This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Genuine Secret-Sharing States

Minjin Choi Department of Mathematics and Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Korea    Soojoon Lee Department of Mathematics and Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Korea
Abstract

Quantum secret sharing allows each player to have classical information for secret sharing in quantum mechanical ways. In this work, we construct a class of quantum states on which players can quantumly perform secret sharing secure against dishonest players as well as eavesdropper. We here call them the genuine secret-sharing states. In addition, we show that if NN players share an NN-party genuine secret-sharing state, then arbitrary MM players out of the total players can share an MM-party genuine secret-sharing state by means of local operations and classical communication on the state. We also define the distillable rate with respect to the genuine secret-sharing state, and explain the connection between the distillable rate and the relative entropy of entanglement.

I Introduction

Secret sharing Blakley (1979); Shamir (1979) is a way of allocating a secret among players, and a sufficient number of players must cooperate to restore the secret. To be more specific, in a (k,n)(k,n)-threshold secret sharing scheme, a dealer distributes a secret to nn players, and kk or more players can reconstruct the secret if they collaborate, but fewer than kk players cannot do so, where knk\leq n. Because of this feature, secret sharing can be used to deal with important and sensitive information.

We remark that quantum mechanics can provide us with unconditionally secure secret sharing. For example, there is a quantum protocol Hillery et al. (1999) based on the Greenberger-Horne-Zeilinger (GHZ) state Greenberger et al. (1989) in which each player can obtain a classical bit for (n,n)(n,n)-threshold secret sharing. More precisely, if NN players including a dealer share an NN-qubit GHZ state, then they can carry out an (N1,N1)(N-1,N-1)-threshold secret sharing through the protocol. As a matter of fact, this secret-sharing protocol can be considered as an natural generalization of the Bell-state based quantum key distribution (QKD) protocol Ekert (1991).

Even though two players can securely share a secret key through the Bell state, there is a specific class of states on which perfectly secure QKD can be performed. The states in the class are called the private states Horodecki et al. (2005, 2009). In a similar way to the private states in QKD, we can naturally ask the following question, what kinds of quantum states are required to accomplish a secure (n,n)(n,n)-threshold secret sharing? In Ref. Chi et al. (2008), this question has already been considered, and the quantum states, called the secret-sharing states, have been suggested as an answer to the question. It has been shown that if players share a secret-sharing state, then each player can have a classical bit for secret sharing, which is secure against any external eavesdropper. However, dishonest players, who have a fatal impact on the security of secret sharing, were not sufficiently considered in Ref. Chi et al. (2008). In particular, we can find secret-sharing states that provide each legitimate player with a secret bit, which is insecure against dishonest players, as we will see below. In other words, secret sharing is not in general guaranteed on the secret-sharing states.

To see this, we first look at the secret-sharing conditions presented in Ref. Chi et al. (2008): (i) The probability distributions of the players’ secret bits must be unbiased, and perfectly correlated, that is, if we let pIp_{I} be the probability that the NN players get the random bit string I2NI\in\mathbb{Z}_{2}^{N}, then pI=1/2N1p_{I}=1/2^{N-1} for II with even parity and pI=0p_{I}=0 for II with odd parity. (ii) Any eavesdropper cannot obtain any information about the players’ secret bits. For 1iN1\leq i\leq N, let AiA_{i} be the player 𝒜i\mathcal{A}_{i}’s qubit system, and AiA^{\prime}_{i} be the 𝒜i\mathcal{A}_{i}’s another system with arbitrary dimension. Then it has been shown Chi et al. (2008) that ρ𝔸𝔸\rho_{\mathbb{A}\mathbb{A^{\prime}}} is a quantum state for secret sharing, that is, a secret-sharing state, where 𝔸=A1AN\mathbb{A}=A_{1}\cdots A_{N} and 𝔸=A1AN\mathbb{A^{\prime}}=A^{\prime}_{1}\cdots A^{\prime}_{N} if and only if it is of the form

12N1I,J2Neven parity|I𝔸J|UIσ𝔸UJ,\frac{1}{2^{N-1}}\sum_{\begin{subarray}{c}I,J\in\mathbb{Z}_{2}^{N}\\ \textrm{even parity}\end{subarray}}\ket{I}_{\mathbb{A}}\bra{J}\otimes U_{I}\sigma_{\mathbb{A^{\prime}}}U^{\dagger}_{J},

where σ𝔸\sigma_{\mathbb{A^{\prime}}} is an arbitrary state, and the UIU_{I}’s are unitary operators on the system 𝔸\mathbb{A^{\prime}}. Here, 𝔸\mathbb{A} and 𝔸\mathbb{A^{\prime}} are called the secret part and the shield part of the state, respectively.

Suppose that three players share the following secret-sharing state,

|Υ1𝔸𝔸=12\displaystyle\ket{\Upsilon_{1}}_{\mathbb{A}\mathbb{A^{\prime}}}=\frac{1}{2} (|000𝔸|000𝔸+|011𝔸|000𝔸\displaystyle(\ket{000}_{\mathbb{A}}\ket{000}_{\mathbb{A^{\prime}}}+\ket{011}_{\mathbb{A}}\ket{000}_{\mathbb{A^{\prime}}}
+|101𝔸|001𝔸+|110𝔸|001𝔸).\displaystyle+\ket{101}_{\mathbb{A}}\ket{001}_{\mathbb{A^{\prime}}}+\ket{110}_{\mathbb{A}}\ket{001}_{\mathbb{A^{\prime}}}). (1)

Then we can readily see that if 𝒜3\mathcal{A}_{3} is a dishonest player, then he/she can perfectly know the other players’ secret information by measuring his/her own secret part A3A_{3} and shield part A3A^{\prime}_{3} in the computational basis.

There also exists a secret-sharing state on which each legitimate player has an insecure secret bit against dishonest players, even when dishonest players do not handle their shield parts. It can be easily seen from the following secret-sharing state,

|Υ2𝔸𝔸=122\displaystyle\ket{\Upsilon_{2}}_{\mathbb{A}\mathbb{A^{\prime}}}=\frac{1}{2\sqrt{2}} (|0000𝔸|0000𝔸+|0011𝔸|0000𝔸\displaystyle(\ket{0000}_{\mathbb{A}}\ket{0000}_{\mathbb{A^{\prime}}}+\ket{0011}_{\mathbb{A}}\ket{0000}_{\mathbb{A^{\prime}}}
+|0101𝔸|0000𝔸+|0110𝔸|0000𝔸\displaystyle+\ket{0101}_{\mathbb{A}}\ket{0000}_{\mathbb{A^{\prime}}}+\ket{0110}_{\mathbb{A}}\ket{0000}_{\mathbb{A^{\prime}}}
+|1001𝔸|0000𝔸|1010𝔸|0000𝔸\displaystyle+\ket{1001}_{\mathbb{A}}\ket{0000}_{\mathbb{A^{\prime}}}-\ket{1010}_{\mathbb{A}}\ket{0000}_{\mathbb{A^{\prime}}}
+|1100𝔸|0000𝔸|1111𝔸|0000𝔸).\displaystyle+\ket{1100}_{\mathbb{A}}\ket{0000}_{\mathbb{A^{\prime}}}-\ket{1111}_{\mathbb{A}}\ket{0000}_{\mathbb{A^{\prime}}}).

In this case, 𝒜3\mathcal{A}_{3} and 𝒜4\mathcal{A}_{4} can totally know the other players’ measurement outcomes by measuring their secret parts A3A4A_{3}A_{4} in the Bell basis, and they can also deceive legitimate players as if they measure their secret parts in the computational basis.

These problems are caused by the lack of sufficient consideration on dishonest players in the secret-sharing conditions. Hence, in this work, we modify the secret-sharing conditions to fully cover (n,n)(n,n)-threshold secret sharing scenarios, and introduce a class of quantum states on which each player can obtain a classical information for secret sharing secure against not only eavesdropper but also dishonest players. We call them the genuine secret-sharing (GSS) states. In addition, we show that if NN players share an NN-party GSS state, local operations and classical communication (LOCC) enables any MM players out of the NN players to share an MM-party GSS state. It can be an important property in a quantum network connected by repeaters, since if the network consists of a GSS state then players can share their own GSS state with properly smaller size without providing any information to the repeaters.

Furthermore, we define the distillable rate with respect to the GSS state, and also show that the distillable rate is upper bounded by the relative entropy of entanglement Vedral et al. (1997); Vedral and Plenio (1998) between any bipartition of the total players. By using this property, we discuss the irreducible GSS state, which players cannot have additional information for secret sharing from the shield part of the state via LOCC.

Our paper is organized as follows. We introduce the GSS state, and investigate its properties in Sec. II. We define the GSS distillable rate in Sec. III, and give examples of the GSS states in Sec. IV. Finally, we conclude our work with some discussion in Sec. V.

II Genuine secret-sharing state and its properties

To perfectly deal with (n,n)(n,n)-threshold secret sharing scenarios, we should also regard dishonest players as internal eavesdroppers who may conspire with an external one. Thus we modify the secret-sharing conditions in Ref. Chi et al. (2008) as follows.

  • (i)

    The probability distributions of all players’ secret information must be unbiased and perfectly correlated.

  • (ii)

    Any eavesdropper and dishonest players cannot get any information about the legitimate players’ secret information.

Since the modified conditions include the previous ones, the quantum states on which players can have secret information that satisfies the modified conditions also have the form of the secret-sharing states, but they must be different from the states. The difference can be seen in the following theorem. From now on, we let AiA_{i} be the qudit system for all ii to handle more general situations.

Theorem 1.

