This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\NewDocumentCommand\lrboxbrace

s O{ O} O0.05 m O0.5 m \IfBooleanTF#1{varwidth}#4#5  #5  {\IfBooleanTF#1{varwidth}#6#7  #7  }\leavevmode\hbox{\set@color\ignorespaces\IfBooleanTF{#1}{\varwidth{#4}#5} {\begin{minipage}{0.0pt}#5\end{minipage}} }\left\{\,\leavevmode\hbox{\set@color\ignorespaces\IfBooleanTF{#1}{\varwidth{#6}#7} {\begin{minipage}{0.0pt}#7\end{minipage}} }\,\right\}

Generators for the cohomology of the moduli space of irregular parabolic Higgs bundles

Jia Choon Lee and Sukjoo Lee Peking University, Beijing International Center for Mathematical Research, Jingchunyuan Courtyard #78, 5 Yiheyuan Road, Haidian District, Beijing 100871, China jiachoonlee@pku.edu.cn Department of Mathematics, University of Edinburgh, EH9 3FD, UK Sukjoo.Lee@ed.ac.uk
Abstract.

We prove that the pure part of the cohomology ring of the moduli space of irregular ξ¯\underline{\xi}-parabolic Higgs bundles is generated by the Künneth components of the Chern classes of a universal bundle and the Chern classes of the successive quotients of a universal flag of subbundles. As an application, in the regular full-flag case, we demonstrate a similar result for the cohomology ring of the moduli spaces of parabolic and strongly parabolic Higgs bundles.

1. Introduction

It is well-known that the cohomology ring of the moduli space of stable sheaves on certain varieties XX can be generated by the tautological classes i.e. the Künneth components of the Chern classes of a universal sheaf: Atiyah-Bott [AB83] when XX is a curve, Ellingsrud-Stromme [ES93] when X=2X=\mathbb{P}^{2}, Beauville [Bea95] when XX is a rational or ruled surface, Markman [Mar02] when XX is a symplectic surface, Markman [Mar07] when XX is a Poisson surface. For the moduli space of stable Higgs bundles on a curve, similar results are found in the work of Markman [Mar02][Mar07]. On the other hand, for the moduli space of stable parabolic bundles on a curve, it is also known that the tautological classes obtained from a universal bundle alone are not enough to generate the cohomology ring, one needs to take into account of some extra classes coming from a universal flag of subbundles (see Biswas-Raghavendra [BR96]).

In this paper, we consider the cohomology ring of the moduli space of stable parabolic Higgs bundles on a curve with a regular(=tame) or irregular(=wild) singularity and a fixed polar part for the Higgs fields. Historically, parabolic Higgs bundles with regular singularities were considered by Simpson [Sim90] in order to generalize the non-abelian Hodge correspondence to punctured curves. The next natural generalization is to consider Higgs bundles on a curve with irregular singularities. According to the wild non-abelian Hodge correspondence of Sabbah [Sab99] and Biquard-Boalch [BB04], fixing an equivalence class of the polar part, the moduli space of stable parabolic Higgs bundles with irregular singularities is diffeomorphic (by a hyper-Kähler rotation) to the moduli space of stable parabolic connections with irregular singularities. Furthermore, the moduli spaces of Higgs bundles or connections on a curve with irregular singularites provide a wide class of interesting examples of hyper-Kähler manifolds which are related to classical integrable systems (see [Boa12]).

One of the motivations for considering the cohomology of the moduli spaces of parabolic Higgs bundles with irregularity singularities is inspired by the P=WP=W conjecture due to de Cataldo-Hausel-Migliorini [CHM12]. When there is no (regular or irregular) singularity on the Higgs field, the conjecture states that the perverse Leray filtration on the cohomology of the moduli space of Higgs bundles (Dolbeault side) is identified with the weight filtration of the cohomology of the corresponding character variety (Betti side) via the non-abelian Hodge correspondence. There are now several approaches to the P=WP=W conjectures (for GLnGL_{n}) due to Maulik-Shen [MS22], Hausel-Mellit-Minets-Schiffmann [Hau+22], Maulik-Shen-Yin [MSY23]. One can ask the same question when there are regular or irregular singularities (call it the wild P=WP=W conjecture) since the corresponding Dolbeault and Betti moduli spaces are related by the wild non-abelian Hodge correspondence. There are some works in this direction for special cases: Shen-Zhang [SZ21] for five families of parabolic Higgs bundles with regular singularity on 1\mathbb{P}^{1}, Szabó [Sza21][Sza23] for low dimensional moduli spaces of rank 2 Higgs bundles on 1\mathbb{P}^{1} with (regular or irregular) singularities.

A common and key ingredient for all the different approaches [SM],[Hau+22],[MSY23] of the P=WP=W conjecture is the above-mentioned theorem of Markman [Mar02] about the generation result of the cohomology of the moduli space of Higgs bundles on a curve by tautological classes. The Chern filtration spanned by the tautological classes plays the role as an intermediate filtration in establishing the equality between the perverse Leray and weight filtrations on both sides. Therefore, in order to approach the wild P=WP=W conjecture, a natural first step will be to understand the generators of the cohomology ring of the moduli space of parabolic Higgs bundles with singularities.

However, with the presence of parabolic structures, we need to include the Chern classes of the successive quotients of a universal flag of subbundles as in the case of moduli of parabolic bundles [BR96]. These classes are known to be important from the viewpoint of representation theory e.g. in the global Springer theory of Yun [Yun11]. Furthermore, even in situations where the cohomology ring of the moduli space of Higgs bundles without parabolic structures are mainly concerned, it is often useful to first pass to the cohomology ring of the moduli of parabolic Higgs bundles with regular singularities (without fixing polar parts) e.g. [SM], [Hau+22], [MSY23].

1.1. Main results

Let CC be a smooth projective curve of genus g0g\geq 0 and D=npD=np supported at a point pp and n1.n\geq 1. Fix the numerical data: r1,dr\geq 1,d\in\mathbb{Z}, 1>α1>>αl01>\alpha_{1}>\dots>\alpha_{l}\geq 0 (each αi)\alpha_{i}\in\mathbb{Q}), m1,,ml0m_{1},\dots,m_{l}\in\mathbb{Z}\geq 0 such that i=1lmi=r\sum_{i=1}^{l}m_{i}=r. An irregular parabolic Higgs bundle with a pole of order n1n\geq 1 at pp is a quadruple (E,ED,Φ,α¯)(E,E^{\bullet}_{D},\Phi,{\underline{\alpha}}) where EE is a rank rr, degree dd vector bundle on CC, ED:0=ED0ED1EDl1EDl=E|DE^{\bullet}_{D}:0=E^{0}_{D}\subset E^{1}_{D}\subset\dots\subset E^{l-1}_{D}\subset E^{l}_{D}=E|_{D} is a quasi-parabolic structure with χ(EDi/EDi1)=nmi\chi(E^{i}_{D}/E^{i-1}_{D})=nm_{i}, Φ:EEKC(D)\Phi:E\to E\otimes K_{C}(D) is a Higgs field, α¯=(α1,,αl){\underline{\alpha}}=(\alpha_{1},\dots,\alpha_{l}) is the set of parabolic weights, such that ΦD(EDi)EDiKC(D)|D\Phi_{D}(E^{i}_{D})\subset E^{i}_{D}\otimes K_{C}(D)|_{D}. When the order of the pole is 1 (i.e. n=1n=1), we call it a regular parabolic Higgs bundle.

In order to fix the polar part of the Higgs field, we choose ξ¯=(ξ1,,ξl){\underline{\xi}}=(\xi_{1},\dots,\xi_{l}) where ξiH0(D,KC(D)|D).\xi_{i}\in H^{0}(D,K_{C}(D)|_{D}). An irregular (resp. regular) ξ¯{\underline{\xi}}-parabolic Higgs bundles is an irregular (resp. regular) parabolic Higgs bundle (E,ED,Φ,α¯)(E,E^{\bullet}_{D},\Phi,{\underline{\alpha}}) satisfying the following conditions: (1) EDi/EDi1E^{i}_{D}/E^{i-1}_{D} is free of rank mim_{i} on DD, (2) gri(ΦD)=IdEDi/EDi1ξi\textrm{gr}_{i}(\Phi_{D})=\textrm{Id}_{E^{i}_{D}/E^{i-1}_{D}}\otimes\xi_{i} for i=1,,li=1,\dots,l.

We first show that there exists a coarse moduli space of stable irregular ξ¯{\underline{\xi}}-parabolic Higgs bundles on CC. In fact, we show the existence of a relative coarse moduli space of stable irregular ξ¯{\underline{\xi}}-parabolic Higgs bundles on CC when ξ¯{\underline{\xi}} is varied over a base 𝒩(l,D):={ξ¯=(ξ1,,ξl)|ξiH0(D,KC(D)|D),res(ξi)=0}\mathcal{N}(l,D):=\{{\underline{\xi}}=(\xi_{1},...,\xi_{l})|\xi_{i}\in H^{0}(D,K_{C}(D)|_{D}),\sum\textrm{res}(\xi_{i})=0\}.

Theorem 1.1 (Theorem 2.6).

Fix the numerical data: r1,dr\geq 1,d\in\mathbb{Z}, 1>α1>>αl01>\alpha_{1}>...>\alpha_{l}\geq 0 where αi\alpha_{i}\in\mathbb{Q}, m1,,ml0m_{1},...,m_{l}\in\mathbb{Z}_{\geq 0}. There exists a relative coarse moduli scheme P:𝓗(C,D;r,d,α¯,m¯)𝒩(l,D)P:\bm{\mathcal{H}}(C,D;r,d,\underline{\alpha},\underline{m})\to\mathcal{N}(l,D) of stable irregular ξ¯{\underline{\xi}}-parabolic Higgs bundles.

