This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Dan Barbasch 22institutetext: Department of Mathematics, 310 Malott Hall, Cornell University, Ithaca, New York 14853, USA 22email: [email protected] 33institutetext: Jia-Jun Ma 44institutetext: School of Mathematical Sciences, Xiamen University, Xiamen, 361005, China
Department of Mathematics, Xiamen University Malaysia campus, Sepang, Selangor Darul Ehsan, 43900, Malaysia 44email: [email protected]
55institutetext: Binyong Sun66institutetext: Institute for Advanced Study in Mathematics & New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, 310058, China 66email: [email protected] 77institutetext: Chen-Bo Zhu 88institutetext: Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore 119076 88email: [email protected]

Genuine special unipotent representations of spin groups

Dan Barbasch    Jia-Jun Ma    Binyong Sun    and Chen-Bo Zhu
Abstract

We determine all genuine special unipotent representations of real spin groups and quaternionic spin groups, and show in particular that all of them are unitarizable. We also show that there are no genuine special unipotent representations of complex spin groups.

To Toshiyuki Kobayashi with friendship and admiration


1 Introduction and the main results

In two earlier works BMSZ1 ; BMSZ2 , the authors construct and classify special unipotent representations of real classical groups (in the sense of Arthur and Barbasch-Vogan; the terminology comes from Lu ). As a direct consequence of the construction and the classification, the authors show that all special unipotent representations of real classical groups are unitarizable, as predicted by the Arthur-Barbasch-Vogan conjecture ((ArUni, , Section 4), (ABV, , Introduction)). For quasi-split classical groups, the unitarity is independently established in AAM ; AM .

In this paper we first consider a real or quaternionic spin group GG and determine all genuine special unipotent representations of GG. (The analogous but simpler case of the complex spin group is briefly discussed at the end of this section.) In particular, we show that all of them are unitarizable. The paper may be considered as a companion paper of BMSZ1 ; BMSZ2 . The general strategy follows those of BMSZ1 ; BMSZ2 and it consists of two steps. First we use the coherent continuation representation to count the number of special unipotent representations (attached to a nilpotent Gˇ\check{G}-orbit 𝒪ˇ\check{\mathcal{O}} in 𝔤ˇ\check{\mathfrak{g}}; notations to follow), as in BMSZ1 . Second we construct the exact number of special unipotent representations to match the counting and arrive at the classification as a result. This second task is made significantly easier in the current case of spin groups, due to the fact that there are only a very small number of genuine special unipotent representations. In the case of real classical groups, both tasks of the construction and distinguishing the constructed representations pose significant challenges, which we overcome in BMSZ2 by Howe’s method of theta lifting Howe79 ; Howe89 and Vogan’s theory of associated cycles Vo89 .

Let G=Spin(m,)G_{{\mathbb{C}}}=\mathrm{Spin}(m,{\mathbb{C}}) (m2m\geq 2) be the complex spin group. Its rank is n:=m2n:=\lfloor\frac{m}{2}\rfloor. Let GG be a real form of GG_{\mathbb{C}}, namely GG is the fixed point group of an involutive anti-holomorphic automorphism σ\sigma of GG_{\mathbb{C}}. Up to conjugation by GG_{\mathbb{C}}, every real form of GG_{\mathbb{C}} is a real spin group or a quaternionic spin group. We may thus assume without loss of generality that GG is the real spin group Spin(p,q)\mathrm{Spin}(p,q) (p+q=mp+q=m), or the quaternionic spin group Spin(2n)\mathrm{Spin}^{*}(2n) (when mm is even). We will be concerned with special unipotent representations of GG (in the sense of Arthur and Barbasch-Vogan; see BVUni ; ABV ).

It will be convenient to introduce a slightly larger group G~\widetilde{G}. Consider the natural exact sequence

{1}{±1}GSO(m,){1}.\{1\}\rightarrow\{\pm 1\}\rightarrow G_{\mathbb{C}}\rightarrow\mathrm{SO}(m,{\mathbb{C}})\rightarrow\{1\}.

The automorphism σ\sigma descends to an involutive anti-holomorphic automorphism of SO(m,)\mathrm{SO}(m,{\mathbb{C}}), to be denoted by σ0\sigma_{0}. Let G0G_{0} denote the fixed point group of σ0\sigma_{0}, and write G~\widetilde{G} for the preimage of G0G_{0} under the covering homomorphism GSO(m,)G_{\mathbb{C}}\rightarrow\mathrm{SO}(m,{\mathbb{C}}). Then G0G_{0} is a real special orthogonal group SO(p,q)\mathrm{SO}(p,q) (p+q=mp+q=m), or a quaternionic orthogonal group SO(2n)\mathrm{SO}^{*}(2n) (when mm is even). We summarize with an exact sequence

{1}{±1}G~G0{1},\{1\}\rightarrow\{\pm 1\}\rightarrow\widetilde{G}\rightarrow G_{0}\rightarrow\{1\},

where G0=SO(p,q)G_{0}=\mathrm{SO}(p,q) or SO(2n)\mathrm{SO}^{*}(2n).

If G=Spin(p,q)G=\mathrm{Spin}(p,q) and pq=0pq=0, or G=Spin(2n)G=\mathrm{Spin}^{*}(2n), then G~=G\widetilde{G}=G. Otherwise, G~\widetilde{G} contains GG as a subgroup of index 22.

We first consider representations of G~\widetilde{G} instead of GG, and we then relate the representation theory of GG to that of G~\widetilde{G} by Clifford theory.

We will work in the category of Casselman-Wallach representations (Wa2, , Chapter 11). An irreducible Casselman-Wallach representation of G~\widetilde{G} either descends to a representation of G0G_{0} or is genuine in the sense that the central subgroup {±1}G~\{\pm 1\}\subset\widetilde{G} (the kernel of the covering homomorphism G~G0\widetilde{G}\rightarrow G_{0}) acts via the non-trivial character. (The notion of “genuine” will be used in some similar situations without further explanation.) Since special unipotent representations of G0G_{0} have been classified BMSZ1 ; BMSZ2 , we will focus on genuine special unipotent representations of G~\widetilde{G}.

The Langlands dual of GG is

Gˇ:={SO(m,)/{±1},if m is even;Sp(m1,)/{±1},if m is odd.\check{G}:=\begin{cases}\mathrm{SO}(m,{\mathbb{C}})/\{\pm 1\},&\text{if $m$ is even};\\ \mathrm{Sp}(m-1,{\mathbb{C}})/\{\pm 1\},&\text{if $m$ is odd}.\end{cases} (1)

Denote by 𝔤ˇ\check{\mathfrak{g}} the Lie algebra of Gˇ\check{G}.

Let 𝒪ˇ\check{\mathcal{O}} be a nilpotent Gˇ\check{G}-orbit in 𝔤ˇ\check{\mathfrak{g}} (see CM for basic facts about nilpotent orbits). Denote by Unip𝒪ˇgen(G~)\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}(\widetilde{G}) the set of isomorphism classes of genuine special unipotent representations of G~\widetilde{G} attached to 𝒪ˇ\check{\mathcal{O}}. We refer the reader to (BMSZ1, , Section 2) for a comprehensive discussion of special unipotent representations in the case of real classical groups.

Denote by 𝔤\mathfrak{g} and 𝔤\mathfrak{g}_{\mathbb{C}} the Lie algebras of GG and GG_{\mathbb{C}}, respectively. Let 𝒪𝔤{\mathcal{O}}\subset\mathfrak{g}_{\mathbb{C}}^{*} denote the Barbasch-Vogan dual of 𝒪ˇ\check{\mathcal{O}} (see (BVUni, , Appendix) and (BMSZ0, , Section 1)).

Our first result will count the set Unip𝒪ˇgen(G~){\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(\widetilde{G}). As usual we will not distinguish between a nilpotent orbit 𝒪ˇ\check{\mathcal{O}} and its Young diagram (when there is no confusion). Recall that 𝒪ˇ\check{\mathcal{O}} is called very even if all its row lengths are even.

Theorem 1.1

(a) If some row length of 𝒪ˇ\check{\mathcal{O}} occurs with odd multiplicity, then the set Unip𝒪ˇgen(G~){\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(\widetilde{G}) is empty.

(b) Suppose that all row lengths of 𝒪ˇ\check{\mathcal{O}} occur with even multiplicity. Then

(Unip𝒪ˇgen(G~))\displaystyle\sharp({\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(\widetilde{G}))
=\displaystyle= {1,if G=Spin(p,q)|pq|=1;1,if G=Spin(p,q)p=q and 𝒪ˇ is very even;2,if G=Spin(p,q)p=q and 𝒪ˇ is not very even;(G~\1𝔤𝒪),if G=Spin(2n) and 𝒪ˇ is very even;0,otherwise.\displaystyle\begin{cases}1,&\text{if $G=\mathrm{Spin}(p,q)$, $\left|{p-q}\right|=1$};\\ 1,&\text{if $G=\mathrm{Spin}(p,q)$, $p=q$ and $\check{\mathcal{O}}$ is very even};\\ 2,&\text{if $G=\mathrm{Spin}(p,q)$, $p=q$ and $\check{\mathcal{O}}$ is not very even};\\ \sharp(\widetilde{G}\backslash\sqrt{-1}\mathfrak{g}^{*}\cap{\mathcal{O}}),&\text{if $G=\mathrm{Spin}^{*}(2n)$ and $\check{\mathcal{O}}$ is very even};\\ 0,&\text{otherwise}.\end{cases}

Here and henceforth, \sharp indicates the cardinality of a finite set.

Note that when mm is even and 𝒪ˇ\check{\mathcal{O}} is very even, there are actually two nilpotent Gˇ\check{G}-orbits in 𝔤ˇ\check{\mathfrak{g}} that have the same Young diagram as 𝒪ˇ\check{\mathcal{O}}. The two orbits are given labels I/III/II as 𝒪ˇI\check{\mathcal{O}}_{I} and 𝒪ˇII\check{\mathcal{O}}_{II}. Write 𝒪I{\mathcal{O}}_{I} and 𝒪II{\mathcal{O}}_{II} respectively for their Barbasch-Vogan duals. If G=Spin(2n)G=\mathrm{Spin}^{*}(2n) and 𝒪ˇ\check{\mathcal{O}} is very even, then among the sets 1𝔤𝒪I\sqrt{-1}\mathfrak{g}^{*}\cap{\mathcal{O}}_{I} and 1𝔤𝒪II\sqrt{-1}\mathfrak{g}^{*}\cap{\mathcal{O}}_{II}, one is empty and the other is not. We will use the convention for the labels so that

1𝔤𝒪I\sqrt{-1}\mathfrak{g}^{*}\cap\mathcal{O}_{I}\neq\emptyset (2)

and we say 𝒪ˇI{\check{\mathcal{O}}}_{I} is GG-relevant. We refer the reader to (BMSZ1, , Section 2.6) for the notion of GG-relevance in a more general context.

Let sgn~\widetilde{\mathrm{sgn}} denote the quadratic character on G~\widetilde{G} whose kernel equals GG.

Theorem 1.2

Let πUnip𝒪ˇgen(G~)\pi\in{\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(\widetilde{G}). If G=Spin(p,q)G=\mathrm{Spin}(p,q) and p=qp=q is odd, then πsgn~\pi\otimes\widetilde{\mathrm{sgn}} is not isomorphic to π\pi. In all other cases, πsgn~\pi\otimes\widetilde{\mathrm{sgn}} is isomorphic to π\pi.

Similar to Unip𝒪ˇgen(G~){\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(\widetilde{G}), define the set Unip𝒪ˇgen(G){\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(G) of isomorphism classes of genuine special unipotent representations of GG attached to 𝒪ˇ\check{\mathcal{O}}. By Clifford theory and Theorem 1.2, Theorem 1.1 implies the following counting result for GG.

Theorem 1.3

(a) If some row length of 𝒪ˇ\check{\mathcal{O}} occurs with odd multiplicity, then the set Unip𝒪ˇgen(G){\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(G) is empty.

(b) Suppose that all row lengths of 𝒪ˇ\check{\mathcal{O}} occur with even multiplicity. Then

(Unip𝒪ˇgen(G))\displaystyle\sharp({\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(G))
=\displaystyle= {2,if G=Spin(p,q)|pq|=1;2,if G=Spin(p,q)p=q is even and 𝒪ˇ is very even;4,if G=Spin(p,q)p=q is even and 𝒪ˇ is not very even;1,if G=Spin(p,q)p=q is odd;(G\1𝔤𝒪),if G=Spin(2n) and 𝒪ˇ is very even;0,otherwise.\displaystyle\begin{cases}2,&\text{if $G=\mathrm{Spin}(p,q)$, $\left|{p-q}\right|=1$};\\ 2,&\text{if $G=\mathrm{Spin}(p,q)$, $p=q$ is even and $\check{\mathcal{O}}$ is very even};\\ 4,&\text{if $G=\mathrm{Spin}(p,q)$, $p=q$ is even and $\check{\mathcal{O}}$ is not very even};\\ 1,&\text{if $G=\mathrm{Spin}(p,q)$, $p=q$ is odd};\\ \sharp(G\backslash\sqrt{-1}\mathfrak{g}^{*}\cap{\mathcal{O}}),&\text{if $G=\mathrm{Spin}^{*}(2n)$ and $\check{\mathcal{O}}$ is very even};\\ 0,&\text{otherwise}.\end{cases}

We aim to describe all representations in Unip𝒪ˇgen(G~){\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(\widetilde{G}) and Unip𝒪ˇgen(G){\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(G). In the rest of this introduction, we assume that the set Unip𝒪ˇgen(G~){\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(\widetilde{G}) is non-empty, or equivalently, the set Unip𝒪ˇgen(G){\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(G) is non-empty. Theorem 1.1 in particular implies that all row lengths of 𝒪ˇ\check{\mathcal{O}} occur with even multiplicity. Write

r1=r1r2=r2rk=rk>0(k1)r_{1}=r_{1}\geq r_{2}=r_{2}\geq\dots\geq r_{k}=r_{k}>0\quad(k\geq 1)

for the row lengths of 𝒪ˇ\check{\mathcal{O}}.