Υ𝔸𝔸\Upsilon_{\mathbb{A}\mathbb{A^{\prime}}} is a quantum state on which players can obtain secret information that obeys the modified secret-sharing conditions by measuring their secret parts in the computational basis if and only if for any bipartite split {𝒫1,𝒫2}\{\mathcal{P}_{1},\mathcal{P}_{2}\} of the players with |𝒫1|2\left|\mathcal{P}_{1}\right|\geq 2, the given state Υ𝔸𝔸\Upsilon_{\mathbb{A}\mathbb{A^{\prime}}} can be written as

1dN1I1I2,J1J2𝔖N0\displaystyle\frac{1}{d^{N-1}}\sum_{I_{1}I_{2},J_{1}J_{2}\in\mathfrak{S}_{N}^{0}} |I1I212J1J2|\displaystyle\ket{I_{1}I_{2}}_{\mathbb{P}_{1}\mathbb{P}_{2}}\bra{J_{1}J_{2}}
(U1I1V𝔸I2)σ𝔸(U1J1V𝔸J2),\displaystyle\otimes\left(U_{\mathbb{P}^{\prime}_{1}}^{I_{1}}V^{I_{2}}_{\mathbb{A^{\prime}}}\right)\sigma_{\mathbb{A^{\prime}}}\left(U_{\mathbb{P}^{\prime}_{1}}^{J_{1}}V^{J_{2}}_{\mathbb{A^{\prime}}}\right)^{\dagger}, (2)

where

𝔖Nt{I=i1i2iNdN:j=1Nijt(modd)},\mathfrak{S}_{N}^{t}\equiv\left\{I=i_{1}i_{2}\cdots i_{N}\in\mathbb{Z}_{d}^{N}:\sum_{j=1}^{N}i_{j}\equiv t\pmod{d}\right\},

k\mathbb{P}_{k} and k\mathbb{P}_{k}^{{}^{\prime}} are the secret part and the shield part of 𝒫k\mathcal{P}_{k}, respectively, σ𝔸\sigma_{\mathbb{A^{\prime}}} is an arbitrary state, and the {U1I1}\left\{U_{\mathbb{P}^{\prime}_{1}}^{I_{1}}\right\} and {V𝔸I2}\left\{V^{I_{2}}_{\mathbb{A^{\prime}}}\right\} are unitary operators on the system 1\mathbb{P}^{\prime}_{1} and 𝔸\mathbb{A^{\prime}}, respectively. We call the state the GSS state.

Proof.

We first give a proof of the forward direction. Suppose that |Ψ𝔸𝔸E\ket{\Psi}_{\mathbb{A}\mathbb{A^{\prime}}E} is a purification of Υ𝔸𝔸\Upsilon_{\mathbb{A}\mathbb{A^{\prime}}}, that is,

|Ψ𝔸𝔸E=IdNpI|I𝔸|ΨI𝔸E,\ket{\Psi}_{\mathbb{A}\mathbb{A^{\prime}}E}=\sum_{I\in\mathbb{Z}_{d}^{N}}\sqrt{p_{I}}\ket{I}_{\mathbb{A}}\ket{\Psi_{I}}_{\mathbb{A^{\prime}}E}, (3)

where EE is the reference system for the purification, which can be considered as the system of the external eavesdropper. From the condition (i), we have pI=1/dN1p_{I}=1/d^{N-1} for I𝔖N0I\in\mathfrak{S}_{N}^{0} and pI=0p_{I}=0 for I𝔖N0I\notin\mathfrak{S}_{N}^{0}.

For a dealer 𝒜k\mathcal{A}_{k}, the worst case is that the other players except one player 𝒜l(lk)\mathcal{A}_{l}~{}(l\neq k) are dishonest. In this case, by changing the order of the systems, we can rewrite the state |Ψ𝔸𝔸E\ket{\Psi}_{\mathbb{A}\mathbb{A^{\prime}}E} as follows:

|ΨAkAl𝔻𝔸E=1d2ik,ild|ik,ilAkAl|ηik,il𝔻𝔸E,\ket{\Psi}_{A_{k}A_{l}\mathbb{D}\mathbb{A^{\prime}}E}=\frac{1}{\sqrt{d^{2}}}\sum_{i_{k},i_{l}\in\mathbb{Z}_{d}}\ket{i_{k},i_{l}}_{A_{k}A_{l}}\ket{\eta_{i_{k},i_{l}}}_{\mathbb{D}\mathbb{A^{\prime}}E},

where 𝔻\mathbb{D} is the secret part of the dishonest players and

|ηik,il𝔻𝔸E=1dN3ξ𝔖N2ikil|ξ𝔻|Ψik,il,ξ𝔸E.\ket{\eta_{i_{k},i_{l}}}_{\mathbb{D}\mathbb{A^{\prime}}E}=\frac{1}{\sqrt{d^{N-3}}}\sum_{\xi\in\mathfrak{S}_{N-2}^{-i_{k}-i_{l}}}\ket{\xi}_{\mathbb{D}}\ket{\Psi_{i_{k},i_{l},\xi}}_{\mathbb{A^{\prime}}E}.

Let iki_{k} be 𝒜k\mathcal{A}_{k}’s measurement outcome, then the quantum state of dishonest players and eavesdropper after the measurement becomes

Υ𝔻𝔻Eik=1dildtrAkAl|ηik,il𝔻𝔸Eηik,il|,\Upsilon_{\mathbb{DD^{\prime}}E}^{i_{k}}=\frac{1}{d}\sum_{i_{l}\in\mathbb{Z}_{d}}{\rm{tr}}_{A^{\prime}_{k}A^{\prime}_{l}}\ket{\eta_{i_{k},i_{l}}}_{\mathbb{DA^{\prime}}E}\bra{\eta_{i_{k},i_{l}}},

where 𝔻\mathbb{D^{\prime}} is the shield part of the dishonest players. Since the eavesdropper and dishonest players cannot get any information about the 𝒜k\mathcal{A}_{k}’s outcome, Υ𝔻𝔻Eik=Υ𝔻𝔻Eik\Upsilon_{\mathbb{DD^{\prime}}E}^{i_{k}}=\Upsilon_{\mathbb{DD^{\prime}}E}^{i^{\prime}_{k}} for any ik,ikdi_{k},i^{\prime}_{k}\in\mathbb{Z}_{d}. We note that trAkAl|ηik,il𝔻𝔸Eηik,il|{\rm{tr}}_{A^{\prime}_{k}A^{\prime}_{l}}\ket{\eta_{i_{k},i_{l}}}_{\mathbb{DA^{\prime}}E}\bra{\eta_{i_{k},i_{l}}} is written as

1dN3ξ,ξ𝔖N2ikil\displaystyle\frac{1}{d^{N-3}}\sum_{\xi,\xi^{\prime}\in\mathfrak{S}_{N-2}^{-i_{k}-i_{l}}} |ξ𝔻ξ|\displaystyle\ket{\xi}_{\mathbb{D}}\bra{\xi^{\prime}}
trAkAl|Ψik,il,ξ𝔸EΨik,il,ξ|.\displaystyle\otimes{\rm{tr}}_{A^{\prime}_{k}A^{\prime}_{l}}\ket{\Psi_{i_{k},i_{l},\xi}}_{\mathbb{A^{\prime}}E}\bra{\Psi_{i_{k},i_{l},\xi^{\prime}}}.

Hence, Υ𝔻𝔻Eik=Υ𝔻𝔻Eik\Upsilon_{\mathbb{DD^{\prime}}E}^{i_{k}}=\Upsilon_{\mathbb{DD^{\prime}}E}^{i^{\prime}_{k}} implies that if ili_{l} and ili^{\prime}_{l} satisfy ik+il=ik+il(modd)i_{k}+i_{l}=i^{\prime}_{k}+i^{\prime}_{l}\pmod{d}, then

trAkAl|ηik,il𝔻𝔸Eηik,il|=trAkAl|ηik,il𝔻𝔸Eηik,il|.{\rm{tr}}_{A^{\prime}_{k}A^{\prime}_{l}}\ket{\eta_{i_{k},i_{l}}}_{\mathbb{DA^{\prime}}E}\bra{\eta_{i_{k},i_{l}}}={\rm{tr}}_{A^{\prime}_{k}A^{\prime}_{l}}\ket{\eta_{i^{\prime}_{k},i^{\prime}_{l}}}_{\mathbb{DA^{\prime}}E}\bra{\eta_{i^{\prime}_{k},i^{\prime}_{l}}}.

It follows from Hughston-Jozsa-Wooters theorem Hughston et al. (1993) that for ik,ik,il,ildi_{k},i^{\prime}_{k},i_{l},i^{\prime}_{l}\in\mathbb{Z}_{d}, if ik+il=ik+il(modd)i_{k}+i_{l}=i^{\prime}_{k}+i^{\prime}_{l}\pmod{d}, there is a unitary operator U~AkAlik,ilik,il\tilde{U}_{A^{\prime}_{k}A^{\prime}_{l}}^{i_{k},i_{l}\to i^{\prime}_{k},i^{\prime}_{l}} on the system AkAlA^{\prime}_{k}A^{\prime}_{l} such that

U~AkAlik,ilik,il|Ψik,il,ξ𝔸E=|Ψik,il,ξ𝔸E\tilde{U}_{A^{\prime}_{k}A^{\prime}_{l}}^{i_{k},i_{l}\to i^{\prime}_{k},i^{\prime}_{l}}\ket{\Psi_{i_{k},i_{l},\xi}}_{\mathbb{A^{\prime}}E}=\ket{\Psi_{i^{\prime}_{k},i^{\prime}_{l},\xi}}_{\mathbb{A^{\prime}}E} (4)

for all ξ𝔖N2ikil\xi\in\mathfrak{S}_{N-2}^{-i_{k}-i_{l}}.