We denote by ξ¯:=P1(ξ¯)\mathcal{H}_{\underline{\xi}}:=P^{-1}({\underline{\xi}}) the moduli space of stable irregular ξ¯{\underline{\xi}}-parabolic Higgs bundles for a fixed ξ¯𝒩(l,D).{\underline{\xi}}\in\mathcal{N}(l,D). Suppose that ξ¯{\underline{\xi}} is generic i.e. the leading terms of the ξi\xi_{i} are all distinct. Suppose rr and dd are coprime so that there exist a universal bundle ξ¯\mathcal{E}_{\underline{\xi}} on ξ¯×C\mathcal{H}_{\underline{\xi}}\times C and a universal flag of subbundles ξ¯×D:0=ξ¯×D0ξ¯×Dl=(ξ¯)|ξ¯×D\mathcal{E}^{\bullet}_{\mathcal{H}_{\underline{\xi}}\times D}:0=\mathcal{E}^{0}_{\mathcal{H}_{\underline{\xi}}\times D}\subset...\subset\mathcal{E}^{l}_{\mathcal{H}_{\underline{\xi}}\times D}=(\mathcal{E}_{{\underline{\xi}}})|_{\mathcal{H}_{\underline{\xi}}\times D}. We denote by ξ¯×p:0=ξ¯×p0ξ¯×pl=(ξ¯)|ξ¯×p\mathcal{E}^{\bullet}_{\mathcal{H}_{\underline{\xi}}\times p}:0=\mathcal{E}^{0}_{\mathcal{H}_{\underline{\xi}}\times p}\subset...\subset\mathcal{E}^{l}_{\mathcal{H}_{\underline{\xi}}\times p}=(\mathcal{E}_{{\underline{\xi}}})|_{\mathcal{H}_{\underline{\xi}}\times p} the restriction of ξ¯×D\mathcal{E}_{\mathcal{H}_{\underline{\xi}}\times D}^{\bullet} to ξ¯×{p}\mathcal{H}_{\underline{\xi}}\times\{p\} and Qξ¯i:=ξ¯×pi/ξ¯×piQ_{\underline{\xi}}^{i}:=\mathcal{E}^{i}_{\mathcal{H}_{\underline{\xi}}\times p}/\mathcal{E}^{i}_{\mathcal{H}_{\underline{\xi}}\times p} the successive quotients of the flag ξ¯×p\mathcal{E}_{\mathcal{H}_{\underline{\xi}}\times p}^{\bullet}. The goal of this paper is to show that the Künneth components of the Chern classes of ξ¯\mathcal{E}_{\underline{\xi}} and the Chern classes of Qξ¯iQ^{i}_{\underline{\xi}} generate the pure part of the cohomology H(ξ¯,)H^{*}(\mathcal{H}_{\underline{\xi}},\mathbb{Q}).

Our strategy to study the generators of the cohomology ring follows closely the approach of Markman in the case of moduli space of Higgs bundles on a curve [Mar02][Mar07]. In our situation, the first and key step is to employ the spectral correspondence due to Kontsevich-Soibelman [KS14] and Diaconescu-Donagi-Pantev [DDP18]. There is a similar spectral correspondence due to Szabó [Sza17] which works for an open subset of the moduli space, we will mainly follow [DDP18] since we need the correspondence for the whole moduli space. When ξ¯{\underline{\xi}} is generic, the spectral correspondence realizes ξ¯\mathcal{H}_{\underline{\xi}} in terms of the moduli space of β\beta-twisted AA-Gieseker stable pure dimension one sheaves on a (non-compact) holomorphic symplectic surface Sξ¯S_{\underline{\xi}} for a suitable choice of β,ANS(Zξ¯)\beta,A\in NS(Z_{\underline{\xi}})_{\mathbb{Q}} with AA ample, where Zξ¯Z_{\underline{\xi}} is a natural compactification of Sξ¯S_{\underline{\xi}}. The natural compactification Zξ¯Z_{\underline{\xi}} of Sξ¯S_{\underline{\xi}} also provides a modular compactification of ξ¯\mathcal{H}_{\underline{\xi}} by the moduli space ξ¯\mathcal{M}_{\underline{\xi}} of β\beta-twisted AA-Gieseker stable pure dimension one sheaves on Zξ¯Z_{\underline{\xi}}. Then we apply the argument of Markman to express the diagonal class of ξ¯×ξ¯\mathcal{M}_{\underline{\xi}}\times\mathcal{H}_{\underline{\xi}} in terms of the Chern classes of a universal sheaf on ξ¯×Zξ¯.\mathcal{M}_{\underline{\xi}}\times Z_{\underline{\xi}}. By applying the Grothendieck-Riemann-Roch Theorem, we in turn express these classes in terms of the Künneth components of the Chern classes of ξ¯\mathcal{E}_{\underline{\xi}} and the Chern classes of Qξ¯iQ_{\underline{\xi}}^{i}.

Theorem 1.2 (Theorem 3.6).

Let ξ¯{\underline{\xi}} be generic. The pure cohomology Hpure(ξ¯,)H^{*}_{pure}(\mathcal{H}_{\underline{\xi}},\mathbb{Q}) is generated by the Künneth components of the Chern classes of ξ¯\mathcal{E}_{\underline{\xi}} and the Chern classes of Qξ¯iQ_{\underline{\xi}}^{i}, where 1il.1\leq i\leq l.

Moreover, since the symplectic surface Sξ¯S_{\underline{\xi}} is constructed by a sequence of blow-ups on the total space Tot(KC(D))\textrm{Tot}(K_{C}(D)) followed by the removal of a divisor, we can see that the Chern classes of Qξ¯iQ_{\underline{\xi}}^{i} arises naturally from the classes of the exceptional divisors.

Specializing to the regular (n=1)(n=1) and full-flag (m¯=(1,,1))({\underline{m}}=(1,\dots,1)) case, let :=𝓗(C,p;r,d,α¯,(1,,1))\mathcal{H}:=\bm{\mathcal{H}}(C,p;r,d,\underline{\alpha},(1,\dots,1)) and ξ¯=P1(ξ¯)\mathcal{H}_{\underline{\xi}}=P^{-1}({\underline{\xi}}) as before. We also denote by \mathcal{M} (resp. 0\mathcal{M}_{0}) the coarse moduli space of stable regular parabolic (resp. strongly parabolic) Higgs bundles constructed by Yokogawa [Yok93]. In this case, every regular parabolic Higgs bundle of the full-flag type is automatically a regular ξ¯{\underline{\xi}}-parabolic Higgs bundle for a unique ξ¯{\underline{\xi}}, so we have \mathcal{H}\cong\mathcal{M} (Proposition 2.8). Then we show that there is an isomorphism of \mathbb{Q}-mixed Hodge structures H(,)H(ξ¯,)H^{*}(\mathcal{H},\mathbb{Q})\cong H^{*}(\mathcal{H}_{\underline{\xi}},\mathbb{Q}) for any ξ¯{\underline{\xi}} and they are of pure type. This follows from the property of semi-projectivity of \mathcal{H} which will be proved in Section 3.3. We note that this method has been used to show the similar result for the moduli space of Higgs bundles [HR15]. As an application of Theorem 1.2, we have the following result.

Corollary 1.3 (Corollary 3.12).

The cohomology ring of the coarse moduli space of stable regular parabolic (resp. strongly parabolic) Higgs bundles of the full-flag type \mathcal{M} (resp. 0\mathcal{M}_{0}) is generated by the Künneth components of the Chern classes of a universal bundle and the Chern classes of the successive quotients of a universal flag of subbundles.

A similar result can be found in Oblomkov-Yun [OY17, Theorem 3.1.8] by a different approach.

All the results can be directly generalized to the case where there are more than one irreducible component in DD, namely when D=n1p1++nkpkD=n_{1}p_{1}+\cdots+n_{k}p_{k} for k>1k>1 and nj1n_{j}\geq 1 for j=1,,kj=1,\dots,k. The moduli problem we study is easily generalized by putting the independent ξ¯j{\underline{\xi}}_{j}-parabolic conditions for each jj. For the spectral correspondence, one can construct the holomorphic symplectic surface Sξ¯1,,ξ¯kS_{{\underline{\xi}}_{1},\dots,{\underline{\xi}}_{k}} by simultaneously blowing-up the locus over each pjp_{j}. Moreover, this gives rise to a universal flag of subbundles corresponding to each pjp_{j}. Therefore, in this case, the generators in our generation result will be the Künneth components of the Chern classes of a universal bundle and the Chern classes of the successive quotients of a universal flag of subbundles corresponding to each pjp_{j}, where j=1,,kj=1,\dots,k.

1.2. Outline

In Section 2, we discuss several moduli problems associated with irregular parabolic Higgs bundles and prove Theorem 1.1. Additionally, we review the spectral correspondence whose proof will be in Appendix A. This will serve as a key argument in the next section. In Section 3, we study the generators of the pure part of the cohomology ring of the moduli space of stable ξ¯{\underline{\xi}}-irregular parabolic Higgs bundles, applying the method used in Markman’s works [Mar02, Mar07]. As an application, we focus on the regular full-flag case and demonstrate the generators of the cohomology ring of the moduli space of regular (strongly) parabolic Higgs bundles.

1.3. Notations

Conventions: For a fixed scheme XX and TSchT\in\textrm{Sch} (or Sch/BB for any base scheme BB), we will denote by XT:=X×TX_{T}:=X\times T. If T=Spec(A)T=\textrm{Spec}(A) is affine, we also write XA:=X×Spec(A)X_{A}:=X\times\textrm{Spec}(A). For a divisor DD in XX and a coherent sheaf FF on XX, we write FD=F𝒪X𝒪DF_{D}=F\otimes_{\mathcal{O}_{X}}\mathcal{O}_{D}.

Notations: Here we summarize the notations for various moduli spaces used in this paper. Fix CC to be a smooth projective curve, pCp\in C, D=npD=np for n1n\geq 1, M=KC(D)M=K_{C}(D), rr rank, dd degree, α¯\underline{\alpha} parabolic weights, m¯=(m1,,ml)\underline{m}=(m_{1},\dots,m_{l}) where mi=r\sum m_{i}=r.

  • 𝒩(l,D):={ξ¯=(ξ1,,ξl)|ξiH0(D,MD),res(ξi)=0}.\mathcal{N}(l,D):=\{{\underline{\xi}}=(\xi_{1},...,\xi_{l})|\xi_{i}\in H^{0}(D,M_{D}),\sum\textrm{res}(\xi_{i})=0\}.

  • P:𝓗(C,D;r,d,α¯,m¯)𝒩(l,D)P:\bm{\mathcal{H}}(C,D;r,d,\underline{\alpha},\underline{m})\to\mathcal{N}(l,D), the relative coarse moduli space of stable irregular ξ¯{\underline{\xi}}-parabolic Higgs bundles.

  • ξ¯:=P1(ξ¯)\mathcal{H}_{\underline{\xi}}:=P^{-1}({\underline{\xi}}), the coarse moduli space of stable irregular ξ¯{\underline{\xi}}-parabolic Higgs bundles for ξ¯𝒩(l,D){\underline{\xi}}\in\mathcal{N}(l,D).

  • (C,D;r,d,α¯,m¯)\mathcal{M}(C,D;r,d,\underline{\alpha},\underline{m}), the coarse moduli space of stable irregular parabolic Higgs bundles.

  • 0(C,D;r,d,α¯,m¯)\mathcal{M}_{0}(C,D;r,d,\underline{\alpha},\underline{m}), the coarse moduli space of stable irregular strongly parabolic Higgs bundles.

