This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Geodesics and visual boundary of horospherical products

Tom Ferragut
Abstract

We study the geometry of horospherical products by providing a description of their distances, geodesics and visual boundary. These products contains both discrete and continuous examples, including Cayley graphs of lamplighter groups and solvable Lie groups of the form (N1×N2)\mathbb{R}\ltimes(N_{1}\times N_{2}), where N1N_{1} and N2N_{2} are two simply connected, nilpotent Lie groups.

1 Introduction

A horospherical product is a metric space constructed from two Gromov hyperbolic spaces XX and YY, it is included in their Cartesian product X×YX\times Y and can be seen as a diagonal in it. Let βX:X\beta_{X}:X\to\mathbb{R} and βY:Y\beta_{Y}:Y\to\mathbb{R} be two Busemann functions. The horospherical product of XX and YY, denoted by XYX\bowtie Y, is defined as the set of points in X×YX\times Y such that the two Busemann functions add up to zero, namely

XY:={(x,y)X×Y/βX(x)+βY(y)=0}.X\bowtie Y:=\{(x,y)\in X\times Y\ /\ \beta_{X}(x)+\beta_{Y}(y)=0\}.

The level-lines of the Busemann functions are called horospheres, one can see the horospherical product XYX\bowtie Y as XX crossed with an upside down copy of YY in parallel to these horospheres. We will call height function the opposite of the chosen Busemann function.

Let NN be a simply connected, nilpotent Lie group and let AA be a derivation of Lie(N)\mathrm{Lie}(N) whose eigenvalues have positive real parts. Then AN\mathbb{R}\ltimes_{A}N is called a Heintze group and is Gromov hyperbolic, they are the only examples of negatively curved Lie groups. Let XX and YY are two Heintze groups, we can choose the Busemann functions to be such that (t,n)AN\forall(t,n)\in\mathbb{R}\ltimes_{A}N we have β(t,n)=t\beta(t,n)=-t. Then we obtain

(A1N1)(A2N2)=Diag(A1,A2)(N1×N2).(\mathbb{R}\ltimes_{A_{1}}N_{1})\bowtie(\mathbb{R}\ltimes_{A_{2}}N_{2})=\mathbb{R}\ltimes_{\mathrm{Diag}(A_{1},-A_{2})}(N_{1}\times N_{2}).

When N=N=\mathbb{R}, the corresponding Heintze group is a hyperbolic plan 2\mathbb{H}^{2}, and as their horospherical products we obtain the Sol geometries, one of the eight Thurston’s geometries. We can also build Diestel-Leader graphs and the Cayley 2-complexes of Baumslag-Solitar groups BS(1,n)\mathrm{BS}(1,n) as the horospherical products of trees or hyperbolic plans. In the second section of [29], the last three sets of examples are well detailed, and presented as horocyclic products of either regular trees or the hyperbolic plan 2\mathbb{H}^{2}. We choose the name horospherical product instead of horocyclic product since in higher dimension, level-sets according to a Busemann function are not horocycles but horospheres.

As Woess suggested in the end of [29], we explore here a generalization for horospherical products. The horospherical product construction can be realized for more than two spaces, see [1] for a study of the Brownian motion on a multiple horospherical product of trees. However in this work we will stay in the setting of two Gromov hyperbolic spaces.

To study the geometry of horospherical products we require that our components XX and YY are two proper, geodesically complete, Gromov hyperbolic, Busemann spaces. A Busemann space is a metric space where the distance between any two geodesics is convex, and a metric space XX is geodesically complete if and only if a geodesic segment α:IX\alpha:I\to X can be prolonged into a geodesic line α^:X\hat{\alpha}:\mathbb{R}\to X. The Busemann hypothesis suits with the definition of horospherical product since we require the two heights functions to be exactly opposite. Furthermore, adding the assumptions that XX and YY are geodesically complete allows us to prove that the horospherical product XYX\bowtie Y is connected (see Lemma 3.11).

In the next part of this introduction we present our main results, which hold when XX and YY are two proper, geodesically complete, Gromov hyperbolic, Busemann spaces. It covers the case where XX and YY are solvable Lie groups of the form AN\mathbb{R}\ltimes_{A}N.

In [12] and [13], using the horospherical product structure of treebolic space, Farb and Mosher proved a rigidity results for quasi-isometries of BS(1,n)\mathrm{BS}(1,n). In [10] and [11], Eskin, Fisher and Whyte obtained a similar rigidity results for the Diestel-Leader graphs and the Sol geometries, again using their horospherical product structure.

Besides being results on their own, the tools we develop in this paper are used in [14] to study the quasi-isometry classification of the aforementioned horospherical products. In [14] we generalise the results obtained by Eskin, Fisher and Whyte in [10], and provide new quasi-isometric classifications for some family of solvable Lie groups.

There are many possible choices for the distance on XYX\bowtie Y in this paper we work with a family of length path metrics induced by distances on X×YX\times Y (see Definition 3.2). We require that the distance on XYX\bowtie Y comes from an admissible norm NN on 2\mathbb{R}^{2} (e.g. any p\ell_{p} norm). Our first result describes these distances.

Theorem A.

Let dd_{\bowtie} be an admissible distance on XYX\bowtie Y. Then there exists a constant MM depending only on the metric spaces (XY,d)(X\bowtie Y,d_{\bowtie}) such that for all p=(pX,pY),q=(qX,qY)XYp=(p^{X},p^{Y}),q=(q^{X},q^{Y})\in X\bowtie Y:

|d(p,q)(dX(pX,qX)+dY(pY,qY)|h(p)h(q)|)|M.\displaystyle\Big{|}d_{\bowtie}(p,q)-\Big{(}d^{X}(p^{X},q^{X})+d^{Y}(p^{Y},q^{Y})-|h(p)-h(q)|\Big{)}\Big{|}\leq M.

Therefore, given two admissible distances dd and dd^{\prime}, the horospherical products (XY,d)(X\bowtie Y,d) and (XY,d)(X\bowtie Y,d^{\prime}) are roughly isometric, which means that there exists a (1,c)(1,c)-quasi-isometry between them, for a constant c0c\geq 0. Le Donne, Pallier and Xie proved in [22] that for the solvable groups Diag(A1,A2)(N1×N2)\mathbb{R}\ltimes_{\mathrm{Diag}(A_{1},-A_{2})}(N_{1}\times N_{2}), changing the left-invariant Riemannian metric results in the identity map being a rough similarity.

Theorem A is one of the tools we use in [14], where we prove a geometric rigidity property of quasi-isometries between families of horospherical products. This property leads to quasi-isometric invariants in such spaces, and a first result in the quasi-isometry classification of some solvable Lie groups.

Throughout this paper we provide a coarse description of geodesics and of the visual boundary of a broad family of horospherical products.

Following the characterisation of the distances on horospherical products, we describe the shape of geodesic segments.

Theorem B.

Let XX and YY be two proper, geodesically complete, δ\delta-hyperbolic, Busemann spaces and let dd_{\bowtie} be an admissible distance on XYX\bowtie Y. Let p=(pX,pY)p=\left(p^{X},p^{Y}\right) and q=(qX,qY)q=\left(q^{X},q^{Y}\right) be two points of XYX\bowtie Y and let α\alpha be a geodesic segment of (XY,d)(X\bowtie Y,d_{\bowtie}) linking pp to qq. There exists a constant MM depending only on (XY,d)(X\bowtie Y,d_{\bowtie}), and there exist two vertical geodesics V1=(V1X,V1Y)V_{1}=\left(V^{X}_{1},V^{Y}_{1}\right) and V2=(V2X,V2Y)V_{2}=\left(V^{X}_{2},V^{Y}_{2}\right) such that:

  1. 1.

    If   h(p)h(q)Mh(p)\leq h(q)-M   then α\alpha is in the MM-neighbourhood of V1(V1X,V2Y)V2V_{1}\cup\left(V^{X}_{1},V^{Y}_{2}\right)\cup V_{2};

  2. 2.

    If   h(p)h(q)+Mh(p)\geq h(q)+M   then α\alpha is in the MM-neighbourhood of V1(V2X,V1Y)V2V_{1}\cup\left(V^{X}_{2},V^{Y}_{1}\right)\cup V_{2};

  3. 3.

    If   |h(p)h(q)|M|h(p)-h(q)|\leq M   then at least one of the conclusions of 1.1. or 2.2. holds.

Specifically V1V_{1} and V2V_{2} can be chosen such that pp is close to V1V_{1} and qq is close to V2V_{2}.

Refer to caption
Figure 1: Shape of geodesic segments when h(p)h(q)κh(p)\leq h(q)-\kappa in XYX\bowtie Y. The neighbourhoods’ shapes are distorted since when going upward, distances are contracted in the "direction" XX and expanded in the "direction" YY.

An example is illustrated on Figure 1 for h(p)h(q)κh(p)\leq h(q)-\kappa. Coarsely speaking, Theorem B ensures that any geodesic segment is constructed as the concatenation of three vertical geodesics. This result is similar to the Gromov hyperbolic case, where a geodesic segment is in the constant neighbourhood of two vertical geodesics. This result leads us to the existence of unextendable geodesics, which are called dead-ends. Geodesics shapes was already well-known in lamplighter groups. In the case of Sol, we recover, up to an additive constant, Troyanov’s description of global geodesics (see [27]).
The horospherical product between XX and \mathbb{R} is isometric to XX, therefore given any vertical geodesic VYV^{Y} of YY, XVYX\bowtie V^{Y} is an embedded copy of XX in XYX\bowtie Y. A geodesic line of XYX\bowtie Y looks either like a geodesic of XX or like a geodesic of YY.

Refer to caption
Figure 2: Different types of geodesics in XYX\bowtie Y.
Corollary C.

Let XX and YY be two proper, geodesically complete, δ\delta-hyperbolic, Busemann spaces. Then there exists M0M\geq 0 depending only on δ\delta such that for all geodesic line α:XY\alpha:\mathbb{R}\rightarrow X\bowtie Y at least one of the two following statements holds.

  1. 1.

    α\alpha is included in a constant MM-neighbourhood of a geodesics contained in a embedded copy of XX;

  2. 2.

    α\alpha is included in a constant MM-neighbourhood of a geodesics contained in a embedded copy of YY.

If a geodesic verifies both conclusions, it is in the MM-neighbourhood of a vertical geodesic of XYX\bowtie Y.

Let oXYo\in X\bowtie Y, the visual boundary of XYX\bowtie Y with respect to the base point oo, denoted by o(XY)\partial_{o}(X\bowtie Y), stands for the set of equivalence classes of geodesic rays starting at oo. Consequently to the description of geodesic segments, we obtain that for any geodesic ray kk of XYX\bowtie Y there exists a vertical geodesic ray at finite distance of kk. Therefore we classify all possible shapes for geodesic rays, then we give a description of the visual boundary of XYX\bowtie Y.

Theorem D.

Let XX and YY be two proper, geodesically complete, δ\delta-hyperbolic, Busemann spaces. Let (wX,aX)X×X(w^{X},a^{X})\in X\times\partial X, (wY,aY)Y×Y(w^{Y},a^{Y})\in Y\times\partial Y and let XYX\bowtie Y be the horospherical product with respect to (wX,aX)(w^{X},a^{X}) and (wY,aY)(w^{Y},a^{Y}). Then the visual boundary of XYX\bowtie Y with respect to any point o=(oX,oY)o=(o^{X},o^{Y}) can be decomposed as:

o(XY)=\displaystyle\partial_{o}(X\bowtie Y)= ((X{aX})×{aY})({aX}×(Y{aY}))\displaystyle\Big{(}\big{(}\partial X\setminus\{a^{X}\}\big{)}\times\{a^{Y}\}\Big{)}\bigcup\Big{(}\{a^{X}\}\times\big{(}\partial Y\setminus\{a^{Y}\}\big{)}\Big{)}
=\displaystyle= ((X×{aY})({aX}×Y)){(aX,aY)}\displaystyle\Big{(}\big{(}\partial X\times\{a^{Y}\}\big{)}\bigcup\big{(}\{a^{X}\}\times\partial Y\big{)}\Big{)}\setminus\{(a^{X},a^{Y})\}
Refer to caption
Figure 3: Depiction of o(XY)\partial_{o}(X\bowtie Y).

When X:=A1N1X:=\mathbb{R}\ltimes_{A_{1}}N_{1} and Y:=A2N2Y:=\mathbb{R}\ltimes_{A_{2}}N_{2} we obtain that

(Diag(A1,A2)(N1×N2))=N1×N2.\displaystyle\partial\left(\mathbb{R}\ltimes_{\mathrm{Diag}(A_{1},-A_{2})}(N_{1}\times N_{2})\right)=N_{1}\times N_{2}.

In the case of Sol, the last result is similar to Proposition 6.4 of [27]. However, unlike Troyanov in his work, we are focusing on minimal geodesics and not on local ones. One can see that this visual boundary neither depends on the chosen admissible distance dd nor on the base point oo.

Framework

The paper is organized as follows.

  1. \bullet

    In Section 2 we present the context in which we will construct the horospherical products, namely Gromov hyperbolic, Busemann spaces.

  2. \bullet

    Then in Section 3 we define horospherical products and give some examples.

  3. \bullet

    In Section 4 we present an estimate on the length of paths avoiding horoballs in hyperbolic spaces, namely Lemma 4.9, which will be central in our control of the distances on XYX\bowtie Y. Then we give an estimate of the distances on XYX\bowtie Y through Theorem 4.13.

  4. \bullet

    Last, in Section 5 , we prove our main results, Theorem A follows from Corollary 4.13. The description of geodesic lines of Theorem B follows from Theorem A and gives us the tools to prove Theorem D.

Acknowledgement

This work was supported by the University of Montpellier.

I thank my two advisers Jeremie Brieussel and Constantin Vernicos for their many relevant reviews and comments.

2 Context

The goal of this section is to present what is a Gromov hyperbolic, Busemann space and what are vertical geodesics in such a space. Let (H,dH)(H,d_{H}) be a proper, geodesic, metric space.

2.1 Gromov hyperbolic spaces

A geodesic line, respectively ray, segment, of HH is the isometric image of a Euclidean line, respectively half Euclidean line, interval, in HH. By slight abuse, we may call geodesic, geodesic ray or geodesic segment, the map α:IH\alpha:I\rightarrow H itself, which parametrises our given geodesic by arclength.

Let δ0\delta\geq 0 be a non-negative number. Let xx, yy and zz be three points of HH. The geodesic triangle [x,y][y,z][z,x][x,y]\cup[y,z]\cup[z,x] is called δ\delta-slim if any of its sides is included in the δ\delta-neighbourhood of the remaining two. The metric space HH is called δ\delta-hyperbolic if every geodesic triangle is δ\delta-slim. A metric space HH is called Gromov hyperbolic if there exists δ0\delta\geq 0 such that HH is a δ\delta-hyperbolic space.

An important property of Gromov hyperbolic spaces is that they admit a nice compactification thanks to their Gromov boundary. We call two geodesic rays of HH equivalent if their images are at finite Hausdorff distance. Let wHw\in H be a base point. We define wH\partial_{w}H the Gromov boundary of HH as the set of families of equivalent rays starting from ww. The boundary wH\partial_{w}H does not depend on the base point ww, hence we will simply denote it by H\partial H. Both H\partial H and HHH\cup\partial H, are compact endowed with the Hausdorff topology. For more details, see [16] or chap.III H. p.399 of [3].

Let us fix a point aHa\in\partial H on the boundary. We call vertical geodesic ray, respectively vertical geodesic line, any geodesic ray in the equivalence class aa, respectively with one of its rays in aa. The study of these specific geodesic rays is central in this work.

2.2 Busemann spaces and Busemann functions

A metric space (H,dH)(H,d_{H}) is Busemann if and only if for every pair of geodesic segments parametrized by arclength γ:[a,b]H\gamma:[a,b]\rightarrow H and γ:[a,b]H\gamma^{\prime}:[a^{\prime},b^{\prime}]\rightarrow H, the following function is convex:

Dγ,γ:[a,b]×[a,b]\displaystyle D_{\gamma,\gamma^{\prime}}:[a,b]\times[a^{\prime},b^{\prime}] H\displaystyle\rightarrow H
(t,t)\displaystyle(t,t^{\prime}) dH(γ(t),γ(t)).\displaystyle\mapsto d_{H}(\gamma(t),\gamma^{\prime}(t^{\prime})).

It is a weaker assumption than being CAT(0)(0) (Theorem 1.31.3 of [15]), however it implies that HH is uniquely geodesic. See Chap.8 and Chap.12 of [23] for more details on Busemann spaces.
This convex assumption removes some technical difficulties in a significant number of proofs in this work. If HH is a Busemann space in addition to being Gromov hyperbolic, for all xHx\in H there exists a unique vertical geodesic ray, denoted by VxV_{x}, starting at HH. In fact the distance between two vertical geodesics starting at xx is a convex and bounded function, hence decreasing and therefore constant equal to 0.
The construction of the horospherical product of two Gromov hyperbolic space XX and YY requires the so called Busemann functions. Their definition is simplified by the Busemann assumption. Let us consider X\partial X, the Gromov boundary of XX (which, in this setting, is the same as the visual boundary). Both the boundary X\partial X and XXX\cup\partial X, endowed with the natural Hausdorff topology, are compact. Then, given aXa\in\partial X a point on the boundary, and wXw\in X a base point, we define a Busemann function β(a,w)\beta_{(a,w)} with respect to aa and ww. Let VwV_{w} be the unique vertical geodesic ray starting from ww.

xX,β(a,w)(x):=lim supt+(d(x,Vw(t))t).\forall\ x\in X,\ \beta_{(a,w)}(x):=\limsup\limits_{t\rightarrow+\infty}(d(x,V_{w}(t))-t)\quad.

This function computes the asymptotic delay a point xXx\in X has in a race towards aa against the vertical geodesic ray starting at ww. The horospheres of XX with respect to (a,w)X×X(a,w)\in\partial X\times X are the level-sets of β(a,w)\beta_{(a,w)}. These horospheres depend on the previously chosen couple (a,w)(a,w) of X×X\partial X\times X.

2.3 Heights functions and vertical geodesics

In this section we fix δ0\delta\geq 0, HH a proper, geodesic, δ\delta-hyperbolic space, wHw\in H a base point and aHa\in\partial H a point on the boundary of HH. We call height function, denoted by hh, the opposite of the Busemann function, h:=β(a,w)h:=-\beta_{(a,w)}.

Let us write Proposition 2 chap.8 p.136 of [16] with our notations.

Proposition 2.1 ([16], chap.8 p.136).

Let HH be a hyperbolic proper geodesic metric space. Let aHa\in\partial H and wHw\in H, then:

  1. 1.

    limxah(a,w)(x)=+\lim\limits_{x\rightarrow a}h_{(a,w)}(x)=+\infty

  2. 2.

    limxbh(a,w)(x)=\lim\limits_{x\rightarrow b}h_{(a,w)}(x)=-\infty, bH{a}\forall b\in\partial H\setminus\{a\}

  3. 3.

    x,y,zH,|βa(x,y)+βa(y,z)βa(x,z)|200δ\forall x,y,z\in H,|\beta_{a}(x,y)+\beta_{a}(y,z)-\beta_{a}(x,z)|\leq 200\delta.

Furthermore, a geodesic ray is in aHa\in\partial H if and only if its height tends to ++\infty.

Corollary 2.2.

Let HH be a hyperbolic proper geodesic metric space. Let aHa\in\partial H and wHw\in H, and let α:[0,+[H\alpha:[0,+\infty[\to H be a geodesic ray. The two following properties are equivalent:

  1. 1.

    limt+h(a,w)(α(t))=+\lim\limits_{t\rightarrow+\infty}h_{(a,w)}(\alpha(t))=+\infty

  2. 2.

    α([0,+[)a\alpha([0,+\infty[)\in a.

Proof.

As for any geodesic ray α:[0,+[H\alpha:[0,+\infty[\to H there exists bHb\in\partial H such that α([0,+[)b\alpha([0,+\infty[)\in b, this proposition is a particular case of Proposition 2.1. ∎

An important property of the height function is to be Lipschitz.

Proposition 2.3.

Let aHa\in\partial H and wHw\in H. The height function ha:=βa(,w)h_{a}:=-\beta_{a}(\cdot,w) is Lipschitz:

x,yH,|h(a,w)(x)h(a,w)(y)|d(x,y).\forall x,y\in H,|h_{(a,w)}(x)-h_{(a,w)}(y)|\leq d(x,y).
Proof.

By using the triangle inequality we have for all x,yHx,y\in H:

h(a,w)(x)\displaystyle-h_{(a,w)}(x) =βa(x,w)=sup{lim supt+(d(x,k(t))t)k vertical rays starting at w}\displaystyle=\beta_{a}(x,w)=\sup\{\limsup\limits_{t\rightarrow+\infty}(d(x,k(t))-t)\mid\text{k vertical rays starting at }w\}
d(x,y)+sup{lim supt+(d(y,k(t))t)k vertical rays starting at w}\displaystyle\leq d(x,y)+\sup\{\limsup\limits_{t\rightarrow+\infty}(d(y,k(t))-t)\mid\text{k vertical rays starting at }w\}
d(x,y)+βa(y,w)d(x,y)h(a,w)(y).\displaystyle\leq d(x,y)+\beta_{a}(y,w)\leq d(x,y)-h_{(a,w)}(y).

The result follows by exchanging the roles of xx and yy. ∎

From now on, we fix a given aHa\in\partial H and a given wHw\in H. Therefore we simply denote the height function by hh instead of h(a,w)h_{(a,w)}.

Proposition 2.4.

Let α\alpha be a vertical geodesic of HH. We have the following control on the height along α\alpha:

t1,t2,t2t1200δh(α(t2))h(α(t1))t2t1+200δ.\forall t_{1},t_{2}\in\mathbb{R},\ t_{2}-t_{1}-200\delta\leq h\bigl{(}\alpha(t_{2})\bigr{)}-h\big{(}\alpha(t_{1})\big{)}\leq t_{2}-t_{1}+200\delta.
Proof.

Let t1,t2t_{1},t_{2}\in\mathbb{R}, then:

h(α(t2))h(α(t1))\displaystyle h(\alpha(t_{2}))-h(\alpha(t_{1})) =β(α(t1),w)β(α(t2),w)\displaystyle=\beta\big{(}\alpha(t_{1}),w\big{)}-\beta\big{(}\alpha(t_{2}),w\big{)}
=β(α(t1),α(t2))(β(α(t2),w)β(α(t1),w)+β(α(t1),α(t2))).\displaystyle=\beta\big{(}\alpha(t_{1}),\alpha(t_{2})\big{)}-\Big{(}\beta\big{(}\alpha(t_{2}),w\big{)}-\beta\big{(}\alpha(t_{1}),w\big{)}+\beta\big{(}\alpha(t_{1}),\alpha(t_{2})\big{)}\Big{)}.

The third point of Proposition 2.1 applied to the last bracket gives:

β(α(t1),α(t2))200δh(α(t2))h(α(t1))β(α(t1),α(t2))+200δ.\beta\big{(}\alpha(t_{1}),\alpha(t_{2})\big{)}-200\delta\leq h(\alpha(t_{2}))-h(\alpha(t_{1}))\leq\beta\big{(}\alpha(t_{1}),\alpha(t_{2})\big{)}+200\delta. (1)

Since tα(t+t2)t\mapsto\alpha(t+t_{2}) is a vertical geodesic starting at α(t2)\alpha(t_{2}) we have:

β(α(t1),α(t2))\displaystyle\beta\big{(}\alpha(t_{1}),\alpha(t_{2})\big{)} =sup{lim supt+(d(α(t1),k(t))t)k vertical rays starting at α(t2)}\displaystyle=\sup\Big{\{}\limsup\limits_{t\rightarrow+\infty}\big{(}d(\alpha(t_{1}),k(t))-t\big{)}\Big{\mid}\text{k vertical rays starting at }\alpha(t_{2})\Big{\}}
lim supt+(d(α(t1),α(t+t2))t)\displaystyle\geq\limsup\limits_{t\rightarrow+\infty}\Big{(}d\big{(}\alpha(t_{1}),\alpha(t+t_{2})\big{)}-t\Big{)}
lim supt+(|t+t2t1|t)t2t1, for t large enough.\displaystyle\geq\limsup\limits_{t\rightarrow+\infty}\big{(}|t+t_{2}-t_{1}|-t\big{)}\geq t_{2}-t_{1}\text{, for t large enough.}

Using this last inequality in inequality (1) we get t2t1200δh(α(t2))h(α(t1))t_{2}-t_{1}-200\delta\leq h(\alpha(t_{2}))-h(\alpha(t_{1})). The result follows by exchanging the roles of t1t_{1} and t2t_{2}. ∎

Using Proposition 2.4 with t1=0t_{1}=0 and t2=tt_{2}=t, the next corollary holds.

Corollary 2.5.

Let α\alpha be a vertical geodesic parametrised by arclength and such that h(α(0))=0h(\alpha(0))=0. We have:

t,|h(α(t))t|200δ.\forall t\in\mathbb{R},\ |h(\alpha(t))-t|\leq 200\delta.

From now on, HH will be a proper, geodesic, Gromov hyperbolic, Busemann space. Hence the height function is convex along a vertical geodesic.

Property 2.6 (Prop. 12.1.512.1.5 in p.263 of Papadopoulos [23]).

Let δ0\delta\geq 0 be a non negative number. Let HH be a proper δ\delta-hyperbolic, Busemann space. For every geodesic α\alpha, the function th(α(t))t\mapsto-h(\alpha(t)) is convex.

The Busemann hypothesis implies that the height along geodesic behaves nicely. This means that we can drop the constant 200δ200\delta from Corollary 2.5. It is one of the main reasons why we require our spaces to be Busemann spaces.

Proposition 2.7.

Let HH be a δ\delta-hyperbolic and Busemann space and let V:HV:\mathbb{R}\to H be a path of HH. Then VV is a vertical geodesic if and only if c\exists c\in\mathbb{R} such that t,h(V(t))=t+c\forall t\in\mathbb{R},\ h(V(t))=t+c.

Proof.

Let VV be a vertical geodesic in HH. By Property 2.6 we have that th(V(t))t\mapsto-h(V(t)) is convex. Furthermore, from Corollary 2.5, we get |h(V(t))t|200δ|h(V(t))-t|\leq 200\delta. Thereby the bounded convex function tth(V(t))t\mapsto t-h(V(t)) is constant. Then there exists a real number cc such that t,h(V(t))=t+c\forall t\in\mathbb{R},\ h(V(t))=t+c.
We now assume that there exists a real number cc such that t,h(V(t))=t+c\forall t\in\mathbb{R},\ h(V(t))=t+c. Therefore, for all real numbers t1t_{1} and t2t_{2} we have d(V(t1),V(t2))Δh(V(t1),V(t2))=|t1t2|d\big{(}V(t_{1}),V(t_{2})\big{)}\geq\Delta h\big{(}V(t_{1}),V(t_{2})\big{)}=|t_{1}-t_{2}|. By definition VV is a connected path, hence |t1t2|d(V(t1),V(t2))|t_{1}-t_{2}|\geq d\big{(}V(t_{1}),V(t_{2})\big{)} which implies with the previous sentence that |t1t2|=d(V(t1),V(t2))|t_{1}-t_{2}|=d\big{(}V(t_{1}),V(t_{2})\big{)}, then VV is a geodesic. Furthermore limt+h(V(t))=+\lim\limits_{t\rightarrow+\infty}h(V(t))=+\infty, which implies by definition that VV is a vertical geodesic. ∎

A metric space is called geodesically complete if all its geodesic segments can be prolonged into geodesic lines. In HH is geodesically complete in addition to its other assumptions, then any point of HH is included in a vertical geodesic line.