As usual, let \mathbb{H} denote the division algebra of Hamilton’s quaternions. We omit the proof of the following elementary lemma.

Lemma 1

Up to conjugation by G0G_{0}, there is a unique Levi subgroup L0L_{0} of G0G_{0} with the following properties:

  1. (a)
    L0{GLr1()×GLr2()××GLrk(),if G0=SO(p,q);GLr12()×GLr22()××GLrk2(),if G0=SO(2n);L_{0}\cong\begin{cases}\mathrm{GL}_{r_{1}}(\mathbb{R})\times\mathrm{GL}_{r_{2}}(\mathbb{R})\times\dots\times\mathrm{GL}_{r_{k}}(\mathbb{R}),&\text{if $G_{0}=\mathrm{SO}(p,q)$};\\ \mathrm{GL}_{\frac{r_{1}}{2}}(\mathbb{H})\times\mathrm{GL}_{\frac{r_{2}}{2}}(\mathbb{H})\times\dots\times\mathrm{GL}_{\frac{r_{k}}{2}}(\mathbb{H}),&\text{if $G_{0}=\mathrm{SO}^{*}(2n)$};\end{cases}
  2. (b)

    the orbit 𝒪{\mathcal{O}} equals the induction of the zero orbit from 𝔩\mathfrak{l}_{\mathbb{C}} to 𝔤\mathfrak{g}_{\mathbb{C}}, where 𝔩\mathfrak{l}_{\mathbb{C}} denotes the complexified Lie algebra of L0L_{0}.

We remark that the second condition in the above lemma is implied by the first one, unless G0=SO(p,q)G_{0}=\mathrm{SO}(p,q), p=qp=q, and 𝒪ˇ\check{\mathcal{O}} is very even.

Let L0L_{0} be as in Lemma 1 and write L~\widetilde{L} for the preimage of L0L_{0} under the covering homomorphism GSO(m,)G_{\mathbb{C}}\rightarrow\mathrm{SO}(m,{\mathbb{C}}). Write NG~(L~)\mathrm{N}_{\widetilde{G}}(\widetilde{L}) for the normalizer of L~\widetilde{L} in G~\widetilde{G}.

Lemma 2

(a) Suppose that G0=SO(p,q)G_{0}=\mathrm{SO}(p,q). If either |pq|=1\left|{p-q}\right|=1, or p=qp=q and 𝒪ˇ\check{\mathcal{O}} is very even, then up to conjugation by NG~(L~)\mathrm{N}_{\widetilde{G}}(\widetilde{L}), there exists a unique genuine character on L~\widetilde{L} of finite order.

(b) Suppose that G0=SO(p,q)G_{0}=\mathrm{SO}(p,q). If p=qp=q and 𝒪ˇ\check{\mathcal{O}} is not very even, then up to conjugation by NG~(L~)\mathrm{N}_{\widetilde{G}}(\widetilde{L}), there are precisely two genuine characters on L~\widetilde{L} of finite order.

(c) Suppose that G0=SO(2n)G_{0}=\mathrm{SO}^{*}(2n). Then the covering homomorphism L~L0\widetilde{L}\rightarrow L_{0} uniquely splits, and L~\widetilde{L} has a unique genuine character of finite order.

Proof

Suppose that G0=SO(p,q)G_{0}=\mathrm{SO}(p,q) and p=qp=q. Let ZZ denote the inverse image of {±1}\{\pm 1\} under the covering homomorphism G~SO(p,p)\widetilde{G}\rightarrow\mathrm{SO}(p,p). Then ZZ is a central subgroup of G~\widetilde{G} which is contained in L~\widetilde{L}. Moreover,

Z{/2×/2,if p is even;/4,if p is odd.Z\cong\begin{cases}\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z},&\text{if $p$ is even};\\ \mathbb{Z}/4\mathbb{Z},&\text{if $p$ is odd}.\end{cases}

When 𝒪ˇ\check{\mathcal{O}} is not very even, it is easy to see that there are two genuine characters on L~\widetilde{L} of finite order that have distinct restrictions to ZZ. Therefore up to conjugation by NG~(L~)\mathrm{N}_{\widetilde{G}}(\widetilde{L}), there are at least two genuine characters on L~\widetilde{L} of finite order. The rest of the lemma is easy to prove and we omit the details.

Let P~\widetilde{P} be a parabolic subgroup of G~\widetilde{G} containing L~\widetilde{L} as a Levi factor. Let χ\chi be a genuine character on L~\widetilde{L} of finite order, to be viewed as a character of P~\widetilde{P} as usual. Put

I(χ):=IndP~G~χ(normalized smooth parabolic induction).I(\chi):=\mathrm{Ind}_{\widetilde{P}}^{\widetilde{G}}\chi\qquad(\textrm{normalized smooth parabolic induction}).

This is called a degenerate principal series representation.

Theorem 1.4

(a) Suppose that G=Spin(p,q)G=\mathrm{Spin}(p,q). Then I(χ)I(\chi) is irreducible and belongs to Unip𝒪ˇgen(G~){\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(\widetilde{G}). Moreover

Unip𝒪ˇgen(G~)={{I(χ)},if either |pq|=1, or p=q and 𝒪ˇ is very even;{I(χ1),I(χ2)},if p=q and 𝒪ˇ is not very even.{\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(\widetilde{G})=\begin{cases}\{I(\chi)\},&\text{if either $\left|{p-q}\right|=1$, or $p=q$ and $\check{\mathcal{O}}$ is very even};\\ \{I(\chi_{1}),I(\chi_{2})\},&\text{if $p=q$ and $\check{\mathcal{O}}$ is not very even}.\end{cases}

Here χ1\chi_{1} and χ2\chi_{2} are two genuine characters on L~\widetilde{L} of finite order that are not conjugate by NG~(L~)\mathrm{N}_{\widetilde{G}}(\widetilde{L}).

(b) Suppose that G=Spin(2n)G=\mathrm{Spin}^{*}(2n). Then for every 𝐨G~\1𝔤𝒪\mathbf{o}\in\widetilde{G}\backslash\sqrt{-1}\mathfrak{g}^{*}\cap{\mathcal{O}}, there is a unique (up to isomorphism) irreducible Casselman-Wallach representation π𝐨\pi_{\mathbf{o}} of G~\widetilde{G} that occurs in I(χ)I(\chi) whose wave front set equals the closure of 𝐨\mathbf{o}. Moreover,

Unip𝒪ˇgen(G~)={π𝐨𝐨G~\1𝔤𝒪}{\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(\widetilde{G})=\{\pi_{\mathbf{o}}\mid\mathbf{o}\in\widetilde{G}\backslash\sqrt{-1}\mathfrak{g}^{*}\cap{\mathcal{O}}\}

and

I(χ)𝐨G~\1𝔤𝒪π𝐨.I(\chi)\cong\bigoplus_{\mathbf{o}\in\widetilde{G}\backslash\sqrt{-1}\mathfrak{g}^{*}\cap{\mathcal{O}}}\pi_{\mathbf{o}}.

Now we return to consider the group GG. Assume that G=Spin(p,q)G=\mathrm{Spin}(p,q). Put P:=P~GP:=\widetilde{P}\cap G and L=L~GL=\widetilde{L}\cap G. Then we have the identification

I(χ)|G=IndPGχ|LI(\chi)|_{G}=\mathrm{Ind}_{P}^{G}\chi|_{L}

of representations of GG. By Clifford theory and Theorem 1.2, if p=qp=q is odd, then I(χ)|GI(\chi)|_{G} is irreducible. In all other cases, I(χ)|GI(\chi)|_{G} is the direct sum of two irreducible subrepresentations that are not isomorphic to each other. Write I1(χ)I_{1}(\chi) and I2(χ)I_{2}(\chi) for these two irreducible subrepresentations.

By Clifford theory, part (a) of Theorem 1.4 easily implies the following result. We omit the details.

Theorem 1.5

Assume that G=Spin(p,q)G=\mathrm{Spin}(p,q). Then

Unip𝒪ˇgen(G)\displaystyle{\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(G)
=\displaystyle= {{I1(χ),I2(χ)},if |pq|=1;{I1(χ),I2(χ)},if p=q is even,and 𝒪ˇ is very even;{I1(χ1),I2(χ1),I1(χ2),I2(χ2)},if p=q is even,and 𝒪ˇ is not very even;{I(χ)|G},if p=q is odd.\displaystyle\begin{cases}\{I_{1}(\chi),I_{2}(\chi)\},&\text{if $\left|{p-q}\right|=1$};\\ \{I_{1}(\chi),I_{2}(\chi)\},&\text{if $p=q$ is even},\\ &\quad\text{and $\check{\mathcal{O}}$ is very even};\\ \{I_{1}(\chi_{1}),I_{2}(\chi_{1}),I_{1}(\chi_{2}),I_{2}(\chi_{2})\},&\text{if $p=q$ is even},\\ &\quad\text{and $\check{\mathcal{O}}$ is not very even};\\ \{I(\chi)|_{G}\},&\text{if $p=q$ is odd}.\end{cases}

Here χ1\chi_{1} and χ2\chi_{2} are two genuine characters on L~\widetilde{L} of finite order that are not conjugate by NG~(L~)\mathrm{N}_{\widetilde{G}}(\widetilde{L}).

The following unitarity result is an obvious consequence of Theorems 1.4 and 1.5.

Theorem 1.6

All genuine special unipotent representations of G~\widetilde{G} or GG are unitarizable.

Remark 1

Theorem 1.6, together with the result of BMSZ2 on special unipotent representations of G0G_{0}, implies that all special unipotent representations of G~\widetilde{G} or GG are unitarizable.

We now examine the case of the complex spin group. Recall that G=Spin(m,)G_{\mathbb{C}}=\mathrm{Spin}(m,\mathbb{C}). View GG_{\mathbb{C}} as a real reductive group. Then its Langlands dual is Gˇ×Gˇ\check{G}\times\check{G}, where Gˇ\check{G} is given in (1). As before, denote by Unip𝒪ˇgen(G)\mathrm{Unip}^{\mathrm{gen}}_{{\check{\mathcal{O}}}_{\mathbb{C}}}(G_{\mathbb{C}}) the set of isomorphism classes of genuine special unipotent representations of GG_{\mathbb{C}} attached to 𝒪ˇ\check{\mathcal{O}}_{\mathbb{C}}, where 𝒪ˇ\check{\mathcal{O}}_{\mathbb{C}} is a nilpotent Gˇ×Gˇ\check{G}\times\check{G}-orbit in 𝔤ˇ×𝔤ˇ\check{\mathfrak{g}}\times\check{\mathfrak{g}} (in the obvious notation).

The following theorem should be known within the expert community. As the proof is along the same line as that of Theorem 1.1, we will state the result without proof.

Theorem 1.7

The set Unip𝒪ˇgen(G)\mathrm{Unip}^{\mathrm{gen}}_{{\check{\mathcal{O}}}_{\mathbb{C}}}(G_{\mathbb{C}}) is empty, namely there exists no genuine special unipotent representation of G=Spin(m,)G_{\mathbb{C}}=\mathrm{Spin}(m,\mathbb{C}).

We remark that Losev, Mason-Brown and Matvieievskyi LMBM have recently proposed a notion of unipotent representations for a complex reductive group, extending the notion of special unipotent representations. See also (B17, , Section 2.3) for a different version of the notion proposed by Barbasch earlier. Genuine unipotent representations of Spin(m,)\mathrm{Spin}(m,{\mathbb{C}}) do exist and they play a key role in the determination of the unitary dual of Spin(m,)\mathrm{Spin}(m,{\mathbb{C}}) (see for example, Brega and WZ ).

2 Proof of Theorem 1.1

In this section, we apply the method developed in BMSZ1 to prove Theorem 1.1. We will also follow BMSZ1 in our choice of notations and conventions.

2.1 Coherent continuation representation of a spin group

We adopt the formulation of coherent continuation representation in (BMSZ1, , Sections 3 and 4). The original references include Sch ; Zu ; SpVo ; Vg .

We make the following identifications:

  • The dual 𝔥\mathfrak{h}^{*} of the abstract Cartan subalgebra 𝔥\mathfrak{h} of 𝔤\mathfrak{g}_{\mathbb{C}} is identified with n{\mathbb{C}}^{n}.

  • The analytic weight lattice Q𝔥Q\subset\mathfrak{h}^{*} of GG_{{\mathbb{C}}} is identified with n(12𝟏+n){\mathbb{Z}}^{n}\sqcup({\tfrac{1}{2}}\mathbf{1}+{\mathbb{Z}}^{n}). Here 𝟏:=(1,1,,1)n\mathbf{1}:=(1,1,\cdots,1)\in{\mathbb{Z}}^{n}.

  • The analytic weight lattice Q0Q_{0} of SO(m,)\mathrm{SO}(m,{\mathbb{C}}) is identified with the sublattice n{\mathbb{Z}}^{n} of QQ via the natural quotient map GSO(m,)G_{\mathbb{C}}\rightarrow\mathrm{SO}(m,{\mathbb{C}}).

We adopt the following notations:

  • Let 𝒦(G~)\mathcal{K}(\widetilde{G}) be the Grothendieck group (with coefficients in {\mathbb{C}}) of the category of Casselman-Wallach representations of G~\widetilde{G}.