Let us now divide the players into two parties, 𝒫1\mathcal{P}_{1} and 𝒫2\mathcal{P}_{2}, where |𝒫1|=M2\left|\mathcal{P}_{1}\right|=M\geq 2. Then Eq. (3) can be rewritten as

|Ψ12𝔸E=1dN1I1I2𝔖N0|I1I212|ΨI1I2𝔸E.\ket{\Psi}_{\mathbb{P}_{1}\mathbb{P}_{2}\mathbb{A^{\prime}}E}=\frac{1}{\sqrt{d^{N-1}}}\sum_{I_{1}I_{2}\in\mathfrak{S}_{N}^{0}}\ket{I_{1}I_{2}}_{\mathbb{P}_{1}\mathbb{P}_{2}}\ket{\Psi_{I_{1}I_{2}}}_{\mathbb{A^{\prime}}E}. (5)

Here, all possible cases of secret sharing, including the case where 𝒫2\mathcal{P}_{2} is the party of the dishonest players, should be considered. Thus, by symmetry and the Eq. (4), it can be shown that there are unitary operators U1I1U_{\mathbb{P}^{\prime}_{1}}^{I_{1}} and V𝔸I2V_{\mathbb{A^{\prime}}}^{I_{2}} such that

|ΨI1I2𝔸E\displaystyle\ket{\Psi_{I_{1}I_{2}}}_{\mathbb{A^{\prime}}E} =U1I1|ΨI1αI2𝔸E\displaystyle=U_{\mathbb{P}^{\prime}_{1}}^{I_{1}}\ket{\Psi_{I_{1}^{\alpha}I_{2}}}_{\mathbb{A^{\prime}}E}
=U1I1V𝔸I2|Ψ000𝔸E\displaystyle=U_{\mathbb{P}^{\prime}_{1}}^{I_{1}}V_{\mathbb{A^{\prime}}}^{I_{2}}\ket{\Psi_{00\cdots 0}}_{\mathbb{A^{\prime}}E}

for I1𝔖MαI_{1}\in\mathfrak{S}_{M}^{\alpha} and I2𝔖NMdαI_{2}\in\mathfrak{S}_{N-M}^{d-\alpha}, where I1α=00α𝔖MαI_{1}^{\alpha}=0\cdots 0\alpha\in\mathfrak{S}_{M}^{\alpha}. For instance, if I=i1i2iN𝔖N0I=i_{1}i_{2}\cdots i_{N}\in\mathfrak{S}_{N}^{0}, then

|ΨI𝔸E=UA1A2i1,i2UA2A3j2,i3UAN1ANjN1,iN|Ψ000𝔸E,\ket{\Psi_{I}}_{\mathbb{A^{\prime}}E}=U_{A^{\prime}_{1}A^{\prime}_{2}}^{i_{1},i_{2}}U_{A^{\prime}_{2}A^{\prime}_{3}}^{j_{2},i_{3}}\cdots U_{A^{\prime}_{N-1}A^{\prime}_{N}}^{j_{N-1},i_{N}}\ket{\Psi_{00\cdots 0}}_{\mathbb{A^{\prime}}E}, (6)

where UAkAlik,il=(U~AkAlik,il0,ik+il)U_{A^{\prime}_{k}A^{\prime}_{l}}^{i_{k},i_{l}}=\left(\tilde{U}_{A^{\prime}_{k}A^{\prime}_{l}}^{i_{k},i_{l}\to 0,i_{k}+i_{l}}\right)^{\dagger} and jti1++it(modd)j_{t}\equiv i_{1}+\cdots+i_{t}\pmod{d}. Therefore, if we let tr𝔸(|Ψ000Ψ000|)=xλx|ϕxEϕx|{\rm{tr}}_{\mathbb{A^{\prime}}}\left(\ket{\Psi_{00\cdots 0}}\bra{\Psi_{00\cdots 0}}\right)=\sum_{x}\lambda_{x}\ket{\phi_{x}}_{E}\bra{\phi_{x}} be its spectral decomposition, we have

|ΨI1I2𝔸E=xλxU1I1V𝔸I2|ψx𝔸|ϕxE,\ket{\Psi_{I_{1}I_{2}}}_{\mathbb{A^{\prime}}E}=\sum_{x}\sqrt{\lambda_{x}}U_{\mathbb{P}^{\prime}_{1}}^{I_{1}}V_{\mathbb{A^{\prime}}}^{I_{2}}\ket{\psi_{x}}_{\mathbb{A^{\prime}}}\ket{\phi_{x}}_{E},

where {|ψx}\{\ket{\psi_{x}}\} forms an orthonormal set for the system 𝔸\mathbb{A^{\prime}}, and thus Υ𝔸𝔸\Upsilon_{\mathbb{A}\mathbb{A^{\prime}}} has the form in Eq. (1).

Conversely, we now assume that for any bipartite split {𝒫1,𝒫2}\{\mathcal{P}_{1},\mathcal{P}_{2}\} of the players with |𝒫1|=M2\left|\mathcal{P}_{1}\right|=M\geq 2, the given state Υ𝔸𝔸\Upsilon_{\mathbb{A}\mathbb{A^{\prime}}} is of the form in Eq. (1). Then it can be readily checked that players have secret information that satisfies the condition (i) by measuring their secret parts in the computational basis. It remains to show that the secret information satisfies the condition (ii).

Suppose that 𝒫1\mathcal{P}_{1} and 𝒫2\mathcal{P}_{2} are parties of legitimate players and dishonest players, respectively. Let σ𝔸=xλx|μxμx|\sigma_{\mathbb{A^{\prime}}}=\sum_{x}\lambda_{x}\ket{\mu_{x}}\bra{\mu_{x}} be a spectral decomposition of σ𝔸\sigma_{\mathbb{A^{\prime}}}, and

|ΨI1I2𝔸E=xλxU1I1V𝔸I2|μx𝔸|νxE,\ket{\Psi_{I_{1}I_{2}}}_{\mathbb{A^{\prime}}E}=\sum_{x}\sqrt{\lambda_{x}}U_{\mathbb{P}^{\prime}_{1}}^{I_{1}}\ V_{\mathbb{A^{\prime}}}^{I_{2}}\ket{\mu_{x}}_{\mathbb{A^{\prime}}}\ket{\nu_{x}}_{E},

where {|νxE}\left\{\ket{\nu_{x}}_{E}\right\} is an orthonormal set for the system EE. Then we can see that the state of the form in Eq. (5) is a purification of Υ𝔸𝔸\Upsilon_{\mathbb{A}\mathbb{A^{\prime}}}.

Let I1𝔖MαI_{1}\in\mathfrak{S}_{M}^{\alpha} be the legitimate players’ measurement outcome after measuring their secret parts, then the eavesdropper and dishonest players’ state after the measurement becomes

Υ22EI1=1dNM1I2,I2𝔖NMdα\displaystyle\Upsilon_{\mathbb{P}_{2}\mathbb{P}^{\prime}_{2}E}^{I_{1}}=\frac{1}{d^{N-M-1}}\sum_{I_{2},I^{\prime}_{2}\in\mathfrak{S}_{N-M}^{d-\alpha}} |I22I2|\displaystyle\ket{I_{2}}_{\mathbb{P}_{2}}\bra{I^{\prime}_{2}}
\displaystyle\otimes tr1|ΨI1I2𝔸EΨI1I2|\displaystyle{\rm{tr}}_{\mathbb{P}^{\prime}_{1}}\ket{\Psi_{I_{1}I_{2}}}_{\mathbb{A^{\prime}}E}\bra{\Psi_{I_{1}I^{\prime}_{2}}}

for 2MN12\leq M\leq N-1 and ΥEI1=tr𝔸|ΨI1𝔸EΨI1|\Upsilon_{E}^{I_{1}}={\rm{tr}}_{\mathbb{A}^{\prime}}\ket{\Psi_{I_{1}}}_{\mathbb{A^{\prime}}E}\bra{\Psi_{I_{1}}} for M=NM=N. Since this state does not depend on the unitary operator U1I1U_{\mathbb{P}^{\prime}_{1}}^{I_{1}}, Υ22EI1=Υ22EI1\Upsilon_{\mathbb{P}_{2}\mathbb{P}^{\prime}_{2}E}^{I_{1}}=\Upsilon_{\mathbb{P}_{2}\mathbb{P}^{\prime}_{2}E}^{I^{\prime}_{1}} for any I1,I1𝔖MαI_{1},I^{\prime}_{1}\in\mathfrak{S}_{M}^{\alpha}. This means that the legitimate players’ secret information is secure against dishonest players and eavesdropper. ∎

As seen in Eq. (6), unitary operators on the shield part of the GSS state can be expressed as the product of unitary operators acting on two players’ shield parts.

Corollary 2.

For any rearranged order l1l2lNl_{1}l_{2}\cdots l_{N}, the GSS state can be written as

1dN1I,J𝔖N0|IAl1Al2AlNJ|UIσ𝔸UJ,\frac{1}{d^{N-1}}\sum_{I,J\in\mathfrak{S}_{N}^{0}}\ket{I}_{A_{l_{1}}A_{l_{2}}\cdots A_{l_{N}}}\bra{J}\otimes U_{I}\sigma_{\mathbb{A^{\prime}}}U_{J}^{\dagger}, (7)

where UI=UAl1Al2il1,il2UAl2Al3jl2,il3UAlN1AlNjlN1,ilNU_{I}=U_{A^{\prime}_{l_{1}}A^{\prime}_{l_{2}}}^{i_{l_{1}},i_{l_{2}}}U_{A^{\prime}_{l_{2}}A^{\prime}_{l_{3}}}^{j_{l_{2}},i_{l_{3}}}\cdots U_{A^{\prime}_{l_{N-1}}A^{\prime}_{l_{N}}}^{j_{l_{N-1}},i_{l_{N}}} for some unitary operators UAl1Al2il1,il2,UAl2Al3jl2,il3,UAlN1AlNjlN1,ilNU_{A^{\prime}_{l_{1}}A^{\prime}_{l_{2}}}^{i_{l_{1}},i_{l_{2}}},U_{A^{\prime}_{l_{2}}A^{\prime}_{l_{3}}}^{j_{l_{2}},i_{l_{3}}},\cdots U_{A^{\prime}_{l_{N-1}}A^{\prime}_{l_{N}}}^{j_{l_{N-1}},i_{l_{N}}} with jltil1++ilt(modd)j_{l_{t}}\equiv i_{l_{1}}+\cdots+i_{l_{t}}\pmod{d}.