Property 2.8.

Let HH be a δ\delta-hyperbolic Busemann geodesically complete space. Then for all xHx\in H there exists a vertical geodesic Vx:HV_{x}:\mathbb{R}\rightarrow H such that VxV_{x} contains xx

Proof.

Let us consider in this proof wHw\in H and aHa\in\partial H, from which we constructed the height hh of our space HH. Then by definition we have h(a,w)=hh_{(a,w)}=h. Proposition 12.2.4 of [23] ensures the existence of a geodesic ray RxaR_{x}\in a starting at xx. Furthermore as HH is geodesically complete RxR_{x} can be prolonged into a geodesic Vx:HV_{x}:\mathbb{R}\rightarrow H such that Vx([0;+[)aV_{x}([0;+\infty[)\in a, hence VxV_{x} is a vertical geodesic. ∎

3 Horospherical products

In this part we generalise the definition of horospherical product, as seen in [10] for two trees or two hyperbolic planes, to any pair of proper, geodesically complete, Gromov hyperbolic, Busemann spaces. We recall that given a proper, δ\delta-hyperbolic space HH with distinguished aHa\in\partial H and wHw\in H, we defined the height function on HH in Section 2.3 from the Busemann functions with respect to aa and ww.

3.1 Definitions

Let XX and YY be two δ\delta-hyperbolic spaces. We fix the base points wXX,wYYw_{X}\in X,\ w_{Y}\in Y and the directions in the boundaries aXX,aYYa_{X}\in\partial X,\ a_{Y}\in\partial Y. We consider their heights functions hXh_{X} and hYh_{Y} respectively on XX and YY.

Definition 3.1 (Horospherical product).

The horospherical product of XX and YY, denoted by XY=XYX\bowtie Y=X\bowtie Y is

XY:={(pX,pY)X×Y|hX(pX)+hY(pY)=0}.X\bowtie Y:=\big{\{}(p_{X},p_{Y})\in X\times Y\ |h_{X}(p_{X})+h_{Y}(p_{Y})=0\big{\}}.

From now on, with slight abuse, we omit the base points and fixed points on the boundary in the construction of the horospherical product. The metric space XYX\bowtie Y refers to a horospherical product of two Gromov hyperbolic Busemann spaces. We choose to denote XX and YY the two components in order to identify easily which objects are in which component. In order to define a Horospherical product in a wider settings, one might only a Busemann function on a metric space.
One of our goals is to understand the shape of geodesics in XYX\bowtie Y according to a given distance on it. In a cartesian product the chosen distance changes the behaviour of geodesics. However we show that in a horopsherical product the shape of geodesics does not change for a large family of distances, up to an additive constant.

We will define the distances on XY=XYX\bowtie Y=X\bowtie Y as length path metrics induced by distances on X×YX\times Y. A lot of natural distances on the cartesian product X×YX\times Y come from norms on the vector space 2\mathbb{R}^{2}. Let NN be such a norm and let us denote dN:=N(dX,dY)d_{N}:=N(d_{X},d_{Y}), which means that for all couples (pX,pY),(qX,qY)X×Y(p_{X},p_{Y}),(q_{X},q_{Y})\in X\times Y we have that dN((pX,pY),(qX,qY))=N(dX(pX,qX),dY(pY,qY))d_{N}\big{(}(p_{X},p_{Y}),(q_{X},q_{Y})\big{)}=N\big{(}d_{X}(p_{X},q_{X}),d_{Y}(p_{Y},q_{Y})\big{)}. The length lN(γ)l_{N}(\gamma) of a path γ=(γX,γY)\gamma=(\gamma_{X},\gamma_{Y}) in the metric space (X×Y,dN)\Big{(}X\times Y,d_{N}\Big{)} is defined by:

lN(γ)=supθΘ([t1,t2])(i=1nθ1dN(γ(θi),γ(θi+1))).l_{N}(\gamma)=\sup\limits_{\theta\in\Theta([t_{1},t_{2}])}\left(\sum\limits_{i=1}^{n_{\theta}-1}d_{N}(\gamma(\theta_{i}),\gamma(\theta_{i+1}))\right).

Where Θ([t1,t2])\Theta([t_{1},t_{2}]) is the set of subdivisions of [t1,t2][t_{1},t_{2}]. Then the NN-path metrics on XYX\bowtie Y is:

Definition 3.2 (The NN-path metrics on XYX\bowtie Y).

Let NN be a norm on the vector space 2\mathbb{R}^{2}. The NN-path metric on XYX\bowtie Y, denoted by dd_{\bowtie}, is the length path metric induced by the distance N(dX,dY)N(d_{X},d_{Y}) on X×YX\times Y. For all pp and qq in XYX\bowtie Y we have:

d(p,q)=inf{lN(γ)|γpathinXYlinkingptoq}.\displaystyle d_{\bowtie}(p,q)=\inf\{l_{N}(\gamma)|\gamma\ path\ in\ X\bowtie Y\ linking\ p\ to\ q\}. (2)

Any norm NN on 2\mathbb{R}^{2} can be normalised such that N(1,1)=1N(1,1)=1. We call admissible any such norm which satisfies an additional condition.

Definition 3.3 (Admissible norm).

Let NN be a norm on the vector space 2\mathbb{R}^{2} such that N(1,1)=1N(1,1)=1. The norm NN is called admissible if and only if for all real aa and bb we have:

N(a,b)a+b2.N(a,b)\geq\frac{a+b}{2}. (3)

Since all norms are equivalent in 2\mathbb{R}^{2}, there exists a constant CN1C_{N}\geq 1 such that:

N(a,b)CNa+b2.N(a,b)\leq C_{N}\frac{a+b}{2}. (4)

As an example, any lpl_{p} norm with p1p\geq 1 is admissible.

Property 3.4.

Let NN be an admissible norm on the vector space 2\mathbb{R}^{2}. Let γ:=(γX,γY)X×Y\gamma:=(\gamma_{X},\gamma_{Y})\subset X\times Y be a connected path. Then we have:

lX(γX)+lY(γY)2lN(γ)CNlX(γX)+lY(γY)2.\frac{l_{X}(\gamma_{X})+l_{Y}(\gamma_{Y})}{2}\leq l_{N}(\gamma)\leq C_{N}\frac{l_{X}(\gamma_{X})+l_{Y}(\gamma_{Y})}{2}.
Proof.

Let γ:=(γX,γY):[t1,t2]X×Y\gamma:=(\gamma_{X},\gamma_{Y}):[t_{1},t_{2}]\rightarrow X\times Y be a connected path and θ\theta a subdivision of [t1,t2][t_{1},t_{2}], then by the definition of the length:

lN(γ)\displaystyle l_{N}(\gamma) i=1nθ1dN(γ(θi),γ(θi+1))=i=1nθ1N(dX(γX(θi),γX(θi+1)),dY(γY(θi),γY(θi+1)))\displaystyle\geq\sum\limits_{i=1}^{n_{\theta}-1}d_{N}(\gamma(\theta_{i}),\gamma(\theta_{i+1}))=\sum\limits_{i=1}^{n_{\theta}-1}N\Big{(}d_{X}\big{(}\gamma_{X}(\theta_{i}),\gamma_{X}(\theta_{i+1})\big{)},d_{Y}\big{(}\gamma_{Y}(\theta_{i}),\gamma_{Y}(\theta_{i+1})\big{)}\Big{)}
i=1nθ112(dX(γX(θi),γX(θi+1))+dY(γY(θi),γY(θi+1))),since N is admissible.\displaystyle\geq\sum\limits_{i=1}^{n_{\theta}-1}\frac{1}{2}\Big{(}d_{X}\big{(}\gamma_{X}(\theta_{i}),\gamma_{X}(\theta_{i+1})\big{)}+d_{Y}\big{(}\gamma_{Y}(\theta_{i}),\gamma_{Y}(\theta_{i+1})\big{)}\Big{)},\ \text{since }N\text{ is admissible}.
12(i=1nθ1dX(γX(θi),γX(θi+1))+i=1nθ1dY(γY(θi),γY(θi+1))).\displaystyle\geq\frac{1}{2}\left(\sum\limits_{i=1}^{n_{\theta}-1}d_{X}\big{(}\gamma_{X}(\theta_{i}),\gamma_{X}(\theta_{i+1})\big{)}+\sum\limits_{i=1}^{n_{\theta}-1}d_{Y}\big{(}\gamma_{Y}(\theta_{i}),\gamma_{Y}(\theta_{i+1})\big{)}\right).

Any couple of subdivision θ1\theta_{1} and θ2\theta_{2} can be merge into a subdivision θ\theta that contains θ1\theta_{1} and θ2\theta_{2}. Furthermore the last inequality holds for any subdivision θ\theta, hence by taking the supremum on all the subdivisions we have:

lN(γ)lX(γX)+lY(γY)2.l_{N}(\gamma)\geq\frac{l_{X}(\gamma_{X})+l_{Y}(\gamma_{Y})}{2}.

Furthermore, we have that a,b\forall a,b\in\mathbb{R}, N(a,b)CNa+b2N(a,b)\leq C_{N}\frac{a+b}{2}, hence:

i=1nθ1dN(γ(θi),γ(θi+1))\displaystyle\sum\limits_{i=1}^{n_{\theta}-1}d_{N}(\gamma(\theta_{i}),\gamma(\theta_{i+1})) CN2(i=1nθ1dX(γX(θi),γ(θi+1))+i=1nθ1dY(γY(θi),γY(θi+1)))\displaystyle\leq\frac{C_{N}}{2}\left(\sum\limits_{i=1}^{n_{\theta}-1}d_{X}(\gamma_{X}(\theta_{i}),\gamma(\theta_{i+1}))+\sum\limits_{i=1}^{n_{\theta}-1}d_{Y}(\gamma_{Y}(\theta_{i}),\gamma_{Y}(\theta_{i+1}))\right)
CNlX(γX)+lX(γX)2\displaystyle\leq C_{N}\frac{l_{X}(\gamma_{X})+l_{X}(\gamma_{X})}{2}

Since last inequality holds for any subdivision θ\theta, we have that lN(γ)CNlX(γX)+lX(γX)2l_{N}(\gamma)\leq C_{N}\frac{l_{X}(\gamma_{X})+l_{X}(\gamma_{X})}{2}.

The definition of height on XX and YY is used to construct a height function on XYX\bowtie Y.

Definition 3.5 (Height on XYX\bowtie Y).

The height h(p)h(p) of a point p=(pX,pY)XYp=(p_{X},p_{Y})\in X\bowtie Y is defined as h(p)=hX(pX)=hY(pY)h(p)=h_{X}(p_{X})=-h_{Y}(p_{Y}).

On Gromov hyperbolic spaces we have that de distance between two points is greater than their height difference. The same occurs on horospherical products given with an admissible norm. Let xx and yy be two points of XYX\bowtie Y, and let us denote Δh(p,q):=|h(p)h(q)|\Delta h(p,q):=|h(p)-h(q)| their height difference.

Lemma 3.6.

Let NN be an admissible norm, and let dd_{\bowtie} the distance on XYX\bowtie Y induced by NN. Then the height function is 11-Lipschitz with respect to the distance dd_{\bowtie}, i.e.,

p,qXY,d(p,q)Δh(p,q).\forall p,q\in X\bowtie Y,\quad d_{\bowtie}(p,q)\geq\Delta h(p,q). (5)
Proof.

Since NN is admissible we have:

d(p,q)\displaystyle d_{\bowtie}(p,q) dX(pX,qX)+dY(pY,qY)2Δh(pX,qX)+Δh(pY,qY)2\displaystyle\geq\frac{d_{X}(p_{X},q_{X})+d_{Y}(p_{Y},q_{Y})}{2}\geq\frac{\Delta h(p_{X},q_{X})+\Delta h(p_{Y},q_{Y})}{2}
=Δh(pX,qX)=Δh(p,q).\displaystyle=\Delta h(p_{X},q_{X})=\Delta h(p,q).

Following Proposition 2.7, we define a notion of vertical paths in a horospherical product.

Definition 3.7 (Vertical paths in XYX\bowtie Y).

Let V:XYV:\mathbb{R}\to X\bowtie Y be a connected path. We say that VV is vertical if and only if there exists a parametrisation by arclength of VV such that h(V(t))=th(V(t))=t for all tt.

Actually, a vertical path of a horospherical product is a geodesic.

Lemma 3.8.

Let NN be an admissible norm. Let V:XYV:\mathbb{R}\to X\bowtie Y be a vertical path. Then VV is a geodesic of (XY,d)(X\bowtie Y,d_{\bowtie}).

Proof.

Let t1,t2t_{1},t_{2}\in\mathbb{R}. The path VV is vertical therefore Δh(V(t1),V(t2))=|t1t2|\Delta h\big{(}V(t_{1}),V(t_{2})\big{)}=|t_{1}-t_{2}|. Since VV is connected and parametrised by arclength, we have that:

|t1t2|=lN(V|[t1,t2])\displaystyle|t_{1}-t_{2}|=l_{N}\left(V_{|[t_{1},t_{2}]}\right) d(V(t1),V(t2))\displaystyle\geq d_{\bowtie}\big{(}V(t_{1}),V(t_{2})\big{)}
Δh(V(t1),V(t2))=|t1t2|.\displaystyle\geq\Delta h\big{(}V(t_{1}),V(t_{2})\big{)}=|t_{1}-t_{2}|.

Then d(V(t1),V(t2))=|t1t2|d_{\bowtie}\big{(}V(t_{1}),V(t_{2})\big{)}=|t_{1}-t_{2}|, which ends the proof. ∎

Such geodesics are called vertical geodesics. Next proposition tells us that vertical geodesics of XYX\bowtie Y are exactly couples of vertical geodesics of XX and YY.

Proposition 3.9.

Let NN be an admissible norm and let V=(VX,VY):XYV=(V_{X},V_{Y}):\mathbb{R}\to X\bowtie Y be a geodesic of (XY,d)(X\bowtie Y,d_{\bowtie}). The two following properties are equivalent:

  1. 1.

    VV is a vertical geodesic of (XY,d)(X\bowtie Y,d_{\bowtie})

  2. 2.

    VXV_{X} and VYV_{Y} are respectively vertical geodesics of XX and YY.

Proof.

Let us first assume that VV be a vertical geodesic, we have for all real tt that h(VX(t))=h(V(t))=th(V_{X}(t))=h(V(t))=t, hence t1,t2\forall t_{1},t_{2}\in\mathbb{R}:

dX(VX(t1),VX(t2))Δh(VX(t1),VX(t2))=|t1t2|.\displaystyle d_{X}\big{(}V_{X}(t_{1}),V_{X}(t_{2})\big{)}\geq\Delta h\big{(}V_{X}(t_{1}),V_{X}(t_{2})\big{)}=|t_{1}-t_{2}|. (6)

Similarly we have that dY(VY(t1),VY(t2))|t1t2|d_{Y}\big{(}V_{Y}(t_{1}),V_{Y}(t_{2})\big{)}\geq|t_{1}-t_{2}|. Using that NN is admissible and that VV is a geodesic we have:

dX(VX(t1),VX(t2))\displaystyle d_{X}\big{(}V_{X}(t_{1}),V_{X}(t_{2})\big{)} =2dX(VX(t1),VX(t2))+dY(VY(t1),VY(t2))2dY(VY(t1),VY(t2))\displaystyle=2\frac{d_{X}\big{(}V_{X}(t_{1}),V_{X}(t_{2})\big{)}+d_{Y}\big{(}V_{Y}(t_{1}),V_{Y}(t_{2})\big{)}}{2}-d_{Y}\big{(}V_{Y}(t_{1}),V_{Y}(t_{2})\big{)}
2d(V(t1),V(t2))|t1t2|=|t1t2|.\displaystyle\leq 2d_{\bowtie}\big{(}V(t_{1}),V(t_{2})\big{)}-|t_{1}-t_{2}|=|t_{1}-t_{2}|.

Combine with inequality (6) we have that dX(VX(t1),VX(t2))=|t1t2|d_{X}\big{(}V_{X}(t_{1}),V_{X}(t_{2})\big{)}=|t_{1}-t_{2}|, hence VXV_{X} is a vertical geodesic of XX. Similarly, VYV_{Y} is a vertical geodesic YY.
Let us assume that VXV_{X} and VYV_{Y} are vertical geodesics of XX and YY. Let t1,t2t_{1},t_{2}\in\mathbb{R}, we have:

d(V(t1),V(t2))\displaystyle d_{\bowtie}(V(t_{1}),V(t_{2})) =supθΘ([t1,t2])(i=1nθ1dN(V(θi),V(θi+1)))\displaystyle=\sup\limits_{\theta\in\Theta([t_{1},t_{2}])}\left(\sum\limits_{i=1}^{n_{\theta}-1}d_{N}(V(\theta_{i}),V(\theta_{i+1}))\right)
=supθΘ([t1,t2])(i=1nθ1N(dX(VX(θi),VX(θi+1)),dY(VY(θi),VY(θi+1))))\displaystyle=\sup\limits_{\theta\in\Theta([t_{1},t_{2}])}\left(\sum\limits_{i=1}^{n_{\theta}-1}N\Big{(}d_{X}\big{(}V_{X}(\theta_{i}),V_{X}(\theta_{i+1})\big{)},d_{Y}\big{(}V_{Y}(\theta_{i}),V_{Y}(\theta_{i+1})\big{)}\Big{)}\right)
=supθΘ([t1,t2])(i=1nθ1N(Δh(VX(θi),VX(θi+1)),Δh(VY(θi),VY(θi+1))))\displaystyle=\sup\limits_{\theta\in\Theta([t_{1},t_{2}])}\left(\sum\limits_{i=1}^{n_{\theta}-1}N\Big{(}\Delta h\big{(}V_{X}(\theta_{i}),V_{X}(\theta_{i+1})\big{)},\Delta h\big{(}V_{Y}(\theta_{i}),V_{Y}(\theta_{i+1})\big{)}\Big{)}\right)
=supθΘ([t1,t2])(N(1,1)i=1nθ1Δh(VX(θi),VX(θi+1)))\displaystyle=\sup\limits_{\theta\in\Theta([t_{1},t_{2}])}\left(N(1,1)\sum\limits_{i=1}^{n_{\theta}-1}\Delta h\big{(}V_{X}(\theta_{i}),V_{X}(\theta_{i+1})\big{)}\right)
=N(1,1)Δh(VX(t1),VX(t2))=|t1t2|, since N(1,1)=1.\displaystyle=N(1,1)\Delta h\big{(}V_{X}(t_{1}),V_{X}(t_{2})\big{)}=|t_{1}-t_{2}|,\text{ since }N(1,1)=1.

Where Θ([t1,t2])\Theta([t_{1},t_{2}]) is the set of subdivision of [t1,t2][t_{1},t_{2}]. Hence the proposition is proved. ∎

This previous result is the main reason why we are working with distances which came from admissible norms.

Definition 3.10.

A geodesic ray of XYX\bowtie Y is called vertical if it is a subset of a vertical geodesic.

A metric space is called geodesically complete if all its geodesic segments can be prolonged into geodesic lines. If XX and YY are proper hyperbolic geodesically complete Busemann spaces, their horospherical product XYX\bowtie Y is connected.

Property 3.11.

Let XX and YY be two proper, geodesically complete, δ\delta-hyperbolic, Busemann spaces. Let XYX\bowtie Y be their horospherical product. Then XYX\bowtie Y is connected, furthermore 12(dX+dY)dXY2CN(dX+dY)\frac{1}{2}(d_{X}+d_{Y})\leq d_{X\bowtie Y}\leq 2C_{N}(d_{X}+d_{Y}).

Proof.

Let p=(pX,pY)p=(p_{X},p_{Y}) and q=(qX,qY)q=(q_{X},q_{Y}) be two points of XYX\bowtie Y. From Property 2.8, there exists a vertical geodesic VpYV_{p_{Y}} such that pYp_{Y} is in the image of VpYV_{p_{Y}}, and there exists a vertical geodesic VqXV_{q_{X}} such that qXq_{X} is in the image of VqXV_{q_{X}}. Let qYq_{Y}^{\prime} be the point of VpYV_{p_{Y}} at height h(qY)h(q_{Y}). Let αX\alpha_{X} be a geodesic of XX linking pXp_{X} to qXq_{X} and let αY\alpha_{Y}^{\prime} be a geodesic of YY linking qYq_{Y}^{\prime} to qYq_{Y}. We will connect xx to yy with a path composed with pieces of αX\alpha_{X}, αY\alpha_{Y}^{\prime}, VpYV_{p_{Y}} and VqXV_{q_{X}}.
We first link (pX,pY)(p_{X},p_{Y}) to (qX,qY)(q_{X},q_{Y}^{\prime}) with αX\alpha_{X} and VpYV_{p_{Y}}. It is possible since VpYV_{p_{Y}} is parametrised by its height. More precisely we construct the following path c1c_{1}:

t[0,d(pX,qX)],c1(t)=(αX(t),VpY(h(αX(t)))).\displaystyle\forall t\in[0,d(p_{X},q_{X})],\ c_{1}(t)=\Big{(}\alpha_{X}(t),V_{p_{Y}}\big{(}-h(\alpha_{X}(t))\big{)}\Big{)}.

Since VpYV_{p_{Y}} is parametrised by its height, we have h(VpY(h(αX(t))))=h(αX(t))h\left(V_{p_{Y}}\big{(}-h(\alpha_{X}(t))\big{)}\right)=-h(\alpha_{X}(t)) which implies c1(t)XYc_{1}(t)\in X\bowtie Y. Furthermore, using the fact that the height is 1-Lipschitz, we have t1,t2[0,d(pX,qX)]\forall t_{1},t_{2}\in[0,d(p_{X},q_{X})]:

dY(VpY(h(αX(t1))),VpY(h(αX(t2))))=|h(αX(t1))h(αX(t2))|dX(αX(t1),αX(t2)).\displaystyle d_{Y}\Big{(}V_{p_{Y}}\big{(}-h(\alpha_{X}(t_{1}))\big{)},V_{p_{Y}}\big{(}-h(\alpha_{X}(t_{2}))\big{)}\Big{)}=|h(\alpha_{X}(t_{1}))-h(\alpha_{X}(t_{2}))|\leq d_{X}(\alpha_{X}(t_{1}),\alpha_{X}(t_{2})).

Hence c1,Y:tVpY(h(αX(t)))c_{1,Y}:t\mapsto V_{p_{Y}}\big{(}-h(\alpha_{X}(t))\big{)} is a connected path such that l(c1,Y)l(αX)dX(pX,qX)l(c_{1,Y})\leq l(\alpha_{X})\leq d_{X}(p_{X},q_{X}). Hence c1c_{1} is a connected path linking (pX,pY)(p_{X},p_{Y}) to (qX,qY)(q_{X},q_{Y}^{\prime}). Using Property 3.4 on c1c_{1} provides us with:

lN(c1)\displaystyle l_{N}(c_{1}) CN2(l(c1,Y)+l(αX))CNl(αX)\displaystyle\leq\frac{C_{N}}{2}(l(c_{1,Y})+l(\alpha_{X}))\leq C_{N}l(\alpha_{X})
CNdX(pX,qX)\displaystyle\leq C_{N}d_{X}(p_{X},q_{X})

We recall that by definition qY=VpY(h(qY))q_{Y}^{\prime}=V_{p_{Y}}(h(q_{Y})). We show similarly that c2:t(VqX(h(αY(t))),αY(t))c_{2}:t\mapsto\Big{(}V_{q_{X}}\big{(}-h(\alpha_{Y}^{\prime}(t))\big{)},\alpha_{Y}^{\prime}(t)\Big{)} is a connected path linking (qX,qY)(q_{X},q_{Y}^{\prime}) to (qX,qY)(q_{X},q_{Y}) such that:

l(c2)\displaystyle l(c_{2}) CNdY(qY,qY)CN(dY(qY,pY)+dY(pY,qY))\displaystyle\leq C_{N}d_{Y}(q_{Y}^{\prime},q_{Y})\leq C_{N}\big{(}d_{Y}(q_{Y}^{\prime},p_{Y})+d_{Y}(p_{Y},q_{Y})\big{)}
=CN(Δh(pY,qY)+dY(pY,qY)), since qY=VpY(h(qY))\displaystyle=C_{N}\big{(}\Delta h(p_{Y},q_{Y})+d_{Y}(p_{Y},q_{Y})\big{)}\text{, since }q_{Y}^{\prime}=V_{p_{Y}}(h(q_{Y}))
2CNdY(pY,qY).\displaystyle\leq 2C_{N}d_{Y}(p_{Y},q_{Y}).

Hence, there exists a connected path c=c1c2c=c_{1}\cup c_{2} linking pp to qq such that:

l(c)CNdX(pX,qX)+2CNdY(pY,qY)2CN(dX(pX,qX)+dY(pY,qY)).l(c)\leq C_{N}d_{X}(p_{X},q_{X})+2C_{N}d_{Y}(p_{Y},q_{Y})\leq 2C_{N}\big{(}d_{X}(p_{X},q_{X})+d_{Y}(p_{Y},q_{Y})\big{)}. (7)

However if the two components XX and YY are not geodesically complete, XYX\bowtie Y may not be connected.

Example 3.12.

Let XX and YY be two graphs, constructed from an infinite line \mathbb{Z} (indexed by \mathbb{Z}) with an additional vertex glued on the 0 for XX and on the 2-2 for YY. Their construction are illustrated in Figure 4. They are two 0-hyperbolic Busemann spaces which are not geodesically complete. Let wXXw_{X}\in X be the vertex indexed by 0 in XX, and let wYYw_{Y}\in Y be the vertex indexed by 2-2 in YY. We choose them to be the base points of XX and YY. Since X\partial X and Y\partial Y contain two points each, we fix in both cases the point of the boundary aXa_{X} or aYa_{Y} to be the one that contains the geodesic ray indexed by \mathbb{N}. On figure 4, we denoted the height of a vertex inside this one. Then the horospherical product XYX\bowtie Y taken with the 1\ell_{1} path metric is not connected. Since some vertices of XX and YY are not contained in a vertical geodesic, one may not be able to adapt its height correctly while constructing a path joining (p1X,p(2,1)Y)\left(p^{X}_{-1},p^{Y}_{(2,1)}\right) to (p(0,1)X,p(2,1)Y)\left(p^{X}_{(0,-1)},p^{Y}_{(2,1)}\right).

Refer to caption
Figure 4: Example of horospherical product which is not connected. The number in a vertex is the height of that vertex.

It is not clear that a horospherical product is still connected without the hypothesis that XX and YY are Busemann spaces. In that case we would need a "coarse" definition of horospherical product. Indeed, the height along geodesics would not be smooth as in Proposition 2.7, therefore the condition requiring to have two exact opposite heights would not suits.

3.2 Examples

A Heintze group is a Lie group of the form AN\mathbb{R}\ltimes_{A}N defined by the action on \mathbb{R}, texp(tA)t\mapsto\exp(tA), with NN a simply connected nilpotent Lie group and with ALie(A)A\in\mathrm{Lie}(A) a derivation whose eigenvalues have positive real parts. Heintze proved in [20] that any simply connected, negatively curved Lie group is isomorphic to a Heintze group.