  • G:𝓗(C,D;r,d,α¯,m¯)(C,D;r,d,α¯,m¯)G:\bm{\mathcal{H}}(C,D;r,d,\underline{\alpha},\underline{m})\to\mathcal{M}(C,D;r,d,\underline{\alpha},\underline{m}), the induced morphism introduced in Remark 2.9.

In the regular (n=1n=1) full-flag (m¯=1¯=(1,,1)\underline{m}=\underline{1}=(1,\cdots,1)) case, we simply write

  • =(C,p;r,d,α¯,1¯)\mathcal{H}={\bf{\mathcal{H}}}(C,p;r,d,\underline{\alpha},\underline{1}) and 𝒩=𝒩(l,p)\mathcal{N}=\mathcal{N}(l,p).

  • =(C,p;r,d,α¯,1¯)\mathcal{M}=\mathcal{M}(C,p;r,d,\underline{\alpha},\underline{1}) and 0=0(C,p;r,d,α¯,1¯)\mathcal{M}_{0}=\mathcal{M}_{0}(C,p;r,d,\underline{\alpha},\underline{1}).

2. Moduli spaces

2.1. Irregular parabolic Higgs bundles

Let CC be smooth projective curve of genus g0g\geq 0 and D=npD=np supported at a point pp and n1n\geq 1. Let M=KC(D)M=K_{C}(D) be a twisted canonical line bundle.

Definition 2.1.

An irregular parabolic Higgs bundle on CC with a pole of order n1n\geq 1 at pp consists of the following data:

  1. (1)

    A Higgs bundle (E,Φ)(E,\Phi) where Φ:EEM\Phi:E\to E\otimes M

  2. (2)

    A quasi-parabolic structure:

    ED:0=ED0ED1EDl1EDl=EDE^{\bullet}_{D}:0=E^{0}_{D}\subset E^{1}_{D}\subset...\subset E^{l-1}_{D}\subset E^{l}_{D}=E_{D}

    such that ΦD(EDi)EDiDMD\Phi_{D}(E^{i}_{D})\subset E^{i}_{D}\otimes_{D}M_{D}.

  3. (3)

    A collection of parabolic weights α¯=(α1,,αl)l\underline{\alpha}=(\alpha_{1},...,\alpha_{l})\in\mathbb{Q}^{l}:

    1>α1>α2>>αl01>\alpha_{1}>\alpha_{2}>...>\alpha_{l}\geq 0

For simplicity, we will only consider the case with a single pole in this paper, we simply call it an irregular parabolic Higgs bundle and denote it by (E,ED,Φ,α¯)(E,E^{\bullet}_{D},\Phi,{\underline{\alpha}}). When the order of the pole is 1 (i.e. n=1n=1), we call it a regular parabolic Higgs bundle. When ΦD(EDi)EDi1DMD\Phi_{D}(E^{i}_{D})\subset E^{i-1}_{D}\otimes_{D}M_{D} for all ii in condition (2)(2), we call it a strongly (regular or irregular) parabolic Higgs bundle.

Remark 2.2.

The more general definition of parabolic Higgs bundles used in [Yok93] is the so-called parabolic Ω\Omega-pairs on any smooth, projective, geometrically integral, locally noetherian scheme X/SX/S, and DD a relative effective Cartier divisor on X/SX/S, where Ω\Omega is any locally free sheaf. Suppose S=Spec(),X=C,D=np,Ω=KC(D)S=\textrm{Spec}(\mathbb{C}),X=C,D=np,\Omega=K_{C}(D). A parabolic Ω\Omega-parabolic sheaf on CC consists of a vector bundle EE, a filtration of vector bundles

F(E):E(D)=F0(E)F1(E)Fl(E)=E,F^{\bullet}(E):E(-D)=F^{0}(E)\subset F^{1}(E)\subset...\subset F^{l}(E)=E,

a collection of parabolic weights 1>α1>α2>>αl01>\alpha_{1}>\alpha_{2}>\dots>\alpha_{l}\geq 0 and a homomorphism Φ:EEΩ\Phi:E\to E\otimes\Omega such that Φ(Fi(E))Fi(E)\Phi(F^{i}(E))\subset F^{i}(E). Given EDE^{\bullet}_{D} as in the definition of a parabolic Higgs bundle, we can recover F(E)F^{\bullet}(E) as follows. Set Fi(E):=ker(EEDED/EDi)F^{i}(E):=\textrm{ker}(E\to E_{D}\to E_{D}/E^{i}_{D}). As EDi1EDiE^{i-1}_{D}\subset E^{i}_{D}, the map EED/EDiE\to E_{D}/E^{i}_{D} factors through ED/EDi1E_{D}/E^{i-1}_{D} and so Fi1(E)Fi(E)F^{i-1}(E)\subset F^{i}(E) as required. Conversely, given F(E)F^{\bullet}(E), we define EDi:=Fi(E)/F0(E).E^{i}_{D}:=F^{i}(E)/F^{0}(E). Therefore, a parabolic Ω\Omega-parabolic sheaf on CC is equivalent to a parabolic Higgs bundle on CC in our definition.

In order to consider the coarse moduli space for such objects, we will need to discuss the stability condition. Recall that in [MY92, Section 1] and [Yok93, Section 1], the parabolic Euler characteristic and the (reduced) parabolic Hilbert polynomial of E:=(E,ED,α¯)E_{*}:=(E,E_{D}^{\bullet},\underline{\alpha}) are defined as

par-χ(E)=χ(E)+i=1lαiχ(EDi/EDi1),par-PE(t)=par-χ(E(t))rank(E)\textrm{par-}\chi({E_{*}})=\chi(E)+\sum_{i=1}^{l}\alpha_{i}\chi(E^{i}_{D}/E^{i-1}_{D}),\qquad\textrm{par-}P_{E_{*}}(t)=\frac{\textrm{par-}\chi(E_{*}(t))}{\textrm{rank}(E)}

where EDi/EDi1E^{i}_{D}/E^{i-1}_{D} is viewed as a torsion sheaf on CC in the expression and E(t)=(E𝒪(t),ED𝒪(t),α¯).E_{*}(t)=(E\otimes\mathcal{O}(t),E^{\bullet}_{D}\otimes\mathcal{O}(t),{\underline{\alpha}}). 111In the original definition, par-χ(E):=χ(E(D))+i=1lαiχ(EDi/EDi1)\textrm{par-}\chi({E_{*}}):=\chi(E(-D))+\sum_{i=1}^{l}\alpha_{i}\chi(E^{i}_{D}/E^{i-1}_{D}), but the difference will not affect the stability condition in the case of curves.

Definition 2.3.

An irregular parabolic Higgs bundle (E,Φ)(E_{*},\Phi) is said to be α¯\underline{\alpha}-(semi)stable if for any nontrivial proper subbundle 0FE0\subset F\subset E preserved by Φ\Phi, we have

par-PF(t)<par-PE(t)for t0(resp. )\textrm{par-}P_{F_{*}}(t)<\textrm{par-}P_{E_{*}}(t)\quad\textrm{for }t\gg 0\quad(\textrm{resp. }\leq)

where F=(F,FD,α¯)F_{*}=(F,F^{\bullet}_{D},\underline{\alpha}) is defined by the induced filtration FDi=FDEDiF^{i}_{D}=F_{D}\cap E^{i}_{D}, for ili\leq l, that is preserved by ΦD\Phi_{D}.

The work of Yokogawa [Yok93, Theorem 4.6] shows that there exists a coarse moduli space for α¯\underline{\alpha}-stable irregular parabolic Higgs bundles of rank rr, degree dd such that χ(EDi/EDi1)=nmi\chi(E^{i}_{D}/E^{i-1}_{D})=nm_{i}. We will denote this moduli space by (C,D;r,d,α¯,m¯)\mathcal{M}(C,D;r,d,\underline{\alpha},\underline{m}). Moreover, one can define the coarse moduli space of α¯\underline{\alpha}-stable irregular strongly parabolic Higgs bundles as a closed subscheme in (C,D;r,d,α¯,m¯)\mathcal{M}(C,D;r,d,\underline{\alpha},\underline{m}), which we denote by 0(C,D;r,d,α¯,m¯).\mathcal{M}_{0}(C,D;r,d,\underline{\alpha},\underline{m}).

In order to fix the polar part ΦD\Phi_{D} of the Higgs fields, we choose sections ξ1,,ξlH0(D,MD)\xi_{1},\dots,\xi_{l}\in H^{0}(D,M_{D}) and denote by ξ¯=(ξ1,,ξl)\underline{\xi}=(\xi_{1},\dots,\xi_{l}) the collection of such sections. Following [DDP18], we call a quadruple (E,ED,Φ,α¯)(E,E^{\bullet}_{D},\Phi,\underline{\alpha}) an irregular ξ¯\underline{\xi}-parabolic Higgs bundle if (1) the successive quotients EDi/EDi1E^{i}_{D}/E^{i-1}_{D} of EDE^{\bullet}_{D} are free 𝒪D\mathcal{O}_{D}-modules (hence all EDiE^{i}_{D} are also free) and (2) the induced morphism of 𝒪D\mathcal{O}_{D}-modules griΦD:=ΦD,i:EDi/EDi1EDi/EDi1MD\textrm{gr}_{i}\Phi_{D}:=\Phi_{D,i}:E^{i}_{D}/E^{i-1}_{D}\to E^{i}_{D}/E^{i-1}_{D}\otimes M_{D} satisfies the following condition

(1) ΦD,i=IdEDi/EDi1ξi,1il.\Phi_{D,i}=\mathrm{Id}_{E^{i}_{D}/E^{i-1}_{D}}\otimes\xi_{i},\quad 1\leq i\leq l.
Remark 2.4.

The definition of irregular ξ¯{\underline{\xi}}-parabolic Higgs bundle used here and [DDP18] is a direct analogue of the notion of unramified irregular singular 𝛎\bm{\nu}-parabolic connection of parabolic depth nn introduced in the work of Inaba-Saito [IS13, Definition 2.1], where 𝛎=ξ¯\bm{\nu}={\underline{\xi}} in our case. The following Theorem 2.6 and Proposition 2.10 are also the analogues of [IS13, Theorem 2.1] and [IS13, Proposition 2.1], respectively.

Remark 2.5.

Note that the condition that the successive quotients of EDE^{\bullet}_{D} are free implies that there exists a filtration of vector spaces Ep:0=Ep0Ep1Epl1Epl=EpE^{\bullet}_{p}:0=E^{0}_{p}\subset E^{1}_{p}\subset\dots\subset E^{l-1}_{p}\subset E^{l}_{p}=E_{p} such that ED=Ep𝒪DE^{\bullet}_{D}=E^{\bullet}_{p}\otimes\mathcal{O}_{D}.