  • Let 𝒦λ(G~)\mathcal{K}_{\lambda}(\widetilde{G}) be the subgroup of 𝒦(G~)\mathcal{K}(\widetilde{G}) generated by irreducible representations of G~\widetilde{G} with infinitesimal character λ𝔥\lambda\in\mathfrak{h}^{*},

  • Let 𝒦gen(G~)\mathcal{K}^{\mathrm{gen}}(\widetilde{G}) be the subgroup of 𝒦(G~)\mathcal{K}(\widetilde{G}) generated by irreducible genuine representations of G~\widetilde{G}.

  • Let 𝒦cls(G~)\mathcal{K}^{\mathrm{cls}}(\widetilde{G}) be the subgroup of 𝒦(G~)\mathcal{K}(\widetilde{G}) generated by irreducible representations of G~\widetilde{G} which factor through G0G_{0}. We identify 𝒦cls(G~)\mathcal{K}^{\mathrm{cls}}(\widetilde{G}) with the Grothendick group 𝒦(G0)\mathcal{K}(G_{0}) of the category of Casselman-Wallach representations of G0G_{0}.

Let WW be abstract Weyl group of GG_{\mathbb{C}}, which acts on 𝔥\mathfrak{h}^{*} in the standard way.

For the rest of this section, let Λ𝔥\Lambda\subset\mathfrak{h}^{*} be a QQ-coset. Denote by WΛW_{\Lambda} the stabilizer of Λ\Lambda in WW. Also we have the integral Weyl group

W(Λ):={wW|wλλ is in the root lattice for every λΛ},W(\Lambda):=\set{w\in W}{w\lambda-\lambda\textrm{ is in the root lattice for every }\lambda\in\Lambda}, (3)

which is a subgroup of WΛW_{\Lambda}.

Definition 1

The space CohΛ(𝒦(G~))\mathrm{Coh}_{\Lambda}(\mathcal{K}(\widetilde{G})) of 𝒦(G~)\mathcal{K}(\widetilde{G})-valued coherent families based on Λ\Lambda is the vector space of all maps Ψ:Λ𝒦(G~)\Psi\colon\Lambda\to\mathcal{K}(\widetilde{G}) such that, for all λΛ\lambda\in\Lambda,

  • Ψ(λ)𝒦λ(G~)\Psi(\lambda)\in\mathcal{K}_{\lambda}(\widetilde{G}), and

  • for any holomorphic finite-dimensional representation FF of GG_{\mathbb{C}},

    FΨ(λ)=μΨ(λ+μ),F\otimes\Psi(\lambda)=\sum_{\mu}\Psi(\lambda+\mu),

    where μ\mu runs over the set of all weights (counting multiplicities) of FF.

The space CohΛ(𝒦(G~))\mathrm{Coh}_{\Lambda}(\mathcal{K}(\widetilde{G})) is a WΛW_{\Lambda}-module under the action

(wΨ)(λ)=Ψ(w1λ),wWΛ.(w\cdot\Psi)(\lambda)=\Psi(w^{-1}\lambda),\qquad w\in W_{\Lambda}.

This is called the coherent continuation representation.

Fix a decomposition

Λ=Λ1Λ2\Lambda=\Lambda_{1}\sqcup\Lambda_{2}

where Λ1\Lambda_{1} and Λ2\Lambda_{2} are Q0Q_{0}-cosets. Then Λ1=12𝟏+Λ2\Lambda_{1}={\tfrac{1}{2}}\mathbf{1}+\Lambda_{2}. Similar to (3), we define the integral Weyl groups W(Λ1)W(\Lambda_{1}) and W(Λ2)W(\Lambda_{2}). Then

W(Λ)=W(Λ1)=W(Λ2).W(\Lambda)=W(\Lambda_{1})=W(\Lambda_{2}).

Let CohΛ1(𝒦cls(G~)):=CohΛ1(𝒦(G0))\mathrm{Coh}_{\Lambda_{1}}(\mathcal{K}^{\mathrm{cls}}(\widetilde{G})):=\mathrm{Coh}_{\Lambda_{1}}(\mathcal{K}(G_{0})) be the coherent continuation representation defined for G0G_{0} based on Λ1\Lambda_{1} (replace 𝒦(G~)\mathcal{K}(\widetilde{G}) by 𝒦(G0)\mathcal{K}(G_{0}), Λ\Lambda by Λ1\Lambda_{1} and GG_{\mathbb{C}} by SO(m,)\mathrm{SO}(m,{\mathbb{C}}) in Definition 1). Similarly, let CohΛ2(𝒦gen(G~))\mathrm{Coh}_{\Lambda_{2}}(\mathcal{K}^{\mathrm{gen}}(\widetilde{G})) be the coherent continuation representation defined for G~\widetilde{G} based on Λ2\Lambda_{2} (replace 𝒦(G~)\mathcal{K}(\widetilde{G}) by 𝒦gen(G~)\mathcal{K}^{\mathrm{gen}}(\widetilde{G}), Λ\Lambda by Λ2\Lambda_{2} and GG_{\mathbb{C}} by SO(m,)\mathrm{SO}(m,{\mathbb{C}}) in Definition 1).

Define a subspace of CohΛ(G~)\mathrm{Coh}_{\Lambda}(\widetilde{G}) by

CohΛ1,Λ2(G~):={ΨCohΛ(G~)|Im(Ψ|Λ1)𝒦cls(G~),Im(Ψ|Λ2)𝒦gen(G~)}.\mathrm{Coh}_{\Lambda_{1},\Lambda_{2}}(\widetilde{G}):=\Set{\Psi\in\mathrm{Coh}_{\Lambda}(\widetilde{G})}{\begin{array}[]{l}\mathrm{Im}(\Psi|_{\Lambda_{1}})\subset\mathcal{K}^{\mathrm{cls}}(\widetilde{G}),\\ \mathrm{Im}(\Psi|_{\Lambda_{2}})\subset\mathcal{K}^{\mathrm{gen}}(\widetilde{G})\end{array}}.

The following lemma reduces the counting of genuine representations of G~\widetilde{G} to that of G0G_{0}-representations.

Lemma 3

Restrictions induce the following isomorphisms of W(Λ)W(\Lambda)-modules:

CohΛ1(𝒦(G0))CohΛ1,Λ2(𝒦(G~))CohΛ2(𝒦gen(G~)).\mathrm{Coh}_{\Lambda_{1}}(\mathcal{K}(G_{0}))\xleftarrow{\ \ \ \cong\ \ }\mathrm{Coh}_{\Lambda_{1},\Lambda_{2}}(\mathcal{K}(\widetilde{G}))\xrightarrow{\ \ \cong\ \ \ }\mathrm{Coh}_{\Lambda_{2}}(\mathcal{K}^{\mathrm{gen}}(\widetilde{G})).

Moreover,

CohΛ(𝒦(G~))=CohΛ1,Λ2(𝒦(G~))CohΛ2,Λ1(𝒦(G~)).\mathrm{Coh}_{\Lambda}(\mathcal{K}(\widetilde{G}))=\mathrm{Coh}_{\Lambda_{1},\Lambda_{2}}(\mathcal{K}(\widetilde{G}))\oplus\mathrm{Coh}_{\Lambda_{2},\Lambda_{1}}(\mathcal{K}(\widetilde{G})). (4)
Proof

The W(Λ)W(\Lambda)-equivariance of the maps is clear. Let Ψ\Psi be in CohΛ(𝒦(G~))\mathrm{Coh}_{\Lambda}(\mathcal{K}(\widetilde{G})). Since Ψ|Λ1\Psi|_{\Lambda_{1}} and Ψ|Λ2\Psi|_{\Lambda_{2}} are related by tensoring with genuine finite dimensional representations, we see that the following conditions are equivalent:

  • ΨCohΛ1,Λ2(𝒦(G~))\Psi\in\mathrm{Coh}_{\Lambda_{1},\Lambda_{2}}(\mathcal{K}(\widetilde{G})),

  • Ψ(λ1)𝒦cls(G~)\Psi(\lambda_{1})\in\mathcal{K}^{\mathrm{cls}}(\widetilde{G}) for some regular element λ1Λ1\lambda_{1}\in\Lambda_{1},

  • Ψ(λ1)𝒦cls(G~)\Psi(\lambda_{1})\in\mathcal{K}^{\mathrm{cls}}(\widetilde{G}) for all elements λ1Λ1\lambda_{1}\in\Lambda_{1},

  • Ψ(λ2)𝒦gen(G~)\Psi(\lambda_{2})\in\mathcal{K}^{\mathrm{gen}}(\widetilde{G}) for some regular element λ2Λ2\lambda_{2}\in\Lambda_{2},

  • Ψ(λ2)𝒦gen(G~)\Psi(\lambda_{2})\in\mathcal{K}^{\mathrm{gen}}(\widetilde{G}) for all elements λ2Λ2\lambda_{2}\in\Lambda_{2},

The maps are isomorphisms since the evaluation ΨΨ(λ)\Psi\mapsto\Psi(\lambda) induces an isomorphism for any regular element λ\lambda in Λ\Lambda. See (Vg, , Section 7).

The following counting result on genuine special unipotent representations will follow from Lemma 3. Recall that attached to 𝒪ˇ{\check{\mathcal{O}}}, there is an infinitesimal character determined by 12(Lh){\tfrac{1}{2}}(^{L}h) in the notation of (BVUni, , Section 5), which is represented by λ𝒪ˇ𝔥\lambda_{\check{\mathcal{O}}}\in\mathfrak{h}^{*}.

Proposition 1

Suppose 𝒪ˇ\check{\mathcal{O}} is a nilpotent Gˇ\check{G}-orbit in 𝔤ˇ\check{\mathfrak{g}}. Then

|Unip𝒪ˇgen(G~)|=σ𝒞𝒪ˇL[σ:CohΛ1(𝒦(G0))],\left|{{\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(\widetilde{G})}\right|=\sum_{\sigma\in{}^{L}\mathscr{C}_{{\check{\mathcal{O}}}}}[\sigma:\mathrm{Coh}_{\Lambda_{1}}(\mathcal{K}(G_{0}))],

where

  • Λ1=λ𝒪ˇ+12𝟏+Q0\Lambda_{1}=\lambda_{\check{\mathcal{O}}}+{\tfrac{1}{2}}\mathbf{1}+Q_{0}, and

  • 𝒞𝒪ˇLIrr(W(Λ1)){}^{L}\mathscr{C}_{{\check{\mathcal{O}}}}\subset\mathrm{Irr}(W(\Lambda_{1})) is the Lusztig left cell attached to λ𝒪ˇ\lambda_{\check{\mathcal{O}}} (see (BMSZ1, , Definition 3.34)).

Here and henceforth, Irr(E)\mathrm{Irr}(E) denotes the set of isomorphism classes of irreducible representations of a finite group EE; [:][\ :\ ] indicates the multiplicity of the first (irreducible) representation in the second representation, of a finite group. If it is necessary to specify the finite group, a subscript will be included.

Proof

Let Λ2:=λ𝒪ˇ+Q0\Lambda_{2}:=\lambda_{\check{\mathcal{O}}}+Q_{0} and Λ:=λ𝒪ˇ+Q=Λ1Λ2\Lambda:=\lambda_{\check{\mathcal{O}}}+Q=\Lambda_{1}\sqcup\Lambda_{2}. We apply (BMSZ1, , Corollary 5.4) twice:

|Unip𝒪ˇgen(G~)|=|Unip𝒪ˇ(G~)||Unip𝒪ˇ(G0)|=σ𝒞𝒪ˇL[σ:CohΛ2(𝒦(G~))]σ𝒞𝒪ˇL[σ:CohΛ2(𝒦(G0))]=σ𝒞𝒪ˇL([σ:CohΛ(𝒦(G~))][σ:CohΛ2,Λ1(𝒦(G~))])=σ𝒞𝒪ˇL[σ:CohΛ1,Λ2(𝒦(G~))](by (4))=σ𝒞𝒪ˇL[σ:CohΛ1(G0)].\begin{split}\left|{{\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(\widetilde{G})}\right|&=\left|{\mathrm{Unip}_{\check{\mathcal{O}}}(\widetilde{G})}\right|-\left|{\mathrm{Unip}_{\check{\mathcal{O}}}(G_{0})}\right|\\ &=\sum_{\sigma\in{}^{L}\mathscr{C}_{{\check{\mathcal{O}}}}}[\sigma:\mathrm{Coh}_{\Lambda_{2}}(\mathcal{K}(\widetilde{G}))]-\sum_{\sigma\in{}^{L}\mathscr{C}_{{\check{\mathcal{O}}}}}[\sigma:\mathrm{Coh}_{\Lambda_{2}}(\mathcal{K}(G_{0}))]\\ &=\sum_{\sigma\in{}^{L}\mathscr{C}_{{\check{\mathcal{O}}}}}\left([\sigma:\mathrm{Coh}_{\Lambda}(\mathcal{K}(\widetilde{G}))]-[\sigma:\mathrm{Coh}_{\Lambda_{2},\Lambda_{1}}(\mathcal{K}(\widetilde{G}))]\right)\\ &=\sum_{\sigma\in{}^{L}\mathscr{C}_{{\check{\mathcal{O}}}}}[\sigma:\mathrm{Coh}_{\Lambda_{1},\Lambda_{2}}(\mathcal{K}(\widetilde{G}))]\quad\text{(by \eqref{eq:coheq})}\\ &=\sum_{\sigma\in{}^{L}\mathscr{C}_{{\check{\mathcal{O}}}}}[\sigma:\mathrm{Coh}_{\Lambda_{1}}(G_{0})].\hskip 144.54pt\Box\end{split}

Before we proceed to count explicitly genuine special unipotent representations case by case, we recall the following notations and definitions in BMSZ1 . The relevant labels (which specify the types of groups we consider) are =B,D,D\star=B,D,D^{*}.