Let us now investigate the properties of the GSS state. We remark that if NN players share the NN-party GHZ state, then any MM players among the total players can share the MM-party GHZ state by all players’ LOCC. We can see from the following theorem that the GSS state has the similar property.

Theorem 3.

Suppose that players share a GSS state Υ𝔸𝔸\Upsilon_{\mathbb{A}\mathbb{A^{\prime}}}. Then for any bipartite split {𝒫1,𝒫2}\{\mathcal{P}_{1},\mathcal{P}_{2}\} of the players with |𝒫1|=M2\left|\mathcal{P}_{1}\right|=M\geq 2, 𝒫1\mathcal{P}_{1} can share a GSS state by means of LOCC.

Proof.

Let us divide 𝒫1\mathcal{P}_{1} into legitimate players’ party 𝒫L\mathcal{P}_{L} and dishonest players’ party 𝒫D\mathcal{P}_{D} with |𝒫L|=K2\left|\mathcal{P}_{L}\right|=K\geq 2. By rearranging the order, let 𝒫L={𝒜l1,,𝒜lK}\mathcal{P}_{L}=\{\mathcal{A}_{l_{1}},\cdots,\mathcal{A}_{l_{K}}\}, 𝒫D={𝒜lK+1,,𝒜lM}\mathcal{P}_{D}=\{\mathcal{A}_{l_{K+1}},\cdots,\mathcal{A}_{l_{M}}\}, and 𝒫2={𝒜lM+1,,𝒜lN}\mathcal{P}_{2}=\{\mathcal{A}_{l_{M+1}},\cdots,\mathcal{A}_{l_{N}}\}. Since Υ𝔸𝔸\Upsilon_{\mathbb{A}\mathbb{A^{\prime}}} is a GSS state, it follows from the Corollary 2 that Υ𝔸𝔸\Upsilon_{\mathbb{A}\mathbb{A^{\prime}}} is written as in Eq. (7).

Assume that players in 𝒫2\mathcal{P}_{2} measure their secret parts in the computational basis, and have the measurement outcome I2=mlM+1mlN𝔖NMβI_{2}=m_{l_{M+1}}\cdots m_{l_{N}}\in\mathfrak{S}_{N-M}^{\beta}. Then jlK=dβ(ilK+1++ilM)j_{l_{K}}=d-\beta-(i_{l_{K+1}}+\cdots+i_{l_{M}}), jlM=dβj_{l_{M}}=d-\beta, and the post-measurement state becomes as follows:

1dM1\displaystyle\frac{1}{d^{M-1}} ILID,JLJD𝔖Mdβ|ILIDI2LD2JLJDI2|\displaystyle\sum_{I_{L}I_{D},J_{L}J_{D}\in\mathfrak{S}_{M}^{d-\beta}}\ket{I_{L}I_{D}I_{2}}_{\mathbb{P}_{L}\mathbb{P}_{D}\mathbb{P}_{2}}\bra{J_{L}J_{D}I_{2}}
(ULILV1IDW𝔸I2)σ𝔸(ULJLV1JDW𝔸I2),\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\otimes\left(U_{\mathbb{P}^{\prime}_{L}}^{I_{L}}V^{I_{D}}_{\mathbb{P}^{\prime}_{1}}W_{\mathbb{A^{\prime}}}^{I_{2}}\right)\sigma_{\mathbb{A^{\prime}}}\left(U_{\mathbb{P}^{\prime}_{L}}^{J_{L}}V^{J_{D}}_{\mathbb{P}^{\prime}_{1}}W_{\mathbb{A^{\prime}}}^{I_{2}}\right)^{\dagger},

where

ULIL=UAl1Al2il1,il2UAl2Al3jl2,il3UAlK1AlKjlK1,ilK,U_{\mathbb{P}^{\prime}_{L}}^{I_{L}}=U_{A^{\prime}_{l_{1}}A^{\prime}_{l_{2}}}^{i_{l_{1}},i_{l_{2}}}U_{A^{\prime}_{l_{2}}A^{\prime}_{l_{3}}}^{j_{l_{2}},i_{l_{3}}}\cdots U_{A^{\prime}_{l_{K-1}}A^{\prime}_{l_{K}}}^{j_{l_{K-1}},i_{l_{K}}},
V1ID=UAlKAlK+1jlK,ilK+1UAlK+1AlK+2jlK+1,ilK+2UAlM1AlMjlM1,ilM,V_{\mathbb{P}^{\prime}_{1}}^{I_{D}}=U_{A^{\prime}_{l_{K}}A^{\prime}_{l_{K+1}}}^{j_{l_{K}},i_{l_{K+1}}}U_{A^{\prime}_{l_{K+1}}A^{\prime}_{l_{K+2}}}^{j_{l_{K+1}},i_{l_{K+2}}}\cdots U_{A^{\prime}_{l_{M-1}}A^{\prime}_{l_{M}}}^{j_{l_{M-1}},i_{l_{M}}},

and

W𝔸I2=UAlMAlM+1jlM,mlM+1UAlM+1AlM+2jlM+1,mlM+2UAlN1AlNjlN1,mlN.W_{\mathbb{A^{\prime}}}^{I_{2}}=U_{A^{\prime}_{l_{M}}A^{\prime}_{l_{M+1}}}^{j_{l_{M}},m_{l_{M+1}}}U_{A^{\prime}_{l_{M+1}}A^{\prime}_{l_{M+2}}}^{j_{l_{M+1}},m_{l_{M+2}}}\cdots U_{A^{\prime}_{l_{N-1}}A^{\prime}_{l_{N}}}^{j_{l_{N-1}},m_{l_{N}}}.

By tracing out the 𝒫2\mathcal{P}_{2}’s system, we can see that 𝒫1\mathcal{P}_{1}’s state is written as

1dM1ILID,JLJD𝔖Mdβ\displaystyle\frac{1}{d^{M-1}}\sum_{I_{L}I_{D},J_{L}J_{D}\in\mathfrak{S}_{M}^{d-\beta}} |ILIDLDJLJD|\displaystyle\ket{I_{L}I_{D}}_{\mathbb{P}_{L}\mathbb{P}_{D}}\bra{J_{L}J_{D}}
(ULILV1ID)σ~1(ULJLV1JD)\displaystyle\otimes\left(U_{\mathbb{P}^{\prime}_{L}}^{I_{L}}V^{I_{D}}_{\mathbb{P}^{\prime}_{1}}\right)\tilde{\sigma}_{\mathbb{P}^{\prime}_{1}}\left(U_{\mathbb{P}^{\prime}_{L}}^{J_{L}}V^{J_{D}}_{\mathbb{P}^{\prime}_{1}}\right)^{\dagger}

for some state σ~1\tilde{\sigma}_{\mathbb{P}^{\prime}_{1}}. Hence, after one of players 𝒜k\mathcal{A}_{k} in 𝒫1\mathcal{P}_{1} applies unitary operator Tβ=i|i+βi|T_{\beta}=\sum_{i}\ket{i+\beta}\bra{i} on his/her secret part, their state becomes a GSS state. ∎

Since quantum networks in general require repeaters connecting players because of the distance limitation of quantum communication, and players want to get a secure information without providing their information to repeaters, this property can play an important role in quantum networks. Hence, in quantum networks, sharing a GSS state can be a goal for secure multipartite quantum communication.

The next property is about a relation between the GSS state and the Holevo information Holevo (1973), which is one of the important quantities in security analysis. Suppose that Alice and Bob share a state ρAB\rho_{AB}, and Alice measures her system. For each Alice’s measurement outcome xx, let pxp_{x} and ρBx\rho_{B}^{x} be its probability and Bob’s resulting state after her measurement, respectively. The Holevo information between Alice’s measurement outcomes and Bob’s state is given by

χρ(x:B)=S(ρ¯)xpxS(ρBx),\chi_{\rho}(x:B)=S(\bar{\rho})-\sum_{x}p_{x}S(\rho_{B}^{x}),

where SS is the von Neumann entropy and ρ¯=xpxρBx\bar{\rho}=\sum_{x}p_{x}\rho_{B}^{x}. Zero Holevo information between Alice’s measurement outcomes and Bob’s state, that is, χρ(x:B)=0\chi_{\rho}(x:B)=0 means that Bob cannot have any information about Alice’s measurement outcomes. Thus, the modified condition (ii) can be replaced as follows: For a given quantum state Υ\Upsilon, χΥ(kl:𝒟E)=0\chi_{\Upsilon}(k_{l}:\mathcal{D}E)=0 for any party 𝒟E\mathcal{D}E of dishonest players and eavesdropper, where klk_{l} is the the legitimate player 𝒜l\mathcal{A}_{l}’s secret information. In other words, the Holevo information is zero if and only if the state satisfying the condition (i) for secret sharing is a GSS state. For example, since χ(i1:𝒜3)=1\chi(i_{1}:\mathcal{A}_{3})=1 in Eq. (I), where i1i_{1} is the 𝒜1\mathcal{A}_{1}’s measurement outcome when he/she measures his/her secret part in the computational basis, the secret-sharing state in Eq. (I) is not a GSS state.

Theorem 4.

