,y}\ell_{2}}

Now for the remaining terms,

ηQ1exωxgQ1exωxg,2iωyNReTr(Q2eyωyg)=ηωyNReTr(Q2eyωyg)ImTr(Q1exωxgg1Q1exωx)\eta\expectationvalue{Q_{\ell_{1}\setminus e_{x}}^{-\omega_{x}}-gQ_{\ell_{1}\setminus e_{x}}^{\omega_{x}}g,-\frac{2i\omega_{y}}{N}\real\Tr(Q_{\ell_{2}\setminus e_{y}}^{\omega_{y}}g)}=\eta\frac{\omega_{y}}{N}\real\Tr(Q_{\ell_{2}\setminus e_{y}}^{\omega_{y}}g)\imaginary\Tr(Q_{\ell_{1}\setminus e_{x}}^{\omega_{x}}g-g^{-1}Q_{\ell_{1}\setminus e_{x}}^{-\omega_{x}})
=η2ωyNReTr(Q2eyωyg)ImTr(Q1exωxg)=η2ωxωyNImW1ReW2=\eta\frac{2\omega_{y}}{N}\real\Tr(Q_{\ell_{2}\setminus e_{y}}^{\omega_{y}}g)\imaginary\Tr(Q_{\ell_{1}\setminus e_{x}}^{\omega_{x}}g)=\eta\frac{2\omega_{x}\omega_{y}}{N}\imaginary W_{\ell_{1}}\real W_{\ell_{2}}

Similarly,

η2iNImTr(Qexωxg)g,iωxQ2eyωy+iωxgQ2eyωyg=η2ωyNImTr(Q1exωxg)ReTr(Q2eyωyg)\eta\expectationvalue{\frac{2i}{N}\imaginary\Tr(Q_{\ell\setminus e_{x}}^{\omega_{x}}g)g,i\omega_{x}Q_{\ell_{2}\setminus e_{y}}^{-\omega_{y}}+i\omega_{x}gQ_{\ell_{2}\setminus e_{y}}^{\omega_{y}}g}=\eta\frac{2\omega_{y}}{N}\imaginary\Tr(Q_{\ell_{1}\setminus e_{x}}^{\omega_{x}}g)\real\Tr(Q_{\ell_{2}\setminus e_{y}}^{\omega_{y}}g)
=η2ωxωyNImW1ReW2=\eta\frac{2\omega_{x}\omega_{y}}{N}\imaginary W_{\ell_{1}}\real W_{\ell_{2}}

And finally,

η2iNImTr(Q1exωxg)g,2iωyNReTr(Q2eyωyg)g=η2ωyNImTr(Q1exωxg)ReTr(Q2eyωyg)\eta\expectationvalue{\frac{2i}{N}\imaginary\Tr(Q_{\ell_{1}\setminus e_{x}}^{\omega_{x}}g)g,-\frac{2i\omega_{y}}{N}\real\Tr(Q_{\ell_{2}\setminus e_{y}}^{\omega_{y}}g)g}=-\eta\frac{2\omega_{y}}{N}\imaginary\Tr(Q_{\ell_{1}\setminus e_{x}}^{\omega_{x}}g)\real\Tr(Q_{\ell_{2}\setminus e_{y}}^{\omega_{y}}g)
=2ωxωyNηImW1ReW2=-\frac{2\omega_{x}\omega_{y}}{N}\eta\imaginary W_{\ell_{1}}\real W_{\ell_{2}}

In total,

fR,fI=xC1,yC2ωxωyImW1x,y2ωxωyImW1x,y2+η2ωxωyNImW1ReW2\expectationvalue{\nabla f^{R},\nabla f^{\prime I}}=\sum_{x\in C_{1},y\in C_{2}}-\omega_{x}\omega_{y}\imaginary W_{\ell_{1}\ominus_{x,y}\ell_{2}}-\omega_{x}\omega_{y}\imaginary W_{\ell_{1}\oplus_{x,y}\ell_{2}}+\eta\frac{2\omega_{x}\omega_{y}}{N}\imaginary W_{\ell_{1}}\real W_{\ell_{2}}

By symmetry, fR,fI\expectationvalue{\nabla f^{\prime R},\nabla f^{I}} is the same as fR,fI\expectationvalue{\nabla f^{R},\nabla f^{\prime I}} with 12\ell_{1}\to\ell_{2} and 21\ell_{2}\to\ell_{1}. So

fR,fI=xC1,yC2ωxωyImW2x,y1ωxωyImW2x,y1+η2ωxωyNImW2ReW1\expectationvalue{\nabla f^{\prime R},\nabla f^{I}}=\sum_{x\in C_{1},y\in C_{2}}-\omega_{x}\omega_{y}\imaginary W_{\ell_{2}\ominus_{x,y}\ell_{1}}-\omega_{x}\omega_{y}\imaginary W_{\ell_{2}\oplus_{x,y}\ell_{1}}+\eta\frac{2\omega_{x}\omega_{y}}{N}\imaginary W_{\ell_{2}}\real W_{\ell_{1}}

Now we need to examine the relationship between W12W_{\ell_{1}\oplus\ell_{2}} and W21W_{\ell_{2}\oplus\ell_{1}} and similarly for \ominus. For a negative merger, an orientation reversal occurs if ωω=1\omega\omega^{\prime}=1. Otherwise it doesn’t happen. Similarly for a positive merger, an orientation reversal happens if ωω=1\omega\omega^{\prime}=-1. Thus we get

=xC1,yC2ImW1x,y2ImW1x,y2+η2ωxωyNImW2ReW1=\sum_{x\in C_{1},y\in C_{2}}\imaginary W_{\ell_{1}\ominus_{x,y}\ell_{2}}-\imaginary W_{\ell_{1}\oplus_{x,y}\ell_{2}}+\eta\frac{2\omega_{x}\omega_{y}}{N}\imaginary W_{\ell_{2}}\real W_{\ell_{1}}

And so,

ImW1,W2=xC1,yC2(1ωxωy)ImW1x,y2(ωxωy+1)ImW1x,y2+η2ωxωyN(ImW1ReW2+ReW1ImW2)\imaginary\expectationvalue{\nabla W_{\ell_{1}},\nabla W_{\ell_{2}}}=\sum_{x\in C_{1},y\in C_{2}}(1-\omega_{x}\omega_{y})\imaginary W_{\ell_{1}\ominus_{x,y}\ell_{2}}-(\omega_{x}\omega_{y}+1)\imaginary W_{\ell_{1}\oplus_{x,y}\ell_{2}}+\eta\frac{2\omega_{x}\omega_{y}}{N}(\imaginary W_{\ell_{1}}\real W_{\ell_{2}}+\real W_{\ell_{1}}\imaginary W_{\ell_{2}})
=xC1,yC2(1ωxωy)ImW1x,y2(1+ωxωy)ImW1x,y2+η2ωxωyNIm(W1W2)=\sum_{x\in C_{1},y\in C_{2}}(1-\omega_{x}\omega_{y})\imaginary W_{\ell_{1}\ominus_{x,y}\ell_{2}}-(1+\omega_{x}\omega_{y})\imaginary W_{\ell_{1}\oplus_{x,y}\ell_{2}}+\eta\frac{2\omega_{x}\omega_{y}}{N}\imaginary(W_{\ell_{1}}W_{\ell_{2}})

Thus we can conclude:

eW1,eW2=xC1,yC2(1ωxωy)W1x,y2(1+ωxωy)W1x,y2+η2ωxωyNW1W2\expectationvalue{\nabla_{e}W_{\ell_{1}},\nabla_{e}W_{\ell_{2}}}=\sum_{x\in C_{1},y\in C_{2}}(1-\omega_{x}\omega_{y})W_{\ell_{1}\ominus_{x,y}\ell_{2}}-(1+\omega_{x}\omega_{y})W_{\ell_{1}\oplus_{x,y}\ell_{2}}+\eta\frac{2\omega_{x}\omega_{y}}{N}W_{\ell_{1}}W_{\ell_{2}}
=ωxωy=12W1x,y2ωxωy=12W1x,y2+ηx,y2ωxωyNW1W2=\sum_{\omega_{x}\omega_{y}=-1}2W_{\ell_{1}\ominus_{x,y}\ell_{2}}-\sum_{\omega_{x}\omega_{y}=1}2W_{\ell_{1}\oplus_{x,y}\ell_{2}}+\eta\sum_{x,y}\frac{2\omega_{x}\omega_{y}}{N}W_{\ell_{1}}W_{\ell_{2}}

Note that

xC1,yC2ωxωy=(|A1||A2|+|B1||B2|)(|A1||B2|+|B1||A2|)\sum_{x\in C_{1},y\in C_{2}}\omega_{x}\omega_{y}=\quantity(\absolutevalue{A_{1}}\absolutevalue{A_{2}}+\absolutevalue{B_{1}}\absolutevalue{B_{2}})-\quantity(\absolutevalue{A_{1}}\absolutevalue{B_{2}}+\absolutevalue{B_{1}}\absolutevalue{A_{2}})
=(|A1||B1|)(|A2||B2|)=t1t2=\quantity(\absolutevalue{A_{1}}-\absolutevalue{B_{1}})\quantity(\absolutevalue{A_{2}}-\absolutevalue{B_{2}})=t_{1}t_{2}

Completing the proof. ∎

This final lemma is required to account for terms from the measure.

Lemma 5.4.