Moreover, a Busemann metric space is simply connected, hence any Gromov hyperbolic, Busemann Lie group is isomorphic to a Heintze group. Consequently, Heintze groups are natural candidates for the two components from which a horospherical product is constructed. In his paper [30], Xie classifies the subfamily of all negatively curved Lie groups n\mathbb{R}\ltimes\mathbb{R}^{n} up to quasi-isometry.

Let H1:=A1N1H_{1}:=\mathbb{R}\ltimes_{A_{1}}N_{1} and H2:=A2N2H_{2}:=\mathbb{R}\ltimes_{A_{2}}N_{2} be two Heintze groups, then H1H2H_{1}\bowtie H_{2} is isomorphic to Diag(A1,A2)(N1×N2)\mathbb{R}\ltimes_{\mathrm{Diag}(A_{1},-A_{2})}(N_{1}\times N_{2}), where Diag(A1,A2)\mathrm{Diag}(A_{1},-A_{2}) is the block diagonal matrix containing A1A_{1} and A2-A_{2} on its diagonal. In fact, We have that H1×H2H_{1}\times H_{2} is the group 2(A1,A2)(N1×N2)\mathbb{R}^{2}\ltimes_{(A_{1},A_{2})}(N_{1}\times N_{2}) defined by the action on 2\mathbb{R}^{2}, (t1,t2)(exp(t1A1),exp(t2A2))(t_{1},t_{2})\mapsto(\exp(t_{1}A_{1}),\exp(t_{2}A_{2})). Let (0,eN1)N1(0,e_{N_{1}})\in N_{1}, (0,eN2)N2(0,e_{N_{2}})\in N_{2} be the two base points, and let t(t,eN1)t\mapsto(t,e_{N_{1}}) and t(t,eN2)t\mapsto(t,e_{N_{2}}) be there respective vertical geodesic rays corresponding to the chosen Busemann functions. Then we have that for all (t,n)Hi(t,n)\in H_{i}, h(t,n)=th(t,n)=t. Under this setting we have that

H1H2\displaystyle H_{1}\bowtie H_{2} ={(t1,t2,n1,n2)H1×H2t1=t2}={(t,t,n1,n2)H1×H2}.\displaystyle=\left\{(t_{1},t_{2},n_{1},n_{2})\in H_{1}\times H_{2}\mid t_{1}=-t_{2}\right\}=\left\{(t,-t,n_{1},n_{2})\in H_{1}\times H_{2}\right\}.

Thanks to this characterisation, we show that H1H2H_{1}\bowtie H_{2} is a subgroup of 2(A1,A2)(N1×N2)\mathbb{R}^{2}\ltimes_{(A_{1},A_{2})}(N_{1}\times N_{2}). Furthermore the following map is an isomorphism

H1H2\displaystyle H_{1}\bowtie H_{2} Diag(A1,A2)(N1×N2)\displaystyle\to\mathbb{R}\ltimes_{\mathrm{Diag}(A_{1},-A_{2})}(N_{1}\times N_{2})
(t,t,n1,n2)\displaystyle(t,-t,n_{1},n_{2}) (t,n1,n2),\displaystyle\mapsto(t,n_{1},n_{2}),

where Diag(A1,A2)(N1×N2)\mathbb{R}\ltimes_{\mathrm{Diag}(A_{1},-A_{2})}(N_{1}\times N_{2}) is determined by the action t(exp(tA1),exp(tA2))t\mapsto(\exp(tA_{1}),\exp(-tA_{2})). Therefore, we have that

(A1N1)(A2N2)isoDiag(A1,A2)(N1×N2)\displaystyle(\mathbb{R}\ltimes_{A_{1}}N_{1})\bowtie(\mathbb{R}\ltimes_{A_{2}}N_{2})\cong_{iso}\mathbb{R}\ltimes_{\mathrm{Diag}(A_{1},-A_{2})}(N_{1}\times N_{2})

The Sol geometries are specific cases of such solvable Lie groups when Ni=N_{i}=\mathbb{R} for i{1,2}i\in\{1,2\}, and where the matrices AiA_{i} are positive reals. In this context, for m>0m>0 we have that m\mathbb{R}\ltimes_{m}\mathbb{R} is the Log model of a real hyperbolic plan, otherwise stated the Riemannian manifold with coordinates (x,z)2(x,z)\in\mathbb{R}^{2} endowed with the Riemannian metric ds2=e2mzdx2+dz2ds^{2}=e^{-2mz}dx^{2}+dz^{2}. Then (m)(n)=Diag(m,n)2(\mathbb{R}\ltimes_{m}\mathbb{R})\bowtie(\mathbb{R}\ltimes_{n}\mathbb{R})=\mathbb{R}\ltimes_{\mathrm{Diag}(m,-n)}\mathbb{R}^{2} is a Sol geometry, or also the Riemannian manifold with coordinates (x1,x2,z)3(x_{1},x_{2},z)\in\mathbb{R}^{3} endowed with the Riemannian metric

ds2=e2mzdx12+e2nzdx22+dz2.ds^{2}=e^{-2mz}dx_{1}^{2}+e^{2nz}dx_{2}^{2}+dz^{2}.

A first discrete example of horospherical product is the family of Diestel-Leader graphs defined by DL(n,m)=TnTmDL(n,m)=T_{n}\bowtie T_{m} with n,m2n,m\geq 2 and where TnT_{n} and TmT_{m} are regular trees. We see TnT_{n} and TmT_{m} as connected metric spaces with the usual distance on them. By choosing half of the 1\ell_{1} path metric on DL(n,m)DL(n,m), this horospherical product becomes a graph with the natural distance on it. Indeed, the set of vertices of DL(n,m)DL(n,m) is then defined by the subset of couples of vertices of Tn×TmT_{n}\times T_{m} included in DL(n,m)DL(n,m). In this horospherical product, two points (pn,pm)(p_{n},p_{m}) and (qn,qm)(q_{n},q_{m}) of DL(n,m)DL(n,m) are connected by an edge if and only if pnp_{n} and qnq_{n} are connected by an edge in TnT_{n} and if pmp_{m} and qmq_{m} are connected by an edge in TmT_{m}. Furthermore, when n=mn=m, there is a one-to-one correspondence between DL(n,n)DL(n,n) and the Cayley graph of the lamplighter group Y\mathbb{Z}_{Y}\wr\mathbb{Z}, see [28] for further details.

Refer to caption
Figure 5: A portion of the graph 𝕋3𝕋3\mathbb{T}_{3}\bowtie\mathbb{T}_{3}
Refer to caption
Figure 6: The Sol geometry and two geodesics of embedded copies of 2\mathbb{H}^{2}

Depending on the case, we either used the 1\ell_{1} path metric or the 2\ell_{2} path metric. However, we will see in Proposition 4.14 that it does not matter, up to an additive uniform constant. Quasi-isometric rigidity results in the Diestel-Leader graphs and the Sol geometry have been proved using the same techniques in [10] and [11].

The horospherical product of a hyperbolic plane and a regular tree has been studied as the 2-complex of Baumslag-Solitar groups in [2], they are called the treebolic spaces. The distance they choose on the treebolic spaces is similar to ours. In fact our Proposition 4.13 and their Proposition 2.82.8 page 9 (in [2]) tell us they are equal up to an additive constant. Rigidity results on the quasi-isometry classification of the treebolic spaces were brought up in [12] and [13].

4 Estimates on the length of specific paths

4.1 Geodesics in Gromov hyperbolic Busemann spaces

This section focuses on length estimates in Gromov hyperbolic Busemann spaces. The central result is Proposition 4.9, which presents a lower bound on the length of a path staying between two horospheres. Before moving to the technical results of this section, let us introduce some notations.

Notation 4.1.

Unless otherwise specified, HH will be a Gromov hyperbolic Busemann geodesically complete proper space. Let γ:IH\gamma:I\rightarrow H be a connected path. Let us denote the maximal height and the minimal height of this path as follows:

h+(γ)=suptI{h(γ(t))};h(γ)=inftI{h(γ(t))}.\displaystyle h^{+}(\gamma)=\sup\limits_{t\in I}\big{\{}h(\gamma(t))\big{\}}\quad;\quad h^{-}(\gamma)=\inf\limits_{t\in I}\big{\{}h(\gamma(t))\big{\}}.

Let xx and yy be two points of HH, we denote the height difference between them by:

Δh(x,y)=|h(x)h(y)|.\Delta h(x,y)=|h(x)-h(y)|.

We define the relative distance between two points xx and yy of HH as:

dr(x,y)=d(x,y)Δh(x,y).d_{r}(x,y)=d(x,y)-\Delta h(x,y).

Let us denote VxV_{x} a vertical geodesic containing xx, we will assume it to be parametrised by arclength. Thanks to Proposition 2.7 we choose a parametrisation by arclength such that t,h(Vx(t))=t+0\forall t\in\mathbb{R},\ h(V_{x}(t))=t+0.

The relative distance between two points quantifies how far a point is from the nearest vertical geodesic containing the other point.

In the sequel we want to apply the slim triangles property on ideal triangles, hence we need the following result of [5].

Property 4.2 (Proposition 2.22.2 page 1919 of [5]).

Let a,ba,b and cc be three points of XXX\cup\partial X. Let α,β,γ\alpha,\beta,\gamma be three geodesics of XX linking respectively bb to cc, cc to aa, and aa to bb. Then every point of α\alpha is at distance less than 24δ24\delta from the union βγ\beta\cup\gamma.

Next lemma tells us that in order to connect two points, a geodesic needs to go sufficiently high. This height is controlled by the relative distance between these two points.

Lemma 4.3.

Let HH be a δ\delta-hyperbolic and Busemann metric space, let xx and yy be two elements of HH such that h(x)h(y)h(x)\leq h(y), and let α\alpha be a geodesic linking xx to yy. Let us denote z=α(Δh(x,y)+12dr(x,y))z=\alpha\left(\Delta h(x,y)+\frac{1}{2}d_{r}(x,y)\right), x1:=Vx(h(y)+12dr(x,y))x_{1}:=V_{x}\left(h(y)+\frac{1}{2}d_{r}(x,y)\right) the point of VxV_{x} at height h(y)+12dr(x,y)h(y)+\frac{1}{2}d_{r}(x,y) and y1:=Vy(h(y)+12dr(x,y))y_{1}:=V_{y}\left(h(y)+\frac{1}{2}d_{r}(x,y)\right) the point of VyV_{y} at the same height h(y)+12dr(x,y)h(y)+\frac{1}{2}d_{r}(x,y). Then we have:

  1. 1.

    h+(α)h(y)+12dr(x,y)96δh^{+}(\alpha)\geq h(y)+\frac{1}{2}d_{r}(x,y)-96\delta

  2. 2.

    d(z,x1)144δd\left(z,x_{1}\right)\leq 144\delta

  3. 3.

    d(z,y1)144δd\left(z,y_{1}\right)\leq 144\delta

  4. 4.

    d(x1,y1)288δd\left(x_{1},y_{1}\right)\leq 288\delta.

Refer to caption
Figure 7: Proof of Lemma 4.3
Proof.

The lemma and its proof are illustrated in Figure 7. Following Property 4.2, the triple of geodesics α\alpha, VxV_{x} and VyV_{y} is a 24δ24\delta-slim triangle. Since the sets {t[0,d(x,y)]|d(α(t),Vx)24δ}\{t\in[0,d(x,y)]|d(\alpha(t),V_{x})\leq 24\delta\} and {t[0,d(x,y)]|d(α(t),Vy)24δ}\{t\in[0,d(x,y)]|d(\alpha(t),V_{y})\leq 24\delta\} are closed sets covering [0,d(x,y)][0,d(x,y)], their intersection is non empty. Hence there exists t0[0,d(x,y)]t_{0}\in[0,d(x,y)], x2Vxx_{2}\in V_{x} and y2Vyy_{2}\in V_{y} such that d(α(t0),x2)24δd(\alpha(t_{0}),x_{2})\leq 24\delta and d(α(t0),y2)24δd(\alpha(t_{0}),y_{2})\leq 24\delta. Let us first prove that t0t_{0} is close to Δh(x,y)+12dr(x,y)\Delta h(x,y)+\frac{1}{2}d_{r}(x,y). By the triangle inequality we have that:

|t0d(x,x2)|=|d(x,α(t0))d(x,x2)|d(x2,α(t0))24δ.\displaystyle|t_{0}-d(x,x_{2})|=|d(x,\alpha(t_{0}))-d(x,x_{2})|\leq d(x_{2},\alpha(t_{0}))\leq 24\delta.

Let us denote x3:=Vx(h(x)+t0)x_{3}:=V_{x}(h(x)+t_{0}) the point of VxV_{x} at height h(x)+t0h(x)+t_{0}, and y3=Vy(h(y)+d(x,y)t0)y_{3}=V_{y}(h(y)+d(x,y)-t_{0}) the point of VyV_{y} at height h(y)+d(x,y)t0h(y)+d(x,y)-t_{0}. Then by the triangle inequality:

d(α(t0),x3)\displaystyle d(\alpha(t_{0}),x_{3}) d(α(t0),x2)+d(x2,x3)=d(α(t0),x2)+|d(x,x2)d(x,x3)|\displaystyle\leq d(\alpha(t_{0}),x_{2})+d(x_{2},x_{3})=d(\alpha(t_{0}),x_{2})+|d(x,x_{2})-d(x,x_{3})|
d(α(t0),x2)+|d(x,x2)t0|48δ.\displaystyle\leq d(\alpha(t_{0}),x_{2})+|d(x,x_{2})-t_{0}|\leq 48\delta. (8)

In the last inequality we used that d(x,x3)=t0d(x,x_{3})=t_{0}, which holds by the definition of x3x_{3}. We show in the same way that d(α(t0),y3)48δd(\alpha(t_{0}),y_{3})\leq 48\delta. By the triangle inequality we have d(x3,y3)96δd(x_{3},y_{3})\leq 96\delta. As the height function is Lipschitz we have Δh(x3,y3)d(x3,y3)96δ\Delta h(x_{3},y_{3})\leq d(x_{3},y_{3})\leq 96\delta, which provides us with:

|12dr(x,y)+Δh(x,y)t0|\displaystyle\left|\frac{1}{2}d_{r}(x,y)+\Delta h(x,y)-t_{0}\right| =12|dr(x,y)+Δh(x,y)+h(y)h(x)2t0|\displaystyle=\frac{1}{2}\big{|}d_{r}(x,y)+\Delta h(x,y)+h(y)-h(x)-2t_{0}\big{|}
=12|h(y)+d(x,y)t0(h(x)+t0)|=12Δh(x3,y3)96δ248δ.\displaystyle=\frac{1}{2}|h(y)+d(x,y)-t_{0}-(h(x)+t_{0})|=\frac{1}{2}\Delta h(x_{3},y_{3})\leq\frac{96\delta}{2}\leq 48\delta. (9)

In particular it gives us that d(z,α(t0))48δd(z,\alpha(t_{0}))\leq 48\delta. We are now ready to prove the first point using inequalities (8) and (9):

h+(α)\displaystyle h^{+}(\alpha)\geq h(α(t0))h(x3)Δh(α(t0),x3)h(x)+t048δ\displaystyle h(\alpha(t_{0}))\geq h(x_{3})-\Delta h(\alpha(t_{0}),x_{3})\geq h(x)+t_{0}-48\delta
\displaystyle\geq h(x)+12dr(x,y)+Δh(x,y)96δh(y)+12dr(x,y)96δ, as we have h(x)h(y).\displaystyle h(x)+\frac{1}{2}d_{r}(x,y)+\Delta h(x,y)-96\delta\geq h(y)+\frac{1}{2}d_{r}(x,y)-96\delta,\text{ as we have }h(x)\leq h(y).

The second point of our lemma is proved as follows:

d(z,x1)\displaystyle d(z,x_{1}) d(z,α(t0))+d(α(t0),x1)48δ+d(α(t0),x3)+d(x3,x1)\displaystyle\leq d(z,\alpha(t_{0}))+d(\alpha(t_{0}),x_{1})\leq 48\delta+d(\alpha(t_{0}),x_{3})+d(x_{3},x_{1})
96δ+|t0+h(x)(12dr(x,y)+h(y))|=96δ+|t0(Δh(x,y)+12dr(x,y))|144δ.\displaystyle\leq 96\delta+\left|t_{0}+h(x)-\left(\frac{1}{2}d_{r}(x,y)+h(y)\right)\right|=96\delta+\left|t_{0}-\left(\Delta h(x,y)+\frac{1}{2}d_{r}(x,y)\right)\right|\leq 144\delta.

The proof of 3.3. is similar, and 4.4. is obtained from 2.2. and 3.3. by the triangle inequality. ∎

The next lemma shows that in the case where h(x)h(y)h(x)\leq h(y) a geodesic linking xx to yy is almost vertical until it reaches the height h(y)h(y).

Lemma 4.4.

Let HH be a δ\delta-hyperbolic and Busemann space. Let xx and yy be two points of HH such that h(x)h(y)h(x)\leq h(y). We define x:=Vx(h(y))x^{\prime}:=V_{x}(h(y)) to be the point of the vertical geodesic VxV_{x} at the same height as yy. Then:

|dr(x,y)d(x,y)|54δ.|d_{r}(x,y)-d(x^{\prime},y)|\leq 54\delta. (10)
Proof.

Since HH is δ\delta-hyperbolic, the geodesic triangle [x,y][y,x][x,x][x,y]\cup[y,x^{\prime}]\cup[x^{\prime},x] is δ\delta-slim. Then there exists p1[x,x]p_{1}\in[x,x^{\prime}], p2[x,y]p_{2}\in[x^{\prime},y] and m[x,y]m\in[x,y] such that d(p1,m)δd(p_{1},m)\leq\delta and d(p2,m)δd(p_{2},m)\leq\delta. Hence, h([x,y])δh(m)h+([x,x])+δh^{-}([x^{\prime},y])-\delta\leq h(m)\leq h^{+}([x,x^{\prime}])+\delta. Let RxR_{x^{\prime}} and RyR_{y} be two vertical geodesic rays respectively contained in VxV_{x} and VyV_{y} and respectively starting at xx^{\prime} and yy. Then Property 4.2 used on the ideal triangle RxRy[x,y]R_{x}\cup R_{y}\cup[x^{\prime},y] implies that h([x,y])h(y)24δh^{-}([x^{\prime},y])\geq h(y)-24\delta, therefore we have h+([x,x])=h(y)h^{+}([x,x^{\prime}])=h(y). Then h(y)25δh(m)h(y)+δh(y)-25\delta\leq h(m)\leq h(y)+\delta holds. It follows that mm and xx^{\prime} are close to each other:

d(m,x)\displaystyle d(m,x^{\prime}) d(m,p1)+d(p1,x)δ+Δh(p1,x)δ+Δh(p1,m)+Δh(m,y)+Δh(y,x)\displaystyle\leq d(m,p_{1})+d(p_{1},x^{\prime})\leq\delta+\Delta h(p_{1},x^{\prime})\leq\delta+\Delta h(p_{1},m)+\Delta h(m,y)+\Delta h(y,x^{\prime})
δ+d(p1,m)+25δ+027δ.\displaystyle\leq\delta+d(p_{1},m)+25\delta+0\leq 27\delta. (11)

Then we give an estimate on the distance between xx and mm:

|d(x,m)Δh(x,y)|=|d(x,m)d(x,x)|d(m,x)27δ.|d(x,m)-\Delta h(x,y)|=|d(x,m)-d(x,x^{\prime})|\leq d(m,x^{\prime})\leq 27\delta. (12)

However dr(x,y)=d(x,y)Δh(x,y)d_{r}(x,y)=d(x,y)-\Delta h(x,y) and d(x,y)=d(x,m)+d(m,y)d(x,y)=d(x,m)+d(m,y), therefore:

dr(x,y)=d(x,m)+d(m,y)Δh(x,y).d_{r}(x,y)=d(x,m)+d(m,y)-\Delta h(x,y). (13)

Combining inequalities (12) and (13) we have |dr(x,y)d(m,y)|27δ|d_{r}(x,y)-d(m,y)|\leq 27\delta. Then:

|dr(x,y)d(x,y)|27δ+d(x,m)54δ.\displaystyle|d_{r}(x,y)-d(x^{\prime},y)|\leq 27\delta+d(x^{\prime},m)\leq 54\delta.

We are now able to prove the estimates of the next section.

4.2 Length estimate of paths avoiding horospheres

Consider a path γ\gamma and a geodesic α\alpha sharing the same end-points in a proper, Gromov hyperbolic, Busemann space. We prove in this section that if the height of γ\gamma does not reach the maximal height of the geodesic α\alpha, then γ\gamma is much longer than α\alpha. Furthermore, its length increases exponentially with respect to the difference of maximal height between γ\gamma and α\alpha. To do so, we make use of Proposition 1.61.6 p400 of [3], which we recall here. Let us denote by l(c)l(c) the length of a path cc.

Proposition 4.5 ([3]).

Let XX be a δ\delta-hyperbolic geodesic space. Let cc be a continuous path in X. If [p,q][p,q] is a geodesic segment connecting the endpoints of cc, then for every x[p,q]x\in[p,q]:

d(x,im(c))δ|log2l(c)|+1.d(x,\mathrm{im}(c))\leq\delta|\log_{2}l(c)|+1.

This result implies that a path of XX between pp and qq which avoids the ball of diameter [p,q][p,q] has length greater than an exponential of the distance d(p,q)d(p,q).

From now on we will add as convention that δ1\delta\geq 1. For all δ1δ2\delta_{1}\leq\delta_{2} a δ1\delta_{1}-slim triangle is also δ2\delta_{2}-slim, hence all δ1\delta_{1}-hyperbolic spaces are δ2\delta_{2}-hyperbolic spaces. That is why we can assume that all Gromov hyperbolic spaces are δ\delta-hyperbolic with δ1\delta\geq 1. It allows us to consider 1δ\frac{1}{\delta} as a well defined term, we hence avoid the arising of separated cases in some oof the proofs. We also use this assumption to simplify constants appearing in this document. The next result is a similar control on the length of path as Proposition 4.5, but we consider that the path is avoiding a horosphere instead of avoiding a ball in HH.

Lemma 4.6.

Let δ1\delta\geq 1 and HH be a proper, geodesic, δ\delta-hyperbolic, Busemann space. Let xx and yHy\in H and let VxV_{x}, respectively VyV_{y}, be a vertical geodesic containing xx, respectively yy. Let us consider t0max(h(x),h(y))t_{0}\geq\max(h(x),h(y)) and let us denote x0:=Vx(t0)x_{0}:=V_{x}(t_{0}) and y0:=Vy(t0)y_{0}:=V_{y}(t_{0}), the respective points of VxV_{x} and VyV_{y} at the height t0t_{0}. Assume that d(x0,y0)>768δd(x_{0},y_{0})>768\delta.
Then for all connected path γ:[0,T]H\gamma:[0,T]\rightarrow H such that γ(0)=x\gamma(0)=x, γ(T)=y\gamma(T)=y and h+(γ)h(x0)h^{+}(\gamma)\leq h(x_{0}) we have:

l(γ)Δh(x,x0)+Δh(y,y0)+2386212δd(x0,y0)24δ.l(\gamma)\geq\Delta h(x,x_{0})+\Delta h(y,y_{0})+2^{-386}2^{\frac{1}{2\delta}d(x_{0},y_{0})}-24\delta. (14)
Refer to caption
Figure 8: Proof of Lemma 4.6

For trees (when δ=0\delta=0) this Lemma still makes sense. Indeed, if δ\delta tends to 0 then the length of the path described in this Lemma tends to infinity, which is consistent with the fact that such a path does not exist in trees. The proof would use the fact that in Proposition 4.5 we have d(x,im(c))=0d(x,\mathrm{im}(c))=0 when δ=0\delta=0 since 0-hyperbolic spaces are real trees.

Proof.

One can follow the idea of the proof on Figure 8. We will consider γ\gamma to be parametrised by arclength. Let B(x,Δh(x0,x))HB(x,\Delta h(x_{0},x))\subset H be the ball of radius h(x0)h(x)h(x_{0})-h(x) centred on xx, and let mB(x,Δh(x0,x))m\in B(x,\Delta h(x_{0},x)) be a point in this ball. Then:

dr(m,x)=d(m,x)Δh(m,x)Δh(x,x0)Δh(m,x)Δh(x0,m).d_{r}(m,x)=d(m,x)-\Delta h(m,x)\leq\Delta h(x,x_{0})-\Delta h(m,x)\leq\Delta h(x_{0},m).

Let us first assume that h(m)h(x)h(m)\geq h(x), then:

h(m)+dr(m,x)2\displaystyle h(m)+\frac{d_{r}(m,x)}{2} h(m)+Δh(x0,m)2h(m)+h(x0)h(m)2=h(x0)2+h(m)2h(x0).\displaystyle\leq h(m)+\frac{\Delta h(x_{0},m)}{2}\leq h(m)+\frac{h(x_{0})-h(m)}{2}=\frac{h(x_{0})}{2}+\frac{h(m)}{2}\leq h(x_{0}). (15)

By Lemma 4.3 we have:

d(Vx(h(m)+dr(m,x)2),Vm(h(m)+dr(m,x)2))288δ.\displaystyle d\left(V_{x}\left(h(m)+\frac{d_{r}(m,x)}{2}\right),V_{m}\left(h(m)+\frac{d_{r}(m,x)}{2}\right)\right)\leq 288\delta.

We now assume that h(m)h(x)h(m)\leq h(x), then:

h(x)+dr(x,m)2h(x)+d(x,m)2h(x)+Δh(x,x0)2h(x0).h(x)+\frac{d_{r}(x,m)}{2}\leq h(x)+\frac{d(x,m)}{2}\leq h(x)+\frac{\Delta h(x,x_{0})}{2}\leq h(x_{0}).

Then Lemma 4.3 provides us with:

d(Vx(h(x)+dr(m,x)2),Vm(h(x)+dr(m,x)2))288δ.\displaystyle d\left(V_{x}\left(h(x)+\frac{d_{r}(m,x)}{2}\right),V_{m}\left(h(x)+\frac{d_{r}(m,x)}{2}\right)\right)\leq 288\delta.