Denote by 𝖲nGLn()\mathsf{S}_{n}\subset\mathrm{GL}_{n}(\mathbb{Z}) the group of the permutation matrices. The Weyl group

W={𝖶n,if =B;𝖶n,if {D,D},W=\begin{cases}\mathsf{W}_{n},&\text{if $\star=B$};\\ \mathsf{W}_{n}^{\prime},&\text{if $\star\in\{D,D^{*}\}$},\\ \end{cases}

where 𝖶nGLn()\mathsf{W}_{n}\subset\mathrm{GL}_{n}(\mathbb{Z}) is the subgroup generated by 𝖲n\mathsf{S}_{n} and all the diagonal matrices with diagonal entries ±1\pm 1, and 𝖶nGLn()\mathsf{W}^{\prime}_{n}\subset\mathrm{GL}_{n}(\mathbb{Z}) is the subgroup generated by 𝖲n\mathsf{S}_{n} and all the diagonal matrices with diagonal entries ±1\pm 1 and determinant 11.

As always, sgn\operatorname{sgn} denotes the sign character (of an appropriate Weyl group). By inflating the sign character of 𝖲n\mathsf{S}_{n} (viewed as a quotient of 𝖶n\mathsf{W}_{n}), we obtain a quadratic character of 𝖶n\mathsf{W}_{n}, to be denoted by sgn¯\overline{\operatorname{sgn}}. In addition let

𝖧t:=𝖶t{±1}t,(t),\mathsf{H}_{t}:=\mathsf{W}_{t}\ltimes\set{\pm 1}^{t},\quad(t\in{\mathbb{N}}),

to be viewed as a subgroup in 𝖶2t\mathsf{W}_{2t}, and let η\eta be the quadratic character of HtH_{t}, as in (BMSZ1, , Section 8.1).

We define

𝒞,nb:={2t+c+d=nInd𝖧t×𝖶c×𝖶d𝖶nη11,if =B;2t+a=nInd𝖧t×𝖲a𝖶nη1,if =D;Ind𝖧n2𝖶nη,if =D.\mathcal{C}^{\mathrm{b}}_{\star,n}:=\begin{cases}\bigoplus_{\begin{subarray}{c}2t+c+d=n\end{subarray}}\mathrm{Ind}_{\mathsf{H}_{t}\times\mathsf{W}_{c}\times\mathsf{W}_{d}}^{\mathsf{W}_{n}}\eta\otimes 1\otimes 1,&\text{if $\star=B$};\vskip 6.0pt plus 2.0pt minus 2.0pt\\ \bigoplus_{\begin{subarray}{c}2t+a=n\end{subarray}}\mathrm{Ind}_{\mathsf{H}_{t}\times\mathsf{S}_{a}}^{\mathsf{W}_{n}}\eta\otimes 1,&\text{if $\star=D$};\vskip 6.0pt plus 2.0pt minus 2.0pt\\ \mathrm{Ind}_{\mathsf{H}_{\frac{n}{2}}}^{\mathsf{W}^{\prime}_{n}}\eta,&\text{if $\star=D^{*}$}.\end{cases} (5)

We also define

𝒞p,qg:={0p(2t+a+2r)1,0q(2t+a+2s)1Ind𝖧t×𝖲a×𝖶s×𝖶r𝖶nη1sgnsgn,if p+q=2n+1;2t+c+d+2r=p2t+c+d+2s=qInd𝖧t×𝖶s×𝖶r×𝖶c×𝖶d𝖶nηsgn¯sgn¯11,if p+q=2n,\mathcal{C}^{\mathrm{g}}_{p,q}:=\begin{cases}\displaystyle\bigoplus_{\begin{subarray}{c}0\leq p-(2t+a+2r)\leq 1,\\ 0\leq q-(2t+a+2s)\leq 1\end{subarray}}\mathrm{Ind}_{\mathsf{H}_{t}\times\mathsf{S}_{a}\times\mathsf{W}_{s}\times\mathsf{W}_{r}}^{\mathsf{W}_{n}}\eta\otimes 1\otimes\operatorname{sgn}\otimes\operatorname{sgn},&\text{if $p+q=2n+1$};\vskip 6.0pt plus 2.0pt minus 2.0pt\\ \displaystyle\bigoplus_{\begin{subarray}{c}2t+c+d+2r=p\\ 2t+c+d+2s=q\end{subarray}}\mathrm{Ind}_{\mathsf{H}_{t}\times\mathsf{W}_{s}\times\mathsf{W}_{r}\times\mathsf{W}^{\prime}_{c}\times\mathsf{W}_{d}}^{\mathsf{W}_{n}}\eta\otimes\overline{\operatorname{sgn}}\otimes\overline{\operatorname{sgn}}\otimes 1\otimes 1,&\text{if $p+q=2n$},\vskip 6.0pt plus 2.0pt minus 2.0pt\\ \end{cases} (6)

and

𝒞D,ng:=2t+a=nInd𝖧t×𝖲a𝖶nηsgn,if =D.\mathcal{C}^{\mathrm{g}}_{D^{*},n}:=\bigoplus_{\begin{subarray}{c}2t+a=n\end{subarray}}\mathrm{Ind}_{\mathsf{H}_{t}\times\mathsf{S}_{a}}^{\mathsf{W}^{\prime}_{n}}\eta\otimes\operatorname{sgn},\qquad\qquad\text{if $\star=D^{*}$}. (7)

We introduce some notations relevant to irreducible representations and Young diagrams. As usual, we identify Irr(𝖶n)\mathrm{Irr}(\mathsf{W}_{n}) with the set of bipartions (or a pair of Young diagrams) of total size nn ((Carter, , Section 11.4)). In what follows, we let [a1,a2,,ak]col\left[a_{1},a_{2},\cdots,a_{k}\right]_{\mathrm{col}} (resp. [a1,a2,,ak]row\left[a_{1},a_{2},\cdots,a_{k}\right]_{\mathrm{row}}) denote the Young diagram whose ii-th column (resp. row) has length aia_{i} if 1ik1\leq i\leq k and has length 0 otherwise. Let 𝐫i(𝒪ˇ){\mathbf{r}}_{i}({\check{\mathcal{O}}}) denote the length of ii-th row of the Young diagram of a nilpotent orbit 𝒪ˇ{\check{\mathcal{O}}} of a classical group.

2.2 Real odd spin groups

In this case G~=Spin(p,q)\widetilde{G}=\mathrm{Spin}(p,q) and G0=SO(p,q)G_{0}=\mathrm{SO}(p,q), with p+q=2n+1p+q=2n+1. Let NN be the smallest positive integer such that 𝐫2N(𝒪ˇ)=0{\mathbf{r}}_{2N}({\check{\mathcal{O}}})=0. Suppose the multiset {𝐫i(𝒪ˇ):1i2N}\set{{\mathbf{r}}_{i}({\check{\mathcal{O}}}):1\leq i\leq 2N} is

{2r1+1,2r1+1,2r2+1,2r2+1,,2rl+1,2rl+1,2r1′′,2r2′′,,2r2k′′}.\set{2r^{\prime}_{1}+1,2r^{\prime}_{1}+1,2r^{\prime}_{2}+1,2r^{\prime}_{2}+1,\cdots,2r^{\prime}_{l}+1,2r^{\prime}_{l}+1,2r^{\prime\prime}_{1},2r^{\prime\prime}_{2},\cdots,2r^{\prime\prime}_{2k}}.

with 2l+2k=2N2l+2k=2N, riri+1r^{\prime}_{i}\geq r^{\prime}_{i+1} (for 1i<l1\leq i<l) and ri′′ri+1′′r^{\prime\prime}_{i}\geq r^{\prime\prime}_{i+1} (for 1i<2k1\leq i<2k). Note that r2k′′=0r^{\prime\prime}_{2k}=0 by definition.

Let

n𝐛=l+i=1l2ri and n𝐠=i=12kri′′.n_{\mathbf{b}}=l+\sum_{i=1}^{l}2r^{\prime}_{i}\qquad\text{ and }\qquad n_{\mathbf{g}}=\sum_{i=1}^{2k}r^{\prime\prime}_{i}.

Then

Λ1=(12,12n𝐛-terms,0,0n𝐠-terms)+n and W(Λ1)=𝖶n𝐛×𝖶n𝐠.\Lambda_{1}=(\underbrace{{\tfrac{1}{2}},\cdots{\tfrac{1}{2}}}_{n_{\mathbf{b}}\text{-terms}},\underbrace{0,\cdots 0}_{n_{\mathbf{g}}\text{-terms}})+{\mathbb{Z}}^{n}\qquad\text{ and }\qquad W(\Lambda_{1})=\mathsf{W}_{n_{\mathbf{b}}}\times\mathsf{W}_{n_{\mathbf{g}}}.

As a W(Λ1)W(\Lambda_{1})-module, the coherent continuation representation is

CohΛ1(𝒦(G0))={𝒞pn𝐠,qn𝐠g𝒞B,n𝐠b,if p,qn𝐠;0,otherwise.\mathrm{Coh}_{\Lambda_{1}}(\mathcal{K}(G_{0}))=\begin{cases}\mathcal{C}^{\mathrm{g}}_{p-n_{\mathbf{g}},q-n_{\mathbf{g}}}\otimes\mathcal{C}^{\mathrm{b}}_{B,n_{\mathbf{g}}},&\text{if $p,q\geq n_{\mathbf{g}}$;}\\ 0,&\text{otherwise.}\end{cases}

See (BMSZ1, , Propositions 8.1 and 8.2).

As in (BMSZ1, , Section 2.8), let

PP(𝒪ˇ):={(2i,2i+1)|r2i′′>r2i+1′′ and  1i<k}\mathrm{PP}({\check{\mathcal{O}}}):=\set{(2i,2i+1)}{r^{\prime\prime}_{2i}>r^{\prime\prime}_{2i+1}\,\text{ and }\,1\leq i<k}

be the set of primitive pairs attached to 𝒪ˇ{\check{\mathcal{O}}}. The Lusztig left cell 𝒞𝒪ˇL{}^{L}\mathscr{C}_{{\check{\mathcal{O}}}} in Irr(W(Λ1))\mathrm{Irr}(W(\Lambda_{1})) is given by

𝒞𝒪ˇL={τbτ|PP(𝒪ˇ)},{}^{L}\mathscr{C}_{{\check{\mathcal{O}}}}=\set{\tau_{b}\otimes\tau_{\wp}}{\wp\subseteq\mathrm{PP}({\check{\mathcal{O}}})},

where

τb=[r1+1,r2+1,,rl+1]col×[r1,r2,,rl]col,\tau_{b}=[r^{\prime}_{1}+1,r^{\prime}_{2}+1,\cdots,r^{\prime}_{l}+1]_{\text{col}}\times[r^{\prime}_{1},r^{\prime}_{2},\cdots,r^{\prime}_{l}]_{\text{col}},

and

τ=[l,1,l,2,,l,k+1]col×[r,1,r,2,,r,k+1]col.\tau_{\wp}=[l_{\wp,1},l_{\wp,2},\cdots,l_{\wp,k+1}]_{\text{col}}\times[r_{\wp,1},r_{\wp,2},\cdots,r_{\wp,k+1}]_{\text{col}}.

Here (l,1,l,k+1)=(r1′′,0)(l_{\wp,1},l_{\wp,k+1})=(r^{\prime\prime}_{1},0) and for 1<ik1<i\leq k,

(l,i,r,i+1)={(r2i+1′′,r2i′′),(2i,2i+1);(r2i′′,r2i+1′′),otherwise.(l_{\wp,i},r_{\wp,i+1})=\begin{cases}(r^{\prime\prime}_{2i+1},r^{\prime\prime}_{2i}),&\text{$(2i,2i+1)\in\wp$};\\ (r^{\prime\prime}_{2i},r^{\prime\prime}_{2i+1}),&\text{otherwise}.\end{cases}

See (BMSZ1, , Proposition 8.3).

Lemma 4

We have

[τb:𝒞pn𝐠,qn𝐠g]={1, if |pq|=1;0,otherwise.[\tau_{b}:\mathcal{C}^{\mathrm{g}}_{p-n_{\mathbf{g}},q-n_{\mathbf{g}}}]=\begin{cases}1,&\text{ if $|p-q|=1$;}\\ 0,&\text{otherwise.}\end{cases}
Proof

The multiplicity is computed by the Littlewood-Richardson rule which is reformulated in terms of counting painted bipartitions as in (BMSZ1, , Section 2.8).

Lemma 5

For PP(𝒪ˇ)\wp\subseteq\mathrm{PP}({\check{\mathcal{O}}}), we have

[τ:𝒞B,ngb]={1,if = and 𝐫2i+1(𝒪ˇ)=𝐫2i+2(𝒪ˇ) for all i;0,otherwise.[\tau_{\wp}:\mathcal{C}^{\mathrm{b}}_{B,n_{g}}]=\begin{cases}1,&\text{if $\wp=\emptyset$ and ${\mathbf{r}}_{2i+1}({\check{\mathcal{O}}})={\mathbf{r}}_{2i+2}({\check{\mathcal{O}}})$ for all $i\in{\mathbb{N}}$;}\\ 0,&\text{otherwise.}\end{cases}
Proof

Note that we always have l,ir,il_{\wp,i}\leq r_{\wp,i} for 1ik+11\leq i\leq k+1. Again the multiplicity is computed by the Littlewood-Richardson rule and the result can be formulated in terms of counting certain painted bipartitions. In a bit more detail, from the painting rules of type BB in (BMSZ1, , Definition 8.5), the symbols “cc” and “dd” are painted in the left diagram of τ\tau_{\wp}. The only possible painting allowed on τ\tau_{\wp} will be to put the symbol “\bullet” in every box, in which case we will have r2i1′′=r,i=l,i=r2i′′r^{\prime\prime}_{2i-1}=r_{\wp,i}=l_{\wp,i}=r^{\prime\prime}_{2i}, =\wp=\emptyset and the multiplicity is 11.