More generally, there exists a relative moduli space of irregular ξ¯{\underline{\xi}}-parabolic Higgs bundles on CC when ξ¯{\underline{\xi}} varies. Let 𝒩(l,D)={ξ¯=(ξ1,,ξl)|ξiH0(D,MD),res(ξi)=0}\mathcal{N}(l,D)=\{{\underline{\xi}}=(\xi_{1},...,\xi_{l})|\xi_{i}\in H^{0}(D,M_{D}),\sum\textrm{res}(\xi_{i})=0\} be the parameter space of the polar parts ξ¯{\underline{\xi}}. Define the moduli functor (C,D;r,d,α¯,m¯):Sch/𝒩(l,D)Sets\mathfrak{H}(C,D;r,d,\underline{\alpha},\underline{m}):\textrm{Sch}/\mathcal{N}(l,D)\to\textrm{Sets} as follows: for each TSch/𝒩(l,D)T\in\textrm{Sch}/\mathcal{N}(l,D) represented by (ξ¯)T=((ξ1)T,,(ξl)T)𝒩(l,D)(T)({\underline{\xi}})_{T}=((\xi_{1})_{T},...,(\xi_{l})_{T})\in\mathcal{N}(l,D)(T), we have

(C,D;r,d,α¯,m¯)(T)=\mathfrak{H}(C,D;r,d,\underline{\alpha},\underline{m})(T)= \lrboxbrace vector bundles \mathcal{E} on CTC_{T} such that |Ct\mathcal{E}|_{C_{t}} is locally free of rank rr and degree dd for each geometric point tTt\in T, Higgs fields Ψ:ΩCT/T1(DT)\Psi:\mathcal{E}\to\mathcal{E}\otimes\Omega_{C_{T}/T}^{1}(D_{T}), quasi-parabolic structures DT:0=DT0DT1DTl=DT\mathcal{E}_{D_{T}}^{\bullet}:0=\mathcal{E}_{D_{T}}^{0}\subset\mathcal{E}_{D_{T}}^{1}\subset\dots\subset\mathcal{E}^{l}_{D_{T}}=\mathcal{E}_{D_{T}} such that ΨDT(DTi)DTiΩCT/T1(DT)\Psi_{D_{T}}(\mathcal{E}^{i}_{D_{T}})\subset\mathcal{E}^{i}_{D_{T}}\otimes\Omega^{1}_{C_{T}/T}(D_{T}) and each DTi/DTi1\mathcal{E}^{i}_{D_{T}}/\mathcal{E}^{i-1}_{D_{T}} is locally free of rank mim_{i} on DTD_{T}, gri(ΨDT)IdDTi/DTi1(ξi)T=0\textrm{gr}_{i}(\Psi_{D_{T}})-\textrm{Id}_{\mathcal{E}^{i}_{D_{T}}/\mathcal{E}^{i-1}_{D_{T}}}\otimes(\xi_{i})_{T}=0, and (|Ct,DT|Dt,Ψ|Ct,α¯)(\mathcal{E}|_{C_{t}},\mathcal{E}^{\bullet}_{D_{T}}|_{D_{t}},\Psi|_{C_{t}},\underline{\alpha}) is α¯\underline{\alpha}-stable for each geometric point tTt\in T./\bigg{/}\sim

where two flat families are equivalent (,DT,Ψ)(,DT,Ψ)(\mathcal{E},\mathcal{E}^{\bullet}_{D_{T}},\Psi)\sim(\mathcal{E}^{\prime},\mathcal{E}^{\prime\bullet}_{D_{T}},\Psi^{\prime}) if there exists a line bundle LL on TT such that (,DT,Ψ)(p2L,D×Tp2L,Ψp2L)(\mathcal{E},\mathcal{E}^{\bullet}_{D_{T}},\Psi)\cong(\mathcal{E}^{\prime}\otimes p_{2}^{*}L,\mathcal{E}^{\prime\bullet}_{D\times T}\otimes p_{2}^{*}L,\Psi^{\prime}\otimes p_{2}^{*}L) and p2:CT=C×TTp_{2}:C_{T}=C\times T\to T is the projection.

Theorem 2.6.

Fix the numerical data: r1,dr\geq 1,d\in\mathbb{Z}, 1>α1>>αl01>\alpha_{1}>...>\alpha_{l}\geq 0 where αi\alpha_{i}\in\mathbb{Q}, m1,,ml0m_{1},...,m_{l}\in\mathbb{Z}_{\geq 0}. There exists a relative coarse moduli scheme P:𝓗(C,D;r,d,α¯,m¯)𝒩(l,D)P:\bm{\mathcal{H}}(C,D;r,d,\underline{\alpha},\underline{m})\to\mathcal{N}(l,D) of the moduli functor (C,D;r,d,α¯,m¯)\mathfrak{H}(C,D;r,d,\underline{\alpha},\underline{m}).

Proof.

As explained in Remark 2.2, we can view an irregular ξ¯{\underline{\xi}}-parabolic Higgs bundle as a ”parabolic Ω\Omega-pair” in the sense of [Yok93], where Ω=KC(D)\Omega=K_{C}(D) in our case. The extra conditions imposed here are the freeness of EDi/EDi1E^{i}_{D}/E^{i-1}_{D} and the condition (1) on the polar part of the Higgs fields.

By definition, a family of parabolic Ω\Omega-pairs consists of a triple (,F(),Ψ)({\mathcal{E}},F^{\bullet}({\mathcal{E}}),{\Psi}) where {\mathcal{E}} is a vector bundle on CTC_{T}, F():(DT)=F0()F1()Fl()=F^{\bullet}({\mathcal{E}}):\mathcal{E}(-D_{T})=F^{0}({\mathcal{E}})\subset F^{1}({\mathcal{E}})\cdots\subset F^{l}({\mathcal{E}})={\mathcal{E}} is a filtration of vector bundles such that /Fi(){\mathcal{E}}/F^{i}({\mathcal{E}}) is flat over TT for 0il0\leq i\leq l, and Ψ:ΩCT/T1(DT){\Psi}:{\mathcal{E}}\to{\mathcal{E}}\otimes\Omega_{C_{T}/T}^{1}(D_{T}) such that Ψ(Fi())Fi()ΩCT/T1(DT){\Psi}(F^{i}({\mathcal{E}}))\subset F^{i}({\mathcal{E}})\otimes\Omega_{C_{T}/T}^{1}(D_{T}). Since /Fi()\mathcal{E}/F^{i}(\mathcal{E}) is flat over TT for 0il0\leq i\leq l, it follows from the short exact sequence 0Fi()/Fi1()/Fi1()/Fi()00\to F^{i}(\mathcal{E})/F^{i-1}(\mathcal{E})\to\mathcal{E}/F^{i-1}(\mathcal{E})\to\mathcal{E}/F^{i}(\mathcal{E})\to 0 that the quotient Fi()/Fi1()F^{i}(\mathcal{E})/F^{i-1}(\mathcal{E}) is flat over TT for 1il1\leq i\leq l. Since Fi()/Fi1()Fi()DT/Fi1()DTF^{i}(\mathcal{E})/F^{i-1}(\mathcal{E})\cong F^{i}(\mathcal{E})_{D_{T}}/F^{i-1}(\mathcal{E})_{D_{T}}, the flatness implies that the subset {tT|Fi()Dt/Fi1()Dt is locally free}\{t\in T|F^{i}(\mathcal{E})_{D_{t}}/F^{i-1}(\mathcal{E})_{D_{t}}\textrm{ is locally free}\} is open in TT [New78, Lemma 5.4]. Therefore, the condition of the freeness of EDi/EDi1E^{i}_{D}/E^{i-1}_{D} is an open condition. On the other hand, for each TSch/𝒩(l,D)T\in\textrm{Sch}/\mathcal{N}(l,D) represented by (ξ¯)T=((ξ1)T,,(ξl)T)𝒩(l,D)(T)({\underline{\xi}})_{T}=((\xi_{1})_{T},...,(\xi_{l})_{T})\in\mathcal{N}(l,D)(T), the condition (1) becomes the vanishing of the homomorphisms gri(ΨCT|DT)IdFi()DT/Fi1()DT(ξi)T.\textrm{gr}_{i}({\Psi}_{C_{T}}|_{D_{T}})-\textrm{Id}_{F^{i}(\mathcal{E})_{D_{T}}/F^{i-1}(\mathcal{E})_{D_{T}}}\otimes(\xi_{i})_{T}. Then we can always find a closed 𝒩(l,D)\mathcal{N}(l,D)-subscheme TTT^{\prime}\subset T with the corresponding universal property (see [Yok93, Corollary 2.3] for example). Therefore, the condition (1) on the polar part is a closed condition.

In [Yok93, Theorem 4.6], the coarse moduli scheme (C,D;r,d,α¯,m¯)\mathcal{M}(C,D;r,d,\underline{\alpha},\underline{m}) is constructed as a GIT quotient of a parameter scheme RR with a group action of PGL(V)PGL(V) for some kk-vector space VV. There is a universal family of stable parabolic Ω\Omega-pairs (𝒢,F(𝒢),𝚿)(\mathcal{G},F^{\bullet}(\mathcal{G}),\bm{\Psi}) over CRC_{R} and a surjection Vk𝒪CR𝒢V\otimes_{k}\mathcal{O}_{C_{R}}\twoheadrightarrow\mathcal{G}. Consider (C,D;r,d,α¯,m¯)×𝒩(l,D)\mathcal{M}(C,D;r,d,\underline{\alpha},\underline{m})\times\mathcal{N}(l,D) as a scheme over 𝒩(l,D)\mathcal{N}(l,D). As explained above, we can first restrict to an open subscheme RR^{\prime} of RR defined by the freeness condition. Then there is a closed subscheme R′′R×𝒩(l,D)R^{\prime\prime}\subset R^{\prime}\times\mathcal{N}(l,D) defined by condition (1). It is clear that R′′R^{\prime\prime} is PGL(V)PGL(V)-invariant as the group only acts on the surjections V𝒪CEV\otimes\mathcal{O}_{C}\twoheadrightarrow E in the parameter scheme. Hence, the GIT quotient of R′′R^{\prime\prime} by PGL(V)PGL(V) will be a locally closed subscheme 𝓗(C,D;r,d,α¯,m¯)\bm{\mathcal{H}}(C,D;r,d,\underline{\alpha},\underline{m}) (over 𝒩(l,D)\mathcal{N}(l,D)) of (C,D;r,d,α¯,m¯)×𝒩(l,D)\mathcal{M}(C,D;r,d,\underline{\alpha},\underline{m})\times\mathcal{N}(l,D) satisfying the property of a coarse moduli scheme for (C,D;r,d,α¯,m¯)\mathfrak{H}(C,D;r,d,\underline{\alpha},\underline{m}). ∎

Remark 2.7.