Since HH is a Busemann space, the function td(Vx(t),Vm(t))t\to d(V_{x}(t),V_{m}(t)) is convex. Furthermore td(Vx(t),Vm(t))t\to d(V_{x}(t),V_{m}(t)) is bounded on [0;+[[0;+\infty[ as HH is Gromov hyperbolic, hence td(Vx(t),Vm(t))t\to d(V_{x}(t),V_{m}(t)) is a non increasing function. Therefore both cases h(m)h(x)h(m)\leq h(x) and h(x)h(m)h(x)\leq h(m) give us that:

d(x0,Vm(h(x0)))=d(Vx(h(x0)),Vm(h(x0)))288δ.\displaystyle d\Big{(}x_{0},V_{m}\left(h(x_{0})\right)\Big{)}=d\Big{(}V_{x}\left(h(x_{0})\right),V_{m}(h(x_{0}))\Big{)}\leq 288\delta. (16)

In other words, all points of B(x,Δh(x0,x))B(x,\Delta h(x_{0},x)) belong to a vertical geodesic passing nearby x0x_{0}. By the same reasoning we have nB(y,Δh(y0,y))\forall n\in B(y,\Delta h(y_{0},y)) :

d(y0,Vn(h(y0)))288δ.\displaystyle d\Big{(}y_{0},V_{n}\left(h(y_{0})\right)\Big{)}\leq 288\delta. (17)

Then by the triangle inequality:

d(Vm(h(x0)),Vn(h(y0)))\displaystyle d\Big{(}V_{m}(h(x_{0})),V_{n}(h(y_{0}))\Big{)} d(x0,Vm(h(x0)))+d(x0,y0)d(y0,Vn(h(y0)))\displaystyle\geq-d\Big{(}x_{0},V_{m}\left(h(x_{0})\right)\Big{)}+d(x_{0},y_{0})-d\Big{(}y_{0},V_{n}\left(h(y_{0})\right)\Big{)}
768δ288δ288δ192δ.\displaystyle\geq 768\delta-288\delta-288\delta\geq 192\delta. (18)

Specifically d(Vm(h(x0)),Vn(h(y0)))=d(Vm(h(x0)),Vn(h(x0)))>0d(V_{m}(h(x_{0})),V_{n}(h(y_{0})))=d(V_{m}(h(x_{0})),V_{n}(h(x_{0})))>0 which implies that mnm\neq n. Then B(x,Δh(x0,x))B(y,Δh(y0,y))=B(x,\Delta h(x_{0},x))\cap B(y,\Delta h(y_{0},y))=\emptyset. By continuity of γ\gamma we deduce the existence of the two following times txtyt_{x}\leq t_{y} such that:

tx\displaystyle t_{x} =inf{t[0,T]|d(γ(t),x)=Δh(x,x0)},\displaystyle=\inf\{t\in[0,T]\ |\ d(\gamma(t),x)=\Delta h(x,x_{0})\},
ty\displaystyle t_{y} =sup{t[0,T]|d(γ(t),y)=Δh(y,y0)}.\displaystyle=\sup\{t\in[0,T]\ |\ d(\gamma(t),y)=\Delta h(y,y_{0})\}.

In order to have a lower bound on the length of γ\gamma we will need to split this path into three parts:

γ=γ|[0,tx]γ|[tx,ty]γ|[ty,T].\gamma=\gamma_{|[0,t_{x}]}\cup\gamma_{|[t_{x},t_{y}]}\cup\gamma_{|[t_{y},T]}.

As γ\gamma is parametrised by arclength and d(γ(0),γ(tx))=Δh(x,x0)d(\gamma(0),\gamma(t_{x}))=\Delta h(x,x_{0}) we have that:

l(γ|[0,tx])Δh(x,x0).l\left(\gamma_{|[0,t_{x}]}\right)\geq\Delta h(x,x_{0}). (19)

For similar reasons we also have:

l(γ|[ty,T])Δh(y,y0).l\left(\gamma_{|[t_{y},T]}\right)\geq\Delta h(y,y_{0}). (20)

We will now focus on proving a lower bound for the length of γ|[tx,ty]\gamma_{|[t_{x},t_{y}]}.

We want to construct a path γ\gamma^{\prime} joining x1=Vγ(tx)(h(x0))x_{1}=V_{\gamma(t_{x})}(h(x_{0})) to y1=Vγ(ty)(h(x0))y_{1}=V_{\gamma(t_{y})}(h(x_{0})), that stays below h(x0)h(x_{0}) and such that γ|[tx,ty]\gamma_{|[t_{x},t_{y}]} is contained in γ\gamma^{\prime}. Let x1:=Vγ(tx)(h(x0))x_{1}:=V_{\gamma(t_{x})}(h(x_{0})) and y1:=Vγ(ty)(h(x0))y_{1}:=V_{\gamma(t_{y})}(h(x_{0})). We construct γ\gamma^{\prime} by gluing paths together:

γ={Vγ(tx)from x1 to γ(tx)γfrom γ(tx) to γ(ty)Vγ(ty)from γ(ty) to y1\gamma^{\prime}=\left\{\begin{array}[]{ll}V_{\gamma(t_{x})}&\mbox{from }x_{1}\mbox{ to }\gamma(t_{x})\\ \gamma&\mbox{from }\gamma(t_{x})\mbox{ to }\gamma(t_{y})\\ V_{\gamma(t_{y})}&\mbox{from }\gamma(t_{y})\mbox{ to }y_{1}\\ \end{array}\right.

Applying inequalities (16) and (17) used on γ(tx)\gamma(t_{x}) and γ(ty)\gamma(t_{y}) we get:

d(x0,x1)\displaystyle d(x_{0},x_{1}) 288δ,\displaystyle\leq 288\delta, (21)
d(y0,y1)\displaystyle d(y_{0},y_{1}) 288δ.\displaystyle\leq 288\delta. (22)

In order to apply Proposition 4.5 to γ\gamma^{\prime} we need to check that there exists a point AA of the geodesic segment [x1,y1][x_{1},y_{1}] such that h(A)h(x0)h(A)\geq h(x_{0}). Applying Lemma 4.3 to [x1,y1][x_{1},y_{1}] and since h(x1)=h(y1)h(x_{1})=h(y_{1}) we get:

h+([x1,y1])\displaystyle h^{+}([x_{1},y_{1}]) dr(x1,y1)2+h(x0)96δ=d(x1,y1)2+h(x0)96δ.\displaystyle\geq\frac{d_{r}(x_{1},y_{1})}{2}+h(x_{0})-96\delta=\frac{d(x_{1},y_{1})}{2}+h(x_{0})-96\delta.

Thanks to the triangle inequality and inequalities (21) and (22):

h+([x1,y1])\displaystyle h^{+}([x_{1},y_{1}]) d(y0,x0)d(x0,x1)d(y0,y1)2+h(x0)96δd(x0,y0)2+h(x0)384δ.\displaystyle\geq\frac{d(y_{0},x_{0})-d(x_{0},x_{1})-d(y_{0},y_{1})}{2}+h(x_{0})-96\delta\geq\frac{d(x_{0},y_{0})}{2}+h(x_{0})-384\delta.

Since by hypothesis d(x0,y0)>768δd(x_{0},y_{0})>768\delta, there exists a point AA of [x1,y1][x_{1},y_{1}] exactly at the height:

h(A)=d(x0,y0)2+h(x0)384δ.h(A)=\frac{d(x_{0},y_{0})}{2}+h(x_{0})-384\delta.

We can then apply Proposition 4.5 to get:

δ|log2(l(γ))|+1\displaystyle\delta|\log_{2}(l(\gamma^{\prime}))|+1 d(A,γ)Δh(A,x0)d(x0,y0)2+h(x0)384δh(x0)\displaystyle\geq d(A,\gamma^{\prime})\geq\Delta h(A,x_{0})\geq\frac{d(x_{0},y_{0})}{2}+h(x_{0})-384\delta-h(x_{0})
d(x0,y0)2384δ.\displaystyle\geq\frac{d(x_{0},y_{0})}{2}-384\delta.

Since δ1\delta\geq 1, last inequality implies that l(γ)2385212δd(x0,y0)l(\gamma^{\prime})\geq 2^{-385}2^{\frac{1}{2\delta}d(x_{0},y_{0})}. Now we use this inequality to have a lower bound on the length of γ|[tx,ty]\gamma_{|[t_{x},t_{y}]}:

l(γ|[tx,ty])\displaystyle l(\gamma_{|[t_{x},t_{y}]}) l(γ)Δh(γ(tx),x0)Δh(γ(ty),y0)\displaystyle\geq l(\gamma^{\prime})-\Delta h(\gamma(t_{x}),x_{0})-\Delta h(\gamma(t_{y}),y_{0})
2385212δd(x0,y0)Δh(γ(tx),x0)Δh(γ(ty),y0).\displaystyle\geq 2^{-385}2^{\frac{1}{2\delta}d(x_{0},y_{0})}-\Delta h(\gamma(t_{x}),x_{0})-\Delta h(\gamma(t_{y}),y_{0}). (23)

We claim that l(γ|[tx,ty])Δh(γ(tx),x0)+Δh(γ(ty),y0)48δl\left(\gamma_{|[t_{x},t_{y}]}\right)\geq\Delta h(\gamma(t_{x}),x_{0})+\Delta h(\gamma(t_{y}),y_{0})-48\delta, hence:

l(γ|[tx,ty])\displaystyle l\left(\gamma_{|[t_{x},t_{y}]}\right) 2386212δd(x0,y0)24δ,\displaystyle\geq 2^{-386}2^{\frac{1}{2\delta}d(x_{0},y_{0})}-24\delta, (24)

which ends the proof by combining inequality (24) with inequalities (19) and (20).

      Proof of the claim. Inequality (18) with m=γ(tx)m=\gamma(t_{x}) and n=γ(ty)n=\gamma(t_{y}) gives d(x1,y1)192δd(x_{1},y_{1})\geq 192\delta. We want to prove that h+([γ(tx),γ(ty)])h(x1)24δh^{+}([\gamma(t_{x}),\gamma(t_{y})])\geq h(x_{1})-24\delta. First, by Lemma 4.2 we have that [γ(tx),γ(ty)]Vγ(tx)Vγ(ty)[\gamma(t_{x}),\gamma(t_{y})]\cup V_{\gamma(t_{x})}\cup V_{\gamma(t_{y})} is a 24δ24\delta-slim triangle. Then there exist three times t0t_{0}, t1t_{1} and t2t_{2} such that d(Vγ(tx)(t1),γ(t0))24δd\left(V_{\gamma(t_{x})}(t_{1}),\gamma(t_{0})\right)\leq 24\delta and such that d(Vγ(ty)(t2),γ(t0))24δd\left(V_{\gamma(t_{y})}(t_{2}),\gamma(t_{0})\right)\leq 24\delta. Then:

|t1t2|\displaystyle|t_{1}-t_{2}| =Δh(Vγ(tx)(t1),Vγ(ty)(t2))d(Vγ(tx)(t1),Vγ(ty)(t2))\displaystyle=\Delta h\left(V_{\gamma(t_{x})}(t_{1}),V_{\gamma(t_{y})}(t_{2})\right)\leq d\left(V_{\gamma(t_{x})}(t_{1}),V_{\gamma(t_{y})}(t_{2})\right)
d(Vγ(tx)(t1),γ(t0))+d(γ(t0),Vγ(ty)(t2))48δ.\displaystyle\leq d\left(V_{\gamma(t_{x})}(t_{1}),\gamma(t_{0})\right)+d\left(\gamma(t_{0}),V_{\gamma(t_{y})}(t_{2})\right)\leq 48\delta. (25)

We will show by contradiction that either t1=h(Vγ(tx)(t1))h(x0)t_{1}=h(V_{\gamma(t_{x})}(t_{1}))\geq h(x_{0}) or t2=h(Vγ(ty)(t2))h(x0)t_{2}=h(V_{\gamma(t_{y})}(t_{2}))\geq h(x_{0}).
Assume that t1<h(x0)t_{1}<h(x_{0}) and t2<h(x0)t_{2}<h(x_{0}). Then by the triangle inequality:

d(Vγ(tx)(t1),Vγ(ty)(t2))\displaystyle d\big{(}V_{\gamma(t_{x})}(t_{1}),V_{\gamma(t_{y})}(t_{2})\big{)} d(Vγ(ty)(t2),Vγ(tx)(t2))d(Vγ(tx)(t2),Vγ(tx)(t1))\displaystyle\geq d\big{(}V_{\gamma(t_{y})}(t_{2}),V_{\gamma(t_{x})}(t_{2})\big{)}-d\big{(}V_{\gamma(t_{x})}(t_{2}),V_{\gamma(t_{x})}(t_{1})\big{)}
d(Vγ(ty)(t2),Vγ(tx)(t2))48δ, since |t1t2|48δ by equation (25).\displaystyle\geq d\big{(}V_{\gamma(t_{y})}(t_{2}),V_{\gamma(t_{x})}(t_{2})\big{)}-48\delta\text{, since }|t_{1}-t_{2}|\leq 48\delta\text{ by equation (\ref{InegT1T218D}).}

As HH is a Busemann space, the function td(Vγ(tx)(t),Vγ(ty)(t))t\mapsto d\big{(}V_{\gamma(t_{x})}(t),V_{\gamma(t_{y})}(t)\big{)} is non increasing (convex and bounded function). Furthermore, h(x0)t2h(x_{0})\geq t_{2} hence:

48δ\displaystyle 48\delta d(Vγ(tx)(t1),Vγ(tx)(t2))d(Vγ(tx)(t2),Vγ(ty)(t2))48δ\displaystyle\geq d\big{(}V_{\gamma(t_{x})}(t_{1}),V_{\gamma(t_{x})}(t_{2})\big{)}\geq d\big{(}V_{\gamma(t_{x})}(t_{2}),V_{\gamma(t_{y})}(t_{2})\big{)}-48\delta
d(Vγ(tx)(h(x0)),Vγ(ty)(h(x0)))48δd(x1,y1)48δ\displaystyle\geq d\big{(}V_{\gamma(t_{x})}(h(x_{0})),V_{\gamma(t_{y})}(h(x_{0}))\big{)}-48\delta\geq d(x_{1},y_{1})-48\delta
d(x0,y0)d(x0,x1)d(y0,y1)48δd(x0,y0)624δ, by inequalities (21) and (22),\displaystyle\geq d(x_{0},y_{0})-d(x_{0},x_{1})-d(y_{0},y_{1})-48\delta\geq d(x_{0},y_{0})-624\delta\text{, by inequalities }(\ref{EqX01108})\text{ and }(\ref{EqY01108}),
49δ, since d(x0,y0)768δ by assumption,\displaystyle\geq 49\delta\text{, since }d(x_{0},y_{0})\geq 768\delta\text{ by assumption},

which is impossible. Therefore t1h(x0)t_{1}\geq h(x_{0}) or t2h(x0)t_{2}\geq h(x_{0}). We assume without loss of generality that t1h(x0)t_{1}\geq h(x_{0}), then:

Δh(γ(t0),Vγ(tx)(t1))d(γ(t0),Vγ(tx)(t1))24δ,\Delta h\big{(}\gamma(t_{0}),V_{\gamma(t_{x})}(t_{1})\big{)}\leq d\big{(}\gamma(t_{0}),V_{\gamma(t_{x})}(t_{1})\big{)}\leq 24\delta,

which implies:

h+([γ(tx),γ(ty)])h(γ(t0))h(Vγ(tx)(t1))Δh(γ(t0),Vγ(tx)(t1))h(x0)24δ,\displaystyle h^{+}([\gamma(t_{x}),\gamma(t_{y})])\geq h(\gamma(t_{0}))\geq h\left(V_{\gamma(t_{x})}(t_{1})\right)-\Delta h\big{(}\gamma(t_{0}),V_{\gamma(t_{x})}(t_{1})\big{)}\geq h(x_{0})-24\delta,

and gives us:

l(γ|[tx,ty])\displaystyle l\left(\gamma_{|[t_{x},t_{y}]}\right) h+([γ(tx),γ(ty)])h(γ(tx))+h+([γ(tx),γ(ty)])h(γ(ty))\displaystyle\geq h^{+}([\gamma(t_{x}),\gamma(t_{y})])-h(\gamma(t_{x}))+h^{+}([\gamma(t_{x}),\gamma(t_{y})])-h(\gamma(t_{y}))
h(x0)24δh(γ(tx))+h(x0)24δh(γ(ty))\displaystyle\geq h(x_{0})-24\delta-h(\gamma(t_{x}))+h(x_{0})-24\delta-h(\gamma(t_{y}))
Δh(γ(tx),x0)+Δh(γ(ty),y0)48δ.\displaystyle\geq\Delta h(\gamma(t_{x}),x_{0})+\Delta h(\gamma(t_{y}),y_{0})-48\delta. (26)

Next lemma shows that we are able to control the relative distance of a couple of points travelling along two vertical geodesics. We recall that for all a,bHa,b\in H, dr(a,b)=d(a,b)Δh(a,b)d_{r}(a,b)=d(a,b)-\Delta h(a,b).

Lemma 4.7 (Backwards control).

Let δ0\delta\geq 0 and HH be a proper, δ\delta-hyperbolic, Busemann space. Let V1V_{1} and V2V_{2} be two vertical geodesics of HH. Then for all couple of times (t1,t2)(t_{1},t_{2}) and for all t[0,12dr(V1(t1),V2(t2))]t\in\left[0,\frac{1}{2}d_{r}(V_{1}(t_{1}),V_{2}(t_{2}))\right]:

|dr(V1(t1+12dr(V1(t1),V2(t2))t),V2(t2+12dr(V1(t1),V2(t2))t))2t|288δ.\displaystyle\left|d_{r}\left(V_{1}\left(t_{1}+\frac{1}{2}d_{r}(V_{1}(t_{1}),V_{2}(t_{2}))-t\right),V_{2}\left(t_{2}+\frac{1}{2}d_{r}(V_{1}(t_{1}),V_{2}(t_{2}))-t\right)\right)-2t\right|\leq 288\delta.
Refer to caption
Figure 9: Proof of Lemma 4.7
Proof.

To simplify the computations, we use the following notations, D:=t2+12dr(V1(t1),V2(t2))D:=t_{2}+\frac{1}{2}d_{r}(V_{1}(t_{1}),V_{2}(t_{2})) and Δ=|t1t2|\Delta=|t_{1}-t_{2}|. The term Δ\Delta is the difference of height between V1(t1)V_{1}(t_{1}) and V2(t2)V_{2}(t_{2}) since vertical geodesics are parametrised by their height. Then we have to prove that t[0,12dr(V1(t1),V2(t2))]\forall t\in\left[0,\frac{1}{2}d_{r}(V_{1}(t_{1}),V_{2}(t_{2}))\right], |dr(V1(DΔt),V2(Dt))2t|288δ|d_{r}(V_{1}(D-\Delta-t),V_{2}(D-t))-2t|\leq 288\delta. We can assume without loss of generality that t1t2t_{1}\leq t_{2}. Lemma 4.3 applied with x=V1(t1)x=V_{1}(t_{1}) and with y=V2(t2)y=V_{2}(t_{2}) gives us d(V1(D),V2(D))288δd(V_{1}(D),V_{2}(D))\leq 288\delta. Furthermore, the relative distance is smaller than the distance, hence dr(V1(D),V2(D))288δd_{r}(V_{1}(D),V_{2}(D))\leq 288\delta. Now, if we move the two points backward from V1(DΔ)V_{1}(D-\Delta) and V2(D)V_{2}(D) along V1V_{1} and V2V_{2}, we have for t[0,D]t\in[0,D]:

dr(V1(DΔt),V2(Dt))=\displaystyle d_{r}(V_{1}(D-\Delta-t),V_{2}(D-t))= d(V1(DΔt),V2(Dt))Δ\displaystyle d(V_{1}(D-\Delta-t),V_{2}(D-t))-\Delta (27)
\displaystyle\leq d(V1(DΔt),V1(DΔ))+d(V1(DΔ),V2(D))\displaystyle d(V_{1}(D-\Delta-t),V_{1}(D-\Delta))+d(V_{1}(D-\Delta),V_{2}(D))
+d(V2(D),V2(Dt))Δ,\displaystyle+d(V_{2}(D),V_{2}(D-t))-\Delta,
furthermore V1 and V2 are geodesics, then:\displaystyle\text{furthermore }V_{1}\text{ and }V_{2}\text{ are geodesics, then:}
\displaystyle\leq t+d(V1(DΔ),V1(D))+d(V1(D),V2(D))+tΔ\displaystyle t+d(V_{1}(D-\Delta),V_{1}(D))+d(V_{1}(D),V_{2}(D))+t-\Delta
\displaystyle\leq t+Δ+288δ+tΔ2t+288δ.\displaystyle t+\Delta+288\delta+t-\Delta\leq 2t+288\delta. (28)

Let us consider a geodesic α\alpha between V1(t1)V_{1}(t_{1}) and V2(t2)V_{2}(t_{2}). Since HH is a Busemann space, and thanks to Lemma 4.3 we have d(V1(DΔt),α(DΔt1t))144δd\left(V_{1}(D-\Delta-t),\alpha(D-\Delta-t_{1}-t)\right)\leq 144\delta and d(V2(Dt),α(Dt1+t))144δd\left(V_{2}(D-t),\alpha(D-t_{1}+t)\right)\leq 144\delta. Then the second part of our inequality follows:

dr(V1(DΔt),V2(Dt))=\displaystyle d_{r}(V_{1}(D-\Delta-t),V_{2}(D-t))= d(V1(DΔt),V2(Dt))Δ\displaystyle d(V_{1}(D-\Delta-t),V_{2}(D-t))-\Delta
\displaystyle\geq d(α(DΔt1t),α(Dt1+t))\displaystyle d(\alpha(D-\Delta-t_{1}-t),\alpha(D-t_{1}+t))
d(V1(DΔt),α(DΔt1t))\displaystyle-d(V_{1}(D-\Delta-t),\alpha(D-\Delta-t_{1}-t))
d(V2(Dt),α(Dt1+t))Δ\displaystyle-d(V_{2}(D-t),\alpha(D-t_{1}+t))-\Delta
\displaystyle\geq d(α(DΔt1t),α(Dt1+t))288δΔ\displaystyle d(\alpha(D-\Delta-t_{1}-t),\alpha(D-t_{1}+t))-288\delta-\Delta
\displaystyle\geq 2t+Δ288δΔ2t288δ.\displaystyle 2t+\Delta-288\delta-\Delta\geq 2t-288\delta. (29)

The next lemma is a slight generalisation of Lemma 4.6. The difference being that we control the length of a path with its maximal height instead of the distance between the projection of its extremities on a horosphere.

Lemma 4.8.

Let δ1\delta\geq 1 and HH be a proper, δ\delta-hyperbolic, Busemann space. Let x,yHx,y\in H such that h(x)h(y)h(x)\leq h(y). Let α\alpha be a path connecting xx to yy with h+(α)h(y)+12dr(x,y)ΔHh^{+}(\alpha)\leq h(y)+\frac{1}{2}d_{r}(x,y)-\Delta H and where ΔH\Delta H is a positive number such that ΔH>555δ\Delta H>555\delta. Then:

l(α)d(x,y)+253021δΔH2ΔH24δ.\displaystyle l(\alpha)\geq d(x,y)+2^{-530}2^{\frac{1}{\delta}\Delta H}-2\Delta H-24\delta.
Refer to caption
Figure 10: Proof of Lemma 4.8
Proof.

This proof is illustrated in Figure 10. Since h+(α)h(y)h^{+}(\alpha)\geq h(y) we have that 12dr(x,y)ΔH\frac{1}{2}d_{r}(x,y)\geq\Delta H. Applying Lemma 4.7 with V1=VxV_{1}=V_{x}, V2=VyV_{2}=V_{y}, t1=h(x)t_{1}=h(x), t2=h(y)t_{2}=h(y) and t=ΔHt=\Delta H we have:

|dr(Vx(h(x)+12dr(x,y)ΔH),Vy(h(y)+12dr(x,y)ΔH))2ΔH|288δ.\displaystyle\left|d_{r}\left(V_{x}\left(h(x)+\frac{1}{2}d_{r}(x,y)-\Delta H\right),V_{y}\left(h(y)+\frac{1}{2}d_{r}(x,y)-\Delta H\right)\right)-2\Delta H\right|\leq 288\delta.

Then we have:

dr(Vx(h(x)+12dr(x,y)ΔH),Vy(h(y)+12dr(x,y)ΔH))2ΔH288δ.\displaystyle d_{r}\left(V_{x}\left(h(x)+\frac{1}{2}d_{r}(x,y)-\Delta H\right),V_{y}\left(h(y)+\frac{1}{2}d_{r}(x,y)-\Delta H\right)\right)\geq 2\Delta H-288\delta.

Furthermore, Lemma 4.4 applied on Vx(h(x)+12dr(x,y)ΔH)V_{x}\left(h(x)+\frac{1}{2}d_{r}(x,y)-\Delta H\right) and Vy(h(y)+12dr(x,y)ΔH)V_{y}\left(h(y)+\frac{1}{2}d_{r}(x,y)-\Delta H\right) gives (notice that the only difference between the two sides of the following inequality is the height in the vertical geodesic VxV_{x}):

dr(Vx(h(x)+12dr(x,y)ΔH),Vy(h(y)+12dr(x,y)ΔH))\displaystyle d_{r}\left(V_{x}\left(h(x)+\frac{1}{2}d_{r}(x,y)-\Delta H\right),V_{y}\left(h(y)+\frac{1}{2}d_{r}(x,y)-\Delta H\right)\right)
d(Vx(h(y)+12dr(x,y)ΔH),Vy(h(y)+12dr(x,y)ΔH))+54δ.\displaystyle\leq d\left(V_{x}\left(h(y)+\frac{1}{2}d_{r}(x,y)-\Delta H\right),V_{y}\left(h(y)+\frac{1}{2}d_{r}(x,y)-\Delta H\right)\right)+54\delta.

Then:

d(Vx(h(y)+12dr(x,y)ΔH),Vy(h(y)+12dr(x,y)ΔH))2ΔH342δ>768δ.\displaystyle d\left(V_{x}\left(h(y)+\frac{1}{2}d_{r}(x,y)-\Delta H\right),V_{y}\left(h(y)+\frac{1}{2}d_{r}(x,y)-\Delta H\right)\right)\geq 2\Delta H-342\delta>768\delta. (30)

Let us denote t0=h(y)+12dr(x,y)ΔHt_{0}=h(y)+\frac{1}{2}d_{r}(x,y)-\Delta H. Thanks to inequality (30) the hypothesis of Lemma 4.6 holds with x0=Vx(h(y)+12dr(x,y)ΔH)x_{0}=V_{x}\left(h(y)+\frac{1}{2}d_{r}(x,y)-\Delta H\right) and y0=Vy(h(y)+12dr(x,y)ΔH)y_{0}=V_{y}\left(h(y)+\frac{1}{2}d_{r}(x,y)-\Delta H\right). Applying this lemma on α\alpha provides:

l(α)\displaystyle l(\alpha) Δh(x,x0)+Δh(y,y0)+2386212δd(x0,y0)24δ\displaystyle\geq\Delta h(x,x_{0})+\Delta h(y,y_{0})+2^{-386}2^{\frac{1}{2\delta}d(x_{0},y_{0})}-24\delta
h(y)+12dr(x,y)ΔHh(x)+h(y)+12dr(x,y)ΔHh(y)+2386212δd(x0,y0)24δ\displaystyle\geq h(y)+\frac{1}{2}d_{r}(x,y)-\Delta H-h(x)+h(y)+\frac{1}{2}d_{r}(x,y)-\Delta H-h(y)+2^{-386}2^{\frac{1}{2\delta}d(x_{0},y_{0})}-24\delta
Δh(y,x)+dr(y,x)2ΔH+2386212δd(x0,y0)24δ\displaystyle\geq\Delta h(y,x)+d_{r}(y,x)-2\Delta H+2^{-386}2^{\frac{1}{2\delta}d(x_{0},y_{0})}-24\delta
d(x,y)2ΔH+2386212δ(2ΔH288δ)24δ, by equation (30).\displaystyle\geq d(x,y)-2\Delta H+2^{-386}2^{\frac{1}{2\delta}(2\Delta H-288\delta)}-24\delta\text{, by equation (\ref{ControleDHInproof}).}
d(x,y)+253021δΔH2ΔH24δ.\displaystyle\geq d(x,y)+2^{-530}2^{\frac{1}{\delta}\Delta H}-2\Delta H-24\delta.