Let Γ𝔸𝔸\Gamma_{\mathbb{A}\mathbb{A^{\prime}}} be a quantum state and pIp_{I} be the probability that players’ measurement outcome is II when they measure the system 𝔸\mathbb{A} in the computational basis. Suppose that pI>0p_{I}>0 for I𝔖N0I\in\mathfrak{S}_{N}^{0} and pI=0p_{I}=0 for I𝔖N0I\notin\mathfrak{S}_{N}^{0}. Then Γ𝔸𝔸\Gamma_{\mathbb{A}\mathbb{A^{\prime}}} is a GSS state if and only if for any 𝒟{𝒜1,,𝒜N}\mathcal{D}\subset\{\mathcal{A}_{1},\cdots,\mathcal{A}_{N}\} with |𝒟|=N2|\mathcal{D}|=N-2, the Holevo information χΓ(ik:𝒟E)\chi_{\Gamma}(i_{k}:\mathcal{D}E) equals zero, where iki_{k} is the measurement outcome of the 𝒜k\mathcal{A}_{k}’s secret part and 𝒜k𝒟\mathcal{A}_{k}\notin\mathcal{D}.

Proof.

We show that pIp_{I}’s are identical for all I𝔖N0I\in\mathfrak{S}_{N}^{0} if for any 𝒟{𝒜1,,𝒜N}\mathcal{D}\subset\{\mathcal{A}_{1},\cdots,\mathcal{A}_{N}\} with |𝒟|=N2|\mathcal{D}|=N-2, χΓ(ik:𝒟E)=0\chi_{\Gamma}(i_{k}:\mathcal{D}E)=0, where iki_{k} is the measurement outcome of 𝒜k𝒟\mathcal{A}_{k}\notin\mathcal{D}. If it is true, then Theorem 1 completes the proof. Without loss of generality, we may assume that 𝒟={𝒜3,,𝒜N}\mathcal{D}=\{\mathcal{A}_{3},\cdots,\mathcal{A}_{N}\}, and χΓ(ik:𝒟E)=0\chi_{\Gamma}(i_{k}:\mathcal{D}E)=0 for k=1,2k=1,2. Note that the following state is a purification of the given state:

|ΨA1A2𝔻𝔸E=i1,i2=0d1|i1,i2A1A2|ψi1,i2𝔻𝔸E,\ket{\Psi}_{A_{1}A_{2}\mathbb{D}\mathbb{A^{\prime}}E}=\sum_{i_{1},i_{2}=0}^{d-1}\ket{i_{1},i_{2}}_{A_{1}A_{2}}\ket{\psi_{i_{1},i_{2}}}_{\mathbb{D}\mathbb{A^{\prime}}E},

where 𝔻\mathbb{D} is the secret part of 𝒟\mathcal{D} and

|ψi1,i2𝔻𝔸E=ξ𝔖N2i1i2pi1,i2,ξ|ξ𝔻|Ψi1,i2,ξ𝔸E.\ket{\psi_{i_{1},i_{2}}}_{\mathbb{D}\mathbb{A^{\prime}}E}=\sum_{\xi\in\mathfrak{S}_{N-2}^{-i_{1}-i_{2}}}\sqrt{p_{i_{1},i_{2},\xi}}\ket{\xi}_{\mathbb{D}}\ket{\Psi_{i_{1},i_{2},\xi}}_{\mathbb{A^{\prime}}E}.

When 𝒜1\mathcal{A}_{1}’s measurement outcome is ii, the state of 𝒟\mathcal{D} and eavesdropper can be described as

ρ𝒟Ei1=i=1qii2=0d1trA1A2|ψi,i2𝔻𝔸Eψi,i2|,\rho_{\mathcal{D}E}^{i_{1}=i}=\frac{1}{q_{i}}\sum_{i_{2}=0}^{d-1}{\rm{tr}}_{A^{\prime}_{1}A^{\prime}_{2}}\ket{\psi_{i,i_{2}}}_{\mathbb{D}\mathbb{A^{\prime}}E}\bra{\psi_{i,i_{2}}},

where qi=i2ξ𝔖N2ii2pi,i2,ξq_{i}=\sum_{i_{2}}\sum_{\xi\in\mathfrak{S}_{N-2}^{-i-i_{2}}}p_{i,i_{2},\xi}. Since the Holevo information χΓ(i1:𝒟E)\chi_{\Gamma}(i_{1}:\mathcal{D}E) equals zero, ρ𝒟Ei1=i=ρ𝒟Ei1=i\rho_{\mathcal{D}E}^{i_{1}=i}=\rho_{\mathcal{D}E}^{i_{1}=i^{\prime}} for any 𝒜1\mathcal{A}_{1}’s measurement outcomes ii and ii^{\prime}. Similarly, since χΓ(i2:𝒟E)=0\chi_{\Gamma}(i_{2}:\mathcal{D}E)=0, we also have ρ𝒟Ei2=j=ρ𝒟Ei2=j\rho_{\mathcal{D}E}^{i_{2}=j}=\rho_{\mathcal{D}E}^{i_{2}=j^{\prime}} for any 𝒜2\mathcal{A}_{2}’s measurement outcomes jj and jj^{\prime}, where

ρ𝒟Ei2=j=1rji1=0d1trA1A2|ψi1,j𝔻𝔸Eψi1,j|\rho_{\mathcal{D}E}^{i_{2}=j}=\frac{1}{r_{j}}\sum_{i_{1}=0}^{d-1}{\rm{tr}}_{A^{\prime}_{1}A^{\prime}_{2}}\ket{\psi_{i_{1},j}}_{\mathbb{D}\mathbb{A^{\prime}}E}\bra{\psi_{i_{1},j}}

with rj=i1ξ𝔖N2i1jpi1,j,ξr_{j}=\sum_{i_{1}}\sum_{\xi\in\mathfrak{S}_{N-2}^{-i_{1}-j}}p_{i_{1},j,\xi}. Thus, if i+j=i+j(modd)i+j=i^{\prime}+j^{\prime}\pmod{d},

pi,j,ξpi,j,ξ=qiqi=rjrj\frac{p_{i,j,\xi}}{p_{i^{\prime},j^{\prime},\xi}}=\frac{q_{i}}{q_{i^{\prime}}}=\frac{r_{j}}{r_{j^{\prime}}}

for ξ𝔖N2ij\xi\in\mathfrak{S}_{N-2}^{-i-j}. In particular, since

qαqβ=pα,βα,ξpβ,0,ξ=rβαr0=pαβ,βα,ζp0,0,ζ=qαβq0\frac{q_{\alpha}}{q_{\beta}}=\frac{p_{\alpha,\beta-\alpha,\xi}}{p_{\beta,0,\xi}}=\frac{r_{\beta-\alpha}}{r_{0}}=\frac{p_{\alpha-\beta,\beta-\alpha,\zeta}}{p_{0,0,\zeta}}=\frac{q_{\alpha-\beta}}{q_{0}}

for ξ𝔖N2β\xi\in\mathfrak{S}_{N-2}^{\beta} and ζ𝔖N20\zeta\in\mathfrak{S}_{N-2}^{0}, we obtain

qβ=qβα=0d1qαβ=q0α=0d1qα=q0q_{\beta}=q_{\beta}\sum_{\alpha=0}^{d-1}q_{\alpha-\beta}=q_{0}\sum_{\alpha=0}^{d-1}q_{\alpha}=q_{0}

for any βd\beta\in\mathbb{Z}_{d}, that is, qiq_{i}’s are all equal. Hence, if i+j=i+j(modd)i+j=i^{\prime}+j^{\prime}\pmod{d}, then pi,j,ξ=pi,j,ξp_{i,j,\xi}=p_{i^{\prime},j^{\prime},\xi} for all ξ𝔖N2ij\xi\in\mathfrak{S}_{N-2}^{-i-j}. By symmetry, it follows that pIp_{I}’s are identical for all I𝔖N0I\in\mathfrak{S}_{N}^{0}. ∎

Theorem 4 shows that players’ secret information must be unbiased in order to be secure against dishonest players and eavesdropper. Therefore, the condition (ii) of the modified secret-sharing conditions includes unbiasedness of the players’ secret information, and so the unbiasedness can be omitted in the condition (i) of the modified conditions.

III GSS Distillable Rate

In this section, we discuss the distillable rate with respect to the GSS state. Before defining the distillable rate, we need to consider one issue arising from the presence of dishonest players. For instance, let us look at the secret-sharing state in Eq. (I) once more. For α,β\alpha,\beta\in\mathbb{C} with |α|2+|β|2=1|\alpha|^{2}+|\beta|^{2}=1, if we let |μ0=α|0+β|1\ket{\mu_{0}}=\alpha\ket{0}+\beta\ket{1} and |μ1=β|0α|1\ket{\mu_{1}}=\beta^{*}\ket{0}-\alpha^{*}\ket{1}, the state can be written as

12|μ0A1|0A2|00A1A2(α|00A3A3+β|11A3A3)\displaystyle\frac{1}{2}\ket{\mu_{0}}_{A_{1}}\ket{0}_{A_{2}}\ket{00}_{A^{\prime}_{1}A^{\prime}_{2}}\left(\alpha^{*}\ket{00}_{A_{3}A^{\prime}_{3}}+\beta^{*}\ket{11}_{A_{3}A^{\prime}_{3}}\right)
+12|μ0A1|1A2|00A1A2(α|10A3A3+β|01A3A3)\displaystyle+\frac{1}{2}\ket{\mu_{0}}_{A_{1}}\ket{1}_{A_{2}}\ket{00}_{A^{\prime}_{1}A^{\prime}_{2}}\left(\alpha^{*}\ket{10}_{A_{3}A^{\prime}_{3}}+\beta^{*}\ket{01}_{A_{3}A^{\prime}_{3}}\right)
+12|μ1A1|0A2|00A1A2(β|00A3A3α|11A3A3)\displaystyle+\frac{1}{2}\ket{\mu_{1}}_{A_{1}}\ket{0}_{A_{2}}\ket{00}_{A^{\prime}_{1}A^{\prime}_{2}}\left(\beta\ket{00}_{A_{3}A^{\prime}_{3}}-\alpha\ket{11}_{A_{3}A^{\prime}_{3}}\right)
+12|μ1A1|1A2|00A1A2(β|10A3A3α|01A3A3).\displaystyle+\frac{1}{2}\ket{\mu_{1}}_{A_{1}}\ket{1}_{A_{2}}\ket{00}_{A^{\prime}_{1}A^{\prime}_{2}}\left(\beta\ket{10}_{A_{3}A^{\prime}_{3}}-\alpha\ket{01}_{A_{3}A^{\prime}_{3}}\right).