In particular, the fiber P1(ξ¯)P^{-1}({\underline{\xi}}) over a fixed polar part ξ¯𝒩(l,D){\underline{\xi}}\in\mathcal{N}(l,D) will be the coarse moduli scheme for stable irregular ξ¯{\underline{\xi}}-parabolic Higgs bundles.

Proposition 2.8 (Regular full flag case).

In the regular full-flag case, equivalently D=pD=p and m¯=(1,,1)\underline{m}=(1,...,1), we have 𝓗(C,D;r,d,α¯,m¯)(C,D;r,d,α¯,m¯)\bm{\mathcal{H}}(C,D;r,d,\underline{\alpha},\underline{m})\cong\mathcal{M}(C,D;r,d,\underline{\alpha},\underline{m}).

Proof.

In this case, the freeness condition is automatic since 𝒪Dk\mathcal{O}_{D}\cong k, so every 𝒪D\mathcal{O}_{D}-module must be free. A quasi-parabolic structure is a filtration of vector spaces 0=Ep0Ep1Epl=E|p0=E^{0}_{p}\subset E^{1}_{p}\subset\cdots E^{l}_{p}=E|_{p} and each Epi/Epi1E^{i}_{p}/E^{i-1}_{p} is one dimensional. So for each 1il1\leq i\leq l, the induced map Φp,i=gri(Φp):Epi/Epi1Epi/Epi1Mp\Phi_{p,i}=\textrm{gr}_{i}(\Phi_{p}):E^{i}_{p}/E^{i-1}_{p}\to E^{i}_{p}/E^{i-1}_{p}\otimes M_{p} must be a scalar multiplication i.e. Φp,i=Idξi\Phi_{p,i}=\textrm{Id}\otimes\xi_{i} for some unique ξiH0(p,Mp)\xi_{i}\in H^{0}(p,M_{p}). Therefore, a regular parabolic Higgs bundle is a regular ξ¯{\underline{\xi}}-parabolic Higgs bundle for a unique ξ¯𝒩(l,D).{\underline{\xi}}\in\mathcal{N}(l,D). Then it is clear that 𝓗(C,D;r,d,α¯,m¯)(C,D;r,d,α¯,m¯)\bm{\mathcal{H}}(C,D;r,d,\underline{\alpha},\underline{m})\cong\mathcal{M}(C,D;r,d,\underline{\alpha},\underline{m}). ∎

Remark 2.9.

In general, there is a morphism G:𝓗(C,D;r,d,α¯,m¯)(C,D;r,d,α¯,m¯)G:\bm{\mathcal{H}}(C,D;r,d,\underline{\alpha},\underline{m})\to\mathcal{M}(C,D;r,d,\underline{\alpha},\underline{m}) which is given by the composition

𝓗(C,D;r,d,α¯,m¯)(C,D;r,d,α¯,m¯)×𝒩(l,D)(C,D;r,d,α¯,m¯).\bm{\mathcal{H}}(C,D;r,d,\underline{\alpha},\underline{m})\hookrightarrow\mathcal{M}(C,D;r,d,\underline{\alpha},\underline{m})\times\mathcal{N}(l,D)\to\mathcal{M}(C,D;r,d,\underline{\alpha},\underline{m}).

However, this morphism GG is not surjective: when n>1n>1, there exists a filtration EDE_{D}^{\bullet} whose successive quotients are not necessarily free. This implies that GG is not necessarily surjective. See the discussion after Corollary 3.12 as well. When m¯\underline{m} does not represent the full-flag type, there exists a Higgs field Φ\Phi which is not necessarily diagonal when restricted to DD.

Next, we study the smoothness of the relative moduli space P:𝓗(C,D;r,d,α¯,m¯)𝒩(l,D)P:\bm{\mathcal{H}}(C,D;r,d,\underline{\alpha},\underline{m})\to\mathcal{N}(l,D). Note that when r=1r=1, the quasi-parabolic structure on EDE_{D} is trivial, so we can write the relative coarse moduli space as 𝓗(C,D;1,d,m¯)𝒩(1,D)\bm{\mathcal{H}}(C,D;1,d,\underline{m})\to\mathcal{N}(1,D) which consists of a line bundle LL, ΦH0(C,M)\Phi\in H^{0}(C,M) such that ΦD=IdLDξ\Phi_{D}=\textrm{Id}_{L_{D}}\otimes\xi for some ξH0(D,MD)\xi\in H^{0}(D,M_{D}). There is a determinant morphism 𝓗(C,D;r,d,α¯,m¯)𝓗(C,D;1,d,m¯)\bm{\mathcal{H}}(C,D;r,d,\underline{\alpha},\underline{m})\to\bm{\mathcal{H}}(C,D;1,d,\underline{m}) which sends (E,ED,Φ)(E,E_{D}^{\bullet},\Phi) to (det(E),det(Φ))(\det(E),\det(\Phi)) where det(Φ):=(ΦIdId)+(IdΦId)++(IdIdΦ)\det(\Phi):=(\Phi\wedge\textrm{Id}\wedge\dots\wedge\textrm{Id})+(\textrm{Id}\wedge\Phi\wedge\dots\wedge\textrm{Id})+\dots+(\textrm{Id}\wedge\textrm{Id}\wedge\dots\wedge\Phi). Define the trace map Tr:𝒩(l,D)𝒩(1,D)\textrm{Tr}:\mathcal{N}(l,D)\to\mathcal{N}(1,D) by Tr(ξ¯)=i=1lξi\textrm{Tr}({\underline{\xi}})=\sum_{i=1}^{l}\xi_{i}. Then it is easy to check that P(det(E),det(Φ))=Tr(P(E,ED,Φ))P(\det(E),\det(\Phi))=\textrm{Tr}(P(E,E^{\bullet}_{D},\Phi)). So the two maps induce det:𝓗(C,D;r,d,α¯,m¯)𝓗(C,D;1,d,m¯)×𝒩(1,D)𝒩(l,D).\det:\bm{\mathcal{H}}(C,D;r,d,\underline{\alpha},\underline{m})\to\bm{\mathcal{H}}(C,D;1,d,\underline{m})\times_{\mathcal{N}(1,D)}\mathcal{N}(l,D).

Proposition 2.10.

The morphism det:𝓗(C,D;r,d,α¯,m¯)𝓗(C,D;1,d,m¯)×𝒩(1,D)𝒩(l,D)\det:\bm{\mathcal{H}}(C,D;r,d,\underline{\alpha},\underline{m})\to\bm{\mathcal{H}}(C,D;1,d,\underline{m})\times_{\mathcal{N}(1,D)}\mathcal{N}(l,D) is smooth.

Proof.

The proof here is essentially a modification of [IS13, Proposition 2.1] to the Higgs bundles case. It suffices to show that the morphism of moduli functors det:(C,D;r,d,α¯,m¯)𝓗(C,D;1,d,m¯)×𝒩(1,D)𝒩(l,D)\det:\mathfrak{H}(C,D;r,d,\underline{\alpha},\underline{m})\to\bm{\mathcal{H}}(C,D;1,d,\underline{m})\times_{\mathcal{N}(1,D)}\mathcal{N}(l,D) is formally smooth. Let AA be an Artinian local kk-algebra with maximal ideal 𝔪A\mathfrak{m}_{A} and residue field k=A/𝔪A.k=A/\mathfrak{m}_{A}. Let 0IAA00\to I\to A^{\prime}\to A\to 0 be a small extension i.e. 𝔪AI=0.\mathfrak{m}_{A^{\prime}}I=0. We shall show that a lift Spec(A)(C,D;r,d,α¯,m¯)\textrm{Spec}(A^{\prime})\to\mathfrak{H}(C,D;r,d,\underline{\alpha},\underline{m}) always exists in each of the following diagram

(2) Spec(A){\textrm{Spec}(A)}(C,D;r,d,α¯,m¯){\mathfrak{H}(C,D;r,d,\underline{\alpha},\underline{m})}Spec(A){\textrm{Spec}(A^{\prime})}𝓗(C,D;1,d,m¯)×𝒩(1,D)𝒩(l,D){\bm{\mathcal{H}}(C,D;1,d,\underline{m})\times_{\mathcal{N}(1,D)}\mathcal{N}(l,D)}q\scriptstyle{q}det\scriptstyle{\det}p\scriptstyle{p}

Let ((L,ΦL),ξ¯)𝓗(C,D;1,d,m¯)×𝒩(1,D)𝒩(l,D)(A)((L,\Phi^{L}),{\underline{\xi}})\in\bm{\mathcal{H}}(C,D;1,d,\underline{m})\times_{\mathcal{N}(1,D)}\mathcal{N}(l,D)(A^{\prime}) corresponding to the morphism pp such that ΦL=IdL|D(i=1lξi)\Phi^{L}=\textrm{Id}_{L|_{D}}\otimes(\sum^{l}_{i=1}\xi_{i}). Let (,DA,Φ)(C,D;r,d,α¯,m¯)(A)(\mathcal{E},\mathcal{E}_{D_{A}}^{\bullet},\Phi)\in\mathfrak{H}(C,D;r,d,\underline{\alpha},\underline{m})(A) corresponding to qq such that (det(),det(Φ))(L,ΦL)AA(\det(\mathcal{E}),\det(\Phi))\cong(L,\Phi^{L})\otimes_{A^{\prime}}A and P(E,EDA,Φ)=ξ¯AAP(E,E^{\bullet}_{D_{A}},\Phi)={\underline{\xi}}\otimes_{A^{\prime}}A. Denote by (E¯,E¯D,Φ¯):=(,DA,Φ)k(\overline{E},\overline{E}_{D}^{\bullet},\overline{\Phi}):=(\mathcal{E},\mathcal{E}_{D_{A}}^{\bullet},\Phi)\otimes k.