This previous lemma tells us that a path needs to reach a sufficient height for its length not to increase to much. We give now a generalisation of Lemma 4.8, where the path reaches a given low height before going to its end point. This proposition will be the central result for the understanding of the geodesic shapes in a horospherical product.

Proposition 4.9.

Let δ1\delta\geq 1 and HH be a proper, δ\delta-hyperbolic, Busemann space. Let x,y,mHx,y,m\ \in H such that h(m)h(x)h(y)h(m)\leq h(x)\leq h(y) and let α:[0,T]H\alpha:[0,T]\to H be a path connecting xx to yy such that h(α)=h(m)h^{-}(\alpha)=h(m). With the notation ΔH=h(y)+12dr(x,y)h+(α)\Delta H=h(y)+\frac{1}{2}d_{r}(x,y)-h^{+}(\alpha) we have:

l(α)2Δh(x,m)+d(x,y)+285021δΔH1max(0,2ΔH)1700δ.\displaystyle l(\alpha)\geq 2\Delta h(x,m)+d(x,y)+2^{-850}2^{\frac{1}{\delta}\Delta H}-1-\max(0,2\Delta H)-1700\delta.
Refer to caption
Figure 11: Proof of Proposition 4.9
Proof.

This proof is illustrated in Figure 11. We first assume that ΔH>850δ\Delta H>850\delta, we postpone the other cases to the end of this proof. Let VxV_{x} and VmV_{m} be vertical geodesics respectively containing xx and mm. We call x1=Vx(h(y))x_{1}=V_{x}(h(y)) and m1=Vm(h(y))m_{1}=V_{m}(h(y)) the points of VxV_{x} and VmV_{m} at height h(y)h(y). First, Lemma 4.4 provides |d(x1,y)dr(x,y)|54δ|d(x_{1},y)-d_{r}(x,y)|\leq 54\delta. Then we consider a geodesic triangle between the three points x1x_{1}, m1m_{1} and yy. Lemma 4.3 tells us that h+([x1,y])h(y)+12dr(x1,y)96δh(y)+12dr(x,y)123δh^{+}([x_{1},y])\geq h(y)+\frac{1}{2}d_{r}(x_{1},y)-96\delta\geq h(y)+\frac{1}{2}d_{r}(x,y)-123\delta. Since [x1,y][x_{1},y] is included in the δ\delta-neighbourhood of the two other sides of the geodesic triangle, one of the two following inequalities holds:

1)\displaystyle 1) h+([x1,m1])h(y)+12dr(x,y)124δ\displaystyle\ h^{+}([x_{1},m_{1}])\geq h(y)+\frac{1}{2}d_{r}(x,y)-124\delta
2)\displaystyle 2) h+([m1,y])h(y)+12dr(x,y)124δ.\displaystyle\ h^{+}([m_{1},y])\geq h(y)+\frac{1}{2}d_{r}(x,y)-124\delta.

We first assume 1)1) that h+([x1,m1])h(y)+12dr(x,y)124δh^{+}([x_{1},m_{1}])\geq h(y)+\frac{1}{2}d_{r}(x,y)-124\delta, hence:

d(x1,m1)dr(x,y)248δ.d(x_{1},m_{1})\geq d_{r}(x,y)-248\delta. (31)

Let us denote m0=Vm(h(x))m_{0}=V_{m}(h(x)) the point of VmV_{m} at height h(x)h(x). By considering the 2δ2\delta-slim quadrilateral between the points x,x1,m0,m1x,x_{1},m_{0},m_{1} we have that [x1,m1][x_{1},m_{1}] is in the 2δ2\delta- neighbourhood of [x1,x][x,m0][m0,m][x_{1},x]\cup[x,m_{0}]\cup[m_{0},m]. Furthermore dr(x,y)2(h+(α)h(y))+2ΔH2ΔH1700δd_{r}(x,y)\geq 2(h^{+}(\alpha)-h(y))+2\Delta H\geq 2\Delta H\geq 1700\delta by assumption, then h+([x1,m1])h(y)+12dr(x,y)124δh(y)+726δh^{+}([x_{1},m_{1}])\geq h(y)+\frac{1}{2}d_{r}(x,y)-124\delta\geq h(y)+726\delta. Since h+([x1,x])=h+([m0,m1])=h(y)h^{+}([x_{1},x])=h^{+}([m_{0},m_{1}])=h(y) we have that h+([x,m0])h+([x1,m1])2δh(y)+724δh^{+}([x,m_{0}])\geq h^{+}([x_{1},m_{1}])-2\delta\geq h(y)+724\delta. Moreover:

dr(x,m0)=d(x,m0)h+([x,m0])h(x)h(y)h(x)+724δΔh(x,y)+724δ,\displaystyle d_{r}(x,m_{0})=d(x,m_{0})\geq h^{+}([x,m_{0}])-h(x)\geq h(y)-h(x)+724\delta\geq\Delta h(x,y)+724\delta,

which allows us to use Lemma 4.7 on VxV_{x} and VmV_{m} with t=12dr(x,m0)Δh(x,y)0t=\frac{1}{2}d_{r}(x,m_{0})-\Delta h(x,y)\geq 0 and t1=t2=h(x)t_{1}=t_{2}=h(x). It gives:

|dr(Vx(h(x)+Δh(x,y)),Vm(h(x)+Δh(x,y)))dr(x,m0)+2Δh(x,y)|288δ,\displaystyle\left|d_{r}\Big{(}V_{x}\big{(}h(x)+\Delta h(x,y)\big{)},V_{m}\big{(}h(x)+\Delta h(x,y)\big{)}\Big{)}-d_{r}(x,m_{0})+2\Delta h(x,y)\right|\leq 288\delta,

which implies in particular:

dr(Vx(h(y)),Vm(h(y)))+2Δh(x,y)288δdr(x,m0).d_{r}\Big{(}V_{x}\big{(}h(y)\big{)},V_{m}\big{(}h(y)\big{)}\Big{)}+2\Delta h(x,y)-288\delta\leq d_{r}(x,m_{0}). (32)

Combining inequalities (31) and (32) we have d(x,m0)=dr(x,m0)dr(x,y)+2Δh(x,y)536δd(x,m_{0})=d_{r}(x,m_{0})\geq d_{r}(x,y)+2\Delta h(x,y)-536\delta. Lemma 4.4 used on xx and mm then gives:

dr(x,m)d(x,m0)54δdr(x,y)+2Δh(x,y)590δ.\displaystyle d_{r}(x,m)\geq d(x,m_{0})-54\delta\geq d_{r}(x,y)+2\Delta h(x,y)-590\delta. (33)

Let us denote α1\alpha_{1} the part of α\alpha linking xx to mm and α2\alpha_{2} the part of α\alpha linking mm to yy. We have:

h+(α1)\displaystyle h^{+}(\alpha_{1})\leq h+(α)h(y)+12dr(x,y)ΔHh(x)+Δh(x,y)+12dr(x,y)ΔH\displaystyle h^{+}(\alpha)\leq h(y)+\frac{1}{2}d_{r}(x,y)-\Delta H\leq h(x)+\Delta h(x,y)+\frac{1}{2}d_{r}(x,y)-\Delta H
\displaystyle\leq h(x)+12(2Δh(x,y)+dr(x,y))ΔHh(x)+12(dr(x,m)+590δ)ΔH, by inequality (33).\displaystyle h(x)+\frac{1}{2}\left(2\Delta h(x,y)+d_{r}(x,y)\right)-\Delta H\leq h(x)+\frac{1}{2}\left(d_{r}(x,m)+590\delta\right)-\Delta H\text{, by inequality }(\ref{UseInRP1}).
\displaystyle\leq h(x)+12dr(x,m)+295δΔHh(x)+12dr(x,m)ΔH,\displaystyle h(x)+\frac{1}{2}d_{r}(x,m)+295\delta-\Delta H\leq h(x)+\frac{1}{2}d_{r}(x,m)-\Delta H^{\prime},

with ΔH=ΔH295δ\Delta H^{\prime}=\Delta H-295\delta. By assumption ΔH>850δ\Delta H>850\delta, hence ΔH>555δ\Delta H^{\prime}>555\delta which allows us to apply Lemma 4.8 on α1\alpha_{1}. It follows:

l(α1)\displaystyle l(\alpha_{1})\geq d(x,m)+253021δΔH2ΔH24δ\displaystyle d(x,m)+2^{-530}2^{\frac{1}{\delta}\Delta H^{\prime}}-2\Delta H^{\prime}-24\delta
\displaystyle\geq Δh(x,m)+dr(x,m)+282521δΔH2ΔH614δ, since ΔH=ΔH295δ.\displaystyle\Delta h(x,m)+d_{r}(x,m)+2^{-825}2^{\frac{1}{\delta}\Delta H}-2\Delta H-614\delta\text{, since }\Delta H^{\prime}=\Delta H-295\delta.
\displaystyle\geq Δh(x,m)+dr(x,y)590δ+282521δΔH2ΔH614δ, by inequality (33)\displaystyle\Delta h(x,m)+d_{r}(x,y)-590\delta+2^{-825}2^{\frac{1}{\delta}\Delta H}-2\Delta H-614\delta\text{, by inequality (\ref{UseInRP1})}
\displaystyle\geq Δh(x,m)+dr(x,y)+282521δΔH2ΔH1204δ.\displaystyle\Delta h(x,m)+d_{r}(x,y)+2^{-825}2^{\frac{1}{\delta}\Delta H}-2\Delta H-1204\delta.

We use in the following inequalities that l(α2)d(m,y)Δh(m,y)l(\alpha_{2})\geq d(m,y)\geq\Delta h(m,y), we have:

l(α)\displaystyle l(\alpha) l(α1)+l(α2)Δh(x,m)+dr(x,y)+282521δΔH2ΔH1204δ+Δh(m,y)\displaystyle\geq l(\alpha_{1})+l(\alpha_{2})\geq\Delta h(x,m)+d_{r}(x,y)+2^{-825}2^{\frac{1}{\delta}\Delta H}-2\Delta H-1204\delta+\Delta h(m,y)
2Δh(x,m)+Δh(x,y)+dr(x,y)+282521δΔH2ΔH1204δ\displaystyle\geq 2\Delta h(x,m)+\Delta h(x,y)+d_{r}(x,y)+2^{-825}2^{\frac{1}{\delta}\Delta H}-2\Delta H-1204\delta
2Δh(x,m)+d(x,y)+282521δΔH2ΔH1204δ\displaystyle\geq 2\Delta h(x,m)+d(x,y)+2^{-825}2^{\frac{1}{\delta}\Delta H}-2\Delta H-1204\delta
2Δh(x,m)+d(x,y)+285021δΔH12ΔH1700δ,\displaystyle\geq 2\Delta h(x,m)+d(x,y)+2^{-850}2^{\frac{1}{\delta}\Delta H}-1-2\Delta H-1700\delta,
2Δh(x,m)+d(x,y)+285021δΔH1max(0,2ΔH)1700δ, since ΔH>850δ0,\displaystyle\geq 2\Delta h(x,m)+d(x,y)+2^{-850}2^{\frac{1}{\delta}\Delta H}-1-\max(0,2\Delta H)-1700\delta\text{, since }\Delta H>850\delta\geq 0,

which ends the proof for case 1).

Now assume that 2)2) holds, which is h+([m1,y])h(y)+12dr(x,y)124δh^{+}([m_{1},y])\geq h(y)+\frac{1}{2}d_{r}(x,y)-124\delta. It implies d(m1,y)dr(x,y)248δd(m_{1},y)\geq d_{r}(x,y)-248\delta, then:

h+(α2)\displaystyle h^{+}(\alpha_{2})\leq h+(α)h(y)+12dr(x,y)ΔHh(y)+12dr(m1,y)+124δΔH\displaystyle h^{+}(\alpha)\leq h(y)+\frac{1}{2}d_{r}(x,y)-\Delta H\leq h(y)+\frac{1}{2}d_{r}(m_{1},y)+124\delta-\Delta H
h(y)+12dr(m1,y)ΔH′′,\displaystyle\leq h(y)+\frac{1}{2}d_{r}(m_{1},y)-\Delta H^{\prime\prime},

with ΔH′′=ΔH124δ\Delta H^{\prime\prime}=\Delta H-124\delta. Lemma 4.4 provides us with:

dr(m,y)d(m1,y)54δdr(x,y)302δ.d_{r}(m,y)\geq d(m_{1},y)-54\delta\geq d_{r}(x,y)-302\delta. (34)

Since ΔH>850δ\Delta H>850\delta, we have ΔH′′>726δ\Delta H^{\prime\prime}>726\delta which allows us to apply Lemma 4.8 on α2\alpha_{2}. It follows that:

l(α2)\displaystyle l(\alpha_{2})\geq d(y,m)+253021δΔH′′2ΔH′′24δ\displaystyle d(y,m)+2^{-530}2^{\frac{1}{\delta}\Delta H^{\prime\prime}}-2\Delta H^{\prime\prime}-24\delta
\displaystyle\geq Δh(y,m)+dr(y,m)+265421δΔH2ΔH272δ, since ΔH′′=ΔH124δ.\displaystyle\Delta h(y,m)+d_{r}(y,m)+2^{-654}2^{\frac{1}{\delta}\Delta H}-2\Delta H-272\delta\text{, since }\Delta H^{\prime\prime}=\Delta H-124\delta.
\displaystyle\geq Δh(y,m)+dr(x,y)+265421δΔH2ΔH574δ, by inequality (32).\displaystyle\Delta h(y,m)+d_{r}(x,y)+2^{-654}2^{\frac{1}{\delta}\Delta H}-2\Delta H-574\delta\text{, by inequality (\ref{UseInRP3})}.

Hence:

l(α)\displaystyle l(\alpha) l(α1)+l(α2)Δh(x,m)+Δh(y,m)+dr(x,y)+265421δΔH2ΔH574δ\displaystyle\geq l(\alpha_{1})+l(\alpha_{2})\geq\Delta h(x,m)+\Delta h(y,m)+d_{r}(x,y)+2^{-654}2^{\frac{1}{\delta}\Delta H}-2\Delta H-574\delta
2Δh(x,m)+Δh(y,x)+dr(x,y)+265421δΔH2ΔH574δ\displaystyle\geq 2\Delta h(x,m)+\Delta h(y,x)+d_{r}(x,y)+2^{-654}2^{\frac{1}{\delta}\Delta H}-2\Delta H-574\delta
2Δh(x,m)+d(x,y)+265421δΔH2ΔH574δ\displaystyle\geq 2\Delta h(x,m)+d(x,y)+2^{-654}2^{\frac{1}{\delta}\Delta H}-2\Delta H-574\delta
2Δh(x,m)+d(x,y)+285021δΔH1max(0,2ΔH)1700δ.\displaystyle\geq 2\Delta h(x,m)+d(x,y)+2^{-850}2^{\frac{1}{\delta}\Delta H}-1-\max(0,2\Delta H)-1700\delta.

There remains to treat the case when ΔH850δ\Delta H\leq 850\delta, where ΔH=h(y)+12dr(x,y)h+(α)\Delta H=h(y)+\frac{1}{2}d_{r}(x,y)-h^{+}(\alpha). Let nn denote a point of α\alpha such that h(n)=h+(α)h(n)=h^{+}(\alpha). If mm comes before nn, we have l(α)d(x,m)+d(m,n)+d(n,y)l(\alpha)\geq d(x,m)+d(m,n)+d(n,y). Otherwise nn comes before mm and we have l(α)d(x,n)+d(n,m)+d(m,y)l(\alpha)\geq d(x,n)+d(n,m)+d(m,y). Since h(m)h(x)h(y)h(n)h(m)\leq h(x)\leq h(y)\leq h(n) we always have:

l(α)\displaystyle l(\alpha) Δh(x,m)+Δh(m,n)+Δh(n,y)\displaystyle\geq\Delta h(x,m)+\Delta h(m,n)+\Delta h(n,y)
Δh(x,m)+Δh(m,x)+Δh(x,y)+Δh(y,n)+Δh(y,n)\displaystyle\geq\Delta h(x,m)+\Delta h(m,x)+\Delta h(x,y)+\Delta h(y,n)+\Delta h(y,n)
2Δh(x,m)+Δh(x,y)+2(h+(α)h(y))\displaystyle\geq 2\Delta h(x,m)+\Delta h(x,y)+2(h^{+}(\alpha)-h(y))
2Δh(x,m)+Δh(x,y)+dr(x,y)2ΔH2Δh(m,x)+d(x,y)1700δ.\displaystyle\geq 2\Delta h(x,m)+\Delta h(x,y)+d_{r}(x,y)-2\Delta H\geq 2\Delta h(m,x)+d(x,y)-1700\delta.

Furthermore ΔH850δ\Delta H\leq 850\delta, then 285021δΔH12^{-850}2^{\frac{1}{\delta}\Delta H}\leq 1. Therefore:

l(α)\displaystyle l(\alpha) 2Δh(m,x)+d(x,y)+285021δΔH1max(0,2ΔH)1700δ,\displaystyle\geq 2\Delta h(m,x)+d(x,y)+2^{-850}2^{\frac{1}{\delta}\Delta H}-1-\max(0,2\Delta H)-1700\delta,

which ends the proof for the remaining case. ∎

4.3 Length of geodesic segments in horospherical products

From now on, unless otherwise specified, XX and YY will always be two proper, geodesically complete, δ\delta-hyperbolic, Busemann spaces with δ1\delta\geq 1, and NN will always be an admissible norm. Let pp and qq be two points of XYX\bowtie Y, and let α\alpha be a geodesic of XYX\bowtie Y connecting them. We first prove an upper bound on the length of α\alpha by computing the length of a path γXY\gamma\subset X\bowtie Y linking pp to qq

Lemma 4.10.

Let p=(pX,pY)p=(p_{X},p_{Y}) and q=(qX,qY)q=(q_{X},q_{Y}) be points of the horospherical product XYX\bowtie Y. There exists a path γ\gamma connecting pp to qq such that:

lN(γ)dr(pY,qY)+dr(pX,qX)+Δh(p,q)+1152δCN.\displaystyle l_{N}(\gamma)\leq d_{r}(p_{Y},q_{Y})+d_{r}(p_{X},q_{X})+\Delta h(p,q)+1152\delta C_{N}.
Proof.

Without loss of generality, we assume h(p)h(q)h(p)\leq h(q). One can follow the idea of the proof on Figure 12. We consider VpXV_{p_{X}} and VqXV_{q_{X}} two vertical geodesics of XX containing pXp_{X} and qXq_{X} respectively. Similarly let VpYV_{p_{Y}} and VqYV_{q_{Y}} be two vertical geodesics of YY containing pYp_{Y} and qYq_{Y} respectively. We will use them to construct γ\gamma. Let A1A_{1} be the point of the vertical geodesic (VpX,VpY)XY(V_{p_{X}},V_{p_{Y}})\subset X\bowtie Y at height h(p)12dr(pY,qY)h(p)-\frac{1}{2}d_{r}(p_{Y},q_{Y}) and A2A_{2} be the point of the vertical geodesic (VpX,VqY)XY(V_{p_{X}},V_{q_{Y}})\subset X\bowtie Y at the same height h(p)12dr(pY,qY)h(p)-\frac{1}{2}d_{r}(p_{Y},q_{Y}). Let A3A_{3} be the point of the vertical geodesic (VpX,VqY)(V_{p_{X}},V_{q_{Y}}) at height h(q)+12dr(pX,qX)h(q)+\frac{1}{2}d_{r}(p_{X},q_{X}) and A4A_{4} be the point of the vertical geodesic (VqX,VqY)(V_{q_{X}},V_{q_{Y}}) at the same height h(q)+12dr(pX,qX)h(q)+\frac{1}{2}d_{r}(p_{X},q_{X}). Then γ:=γ1γ2γ3γ4γ5\gamma:=\gamma_{1}\cup\gamma_{2}\cup\gamma_{3}\cup\gamma_{4}\cup\gamma_{5} is constructed as follows:

      - γ1\gamma_{1} is the part of (VpX,VpY)(V_{p_{X}},V_{p_{Y}}) linking pp to A1A_{1}.
      - γ2\gamma_{2} is a geodesic linking A1A_{1} to A2A_{2}. Such a geodesic exists by Property 3.11.
      - γ3\gamma_{3} is the part of (VpX,VqY)(V_{p_{X}},V_{q_{Y}}) linking A2A_{2} to A3A_{3}.
      - γ4\gamma_{4} is a geodesic linking A3A_{3} to A4A_{4}. Such a geodesic exists by Property 3.11.
      - γ5\gamma_{5} is the part of (VqX,VqY)(V_{q_{X}},V_{q_{Y}}) linking A4A_{4} to qq.

In fact A1A_{1} and A2A_{2} are close to each other. Indeed, the two points A1=(A1,X,A1,Y)A_{1}=(A_{1,X},A_{1,Y}) and A2=(A2,X,A2,Y)A_{2}=(A_{2,X},A_{2,Y}) are characterised by the two geodesics (VpX,VpY)(V_{p_{X}},V_{p_{Y}}) and (VpX,VqY)(V_{p_{X}},V_{q_{Y}}). Then, because h(q)=Y(qY)Y(pY)-h(q)=Y(q_{Y})\leq Y(p_{Y}), Lemma 4.3 applied on pYp_{Y} and qYq_{Y} in YY gives us dY(A1,Y,A2,Y)288δd_{Y}(A_{1,Y},A_{2,Y})\leq 288\delta. Furthermore Property 3.11 provides us with d2CN(dX+dY)d_{\bowtie}\leq 2C_{N}(d_{X}+d_{Y}), however we have that A1,X=A2,XA_{1,X}=A_{2,X} hence:

d(A1,A2)576δCN.\displaystyle d_{\bowtie}(A_{1},A_{2})\leq 576\delta C_{N}. (35)

Lemma 4.3 applied on pXp_{X} and qXq_{X} provides similarly:

d(A3,A4)576δCN,\displaystyle d_{\bowtie}(A_{3},A_{4})\leq 576\delta C_{N}, (36)

which gives us:

lN(γ)=\displaystyle l_{N}(\gamma)= lN(γ1)+lN(γ2)+lN(γ3)+lN(γ4)+lN(γ5)\displaystyle l_{N}(\gamma_{1})+l_{N}(\gamma_{2})+l_{N}(\gamma_{3})+l_{N}(\gamma_{4})+l_{N}(\gamma_{5})
=\displaystyle= d(p,A1)+d(A1,A2)+d(A2,A3)+d(A3,A4)+d(A4,q)\displaystyle d_{\bowtie}(p,A_{1})+d_{\bowtie}(A_{1},A_{2})+d_{\bowtie}(A_{2},A_{3})+d_{\bowtie}(A_{3},A_{4})+d_{\bowtie}(A_{4},q)
Since γ1,γ3 and γ5 are vertical geodesics, we have:\displaystyle\text{Since }\gamma_{1},\ \gamma_{3}\text{ and }\gamma_{5}\text{ are vertical geodesics, we have:}
=\displaystyle= Δh(p,A1)+d(A1,A2)+Δh(A2,A3)+d(A3,A4)+Δh(A4,q)\displaystyle\Delta h(p,A_{1})+d_{\bowtie}(A_{1},A_{2})+\Delta h(A_{2},A_{3})+d_{\bowtie}(A_{3},A_{4})+\Delta h(A_{4},q)
=\displaystyle= 12dr(pY,qY)+d(A1,A2)+12dr(pY,qY)+12dr(pX,qX)+Δh(p,q)\displaystyle\frac{1}{2}d_{r}(p_{Y},q_{Y})+d_{\bowtie}(A_{1},A_{2})+\frac{1}{2}d_{r}(p_{Y},q_{Y})+\frac{1}{2}d_{r}(p_{X},q_{X})+\Delta h(p,q)
+d(A3,A4)+12dr(pX,qX)\displaystyle+d_{\bowtie}(A_{3},A_{4})+\frac{1}{2}d_{r}(p_{X},q_{X})
\displaystyle\leq dr(pY,qY)+dr(pX,qX)+Δh(p,q)+1152δCN, by inequalities (35) and (36).\displaystyle d_{r}(p_{Y},q_{Y})+d_{r}(p_{X},q_{X})+\Delta h(p,q)+1152\delta C_{N}\text{, by inequalities (\ref{IneqA1A2}) and (\ref{IneqA3A4}).}
Refer to caption
Figure 12: Construction of the path γ\gamma when h(p)h(q)h(p)\leq h(q) for Lemma 4.10.

We are aiming to use Proposition 4.9 on the two components αXX\alpha_{X}\subset X and αYY\alpha_{Y}\subset Y of α\alpha to obtain lower bounds on their lengths. We hence need the following lemma to ensure us that when α\alpha is a geodesic, the exponential term in the inequality of Proposition 4.9 will be small.

Lemma 4.11.

Let C=2853δCN+2851C=2853\delta C_{N}+2^{851} and let e:e:\mathbb{R}\rightarrow\mathbb{R} be a map defined by t\forall t\in\mathbb{R}, e(t)=1C2C1t2max(0,t)e(t)=\frac{1}{C}2^{C^{-1}t}-2\max(0,t). Then t\forall t\in\mathbb{R}:

  1. 1.

    e(t)7C2e(t)\geq-7C^{2}

  2. 2.

    (e(t)2853δCN)(t3C2)(\ e(t)\leq 2853\delta C_{N}\ )\Rightarrow(\ t\leq 3C^{2}\ ).

Proof.

For all time tt, we have that e(t)=1C2C1t2max(0,t)1C2C1t2t=:e1(t)e(t)=\frac{1}{C}2^{C^{-1}t}-2\max(0,t)\leq\frac{1}{C}2^{C^{-1}t}-2t=:e_{1}(t). The derivative of e1e_{1} is e1(t)=log(2)C22C1t2e_{1}^{\prime}(t)=\frac{\log(2)}{C^{2}}2^{C^{-1}t}-2, which is non negative tClog2(2log(2)C2)\forall t\geq C\log_{2}\left(\frac{2}{\log(2)}C^{2}\right) and non positive otherwise. Then t\forall t\in\mathbb{R}:

e1(t)\displaystyle e_{1}(t) e1(log2(2log(2)C2))2Clog(2)2Clog2(2log(2)C2)2Clog(2)4Clog2(2log(2)C)\displaystyle\geq e_{1}\left(\log_{2}\left(\frac{2}{\log(2)}C^{2}\right)\right)\geq\frac{2C}{\log(2)}-2C\log_{2}\left(\frac{2}{\log(2)}C^{2}\right)\geq\frac{2C}{\log(2)}-4C\log_{2}\left(\sqrt{\frac{2}{\log(2)}}C\right)
2Clog(2)42log(2)C242log(2)C27C2.\displaystyle\geq\frac{2C}{\log(2)}-4\sqrt{\frac{2}{\log(2)}}C^{2}\geq-4\sqrt{\frac{2}{\log(2)}}C^{2}\geq-7C^{2}.