Together with Proposition 1, the above two lemmas imply Theorem 1.1 for real odd spin groups.

2.3 Real even spin groups and quaternionic spin groups

We now assume G0=SO(p,q)G_{0}=\mathrm{SO}(p,q) with p+q=2np+q=2n, or G0=SO(2n)G_{0}=\mathrm{SO}^{*}(2n). Let NN be the smallest positive integer such that 𝐫2N+1(𝒪ˇ)=0{\mathbf{r}}_{2N+1}({\check{\mathcal{O}}})=0. Suppose the multiset {𝐫i(𝒪ˇ):1i2N}\set{{\mathbf{r}}_{i}({\check{\mathcal{O}}}):1\leq i\leq 2N} is

{2r1,2r1,2r2,2r2,,2rl,2rl,2r1′′+1,2r2′′+1,,2r2k′′+1}.\set{2r^{\prime}_{1},2r^{\prime}_{1},2r^{\prime}_{2},2r^{\prime}_{2},\cdots,2r^{\prime}_{l},2r^{\prime}_{l},2r^{\prime\prime}_{1}+1,2r^{\prime\prime}_{2}+1,\cdots,2r^{\prime\prime}_{2k}+1}.

with 2l+2k=2N2l+2k=2N, riri+1r^{\prime}_{i}\geq r^{\prime}_{i+1} (for 1i<l1\leq i<l) and ri′′ri+1′′r^{\prime\prime}_{i}\geq r^{\prime\prime}_{i+1} (for 1i<2k1\leq i<2k).

Let

n𝐛=i=1l2ri and n𝐠=k+i=12kri′′.n_{\mathbf{b}}=\sum_{i=1}^{l}2r^{\prime}_{i}\qquad\text{ and }\qquad n_{\mathbf{g}}=k+\sum_{i=1}^{2k}r^{\prime\prime}_{i}.

Then

Λ1=(0,0n𝐛-terms,12,12n𝐠-terms) and W(Λ1)=𝖶n𝐛×𝖶n𝐠.\Lambda_{1}=(\underbrace{0,\cdots 0}_{n_{\mathbf{b}}\text{-terms}},\underbrace{{\tfrac{1}{2}},\cdots{\tfrac{1}{2}}}_{n_{\mathbf{g}}\text{-terms}})\qquad\text{ and }\qquad W(\Lambda_{1})=\mathsf{W}^{\prime}_{n_{\mathbf{b}}}\times\mathsf{W}^{\prime}_{n_{\mathbf{g}}}.

Recall that irreducible representations of 𝖶n\mathsf{W}_{n}^{\prime} are parameterized by unordered pairs of bipartitions with a label II or IIII attached when the pairs are equal to each other. For the labeling convention, see (BMSZ1, , Section 8.3).

As in (BMSZ1, , Section 2.8), let

PP(𝒪ˇ):={(2i,2i+1)|r2i′′>r2i+1′′>0 and 1i<k}\mathrm{PP}({\check{\mathcal{O}}}):=\set{(2i,2i+1)}{r^{\prime\prime}_{2i}>r^{\prime\prime}_{2i+1}>0\text{ and }1\leq i<k}

be the set of primitive pairs attached to 𝒪ˇ{\check{\mathcal{O}}}. The Lusztig left cell 𝒞𝒪ˇL{}^{L}\mathscr{C}_{{\check{\mathcal{O}}}} in Irr(W(Λ1))\mathrm{Irr}(W(\Lambda_{1})) is given by

𝒞𝒪ˇL={τbτ|PP(𝒪ˇ)},{}^{L}\mathscr{C}_{{\check{\mathcal{O}}}}=\set{\tau_{b}\otimes\tau_{\wp}}{\wp\subseteq\mathrm{PP}({\check{\mathcal{O}}})},

where

τb={[r1,r2,,rl]col,[r1,r2,,rl]col}I/II\tau_{b}=\set{[r^{\prime}_{1},r^{\prime}_{2},\cdots,r^{\prime}_{l}]_{\text{col}},[r^{\prime}_{1},r^{\prime}_{2},\cdots,r^{\prime}_{l}]_{\text{col}}}_{I/II}

(the label I/III/II of τb\tau_{b} is determined by 𝒪ˇ{\check{\mathcal{O}}}) and

τ={[l,1,l,2,,l,k]col,[r,1,r,2,,r,k]col}.\tau_{\wp}=\set{[l_{\wp,1},l_{\wp,2},\cdots,l_{\wp,k}]_{\text{col}},[r_{\wp,1},r_{\wp,2},\cdots,r_{\wp,k}]_{\text{col}}}.

Here (l,1,r,k)=(r1′′+1,r2k′′)(l_{\wp,1},r_{\wp,k})=(r^{\prime\prime}_{1}+1,r^{\prime\prime}_{2k}) and for 1i<k1\leq i<k,

(l,i+1,r,i)={(r2i′′+1,r2i+1′′),(2i,2i+1);(r2i+1′′+1,r2i′′),otherwise.(l_{\wp,i+1},r_{\wp,i})=\begin{cases}(r^{\prime\prime}_{2i}+1,r^{\prime\prime}_{2i+1}),&\text{$(2i,2i+1)\in\wp$};\\ (r^{\prime\prime}_{2i+1}+1,r^{\prime\prime}_{2i}),&\text{otherwise}.\end{cases}

See (BMSZ1, , Proposition 8.3).

The following lemma is clear.

Lemma 6

For 1ik1\leq i\leq k and PP(𝒪ˇ)\wp\subseteq\mathrm{PP}({\check{\mathcal{O}}}), we have

l,i>r,i.l_{\wp,i}>r_{\wp,i}.

The case when G0=SO(p,q)G_{0}=\mathrm{SO}(p,q), p+q=2np+q=2n

In this case, the coherent continuation representation as a W(Λ1)W(\Lambda_{1})-module is

CohΛ1(𝒦(G0))={𝒞pn𝐠,qn𝐠g𝒞n𝐠b,if p,qn𝐠;0,otherwise.\mathrm{Coh}_{\Lambda_{1}}(\mathcal{K}(G_{0}))=\begin{cases}\mathcal{C}^{\mathrm{g}}_{p-n_{\mathbf{g}},q-n_{\mathbf{g}}}\otimes\mathcal{C}^{\mathrm{b}}_{n_{\mathbf{g}}},&\text{if $p,q\geq n_{\mathbf{g}}$};\\ 0,&\text{otherwise.}\end{cases}

Here the right-hand side is understood as its restriction to W(Λ1)=𝖶n𝐛×𝖶n𝐠W(\Lambda_{1})=\mathsf{W}^{\prime}_{n_{\mathbf{b}}}\times\mathsf{W}^{\prime}_{n_{\mathbf{g}}}. See (BMSZ1, , Propositions 8.1 and 8.2).

Lemma 7

We have

[τb:𝒞pn𝐠,qn𝐠g]={1,if p=q;0,otherwise.[\tau_{b}:\mathcal{C}^{\mathrm{g}}_{p-n_{\mathbf{g}},q-n_{\mathbf{g}}}]=\begin{cases}1,&\text{if $p=q$};\\ 0,&\text{otherwise.}\end{cases}
Proof

Since the pair of Young diagrams in τb\tau_{b} have the same shape, τb\tau_{b} does not occur in any of the terms of (6) with any of s,r,c,ds,r,c,d non-zero. On the other hand, τb\tau_{b} occurs with multiplicity one in Ind𝖧n𝐛2𝖶n𝐛η\mathrm{Ind}_{\mathsf{H}_{\frac{n_{\mathbf{b}}}{2}}}^{\mathsf{W}_{n_{\mathbf{b}}}}\eta (see (BMSZ1, , (8.15)), for example).

Lemma 8

Suppose n𝐠>0n_{\mathbf{g}}>0 and PP(𝒪ˇ)\wp\subseteq\mathrm{PP}({\check{\mathcal{O}}}). Then

[τ:𝒞D,n𝐠b]={2,if = and r2i+1′′=r2i+2′′ for all i;0,otherwise.[\tau_{\wp}:\mathcal{C}^{\mathrm{b}}_{D,n_{\mathbf{g}}}]=\begin{cases}2,&\text{if $\wp=\emptyset$ and $r^{\prime\prime}_{2i+1}=r^{\prime\prime}_{2i+2}$ for all $i\in{\mathbb{N}}$};\\ 0,&\text{otherwise.}\end{cases}
Proof

By Lemma 6, τ=τ,L×τ,R\tau_{\wp}=\tau_{\wp,L}\times\tau_{\wp,R}, with τ,Lτ,R\tau_{\wp,L}\neq\tau_{\wp,R}. Therefore,

Ind𝖶n𝐠𝖶n𝐠=τ,L×τ,R(τ,L×τ,Rε),\mathrm{Ind}_{\mathsf{W}^{\prime}_{n_{\mathbf{g}}}}^{\mathsf{W}_{n_{\mathbf{g}}}}=\tau_{\wp,L}\times\tau_{\wp,R}\oplus(\tau_{\wp,L}\times\tau_{\wp,R}\otimes\varepsilon),

where ε\varepsilon is the quadratic character of 𝖶n𝐠\mathsf{W}_{n_{\mathbf{g}}} whose kernel is 𝖶n𝐠\mathsf{W}^{\prime}_{n_{\mathbf{g}}}. Now

[τ:𝒞D,n𝐠b]𝖶n𝐠=[τ,L×τ,R:𝒞D,n𝐠b]𝖶n𝐠+[τ,L×τ,Rε:𝒞D,n𝐠b]𝖶n𝐠=2[τ,L×τ,R:𝒞D,n𝐠b]𝖶n𝐠\begin{split}[\tau_{\wp}:\mathcal{C}^{\mathrm{b}}_{D,n_{\mathbf{g}}}]_{\mathsf{W}^{\prime}_{n_{\mathbf{g}}}}&=[\tau_{\wp,L}\times\tau_{\wp,R}:\mathcal{C}^{\mathrm{b}}_{D,n_{\mathbf{g}}}]_{\mathsf{W}_{n_{\mathbf{g}}}}+[\tau_{\wp,L}\times\tau_{\wp,R}\otimes\varepsilon:\mathcal{C}^{\mathrm{b}}_{D,n_{\mathbf{g}}}]_{\mathsf{W}_{n_{\mathbf{g}}}}\\ &=2[\tau_{\wp,L}\times\tau_{\wp,R}:\mathcal{C}^{\mathrm{b}}_{D,n_{\mathbf{g}}}]_{\mathsf{W}_{n_{\mathbf{g}}}}\end{split}

since 𝒞D,n𝐠bε=𝒞D,n𝐠b\mathcal{C}^{\mathrm{b}}_{D,n_{\mathbf{g}}}\otimes\varepsilon=\mathcal{C}^{\mathrm{b}}_{D,n_{\mathbf{g}}}. It is easy to see that (by the painting rules of type DD in (BMSZ1, , Section 2.8), for example), τ,L×τ,R\tau_{\wp,L}\times\tau_{\wp,R} can only occur in the term of (5) with a=ka=k. When this is the case, it occurs with multiplicity one and

l,i=r,i+1for 1ik.l_{\wp,i}=r_{\wp,i}+1\quad\text{for $1\leq i\leq k$.} (8)

The equation (8) forces r2i1′′=r2i′′r^{\prime\prime}_{2i-1}=r^{\prime\prime}_{2i} for 1ik1\leq i\leq k and =\wp=\emptyset. This completes proof of the lemma.

Together with Proposition 1, the above two lemmas imply Theorem 1.1 for real even spin groups.

2.4 The case when G0=SO(2n)G_{0}=\mathrm{SO}^{*}(2n)

In this case, the coherent continuation representation as a WΛ1W_{\Lambda_{1}}-module is

CohΛ1(G0)=Ind𝖶n𝐠×𝖶n𝐛WΛ1𝒞D,n𝐛g𝒞D,n𝐠b,\mathrm{Coh}_{\Lambda_{1}}(G_{0})=\mathrm{Ind}_{\mathsf{W}^{\prime}_{n_{\mathbf{g}}}\times\mathsf{W}^{\prime}_{n_{\mathbf{b}}}}^{W_{\Lambda_{1}}}\mathcal{C}^{\mathrm{g}}_{D^{*},n_{\mathbf{b}}}\otimes\mathcal{C}^{\mathrm{b}}_{D^{*},n_{\mathbf{g}}},

where

WΛ1=(𝖶n𝐛×𝖶n𝐠)𝖶n.W_{\Lambda_{1}}=(\mathsf{W}_{n_{\mathbf{b}}}\times\mathsf{W}_{n_{\mathbf{g}}})\cap\mathsf{W}^{\prime}_{n}.

See (BMSZ1, , Propositions 8.1 and 8.2).

Lemma 9

If n𝐠0n_{\mathbf{g}}\neq 0, then [τbτ:CohΛ1(G0)]=0[\tau_{b}\otimes\tau_{\wp}:\mathrm{Coh}_{\Lambda_{1}}(G_{0})]=0 for each PP(𝒪ˇ)\wp\in\mathrm{PP}({\check{\mathcal{O}}}).