Choose a Čech cover {Uα}\{U_{\alpha}\} of CC which trivializes \mathcal{E} i.e. |UαA𝒪UαAr\mathcal{E}|_{U_{\alpha}\otimes A}\cong\mathcal{O}^{\oplus r}_{U_{\alpha}\otimes A} over each open subset UαACAU_{\alpha}\otimes A\subset C_{A}. The strategy is to first construct a local object over each UαAU_{\alpha}\otimes A^{\prime} lifting ((L,ΦL),ξ¯)((L,\Phi^{L}),{\underline{\xi}}) and then study the obstruction for the existence of a global object. First, we take a free 𝒪UαA\mathcal{O}_{U_{\alpha}\otimes A^{\prime}}-module α\mathcal{E}_{\alpha} with isomorphisms φα:det(α)L|UαA\varphi_{\alpha}:\det(\mathcal{E}_{\alpha})\xrightarrow{\sim}L|_{U_{\alpha}\otimes A^{\prime}} and ϕα:αAA|UaA\phi_{\alpha}:\mathcal{E}_{\alpha}\otimes_{A^{\prime}}A\xrightarrow{\sim}\mathcal{E}|_{U_{a}\otimes A} such that φαA=det(ϕα).\varphi_{\alpha}\otimes A=\det(\phi_{\alpha}). If pUαp\in U_{\alpha}, we can choose a basis (ej)j(e_{j})_{j} of α\mathcal{E}_{\alpha} (also a basis for αAA)\mathcal{E}_{\alpha}\otimes_{A^{\prime}}A) such that DA\mathcal{E}^{\bullet}_{D_{A}} corresponds, via ϕα\phi_{\alpha}, to the standard filtration associated to the basis. Then the basis of α\mathcal{E}_{\alpha} determines a quasi-parabolic structure (α)DA(\mathcal{E}_{\alpha})^{\bullet}_{D_{A^{\prime}}}. With respect to (ej)j(e_{j})_{j}, Φα:=ϕα1Φϕα\Phi_{\alpha}:=\phi_{\alpha}^{-1}\circ\Phi\circ\phi_{\alpha} is a matrix valued in 𝒪(UαA)\mathcal{O}(U_{\alpha}\otimes A) such that

Φα|DA=((ξ1AA)Id𝒪DAm10(ξ2AA)Id𝒪DAm200(ξlAA)Id𝒪DAml)\Phi_{\alpha}|_{D_{A}}=\begin{pmatrix}(\xi_{1}\otimes_{A^{\prime}}A)\otimes\textrm{Id}_{\mathcal{O}_{D_{A}}^{\oplus m_{1}}}&\ast&\cdots&\ast\\ 0&(\xi_{2}\otimes_{A^{\prime}}A)\otimes\textrm{Id}_{\mathcal{O}_{D_{A}}^{\oplus m_{2}}}&\cdots&\vdots\\ \vdots&\vdots&\ddots&\ast\\ 0&0&\cdots&(\xi_{l}\otimes_{A^{\prime}}A)\otimes\textrm{Id}_{\mathcal{O}_{D_{A}}^{\oplus m_{l}}}\end{pmatrix}

Since each entry is an element of 𝒪(UαA)\mathcal{O}(U_{\alpha}\otimes A), we can find a lift Φα\Phi^{\prime}_{\alpha} of the matrix Φα\Phi_{\alpha} which is a matrix valued in 𝒪(UαA)\mathcal{O}(U_{\alpha}\otimes A^{\prime}) such that

Φα|DA=(ξ1Id𝒪DAm10ξ2Id𝒪DAm200ξlId𝒪DAml)\Phi^{\prime}_{\alpha}|_{D_{A^{\prime}}}=\begin{pmatrix}\xi_{1}\otimes\textrm{Id}_{\mathcal{O}_{D_{A^{\prime}}}^{\oplus m_{1}}}&\ast&\cdots&\ast\\ 0&\xi_{2}\otimes\textrm{Id}_{\mathcal{O}_{D_{A^{\prime}}}^{\oplus m_{2}}}&\cdots&\vdots\\ \vdots&\vdots&\ddots&\ast\\ 0&0&\cdots&\xi_{l}\otimes\textrm{Id}_{\mathcal{O}_{D_{A^{\prime}}}^{\oplus m_{l}}}\end{pmatrix}

and such that det(Φα)=(φαId)1ΦLφα\det(\Phi^{\prime}_{\alpha})=(\varphi_{\alpha}\otimes\textrm{Id})^{-1}\circ\Phi^{L}\circ\varphi_{\alpha}. Therefore, we get a local irregular ξ¯{\underline{\xi}}-parabolic Higgs bundle (α,(α)DA,Φα)(\mathcal{E}_{\alpha},(\mathcal{E}_{\alpha})^{\bullet}_{D_{A^{\prime}}},{\Phi_{\alpha}}) over UαAU_{\alpha}\otimes A^{\prime}. If pUαp\not\in U_{\alpha}, then we take a lift Φα\Phi^{\prime}_{\alpha} of Φα\Phi_{\alpha} valued in 𝒪(UαA)\mathcal{O}(U_{\alpha}\otimes A^{\prime}) such that det(ΦA)=(φαId)ΦLφα1\det(\Phi^{\prime}_{A})=(\varphi_{\alpha}\otimes\textrm{Id})\circ\Phi^{L}\circ\varphi_{\alpha}^{-1} and a quasi-parabolic structure is not needed for this open subset.

Then we shall argue that the obstruction to glue the local objects (α,(α)DA,Φα)(\mathcal{E}_{\alpha},(\mathcal{E}_{\alpha})^{\bullet}_{D_{A^{\prime}}},\Phi_{\alpha}) is given by a class in 2\mathbb{H}^{2} of the following complex:

𝒟0:0PEnd0(E¯)[Φ¯,]SPEnd0(E¯)KC(D)0\mathcal{D}^{\bullet}_{0}:\quad 0\to PEnd_{0}(\overline{E}^{\bullet})\xrightarrow{[\overline{\Phi},\cdot]}SPEnd_{0}(\overline{E}^{\bullet})\otimes K_{C}(D)\to 0

where

PEnd0(E¯)\displaystyle PEnd_{0}(\overline{E}^{\bullet}) ={fnd(E¯)|f|D(E¯Di)(E¯Di),Tr(f)=0,i}\displaystyle=\{f\in\mathcal{E}nd(\overline{E})|\quad f|_{D}(\overline{E}^{i}_{D})\subset(\overline{E}^{i}_{D}),\textrm{Tr}(f)=0,\quad\forall i\}
SPEnd0(E¯)KC(D)\displaystyle SPEnd_{0}(\overline{E}^{\bullet})\otimes K_{C}(D) ={fnd(E¯)|f|D(E¯Di)(E¯Di1)MD,Tr(f)=0,i}\displaystyle=\{f\in\mathcal{E}nd(\overline{E})|\quad f|_{D}(\overline{E}^{i}_{D})\subset(\overline{E}^{i-1}_{D})\otimes M_{D},\textrm{Tr}(f)=0,\quad\forall i\}

Denote by Uαβ:=UαUβU_{\alpha\beta}:=U_{\alpha}\cap U_{\beta} and Uαβγ:=UαUβUγU_{\alpha\beta\gamma}:=U_{\alpha}\cap U_{\beta}\cap U_{\gamma}. For each pair of α,β\alpha,\beta, we choose a lift θβα:α|Uαββ|Uαβ\theta_{\beta\alpha}:\mathcal{E}_{\alpha}|_{U_{\alpha\beta}}\xrightarrow{\sim}\mathcal{E}_{\beta}|_{U_{\alpha\beta}} of the transition function ϕβ1ϕα\phi_{\beta}^{-1}\circ\phi_{\alpha}, i.e. θβαA=ϕβ1ϕα\theta_{\beta\alpha}\otimes A=\phi_{\beta}^{-1}\circ\phi_{\alpha}, such that φβdet(θαβ)=φα\varphi_{\beta}\circ\det(\theta_{\alpha\beta})=\varphi_{\alpha}. Then we define

uαβγ\displaystyle u_{\alpha\beta\gamma} :=ϕα(θγα1θγβθβαId)ϕα1;\displaystyle:=\phi_{\alpha}\circ(\theta_{\gamma\alpha}^{-1}\circ\theta_{\gamma\beta}\circ\theta_{\beta\alpha}-\textrm{Id})\circ\phi^{-1}_{\alpha};
vαβ\displaystyle v_{\alpha\beta} :=ϕα(Φαθαβ1Φβθαβ)ϕα1.\displaystyle:=\phi_{\alpha}\circ(\Phi^{\prime}_{\alpha}-\theta_{\alpha\beta}^{-1}\circ\Phi^{\prime}_{\beta}\circ\theta_{\alpha\beta})\circ\phi^{-1}_{\alpha}.

One can check that uαβγΓ(Uαβγ,PEnd0(E¯))Iu_{\alpha\beta\gamma}\in\Gamma(U_{\alpha\beta\gamma},PEnd_{0}(\overline{E}^{\bullet}))\otimes I because uαβγu_{\alpha\beta\gamma} is an endomorphism of parabolic bundles (|UαβγA,DA)(\mathcal{E}|_{U_{\alpha\beta\gamma}\otimes A^{\prime}},\mathcal{E}_{D_{A^{\prime}}}^{\bullet}) with fixed determinant whose restriction to AA vanishes. Similarly, we have vαβΓ(Uαβ,SPEnd0(E¯)M)I.v_{\alpha\beta}\in\Gamma(U_{\alpha\beta},SPEnd_{0}(\overline{E}^{\bullet})\otimes M)\otimes I. Hence, we have

{uαβγ}C2({Uα},PEnd0(E¯))I,{vαβ}C1({Uα},SPEnd0(E¯))I.\{u_{\alpha\beta\gamma}\}\in C^{2}(\{U_{\alpha}\},PEnd_{0}(\overline{E}^{\bullet}))\otimes I,\quad\{v_{\alpha\beta}\}\in C^{1}(\{U_{\alpha}\},SPEnd_{0}(\overline{E}^{\bullet}))\otimes I.

It can be checked that {uαβγ}\{u_{\alpha\beta\gamma}\} and {vαβ}\{v_{\alpha\beta}\} uniquely define an obstruction class ω({uαβγ},{vαβ})2(𝒟0)\omega(\{u_{\alpha\beta\gamma}\},\{v_{\alpha\beta}\})\in\mathbb{H}^{2}(\mathcal{D}^{\bullet}_{0}). Moreover, it is clear from the construction that ω({uαβγ},{vαβ})\omega(\{u_{\alpha\beta\gamma}\},\{v_{\alpha\beta}\}) vanishes if and only if the local objects {(α,(α)DA,Φα)}\{(\mathcal{E}_{\alpha},(\mathcal{E}_{\alpha})^{\bullet}_{D_{A^{\prime}}},\Phi_{\alpha})\} can be glued to (~,~DA,Φ~)(C,D;r,d,α¯,m¯)(A)(\widetilde{\mathcal{E}},\widetilde{\mathcal{E}}^{\bullet}_{D_{A^{\prime}}},\widetilde{\Phi})\in\mathfrak{H}(C,D;r,d,\underline{\alpha},\underline{m})(A^{\prime}) such that det(~,~DA,Φ~)=((L,ΦL),ξ¯)\det(\widetilde{\mathcal{E}},\widetilde{\mathcal{E}}^{\bullet}_{D_{A^{\prime}}},\widetilde{\Phi})=((L,\Phi^{L}),{\underline{\xi}}). Therefore, the lifting of pp in the diagram 2 is equivalent to the vanishing of ω({uαβγ},{vαβ}).\omega(\{u_{\alpha\beta\gamma}\},\{v_{\alpha\beta}\}).