Since C2log(2)C\geq\frac{2}{\log(2)} we have 3C2Clog2(C3)Clog2(2log(2)C2)3C^{2}\geq C\log_{2}(C^{3})\geq C\log_{2}\left(\frac{2}{\log(2)}C^{2}\right), then e1e_{1} is non decreasing on [Clog2(C3);+[[C\log_{2}(C^{3});+\infty[. We show that e1(3C2)2853δCNe_{1}(3C^{2})\geq 2853\delta C_{N}:

e1(3C2)e1(Clog2(C3))=\displaystyle e_{1}(3C^{2})\geq e_{1}(C\log_{2}(C^{3}))= 1C2Clog2(C3)C2Clog2(C3)=C(C6log2(C)).\displaystyle\frac{1}{C}2^{\frac{C\log_{2}(C^{3})}{C}}-2C\log_{2}(C^{3})=C(C-6\log_{2}(C)).

Since C2851C\geq 2^{851} we have C6log2(C)1C-6\log_{2}(C)\geq 1 and since C2853δCNC\geq 2853\delta C_{N} we have that e1(3C2)C×12853δCNe_{1}(3C^{2})\geq C\times 1\geq 2853\delta C_{N} which provides t[3C2;+[\forall t\in[3C^{2};+\infty[ we have e1(t)2853δCNe_{1}(t)\geq 2853\delta C_{N}. Furthermore t+\forall t\in\mathbb{R}^{+}, e1(t)=e(t)e_{1}(t)=e(t), hence t[3C2;+[\forall t\in[3C^{2};+\infty[ we have e(t)2853δCNe(t)\geq 2853\delta C_{N} which implies point 2.2. of this lemma. ∎

The following lemma provides us with a lower bound matching Lemma 4.10, and a first control on the heights a geodesic segment must reach.

Lemma 4.12.

Let p=(pX,pY)p=(p_{X},p_{Y}) and q=(qX,qY)q=(q_{X},q_{Y}) be two points of XYX\bowtie Y such that h(p)h(q)h(p)\leq h(q). Let α=(αX,αY)\alpha=(\alpha_{X},\alpha_{Y}) be a geodesic segment of XYX\bowtie Y linking pp to qq. Let C0=(2853δCN+2851)2C_{0}=(2853\delta C_{N}+2^{851})^{2}, we have:

  1. 1.

    l(α)Δh(p,q)+dr(pY,qY)+dr(pX,qX)15C0l(\alpha)\geq\Delta h(p,q)+d_{r}(p_{Y},q_{Y})+d_{r}(p_{X},q_{X})-15C_{0}

  2. 2.

    h+(α)h(q)+12dr(pX,qX)3C0h^{+}(\alpha)\geq h(q)+\frac{1}{2}d_{r}(p_{X},q_{X})-3C_{0}

  3. 3.

    h(α)h(p)12dr(pY,qY)+3C0h^{-}(\alpha)\leq h(p)-\frac{1}{2}d_{r}(p_{Y},q_{Y})+3C_{0}.

Proof.

Let us denote ΔH+=h(q)+12dr(pX,qX)h+(α)\Delta H^{+}=h(q)+\frac{1}{2}d_{r}(p_{X},q_{X})-h^{+}(\alpha) and ΔH=h(α)(h(p)12dr(pY,qY))\Delta H^{-}=h^{-}(\alpha)-\left(h(p)-\frac{1}{2}d_{r}(p_{Y},q_{Y})\right). Let mm be a point of α\alpha at height h(α)=h(p)12dr(pY,qY)+ΔHh^{-}(\alpha)=h(p)-\frac{1}{2}d_{r}(p_{Y},q_{Y})+\Delta H^{-}, and nn be a point of α\alpha at height h+(α)=h(q)+12dr(pX,qX)ΔH+h^{+}(\alpha)=h(q)+\frac{1}{2}d_{r}(p_{X},q_{X})-\Delta H^{+}. Then Proposition 4.9 used on αX\alpha_{X} gives us:

l(αX)\displaystyle l(\alpha_{X})\geq 2Δh(pX,mX)+d(pX,qX)+285021δΔH+12max(0,ΔH+)1700δ\displaystyle 2\Delta h(p_{X},m_{X})+d(p_{X},q_{X})+2^{-850}2^{\frac{1}{\delta}\Delta H^{+}}-1-2\max(0,\Delta H^{+})-1700\delta
\displaystyle\geq 2h(pX)2(h(pX)12dr(pY,qY)+ΔH)+d(pX,qX)+285021δΔH+1\displaystyle 2h(p_{X})-2\left(h(p_{X})-\frac{1}{2}d_{r}(p_{Y},q_{Y})+\Delta H^{-}\right)+d(p_{X},q_{X})+2^{-850}2^{\frac{1}{\delta}\Delta H^{+}}-1
2max(0,ΔH+)1700δ\displaystyle-2\max(0,\Delta H^{+})-1700\delta
\displaystyle\geq dr(pY,qY)+dr(pX,qX)+Δh(p,q)+285021δΔH+12max(0,ΔH+)2ΔH1700δ.\displaystyle d_{r}(p_{Y},q_{Y})+d_{r}(p_{X},q_{X})+\Delta h(p,q)+2^{-850}2^{\frac{1}{\delta}\Delta H^{+}}-1-2\max(0,\Delta H^{+})-2\Delta H^{-}-1700\delta.

Since h(pY)h(qY)h(p_{Y})\geq h(q_{Y}) and h(nY)=h(qY)12dr(pX,qX)+ΔH+h(n_{Y})=h(q_{Y})-\frac{1}{2}d_{r}(p_{X},q_{X})+\Delta H^{+}, Proposition 4.9 used on αY\alpha_{Y} provides similarly:

l(αY)dr(pX,qX)+dr(pY,qY)+Δh(p,q)+285021δΔH12max(0,ΔH)2ΔH+1700δ.\displaystyle l(\alpha_{Y})\geq d_{r}(p_{X},q_{X})+d_{r}(p_{Y},q_{Y})+\Delta h(p,q)+2^{-850}2^{\frac{1}{\delta}\Delta H^{-}}-1-2\max(0,\Delta H^{-})-2\Delta H^{+}-1700\delta.

Hence by Property 3.4:

lN(α)12(l(αX)+l(αY))\displaystyle l_{N}(\alpha)\geq\frac{1}{2}(l(\alpha_{X})+l(\alpha_{Y}))\geq dr(pX,qX)+dr(pY,qY)+Δh(p,q)1700δ+285121δΔH\displaystyle d_{r}(p_{X},q_{X})+d_{r}(p_{Y},q_{Y})+\Delta h(p,q)-1700\delta+2^{-851}2^{\frac{1}{\delta}\Delta H^{-}}
+285121δΔH+2max(0,ΔH)2max(0,ΔH+)1.\displaystyle+2^{-851}2^{\frac{1}{\delta}\Delta H^{+}}-2\max(0,\Delta H^{-})-2\max(0,\Delta H^{+})-1. (37)

Furthermore, we know by Lemma 4.10 that lN(α)Δh(p,q)+dr(pX,qX)+dr(pY,qY)+1152δCNl_{N}(\alpha)\leq\Delta h(p,q)+d_{r}(p_{X},q_{X})+d_{r}(p_{Y},q_{Y})+1152\delta C_{N}. Since CN1C_{N}\geq 1 we have:

2852δCN\displaystyle 2852\delta C_{N}\geq 285121δΔH2max(0,ΔH)+285121δΔH+2max(0,ΔH+)1.\displaystyle 2^{-851}2^{\frac{1}{\delta}\Delta H^{-}}-2\max(0,\Delta H^{-})+2^{-851}2^{\frac{1}{\delta}\Delta H^{+}}-2\max(0,\Delta H^{+})-1.

Let us denote S:=max{ΔH,ΔH+}S:=\max\{\Delta H^{-},\Delta H^{+}\}. Therefore we have 285121δS2max(0,S)12852δCN2^{-851}2^{\frac{1}{\delta}S}-2\max(0,S)-1\leq 2852\delta C_{N}. By assumption δ1\delta\geq 1 hence 285121δS2max(0,S)2853δCN2^{-851}2^{\frac{1}{\delta}S}-2\max(0,S)\leq 2853\delta C_{N}. Furthermore, for C=2853δCN+2851C=2853\delta C_{N}+2^{851}, we have both 28511C2^{-851}\geq\frac{1}{C} and 1δ1C\frac{1}{\delta}\geq\frac{1}{C}. Then we have 1C2SC2max(0,S)2853δCN\frac{1}{C}2^{\frac{S}{C}}-2\max(0,S)\leq 2853\delta C_{N}. Lemma 4.11 provides S3C2=3C0S\leq 3C^{2}=3C_{0} which implies points 2.2. and 3.3. of our lemma. Lemma 4.11 also provides us with:

14C0\displaystyle-14C_{0}\leq 285121δΔH2max(0,ΔH)+285121δΔH+2max(0,ΔH+).\displaystyle 2^{-851}2^{\frac{1}{\delta}\Delta H^{-}}-2\max(0,\Delta H^{-})+2^{-851}2^{\frac{1}{\delta}\Delta H^{+}}-2\max(0,\Delta H^{+}).

Last inequality is a lower bound of the term we want to remove in inequality (37). The first point of our lemma hence follows since 1700δ+1C01700\delta+1\leq C_{0}. ∎

We recall that by definition:

pX,qXX,dr(pX,qX)=dX(pX,qX)Δh(pX,qX)\displaystyle\forall p_{X},q_{X}\in X,\ d_{r}(p_{X},q_{X})=d_{X}(p_{X},q_{X})-\Delta h(p_{X},q_{X})
pY,qYY,dr(pY,qY)=dY(pY,qY)Δh(pY,qY)\displaystyle\forall p_{Y},q_{Y}\in Y,\ d_{r}(p_{Y},q_{Y})=d_{Y}(p_{Y},q_{Y})-\Delta h(p_{Y},q_{Y})

Hence combining Lemma 4.10 and 4.12 we get the following corollary.

Corollary 4.13.

Let NN be an admissible norm and let C0=(2853δCN+2851)2C_{0}=(2853\delta C_{N}+2^{851})^{2}. The length of a geodesic segment α\alpha connecting pp to qq in (XY,d)(X\bowtie Y,d_{\bowtie}) is controlled as follows:

|lN(α)(dX(pX,qX)+dY(pY,qY)Δh(p,q))|15C0,\displaystyle\big{|}l_{N}(\alpha)-\big{(}d_{X}(p_{X},q_{X})+d_{Y}(p_{Y},q_{Y})-\Delta h(p,q)\big{)}\big{|}\leq 15C_{0},

which gives us a control on the NN-path metric, for all points pp and qq in XYX\bowtie Y we have:

|d(p,q)(dX(pX,qX)+dY(pY,qY)Δh(p,q))|15C0.\displaystyle\big{|}d_{\bowtie}(p,q)-\big{(}d_{X}(p_{X},q_{X})+d_{Y}(p_{Y},q_{Y})-\Delta h(p,q)\big{)}\big{|}\leq 15C_{0}.

This result is central as it shows that the shape of geodesics does not depend on the NN-path metric chosen for the distance on the horospherical product.

Corollary 4.14.

Let r1r\geq 1. For all pp and qq in XYX\bowtie Y we have:

|d,r(p,q)d,1(p,q)|30(5706δ+2851)2.\big{|}d_{\bowtie,\ell_{r}}(p,q)-d_{\bowtie,\ell_{1}}(p,q)\big{|}\leq 30(5706\delta+2^{851})^{2}.
Proof.

The r\ell_{r} norm inequalities provide us with:

dXr+dYrrdX+dY2r1rdXr+dYrr.\sqrt[r]{{d_{X}}^{r}+{d_{Y}}^{r}}\leq d_{X}+d_{Y}\leq 2^{\frac{r-1}{r}}\sqrt[r]{{d_{X}}^{r}+{d_{Y}}^{r}}.

Hence we have 2r2(dX+dY)dXr+dYrrdX+dY\frac{\sqrt[r]{2}}{2}\left(d_{X}+d_{Y}\right)\leq\sqrt[r]{{d_{X}}^{r}+{d_{Y}}^{r}}\leq d_{X}+d_{Y}. Then the r\ell_{r} norms are admissible norms with Cr2C_{\ell_{r}}\leq 2, which ends the proof. ∎

The next corollary tells us that changing this distance does not change the large scale geometry of XYX\bowtie Y.

Corollary 4.15.

Let N1N_{1} and N2N_{2} be two admissible norms. Then the metric spaces (XY,d,N1)\left(X\bowtie Y,d_{\bowtie,N_{1}}\right) and (XY,d,N2)\left(X\bowtie Y,d_{\bowtie,N_{2}}\right) are roughly isometric.

The control on the distances of Lemma 4.13 will help us understand the shape of geodesic segments and geodesic lines in a horospherical product.

5 Shapes of geodesics and visual boundary of XYX\bowtie Y

5.1 Shapes of geodesic segments

In this section we focus on the shape of geodesics. We recall that in all the following XX and YY are assumed to be two proper, geodesically complete, δ\delta-hyperbolic, Busemann spaces with δ1\delta\geq 1, and NN is assumed to be an admissible norm.

The next lemma gives a control on the maximal and minimal height of a geodesic segment in a horospherical product. It is similar to the traveling salesman problem, who needs to walk from xx to yy passing by mm and nn. This result follows from the inequalities on maximal and minimal heights of Lemma 4.12 combined with Lemma 4.10.

Lemma 5.1.

Let p=(pX,pY)p=(p_{X},p_{Y}) and q=(qX,qY)q=(q_{X},q_{Y}) be two points of XYX\bowtie Y such that h(p)h(q)h(p)\leq h(q). Let NN be an admissible norm and let α=(αX,αY)\alpha=(\alpha_{X},\alpha_{Y}) be a geodesic of (XY,d)(X\bowtie Y,d_{\bowtie}) linking pp to qq. Let C0=(2853δCN+2851)2C_{0}=(2853\delta C_{N}+2^{851})^{2}, we have:

  1. 1.

    |h(α)(h(p)12dr(pY,qY))|4C0\left|h^{-}(\alpha)-\left(h(p)-\frac{1}{2}d_{r}(p_{Y},q_{Y})\right)\right|\leq 4C_{0}

  2. 2.

    |h+(α)(h(q)+12dr(pX,qX))|4C0\left|h^{+}(\alpha)-\left(h(q)+\frac{1}{2}d_{r}(p_{X},q_{X})\right)\right|\leq 4C_{0}.

Proof.

Let us consider a point mm of α\alpha such that h(m)=h(α)h(m)=h^{-}(\alpha) and a point nn of α\alpha such that h(n)=h+(α)h(n)=h^{+}(\alpha). Then mm comes before nn or nn comes before mm. In both cases, since h(m)h(p)h(q)h(n)h(m)\leq h(p)\leq h(q)\leq h(n) and by Lemma 3.6 we have:

lN(α)\displaystyle l_{N}(\alpha) Δh(p,q)+2(h(p)h(α))+2(h+(α)h(q))\displaystyle\geq\Delta h(p,q)+2(h(p)-h^{-}(\alpha))+2(h^{+}(\alpha)-h(q))
Δh(p,q)+2(h(p)h(α))+dr(pX,qX)6C0, by Lemma 4.12.\displaystyle\geq\Delta h(p,q)+2(h(p)-h^{-}(\alpha))+d_{r}(p_{X},q_{X})-6C_{0},\text{ by Lemma \ref{LowerBoundLengthGeod}}.

Furthermore Lemma 4.10 provides lN(α)Δh(p,q)+dr(pX,qX)+dr(pY,qY)+C0l_{N}(\alpha)\leq\Delta h(p,q)+d_{r}(p_{X},q_{X})+d_{r}(p_{Y},q_{Y})+C_{0} , hence:

Δh(p,q)+dr(pX,qX)+dr(pY,qY)+C0Δh(p,q)+2(h(p)h(α))+dr(pX,qX)6C0,\displaystyle\Delta h(p,q)+d_{r}(p_{X},q_{X})+d_{r}(p_{Y},q_{Y})+C_{0}\geq\Delta h(p,q)+2(h(p)-h^{-}(\alpha))+d_{r}(p_{X},q_{X})-6C_{0},

which implies (h(p)12dr(pY,qY))h(α)4C0\left(h(p)-\frac{1}{2}d_{r}(p_{Y},q_{Y})\right)-h^{-}(\alpha)\leq 4C_{0}. In combination with the third point of Lemma 4.12 it proves the first point of our Lemma 5.1. The second point is proved similarly. ∎

Lemma 5.2.

Let NN be an admissible norm and let C0=(2853δCN+2851)2C_{0}=(2853\delta C_{N}+2^{851})^{2}. Let p=(pX,pY)p=(p_{X},p_{Y}) and q=(qX,qY)q=(q_{X},q_{Y}) be two points of XYX\bowtie Y. Let α=(αX,αY)\alpha=(\alpha_{X},\alpha_{Y}) be a geodesic of (XY,d)(X\bowtie Y,d_{\bowtie}) linking pp to qq. Then there exist two points a=(aX,aY),b=(bX,bY)a=(a_{X},a_{Y}),\ b=(b_{X},b_{Y}) of α\alpha such that h(a)=h(p)h(a)=h(p), h(b)=h(q)h(b)=h(q) with the following properties:

  1. 1.

    If h(p)h(q)7C0h(p)\leq h(q)-7C_{0} then:

    1. (a)

      h(α)=h([x,a])h^{-}(\alpha)=h^{-}([x,a]) and h+(α)=h+([b,y])h^{+}(\alpha)=h^{+}([b,y])

    2. (b)

      |dr(pY,aY)dr(pY,qY)|16C0anddr(pX,aX)22C0\left|d_{r}(p_{Y},a_{Y})-d_{r}(p_{Y},q_{Y})\right|\leq 16C_{0}\ \text{and}\ d_{r}(p_{X},a_{X})\leq 22C_{0}

    3. (c)

      |dr(qX,bX)dr(pX,qX)|16C0anddr(qY,bY)22C0\left|d_{r}(q_{X},b_{X})-d_{r}(p_{X},q_{X})\right|\leq 16C_{0}\ \text{and}\ d_{r}(q_{Y},b_{Y})\leq 22C_{0}

    4. (d)

      |d(a,b)Δh(a,b)|13C0|d_{\bowtie}(a,b)-\Delta h(a,b)|\leq 13C_{0}.

  2. 2.

    If h(q)h(p)7C0h(q)\leq h(p)-7C_{0} then (a)(a), (b)(b), (c)(c) and (d)(d) hold by switching the roles of pp and qq and switching the roles of aa and bb.

  3. 3.

    If |h(p)h(q)|7C0|h(p)-h(q)|\leq 7C_{0} at least one of the two previous conclusions is satisfied.

Lemma 5.2 is illustrated in Figure 13. Its notations will be used in all section 5.

Refer to caption
Figure 13: Notations of Lemma 5.2.
Proof.

Let us consider a point mm of α\alpha such that h(m)=h(α)h(m)=h^{-}(\alpha) and a point nn of α\alpha such that h(n)=h+(α)h(n)=h^{+}(\alpha). We first assume that mm comes before nn in α\alpha oriented from pp to qq. Let us call aa the first point between mm and nn at height h(p)h(p) and bb the last point between mm and nn at height h(q)h(q). Property (a)(a) of our Lemma is then satisfied. Let us denote α1\alpha_{1} the part of α\alpha linking pp to aa, α2\alpha_{2} the part of α\alpha linking aa to bb and α3\alpha_{3} the part of α\alpha linking bb to qq. We have that mm is a point of α1\alpha_{1} and that nn is a point of α3\alpha_{3}. Inequalities 2.2. and 3.3. of Lemma 4.12 used on α1\alpha_{1} provide lN(α1)d(p,m)+d(m,a)2Δh(p,m)dr(pY,qY)6C0l_{N}(\alpha_{1})\geq d(p,m)+d(m,a)\geq 2\Delta h(p,m)\geq d_{r}(p_{Y},q_{Y})-6C_{0} and similarly lN(α3)dr(pX,qX)6C0l_{N}(\alpha_{3})\geq d_{r}(p_{X},q_{X})-6C_{0}. Furthermore we have lN(α2)Δh(p,q)l_{N}(\alpha_{2})\geq\Delta h(p,q). Combining lN(α1)=lN(α)lN(α2)lN(α3)l_{N}(\alpha_{1})=l_{N}(\alpha)-l_{N}(\alpha_{2})-l_{N}(\alpha_{3}) and Lemma 4.10 we have:

lN(α1)\displaystyle l_{N}(\alpha_{1}) Δh(p,q)+dr(pX,qX)+dr(pY,qY)+C0Δh(p,q)dr(pX,qX)+6C0\displaystyle\leq\Delta h(p,q)+d_{r}(p_{X},q_{X})+d_{r}(p_{Y},q_{Y})+C_{0}-\Delta h(p,q)-d_{r}(p_{X},q_{X})+6C_{0}
dr(pY,qY)+7C0.\displaystyle\leq d_{r}(p_{Y},q_{Y})+7C_{0}. (38)

We have similarly that lN(α3)dr(pX,qX)+7C0l_{N}(\alpha_{3})\leq d_{r}(p_{X},q_{X})+7C_{0} and that d(a,b)=lN(α2)Δh(p,q)+13C0d_{\bowtie}(a,b)=l_{N}(\alpha_{2})\leq\Delta h(p,q)+13C_{0}. It gives us |d(a,b)Δh(p,q)|13C0|d_{\bowtie}(a,b)-\Delta h(p,q)|\leq 13C_{0}, point (d)(d) of our lemma. Furthermore, using Lemma 5.1 on α\alpha and α1\alpha_{1} provides:

|h(α)(h(p)12dr(pY,qY))|\displaystyle\left|h^{-}(\alpha)-\left(h(p)-\frac{1}{2}d_{r}(p_{Y},q_{Y})\right)\right| 4C0,\displaystyle\leq 4C_{0},
|h(α1)(h(p)12dr(pY,aY))|\displaystyle\left|h^{-}(\alpha_{1})-\left(h(p)-\frac{1}{2}d_{r}(p_{Y},a_{Y})\right)\right| 4C0.\displaystyle\leq 4C_{0}.

Since h(α)=h(α1)h^{-}(\alpha)=h^{-}(\alpha_{1}) we have:

|dr(pY,aY)dr(pY,qY)|16C0,\left|d_{r}(p_{Y},a_{Y})-d_{r}(p_{Y},q_{Y})\right|\leq 16C_{0}, (39)

which is the first inequality of (b)(b). Using the first point of Lemma 4.12 on α1\alpha_{1} in combination with inequality (38) gives us:

dr(pY,qY)+7C0\displaystyle d_{r}(p_{Y},q_{Y})+7C_{0}\geq lN(α1)Δh(p,a)+dr(pX,aX)+dr(pY,aY)15C0\displaystyle l_{N}(\alpha_{1})\geq\Delta h(p,a)+d_{r}(p_{X},a_{X})+d_{r}(p_{Y},a_{Y})-15C_{0}
\displaystyle\geq dr(pX,aX)+dr(pY,aY)15C0\displaystyle d_{r}(p_{X},a_{X})+d_{r}(p_{Y},a_{Y})-15C_{0}
\displaystyle\geq dr(pX,aX)+dr(pY,qY)31C0, by inequality (39).\displaystyle d_{r}(p_{X},a_{X})+d_{r}(p_{Y},q_{Y})-31C_{0}\text{, by inequality (\ref{EquseInther3}).}

Then dr(pX,qX)38C0d_{r}(p_{X},q_{X})\leq 38C_{0} the second inequality of point (b)(b) holds. We prove similarly the inequality (c)(c) of this lemma. This ends the proof when mm comes before nn. If nn comes before mm, the proof is still working by orienting α\alpha from qq to pp hence switching the roles between pp and qq.

We will now prove that if h(p)h(q)7C0h(p)\leq h(q)-7C_{0} then mm comes before nn on α\alpha oriented from pp to qq. Let us assume that h(p)h(q)7C0h(p)\leq h(q)-7C_{0}. We will proceed by contradiction, let us assume that nn comes before mm, using h(m)h(p)h(q)h(n)h(m)\leq h(p)\leq h(q)\leq h(n) it implies:

lN(α)\displaystyle l_{N}(\alpha)\geq d(p,n)+d(n,m)+d(m,q)Δh(p,n)+Δh(n,m)+Δh(m,q)\displaystyle d_{\bowtie}(p,n)+d_{\bowtie}(n,m)+d_{\bowtie}(m,q)\geq\Delta h(p,n)+\Delta h(n,m)+\Delta h(m,q)
\displaystyle\geq Δh(p,q)+Δh(q,n)+Δh(m,p)+Δh(p,q)+Δh(q,n)+Δh(m,p)+Δh(p,q)\displaystyle\Delta h(p,q)+\Delta h(q,n)+\Delta h(m,p)+\Delta h(p,q)+\Delta h(q,n)+\Delta h(m,p)+\Delta h(p,q)
\displaystyle\geq 2Δh(p,q)+Δh(p,q)+2Δh(m,p)+2Δ(q,n)\displaystyle 2\Delta h(p,q)+\Delta h(p,q)+2\Delta h(m,p)+2\Delta(q,n)
\displaystyle\geq 14C0+Δh(p,q)+2(h(p)h(α))+2(h+(α)h(q)).\displaystyle 14C_{0}+\Delta h(p,q)+2(h(p)-h^{-}(\alpha))+2(h^{+}(\alpha)-h(q)).

However Lemma 4.12 applied on α\alpha provides h+(α)h(q)+12dr(pX,qX)3C0h^{+}(\alpha)\geq h(q)+\frac{1}{2}d_{r}(p_{X},q_{X})-3C_{0} and h(α)h(p)12dr(pY,qY)+3C0h^{-}(\alpha)\leq h(p)-\frac{1}{2}d_{r}(p_{Y},q_{Y})+3C_{0}. Then:

lN(α)\displaystyle l_{N}(\alpha)\geq 14C0+Δh(p,q)+dr(pX,qX)+dr(pY,qY)12C0\displaystyle 14C_{0}+\Delta h(p,q)+d_{r}(p_{X},q_{X})+d_{r}(p_{Y},q_{Y})-12C_{0}
\displaystyle\geq Δh(p,q)+dr(pX,qX)+dr(pY,qY)+2C0,\displaystyle\Delta h(p,q)+d_{r}(p_{X},q_{X})+d_{r}(p_{Y},q_{Y})+2C_{0},

which contradict Lemma 4.10. Hence, if h(p)h(q)7C0h(p)\leq h(q)-7C_{0}, the point mm comes before the point nn and by the first part of the proof, 1.1. holds. Similarly, if h(q)h(p)7C0h(q)\leq h(p)-7C_{0} then nn comes before mm and then 2.2. holds. Otherwise when |h(p)h(q)|7C0|h(p)-h(q)|\leq 7C_{0} both cases could happened, then 1.1. or 2.2. hold. ∎

This previous lemma essentially means that if pp is sufficiently below qq, the geodesic α\alpha first travels in a copy of YY in order to "lose" the relative distance between pYp_{Y} and qYq_{Y}, then it travels upward using a vertical geodesic from aa to bb until it can "lose" the relative distance between pXp_{X} and qXq_{X} by travelling in a copy of XX. It looks like three successive geodesics of hyperbolic spaces, glued together. The idea is that the geodesic follows a shape similar to the path γ\gamma we constructed in Lemma 4.10. The following theorem tells us that a geodesic segment is in the constant neighbourhood of three vertical geodesics. It is similar to the hyperbolic case, where a geodesic segment is in a constant neighbourhood of two vertical geodesics.

Theorem 5.3.