Let 1\ell_{1} and 2\ell_{2} be loops. Then

W1,ReW2=xC1,yC2W1x,y2W1x,y2+ηt1t2N(W1W21W1W2)\expectationvalue{\nabla W_{\ell_{1}},\real\nabla W_{\ell_{2}}}=\sum_{x\in C_{1},y\in C_{2}}W_{\ell_{1}\ominus_{x,y}\ell_{2}}-W_{\ell_{1}\oplus_{x,y}\ell_{2}}+\eta\frac{t_{1}t_{2}}{N}\quantity(W_{\ell_{1}}W_{\ell_{2}^{-1}}-W_{\ell_{1}}W_{\ell_{2}})
Proof.

Most of the algebra has already been carried out. This inner product is

ReW1,ImW1+iImW1,ReW1\expectationvalue{\nabla\real W_{\ell_{1}},\nabla\imaginary W_{\ell_{1}}}+i\expectationvalue{\nabla\imaginary W_{\ell_{1}},\nabla\real W_{\ell_{1}}}

The first term is, as we’ve computed before,

=xC1,yC2Re(W1x,y2)Re(W1x,y2)η2ωxωyNImW1ImW2=\sum_{x\in C_{1},y\in C_{2}}\real(W_{\ell_{1}\ominus_{x,y}\ell_{2}})-\real(W_{\ell_{1}\oplus_{x,y}\ell_{2}})-\eta\frac{2\omega_{x}\omega_{y}}{N}\imaginary W_{\ell_{1}}\imaginary W_{\ell_{2}}

The next term is

=xC1,yC2ImW1x,y2ImW1x,y2+η2ωxωyNReW1ImW2=\sum_{x\in C_{1},y\in C_{2}}\imaginary W_{\ell_{1}\ominus_{x,y}\ell_{2}}-\imaginary W_{\ell_{1}\oplus_{x,y}\ell_{2}}+\eta\frac{2\omega_{x}\omega_{y}}{N}\real W_{\ell_{1}}\imaginary W_{\ell_{2}}

Putting them together, this gives

eW,eReW=xC1,yC2W1x,y2W1x,y2η2ωxωyN(iReW1ImW2ImW1ImW2)\expectationvalue{\nabla_{e}W_{\ell},\nabla_{e}\real W_{\ell}}=\sum_{x\in C_{1},y\in C_{2}}W_{\ell_{1}\ominus_{x,y}\ell_{2}}-W_{\ell_{1}\oplus-{x,y}\ell_{2}}-\eta\frac{2\omega_{x}\omega_{y}}{N}(i\real W_{\ell_{1}}\imaginary W_{\ell_{2}}-\imaginary W_{\ell_{1}}\imaginary W_{\ell_{2}})

That last term can be simplified:

=(iReW1ImW1)ImW2=iW1ImW1=12W1W212W1W2=(i\real W_{\ell_{1}}-\imaginary W_{\ell_{1}})\imaginary W_{\ell_{2}}=iW_{\ell_{1}}\imaginary W_{\ell_{1}}=\frac{1}{2}W_{\ell_{1}}W_{\ell_{2}}-\frac{1}{2}W_{\ell_{1}}W_{-\ell_{2}}

So in total,

eW1,eReW2=xC1,yC2W1x,y2W1x,y2+ηωxωyNW1W2ηωxωyNW1W2\expectationvalue{\nabla_{e}W_{\ell_{1}},\nabla_{e}\real W_{\ell_{2}}}=\sum_{x\in C_{1},y\in C_{2}}W_{\ell_{1}\ominus_{x,y}\ell_{2}}-W_{\ell_{1}\oplus_{x,y}\ell_{2}}+\eta\frac{\omega_{x}\omega_{y}}{N}W_{\ell_{1}}W_{-\ell_{2}}-\eta\frac{\omega_{x}\omega_{y}}{N}W_{\ell_{1}}W_{\ell_{2}}
=xC1,yC2W1x,y2W1x,y2+t1t2NW1W2ηt1t2NW1W2=\sum_{x\in C_{1},y\in C_{2}}W_{\ell_{1}\ominus_{x,y}\ell_{2}}-W_{\ell_{1}\oplus_{x,y}\ell_{2}}+\frac{t_{1}t_{2}}{N}W_{\ell_{1}}W_{-\ell_{2}}-\eta\frac{t_{1}t_{2}}{N}W_{\ell_{1}}W_{\ell_{2}}

5.2. Laplacian of Wilson loops

Lemma 5.5.

Let LXL_{X} and RYR_{Y} denote left and right-multiplication, respectively. Then

Tr(PgLXRYPg)=Re(TrXTrY)ηNReTr(g1XgY)\Tr(P_{g}L_{X}R_{Y}P_{g})=\real(\Tr X\Tr Y)-\frac{\eta}{N}\real\Tr(g^{-1}XgY)
Proof.

We first compute the trace on U(N)U(N). An orthonormal basis is g(eiejTejeiT)g(e_{i}e_{j}^{T}-e_{j}e_{i}^{T}) i<ji<j, ig(eiejT+ejeiT)ig(e_{i}e_{j}^{T}+e_{j}e_{i}^{T}), i<ji<j, and g2eieiTg\sqrt{2}e_{i}e_{i}^{T}.

Tr(PgLXLYPg)=i<jeiejTejeiT,g1Xg(eiejTejeiT)Y+i<jeiejT+ejeiT,g1Xg(eiejT+ejeiT)Y\displaystyle\Tr(P_{g}L_{X}L_{Y}P_{g})=\sum_{i<j}\expectationvalue{e_{i}e_{j}^{T}-e_{j}e_{i}^{T},g^{-1}Xg(e_{i}e_{j}^{T}-e_{j}e_{i}^{T})Y}+\sum_{i<j}\expectationvalue{e_{i}e_{j}^{T}+e_{j}e_{i}^{T},g^{-1}Xg(e_{i}e_{j}^{T}+e_{j}e_{i}^{T})Y}
+i2eieiT,g1XgeieiT\displaystyle+\sum_{i}2\expectationvalue{e_{i}e_{i}^{T},g^{-1}Xge_{i}e_{i}^{T}}
=i<j2(eiejT,g1XgeiejTY+ejeiT,g1XgejeiT)+i2eieiT,g1XgeieiT\displaystyle=\sum_{i<j}2\quantity(\expectationvalue{e_{i}e_{j}^{T},g^{-1}Xge_{i}e_{j}^{T}Y}+\expectationvalue{e_{j}e_{i}^{T},g^{-1}Xge_{j}e_{i}^{T}})+\sum_{i}2\expectationvalue{e_{i}e_{i}^{T},g^{-1}Xge_{i}e_{i}^{T}}
=ij2eiejT,g1XgeiejT2ieieiT,g1XgeieiT+2ieiei,g1XgeieiT=ijRe(g1Xg)iiYjj\displaystyle=\sum_{ij}2\expectationvalue{e_{i}e_{j}^{T},g^{-1}Xge_{i}e_{j}^{T}}-2\sum_{i}\expectationvalue{e_{i}e_{i}^{T},g^{-1}Xge_{i}e_{i}^{T}}+2\sum_{i}\expectationvalue{e_{i}e_{i},g^{-1}Xge_{i}e_{i}^{T}}=\sum_{ij}\real(g^{-1}Xg)_{ii}Y_{jj}
=ReTrXTrY\displaystyle=\real\Tr X\Tr Y

Now, g𝔲(N)=g𝔰𝔲(N)igg\mathfrak{u}(N)=g\mathfrak{su}(N)\oplus i\mathbb{R}g. Thus the trace on SU(N)SU(N) is

Trg𝔲(N)(LXLY)2Nig,2NiXgY=Trg𝔲(N)(LXLY)1NReTr(g1XgY)\Tr_{g\mathfrak{u}(N)}(L_{X}L_{Y})-\expectationvalue{\sqrt{\frac{2}{N}}ig,\sqrt{\frac{2}{N}}iXgY}=\Tr_{g\mathfrak{u}(N)}(L_{X}L_{Y})-\frac{1}{N}\real\Tr(g^{-1}XgY)
=ReTrXTrY1NReTr(g1XgY)=\real\Tr X\Tr Y-\frac{1}{N}\real\Tr(g^{-1}XgY)

Lemma 5.6.

Let WW_{\ell} be a Wilson loop and Δe\Delta_{e} the Laplace-Beltrami operator at the edge ee. Then

ΔeW=xC1,yC2,ωxωy=12W×x,y1W×x,y2+ωxωy=12W×x,y1W×x,y2(2mN2ηt2N)W\Delta_{e}W_{\ell}=-\sum_{x\in C_{1},y\in C_{2},\omega_{x}\omega_{y}=1}2W_{\times^{1}_{x,y}\ell}W_{\times^{2}_{x,y}\ell}+\sum_{\omega_{x}\omega_{y}=-1}2W_{\times^{1}_{x,y}\ell}W_{\times^{2}_{x,y}\ell}-\quantity(2mN-\frac{2\eta t^{2}}{N})W_{\ell}
Proof.