By Serre duality, 2(𝒟0)0(𝒟ˇ0)\mathbb{H}^{2}(\mathcal{D}_{0}^{\bullet})\cong\mathbb{H}^{0}(\check{\mathcal{D}}_{0}^{\bullet})^{\vee} where 𝒟ˇ0\check{\mathcal{D}}^{\bullet}_{0} is the Serre dual of 𝒟0\mathcal{D}^{\bullet}_{0}

𝒟ˇ0:SPEnd0(E¯)𝒪C(D)PEnd0(E¯)KC.\check{\mathcal{D}}^{\bullet}_{0}:SPEnd_{0}(\overline{E}^{\bullet})^{\vee}\otimes\mathcal{O}_{C}(-D)\to PEnd_{0}(\overline{E}^{\bullet})^{\vee}\otimes K_{C}.

Since E¯D\overline{E}_{D}^{\bullet} is assumed to have free successive quotients, we have the following duality [Yok95, Proposition 3.7]

SPEnd0(E¯)PEnd0(E¯)OC(D)SPEnd_{0}(\overline{E}^{\bullet})^{\vee}\cong PEnd_{0}(\overline{E}^{\bullet})\otimes O_{C}(D)

which implies that 𝒟0𝒟ˇ0\mathcal{D}_{0}^{\bullet}\cong\check{\mathcal{D}}^{\bullet}_{0} and hence 2(𝒟0)0(𝒟0)\mathbb{H}^{2}(\mathcal{D}^{\bullet}_{0})\cong\mathbb{H}^{0}(\mathcal{D}^{\bullet}_{0})^{\vee}. Since 0(𝒟0)=ker(H0(PEnd0(E¯))H0(SPEnd0(E¯)))\mathbb{H}^{0}(\mathcal{D}^{\bullet}_{0})=\textrm{ker}(H^{0}(PEnd_{0}(\overline{E}^{\bullet}))\to H^{0}(SPEnd_{0}(\overline{E}^{\bullet}))) and H0(PEnd0(E¯))=0H^{0}(PEnd_{0}(\overline{E}^{\bullet}))=0 for an α\alpha-stable parabolic Higgs bundle (E¯,Φ)(\overline{E}^{\bullet},\Phi). Therefore, we conclude that 2(𝒟0)=0\mathbb{H}^{2}(\mathcal{D}^{\bullet}_{0})=0 and the morphism det\det is formally smooth. ∎

Corollary 2.11.

The composition 𝓗(C,D;r,d,α¯,m¯)𝓗(C,D;1,d,m¯)×𝒩(1,D)𝒩(l,D)𝒩(l,D)\bm{\mathcal{H}}(C,D;r,d,\underline{\alpha},\underline{m})\to\bm{\mathcal{H}}(C,D;1,d,\underline{m})\times_{\mathcal{N}(1,D)}\mathcal{N}(l,D)\to\mathcal{N}(l,D) is smooth. In particular, the fiber P1(ξ¯)P^{-1}({\underline{\xi}}) is smooth for any ξ¯𝒩(l,D){\underline{\xi}}\in\mathcal{N}(l,D).

Proof.

Note that 𝓗(C,D;1,d,m¯)𝒩(1,D)\bm{\mathcal{H}}(C,D;1,d,\underline{m})\to\mathcal{N}(1,D) can be written as the composition 𝓗(C,D;1,d,m¯)f1Picd(C)×𝒩(1,D)f2𝒩(1,D)\bm{\mathcal{H}}(C,D;1,d,\underline{m})\xrightarrow{f_{1}}\textrm{Pic}^{d}(C)\times\mathcal{N}(1,D)\xrightarrow{f_{2}}\mathcal{N}(1,D) where f1f_{1} is an affine bundle with fibers H0(C,KC(D))H^{0}(C,K_{C}(D)) parametrizing Φ\Phi and f2f_{2} is the projection. Both f1,f2f_{1},f_{2} are clearly smooth morphisms, so 𝓗(C,D;1,d,m¯)𝒩(1,D)\bm{\mathcal{H}}(C,D;1,d,\underline{m})\to\mathcal{N}(1,D) is smooth as well. Combining with Proposition 2.10, it follows that the composition 𝓗(C,D;r,d,α¯,m¯)𝒩(l,D)\bm{\mathcal{H}}(C,D;r,d,\underline{\alpha},\underline{m})\to\mathcal{N}(l,D) is smooth. ∎

2.2. Spectral correspondence

As mentioned in the introduction, the key idea to the study of the cohomology of the moduli space of stable ξ¯{\underline{\xi}}-irregular parabolic Higgs bundles is to realize it as a moduli of sheaves on a holomorphic symplectic surface with certain stability condition via the spectral correspondence of [KS14] and [DDP18].

First we recall the construction of the holomorphic symplectic surface by following [DDP18]. By abusing notation, we will also write MM as the total space of the twisted canonical line bundle KC(D)K_{C}(D). Recall that the polar parts of the Higgs fields are fixed by a choice of ξ¯=(ξ1,,ξl)\underline{\xi}=(\xi_{1},...,\xi_{l}) with ξiH0(D,MD)\xi_{i}\in H^{0}(D,M_{D}), which determines a set of divisors δiMD\delta_{i}\subset M_{D} for 1il.1\leq i\leq l. We will call the choice of ξ¯{\underline{\xi}} generic if the leading terms of ξi\xi_{i} are all distinct. More precisely, if we write ξi=(λi,n+λi,n1z++λi,1zn1)dzzn\xi_{i}=\left(\lambda_{i,n}+\lambda_{i,n-1}z+...+\lambda_{i,1}z^{n-1}\right)\frac{dz}{z^{n}} where λi,k\lambda_{i,k}\in\mathbb{C}, then λi,nλi,n\lambda_{i,n}\neq\lambda_{i^{\prime},n} for iii\neq i^{\prime}. In this subsection, we will assume that the choice of ξ¯{\underline{\xi}} is generic. Then we construct a quasi-projective surface Sξ¯S_{\underline{\xi}} as follows:

  1. (1)

    Let 𝔭1,i\mathfrak{p}_{1,i} be the intersection point of δi\delta_{i} and the reduced fiber MpM_{p}. The points 𝔭1,i\mathfrak{p}_{1,i} are distinct points in MM under the genericity assumption. First, we simultaneously blow up the surface MM at the (reduced) points 𝔭1,i\mathfrak{p}_{1,i}. Denote the resulting surface by M1M_{1} and the exceptional divisors by Ξ1,i\Xi_{1,i} for each 1il.1\leq i\leq l.

  2. (2)

    Suppose n2n\geq 2. For each ii, let 𝔭2,i\mathfrak{p}_{2,i} be the intersection point of the strict transform of δi\delta_{i} and the exceptional divisor Ξ1,i\Xi_{1,i}. Then we simultaneously blow up the surface M1M_{1} at the (reduced) points 𝔭2,i\mathfrak{p}_{2,i}. This simultaneous blow-up procedure is then repeated n2n-2 times. The resulting blown-up surface will be denoted by Tξ¯T_{\underline{\xi}} and it contains the exceptional divisors Ξn,i\Xi_{n,i} and the strict transform of the divisors (also denoted by) Ξa,i\Xi_{a,i} for 1an11\leq a\leq n-1 and 1il.1\leq i\leq l.

  3. (3)

    Let ff be the strict transform of the fiber MpMM_{p}\subset M in Tξ¯T_{\underline{\xi}}. Then we obtain the surface Sξ¯=Tξ¯(f+i=1la=1n1Ξa,i).S_{\underline{\xi}}=T_{\underline{\xi}}\setminus(f+\sum_{i=1}^{l}\sum_{a=1}^{n-1}\Xi_{a,i}).

Let M¯=(M𝒪)\overline{M}=\mathbb{P}(M\oplus\mathcal{O}) be the projective completion of MM. We can apply the same blow-up procedure on M¯\overline{M} and get a projective surface Zξ¯Z_{\underline{\xi}}. Then Sξ¯Tξ¯Zξ¯S_{\underline{\xi}}\subset T_{{\underline{\xi}}}\subset Z_{\underline{\xi}}.

Proposition 2.12.

The surface SξS_{\xi} is holomorphic symplectic. In other words, It has a trivial canonical line bundle and has a natural compactification by a projective surface Zξ¯Z_{\underline{\xi}}.

Proof.

The canonical divisor of TξT_{\xi} is given by

KTξ¯=nfi=1la=1n(na)Ξa,i.K_{T_{\underline{\xi}}}=-nf-\sum_{i=1}^{l}\sum_{a=1}^{n}(n-a)\Xi_{a,i}.

Note that the divisors Ξn,i\Xi_{n,i} appear with multiplicity 0 in the expression, so the canonical divisor of the complement Sξ¯S_{\underline{\xi}} of f+i=1la=1n1Ξa,if+\sum_{i=1}^{l}\sum_{a=1}^{n-1}\Xi_{a,i} in Tξ¯T_{\underline{\xi}} is trivial.

We will be interested in the moduli space of pure dimension one sheaves supported in Sξ¯S_{\underline{\xi}} with some fixed topological invariants and an appropriate stability condition. To set this up, we first consider the topological invariants. Let Δi=a=1naΞa,iPic(Zξ¯)\Delta_{i}=\sum_{a=1}^{n}a\Xi_{a,i}\in\textrm{Pic}(Z_{\underline{\xi}}). Let Σ0\Sigma_{0} be the strict transform of the zero section C0C_{0} in MM. If the support of a pure dimension one sheaf on Zξ¯Z_{\underline{\xi}} is entirely in Sξ¯S_{\underline{\xi}}, the class of its support ch1(F)\textrm{ch}_{1}(F) must satisfy the following conditions on the intersection numbers:

ch1(F)f=0,ch1(F)Ξa,i=0 for a<n,1il\textrm{ch}_{1}(F)\cdot f=0,\quad\textrm{ch}_{1}(F)\cdot\Xi_{a,i}=0\textrm{ for }a<n,1\leq i\leq l

It is easy to check that such a class must be of the form Σm¯=rΣ0i=1lmiΔi\Sigma_{\underline{m}}=r\Sigma_{0}-\sum^{l}_{i=1}m_{i}\Delta_{i} where r1r\geq 1 and m¯=(m1,,ml)0×l{\underline{m}}=(m_{1},...,m_{l})\in\mathbb{Z}_{\geq 0}^{\times l} such that i=1lmi=r\sum_{i=1}^{l}m_{i}=r. Note that

Σm¯Ξn,i=mi for 1il\Sigma_{\underline{m}}\cdot\Xi_{n,i}=m_{i}\textrm{ for }1\leq i\leq l

The stability condition we need will be a slight modification of the usual Gieseker stability condition of coherent sheaves. We review the definition of β\beta-twisted AA-Gieseker semistablity condition used in [MW97] and [BM14, Section 5]. Let XX be a smooth projective surface and β,ANS(X)\beta,A\in NS(X)_{\mathbb{Q}} with AA ample. We define the β\beta-twisted Chern character of FCoh(X)F\in\textrm{Coh}(X) to be chβ(F):=ch(F)exp(β)H(X,)\textrm{ch}^{\beta}(F):=\textrm{ch}(F)\cup\exp(\beta)\in H^{*}(X,\mathbb{Q}). Then the β\beta-twisted Hilbert polynomial is defined to be

Pβ(F,t)=Xchβ(F(t))TdX.P_{\beta}(F,t)=\int_{X}\textrm{ch}^{\beta}(F(t))\textrm{Td}_{X}.