Let NN be an admissible norm. Let p=(pX,pY)p=(p_{X},p_{Y}) and q=(qX,qY)q=(q_{X},q_{Y}) be two points of XYX\bowtie Y and let α\alpha be a geodesic segment of (XY,d)(X\bowtie Y,d_{\bowtie}) linking pp to qq. Let C0=(2853δCN+2851)2C_{0}=(2853\delta C_{N}+2^{851})^{2}, there exist two vertical geodesics V1=(V1,X,V1,Y)V_{1}=(V_{1,X},V_{1,Y}) and V2=(V2,X,V2,Y)V_{2}=(V_{2,X},V_{2,Y}) such that:

  1. 1.

    If   h(p)h(q)7C0h(p)\leq h(q)-7C_{0}   then α\alpha is in the 196C0CN196C_{0}C_{N}-neighbourhood of V1(V1,X,V2,Y)V2V_{1}\cup(V_{1,X},V_{2,Y})\cup V_{2}

  2. 2.

    If   h(p)h(q)+7C0h(p)\geq h(q)+7C_{0}   then α\alpha is in the 196C0CN196C_{0}C_{N}-neighbourhood of V1(V2,X,V1,Y)V2V_{1}\cup(V_{2,X},V_{1,Y})\cup V_{2}

  3. 3.

    If   |h(p)h(q)|7C0|h(p)-h(q)|\leq 7C_{0}   then at least one of the conclusions of 1.1. or 2.2. holds.

Specifically V1V_{1} and V2V_{2} can be chosen such that pp is close to V1V_{1} and qq is close to V2V_{2}.

Refer to caption
Figure 14: Theorem 5.3. The neighbourhood’s shapes are distorted since when going upward, distances are contracted in the "direction" XX and expanded in the "direction" YY.

Figure 14 pictures the 196C0CN196C_{0}C_{N}-neighbourhood of such vertical geodesics when h(p)h(q)7C0h(p)\leq h(q)-7C_{0}. When |h(p)h(q)|7C0|h(p)-h(q)|\leq 7C_{0}, there are two possible shapes for a geodesic segment. In some cases, two points can be linked by two different geodesics, one of type 11 and one of type 22.

Proof.

Let m=(mX,mY)m=(m_{X},m_{Y}) be a point of α\alpha such that h(m)=h(α)h(m)=h^{-}(\alpha), and n=(nX,nY)n=(n_{X},n_{Y}) be a point of α\alpha such that h(n)=h+(α)h(n)=h^{+}(\alpha). Then by Lemma 5.1 we have:

|Δh(p,m)12dr(pY,qY)|4C0.\left|\Delta h(p,m)-\frac{1}{2}d_{r}(p_{Y},q_{Y})\right|\leq 4C_{0}. (40)

We show similarly that:

|Δh(q,n)12dr(pX,qX)|4C0.\left|\Delta h(q,n)-\frac{1}{2}d_{r}(p_{X},q_{X})\right|\leq 4C_{0}. (41)

In the first case we assume that h(p)h(q)7C0h(p)\leq h(q)-7C_{0}. With notations as in Lemma 5.2, and by inequality (38), we have that lN([p,a])dr(pY,qY)+7C0l_{N}([p,a])\leq d_{r}(p_{Y},q_{Y})+7C_{0}, hence:

lN([p,m])=\displaystyle l_{N}([p,m])= lN([p,a])lN([a,m])dr(pY,qY)+7C0Δh(a,m)\displaystyle l_{N}([p,a])-l_{N}([a,m])\leq d_{r}(p_{Y},q_{Y})+7C_{0}-\Delta h(a,m)
\displaystyle\leq 12dr(pY,qY)+11C0, since Δh(p,m)=Δh(a,m).\displaystyle\frac{1}{2}d_{r}(p_{Y},q_{Y})+11C_{0}\text{, since }\Delta h(p,m)=\Delta h(a,m). (42)

It follows from this inequality that:

dX(pX,mX)=\displaystyle d_{X}(p_{X},m_{X})= 2dX×Y(p,m)dY(pY,mY)2d(p,m)dY(pY,mY)\displaystyle 2d_{X\times Y}(p,m)-d_{Y}(p_{Y},m_{Y})\leq 2d_{\bowtie}(p,m)-d_{Y}(p_{Y},m_{Y})
\displaystyle\leq 2lN([p,m])dY(pY,mY)dr(pY,qY)+22C0Δh(p,m)12dr(pY,qY)+26C0.\displaystyle 2l_{N}([p,m])-d_{Y}(p_{Y},m_{Y})\leq d_{r}(p_{Y},q_{Y})+22C_{0}-\Delta h(p,m)\leq\frac{1}{2}d_{r}(p_{Y},q_{Y})+26C_{0}.

Then:

dr(pX,mX)=\displaystyle d_{r}(p_{X},m_{X})= dX(pX,mX)Δh(p,m)12dr(pY,qY)+26C0Δh(p,m)\displaystyle d_{X}(p_{X},m_{X})-\Delta h(p,m)\leq\frac{1}{2}d_{r}(p_{Y},q_{Y})+26C_{0}-\Delta h(p,m)
\displaystyle\leq 30C0, by inequality (40).\displaystyle 30C_{0}\text{, by inequality }(\ref{UseAfter2}).

Similarly dr(pY,mY)30C0d_{r}(p_{Y},m_{Y})\leq 30C_{0}. Let us consider the vertical geodesic VmXV_{m_{X}} of XX containing mXm_{X}, and the vertical geodesic VpYV_{p_{Y}} of YY containing pYp_{Y}. Let us denote pXp^{\prime}_{X} the point of VmXV_{m_{X}} at the height h(p)h(p). Since dr(pX,mX)30C0d_{r}(p_{X},m_{X})\leq 30C_{0}, Lemma 4.4 applied on pXp_{X} and mXm_{X} provides dX(pX,pX)31C0d_{X}(p_{X},p^{\prime}_{X})\leq 31C_{0}. We will then consider two paths of XX. The first one is α1,X=[pX,mX]\alpha_{1,X}=[p_{X},m_{X}], the part of αX\alpha_{X} linking pXp_{X} to mXm_{X}. The second one is [mX,pX][m_{X},p^{\prime}_{X}] a piece of vertical geodesic linking mXm_{X} to pXp^{\prime}_{X}. We show that these two paths have close length. Using Property 3.4 with inequalities (40) and (42) provides us with:

lX([pX,mX])\displaystyle l_{X}([p_{X},m_{X}]) 2lN([p,m])lY([pY,mY])2(12dr(pY,qY)+11C0)Δh(p,m)\displaystyle\leq 2l_{N}([p,m])-l_{Y}([p_{Y},m_{Y}])\leq 2\left(\frac{1}{2}d_{r}(p_{Y},q_{Y})+11C_{0}\right)-\Delta h(p,m)
Δh(p,m)+30C0\displaystyle\leq\Delta h(p,m)+30C_{0}

Furthermore lX([pX,mX])Δh(p,m)l_{X}([p_{X},m_{X}])\geq\Delta h(p,m) and we know that lX([mX,pX])=Δh(p,m)l_{X}([m_{X},p_{X}^{\prime}])=\Delta h(p,m), hence:

|lX([pX,mX])lX([mX,pX])|30C0\displaystyle\big{|}l_{X}([p_{X},m_{X}])-l_{X}([m_{X},p_{X}^{\prime}])\big{|}\leq 30C_{0}

We already proved that their end points are also close to each other d(pX,pX)31C0d(p_{X},p^{\prime}_{X})\leq 31C_{0}. Since δC0\delta\leq C_{0}, the property of hyperbolicity of XX gives us that α1,X\alpha_{1,X} is in the (31+30+1)C0=62C0(31+30+1)C_{0}=62C_{0}-neighbourhood of [mX,pX][m_{X},p^{\prime}_{X}], a part of the vertical geodesic VmXV_{m_{X}}. We show similarly that α1,Y\alpha_{1,Y} is in the 62C062C_{0}-neighbourhood of VpYV_{p_{Y}}. Since NN is an admissible norm, Property 3.11 gives us that α1\alpha_{1} is in the 124C0CN124C_{0}C_{N}-neighbourhood of (VmX,VpY)(V_{m_{X}},V_{p_{Y}}). We show similarly that α3\alpha_{3}, the portion of α\alpha linking nn to qq, is in the 124C0CN124C_{0}C_{N}-neighbourhood of (VqX,VnY)(V_{q_{X}},V_{n_{Y}}). We now focus on α2\alpha_{2}, the portion of α\alpha linking mm to nn. Let us denote [mX,nX][m_{X},n_{X}] the path α2,X\alpha_{2,X} and [mY,nY][m_{Y},n_{Y}] the path α2,Y\alpha_{2,Y}. Then Lemma 5.1 provides us with:

|Δh(m,n)(Δh(p,q)+12dr(pY,qY)+12dr(pX,qX))|8C0.\left|\Delta h(m,n)-\Big{(}\Delta h(p,q)+\frac{1}{2}d_{r}(p_{Y},q_{Y})+\frac{1}{2}d_{r}(p_{X},q_{X})\Big{)}\right|\leq 8C_{0}. (43)

However from Lemma 4.10 and since 1152δCNC01152\delta C_{N}\leq C_{0}:

lN(α2)=\displaystyle l_{N}(\alpha_{2})= lN(α)lN(α1)lN(α3)\displaystyle l_{N}(\alpha)-l_{N}(\alpha_{1})-l_{N}(\alpha_{3})
\displaystyle\leq Δh(p,q)+dr(pX,qX)+dr(pY,qY)+C0Δh(p,m)Δh(n,q)\displaystyle\Delta h(p,q)+d_{r}(p_{X},q_{X})+d_{r}(p_{Y},q_{Y})+C_{0}-\Delta h(p,m)-\Delta h(n,q)
\displaystyle\leq Δh(p,q)+12dr(pX,qX)+12dr(pY,qY)+9C0, by inequalities (40) and (41).\displaystyle\Delta h(p,q)+\frac{1}{2}d_{r}(p_{X},q_{X})+\frac{1}{2}d_{r}(p_{Y},q_{Y})+9C_{0}\text{, by inequalities }(\ref{UseAfter2})\text{ and }(\ref{UseAfter3}).

It follows from this inequality and the fact that NN is admissible that:

dX(mX,nX)\displaystyle d_{X}(m_{X},n_{X}) 2lN(α2)dY(mY,nY)2Δh(p,q)+dr(pX,qX)+dr(pY,qY)+18C0Δh(m,n)\displaystyle\leq 2l_{N}(\alpha_{2})-d_{Y}(m_{Y},n_{Y})\leq 2\Delta h(p,q)+d_{r}(p_{X},q_{X})+d_{r}(p_{Y},q_{Y})+18C_{0}-\Delta h(m,n)
Δh(m,n)+34C0, by inequality (43).\displaystyle\leq\Delta h(m,n)+34C_{0}\text{, by inequality }(\ref{UseAfter4}).

Thus:

dr(mX,nX)=\displaystyle d_{r}(m_{X},n_{X})= dX(mX,nX)Δh(m,n)34C0.\displaystyle d_{X}(m_{X},n_{X})-\Delta h(m,n)\leq 34C_{0}.

In the same way we have dr(mY,nY)34C0d_{r}(m_{Y},n_{Y})\leq 34C_{0}. Let us denote nXn_{X}^{\prime} the point of VmXV_{m_{X}} at the height h(nX)h(n_{X}). Since dr(pX,mX)34C0d_{r}(p_{X},m_{X})\leq 34C_{0}, Lemma 4.4 applied on mXm_{X} and nXn_{X} provides:

dX(mX,nX)35C0d_{X}(m_{X},n^{\prime}_{X})\leq 35C_{0} (44)

Hence we have proved that α2,X\alpha_{2,X} and [mX,nX][m_{X},n_{X}^{\prime}] have their end points close to each other. Let us now prove that these paths have close lengths. We have that lX([mX,nX])=Δh(m,n)l_{X}([m_{X},n_{X}^{\prime}])=\Delta h(m,n), and from inequalities (40) and (41) we have:

lX([mX,nX])\displaystyle l_{X}([m_{X},n_{X}]) 2lN(α2,X)lY([mY,nY])=2(lN(α)lN(α1)lN(α3))Δh(m,n)\displaystyle\leq 2l_{N}(\alpha_{2,X})-l_{Y}([m_{Y},n_{Y}])=2\Big{(}l_{N}(\alpha)-l_{N}(\alpha_{1})-l_{N}(\alpha_{3})\Big{)}-\Delta h(m,n)
2(15C0+Δh(p,q)+dr(pX,qX)+dr(pY,qY)Δh(p,m)Δh(n,q))Δh(m,n)\displaystyle\leq 2\Big{(}15C_{0}+\Delta h(p,q)+d_{r}(p_{X},q_{X})+d_{r}(p_{Y},q_{Y})-\Delta h(p,m)-\Delta h(n,q)\Big{)}-\Delta h(m,n)
2(Δh(p,q)+dr(pX,qX)+dr(pY,qY)Δh(p,m)Δh(n,q))Δh(m,n)\displaystyle\leq 2\Big{(}\Delta h(p,q)+d_{r}(p_{X},q_{X})+d_{r}(p_{Y},q_{Y})-\Delta h(p,m)-\Delta h(n,q)\Big{)}-\Delta h(m,n)
2(Δh(p,q)+Δh(p,m)+Δh(n,q)+16C0)Δh(m,n)+30C0Δh(m,n)+62C0\displaystyle\leq 2\Big{(}\Delta h(p,q)+\Delta h(p,m)+\Delta h(n,q)+16C_{0}\Big{)}-\Delta h(m,n)+30C_{0}\leq\Delta h(m,n)+62C_{0}

As lX([mX,nX])Δh(m,n)l_{X}([m_{X},n_{X}])\geq\Delta h(m,n) we obtain:

|lX([mX,nX])lX([mX,nX])|62C0|l_{X}([m_{X},n_{X}])-l_{X}([m_{X},n_{X}^{\prime}])|\leq 62C_{0} (45)

Then by similar arguments as for the path α1,X\alpha_{1,X}, inequalities (44) and (45) show that α2,X\alpha_{2,X} is in the (35+62+1)C0=98C0(35+62+1)C_{0}=98C_{0} neighbourhood of VmXV_{m_{X}}. Similarly we prove that α2,Y\alpha_{2,Y} is in the 98C098C_{0} neighbourhood of VnYV_{n_{Y}}. Since NN is an admissible norm, Property 3.11 gives us that α2\alpha_{2} is in the 196C0CN196C_{0}C_{N}-neighbourhood of (VmX,VnY)(V_{m_{X}},V_{n_{Y}}).

In the second case, we assume that h(q)h(p)7C0h(q)\leq h(p)-7C_{0}. Then by switching the role of pp and qq, Lemma 5.2 gives us the result identically.

In the third case, we assume that |h(p)h(q)|7C0|h(p)-h(q)|\leq 7C_{0}. Then Lemma 5.2 tells us that one of the two previous situations prevail, which proves the result. ∎

5.2 Coarse monotonicity

We will see that the following definition is related to being close to a vertical geodesic.

Definition 5.4.

Let CC be a non negative number. A geodesic α:IXY\alpha:I\to X\bowtie Y of XYX\bowtie Y is called CC-coarsely increasing if t1,t2I\forall t_{1},t_{2}\in I:

(t2>t1+C)(h(α(t2))>h(α(t2))).\displaystyle\big{(}\ t_{2}>t_{1}+C\ \big{)}\Rightarrow\big{(}\ h(\alpha(t_{2}))>h(\alpha(t_{2}))\ \big{)}.

The geodesic α\alpha is called CC-coarsely decreasing if t1,t2I\forall t_{1},t_{2}\in I:

(t2>t1+C)(h(α(t2))<h(α(t2))).\displaystyle\big{(}\ t_{2}>t_{1}+C\ \big{)}\Rightarrow\big{(}\ h(\alpha(t_{2}))<h(\alpha(t_{2}))\ \big{)}.

The next lemma links the coarse monotonicity and the fact that a geodesic segment is close to vertical geodesics.

Lemma 5.5.

Let NN be an admissible norm and let C0=(2853δCN+2851)2C_{0}=(2853\delta C_{N}+2^{851})^{2}. Let p=(pX,pY)p=(p_{X},p_{Y}) and q=(qX,qY)q=(q_{X},q_{Y}) be two points of XYX\bowtie Y and let α\alpha be a geodesic segment of (XY,d)(X\bowtie Y,d_{\bowtie}) linking pp to qq. Let mαm\in\alpha and nαn\in\alpha be two points in XYX\bowtie Y such that h(α)=h(m)h^{-}(\alpha)=h(m) and h+(α)=h(n)h^{+}(\alpha)=h(n). We have:

  1. 1.

    If   h(p)h(q)7C0h(p)\leq h(q)-7C_{0}, then α\alpha is 17C017C_{0}-coarsely decreasing on [p,m][p,m] and 17C017C_{0}-coarsely increasing on [m,n][m,n] and 17C017C_{0}-coarsely decreasing on [n,q][n,q].

  2. 2.

    If   h(p)h(q)+7C0h(p)\geq h(q)+7C_{0}, then α\alpha is 17C017C_{0}-coarsely increasing on [p,n][p,n] and 17C017C_{0}-coarsely decreasing on [n,m][n,m] and 17C017C_{0}-coarsely increasing on [m,q][m,q].

  3. 3.

    If   |h(p)h(q)|7C0|h(p)-h(q)|\leq 7C_{0}   then the conclusions of 1.1. or 2.2. holds.

Proof.

Assume that h(p)h(q)7C0h(p)\leq h(q)-7C_{0}. Then from inequality (42) in the proof of Theorem 5.3, lN([p,m])12dr(pY,qY)+11C0l_{N}([p,m])\leq\frac{1}{2}d_{r}(p_{Y},q_{Y})+11C_{0}. Furthermore Lemma 5.1 gives us that |Δh(p,m)12dr(pY,qY)|4C0\left|\Delta h(p,m)-\frac{1}{2}d_{r}(p_{Y},q_{Y})\right|\leq 4C_{0}. Then:

lN([p,m])Δh(p,m)+15C0.\displaystyle l_{N}([p,m])\leq\Delta h(p,m)+15C_{0}. (46)

We will proceed by contradiction, assume that [p,m][p,m] is not 15C015C_{0}-coarsely decreasing, then there exists i1αi_{1}\in\alpha, i2αi_{2}\in\alpha such that h(i1)=h(i2)h(i_{1})=h(i_{2}) and l([i1,i2])>15C0l([i_{1},i_{2}])>15C_{0}. Hence:

lN([p,m])\displaystyle l_{N}([p,m]) lN([p,i1])+lN([i1,i2])+lN([i2,m])Δh(p,i1)+lN([i1,i2])+Δh(i2,m)\displaystyle\geq l_{N}([p,i_{1}])+l_{N}([i_{1},i_{2}])+l_{N}([i_{2},m])\geq\Delta h(p,i_{1})+l_{N}([i_{1},i_{2}])+\Delta h(i_{2},m)
>Δh(p,m)+15C0,\displaystyle>\Delta h(p,m)+15C_{0},

which contradicts inequality (46). Then [p,m][p,m] is 15C015C_{0}-coarsely decreasing. We show in a similar way that [m,n][m,n] is 17C017C_{0}-coarsely increasing and that [n,q][n,q] is 15C015C_{0}-coarsely decreasing. This proves the first point of our lemma. The second point is proved by switching the roles of pp and qq. We now assume |h(p)h(q)|7C0|h(p)-h(q)|\leq 7C_{0}, as in the proof of Theorem 5.3 the inequality (42) or a corresponding inequality holds, which ends the proof. ∎

5.3 Shapes of geodesic rays and geodesic lines

In this section we are focusing on using the previous results to get informations on the shapes of geodesic rays and geodesic lines. We first link the coarse monotonicity of a geodesic ray to the fact that it is close to a vertical geodesic. Let λ1\lambda\geq 1 and c0c\geq 0, a (λ,c)(\lambda,c)-quasigeodesic of the metric space (XY,d)(X\bowtie Y,d_{\bowtie}) is the image of a function ϕ:XY\phi:\mathbb{R}\to X\bowtie Y verifying that t1,t2\forall t_{1},t_{2}\in\mathbb{R}:

|t1t2|λcd(ϕ(t1),ϕ(t2))λ|t1t2|+c\frac{|t_{1}-t_{2}|}{\lambda}-c\leq d_{\bowtie}\big{(}\phi(t_{1}),\phi(t_{2})\big{)}\leq\lambda|t_{1}-t_{2}|+c (47)
Lemma 5.6.

Let NN be an admissible norm and let C0=(2853δCN+2851)2C_{0}=(2853\delta C_{N}+2^{851})^{2}. Let α=(αX,αY)\alpha=(\alpha_{X},\alpha_{Y}) be a geodesic ray of (XY,d)(X\bowtie Y,d_{\bowtie}) and let KK be a positive number such that α\alpha is KK-coarsely monotone. Then αX\alpha_{X} and αY\alpha_{Y} are (1,26C0+8K)(1,26C_{0}+8K)-quasigeodesics.

Proof.

Let t1t_{1} and t2t_{2} be two times. Let us denote p=(pX,pY)=α(t1)p=(p_{X},p_{Y})=\alpha(t_{1}) and q=(qX,qY)=α(t2)q=(q_{X},q_{Y})=\alpha(t_{2}). We apply Lemma 5.2 on the part of α\alpha linking pp to qq denoted by [p,q][p,q]. By KK-coarse monotonicity of α\alpha we have that d(p,a)XY,NKd(p,a)_{X\bowtie Y,N}\leq K and d(b,q)Kd_{\bowtie}(b,q)\leq K. Hence using d)d) of Lemma 5.2:

Δh(p,q)d(p,q)\displaystyle\Delta h(p,q)\leq d_{\bowtie}(p,q) d(p,a)+d(a,b)+d(b,q)K+Δh(a,b)+13C0+K\displaystyle\leq d_{\bowtie}(p,a)+d_{\bowtie}(a,b)+d_{\bowtie}(b,q)\leq K+\Delta h(a,b)+13C_{0}+K
Δh(p,q)+Δh(p,a)+Δh(b,q)+13C0+2KΔh(p,q)+13C0+4K.\displaystyle\leq\Delta h(p,q)+\Delta h(p,a)+\Delta h(b,q)+13C_{0}+2K\leq\Delta h(p,q)+13C_{0}+4K.

Furthermore, dX(pX,qX)Δh(pX,qX)=Δh(p,q)d_{X}(p_{X},q_{X})\geq\Delta h(p_{X},q_{X})=\Delta h(p,q) and dY(pY,qY)Δh(p,q)d_{Y}(p_{Y},q_{Y})\geq\Delta h(p,q). Since NN is an admissible norm we have:

Δh(p,q)dX(pX,qX)\displaystyle\Delta h(p,q)\leq d_{X}(p_{X},q_{X}) =2dX×Y(p,q)dY(pY,qY)2d(p,q)dY(pY,qY)\displaystyle=2d_{X\times Y}(p,q)-d_{Y}(p_{Y},q_{Y})\leq 2d_{\bowtie}(p,q)-d_{Y}(p_{Y},q_{Y})
2Δh(p,q)+13C0+4KΔh(p,q)Δh(p,q)+13C0+4K.\displaystyle\leq 2\Delta h(p,q)+13C_{0}+4K-\Delta h(p,q)\leq\Delta h(p,q)+13C_{0}+4K.

Hence:

d(p,q)26C08KdX(pX,qX)d(p,q)+26C0+8K,\displaystyle d_{\bowtie}(p,q)-26C_{0}-8K\leq d_{X}(p_{X},q_{X})\leq d_{\bowtie}(p,q)+26C_{0}+8K,

By definition we have pX=αX(t1)p_{X}=\alpha_{X}(t_{1}), qX=αX(t2)q_{X}=\alpha_{X}(t_{2}) and d(p,q)=|t1t2|d_{\bowtie}(p,q)=|t_{1}-t_{2}|. Then αX\alpha_{X} is a (1,26C0+8K)(1,26C_{0}+8K)-quasigeodesic ray. We prove similarly that αY\alpha_{Y} is a (1,26C0+8K)(1,26C_{0}+8K)-quasigeodesic ray. ∎

We will now make use of the rigidity property of quasi-geodesics in Gromov hyperbolic spaces, presented in Theorem 3.1 p.41 of [5].

Theorem 5.7 ([5]).

Let HH be a δ\delta-hyperbolic geodesic space. If f:Hf:\mathbb{R}\rightarrow H is a (λ,k)(\lambda,k)-quasi geodesic, then there exists a constant κ>0\kappa>0 depending only on δ,λ\delta,\lambda and kk such that the image of ff is in the κ\kappa-neighbourhood of a geodesic in HH.

Lemma 5.8.

Let NN be an admissible norm and let T1T_{1} and T2T_{2} be two real numbers. Let α=(αX,αY):[T1,+[XY\alpha=(\alpha_{X},\alpha_{Y}):[T_{1},+\infty[\to X\bowtie Y be a geodesic ray of (XY,d)(X\bowtie Y,d_{\bowtie}). Let KK be a positive number such that α\alpha is KK-coarsely monotone. Then there exists a constant κ>0\kappa>0 depending only on KK, δ\delta and NN such that α\alpha is in the κ\kappa-neighbourhood of a vertical geodesic ray V:[T2;+[XYV:[T_{2};+\infty[\to X\bowtie Y and such that d(α(T1),V(T2))κd_{\bowtie}\big{(}\alpha(T_{1}),V(T_{2})\big{)}\leq\kappa.

Proof.

We assume without loss of generality that limt+h(α(t))=+\lim\limits_{t\rightarrow+\infty}h(\alpha(t))=+\infty. Let C0=(2853δCN+2851)2C_{0}=(2853\delta C_{N}+2^{851})^{2}, by Lemma 5.6, αX\alpha_{X} is a (1,26C0+8K)(1,26C_{0}+8K)-quasi geodesic ray. Then Theorem 5.7 says there exists κX>0\kappa_{X}>0 depending only on 26C0+8K26C_{0}+8K and δ\delta such that αX\alpha_{X} is in the κX\kappa_{X}-neighbourhood of a geodesic VXV_{X}. Since C0C_{0} depends only on δ\delta and NN, κX\kappa_{X} depends only on KK, δ\delta and NN. Then limt+h(α(t))=+\lim\limits_{t\rightarrow+\infty}h(\alpha(t))=+\infty gives us limt+h(VX(t))=+\lim\limits_{t\rightarrow+\infty}h(V_{X}(t))=+\infty which implies that VXV_{X} is a vertical geodesic of XX. We will now build the vertical geodesic we want in YY. We have limt+h(αY(t))=\lim\limits_{t\rightarrow+\infty}h(\alpha_{Y}(t))=-\infty and by Lemma 5.6:

Δh(αY(t1),αY(t2))26C08KdY(αY(t1),αY(t2))Δh(αY(t1),αY(t2))+26C0+8K.\displaystyle\Delta h(\alpha_{Y}(t_{1}),\alpha_{Y}(t_{2}))-26C_{0}-8K\leq d_{Y}(\alpha_{Y}(t_{1}),\alpha_{Y}(t_{2}))\leq\Delta h(\alpha_{Y}(t_{1}),\alpha_{Y}(t_{2}))+26C_{0}+8K.