Hence, for any 𝒜1\mathcal{A}_{1}’s measurement basis {|μ0,|μ1}\left\{\ket{\mu_{0}},\ket{\mu_{1}}\right\}, player 𝒜3\mathcal{A}_{3} can get the other players’ secret information by properly measuring his/her system. However, since this is a secret-sharing state, it is GHZ distillable Chi et al. (2008), that is, the GHZ state can be asymptotically distilled from the state by LOCC. Thus, if we define the distillable rate as how many copies of the given state are required to asymptotically distill a GSS state through LOCC, the completely insecure quantum state may have a strictly positive rate.

In order to avoid such an issue, we employ the Devetak-Winter rate Devetak and Winter (2005); Kogias et al. (2017). Let ρ𝒜1𝒜N\rho_{\mathcal{A}_{1}\cdots\mathcal{A}_{N}} be a given state. We say that ρ𝒜1𝒜N\rho_{\mathcal{A}_{1}\cdots\mathcal{A}_{N}} has positive Devetak-Winter rate if there is a set of measurement operations {k}1kN\{\mathcal{M}_{k}\}_{1\leq k\leq N} such that for any 𝒟{𝒜1,,𝒜N}\mathcal{D}\subset\{\mathcal{A}_{1},\cdots,\mathcal{A}_{N}\} with |𝒟|N2|\mathcal{D}|\leq N-2, I(mi:m¯i)χρ(mi:𝒟E)>0I\left(m_{i}:\bar{m}_{i}\right)-\chi_{\rho}\left(m_{i}:\mathcal{D}E\right)>0, where I(X:Y)I\left(X:Y\right) is the mutual information between XX and YY, 𝒜i𝒟\mathcal{A}_{i}\notin\mathcal{D}, mim_{i} is the 𝒜i\mathcal{A}_{i}’s measurement outcome, and m¯i\bar{m}_{i} is the sum of the measurement outcomes of players except 𝒜i\mathcal{A}_{i}. If we define the distillable rate only for quantum states with positive Devetak-Winter rate, then we can rule out quantum states that are completely insecure.

Definition 1.

For given state ρ𝒜1𝒜N\rho_{\mathcal{A}_{1}\cdots\mathcal{A}_{N}} with positive Devetak-Winter rate, let PnP_{n} be a sequence of LOCC operations such that Pn(ρn)=σnP_{n}\left(\rho^{\otimes n}\right)=\sigma_{n}. We call Pn=1{Pn}\mathrm{P}\equiv\bigcup_{n=1}^{\infty}\left\{P_{n}\right\} a GSS distillation protocol of the state ρ\rho if limnσnΥdn=0\lim_{n\to\infty}\|\sigma_{n}-\Upsilon_{d_{n}}\|=0, where Υdn\Upsilon_{d_{n}} is a GSS state that has a secret part with dimension dnNd_{n}^{N}. For given protocol P\mathrm{P}, its rate is defined as

R(P)=lim supnlogdnn,R(\mathrm{P})=\limsup_{n\to\infty}\frac{\log d_{n}}{n},

and the GSS distillable rate of the state ρ\rho is given by

DG(ρ)=supPR(P).D_{G}(\rho)=\sup_{\mathrm{P}}R(\mathrm{P}).

We note that when players are divided into two parties, 𝒫1\mathcal{P}_{1} and 𝒫2\mathcal{P}_{2}, they can have a private state between two parties if they share a GSS state. Thus, we have

DG(ρ𝒜1𝒜N)KD𝒫1:𝒫2(ρ𝒜1𝒜N),D_{G}\left(\rho_{\mathcal{A}_{1}\cdots\mathcal{A}_{N}}\right)\leq K_{D}^{\mathcal{P}_{1}:\mathcal{P}_{2}}\left(\rho_{\mathcal{A}_{1}\cdots\mathcal{A}_{N}}\right),

where KD𝒫1:𝒫2K_{D}^{\mathcal{P}_{1}:\mathcal{P}_{2}} is the distillable key rate between 𝒫1\mathcal{P}_{1} and 𝒫2\mathcal{P}_{2}, which is defined by protocols to distill private states Horodecki et al. (2009). In addition, since the relative entropy of entanglement (REE) is an upper bound of the distillable key rate Horodecki et al. (2009), we obtain

DG(ρ𝒜1𝒜N)Er𝒫1:𝒫2(ρ𝒜1𝒜N),D_{G}\left(\rho_{\mathcal{A}_{1}\cdots\mathcal{A}_{N}}\right)\leq E_{r}^{\mathcal{P}_{1}:\mathcal{P}_{2}}\left(\rho_{\mathcal{A}_{1}\cdots\mathcal{A}_{N}}\right), (8)

where Er𝒫1:𝒫2E_{r}^{\mathcal{P}_{1}:\mathcal{P}_{2}} is REE between 𝒫1\mathcal{P}_{1} and 𝒫2\mathcal{P}_{2}, that is,

Er𝒫1:𝒫2(ρ)=infσSEP𝒫1:𝒫2S(ρσ).E_{r}^{\mathcal{P}_{1}:\mathcal{P}_{2}}(\rho)=\inf_{\sigma\in\mathrm{SEP}_{\mathcal{P}_{1}:\mathcal{P}_{2}}}S(\rho\|\sigma).

Here, S(ρσ)=S(ρ)TrρlogσS(\rho\|\sigma)=-S(\rho)-\textrm{Tr}\rho\log\sigma is the relative entropy, and SEP𝒫1:𝒫2\mathrm{SEP}_{\mathcal{P}_{1}:\mathcal{P}_{2}} is the set of bipartite separable states of the system 𝒫1𝒫2\mathcal{P}_{1}\mathcal{P}_{2}.

Using the GSS distillable rate, one can define irreducible GSS state, as irreducible private state is defined in Ref. Horodecki et al. (2009). For any GSS state Υ𝔸𝔸\Upsilon_{\mathbb{A}\mathbb{A^{\prime}}} whose secret part is of dimension dNd^{N}, the state is said to be irreducible if DG(Υ𝔸𝔸)=logdD_{G}\left(\Upsilon_{\mathbb{A}\mathbb{A^{\prime}}}\right)=\log d. Then the following theorem provides a way to check that a given GSS state is irreducible.

Theorem 5.

Let Υ𝔸𝔸\Upsilon_{\mathbb{A}\mathbb{A^{\prime}}} be a GSS state and 𝒜¯k\bar{\mathcal{A}}_{k} denote the party of players except 𝒜k\mathcal{A}_{k}. If Υ𝔸𝔸\Upsilon_{\mathbb{A}\mathbb{A^{\prime}}} is written as

Υ𝔸k𝔸¯k𝔸=1dN1ikI,jkJ𝔖N0\displaystyle\Upsilon_{\mathbb{A}_{k}\bar{\mathbb{A}}_{k}\mathbb{A^{\prime}}}=\frac{1}{d^{N-1}}\sum_{i_{k}I,j_{k}J\in\mathfrak{S}_{N}^{0}} |ikI𝔸k𝔸¯kjkJ|\displaystyle\ket{i_{k}I}_{\mathbb{A}_{k}\bar{\mathbb{A}}_{k}}\bra{j_{k}J}
\displaystyle\otimes (U𝔸¯kIV𝔸ik)σ𝔸(U𝔸¯kJV𝔸jk),\displaystyle\left(U_{\bar{\mathbb{A}}^{\prime}_{k}}^{I}V^{i_{k}}_{\mathbb{A^{\prime}}}\right)\sigma_{\mathbb{A^{\prime}}}\left(U_{\bar{\mathbb{A}}^{\prime}_{k}}^{J}V^{j_{k}}_{\mathbb{A^{\prime}}}\right)^{\dagger},

where σ𝔸\sigma_{\mathbb{A^{\prime}}} is a state on the system 𝔸\mathbb{A^{\prime}}, and 𝔸¯k\bar{\mathbb{A}}_{k} and 𝔸¯k\bar{\mathbb{A}}^{\prime}_{k} are the secret part and the shield part of 𝒜k¯\bar{\mathcal{A}_{k}}, respectively, then

Er𝒜k:𝒜k¯(Υ)logd+1dikEr𝒜k:𝒜k¯(V𝔸ikσ𝔸(V𝔸ik)).E_{r}^{\mathcal{A}_{k}:\bar{\mathcal{A}_{k}}}\left(\Upsilon\right)\leq\log d+\frac{1}{d}\sum_{i_{k}}E_{r}^{\mathcal{A}_{k}:\bar{\mathcal{A}_{k}}}\left(V^{i_{k}}_{\mathbb{A^{\prime}}}\sigma_{\mathbb{A^{\prime}}}\left(V^{i_{k}}_{\mathbb{A^{\prime}}}\right)^{\dagger}\right). (9)
Proof.

Let us consider the unitary operator

W𝔸¯k𝔸¯kIdN1|I𝔸¯kI|(U𝔸¯kI).W_{\bar{\mathbb{A}}_{k}\bar{\mathbb{A}}^{\prime}_{k}}\equiv\sum_{I\in\mathbb{Z}_{d}^{N-1}}\ket{I}_{\bar{\mathbb{A}}_{k}}\bra{I}\otimes\left(U_{\bar{\mathbb{A}}^{\prime}_{k}}^{I}\right)^{\dagger}.