The laplacian does not involve any complex multiplication. We can therefore separately compute ΔeReW\Delta_{e}\real W_{\ell} and ΔeImW\Delta_{e}\imaginary W_{\ell}.

eReW=xCxReW\nabla_{e}\real W_{\ell}=\sum_{x\in C}\nabla^{x}\real W_{\ell}

so

HeuceReW=x,yCdyxReW(H)\nabla_{H}^{euc}\nabla_{e}\real W_{\ell}=\sum_{x,y\in C}d_{y}\nabla^{x}\real W_{\ell}(H)

Now, recall:

eReW=xCQexωxQeQexωxQe+η2iωxNImWQe\nabla_{e}\real W_{\ell}=\sum_{x\in C_{\ell}}Q_{\ell\setminus e_{x}}^{-\omega_{x}}-Q_{e}Q_{\ell\setminus e_{x}}^{\omega_{x}}Q_{e}+\eta\frac{2i\omega_{x}}{N}\imaginary W_{\ell}Q_{e}

Taking the differential and accounting for orientations as in the SO(N)SO(N) proof,

deReW(H)\displaystyle d\nabla_{e}\real W_{\ell}(H) =x,yC,ωxωy=1Qexωx(gyH)xyC,ωxωy=1Qexωx(gyg1Hg1)\displaystyle=\sum_{x,y\in C_{\ell},\omega_{x}\omega_{y}=-1}Q_{\ell\setminus e_{x}}^{-\omega_{x}}(g_{y}\to H)-\sum_{x\neq y\in C_{\ell},\omega_{x}\omega_{y}=1}Q_{\ell\setminus e_{x}}^{-\omega_{x}}(g_{y}\to g^{-1}Hg^{-1})
HQexωxQeQeQexωxHxyC,ωxωy=1Qexωx(gyH)\displaystyle-HQ_{\ell\setminus e_{x}}^{\omega_{x}}Q_{e}-Q_{e}Q^{\omega_{x}}_{\ell\setminus e_{x}}H-\sum_{x\neq y\in C_{\ell},\omega_{x}\omega_{y}=1}Q_{\ell\setminus e_{x}}^{\omega_{x}}(g_{y}\to H)
+x,yC,ωxωy=1QeQexωx(gyg1Hg1)+η2iωxNImWH+η2iωxNdImWQe\displaystyle+\sum_{x,y\in C_{\ell},\omega_{x}\omega_{y}=-1}Q_{e}Q_{\ell\setminus e_{x}}^{\omega_{x}}(g_{y}\to g^{-1}Hg^{-1})+\eta\frac{2i\omega_{x}}{N}\imaginary W_{\ell}H+\eta\frac{2i\omega_{x}}{N}d\imaginary W_{\ell}Q_{e}

For that last term,

dImTrW(H)=yCωyImTr(QeyωyH)d\imaginary\Tr W_{\ell}(H)=\sum_{y\in C}\omega_{y}\imaginary\Tr(Q_{\ell\setminus e_{y}}^{\omega_{y}}H)

Putting it all together,

deReW(H)=ωxωy=1Qexωx(QyQe1HQe1)+ωxωy=1Qexωx(QyH)d\nabla_{e}\real W_{\ell}(H)=-\sum_{\omega_{x}\omega_{y}=1}Q_{\ell\setminus e_{x}}^{-\omega_{x}}(Q_{y}\to Q_{e}^{-1}HQ_{e}^{-1})+\sum_{\omega_{x}\omega_{y}=-1}Q_{\ell\setminus e_{x}}^{-\omega_{x}}(Q_{y}\to H)
xCHQexωxQe+QeQexωxHωxωy=1QeQexωx(QyH)Qe-\sum_{x\in C}HQ_{\ell\setminus e_{x}}^{\omega_{x}}Q_{e}+Q_{e}Q^{\omega_{x}}_{\ell\setminus e_{x}}H-\sum_{\omega_{x}\omega_{y}=1}Q_{e}Q_{\ell\setminus e_{x}}^{\omega_{x}}(Q_{y}\to H)Q_{e}
+ωxωy=1QeQexωx(QeQe1HQe1)Qe+ηxC2iωxNHImW+ηxC,yC2iωxωyNQeImTr(QeyωyH)+\sum_{\omega_{x}\omega_{y}=-1}Q_{e}Q_{\ell\setminus e_{x}}^{\omega_{x}}(Q_{e}\to Q_{e}^{-1}HQ_{e}^{-1})Q_{e}+\eta\sum_{x\in C}\frac{2i\omega_{x}}{N}H\imaginary W_{\ell}+\eta\sum_{x\in C,y\in C}\frac{2i\omega_{x}\omega_{y}}{N}Q_{e}\imaginary\Tr(Q^{\omega_{y}}_{\ell\setminus e_{y}}H)

The last two terms can be dropped, as both of their images lie in the normal bundle.

We now compute the trace (recall lemma 5.5). Once again recall that if Qex=P+gωyPQ_{\ell\setminus e_{x}}=P_{+}g^{\omega_{y}}P_{-}, then

Qex±ωx=P±ωx±ωxg±ωxωyPωx±ωxQ_{\ell\setminus e_{x}}^{\pm\omega_{x}}=P_{\pm\omega_{x}}^{\pm\omega_{x}}g^{\pm\omega_{x}\omega_{y}}P_{\mp\omega_{x}}^{\pm\omega_{x}}

First:

ωxωy=1TrQexωx(QyQe1HQe1)=ωxωy=1TrPωxωxQe1HQe1Pωxωx\displaystyle\sum_{\omega_{x}\omega_{y}=1}\Tr Q_{\ell\setminus e_{x}}^{-\omega_{x}}(Q_{y}\to Q_{e}^{-1}HQ_{e}^{-1})=\sum_{\omega_{x}\omega_{y}=1}\Tr P_{-\omega_{x}}^{-\omega_{x}}Q_{e}^{-1}HQ_{e}^{-1}P_{\omega_{x}}^{-\omega_{x}}
=ωxωy=1Re(Tr(PωxωxQe1)Tr(Qe1Pωxωx))ηNReTr(g1(Pωxωxg1)gg1Pωxωx)\displaystyle=\sum_{\omega_{x}\omega_{y}=1}\real(\Tr(P^{-\omega_{x}}_{-\omega_{x}}Q_{e}^{-1})\Tr(Q_{e}^{-1}P^{-\omega_{x}}_{\omega_{x}}))-\frac{\eta}{N}\real\Tr(g^{-1}(P^{-\omega_{x}}_{-\omega_{x}}g^{-1})gg^{-1}P^{-\omega_{x}}_{\omega_{x}})
=ωxωy=1Re(W×x,y1W×x,y2)ηNReTr(g1Pωxωxg1Pωxωx)=ωxωy=1Re(W×x,y1W×x,y2)ηNReW\displaystyle=\sum_{\omega_{x}\omega_{y}=1}\real(W_{\times^{1}_{x,y}\ell}W_{\times^{2}_{x,y}\ell})-\frac{\eta}{N}\real\Tr(g^{-1}P^{-\omega_{x}}_{-\omega_{x}}g^{-1}P^{-\omega_{x}}_{\omega_{x}})=\sum_{\omega_{x}\omega_{y}=1}\real(W_{\times^{1}_{x,y}\ell}W_{\times^{2}_{x,y}\ell})-\frac{\eta}{N}\real W_{\ell}

Next, we have

ωxωy=1TrQexωx(QyH)=ωxωy=1Tr(PωxωxHPωxωx)\displaystyle\sum_{\omega_{x}\omega_{y}=-1}\Tr Q_{\ell\setminus e_{x}}^{-\omega_{x}}(Q_{y}\to H)=\sum_{\omega_{x}\omega_{y}=-1}\Tr(P^{-\omega_{x}}_{-\omega_{x}}HP^{-\omega_{x}}_{\omega_{x}})
=ωxωy=1Re(Tr(Pωxωx)Tr(Pωzωx))ηNReTr(g1PωxωxgPωxωx)\displaystyle=\sum_{\omega_{x}\omega_{y}=-1}\real(\Tr(P^{-\omega_{x}}_{-\omega_{x}})\Tr(P^{-\omega_{x}}_{\omega_{z}}))-\frac{\eta}{N}\real\Tr(g^{-1}P^{-\omega_{x}}_{-\omega_{x}}gP^{-\omega_{x}}_{\omega_{x}})
=ωxωy=1Re(W×x,y1W×x,y2)ηNReW\displaystyle=\sum_{\omega_{x}\omega_{y}=-1}\real(W_{\times^{1}_{x,y}\ell}W_{\times^{2}_{x,y}\ell})-\frac{\eta}{N}\real W_{\ell}

Next,

Tr(HQexωxQe+QeQexωxH)=2NReTr(QexωxQe)2ηNReTr(QexωxQe)=(2N2ηN)ReW\displaystyle\Tr(HQ^{\omega_{x}}_{\ell\setminus e_{x}}Q_{e}+Q_{e}Q^{\omega_{x}}_{\ell\setminus e_{x}}H)=2N\real\Tr(Q^{-\omega_{x}}_{\ell\setminus e_{x}}Q_{e})-\frac{2\eta}{N}\real\Tr(Q^{\omega_{x}}_{\ell\setminus e_{x}}Q_{e})=\quantity(2N-\frac{2\eta}{N})\real W_{\ell}