Proof

Applying the Littlewood-Richardson rule (see (BMSZ1, , (8.15))) to 𝒞D,n𝐠b\mathcal{C}^{\mathrm{b}}_{D^{*},n_{\mathbf{g}}} (see (5)), we see that if σ1σ2Irr(𝖶n𝐛×𝖶n𝐠)\sigma_{1}\otimes\sigma_{2}\in\mathrm{Irr}(\mathsf{W}_{n_{\mathbf{b}}}\times\mathsf{W}_{n_{\mathbf{g}}}) occurs in CohΛ1(G)\mathrm{Coh}_{\Lambda_{1}}(G), then the pair of partitions in σ2\sigma_{2} must have the same shape. On the other hand, τ\tau_{\wp} is represented by a pair of partitions with different shapes by Lemma 6. This proves the lemma.

We are now in the case when n𝐠=0n_{\mathbf{g}}=0 (and so nb=nn_{b}=n). We have

𝒞𝒪ˇL={τb}andCohΛ1(G0)=𝒞D,ng.{}^{L}\mathscr{C}_{{\check{\mathcal{O}}}}=\set{\tau_{b}}\qquad\text{and}\qquad\mathrm{Coh}_{\Lambda_{1}}(G_{0})=\mathcal{C}^{\mathrm{g}}_{D^{*},n}. (9)

Recall the notion of GG-relevant orbit in (2).

Lemma 10

Suppose n𝐠=0n_{\mathbf{g}}=0. Then

[τb:𝒞D,ng]={i=1l(riri+1+1),if 𝒪ˇ is G-relevant;0,otherwise.[\tau_{b}:\mathcal{C}^{\mathrm{g}}_{D^{*},n}]=\begin{cases}\prod_{i=1}^{l}(r^{\prime}_{i}-r^{\prime}_{i+1}+1),&\text{if ${\check{\mathcal{O}}}$ is $G$-relevant;}\\ 0,&\text{otherwise.}\end{cases}

In all cases, it is equal to (G\1𝔤𝒪)\sharp(G\backslash\sqrt{-1}\mathfrak{g}^{*}\cap{\mathcal{O}}). (Here rl+1:=0r^{\prime}_{l+1}:=0 by convention. )

Proof

By the Littlewood-Richardson rule ((BMSZ1, , (8.15))), all representations occurring in 𝒞D,ng\mathcal{C}^{\mathrm{g}}_{D^{*},n} (see (7)) are labeled by II. So if τb\tau_{b} is to occur in it, τb\tau_{b} must be labeled by II, which is equivalent to 𝒪ˇ{\check{\mathcal{O}}} being GG-relevant. The rest of the claim about the multiplicity of τb\tau_{b} in 𝒞D,ng\mathcal{C}^{\mathrm{g}}_{D^{*},n} also follows from the Littlewood-Richardson rule. Concretely, the multiplicity is counted by the number of paintings on the bipartition of shape [r1,,rl]col×[r1,,rl]col[r^{\prime}_{1},\cdots,r^{\prime}_{l}]_{\text{col}}\times[r^{\prime}_{1},\cdots,r^{\prime}_{l}]_{\text{col}}, using the painting rules of type DD^{*} in (BMSZ1, , Section 2.8). It is routine to check that there are i=1l(riri+1+1)\prod_{i=1}^{l}(r^{\prime}_{i}-r^{\prime}_{i+1}+1) such paintings in total.

When 𝒪ˇ{\check{\mathcal{O}}} is GG-relevant, i=1l(riri+1+1)\prod_{i=1}^{l}(r^{\prime}_{i}-r^{\prime}_{i+1}+1) also counts the number of signed Young diagrams having shape 𝒪\mathcal{O}, which is the number of real nilpotent orbits in 𝒪\mathcal{O}. When 𝒪ˇ{\check{\mathcal{O}}} is not GG-relevant, 1𝔤𝒪\sqrt{-1}\mathfrak{g}^{*}\cap{\mathcal{O}} is empty. The lemma thus follows.

Together with Proposition 1, the above two lemmas imply Theorem 1.1 for G=Spin(2n)G=\mathrm{Spin}^{*}(2n).

3 Genuine special unipotent representations of real spin groups

Based on Theorem 1.1, we will prove Theorems 1.2 to 1.4 in this section and the next section. We retain the notation and assumptions of Section 1.

For the time being, GG can be either Spin(p,q)\mathrm{Spin}(p,q) or Spin(2n)\mathrm{Spin}^{*}(2n). Recall the G~\widetilde{G}-representation I(χ)=IndP~G~χI(\chi)=\mathrm{Ind}_{\widetilde{P}}^{\widetilde{G}}\chi, where χ\chi is a genuine character on L~\widetilde{L} of finite order.

The following lemma follows from a general result of Barbasch (B00, , Corollary 5.0.10). See also (MT, , Section 3).

Lemma 11

The wavefront cycle of I(χ)I(\chi) equals

𝐨G~\1𝔤𝒪𝐨.\sum_{\mathbf{o}\in\widetilde{G}\backslash\sqrt{-1}\mathfrak{g}^{*}\cap{\mathcal{O}}}\mathbf{o}.
Proof

Let 𝔫{\mathfrak{n}} be the nilpotent radical of Lie(P~)\mathrm{Lie}(\widetilde{P}). By (B00, , Corollary 5.0.10), the wavefront cycle of I(χ)I(\chi) is given by

WF(I(χ))=G~X(C(G~X))(C(P~X))G~X,WF(I(\chi))=\sum_{\widetilde{G}\cdot X}\frac{\sharp(C(\widetilde{G}_{X}))}{\sharp(C(\widetilde{P}_{X}))}\widetilde{G}\cdot X,

where the summation runs over the set of orbits of the form G~X\widetilde{G}\cdot X in 1𝔤𝒪\sqrt{-1}\mathfrak{g}^{*}\cap\mathcal{O} with X1𝔫X\in\sqrt{-1}\mathfrak{n}^{*}. Here G~X\widetilde{G}_{X} (resp. P~X\widetilde{P}_{X}) denotes the centralizer of XX in G~\widetilde{G} (resp. P~\widetilde{P}), and the symbol CC indicates the component group.

It is routine to check that every orbit 𝐨G~\1𝔤𝒪\mathbf{o}\in\widetilde{G}\backslash\sqrt{-1}\mathfrak{g}^{*}\cap\mathcal{O} has a representative in 1𝔫\sqrt{-1}{\mathfrak{n}}^{*}. Thus

WF(I(χ))=𝐨G~\1𝔤𝒪m𝐨𝐨,WF(I(\chi))=\sum_{\mathbf{o}\in\widetilde{G}\backslash\sqrt{-1}\mathfrak{g}^{*}\cap{\mathcal{O}}}m_{\mathbf{o}}\mathbf{o},

where m𝐨=|C(G~X)||C(P~X)|m_{\mathbf{o}}=\frac{|C(\widetilde{G}_{X})|}{|C(\widetilde{P}_{X})|}, with XX an element of 1𝔫𝐨\sqrt{-1}{\mathfrak{n}}^{*}\cap\mathbf{o}.

By a result of Kostant and Barbasch-Vogan (CM, , Lemma 3.7.3), G~X\widetilde{G}_{X} has a semidirect product decomposition:

G~X=RUX,\widetilde{G}_{X}=R\ltimes U_{X},

where the reductive part RR is the centralizer in G~\widetilde{G} of the 𝔰𝔩2\mathfrak{s}\mathfrak{l}_{2}-triple containing XX, and UXU_{X} is the unipotant radical of G~X\widetilde{G}_{X}.

In view of condition (b) of Lemma 1 and by replacing P~\widetilde{P} by a G~\widetilde{G}-conjugate if necessary, the group RR will be contained in the Levi component L~\widetilde{L} of P~\widetilde{P} and therefore in P~\widetilde{P} in particular. Since P~X=P~G~X\widetilde{P}_{X}=\widetilde{P}\cap\widetilde{G}_{X}, we conclude that P~X=R(P~UX)\widetilde{P}_{X}=R\ltimes(\widetilde{P}\cap U_{X}). The reductive part of P~X\widetilde{P}_{X} and G~X\widetilde{G}_{X} are therefore isomorphic and consequently,

(C(G~X))(C(P~X))=1.\frac{\sharp(C(\widetilde{G}_{X}))}{\sharp(C(\widetilde{P}_{X}))}=1.

The lemma follows.

Lemma 12

The representation I(χ)I(\chi) is completely reducible and multiplicity free. Moreover, every irreducible subrepresentation of I(χ)I(\chi) belongs to Unip𝒪ˇgen(G~){\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(\widetilde{G}).

Proof

With the easy calculation of the infinitesimal character of I(χ)I(\chi), Lemma 11 implies that every irreducible subquotient of I(χ)I(\chi) belongs to Unip𝒪ˇgen(G~){\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(\widetilde{G}). Since I(χ)I(\chi) is unitarizable, it is completely reducible. Lemma 11 implies that it is also multiplicity free.

In the rest of this section, we focus on the real spin groups.

Lemma 13

Suppose that G=Spin(p,q)G=\mathrm{Spin}(p,q) and (Unip𝒪ˇgen(G~))=1\sharp({\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(\widetilde{G}))=1. Then I(χ)I(\chi) is irreducible and Unip𝒪ˇgen(G~)={I(χ)}{\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(\widetilde{G})=\{I(\chi)\}.

Proof

This is a direct consequence of Lemma 12.

Lemma 14

Suppose that G=Spin(p,q)G=\mathrm{Spin}(p,q) and (Unip𝒪ˇgen(G~))=2\sharp({\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(\widetilde{G}))=2. Then I(χ)I(\chi) is irreducible and Unip𝒪ˇgen(G~)={I(χ),I(χ)}{\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(\widetilde{G})=\{I(\chi),I(\chi^{\prime})\}. Here χ\chi^{\prime} is a genuine character on L~\widetilde{L} of finite order that is not conjugate to χ\chi by NG~(L~)\mathrm{N}_{\widetilde{G}}(\widetilde{L}).

Proof

The conditions of the lemma imply that p=qp=q. As in the proof of Lemma 2, let ZZ denote the inverse image of {±1}\{\pm 1\} under the covering homomorphism G~SO(p,q)\widetilde{G}\rightarrow\mathrm{SO}(p,q), which is a central subgroup of G~\widetilde{G} and it is contained in L~\widetilde{L}. Then χ|Zχ|Z\chi|_{Z}\neq\chi^{\prime}|_{Z}. Note that ZZ acts on I(χ)I(\chi) and I(χ)I(\chi^{\prime}) through the characters χ|Z\chi|_{Z} and χ|Z\chi^{\prime}|_{Z}, respectively. Thus I(χ)I(\chi) and I(χ)I(\chi^{\prime}) have no irreducible subrepresentation in common. In view of Lemma 12, the lemma easily follows by the condition that (Unip𝒪ˇgen(G~))=2\sharp({\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(\widetilde{G}))=2.

In view of the counting result in Theorem 1.1, it is clear that Lemmas 13 and 14 imply part (a) of Theorem 1.4. Theorem 1.2 is an easy consequence of part (a) of Theorem 1.4. By Clifford theory, Theorem 1.3 is a direct consequence of Theorems 1.1 and 1.2.

4 Genuine special unipotent representations of quaternionic spin groups

In this section, we assume that G=Spin(2n)G=\mathrm{Spin}^{*}(2n). We will prove part (b) of Theorem 1.4. Recall that G~=G\widetilde{G}=G and the set Unip𝒪ˇgen(G~){\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(\widetilde{G}) is assumed to be nonempty. This implies that nn is even and 𝒪ˇ\check{\mathcal{O}} is very even. Note that the Young diagram of 𝒪{\mathcal{O}} is the transpose of that of 𝒪ˇ\check{\mathcal{O}}. Thus 𝒪{\mathcal{O}} is also very even.

Fix a Cartan involution θ\theta on GG such that its fixed point group, to be denoted by KK, is identified with U~(n)\widetilde{\operatorname{U}}(n). Here U~(n)\widetilde{\operatorname{U}}(n) is the double cover of U(n)\operatorname{U}(n) given by the square root of the determinant character on U(n)\operatorname{U}(n). The complexification of KK, to be denoted by KK_{\mathbb{C}}, is identified with GL~n()\widetilde{\mathrm{GL}}_{n}(\mathbb{C}), the double cover of GLn()\mathrm{GL}_{n}(\mathbb{C}) given by the square root of the determinant character on GLn()\mathrm{GL}_{n}(\mathbb{C}). The category of Casselman-Wallach representations of GG is equivalent to the category of (𝔤,K)(\mathfrak{g}_{\mathbb{C}},K_{\mathbb{C}})-modules of finite length (see (Wa2, , Chapter 11)). By using the trace form, we identify 𝔤\mathfrak{g}_{\mathbb{C}}^{*} with 𝔤\mathfrak{g}_{\mathbb{C}}. Denote the Lie algebra of KK_{\mathbb{C}} by 𝔨\mathfrak{k}_{\mathbb{C}}, and write 𝔰\mathfrak{s}_{\mathbb{C}} for its orthogonal complement in 𝔤\mathfrak{g}_{\mathbb{C}} under the trace form.

Let 𝐨\mathbf{o}^{\prime} be a KK_{\mathbb{C}}-orbit in 𝔰𝒪\mathfrak{s}_{\mathbb{C}}\cap{\mathcal{O}}. In what follows, we will first construct some auxiliary representations, to be precise irreducible (𝔤,K)(\mathfrak{g}_{\mathbb{C}},K_{\mathbb{C}})-modules V𝐨,NV_{{\mathbf{o}}^{\prime},N} (NN\in{\mathbb{N}}) with the associated variety 𝐨¯\overline{{\mathbf{o}}^{\prime}}.