Since the REE is invariant under local unitary operation, Er𝒜k:𝒜¯k(Υ)=Er𝒜k:𝒜¯k(WΥW)E_{r}^{\mathcal{A}_{k}:\bar{\mathcal{A}}_{k}}\left(\Upsilon\right)=E_{r}^{\mathcal{A}_{k}:\bar{\mathcal{A}}_{k}}\left(W\Upsilon W^{\dagger}\right). Note that

WΥW=1dik,jk|ikψik𝔸k𝔸¯kjkψjk|V𝔸ikσ𝔸(V𝔸jk),W\Upsilon W^{\dagger}=\frac{1}{d}\sum_{i_{k},j_{k}}\ket{i_{k}\psi_{i_{k}}}_{\mathbb{A}_{k}\bar{\mathbb{A}}_{k}}\bra{j_{k}\psi_{j_{k}}}\otimes V^{i_{k}}_{\mathbb{A^{\prime}}}\sigma_{\mathbb{A^{\prime}}}\left(V^{j_{k}}_{\mathbb{A^{\prime}}}\right)^{\dagger},

where

|ψik𝔸¯k=1dN2I𝔖Nik|I𝔸¯k.\ket{\psi_{i_{k}}}_{\bar{\mathbb{A}}_{k}}=\frac{1}{\sqrt{d^{N-2}}}\sum_{I\in\mathfrak{S}_{N}^{-i_{k}}}\ket{I}_{\bar{\mathbb{A}}_{k}}.

Hence, we can regard WΥWW\Upsilon W^{\dagger} as a private state. By Theorem 3 in Ref. Horodecki et al. (2009), we can prove this theorem. ∎

Combining inequalities (8) and (9), we have

DG(Υ𝔸𝔸)logd+1dikEr𝒜k:𝒜k¯(V𝔸ikσ𝔸(V𝔸ik)).D_{G}\left(\Upsilon_{\mathbb{A}\mathbb{A^{\prime}}}\right)\leq\log d+\frac{1}{d}\sum_{i_{k}}E_{r}^{\mathcal{A}_{k}:\bar{\mathcal{A}_{k}}}\left(V^{i_{k}}_{\mathbb{A^{\prime}}}\sigma_{\mathbb{A^{\prime}}}\left(V^{i_{k}}_{\mathbb{A^{\prime}}}\right)^{\dagger}\right).

Hence, if there is a kk such that

Er𝒜k:𝒜k¯(V𝔸ikσ𝔸(V𝔸ik))=0E_{r}^{\mathcal{A}_{k}:\bar{\mathcal{A}_{k}}}\left(V^{i_{k}}_{\mathbb{A^{\prime}}}\sigma_{\mathbb{A^{\prime}}}\left(V^{i_{k}}_{\mathbb{A^{\prime}}}\right)^{\dagger}\right)=0

for all iki_{k}, the given GSS state is irreducible, since DG(Υ𝔸𝔸)logdD_{G}\left(\Upsilon_{\mathbb{A}\mathbb{A^{\prime}}}\right)\geq\log d.

IV Examples

Example 1.

Let us consider a quantum network consisting of only private states. In order for each player to get a secret bit for secret sharing in the network, all players should be connected via private states. More precisely, assume that Alice and Bob, Bob and Charlie, and Charlie and Alice share the following private states:

γA1B2A1B2=12i,i=01|iiA1B2ii|UiσA1B2Ui,\gamma_{A_{1}B_{2}A^{\prime}_{1}B^{\prime}_{2}}=\frac{1}{2}\sum_{i,i^{\prime}=0}^{1}\ket{ii}_{A_{1}B_{2}}\bra{i^{\prime}i^{\prime}}\otimes U_{i}\sigma_{A^{\prime}_{1}B^{\prime}_{2}}U^{\dagger}_{i^{\prime}},
γ^B1C2B1C2=12j,j=01|jjB1C2jj|U^jσ^B1C2U^j,\hat{\gamma}_{B_{1}C_{2}B^{\prime}_{1}C^{\prime}_{2}}=\frac{1}{2}\sum_{j,j^{\prime}=0}^{1}\ket{jj}_{B_{1}C_{2}}\bra{j^{\prime}j^{\prime}}\otimes\hat{U}_{j}\hat{\sigma}_{B^{\prime}_{1}C^{\prime}_{2}}\hat{U}^{\dagger}_{j^{\prime}},
γ~C1A2C1A2=12k,k=01|kkC1A2kk|U~kσ~C1A2U~k,\tilde{\gamma}_{C_{1}A_{2}C^{\prime}_{1}A^{\prime}_{2}}=\frac{1}{2}\sum_{k,k^{\prime}=0}^{1}\ket{kk}_{C_{1}A_{2}}\bra{k^{\prime}k^{\prime}}\otimes\tilde{U}_{k}\tilde{\sigma}_{C^{\prime}_{1}A^{\prime}_{2}}\tilde{U}^{\dagger}_{k^{\prime}},

where σA1B2\sigma_{A^{\prime}_{1}B^{\prime}_{2}}, σ^B1C2\hat{\sigma}_{B^{\prime}_{1}C^{\prime}_{2}}, and σ~C1A2\tilde{\sigma}_{C^{\prime}_{1}A^{\prime}_{2}} are arbitrary states, and {Ui}\left\{U_{i}\right\}, {U^j}\left\{\hat{U}_{j}\right\}, and {U~k}\left\{\tilde{U}_{k}\right\} are unitary operators on the system A1B2A^{\prime}_{1}B^{\prime}_{2}, B1C2B^{\prime}_{1}C^{\prime}_{2}, and C1A2C^{\prime}_{1}A^{\prime}_{2}, respectively. If m1m_{1} and m2m_{2} are measurement outcomes when they measure their key parts 1 and 2 in the computational basis, respectively, then m1+m2(mod2)m_{1}+m_{2}\pmod{2} can be used as a secret bit for secret sharing.

This secret bit can also be obtained from the process where each player takes the unitary Wi,j=01|i+j,ji,j|W\equiv\sum_{i,j=0}^{1}\ket{i+j,j}\bra{i,j} on his/her key parts, and measures the first key part in the computational basis. After taking the unitary operators on their key parts, the state becomes

Υ\displaystyle\Upsilon =14ijk,ijk𝔖30|ijkijk|ViV^kΛ(ViV^k)\displaystyle=\frac{1}{4}\sum_{ijk,i^{\prime}j^{\prime}k^{\prime}\in\mathfrak{S}_{3}^{0}}\ket{ijk}_{\mathbb{P}}\bra{i^{\prime}j^{\prime}k^{\prime}}\otimes V^{i}\hat{V}^{k}\Lambda\left(V^{i^{\prime}}\hat{V}^{k^{\prime}}\right)^{\dagger}
=14ijk,ijk𝔖30|ijkijk|V^jV~iΛ(V^jV~i)\displaystyle=\frac{1}{4}\sum_{ijk,i^{\prime}j^{\prime}k^{\prime}\in\mathfrak{S}_{3}^{0}}\ket{ijk}_{\mathbb{P}}\bra{i^{\prime}j^{\prime}k^{\prime}}\otimes\hat{V}^{j}\tilde{V}^{i}\Lambda\left(\hat{V}^{j^{\prime}}\tilde{V}^{i^{\prime}}\right)^{\dagger}
=14ijk,ijk𝔖30|ijkijk|V~kVjΛ(V~kVj),\displaystyle=\frac{1}{4}\sum_{ijk,i^{\prime}j^{\prime}k^{\prime}\in\mathfrak{S}_{3}^{0}}\ket{ijk}_{\mathbb{P}}\bra{i^{\prime}j^{\prime}k^{\prime}}\otimes\tilde{V}^{k}V^{j}\Lambda\left(\tilde{V}^{k^{\prime}}V^{j^{\prime}}\right)^{\dagger},

where =A1B1C1\mathbb{P}=A_{1}B_{1}C_{1},

Λ=12l,l=01\displaystyle\Lambda=\frac{1}{2}\sum_{l,l^{\prime}=0}^{1} |lllA2B2C2lll|\displaystyle\ket{lll}_{A_{2}B_{2}C_{2}}\bra{l^{\prime}l^{\prime}l^{\prime}}
UlσA1B2UlU^lσ^B1C2U^lU~lσ~C1A2U~l,\displaystyle\otimes U_{l}\sigma_{A^{\prime}_{1}B^{\prime}_{2}}U^{\dagger}_{l^{\prime}}\otimes\hat{U}_{l}\hat{\sigma}_{B^{\prime}_{1}C^{\prime}_{2}}\hat{U}^{\dagger}_{l^{\prime}}\otimes\tilde{U}_{l}\tilde{\sigma}_{C^{\prime}_{1}A^{\prime}_{2}}\tilde{U}^{\dagger}_{l^{\prime}},
VB2A1B21=l=01|lB2l+1|UlUl+1,V_{B_{2}A^{\prime}_{1}B^{\prime}_{2}}^{1}=\sum_{l=0}^{1}\ket{l}_{B_{2}}\bra{l+1}\otimes U_{l}U_{l+1}^{\dagger},
V^C2B1C21=l=01|lC2l+1|U^lU^l+1,\hat{V}_{C_{2}B^{\prime}_{1}C^{\prime}_{2}}^{1}=\sum_{l=0}^{1}\ket{l}_{C_{2}}\bra{l+1}\otimes\hat{U}_{l}\hat{U}_{l+1}^{\dagger},
V~A2C1A21=l=01|lA2l+1|U~lU~l+1,\tilde{V}_{A_{2}C^{\prime}_{1}A^{\prime}_{2}}^{1}=\sum_{l=0}^{1}\ket{l}_{A_{2}}\bra{l+1}\otimes\tilde{U}_{l}\tilde{U}_{l+1}^{\dagger},

and V0V^{0}, V^0\hat{V}^{0} and V~0\tilde{V}^{0} are identity operators. This is to prepare the GSS state Υ\Upsilon so as to obtain a secret bit for secret sharing.