Next,

ωxωy=1TrQeQexωx(QyH)Qe=Tr(QePωxωxHPωxωxQe)\displaystyle\sum_{\omega_{x}\omega_{y}=1}\Tr Q_{e}Q^{\omega_{x}}_{\ell\setminus e_{x}}(Q_{y}\to H)Q_{e}=\Tr(Q_{e}P^{\omega_{x}}_{\omega_{x}}HP^{\omega_{x}}_{-\omega_{x}}Q_{e})
=ReTr(QePωxωx)Tr(PωxωxQe)ηNRe(Qe1QePωxωxQePωxωxQe)\displaystyle=\real\Tr(Q_{e}P^{\omega_{x}}_{\omega_{x}})\Tr(P^{\omega_{x}}_{\omega_{x}}Q_{e})-\frac{\eta}{N}\real(Q_{e}^{-1}Q_{e}P^{\omega_{x}}_{\omega_{x}}Q_{e}P^{\omega_{x}}_{-\omega_{x}}Q_{e})
=ReW×x,y1W×x,y2ηNReW\displaystyle=\real W_{\times^{1}_{x,y}\ell}W_{\times^{2}_{x,y}\ell}-\frac{\eta}{N}\real W_{\ell}

Finally,

ωxωy=1Tr(QeQexωx(QyQe1HQe1))=ωxωy=1Tr(QePωxωxQe1HQe1PωxωxQe)\displaystyle\sum_{\omega_{x}\omega_{y}=-1}\Tr(Q_{e}Q_{\ell\setminus e_{x}}^{\omega_{x}}(Q_{y}\to Q_{e}^{-1}HQ_{e}^{-1}))=\sum_{\omega_{x}\omega_{y}=-1}\Tr(Q_{e}P^{\omega_{x}}_{\omega_{x}}Q_{e}^{-1}HQ_{e}^{-1}P^{\omega_{x}}_{-\omega_{x}}Q_{e})
=ωxωy=1Re(Tr(QePωxωxQe1)Tr(QePωxωxQe1))ηNReTr(Qe1QePωxωxQe1QeQe1PωxωxQe)\displaystyle=\sum_{\omega_{x}\omega_{y}=-1}\real(\Tr(Q_{e}P^{\omega_{x}}_{\omega_{x}}Q_{e}^{-1})\Tr(Q_{e}P^{\omega_{x}}_{-\omega_{x}}Q_{e}^{-1}))-\frac{\eta}{N}\real\Tr(Q_{e}^{-1}Q_{e}P^{\omega_{x}}_{\omega_{x}}Q_{e}^{-1}Q_{e}Q_{e}^{-1}P^{\omega_{x}}_{-\omega_{x}}Q_{e})
=ωxωy=1ReW×x,y1W×x,y2ηNReTr(PωxωxQe1PωxωxQe)=ωxωy=1ReW×x,y1W×x,y2ηNReW\displaystyle=\sum_{\omega_{x}\omega_{y}=-1}\real W_{\times^{1}_{x,y}\ell}W_{\times^{2}_{x,y}\ell}-\frac{\eta}{N}\real\Tr(P^{\omega_{x}}_{\omega_{x}}Q_{e}^{-1}P^{\omega_{x}}_{-\omega_{x}}Q_{e})=\sum_{\omega_{x}\omega_{y}=-1}\real W_{\times^{1}_{x,y}\ell}W_{\times^{2}_{x,y}\ell}-\frac{\eta}{N}\real W_{\ell}

Inserting these identities back in,

ΔeW\displaystyle\Delta_{e}W_{\ell} =(ωxωy=1Re(W×x,y1W×x,y2)ηNReW)+(ωxωy=1Re(W×x,y1W×x,y2)ηNReW)\displaystyle=-\quantity(\sum_{\omega_{x}\omega_{y}=1}\real(W_{\times^{1}_{x,y}\ell}W_{\times^{2}_{x,y}\ell})-\frac{\eta}{N}\real W_{\ell})+\quantity(\sum_{\omega_{x}\omega_{y}=-1}\real(W_{\times^{1}_{x,y}\ell}W_{\times^{2}_{x,y}\ell})-\frac{\eta}{N}\real W_{\ell})
x(2N2ηN)ReWωxωy=1(ReW×x,y1W×x,y2ηNReW)\displaystyle-\sum_{x}\quantity(2N-\frac{2\eta}{N})\real W_{\ell}-\sum_{\omega_{x}\omega_{y}=1}\quantity(\real W_{\times^{1}_{x,y}\ell}W_{\times^{2}_{x,y}\ell}-\frac{\eta}{N}\real W_{\ell})
+(ωxωy=1ReW×x,y1W×x,y2ηNReW)\displaystyle+\quantity(\sum_{\omega_{x}\omega_{y}=-1}\real W_{\times^{1}_{x,y}\ell}W_{\times^{2}_{x,y}\ell}-\frac{\eta}{N}\real W_{\ell})
=xC(2N2ηN)ReW2ωxωy=1Re(W×x,y1W×x,y2)+2ωxωy=1Re(W×x,y1W×x,y2)\displaystyle=-\sum_{x\in C}\quantity(2N-\frac{2\eta}{N})\real W_{\ell}-2\sum_{\omega_{x}\omega_{y}=1}\real(W_{\times^{1}_{x,y}\ell}W_{\times^{2}_{x,y}\ell})+2\sum_{\omega_{x}\omega_{y}=-1}\real(W_{\times^{1}_{x,y}\ell}W_{\times^{2}_{x,y}\ell})
+2ηN(xy,ωxωy=11ωxωy=11)ReW\displaystyle+\frac{2\eta}{N}\bigg{(}\sum_{x\neq y,\omega_{x}\omega_{y}=1}1-\sum_{\omega_{x}\omega_{y}=-1}1\bigg{)}\real W_{\ell}

The last term can be simplified as follows: ωxωy=1,xy=|A|(|A|1)+|B|(|B|1)\sum_{\omega_{x}\omega_{y}=1,x\neq y}=\absolutevalue{A}(\absolutevalue{A}-1)+\absolutevalue{B}(\absolutevalue{B}-1) and ωxωy=1=2|A||B|\sum_{\omega_{x}\omega_{y}=-1}=2\absolutevalue{A}\absolutevalue{B} So that term reduces to

2ηN[|A|2+|B|22|A||B||A||B|]ReW=2ηN(t2m)\frac{2\eta}{N}\quantity[\absolutevalue{A}^{2}+\absolutevalue{B}^{2}-2\absolutevalue{A}\absolutevalue{B}-\absolutevalue{A}-\absolutevalue{B}]\real W_{\ell}=\frac{2\eta}{N}(t^{2}-m)

where t=|A||B|t=\absolutevalue{A}-\absolutevalue{B} and m=|A|+|B|m=\absolutevalue{A}+\absolutevalue{B}. A,BA,B are the number of ees and e-es respectively. So in total,

ΔeReW=ωxωy=12ReW×x,y1W×x,y2+ωxωy=12ReW×x,y1W×x,y2(2mN2ηt2N)ReW\Delta_{e}\real W_{\ell}=-\sum_{\omega_{x}\omega_{y}=1}2\real W_{\ell\times^{1}_{x,y}}W_{\ell\times^{2}_{x,y}}+\sum_{\omega_{x}\omega_{y}=-1}2\real W_{\ell\times^{1}_{x,y}}W_{\ell\times^{2}_{x,y}}-\quantity(2mN-\frac{2\eta t^{2}}{N})\real W_{\ell}

Now for the imaginary part of the laplacian, notice that no part of the algebra actually used that the matrices between occurrences of the edge ee belong to SU(N)SU(N). We only needed that they are unitary. Thus, pick any edge that is not ±e\pm e, and replace the matrix there with iA-iA. This gives

ΔeImW=2ωxωy=1ImW×x,y1W×x,y2+ωxωy=12ImW×x,y1W×x,y2(2mN2ηt2N)ImW\Delta_{e}\imaginary W_{\ell}=-2\sum_{\omega_{x}\omega_{y}=1}\imaginary W_{\ell\times^{1}_{x,y}}W_{\ell\times^{2}_{x,y}}+\sum_{\omega_{x}\omega_{y}=-1}2\imaginary W_{\ell\times^{1}_{x,y}}W_{\ell\times^{2}_{x,y}}-\quantity(2mN-\frac{2\eta t^{2}}{N})\imaginary W_{\ell}

And so, we have

ΔW=2ωxωy=1W×x,y1W×x,y2+ωxωy=12W×x,y1W×x,y2(2mN2ηt2N)W\Delta W_{\ell}=-2\sum_{\omega_{x}\omega_{y}=1}W_{\ell\times^{1}_{x,y}}W_{\ell\times^{2}_{x,y}}+\sum_{\omega_{x}\omega_{y}=-1}2W_{\ell\times^{1}_{x,y}}W_{\ell\times^{2}_{x,y}}-\quantity(2mN-\frac{2\eta t^{2}}{N})W_{\ell}

5.3. Master loop equation for U(N)U(N) and SU(N)SU(N)

Proof of theorem 3.2.