Let {e,h,f}\set{{\mathrm{e}},{\mathrm{h}},{\mathrm{f}}} be an 𝔰𝔩2{\mathfrak{sl}}_{2}-triple in 𝔤\mathfrak{g}_{\mathbb{C}} such that h𝔨{\mathrm{h}}\in{\mathfrak{k}}_{\mathbb{C}}, e,f𝔰{\mathrm{e}},{\mathrm{f}}\in\mathfrak{s}_{\mathbb{C}}, and f𝐨{\mathrm{f}}\in{\mathbf{o}}^{\prime}. Then we have a decomposition

𝔤=i𝔤,2i=𝔲¯𝔩𝔲,\mathfrak{g}_{\mathbb{C}}=\bigoplus_{i\in\mathbb{Z}}\mathfrak{g}_{{\mathbb{C}},2i}=\bar{\mathfrak{u}}\oplus\mathfrak{l}^{\prime}_{\mathbb{C}}\oplus\mathfrak{u},

where 𝔤,2i\mathfrak{g}_{{\mathbb{C}},2i} is the eigenspace of the operator

𝔤𝔤,x[h,x]\mathfrak{g}_{\mathbb{C}}\rightarrow\mathfrak{g}_{\mathbb{C}},\quad x\mapsto[\mathrm{h},x]

with eigenvalue 2i2i, and

𝔩:=𝔤,0,𝔲:=i=1𝔤,2i,and𝔲¯:=i=1𝔤,2i.\mathfrak{l}^{\prime}_{\mathbb{C}}:=\mathfrak{g}_{{\mathbb{C}},0},\qquad\mathfrak{u}:=\bigoplus_{i=1}^{\infty}\mathfrak{g}_{{\mathbb{C}},2i},\qquad\textrm{and}\qquad\bar{\mathfrak{u}}:=\bigoplus_{i=1}^{\infty}\mathfrak{g}_{{\mathbb{C}},-2i}.

Write 𝔮=𝔩𝔲{\mathfrak{q}}=\mathfrak{l}^{\prime}_{\mathbb{C}}\oplus\mathfrak{u}. Then 𝔮{\mathfrak{q}} is a θ\theta-stable parabolic subalgebra of 𝔤\mathfrak{g}_{\mathbb{C}}. Note that

𝔩𝔤𝔩r1()×𝔤𝔩r2()××𝔤𝔩rk().\mathfrak{l}^{\prime}_{\mathbb{C}}\cong\mathfrak{g}\mathfrak{l}_{r_{1}}({\mathbb{C}})\times\mathfrak{g}\mathfrak{l}_{r_{2}}({\mathbb{C}})\times\dots\times\mathfrak{g}\mathfrak{l}_{r_{k}}({\mathbb{C}}).

Write CC_{\mathbb{C}} for the connected closed subgroup of KK_{\mathbb{C}} whose Lie algebra equals 𝔩𝔨\mathfrak{l}^{\prime}_{\mathbb{C}}\cap\mathfrak{k}_{\mathbb{C}}.

An easy calculation shows the following lemma.

Lemma 15

Up to isomorphism, there is a unique one-dimensional (𝔩,C)(\mathfrak{l}^{\prime}_{\mathbb{C}},C_{\mathbb{C}})-module whose tensor square is isomorphic to dim𝔲𝔲\wedge^{\dim\mathfrak{u}}\mathfrak{u}. Moreover, this module is genuine.

Let ρ𝔲\rho_{\mathfrak{u}} be a one-dimensional (𝔩,C)(\mathfrak{l}^{\prime}_{\mathbb{C}},C_{\mathbb{C}})-module as in Lemma 15. View it as a (𝔮,C)(\mathfrak{q},C_{\mathbb{C}})-module via the trivial action of 𝔲\mathfrak{u}. Let 𝔮\mathcal{R}_{\mathfrak{q}} denote the functor from the category of (𝔮,C)(\mathfrak{q},C_{\mathbb{C}})-modules to the category of (𝔤,K)(\mathfrak{g},K_{\mathbb{C}})-modules given by

V0Hom(𝔮,C)((𝔤,K),V0)Kfin.V_{0}\mapsto\mathrm{Hom}_{\mathcal{H}(\mathfrak{q},C_{\mathbb{C}})}(\mathcal{H}(\mathfrak{g},K_{\mathbb{C}}),V_{0})_{K_{\mathbb{C}}-\textrm{fin}}.

Here \mathcal{H} indicates the Hecke algebra, Hom(𝔮,C)((𝔤,K),V0)\mathrm{Hom}_{\mathcal{H}(\mathfrak{q},C_{\mathbb{C}})}(\mathcal{H}(\mathfrak{g},K_{\mathbb{C}}),V_{0}) is viewed as an (left) (𝔤,K)\mathcal{H}(\mathfrak{g},K_{\mathbb{C}})-module via its right multiplication on itself, and the subscript Kfin{K_{\mathbb{C}}-\textrm{fin}} indicates the KK_{\mathbb{C}}-finite parts. See (KV, , Page 105) for more details. The functor 𝔮\mathcal{R}_{\mathfrak{q}} is left exact, and write 𝔮i\mathcal{R}_{\mathfrak{q}}^{i} (ii\in\mathbb{Z}) for its ii-th derived functor.

For each integer NN, put

V𝐨,N:=𝔮S((ρ𝔲)(2N+1)),where S:=dim(𝔨𝔲).V_{{\mathbf{o}}^{\prime},N}:=\mathcal{R}_{\mathfrak{q}}^{S}((\rho_{\mathfrak{u}})^{\otimes(2N+1)}),\qquad\textrm{where }S:=\dim(\mathfrak{k}_{\mathbb{C}}\cap\mathfrak{u}).

Write π𝐨,N\pi_{{\mathbf{o}}^{\prime},N} for the Casselman-Wallach representation of GG corresponding to V𝐨,NV_{{\mathbf{o}}^{\prime},N}.

Fix a Cartan subalgebra 𝔱𝔨{\mathfrak{t}}_{\mathbb{C}}\subset{\mathfrak{k}}_{\mathbb{C}}, which is also a Cartan subalgebra of 𝔤\mathfrak{g}_{\mathbb{C}}. Fix an arbitrary positive system of the root system Δ(𝔱,𝔩)\Delta({\mathfrak{t}}_{\mathbb{C}},\mathfrak{l}_{\mathbb{C}}^{\prime}), and write ρ𝔩𝔱\rho_{\mathfrak{l}_{\mathbb{C}}^{\prime}}\in{\mathfrak{t}}_{\mathbb{C}}^{*} for the half sum of the positive roots. By abuse of notation, still write ρ𝔲𝔱\rho_{\mathfrak{u}}\in{\mathfrak{t}}^{*}_{\mathbb{C}} for the weight of the module ρ𝔲\rho_{\mathfrak{u}}.

Lemma 16

When N1N\geq 1, π𝐨,N\pi_{{\mathbf{o}}^{\prime},N} is an irreducible genuine representation of GG with infinitesimal character ρ𝔩+2Nρ𝔲\rho_{\mathfrak{l}_{\mathbb{C}}^{\prime}}+2N\rho_{\mathfrak{u}} and associated variety 𝐨¯\overline{{\mathbf{o}}^{\prime}}.

Proof

Write ρ:=ρ𝔩+ρ𝔲\rho:=\rho_{\mathfrak{l}^{\prime}_{\mathbb{C}}}+\rho_{\mathfrak{u}}. By (Knapp, , Corollary 5.100), for every weight α𝔱\alpha\in\mathfrak{t}_{\mathbb{C}}^{*} of 𝔲{\mathfrak{u}},

ρ,αˇ>0andρ𝔲,αˇ>0.\left\langle{\rho},{\check{\alpha}}\right\rangle>0\qquad\textrm{and}\qquad\left\langle{\rho_{\mathfrak{u}}},{\check{\alpha}}\right\rangle>0.

Here αˇ𝔱\check{\alpha}\in\mathfrak{t}_{\mathbb{C}} is the coroot corresponding to α\alpha. Then

ρ𝔩+2Nρ𝔲,αˇ>0,\langle\rho_{\mathfrak{l}_{\mathbb{C}}^{\prime}}+2N\rho_{\mathfrak{u}},\check{\alpha}\rangle>0,

and hence the (𝔩,C)({\mathfrak{l}}^{\prime},C_{\mathbb{C}})-module (ρ𝔲)(2N1)(\rho_{\mathfrak{u}})^{\otimes(2N-1)} is in the good range (see (KV, , Definition 0.4.9) for the definition of good range). So π𝐨,N\pi_{{\mathbf{o}}^{\prime},N} is irreducible since cohomological induction in the good range preserves irreducibility (see (KV, , Theorem 8.2)).

By a result of Barbasch-Vogan (BV.W, , Proposition 3.4), the associated variety of π𝐨,N\pi_{{\mathbf{o}}^{\prime},N} equals K(𝔰𝔲¯)¯\overline{K_{\mathbb{C}}\cdot({\mathfrak{s}}_{\mathbb{C}}\cap\bar{\mathfrak{u}})} (the Zariski closure). See also (Ko, , Lemma 2.7) and (Tr, , Proposition 5.4). Note that 𝒪¯G𝔲¯¯\overline{\mathcal{O}}\subset\overline{G_{\mathbb{C}}\cdot\bar{\mathfrak{u}}} since f𝔲¯f\in\bar{\mathfrak{u}}. Then by (CM, , Theorem 7.3.3), we conclude that

𝒪¯=G𝔲¯¯.\overline{\mathcal{O}}=\overline{G_{\mathbb{C}}\cdot\bar{\mathfrak{u}}}.

Similarly, 𝐨¯K(𝔰𝔲¯)¯\overline{{\mathbf{o}}^{\prime}}\subset\overline{K_{\mathbb{C}}\cdot({\mathfrak{s}}_{\mathbb{C}}\cap\bar{\mathfrak{u}})} since f𝔰𝔲¯f\in{\mathfrak{s}}_{\mathbb{C}}\cap\bar{\mathfrak{u}}. Then by (Vo89, , Corollary 5.20), we conclude that

K(𝔰𝔲¯)¯=𝐨¯.\overline{K_{\mathbb{C}}\cdot({\mathfrak{s}}_{\mathbb{C}}\cap\bar{\mathfrak{u}})}=\overline{{\mathbf{o}}^{\prime}}.

The computation of the infinitesimal character of π𝐨,N\pi_{{\mathbf{o}}^{\prime},N} is straightforward (see (KV, , Proposition 0.48)). This finishes the proof.

Lemma 17

There exists a representation in Unip𝒪ˇgen(G){\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(G) whose associated variety equals 𝐨¯\overline{{\mathbf{o}}^{\prime}}.

Proof

We follow an idea of Barbasch-Vogan in BV.W . Retain the notation in Section 2. Recall that 𝒪ˇ{\check{\mathcal{O}}} is very even. Let Λ2=λ𝒪ˇ+Q0𝔥\Lambda_{2}=\lambda_{\check{\mathcal{O}}}+Q_{0}\subset\mathfrak{h}^{*}. It is easy to see that W(Λ2)=𝖶nW(\Lambda_{2})=\mathsf{W}^{\prime}_{n} equals the abstract Weyl group WW of GG_{\mathbb{C}} and {τb}\Set{\tau_{b}} is the double cell of Irr(W)\mathrm{Irr}(W) associated to the orbit 𝒪\mathcal{O} via the Springer correspondence. See (9).

For each KK_{\mathbb{C}}-stable closed subset SS in 𝔰{\mathfrak{s}}_{\mathbb{C}}, consider the 𝖶n\mathsf{W}^{\prime}_{n}-submodule

CohΛ2,S(𝒦gen(G)):={ΨCohΛ2(𝒦gen(G))|AV(Ψ(λ))S for all λΛ2}\mathrm{Coh}_{\Lambda_{2},S}(\mathcal{K}^{\mathrm{gen}}(G)):=\Set{\Psi\in\mathrm{Coh}_{\Lambda_{2}}(\mathcal{K}^{\mathrm{gen}}(G))}{\mathrm{AV}(\Psi(\lambda))\subset S\text{ for all $\lambda\in\Lambda_{2}$}}

of the coherent continuation representation CohΛ2(𝒦gen(G))\mathrm{Coh}_{\Lambda_{2}}(\mathcal{K}^{\mathrm{gen}}(G)). Here AV(Ψ(λ))\mathrm{AV}(\Psi(\lambda)) denotes the union of associated varieties of irreducible genuine representations of GG occurring in Ψ(λ)\Psi(\lambda) with non-zero coefficient.

Let Δ+(𝔱,𝔤)𝔱\Delta^{+}(\mathfrak{t}_{\mathbb{C}},\mathfrak{g}_{\mathbb{C}})\subset\mathfrak{t}_{\mathbb{C}}^{*} denote the union of Δ+(𝔱,𝔩)\Delta^{+}(\mathfrak{t}_{\mathbb{C}},\mathfrak{l}^{\prime}_{\mathbb{C}}) and the weights of 𝔲{\mathfrak{u}}, which is a positive system of the root system Δ(𝔱,𝔤)\Delta(\mathfrak{t}_{\mathbb{C}},\mathfrak{g}_{\mathbb{C}}). Using this positive system, we identify 𝔱\mathfrak{t}_{\mathbb{C}} with the abstract Cartan subalgebra 𝔥\mathfrak{h} of 𝔤\mathfrak{g}_{\mathbb{C}}. Note that ρ𝔩+2ρ𝔲\rho_{{\mathfrak{l}}_{\mathbb{C}}^{\prime}}+2\rho_{{\mathfrak{u}}} belongs to Λ2\Lambda_{2} and is regular in 𝔱{\mathfrak{t}}_{\mathbb{C}}^{*}.