One may think that sharing private states is enough for players to carry out secret sharing. However, as we can see above, it can be seen as a process of preparing a GSS state from private states which share in advance between every pair of the total players, and hence it can be spatially inefficient because the second key parts of the private states are not used in obtaining a secret bit. Therefore, if it is possible to directly share a GSS state, it can be more efficient and more productive than sharing private states when players want to perform secret sharing.

Example 2.

As in Refs. Chi et al. (2008); Horodecki et al. (2009), it can be an interesting task to find a GSS state with low distillable entanglement. To this end, let us first consider the following state:

Γ=\displaystyle\Gamma= a0|ψ0ABCψ0|(ρ0σ0τ0)\displaystyle a_{0}\ket{\psi_{0}}_{ABC}\bra{\psi_{0}}\otimes\left(\rho_{0}\otimes\sigma_{0}\otimes\tau_{0}\right)
+a1|ψ1ABCψ1|(ρ1σ0τ1)\displaystyle+a_{1}\ket{\psi_{1}}_{ABC}\bra{\psi_{1}}\otimes\left(\rho_{1}\otimes\sigma_{0}\otimes\tau_{1}\right)
+a2|ψ2ABCψ2|(ρ1σ1τ0)\displaystyle+a_{2}\ket{\psi_{2}}_{ABC}\bra{\psi_{2}}\otimes\left(\rho_{1}\otimes\sigma_{1}\otimes\tau_{0}\right)
+a3|ψ3ABCψ3|(ρ0σ1τ1),\displaystyle+a_{3}\ket{\psi_{3}}_{ABC}\bra{\psi_{3}}\otimes\left(\rho_{0}\otimes\sigma_{1}\otimes\tau_{1}\right),

where |ψ0=12(|000+|011+|101+|110)\ket{\psi_{0}}=\frac{1}{2}\left(\ket{000}+\ket{011}+\ket{101}+\ket{110}\right), |ψ1=ZA|ψ0\ket{\psi_{1}}=Z_{A}\ket{\psi_{0}}, |ψ2=ZB|ψ0\ket{\psi_{2}}=Z_{B}\ket{\psi_{0}}, |ψ3=ZC|ψ0\ket{\psi_{3}}=Z_{C}\ket{\psi_{0}}, and ρi\rho_{i}, σj\sigma_{j}, and τk\tau_{k} have orthogonal supports on the system A1B2A^{\prime}_{1}B^{\prime}_{2}, B1C2B^{\prime}_{1}C^{\prime}_{2}, and C1A2C^{\prime}_{1}A^{\prime}_{2}, respectively. Then we can find unitary operators UA1B2U_{A^{\prime}_{1}B^{\prime}_{2}}, VB1C2V_{B^{\prime}_{1}C^{\prime}_{2}}, and WC1A2W_{C^{\prime}_{1}A^{\prime}_{2}} that satisfy UA1B2ρi=(1)iρiU_{A^{\prime}_{1}B^{\prime}_{2}}\rho_{i}=(-1)^{i}\rho_{i}, VB1C2σj=(1)jσjV_{B^{\prime}_{1}C^{\prime}_{2}}\sigma_{j}=(-1)^{j}\sigma_{j}, and WC1A2τk=(1)kτkW_{C^{\prime}_{1}A^{\prime}_{2}}\tau_{k}=(-1)^{k}\tau_{k}. Using these operators, it can be shown that Γ\Gamma is a GSS state.

We now consider the state

Γ=\displaystyle\Gamma= p|ψ0ψ0|(ϱsσ0ϱs)\displaystyle p\ket{\psi_{0}}\bra{\psi_{0}}\otimes\left(\varrho_{s}\otimes\sigma_{0}\otimes\varrho_{s}\right)
+p|ψ1ψ1|(ϱaσ0ϱa)\displaystyle+p\ket{\psi_{1}}\bra{\psi_{1}}\otimes\left(\varrho_{a}\otimes\sigma_{0}\otimes\varrho_{a}\right)
+(12p)|ψ2ψ2|(ϱaσ1ϱs)\displaystyle+\left(\frac{1}{2}-p\right)\ket{\psi_{2}}\bra{\psi_{2}}\otimes\left(\varrho_{a}\otimes\sigma_{1}\otimes\varrho_{s}\right)
+(12p)|ψ3ψ3|(ϱsσ1ϱa),\displaystyle+\left(\frac{1}{2}-p\right)\ket{\psi_{3}}\bra{\psi_{3}}\otimes\left(\varrho_{s}\otimes\sigma_{1}\otimes\varrho_{a}\right),

where ϱs\varrho_{s} and ϱa\varrho_{a} are symmetric and antisymmetric Werner states Werner (1989)

ϱs=+d2+d,\varrho_{s}=\frac{\mathcal{I}+\mathcal{F}}{d^{2}+d},
ϱa=d2d\varrho_{a}=\frac{\mathcal{I}-\mathcal{F}}{d^{2}-d}

with identity operator \mathcal{I} on the ddd\otimes d system and the flip operator =i,j=0d1|ijji|\mathcal{F}=\sum_{i,j=0}^{d-1}\ket{ij}\bra{ji}. It follows from tedious but straightforward calculations that

ΓTAA1A21=1+(2d2+2d)(1+2p),\left\|\Gamma^{T_{AA^{\prime}_{1}A^{\prime}_{2}}}\right\|_{1}=1+\left(\frac{2}{d^{2}}+\frac{2}{d}\right)(1+2p),

where 1\|\cdot\|_{1} is the trace norm. Since the distillable entanglement is upper bounded by the log negativity Vidal and Werner (2002) EN(Γ)=log2ΓTAA1A21E_{N}(\Gamma)=\log_{2}\left\|\Gamma^{T_{AA^{\prime}_{1}A^{\prime}_{2}}}\right\|_{1}, we can construct the GSS state that has arbitrarily low bipartite distillable entanglement between Alice and the rest of players by increasing dd.

V Conclusion

In this work, we have presented the GSS state, and explored its properties. The GSS state provides a classical information for (n,n)(n,n)-threshold secret sharing, which is secure against dishonest players and eavesdropper. Furthermore, if NN players share an NN-party GSS state, LOCC enables arbitrary MM players out of the total players to share an MM-party GSS state. We have also defined the GSS distillable rate, and it has been shown that the REE between any bipartition of the total players is an upper bound on the GSS distillable rate.

The GSS state can be regarded as a generalization of the private state with respect to secret sharing. In addition, when players share a GSS state, any two players among them can share a private state by all players’ LOCC. Thus, by applying various research results related to the private state, the results can also be used to investigate multipartite communication.

In a quantum network, if players share a GSS state, any arbitrary parties of players can perform QKD or quantum secret sharing. We can naturally have the following question: Is the GSS state the only quantum state on which players can do them? If we answer this question, we can have a more in-depth discussion of the secure quantum network.

There are interesting future works related to the GSS state. First, we can think about a bound entangled state with positive GSS distillable rate. If we find such a state, it can help us to study the relationship between distillable multipartite entanglement and the GSS distillable rate in detail. Second, it can be an intriguing task to find a way to share a GSS state between players and repeaters in quantum networks. If there exists such a way, we can construct a quantum network that ensures secure multipartite communication among players. Therefore the GSS state could be considered as a new resource in multipartite quantum communication.

Acknowledgements.
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science and ICT (Grant No.NRF-2019R1A2C1006337) and the Ministry of Science and ICT, Korea, under the Information Technology Research Center support program (Grant No. IITP-2020-2018-0-01402) supervised by the Institute for Information and Communications Technology Promotion. S.L. acknowledges support from Research Leave Program of Kyung Hee University in 2018.

References

  • Blakley (1979) G. R. Blakley, Proc. of the National Computer Conf. 48, 313 (1979).
  • Shamir (1979) A. Shamir, Commun. ACM 22, 612 (1979).
  • Hillery et al. (1999) M. Hillery, V. Bužek, and A. Berthiaume, Phys. Rev. A 59, 1829 (1999).
  • Greenberger et al. (1989) D. M. Greenberger, M. A. Horne, and A. Zeilinger, Bell’s Theorem, Quantum Theory, and Conceptions of the Universe ed M Kafatos (Dordrecht: Kluwer) p. 69 (1989).
  • Ekert (1991) A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
  • Horodecki et al. (2005) K. Horodecki, M. Horodecki, P. Horodecki, and J. Oppenheim, Phys. Rev. Lett. 94, 160502 (2005).
  • Horodecki et al. (2009) K. Horodecki, M. Horodecki, P. Horodecki, and J. Oppenheim, IEEE Trans. Inf. Theory 55, 1898 (2009).
  • Chi et al. (2008) D. P. Chi, J. W. Choi, J. S. Kim, T. Kim, and S. Lee, Phys. Rev. A 78, 012351 (2008).
  • Vedral et al. (1997) V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys. Rev. Lett. 78, 2275 (1997).
  • Vedral and Plenio (1998) V. Vedral and M. B. Plenio, Phys. Rev. A 57, 1619 (1998).
  • Hughston et al. (1993) L. P. Hughston, R. Jozsa, and W. K. Wootters, Phys. Lett. A 183, 14 (1993).
  • Holevo (1973) A. S. Holevo, Probl. Peredachi Inf. 9, 3 (1973).
  • Devetak and Winter (2005) I. Devetak and A. Winter, Proc. R. Soc. A 461, 207 (2005).
  • Kogias et al. (2017) I. Kogias, Y. Xiang, Q. He, and G. Adesso, Phys. Rev. A 95, 012315 (2017).
  • Werner (1989) R. F. Werner, Phys. Rev. A 40, 4277–4281 (1989).
  • Vidal and Werner (2002) G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314 (2002).