Let (1,,n)(\ell_{1},\dots,\ell_{n}) be a sequence of loops. By Laplacian integration by parts,

𝔼[(ΔeW1)W2Wn]=Z1GEΛ+W1,(W2Wnexp(βNp𝒫Λ+ReTrWp))𝑑μ\displaystyle-\mathbb{E}\quantity[(\Delta_{e}W_{\ell_{1}})W_{\ell_{2}}\dots W_{\ell_{n}}]=Z^{-1}\int_{G^{E^{+}_{\Lambda}}}\expectationvalue{\nabla W_{\ell_{1}},\nabla\quantity(W_{\ell_{2}}\dots W_{\ell_{n}}\exp(\beta N\sum_{p\in\mathcal{P}^{+}_{\Lambda}}\real\Tr W_{p}))}d\mu
=i=2n𝔼[W1,Wij1,iWi]+βNi=2np𝒫+(e)𝔼[W1,ReWpW2Wn]\displaystyle=\sum_{i=2}^{n}\mathbb{E}\quantity[\expectationvalue{\nabla W_{\ell_{1}},\nabla W_{\ell_{i}}}\prod_{j\neq 1,i}W_{\ell_{i}}]+\beta N\sum_{i=2}^{n}\sum_{p\in\mathcal{P}^{+}(e)}\mathbb{E}\quantity[\expectationvalue{\nabla W_{\ell_{1}},\real\nabla W_{p}}W_{\ell_{2}}\dots W_{\ell_{n}}]
Applying lemma 5.3 and lemma 5.4,
=i=2nxC1,yCi,ωxωy=12𝔼[W1x,yiji,1Wj]i=2nxC1,yCi,ωxωy=12𝔼[W1x,yiji,1Wj]\displaystyle=\sum_{i=2}^{n}\sum_{x\in C_{1},y\in C_{i},\omega_{x}\omega_{y}=-1}2\mathbb{E}\quantity[W_{\ell_{1}\ominus_{x,y}\ell_{i}}\prod_{j\neq i,1}W_{\ell_{j}}]-\sum_{i=2}^{n}\sum_{x\in C_{1},y\in C_{i},\omega_{x}\omega_{y}=1}2\mathbb{E}\quantity[W_{\ell_{1}\oplus_{x,y}\ell_{i}}\prod_{j\neq i,1}W_{\ell_{j}}]
+ηi=2n2t1tiN𝔼[W1Wn]+βNi=2np𝒫+(e),xC1𝔼[W1xpW2Wn]\displaystyle+\eta\sum_{i=2}^{n}\frac{2t_{1}t_{i}}{N}\mathbb{E}\quantity[W_{\ell_{1}}\dots W_{\ell_{n}}]+\beta N\sum_{i=2}^{n}\sum_{p\in\mathcal{P}^{+}(e),x\in C_{1}}\mathbb{E}\quantity[W_{\ell_{1}\ominus_{x}p}W_{\ell_{2}}\dots W_{\ell_{n}}]
βNi=2np𝒫+(e),xC1𝔼[W1xpW2Wn]+ηβNp𝒫Λ+(e)t1N𝔼[W1Wp1W2Wn]\displaystyle-\beta N\sum_{i=2}^{n}\sum_{p\in\mathcal{P}^{+}(e),x\in C_{1}}\mathbb{E}\quantity[W_{\ell_{1}\oplus_{x}p}W_{\ell_{2}}\dots W_{\ell_{n}}]+\eta\beta N\sum_{p\in\mathcal{P}_{\Lambda}^{+}(e)}\frac{t_{1}}{N}\mathbb{E}[W_{\ell_{1}}W_{p^{-1}}W_{\ell_{2}}\dots W_{\ell_{n}}]
ηβNp𝒫Λ+(e)t1N𝔼[W1WpW2Wn]\displaystyle-\eta\beta N\sum_{p\in\mathcal{P}_{\Lambda}^{+}(e)}\frac{t_{1}}{N}\mathbb{E}[W_{\ell_{1}}W_{p}W_{\ell_{2}}\dots W_{\ell_{n}}]
Regrouping the plaquettes in the expansion terms,
=i=2nxC1,yCi,ωxωy=12𝔼[W1x,yiji,1Wj]i=2nxC1,yCi,ωxωy=12𝔼[W1x,yiji,1Wj]\displaystyle=\sum_{i=2}^{n}\sum_{x\in C_{1},y\in C_{i},\omega_{x}\omega_{y}=-1}2\mathbb{E}\quantity[W_{\ell_{1}\ominus_{x,y}\ell_{i}}\prod_{j\neq i,1}W_{\ell_{j}}]-\sum_{i=2}^{n}\sum_{x\in C_{1},y\in C_{i},\omega_{x}\omega_{y}=1}2\mathbb{E}\quantity[W_{\ell_{1}\oplus_{x,y}\ell_{i}}\prod_{j\neq i,1}W_{\ell_{j}}]
+ηi=2n2t1tiN𝔼[W1Wn]+βNi=2np𝒫+(e),xC1𝔼[W1xpW2Wn]\displaystyle+\eta\sum_{i=2}^{n}\frac{2t_{1}t_{i}}{N}\mathbb{E}\quantity[W_{\ell_{1}}\dots W_{\ell_{n}}]+\beta N\sum_{i=2}^{n}\sum_{p\in\mathcal{P}^{+}(e),x\in C_{1}}\mathbb{E}\quantity[W_{\ell_{1}\ominus_{x}p}W_{\ell_{2}}\dots W_{\ell_{n}}]
βNi=2np𝒫+(e),xC1𝔼[W1xpW2Wn]ηβNp𝒫Λ(e)t1tpN𝔼[W1Wp1W2Wn]\displaystyle-\beta N\sum_{i=2}^{n}\sum_{p\in\mathcal{P}^{+}(e),x\in C_{1}}\mathbb{E}\quantity[W_{\ell_{1}\oplus_{x}p}W_{\ell_{2}}\dots W_{\ell_{n}}]-\eta\beta N\sum_{p\in\mathcal{P}_{\Lambda}(e)}\frac{t_{1}t_{p}}{N}\mathbb{E}[W_{\ell_{1}}W_{p^{-1}}W_{\ell_{2}}\dots W_{\ell_{n}}]

Now for the left hand side, lemma 5.6 gives

𝔼[(ΔeW1)W2Wn]=xyC1,ωxωy=12𝔼[W×x,y11W×x,y21W2Wn]\displaystyle-\mathbb{E}\quantity[\quantity(\Delta_{e}W_{\ell_{1}})W_{\ell_{2}}\dots W_{\ell_{n}}]=\sum_{x\neq y\in C_{1},\omega_{x}\omega_{y}=1}2\mathbb{E}\quantity[W_{\times^{1}_{x,y}\ell_{1}}W_{\times^{2}_{x,y}\ell_{1}}W_{\ell_{2}}\dots W_{\ell_{n}}]
x,yC1,ωxωy=12𝔼[W×x,y11W×x,y21W2Wn]+(2mN2ηt12N)𝔼[W1Wn]\displaystyle-\sum_{x,y\in C_{1},\omega_{x}\omega_{y}=-1}2\mathbb{E}\quantity[W_{\times^{1}_{x,y}\ell_{1}}W_{\times^{2}_{x,y}\ell_{1}}W_{\ell_{2}}\dots W_{\ell_{n}}]+\quantity(2mN-\frac{2\eta t_{1}^{2}}{N})\mathbb{E}\quantity[W_{\ell_{1}}\dots W_{\ell_{n}}]

Setting the two sides equal,rearranging terms, and dividing by 22 gives

(mNηt1tN)𝔼[W1Wn]=x,yC1,ωxωy=1𝔼[W×x,y11W×x,y21W2W)n]\displaystyle\quantity(mN-\frac{\eta t_{1}t}{N})\mathbb{E}\quantity[W_{\ell_{1}}\dots W_{\ell_{n}}]=\sum_{x,y\in C_{1},\omega_{x}\omega_{y}=-1}\mathbb{E}\quantity[W_{\times^{1}_{x,y}\ell_{1}}W_{\times^{2}_{x,y}\ell_{1}}W_{\ell_{2}}\dots W_{\ell)n}]
xyC1,ωxωy=1𝔼[W×x,y11W×x,y21W2Wn]+i=2nxC1,yCi,ωxωy=1𝔼[W1x,yiji,1Wj]\displaystyle-\sum_{x\neq y\in C_{1},\omega_{x}\omega_{y}=1}\mathbb{E}\quantity[W_{\times^{1}_{x,y}\ell_{1}}W_{\times^{2}_{x,y}\ell_{1}}W_{\ell_{2}}\dots W_{\ell_{n}}]+\sum_{i=2}^{n}\sum_{x\in C_{1},y\in C_{i},\omega_{x}\omega_{y}=-1}\mathbb{E}\quantity[W_{\ell_{1}\ominus_{x,y}\ell_{i}}\prod_{j\neq i,1}W_{\ell_{j}}]
i=2nxC1,yCi,ωxωy=1𝔼[W1x,yiji,1Wj]+βN2i=2np𝒫+(e),xC1𝔼[W1xpW2Wn]\displaystyle-\sum_{i=2}^{n}\sum_{x\in C_{1},y\in C_{i},\omega_{x}\omega_{y}=1}\mathbb{E}\quantity[W_{\ell_{1}\oplus_{x,y}\ell_{i}}\prod_{j\neq i,1}W_{\ell_{j}}]+\frac{\beta N}{2}\sum_{i=2}^{n}\sum_{p\in\mathcal{P}^{+}(e),x\in C_{1}}\mathbb{E}\quantity[W_{\ell_{1}\ominus_{x}p}W_{\ell_{2}}\dots W_{\ell_{n}}]
βN2i=2np𝒫+(e),xC1𝔼[W1xpW2Wn]ηβp𝒫Λ(e)t1tp𝔼[W1Wp1W2Wn]\displaystyle-\frac{\beta N}{2}\sum_{i=2}^{n}\sum_{p\in\mathcal{P}^{+}(e),x\in C_{1}}\mathbb{E}\quantity[W_{\ell_{1}\oplus_{x}p}W_{\ell_{2}}\dots W_{\ell_{n}}]-\eta\beta\sum_{p\in\mathcal{P}_{\Lambda}(e)}t_{1}t_{p}\mathbb{E}[W_{\ell_{1}}W_{p^{-1}}W_{\ell_{2}}\dots W_{\ell_{n}}]