Since YY is Busemann, there exists a vertical geodesic ray β\beta starting at αY(T1)\alpha_{Y}(T_{1}). Since β\beta is parametrised by its height, αYβ\alpha_{Y}\cup\beta is also a (1,26C0+8K)(1,26C_{0}+8K)-quasi geodesic, hence there exists κY\kappa_{Y} and VYV_{Y} depending only on KK, δ\delta and NN such that αYβ\alpha_{Y}\cup\beta is in the κY\kappa_{Y}-neighbourhood of VYV_{Y}. Since limth(VY(t))=+\lim\limits_{t\rightarrow-\infty}h(V_{Y}(t))=+\infty, VYV_{Y} is a vertical geodesic of YY.
Furthermore, by Property 3.11, d2CN(dX+dY)d_{\bowtie}\leq 2C_{N}(d_{X}+d_{Y}), hence there exists κ\kappa depending only on KK, δ\delta and NN such that α\alpha is in the κ\kappa-neighbourhood (for dd_{\bowtie}) of (VX,VY)(V_{X},V_{Y}), a vertical geodesic of (XY,d)(X\bowtie Y,d_{\bowtie}). Since h(α(t))h(α(T1))26C08K=:Mh(\alpha(t))\geq h(\alpha(T_{1}))-26C_{0}-8K=:M, α\alpha is in the κ\kappa-neighbourhood of (VX([Mκ;+[),VY(];M+κ]))\Big{(}V_{X}\big{(}[M-\kappa;+\infty[\big{)},V_{Y}\big{(}]-\infty;-M+\kappa]\big{)}\Big{)} which is a vertical geodesic ray.

We will now show that the starting points of α\alpha and VV are close to each other. Let us denote T1T_{1}^{\prime} a time such that d(α(T1),V(T1))κd_{\bowtie}\big{(}\alpha(T_{1}),V(T_{1}^{\prime})\big{)}\leq\kappa, then Δh(α(T1),V(T1))κ\Delta h\big{(}\alpha(T_{1}),V(T_{1}^{\prime})\big{)}\leq\kappa, hence |T1M|26C0+8K+κ|T_{1}^{\prime}-M|\leq 26C_{0}+8K+\kappa. Then by the triangle inequality:

d(α(T1),V(Mκ))\displaystyle d_{\bowtie}\Big{(}\alpha(T_{1}),V(M-\kappa)\Big{)}\leq d(α(T1),V(T1))+d(V(T1),V(Mκ))\displaystyle d_{\bowtie}\Big{(}\alpha(T_{1}),V(T_{1}^{\prime})\Big{)}+d_{\bowtie}\Big{(}V(T_{1}^{\prime}),V(M-\kappa)\Big{)}
\displaystyle\leq κ+26C0+8K+κ+κ=26C0+8K+3κ\displaystyle\kappa+26C_{0}+8K+\kappa+\kappa=26C_{0}+8K+3\kappa

Let us denote κ:=26C0+8K+3κκ\kappa^{\prime}:=26C_{0}+8K+3\kappa\geq\kappa and T2:=MκT_{2}:=M-\kappa. Hence α:[T1;+[XY\alpha:[T_{1};+\infty[\to X\bowtie Y is in the κ\kappa^{\prime}-neighbourhood of a vertical geodesic ray V:[T2:+[XYV:[T_{2}:+\infty[\to X\bowtie Y, we have d(α(T1),V(T2))κd_{\bowtie}\big{(}\alpha(T_{1}),V(T_{2})\big{)}\leq\kappa^{\prime} and κ\kappa^{\prime} depends only on δ\delta and KK. ∎

Lemma 5.9.

Let NN be an admissible norm and let α:+XY\alpha:\mathbb{R}^{+}\to X\bowtie Y be a geodesic ray of (XY,d)(X\bowtie Y,d_{\bowtie}). Then α\alpha changes its 17C017C_{0}-coarse monotonicity at most once.

Proof.

Let α:+XY\alpha:\mathbb{R}^{+}\to X\bowtie Y be a geodesic ray. Thanks to Lemma 5.5 α\alpha changes at most twice of 17C017C_{0}-coarse monotonicity. Indeed, assume it changes three times, applying Lemma 5.5 on the geodesic segment which includes these three times provides a contradiction. We will show in the following that it actually only changes once.
      Assume α\alpha changes twice of 17C017C_{0}-coarse monotonicity. Then α\alpha must be first 17C017C_{0}-coarsely increasing or 17C017C_{0}-coarsely decreasing. We assume without loss of generality that α\alpha is first 17C017C_{0}-coarsely decreasing. Then there exist t1,t2,t3t_{1},t_{2},t_{3}\in\mathbb{R} such that α\alpha is 17C017C_{0}-coarsely decreasing on [α(t1),α(t2)][\alpha(t_{1}),\alpha(t_{2})] then 17C017C_{0}-coarsely increasing on [α(t2),α(t3)][\alpha(t_{2}),\alpha(t_{3})] then 17C017C_{0}-coarsely decreasing on [α(t3),α(+)[[\alpha(t_{3}),\alpha(+\infty)[.
Hence Lemma 5.8 applied on [α(t3),α(+)[[\alpha(t_{3}),\alpha(+\infty)[ implies that there exists κ>0\kappa>0 depending only on δ\delta (since the constant of coarse monotonicity depends only on δ\delta) and a vertical geodesic ray V=(VX,VY)V=(V_{X},V_{Y}) such that [α(t3),α(+)[[\alpha(t_{3}),\alpha(+\infty)[ is in the κ\kappa-neighbourhood of VV. Since h+([α(t3),α(+)[)<+h^{+}([\alpha(t_{3}),\alpha(+\infty)[)<+\infty, we have that limt+h(α(t))=\lim\limits_{t\rightarrow+\infty}h(\alpha(t))=-\infty, hence there exists t4t3t_{4}\geq t_{3} such that h(α(t4))h(α(t1))7C0h(\alpha(t_{4}))\leq h(\alpha(t_{1}))-7C_{0}. Then Lemma 5.5 tells us that α\alpha is first 17C017C_{0}-coarsely increasing, which contradicts what we assumed. ∎

We have classified the possible shapes of geodesic rays. Since geodesic lines are constructed from two geodesic rays glued together, we will be able to classify their shapes too.

Definition 5.10.

Let NN be an admissible norm and let α=(αX,αY):XY\alpha=(\alpha_{X},\alpha_{Y}):\mathbb{R}\rightarrow X\bowtie Y be a path of (XY,d)(X\bowtie Y,d_{\bowtie}). Let κ0\kappa\geq 0.

  1. 1.

    α\alpha is called XX-type at scale κ\kappa if and only if:

    1. (a)

      αX\alpha_{X} is in a κ\kappa-neighbourhood of a geodesic of XX

    2. (b)

      αY\alpha_{Y} is in a κ\kappa-neighbourhood of a vertical geodesic of YY.

  2. 2.

    α\alpha is called YY-type at scale κ\kappa if and only if:

    1. (a)

      αY\alpha_{Y} is in a κ\kappa-neighbourhood of a geodesic of YY

    2. (b)

      αX\alpha_{X} is in a κ\kappa-neighbourhood of a vertical geodesic of XX.

The XX-type paths follow geodesics of XX, meaning that they are close to a geodesic in a copy of XX inside XYX\bowtie Y. The YY-type paths follow geodesics of YY.

Refer to caption
Figure 15: Different type of geodesics in XYX\bowtie Y.
Remark 5.11.

In a horospherical product, being close to a vertical geodesic is equivalent to be both XX-type and YY-type.

Theorem 5.12.

Let NN be an admissible norm. There exists κ0\kappa\geq 0 depending only on δ\delta and NN such that for any α:XY\alpha:\mathbb{R}\rightarrow X\bowtie Y geodesic of (XY,d)(X\bowtie Y,d_{\bowtie}) at least one of the two following statements holds.

  1. 1.

    α\alpha is a XX-type geodesic at scale κ\kappa of (XY,d)(X\bowtie Y,d_{\bowtie})

  2. 2.

    α\alpha is a YY-type geodesic at scale κ\kappa of (XY,d)(X\bowtie Y,d_{\bowtie})

Proof.

It follows from Lemma 5.9 that α\alpha changes its coarse monotonicity at most once. Otherwise there would exist a geodesic ray included in α\alpha that changes at least two times of coarse monotonicity. We cut α\alpha in two coarsely monotone geodesic rays α1:[0,+[XY\alpha_{1}:[0,+\infty[\rightarrow X\bowtie Y and α2:[0,+[XY\alpha_{2}:[0,+\infty[\rightarrow X\bowtie Y such that up to a parametrisation α1(0)=α2(0)\alpha_{1}(0)=\alpha_{2}(0) and α1α2=α\alpha_{1}\cup\alpha_{2}=\alpha. By Lemma 5.8 there exists κ1\kappa_{1} and κ2\kappa_{2} depending only on δ\delta such that α1\alpha_{1} is in the κ1\kappa_{1}-neighbourhood of a vertical geodesic ray V1=(V1,X,V1,Y):[0;+[XYV_{1}=(V_{1,X},V_{1,Y}):[0;+\infty[\to X\bowtie Y and such that α2\alpha_{2} is in the κ2\kappa_{2}-neighbourhood of a vertical geodesic ray V2=(V2,X,V2,Y):[0;+[XYV_{2}=(V_{2,X},V_{2,Y}):[0;+\infty[\to X\bowtie Y. This lemma also gives us d(α1(0),V1(0))κ1d_{\bowtie}\big{(}\alpha_{1}(0),V_{1}(0)\big{)}\leq\kappa_{1} and d(α2(0),V2(0))κ2d_{\bowtie}\big{(}\alpha_{2}(0),V_{2}(0)\big{)}\leq\kappa_{2}.
Assume that limt+h(V1,X(t))=limt+h(V2,X(t))=+\lim\limits_{t\rightarrow+\infty}h(V_{1,X}(t))=\lim\limits_{t\rightarrow+\infty}h(V_{2,X}(t))=+\infty, then they are both vertical rays hence are close to a common vertical geodesic ray. Furthermore limt+h(V1,Y(t))=limt+h(V2,Y(t))=\lim\limits_{t\rightarrow+\infty}h(V_{1,Y}(t))=\lim\limits_{t\rightarrow+\infty}h(V_{2,Y}(t))=-\infty in that case. Let WYW_{Y} be the non continuous path of YY defined as follows.

WY(t)={V1,Y(t)t];0]V2,Y(t)t]0;+[W_{Y}(t)=\left\{\begin{array}[]{ll}V_{1,Y}(-t)&\forall t\in]-\infty;0]\\ V_{2,Y}(t)&\forall t\in]0;+\infty[\\ \end{array}\right.

We now prove that WY:YW_{Y}:\mathbb{R}\to Y is a quasigeodesic of YY. Let t1t_{1} and t2t_{2} be two real numbers. Since V1,YV_{1,Y} and V2,YV_{2,Y} are geodesics, dY(WY(t1),WY(t2))=|t1t2|d_{Y}(W_{Y}(t_{1}),W_{Y}(t_{2}))=|t_{1}-t_{2}| if t1t_{1} and t2t_{2} are both non positive or both positive. Thereby we can assume without loss of generality that t1t_{1} is non positive and that t2t_{2} is positive. We also assume without loss of generality that |t1||t2||t_{1}|\geq|t_{2}|. The quasi-isometric upper bound is given by:

dY(WY(t1),WY(t2))\displaystyle d_{Y}\big{(}W_{Y}(t_{1}),W_{Y}(t_{2})\big{)} =dY(V1,Y(t1),V2,Y(t2))\displaystyle=d_{Y}\big{(}V_{1,Y}(-t_{1}),V_{2,Y}(t_{2})\big{)}
dY(V1,Y(t1),V1,Y(0))+dY(V1,Y(0),V2,Y(0))+dY(V2,Y(0),V2,Y(t2))\displaystyle\leq d_{Y}\big{(}V_{1,Y}(-t_{1}),V_{1,Y}(0)\big{)}+d_{Y}\big{(}V_{1,Y}(0),V_{2,Y}(0)\big{)}+d_{Y}\big{(}V_{2,Y}(0),V_{2,Y}(t_{2})\big{)}
|t1|+κ1+κ2+|t2|\displaystyle\leq|t_{1}|+\kappa_{1}+\kappa_{2}+|t_{2}|
|t1t2|+κ1+κ2, since t1 and t2 have different signs.\displaystyle\leq|t_{1}-t_{2}|+\kappa_{1}+\kappa_{2},\text{ since }t_{1}\text{ and }t_{2}\text{ have different signs.}

It remains to prove the lower bound of the quasi-geodesic definition on WYW_{Y}.

dY(WY(t1),WY(t2))\displaystyle d_{Y}\big{(}W_{Y}(t_{1}),W_{Y}(t_{2})\big{)} =dY(V1,Y(t1),V2,Y(t2))\displaystyle=d_{Y}\big{(}V_{1,Y}(-t_{1}),V_{2,Y}(t_{2})\big{)}
12CNd(V1(t1),V2(t2))dX(V1,X(t1),V2,X(t2))\displaystyle\geq\frac{1}{2C_{N}}d_{\bowtie}\big{(}V_{1}(-t_{1}),V_{2}(t_{2})\big{)}-d_{X}\big{(}V_{1,X}(-t_{1}),V_{2,X}(t_{2})\big{)}
12CNd(α(t1),α(t2))κ1+κ2CNdX(V1,X(t1),V2,X(t2)).\displaystyle\geq\frac{1}{2C_{N}}d_{\bowtie}\big{(}\alpha(t_{1}),\alpha(t_{2})\big{)}-\frac{\kappa_{1}+\kappa_{2}}{C_{N}}-d_{X}\big{(}V_{1,X}(-t_{1}),V_{2,X}(t_{2})\big{)}. (48)

The Busemann assumption on XX provides us with:

dX(V1,X(t1),V2,X(t1))dX(V1,X(0),V2,X(0))κ1+κ2.\displaystyle d_{X}\big{(}V_{1,X}(-t_{1}),V_{2,X}(-t_{1})\big{)}\leq d_{X}\big{(}V_{1,X}(0),V_{2,X}(0)\big{)}\leq\kappa_{1}+\kappa_{2}.

Since α\alpha is a geodesic and by using the triangle inequality on (48) we have:

dY(WY(t1),WY(t2))\displaystyle d_{Y}\big{(}W_{Y}(t_{1}),W_{Y}(t_{2})\big{)} |t1t2|2CNdX(V1,X(t1),V2,X(t1))dX(V2,X(t1),V2,X(t2))κ1+κ2CN\displaystyle\geq\frac{|t_{1}-t_{2}|}{2C_{N}}-d_{X}\big{(}V_{1,X}(-t_{1}),V_{2,X}(-t_{1})\big{)}-d_{X}\big{(}V_{2,X}(-t_{1}),V_{2,X}(t_{2})\big{)}-\frac{\kappa_{1}+\kappa_{2}}{C_{N}}
|t1t2|2CNΔh(V2,Y(t1),V2,Y(t2)(1CN+1)(κ1+κ2).\displaystyle\geq\frac{|t_{1}-t_{2}|}{2C_{N}}-\Delta h\big{(}V_{2,Y}(-t_{1}),V_{2,Y}(t_{2}\big{)}-\left(\frac{1}{C_{N}}+1\right)(\kappa_{1}+\kappa_{2}).

Assume that Δh(V2,Y(t1),V2,Y(t2))|t1t2|4CN\Delta h\big{(}V_{2,Y}(-t_{1}),V_{2,Y}(t_{2})\big{)}\leq\frac{|t_{1}-t_{2}|}{4C_{N}}, then:

dY(WY(t1),WY(t2))|t1t2|4CN(1CN+1)(κ1+κ2).d_{Y}\big{(}W_{Y}(t_{1}),W_{Y}(t_{2})\big{)}\geq\frac{|t_{1}-t_{2}|}{4C_{N}}-\left(\frac{1}{C_{N}}+1\right)(\kappa_{1}+\kappa_{2}).

Hence WYW_{Y} is a (14CN,(1CN+1)(κ1+κ2))\left(\frac{1}{4C_{N}},\left(\frac{1}{C_{N}}+1\right)(\kappa_{1}+\kappa_{2})\right) quasi-geodesic, which was the remaining case. Since κ1\kappa_{1} and κ2\kappa_{2} depend only on δ\delta and NN, there exists a constant κ\kappa^{\prime} depending only on δ\delta and NN such that V1,YV2,YV_{1,Y}\cup V_{2,Y} is in the κ\kappa^{\prime}-neighbourhood of a geodesic of YY. The geodesic α\alpha is a YY-type geodesic in this case.
Assume limt+h(V1,X(t))=limt+h(V2,X(t))=\lim\limits_{t\rightarrow+\infty}h(V_{1,X}(t))=\lim\limits_{t\rightarrow+\infty}h(V_{2,X}(t))=-\infty, we prove similarly that α\alpha is a XX-type geodesic. ∎

If a geodesic is both XX-type at scale κ\kappa and YY-type at scale κ\kappa, then it is in a κ\kappa-neighbourhood of a vertical geodesic of XYX\bowtie Y.

5.4 Visual boundary of XYX\bowtie Y

We will now look at the visual boundary of our horospherical products. This notion is described for the Sol geometry in the work of Troyanov [27] through the objects called geodesic horizons. We extend one of the definitions presented in page 4 of [27] for horospherical products.

Definition 5.13.

Two geodesics of a metric space XX are called asymptotically equivalent if they are at finite Hausdorff distance from each other.

Definition 5.14.

Let XX be a metric space and let oo be a base point of XX. The visual boundary of XX is the set of asymptotic equivalence classes of geodesic rays α:+\alpha:\mathbb{R^{+}}\rightarrow such that α(0)=o\alpha(0)=o, it is denoted by oX\partial_{o}X.

We will use a result of [23] to describe the visual boundary of horospherical products.

Property 5.15 (Property 10.1.710.1.7 p.234 of [23]).

Let XX be a proper Busemann space, let qq be a point in XX and let r:[0,+[Xr:[0,+\infty[\to X be a geodesic ray. Then, there exists a unique geodesic ray rr^{\prime} starting at qq that is asymptotic to rr.

Theorem 5.16.

Let NN be an admissible norm. We fix base points and directions (wX,aX)X×X(w_{X},a_{X})\in X\times\partial X, (wY,aY)Y×Y(w_{Y},a_{Y})\in Y\times\partial Y. Let XYX\bowtie Y be the horospherical product with respect to (wX,aX)(w_{X},a_{X}) and (wY,aY)(w_{Y},a_{Y}). Then the visual boundary of (XY,d)(X\bowtie Y,d_{\bowtie}) with respect to a base point o=(oX,oY)o=(o_{X},o_{Y}) is given by:

o(XY)=\displaystyle\partial_{o}(X\bowtie Y)= ((X{aX})×{aY})({aX}×(Y{aY}))\displaystyle\Big{(}\big{(}\partial X\setminus\{a_{X}\}\big{)}\times\{a_{Y}\}\Big{)}\bigcup\Big{(}\{a_{X}\}\times\big{(}\partial Y\setminus\{a_{Y}\}\big{)}\Big{)}
=\displaystyle= ((X×{aY})({aX}×Y)){(aX,aY)}\displaystyle\Big{(}\big{(}\partial X\times\{a_{Y}\}\big{)}\bigcup\big{(}\{a_{X}\}\times\partial Y\big{)}\Big{)}\setminus\{(a_{X},a_{Y})\}

The fact that (aX,aY)(a_{X},a_{Y}) is not allowed as a direction in XYX\bowtie Y is understandable since both heights in XX and YY would tend to ++\infty, which is impossible by the definition of XYX\bowtie Y.

Proof.

Let α\alpha be a geodesic ray. Lemma 5.9 implies that there exists t0t_{0}\in\mathbb{R} such that α\alpha is coarsely monotone on [t0,+[[t_{0},+\infty[. Then Lemma 5.8 tells us that α([t0,+[)\alpha([t_{0},+\infty[) is at finite Hausdorff distance from a vertical geodesic ray V=(VX,VY)V=(V_{X},V_{Y}), hence α\alpha is also at finite Hausdorff distance from VV.
Since XX is Busemann and proper, Property 5.15 ensure us there exists VXV_{X}^{\prime} a vertical geodesic ray such that VXV_{X} and VXV_{X}^{\prime} are at finite Hausdorff distance with VX(0)=oXV_{X}^{\prime}(0)=o_{X}. Similarly, there exists VYV_{Y}^{\prime} a vertical geodesic ray of YY with VY(0)=oYV_{Y}^{\prime}(0)=o_{Y} such that VYV_{Y} and VYV_{Y}^{\prime} are at finite Hausdorff distance.
Furthermore, there is at least one vertical geodesic ray V=(VY,VX)V^{\prime}=(V_{Y}^{\prime},V_{X}^{\prime}) in every asymptotic equivalence class of geodesic rays, hence oXY\partial_{o}X\bowtie Y is the set of asymptotic equivalence classes of vertical geodesic rays starting at oo. Therefore, an asymptotic equivalence class can be identified by the couple of directions of a vertical geodesic ray. Then oXY\partial_{o}X\bowtie Y can be identified to:

((X{aX})×{aY})({aX}×(Y{aY})).\Big{(}\big{(}\partial X\setminus\{a_{X}\}\big{)}\times\{a_{Y}\}\Big{)}\bigcup\Big{(}\{a_{X}\}\times\big{(}\partial Y\setminus\{a_{Y}\}\big{)}\Big{)}.

the union between downward directions and upward directions, which proves the theorem. ∎

Example 5.17.

In the case of Sol, XX and YY are hyperbolic planes 2\mathbb{H}_{2}, hence their boundaries are X=2=S1\partial X=\partial\mathbb{H}_{2}=S^{1} and Y=S1\partial Y=S^{1}. Then oSol\partial_{o}\mathrm{Sol} can be identified to the following set:

(S1{aX})×{aY}{aX}×(S1{aY}).\big{(}S^{1}\setminus\{a_{X}\}\big{)}\times\{a_{Y}\}\bigcup\{a_{X}\}\times\big{(}S^{1}\setminus\{a_{Y}\}\big{)}. (49)

It can be seen as two lines at infinity, one upward {aX}×(S1{aY})\{a_{X}\}\times\big{(}S^{1}\setminus\{a_{Y}\}\big{)} and the other one downward (S1{aX})×{aY}\big{(}S^{1}\setminus\{a_{X}\}\big{)}\times\{a_{Y}\} .

It is similar to Proposition 6.4 of [27].

References

  • [1] L. Bartholdi, M. Neuhauser, W. Woess, Horocyclic products of trees. Journal European Mathematical Society, Volume 10 (2008) 771-816.
  • [2] A. Bendikov, L. Saloff-Coste, M. Salvatori, W. Woess, Brownian motion on treebolic space: escape to infinity. Revista Matemática Iberoamericana. European Mathematical Society Publishing House, Volume 31.3 (2015), 935-976.
  • [3] M.R. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, Volume 319 (1999).
  • [4] S. Brofferio, M. Salvatori, W. Woess, Brownian Motion and Harmonic Functions on Sol(p,q)(p,q). International Mathematics Research Notices, Volume 22 (2011) 5182–5218.
  • [5] M. Coornaert, T. Delzant, A. Papadopoulos, Géométrie et théorie des groupes: Les groupes hyperboliques de Gromov. Lecture Notes in Mathematics 1441 (1990).
  • [6] M.G. Cowling, V. Kivioja, E. Le Donne, S. Nicolussi Golo, A.Ottazi, From Homogeneous Metric Spaces to Lie Groups. arXiv:1705.09648 (2021).
  • [7] T. Dymarz, Large scale geometry of certain solvable groups. Geometric and Functional Analysis, volume 19, 6 (2009), 1650-1687.
  • [8] A. Eskin, D. Fisher, Quasi-isometric rigidity of solvable groups. Proceedings of the International Congress of Mathematicians, Hyderabad, India, (2010).
  • [9] A. Eskin, D. Fisher, K. Whyte, Quasi-isometries and rigidity of solvable groups. Pure and Applied Mathematics Quaterly Volume 3 Number 4 (2007), 927-947.
  • [10] A. Eskin, D. Fisher, K. Whyte, Coarse differentiation of quasi-isométries I: Spaces not quasi-isometric to Cayley graphs. Annals of Mathematics Volume 176 (2012), 221-260.
  • [11] A. Eskin, D. Fisher, K. Whyte, Coarse differentiation of quasi-isométries II: rigidity for lattices in Sol and lamplighter groups. Annals of Mathematics Volume 177 (2013), 869-910.
  • [12] B. Farb, L. Mosher, A rigidity theorem for the solvable Baumslag-Solitar groups. Invent. math. 131 (1998),419-451.
  • [13] B. Farb, L. Mosher, Quasi-isometric rigidity for the solvable Baumslag-Solitar groups II. Invent. math. 137 (1999),613-649.
  • [14] T. Ferragut, Geometric rigidity of quasi-isometries in horospherical products.. arXiv: 2211.04093 (2022)
  • [15] T. Foertsch, A. Lytchak, V. Schroeder, Nonpositive Curvature and the Ptolemy Inequality.. International Mathematics Research Notices Volume 2007 (2007).
  • [16] E. Ghys, P. De La Harpe, Sur les Groupes Hyperboliques d’après Mikhael Gromov. Progress in Mathematics Volume 83 (1990).
  • [17] S. Gouëzel, V. Shchur, A corrected quantitative version of the Morse lemma Journal of Functional Analysis, Volume 277 (2019) 1258-1268.
  • [18] M. Gromov, Asymptotic invariants of infinite groups LMS Lecture Notes, vol. 182, Cambridge Univ. Press, (1993).
  • [19] J. Heinonen, Lectures on analysis on metric spaces. Universitext. Springer-Verlag, New York, (2001).
  • [20] E. Heintze, On homogeneous manifolds of negative curvature. Mathematische Annalen. Vol.211; Iss. 1 (1974).
  • [21] M. Kapovich, Lectures on quasi-isometric rigidity. Geometric Group Theory . vol.21. (2014), 127-172.
  • [22] E. Le Donne, G. Pallier, X. Xie, Rough similarity of left-invariant Riemannian metrics on some Lie groups. arXiv:2208.06510 (2022).
  • [23] A. Papadopoulos, Metric spaces, convexity and nonpositive curvature. IRMA Lectures in Mathematics and Theoretical Physics 6 (2004).
  • [24] I. Peng, Coarse differentiation and quasi-isometries of a class of solvable Lie groups I. Geom. Topol. 15, No. 4, (2011), 1883-1925.
  • [25] I. Peng, Coarse differentiation and quasi-isometries of a class of solvable Lie groups II. Geom. Topol. 15, (2011), 1927–1981.
  • [26] P.M. Soardi, W. Woess, Amenability, unimodularity, and the spectral radius of random walks on infinite graphs. Math. Z. 205 (1990), 471–486.
  • [27] M. Troyanov, L’horizon de SOL. EPFL, Exposition. Math. Volume 16 (1998), 441-479.
  • [28] W. Woess, Lamplighters, Diestel-Leader Graphs, Random Walks, and Harmonic Functions. Institut für Mathematik C, Technische Universität Graz Steyrergasse 30, Combinatorics, Probability & Computing 14 (2005) 415-433.
  • [29] W. Woess, What is a horocyclic product, and how is it related to lamplighters? Internationale Mathematische Nachrichten, Volume 224 (2013) 1-27.
  • [30] X. Xie, Large scale geometry of negatively curved n\mathbb{R}^{n}\rtimes\mathbb{R}. Geom. Topol. 18, No. 2 (2014), 831-872.