Let Ψ1\Psi_{1} be the element in CohΛ2(𝒦gen(G))\mathrm{Coh}_{\Lambda_{2}}(\mathcal{K}^{\mathrm{gen}}(G)) such that Ψ1(ρ𝔩+2ρ𝔲)=π𝐨,1\Psi_{1}(\rho_{{\mathfrak{l}}_{\mathbb{C}}^{\prime}}+2\rho_{\mathfrak{u}})=\pi_{{\mathbf{o}}^{\prime},1}. Then Ψ1CohΛ2,𝐨¯(𝒦gen(G))\Psi_{1}\in\mathrm{Coh}_{\Lambda_{2},\overline{{\mathbf{o}}^{\prime}}}(\mathcal{K}^{\mathrm{gen}}(G)) by Lemma 16.

Let [𝔥]{\mathbb{C}}[\mathfrak{h}^{*}] denote the space of polynomial functions on 𝔥\mathfrak{h}^{*}. By a result of Barbasch-Vogan and King (King, , Theorem 1.2), there is a well-defined WW-equivariant linear map

CohΛ2,𝐨¯(𝒦gen(G))[𝔥]\mathrm{Coh}_{\Lambda_{2},\overline{{\mathbf{o}}^{\prime}}}(\mathcal{K}^{\mathrm{gen}}(G))\rightarrow{\mathbb{C}}[\mathfrak{h}^{*}]

sending Ψ1\Psi_{1} to the Goldie rank polynomial of the annihilator ideal of V𝐨¯,1V_{\overline{{\mathbf{o}}^{\prime}},1}. By a result of Joseph (Jo85, , 2.10), the Goldie rank polynomial generates an irreducible WW-module which is isomorphic to τb\tau_{b}. Therefore τb\tau_{b} occurs in the WW-module CohΛ2,𝐨¯(𝒦gen(G))\mathrm{Coh}_{\Lambda_{2},\overline{{\mathbf{o}}^{\prime}}}(\mathcal{K}^{\mathrm{gen}}(G)).

Write Wλ𝒪ˇW_{\lambda_{\check{\mathcal{O}}}} for the stabilizer of λ𝒪ˇ\lambda_{\check{\mathcal{O}}} in WW, and 1Wλ𝒪ˇ1_{W_{\lambda_{\check{\mathcal{O}}}}} for the trivial representation of Wλ𝒪ˇW_{\lambda_{\check{\mathcal{O}}}}. By (BVUni, , Corollary 5.30), 1Wλ𝒪ˇ1_{W_{\lambda_{\check{\mathcal{O}}}}} occurs in τb=(jWλ𝒪ˇWsgn)sgn\tau_{b}=(j_{W_{\lambda_{\check{\mathcal{O}}}}}^{W}\operatorname{sgn})\otimes\operatorname{sgn} with multiplicity-one. Here jj stands for the jj-operation, as in (Carter, , Section 11.2). We therefore conclude that

{πUnip𝒪ˇgen(G)|AV(π)=𝐨¯}={πUnip𝒪ˇgen(G)|AV(π)𝐨¯}(by (Vo89, , Theorem 8.4))=σIrr(W)[1Wλ𝒪ˇ:σ][σ:CohΛ2,𝐨¯(𝒦gen(G))](by (BMSZ1, , Proposition 5.1))[τb:CohΛ2,𝐨¯(𝒦gen(G))]1.\begin{split}&\sharp\Set{\pi\in{\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(G)}{\mathrm{AV}(\pi)=\overline{{\mathbf{o}}^{\prime}}}\\ =&\,\sharp\Set{\pi\in{\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(G)}{\mathrm{AV}(\pi)\subset\overline{{\mathbf{o}}^{\prime}}}\qquad\text{(by \cite[cite]{(\@@bibref{AuthorsPhrase1Year}{Vo89}{\@@citephrase{, }}{}, Theorem~{}8.4)})}\\ =&\sum_{\sigma\in\mathrm{Irr}(W)}[1_{W_{\lambda_{\check{\mathcal{O}}}}}:\sigma][\sigma:\mathrm{Coh}_{\Lambda_{2},\overline{{\mathbf{o}}^{\prime}}}(\mathcal{K}^{\mathrm{gen}}(G))]\quad\quad\text{(by \cite[cite]{(\@@bibref{AuthorsPhrase1Year}{BMSZ1}{\@@citephrase{, }}{}, Proposition~{}5.1)})}\\ \geq&[\tau_{b}:\mathrm{Coh}_{\Lambda_{2},\overline{{\mathbf{o}}^{\prime}}}(\mathcal{K}^{\mathrm{gen}}(G))]\geq 1.\end{split}

Here AV\mathrm{AV} stands for the associated variety. This completes the proof.

Together with the counting result in Theorem 1.1, the above proposition implies that there is a unique representation π𝐨Unip𝒪ˇgen(G)\pi_{\mathbf{o}^{\prime}}\in{\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(G) whose associated variety equals 𝐨¯\overline{{\mathbf{o}}^{\prime}}, and

Unip𝒪ˇgen(G)={π𝐨𝐨K\(𝔰𝒪)}.{\mathrm{Unip}^{\mathrm{gen}}_{\check{\mathcal{O}}}}(G)=\{\pi_{\mathbf{o}^{\prime}}\mid\mathbf{o}^{\prime}\in K_{\mathbb{C}}\backslash(\mathfrak{s}_{\mathbb{C}}\cap{\mathcal{O}})\}.

Recall that the wavefront cycle agrees with the weak associated cycle (SV ). By using Lemma 11 and considering the wavefront cycle, we conclude that

I(χ)𝐨K\(𝔰𝒪)π𝐨.I(\chi)\cong\bigoplus_{\mathbf{o}^{\prime}\in K_{\mathbb{C}}\backslash(\mathfrak{s}_{\mathbb{C}}\cap{\mathcal{O}})}\pi_{\mathbf{o}^{\prime}}.

This easily implies part (b) of Theorem 1.4.

Remark 2

In MT , Matumoto and Trapa consider degenerate principal series representations of the linear group Sp(p,q),SO(2n),\mathrm{Sp}(p,q),\mathrm{SO}^{*}(2n), or U(m,n){\mathrm{U}}(m,n) with integral infinitesimal character. In particular, they prove that each irreducible constituent of maximal Gelfand–Kirillov dimension is a derived functor module.

Acknowledgements.
D. Barbasch is supported by NSF grant, Award Number 2000254. J.-J. Ma is supported by the National Natural Science Foundation of China (Grant No. 11701364 and Grant No. 11971305) and Xiamen University Malaysia Research Fund (Grant No. XMUMRF/2022-C9/IMAT/0019). B. Sun is supported by National Key R & D Program of China (No. 2022YFA1005300 and 2020YFA0712600) and the New Cornerstone Science Foundation. C.-B. Zhu is supported by MOE AcRF Tier 1 grant R-146-000-314-114, and Provost’s Chair grant E-146-000-052-001 in NUS. C.-B. Zhu is grateful to Max Planck Institute for Mathematics in Bonn, for its warm hospitality and conducive work environment, where he spent the academic year 2022/2023 as a visiting scientist. Some statements in the paper are (additionally) verified for low rank groups with the atlas software. J.-J. Ma thanks J. Adams for patiently answering questions on the atlas software.

References

  • (1) Adams, J., Barbasch, D. and Vogan, D. A.: The Langlands classification and irreducible characters for real reductive groups, Progr. Math., vol. 104, Birkhauser, 1991.
  • (2) Adams, J., Arancibia Robert, N. and Mezo, P.: Equivalent definitions of Arthur packets for real classical groups, arXiv:2108.05788.
  • (3) Arancibia Robert, N. and Mezo, P.: Equivalent definitions of Arthur packets for real unitary groups, arXiv:2204.19715.
  • (4) Arthur, J.: Unipotent automorphic representations: conjectures, Orbites unipotentes et représentations, II, Astérisque (171-172), 13–71, 1989.
  • (5) Arthur, J.: The Endoscopic Classification of Representations: Orthogonal and Symplectic Groups, Amer. Math. Soc. Colloq. Publ., vol. 61, Amer. Math. Soc., Providence, RI, 2013.
  • (6) Barbasch, D.: The unitary dual for complex classical Lie groups, Invent. Math. (96), no. 1, 103–176, 1989.
  • (7) Barbasch, D.: Orbital integrals of nilpotent orbits, The mathematical legacy of Harish-Chandra, Proc. Sympos. Pure Math. no. 68, 97–110, Amer. Math. Soc., Providence, RI, 2000.
  • (8) Barbasch, D.: Unipotent representations and the dual pair correspondence, J. Cogdell et al. (eds.), Representation Theory, Number Theory, and Invariant Theory, In Honor of Roger Howe. Progr. Math., vol. 323, 47–85, 2017.
  • (9) Barbasch, D., Ma, J.-J., Sun, B. and Zhu, C.-B.: On the notion of metaplectic Barbasch-Vogan duality, arXiv:2010.16089. To appear in Int. Math. Res. Not. IMRN.
  • (10) Barbasch, D., Ma, J.-J., Sun, B. and Zhu, C.-B.: Special unipotent representations of real classical groups: counting and reduction, arXiv:2205.05266.
  • (11) Barbasch, D., Ma, J.-J., Sun, B. and Zhu, C.-B.: Special unipotent representations of real classical groups: construction and unitarity, arXiv:1712.05552.
  • (12) Barbasch, D. and Vogan, D. A.: Weyl Group Representations and Nilpotent Orbits, Representation Theory of Reductive Groups: Proceedings of the University of Utah Conference (1982), 21–33, Birkhäuser Boston, 1983.
  • (13) Barbasch, D. and Vogan, D. A.: Unipotent representations of complex semisimple groups, Annals of Math. (121), no. 1, 41–110, 1985.
  • (14) Brega, A.: On the unitary dual of Spin(2n,)\mathrm{Spin}(2n,{\mathbb{C}}), Trans. AMS, vol. 351, no. 1, 403-415, 1999.
  • (15) Carter, R. W.: Finite groups of Lie type, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester, 1993.
  • (16) Collingwood, D. H. and McGovern, W. M.: Nilpotent orbits in semisimple Lie algebra: an introduction, Van Nostrand Reinhold Co., 1993.
  • (17) Howe, R.: θ\theta-series and invariant theory, Automorphic Forms, Representations and LL-functions, Proc. Sympos. Pure Math., vol. 33, 275–285, 1979.
  • (18) Howe, R.: Transcending classical invariant theory, J. Amer. Math. Soc. (2), 535–552, 1989.
  • (19) Joseph, A.: On the associated variety of a primitive ideal, J. Algebra 93 (1985), no. 2, 509–523
  • (20) King, D.: The character polynomial of the annihilator of an irreducible Harish-Chandra module, Amer. J. Math. (103), 1195–-1240, 1981.
  • (21) Knapp, A. W.: Lie groups beyond an introduction. Second edition. Progr. Math., vol. 140, Birkhäuser Boston, Inc., Boston, Mass., 2002. xviii+812 pp.
  • (22) Knapp, A. W. and Vogan, D. A.: Cohomological induction and unitary representations, Princeton Mathematical Series, vol. 45, Princeton University Press, Princeton, NJ, 1995.
  • (23) Kobayashi, T: Discrete decomposability of the restriction of A𝔮(λ)A_{\mathfrak{q}}(\lambda) with respect to reductive subgroups. III. Restriction of Harish-Chandra modules and associated varieties. Invent. Math. (131), no. 2, 229–-256, 1998.
  • (24) Losev, I., Mason-Brown, L. and Matvieievskyi, D.: Unipotent ideals and Harish-Chandra bimodules, arXiv:2108.03453.
  • (25) Lusztig, G.: Characters of reductive groups over a finite field, Ann. of Math. Stud., vol. 107, Princeton University Press, 1984.
  • (26) Matumoto, H. and Trapa, P. E.: Derived functor modules arising as large irreducible constituents of degenerate principal series, Compos. Math. (143), no. 1, 222–-256, 2007.
  • (27) Schmid, W.: Two character identities for semisimple Lie groups, Non-commutative harmonic analysis (Actes Colloq., Marseille-Luminy, 1976), Lecture Notes in Math., Vol. 587, 196–225, Springer, Berlin, 1977.
  • (28) Schmid, W. and Vilonen, K.: Characteristic cycles and wave front cycles of representations of reductive Lie groups, Ann. of Math. (151), no. 3, 1071–1118, 2000.
  • (29) Speh, B. and Vogan, D. A.: Reducibility of generalized principal series representations, Acta Math. (145), no. 3–4, 227–299, 1980.
  • (30) Trapa, P. E.: Annihilators and associated varieties of A𝔮(λ)A_{\mathfrak{q}}(\lambda) modules for U(p,q)\operatorname{U}(p,q), Compos. Math. (129), no. 1, 1–-45, 2001.
  • (31) Vogan, D. A.: Representations of real reductive Lie groups, Progr. Math., vol. 15, Birkhäuser, Boston, Mass., 1981.
  • (32) Vogan, D. A.: Associated varieties and unipotent representations, Harmonic analysis on reductive groups, edited by W. Barker and P. Sally, Progr. Math., vol. 101, 315–388, Birkhäuser, Boston-Basel-Berlin, 1991.
  • (33) Wallach, N. R.: Real reductive groups II, Academic Press Inc., 1992.
  • (34) Wong, D. and Zhang, H.: The genuine unitary dual of Spin(2n,)\mathrm{Spin}(2n,\mathbb{C}), arXiv: 2302.10803, 2023.
  • (35) Zuckerman, G.: Tensor products of finite and infinite dimensional representations of semisimple Lie groups, Ann. of Math. (106), 295–309, 1977.