References

  • [Cha19a] Sourav Chatterjee. Gauge-string duality in lattice gauge theories, Jan 2019.
  • [Cha19b] Sourav Chatterjee. Rigorous solution of strongly coupled SO(N)\mathrm{SO}(N) lattice gauge theory in the large NN limit. Communications in Mathematical Physics, 366(1):203–268, 2019.
  • [Cha19c] Sourav Chatterjee. Yang–mills for probabilists. In Probability and Analysis in Interacting Physical Systems, pages 1–16, Cham, 2019. Springer International Publishing.
  • [CPS23] Sky Cao, Minjae Park, and Scott Sheffield. Random surfaces and lattice yang-mills. arxiv preprint arXiv:2307.06790, 2023.
  • [Hsu06] Elton Hsu. Stochastic analysis on manifolds. American Mathematical Society, 2006.
  • [Jaf16] Jafar Jafarov. Wilson loop expectations in SU(N)\mathrm{SU}(N) lattice gauge theory. arxiv preprint arXiv:1610.03821, 2016.
  • [KS99] Ioannis Karatzas and Steven E. Shreve. Brownian motion and stochastic calculus. Springer, 1999.
  • [MM79] Yu. M. Makeenko and Alexander A. Migdal. Exact Equation for the Loop Average in Multicolor QCD. Phys. Lett. B, 88:135, 1979. [Erratum: Phys.Lett.B 89, 437 (1980)].
  • [PPSY23] Minjae Park, Joshua Pfeffer, Scott Sheffield, and Pu Yu. Wilson loop expectations as sums over surfaces on the plane. arxiv preprint arXiv:2305.02306, 2023.
  • [SSZ22] Hao Shen, Scott A. Smith, and Rongchan Zhu. A new derivation of the finite nn master loop equation for lattice yang-mills. arxiv preprint arXiv:2202.00880, 2022.

Omar Abdelghani, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

E-mail address: [email protected]

Ron Nissim, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

E-mail address: [email protected]

Appendix A Comments on Other Approaches

In this appendix we compare our approach to the approaches of [Cha19b] and [SSZ22].

A.1. Integration by parts and exchangeable pairs

In this section we first show that the Schwinger Dyson equation in [Cha19b] is simply integration by parts on SO(N)SO(N) written in extrinsic coordinates by obtaining integration by parts from Stein’s method of exchangeable pairs. We then generalize this to all compact Lie groups with Riemannian structure inducing the Haar measure.

Recall

Definition A.1.

A pair of random variables (U,U)(U,U^{\prime}) is called an exchangeable pair if (U,U)=(U,U)(U,U^{\prime})=(U^{\prime},U) in distribution.

We have the following elementary lemma for exchangeable pairs,

Lemma A.1.

Let (U,U)(U,U^{\prime}) be a exchangeable pair and f,gf,g real valued Borel measurable functions. Then

(8) 𝔼[(f(U)f(U))g(U)]=12𝔼[(f(U)f(U))(g(U)g(U))]\mathbb{E}[(f(U^{\prime})-f(U))g(U)]=-\frac{1}{2}\mathbb{E}[(f(U^{\prime})-f(U))(g(U^{\prime})-g(U))]
Proof.

See Lemma 6.1 from [Cha19b]

Recall that SO(N)SO(N) has a Riemannian metric given by the inner product A,B=12Tr(ATB)\langle A,B\rangle=\frac{1}{2}\mathrm{Tr}(A^{T}B) on 𝔰𝔬(N)\mathfrak{so}(N). Thus 𝔰𝔬(N)\mathfrak{so}(N) has an orthonormal basis =ei,jej,i=ddϵ|ϵ=0(1ϵ2ei,i+ϵei,jϵej,i+1ϵ2)ej,j=e_{i,j}-e_{j,i}=\frac{d}{d\epsilon}|_{\epsilon=0}(\sqrt{1-\epsilon^{2}}e_{i,i}+\epsilon e_{i,j}-\epsilon e_{j,i}+\sqrt{1-\epsilon^{2}})e_{j,j} for 1i<jN1\leq i<j\leq N. These basis vectors are simply the tangent vectors generated by rotations in the plane spanned by two basis vectors.

So working with the rotations Ri,j(ϵ):=(1ϵ2ei,i+ϵei,jϵej,i+1ϵ2ej,jR_{i,j}(\epsilon):=(\sqrt{1-\epsilon^{2}}e_{i,i}+\epsilon e_{i,j}-\epsilon e_{j,i}+\sqrt{1-\epsilon^{2}}e_{j,j} at the identity, it follows that the Laplace Beltrami operator of of fC2(SO(N))f\in C^{2}(SO(N)) is simply given by Δf(O)=1i<jNd2dϵ2|ϵ=0f(Ri,j(ϵ)O)\Delta f(O)=\sum_{1\leq i<j\leq N}\frac{d^{2}}{d\epsilon^{2}}|_{\epsilon=0}f(R_{i,j}(\epsilon)O)

So

(9) Δf=1i<jNlimϵ0f(Ri,j(ϵ)O)+f(Ri,j(ϵ)O)2f(O)ϵ2=2N(N1)limϵ01ϵ2𝔼(I,J),η[f(RI,J(ηϵ)O)f(O)]\begin{split}&\Delta f=\sum_{1\leq i<j\leq N}\lim_{\epsilon\downarrow 0}\frac{f(R_{i,j}(\epsilon)O)+f(R_{i,j}(-\epsilon)O)-2f(O)}{\epsilon^{2}}\\ &=2N(N-1)\lim_{\epsilon\downarrow 0}\frac{1}{\epsilon^{2}}\mathbb{E}_{(I,J),\eta}[f(R_{I,J}(\eta\epsilon)O)-f(O)]\end{split}

where the expectation is taken over η\eta uniformly chosen from {±1}\{\pm 1\} and (I,J)(I,J) uniformly from {1i<jN}\{1\leq i<j\leq N\}. Hence if g:SO(N)g:SO(N)\to\mathbb{R} is another smooth function we have

(10) SO(N)Δfg=2N(N1)limϵ01ϵ2𝔼[(f(RI,J(ηϵ)O)f(O))g(O)]\begin{split}\int_{SO(N)}\Delta fg=2N(N-1)\lim_{\epsilon\downarrow 0}\frac{1}{\epsilon^{2}}\mathbb{E}[(f(R_{I,J}(\eta\epsilon)O)-f(O))g(O)]\end{split}

where the expectation is now taken with respect to the Haar measure on SO(N)SO(N), (I,J)(I,J) and η\eta. Since SO(N)SO(N) is compact and f,gC2f,g\in C^{2}, the interchange of limit and expectation above follows from the bounded convergence theorem.

Similarly for f,gC2(SO(N))f,g\in C^{2}(SO(N))

(11) SO(N)f,g=SO(N)1i<jNddϵ|ϵ=0f(Ri,j(ϵ)O)ddϵ|ϵ=0g(Ri,j(ϵ)O)dO=limϵ01ϵ2SO(N)1i<jN12[(f(Ri,j(ϵ)O)f(O))(g(Ri,j(ϵ)O)g(O))+(f(Ri,j(ϵ)O)f(O))(g(Ri,j(ϵ)O)g(O))]dO=N(N1)limϵ01ϵ2𝔼[(f(RI,J(ηϵ)O)f(O))(g(RI,J(ηϵ)O)g(O))]\begin{split}\int_{SO(N)}\langle\nabla f,\nabla g\rangle&=\int_{SO(N)}\sum_{1\leq i<j\leq N}\frac{d}{d\epsilon}|_{\epsilon=0}f(R_{i,j}(\epsilon)O)\frac{d}{d\epsilon}|_{\epsilon=0}g(R_{i,j}(\epsilon)O)dO\\ &=\lim_{\epsilon\downarrow 0}\frac{1}{\epsilon^{2}}\int_{SO(N)}\sum_{1\leq i<j\leq N}\frac{1}{2}[(f(R_{i,j}(\epsilon)O)-f(O))(g(R_{i,j}(\epsilon)O)-g(O))\\ &+(f(R_{i,j}(-\epsilon)O)-f(O))(g(R_{i,j}(-\epsilon)O)-g(O))]dO\\ &=N(N-1)\lim_{\epsilon\downarrow 0}\frac{1}{\epsilon^{2}}\mathbb{E}[(f(R_{I,J}(\eta\epsilon)O)-f(O))(g(R_{I,J}(\eta\epsilon)O)-g(O))]\end{split}

Finally in [Cha19b], it is shown that (O,Ri,j(ηϵ)O)(O,R_{i,j}(\eta\epsilon)O) form an exchangeable pair, thus combining (10) and (11), integration by parts on SO(N)SO(N), SO(N)Δfg=SO(N)f,g\int_{SO(N)}\Delta fg=-\int_{SO(N)}\langle\nabla f,\nabla g\rangle follows as consequence of lemma 8. Moreover since lemma 8 with this Stein pair is Chatterjee’s starting point for deriving his Schwinger-Dyson equation (Theorem 7.1 [Cha19b]), we see that it is simply integration by parts written in extrinsic coordinates.

This derivation of integration by parts actually generalizes to any compact Lie group with Riemannian metric inducing the Haar measure. For such a Lie group GG, let {ei}i=1d\{e_{i}\}_{i=1}^{d} be an orthonormal basis for the corresponding Lie algebra 𝔤\mathfrak{g}. We can write ei=ddt|t=0gi(t)e_{i}=\frac{d}{dt}|_{t=0}g_{i}(t) where gi(t):=exp(tei)Gg_{i}(t):=\exp(te_{i})\in G. Now let gg be an element of GG selected from the Haar measure, and gϵ:=gu([d])(ηϵ)gg_{\epsilon}:=g_{u([d])}(\eta\epsilon)g where η\eta is Bernoulli with (η=1)=(η=1)=12\mathbb{P}(\eta=1)=\mathbb{P}(\eta=-1)=\frac{1}{2} and u([d])u([d]) is uniform on [d]={1,,d}[d]=\{1,...,d\} all chose independently of each other.

Lemma A.2.

(g,gϵ)(g,g_{\epsilon}) is an exchangeable pair

Proof.

By left invariance of the Haar measure, gϵg_{\epsilon} is also distributed according to the Haar measure. Moreover g=gu([d])(ηϵ)gϵg=g_{u([d])}(-\eta\epsilon)g_{\epsilon} so (g,gϵ)=(gϵ,g)(g,g_{\epsilon})=(g_{\epsilon},g) in distribution since η=η-\eta=\eta in distribution. ∎

Now applying Lemma 8 to this Stein pair with f,gC2(G)f,g\in C^{2}(G), we obtain integration by parts on GG by an identical calculation to that in equation (11) and (10) for the SO(N)SO(N) case.

A.2. Symmetrized Master Loop Equation and Langevin Dynamics

One immediate corollary of Theorem 3.1 and Theorem 3.2 is the symmetrized master loop equation (Theorem 1 [SSZ22]).

This corollary is derived in [SSZ22] through studying the following Langevin dynamics with invariant Yang-Mill’s measure.

(12) dQ=12S(Q)dt+d𝔅dQ=\frac{1}{2}\nabla S(Q)dt+d\mathfrak{B}

where S(Q):=Nβp𝒫Re(Tr(Qp))S(Q):=N\beta\sum_{p\in\mathcal{P}}\mathrm{Re}(\mathrm{Tr}(Q_{p})) is the Yang-Mills action, and \nabla is the intrinsic gradient on GΛG^{\Lambda}.

It can then be shown via integration by parts that the Yang-Mills measure is invariant under the dynamics (12), (Lemma 3.3 [SSZ22]).

The rest of the proof proceeds by applying Itô’s formula in (N2)Λ(\mathbb{R}^{N^{2}})^{\Lambda} to f(Q):=W1Wnf(Q):=W_{\ell_{1}}...W_{\ell_{n}} with QQ evolving according to (12)\eqref{Langevin} starting with the Yang-Mills measure as the initial distribution, and taking the expectation of both sides with respect the Yang-Mills measure.

f(Qt)f(Q_{t}) is of course a semimartingale [KS99], and can thus be written in the form f(Qt)=f(Q0)+Mt+Atf(Q_{t})=f(Q_{0})+M_{t}+A_{t} where MtM_{t} is a martingale, and AtA_{t} is a bounded variation process with M0=A0=0M_{0}=A_{0}=0. The equation [SSZ22] obtain is 𝔼YM[At]=0\mathbb{E}_{\mathrm{YM}}[A_{t}]=0. But standard theory for stochastic analysis on manifolds (Chapter 3, [Hsu06]) tells us that the Langevin dynamics (12)\eqref{Langevin} has infinitesimal generator =12Δ+12S,\mathcal{L}=\frac{1}{2}\Delta+\frac{1}{2}\langle\nabla S,\nabla\rangle, so At=0tf(Qs)𝑑sA_{t}=\int_{0}^{t}\mathcal{L}f(Q_{s})ds. Thus the symmetrized master loop equation derived in [SSZ22] is equivalent to the following integration by parts

(13) GΛΔf(Q)exp(S(Q))+f(Q),exp(S(Q))dQ=0\int_{G^{\Lambda}}\Delta f(Q)\exp(S(Q))+\langle\nabla f(Q),\nabla\exp(S(Q))\rangle dQ=0

where \nabla and Δ\Delta are the intrinsic gradient and Laplace-Beltrami operator on GΛG^{\Lambda} respectively.

Appendix B Deriving the extrinsic integration by parts formula

Again let SO(N)N2SO(N)\subset\mathbb{R}^{N^{2}} in the natural way. Let USO(N)U\supset SO(N) be open, and f,gf,g smooth functions on UU. Then we can extend the integration by parts formula to functions f,gC2(U)f,g\in C^{2}(U). Let Xq=qX_{q}=q be a vector field on N2\mathbb{R}^{N^{2}}. Note that for consistency we’re equipping N2\mathbb{R}^{N^{2}} with the metric X,Y=12Tr(XTY)\expectationvalue{X,Y}=\frac{1}{2}\Tr(X^{T}Y). Thus, the gradient for this metric is twice the usual gradient.

Recall that

Xij(q)=qeiejT=aqaieaejTqajeaeiTX_{ij}(q)=qe_{i}\wedge e_{j}^{T}=\sum_{a}q_{ai}e_{a}e_{j}^{T}-q_{aj}e_{a}e_{i}^{T}

so (because XijX_{ij} is an orthonormal frame on SO(N)SO(N))

Xij(f)=aqaifqajqajfqaiX_{ij}(f)=\sum_{a}q_{ai}\partialderivative{f}{q_{aj}}-q_{aj}\partialderivative{f}{q_{ai}}

And so

Gf,Gg=a,b,i<j(qaifqajqajfqai)(qbigqbjqbjgqbi)\expectationvalue{\nabla_{G}f,\nabla_{G}g}=\sum_{a,b,i<j}\quantity(q_{ai}\partialderivative{f}{q_{aj}}-q_{aj}\partialderivative{f}{q_{ai}})\quantity(q_{bi}\partialderivative{g}{q_{bj}}-q_{bj}\partialderivative{g}{q_{bi}})

Because this quantity is symmetric in ii and jj,

=12a,b,ij(qaifqajqajfqai)(qbigqbjqbjgqbi)=\frac{1}{2}\sum_{a,b,i\neq j}\quantity(q_{ai}\partialderivative{f}{q_{aj}}-q_{aj}\partialderivative{f}{q_{ai}})\quantity(q_{bi}\partialderivative{g}{q_{bj}}-q_{bj}\partialderivative{g}{q_{bi}})
=12a,b,ij(qaifqajqajfqai)(qbigqbjqbjgqbi)=\frac{1}{2}\sum_{a,b,i\neq j}\quantity(q_{ai}\partialderivative{f}{q_{aj}}-q_{aj}\partialderivative{f}{q_{ai}})\quantity(q_{bi}\partialderivative{g}{q_{bj}}-q_{bj}\partialderivative{g}{q_{bi}})
=a,b,ijqaiqbifqajgqbjqaiqbjfqajgqbi=\sum_{a,b,i\neq j}q_{ai}q_{bi}\partialderivative{f}{q_{aj}}\partialderivative{g}{q_{bj}}-q_{ai}q_{bj}\partialderivative{f}{q_{aj}}\partialderivative{g}{q_{bi}}

We can simplify the form of the sums by noting that i=ji=j terms vanish anyway:

=a,b,i,jqaiqbifqajgqbjqaiqbjfqajgqbi=\sum_{a,b,i,j}q_{ai}q_{bi}\partialderivative{f}{q_{aj}}\partialderivative{g}{q_{bj}}-q_{ai}q_{bj}\partialderivative{f}{q_{aj}}\partialderivative{g}{q_{bi}}

Then, by orthogonality the first term simplifies further

a,b,jδabfqajgqbja,b,i,jqaiqbjfqajgqbi\sum_{a,b,j}\delta_{ab}\partialderivative{f}{q_{aj}}\partialderivative{g}{q_{bj}}-\sum_{a,b,i,j}q_{ai}q_{bj}\partialderivative{f}{q_{aj}}\partialderivative{g}{q_{bi}}
=a,jfqajgqaja,b,i,jqaiqbjfqajgqbi=\sum_{a,j}\partialderivative{f}{q_{aj}}\partialderivative{g}{q_{aj}}-\sum_{a,b,i,j}q_{ai}q_{bj}\partialderivative{f}{q_{aj}}\partialderivative{g}{q_{bi}}

Next,

ΔGf=i<jXij(aqaifqajqajfqai)\Delta_{G}f=\sum_{i<j}X_{ij}(\sum_{a}q_{ai}\partialderivative{f}{q_{aj}}-q_{aj}\partialderivative{f}{q_{ai}})
Xij(qaifqaj)=b(qbi(qaifqaj)qbjqbj(qaifqaj)qbi)X_{ij}\quantity(q_{ai}\partialderivative{f}{q_{aj}})=\sum_{b}\quantity(q_{bi}\partialderivative{\quantity(q_{ai}\partialderivative{f}{q_{aj}})}{q_{bj}}-q_{bj}\partialderivative{\quantity(q_{ai}\partialderivative{f}{q_{aj}})}{q_{bi}})
=b(qbiδabδijfqaj+qbiqai2fqbjqajqbjδabfqajqbjqai2fqbiqaj)=\sum_{b}\quantity(q_{bi}\delta_{ab}\delta_{ij}\partialderivative{f}{q_{aj}}+q_{bi}q_{ai}\partialderivative{f}{q_{bj}}{q_{aj}}-q_{bj}\delta_{ab}\partialderivative{f}{q_{aj}}-q_{bj}q_{ai}\partialderivative{f}{q_{bi}}{q_{aj}})
=qaiδijfqajqajfqaj+b(qbiqai2fqbjqajqbjqai2fqbiqaj)=q_{ai}\delta_{ij}\partialderivative{f}{q_{aj}}-q_{aj}\partialderivative{f}{q_{aj}}+\sum_{b}\quantity(q_{bi}q_{ai}\partialderivative{f}{q_{bj}}{q_{aj}}-q_{bj}q_{ai}\partialderivative{f}{q_{bi}}{q_{aj}})

Noting that i<ji<j

=qajfqaj+b(qbiqai2fqbjqajqbjqai2fqbiqaj)=-q_{aj}\partialderivative{f}{q_{aj}}+\sum_{b}\quantity(q_{bi}q_{ai}\partialderivative{f}{q_{bj}}{q_{aj}}-q_{bj}q_{ai}\partialderivative{f}{q_{bi}}{q_{aj}})

Similarly,

Xij(qajfqai)=b(qbi(qajfqai)qbjqbj(qajfqai)qbi)X_{ij}\quantity(q_{aj}\partialderivative{f}{q_{ai}})=\sum_{b}\quantity(q_{bi}\partialderivative{\quantity(q_{aj}\partialderivative{f}{q_{ai}})}{q_{bj}}-q_{bj}\partialderivative{\quantity(q_{aj}\partialderivative{f}{q_{ai}})}{q_{bi}})
=b(qbiδabfqai+qbiqaj2fqbjqaiqbjδabδijfqaiqbjqaj2fqbiqai)=\sum_{b}\quantity(q_{bi}\delta_{ab}\partialderivative{f}{q_{ai}}+q_{bi}q_{aj}\partialderivative{f}{q_{bj}}{q_{ai}}-q_{bj}\delta_{ab}\delta_{ij}\partialderivative{f}{q_{ai}}-q_{bj}q_{aj}\partialderivative{f}{q_{bi}}{q_{ai}})
=qaifqaiqajδijfqai+b(qbiqaj2fqbjqaiqbjqaj2fqbiqai)=q_{ai}\partialderivative{f}{q_{ai}}-q_{aj}\delta_{ij}\partialderivative{f}{q_{ai}}+\sum_{b}\quantity(q_{bi}q_{aj}\partialderivative{f}{q_{bj}}{q_{ai}}-q_{bj}q_{aj}\partialderivative{f}{q_{bi}}{q_{ai}})

Again using i<ji<j

=qaifqai+b(qbiqaj2fqbjqaiqbjqaj2fqbiqai)=q_{ai}\partialderivative{f}{q_{ai}}+\sum_{b}\quantity(q_{bi}q_{aj}\partialderivative{f}{q_{bj}}{q_{ai}}-q_{bj}q_{aj}\partialderivative{f}{q_{bi}}{q_{ai}})

Subtracting the two,

ΔGf=a,i<j(qajfqaj+qaifqai)\Delta_{G}f=-\sum_{a,i<j}\quantity(q_{aj}\partialderivative{f}{q_{aj}}+q_{ai}\partialderivative{f}{q_{ai}})
+a,b,i<j[(qbiqai2fqbjqajqbjqai2fqbiqaj)(qbiqaj2fqbjqaiqbjqaj2fqbiqai)]+\sum_{a,b,i<j}\quantity[\quantity(q_{bi}q_{ai}\partialderivative{f}{q_{bj}}{q_{aj}}-q_{bj}q_{ai}\partialderivative{f}{q_{bi}}{q_{aj}})-\quantity(q_{bi}q_{aj}\partialderivative{f}{q_{bj}}{q_{ai}}-q_{bj}q_{aj}\partialderivative{f}{q_{bi}}{q_{ai}})]

For the first term, by the symmetry of the summand in i,ji,j,

=12a,ij(qajfqaj+qaifqai)=a,ijqajfqaj=(N1)a,jqajfqaj=-\frac{1}{2}\sum_{a,i\neq j}\quantity(q_{aj}\partialderivative{f}{q_{aj}}+q_{ai}\partialderivative{f}{q_{ai}})=-\sum_{a,i\neq j}q_{aj}\partialderivative{f}{q_{aj}}=-(N-1)\sum_{a,j}q_{aj}\partialderivative{f}{q_{aj}}

For the second term, it can be regrouped into

i<ja,b[(qbiqai2fqbjqaj+qbjqaj2fqbiqai)(qbjqai2fqbiqaj+qbiqaj2fqbjqai)]\sum_{i<j}\sum_{a,b}\quantity[\quantity(q_{bi}q_{ai}\partialderivative{f}{q_{bj}}{q_{aj}}+q_{bj}q_{aj}\partialderivative{f}{q_{bi}}{q_{ai}})-\quantity(q_{bj}q_{ai}\partialderivative{f}{q_{bi}}{q_{aj}}+q_{bi}q_{aj}\partialderivative{f}{q_{bj}}{q_{ai}})]
=a,b,ij(qbiqai2fqbjqajqbjqai2fqbiqaj)=\sum_{a,b,i\neq j}\quantity(q_{bi}q_{ai}\partialderivative{f}{q_{bj}}{q_{aj}}-q_{bj}q_{ai}\partialderivative{f}{q_{bi}}{q_{aj}})

For the first term,

=a,b(iqbiqaiji2fqbjqaj)=\sum_{a,b}\quantity(\sum_{i}q_{bi}q_{ai}\sum_{j\neq i}\partialderivative{f}{q_{bj}}{q_{aj}})

This simplifies to

a,biqbiqaij2fqbjqaja,biqaiqbi2fqbiqai\sum_{a,b}\sum_{i}q_{bi}q_{ai}\sum_{j}\partialderivative{f}{q_{bj}}{q_{aj}}-\sum_{a,b}\sum_{i}q_{ai}q_{bi}\partialderivative{f}{q_{bi}}{q_{ai}}

By orthogonality,

=a,bδabj2fqbjqaja,b,i2fqbiqai=\sum_{a,b}\delta_{ab}\sum_{j}\partialderivative{f}{q_{bj}}{q_{aj}}-\sum_{a,b,i}\partialderivative{f}{q_{bi}}{q_{ai}}
=a,j2fqaj2a,b,iqaiqbi2fqbiqai=\sum_{a,j}\partialderivative[2]{f}{q_{aj}}-\sum_{a,b,i}q_{ai}q_{bi}\partialderivative{f}{q_{bi}}{q_{ai}}

What remains is the term

a,b,ijqbjqai2fqbiqaj=a,b,i,jqbjqai2fqbiqaj+i,a,bqbiqai2fqbiqai-\sum_{a,b,i\neq j}q_{bj}q_{ai}\partialderivative{f}{q_{bi}}{q_{aj}}=-\sum_{a,b,i,j}q_{bj}q_{ai}\partialderivative{f}{q_{bi}}{q_{aj}}+\sum_{i,a,b}q_{bi}q_{ai}\partialderivative{f}{q_{bi}}{q_{ai}}

This is quite nice because we can see that the unfamiliar term cancels. In summary then,

ΔGf=(N1)a,jqajfqaj+a,j2fqaj2a,b,i,jqa,b,i,j2fqbiqaj\Delta_{G}f=-(N-1)\sum_{a,j}q_{aj}\partialderivative{f}{q_{aj}}+\sum_{a,j}\partialderivative[2]{f}{q_{aj}}-\sum_{a,b,i,j}q_{a,b,i,j}\partialderivative{f}{q_{bi}}{q_{aj}}

Now, recalling the integration by parts on GG:

gΔGf=Gf,Gg\int g\Delta_{G}f=-\int\expectationvalue{\nabla_{G}f,\nabla_{G}g}

On the LHS then, we have

G(N1)a,jqajgfqaj+a,jg2fqaj2a,b,i,jqa,b,i,jg2fqbiqaj\int_{G}-(N-1)\sum_{a,j}q_{aj}g\partialderivative{f}{q_{aj}}+\sum_{a,j}g\partialderivative[2]{f}{q_{aj}}-\sum_{a,b,i,j}q_{a,b,i,j}g\partialderivative{f}{q_{bi}}{q_{aj}}

And on the RHS we have

=GGf,Gg=Ga,jfqajgqaja,b,i,jqaiqbjfqajgqbi=-\int_{G}\expectationvalue{\nabla_{G}f,\nabla_{G}g}=-\int_{G}\sum_{a,j}\partialderivative{f}{q_{aj}}\partialderivative{g}{q_{aj}}-\sum_{a,b,i,j}q_{ai}q_{bj}\partialderivative{f}{q_{aj}}\partialderivative{g}{q_{bi}}

Rearranging,

(N1)ga,jqajfqajdμ(N-1)\int g\sum_{a,j}q_{aj}\partialderivative{f}{q_{aj}}d\mu
=G[a,jg2fqaj2a,b,i,jqbjqai2fqbiqaj+a,jfqajgqaja,b,i,jqaiqbjfqajgqbi]𝑑μ=\int_{G}\quantity[\sum_{a,j}g\partialderivative[2]{f}{q_{aj}}-\sum_{a,b,i,j}q_{bj}q_{ai}\partialderivative{f}{q_{bi}}{q_{aj}}+\sum_{a,j}\partialderivative{f}{q_{aj}}\partialderivative{g}{q_{aj}}-\sum_{a,b,i,j}q_{ai}q_{bj}\partialderivative{f}{q_{aj}}\partialderivative{g}{q_{bi}}]d\mu

Which is precisely the Schwinger dyson equation.