Note that when FF is a torsion sheaf i.e. ch0(F)=0\textrm{ch}_{0}(F)=0, we have

Pβ(F,t)=Xch(F(t))TdX+Xβch1(F(t))=P(F,t)+Xβch1(F(t))P_{\beta}(F,t)=\int_{X}\textrm{ch}(F(t))\textrm{Td}_{X}+\int_{X}\beta\cdot\textrm{ch}_{1}(F(t))=P(F,t)+\int_{X}\beta\cdot\textrm{ch}_{1}(F(t))

where P(F,t)P(F,t) denotes the usual Hilbert polynomial. In particular, Pβ(F,t)=P(F,t)P_{\beta}(F,t)=P(F,t) when β=0\beta=0. Let l(F)/d!l(F)/d! be the leading coefficient of Pβ(F,t)P_{\beta}(F,t). Define the reduced β\beta-twisted Hilbert polynomial as pβ(F,t)=Pβ(F,t)/l(F)p_{\beta}(F,t)=P_{\beta}(F,t)/l(F). Note that the leading coefficients of Pβ(F,t)P_{\beta}(F,t) and P(F,t)P(F,t) are the same.

Definition 2.13.

A coherent sheaf FF on XX is said to be β\beta-twisted AA-Gieseker (semi)stable if it has support of pure dimension and for any proper subsheaf FFF^{\prime}\subset F, one has

pβ(F,t)<pβ(F,t) for t0,(resp. )p_{\beta}(F^{\prime},t)<p_{\beta}(F,t)\quad\textrm{ for }t\gg 0,\quad(\textrm{resp. }\leq)

In our case, we will need to make a choice of β\beta and an ample line bundle AA on Zξ¯Z_{\underline{\xi}}.

  • (A choice of β\beta) For a set of rational numbers 1>β1>>βl01>\beta_{1}>...>\beta_{l}\geq 0, we choose β=i=1lβiΞn,i\beta=\sum_{i=1}^{l}\beta_{i}\Xi_{n,i} on NS(Zξ¯)NS(Z_{\underline{\xi}})_{\mathbb{Q}}. Then note that βΣm¯=biΞn,i(minΞn,imi(n1)Ξn1,i)=βimi(n+(n1))=βimi\beta\cdot\Sigma_{\underline{m}}=b_{i}\Xi_{n,i}\cdot(-m_{i}n\Xi_{n,i}-m_{i}(n-1)\Xi_{n-1,i})=-\beta_{i}m_{i}(-n+(n-1))=\beta_{i}m_{i}.

  • (A choice of AA) Let π:Zξ¯C\pi:Z_{\underline{\xi}}\to C be the composition of the blow-up morphism Zξ¯M¯Z_{\underline{\xi}}\to\overline{M} and the projection map q:M¯Cq:\overline{M}\to C. Note that there exists an integer kk large enough such that D0:=kq1(p)+CD_{0}:=kq^{-1}(p)+C_{\infty} is ample on M¯\overline{M} where CC_{\infty} is the infinity divisor. Then by the result of [Küc96], we can always choose k1k_{1} large enough such that the divisor D1:=k1π1D0i=1lΞ1,iD_{1}:=k_{1}\pi_{1}^{*}D_{0}-\sum_{i=1}^{l}\Xi_{1,i} is ample, where π1:M1¯M¯\pi_{1}:\overline{M_{1}}\to\overline{M} is the initial blow-up map. Proceed inductively, we see that there exists knk_{n} large enough such that Dn:=knπnDn1i=1lΞn,iD_{n}:=k_{n}\pi_{n}^{*}D_{n-1}-\sum_{i=1}^{l}\Xi_{n,i} is ample. Hence, the restriction of the ample divisor DnD_{n} to Sξ¯S_{\underline{\xi}} can be written as A:=κ(i=1lΞn,i)=π(κp)A:=\kappa(\sum_{i=1}^{l}\Xi_{n,i})=\pi^{*}(\kappa p) for some large enough κ.\kappa.

Now we are ready to state the spectral correspondence due to Kontsevich-Soibelman [KS14, Section 8.3] and Diaconescu-Donagi-Pantev [DDP18, Section 3.4]:

Theorem 2.14 (Spectral correspondence).

Fix the numerical data: r1,dr\geq 1,d\in\mathbb{Z}, 1>α1>>αl01>\alpha_{1}>...>\alpha_{l}\geq 0 (each αi)\alpha_{i}\in\mathbb{Q}), m1,,ml0m_{1},...,m_{l}\in\mathbb{Z}\geq 0 such that i=1lmi=r\sum_{i=1}^{l}m_{i}=r. For a generic choice of ξ¯{\underline{\xi}}, there is an isomorphism between

  • the moduli stack ξ¯(C,D;r,d,α¯,m¯)\mathfrak{H}_{\underline{\xi}}(C,D;r,d,\underline{\alpha},\underline{m}) of semistable irregular ξ¯{\underline{\xi}}-parabolic Higgs bundles on CC of rank rr, degree dd, parabolic weights α¯=(α1,,αl)\underline{\alpha}=(\alpha_{1},...,\alpha_{l}), flag type m¯=(m1,..,ml)\underline{m}=(m_{1},..,m_{l});

  • the moduli stack 𝔐(Sξ¯;(0,Σm¯,c),β,A)\mathfrak{M}(S_{\underline{\xi}};(0,\Sigma_{\underline{m}},c),\beta,A) of β\beta-twisted AA-Gieseker semistable compactly supported pure dimension one sheaves FF on Sξ¯S_{\underline{\xi}} with (ch0(F),ch1(F),ch2(F))=(0,Σm¯,c)(\textrm{ch}_{0}(F),\textrm{ch}_{1}(F),\textrm{ch}_{2}(F))=(0,\Sigma_{\underline{m}},c) where Σm¯=rΣ0i=1lmiΔi\Sigma_{\underline{m}}=r\Sigma_{0}-\sum^{l}_{i=1}m_{i}\Delta_{i};

such that αi=βi/n,d=c+r(g1)\alpha_{i}=\beta_{i}/n,d=c+r(g-1).

Proof.

See Appendix A. ∎

Remark 2.15.

By the spectral correspondence, for generic ξ¯{\underline{\xi}}, one can also construct the coarse moduli space of ξ¯(C,D;r,d,α¯,m¯)𝔐(Sξ¯;(0,Σm¯,c),β,A)\mathfrak{H}_{\underline{\xi}}(C,D;r,d,\underline{\alpha},\underline{m})\cong\mathfrak{M}(S_{\underline{\xi}};(0,\Sigma_{\underline{m}},c),\beta,A) as an open subset of the coarse moduli space ξ¯\mathcal{M}_{\underline{\xi}} of the moduli stack of β\beta-twisted AA-Gieseker semistable sheaves on the surface Zξ¯Z_{\underline{\xi}}. With the same numerical data as in Theorem 2.14, it follows from Theorem 2.14 that the coarse moduli space of stable irregular ξ¯{\underline{\xi}}-parabolic Higgs bundles ξ¯:=P1(ξ¯)\mathcal{H}_{\underline{\xi}}:=P^{-1}({\underline{\xi}}) is isomorphic to an open subset of ξ¯.\mathcal{M}_{\underline{\xi}}.

3. Cohomology

3.1. Cohomology of the holomorphic symplectic surface

As a preparation for the next section, we compute (the mixed Hodge structure of) the cohomology of the surface Sξ¯S_{\underline{\xi}}. Recall that M¯=(M𝒪)\overline{M}=\mathbb{P}(M\oplus\mathcal{O}) and ρ:Zξ¯M¯\rho:Z_{\underline{\xi}}\to\overline{M} is the iterated blow-up introduced in Section 2.2. The surface Sξ¯S_{\underline{\xi}} is defined by the complement of the divisor Yξ¯:=C+f+i=1la=1n1Ξa,iY_{\underline{\xi}}:=C_{\infty}+f+\sum^{l}_{i=1}\sum^{n-1}_{a=1}\Xi_{a,i}, so Yξ¯=Zξ¯Sξ¯.Y_{\underline{\xi}}=Z_{\underline{\xi}}\setminus S_{{\underline{\xi}}}. Denote ι:Sξ¯Zξ¯\iota:S_{\underline{\xi}}\to Z_{\underline{\xi}} the canonical inclusion and q:Sξ¯Cq:S_{\underline{\xi}}\to C be the projection. By the blow-up formula, the cohomology of Zξ¯Z_{\underline{\xi}} is given by

Hk(Zξ¯,)={H2(M¯)(1ami,1il[Ξa,i]),k=2Hk(M¯,)=(H(C,)H(1,))k,k2H^{k}(Z_{\underline{\xi}},\mathbb{Q})=\begin{cases}H^{2}(\overline{M})\oplus\left(\bigoplus_{1\leq a\leq m_{i},1\leq i\leq l}\mathbb{Q}[\Xi_{a,i}]\right),\quad&k=2\\ H^{k}(\overline{M},\mathbb{Q})=(H^{*}(C,\mathbb{Q})\otimes H^{*}(\mathbb{P}^{1},\mathbb{Q}))^{k},\quad&k\neq 2\end{cases}
Proposition 3.1.

The cohomology of the surface Sξ¯S_{\underline{\xi}} is given by

H(Sξ¯,)H(C,)(i=1l[Ξn,i])H^{*}(S_{\underline{\xi}},\mathbb{Q})\cong H^{*}(C,\mathbb{Q})\oplus\left(\bigoplus_{i=1}^{l}\mathbb{Q}\left[\Xi_{n,i}\right]\right)

where we write [Ξn,i]:=ι[Ξn,i]\left[\Xi_{n,i}\right]:=\iota^{*}\left[\Xi_{n,i}\right] by abusing notation.

Proof.

We denote the complement Zξ¯Sξ¯Z_{\underline{\xi}}\setminus S_{\underline{\xi}} by Yξ¯Y_{\underline{\xi}}. By the Mayer-Vietoris sequence, the cohomology of Yξ¯Y_{\underline{\xi}} is given by

Hk(Yξ¯,)={,k=02g,k=1l(n1)+2,k=2H^{k}(Y_{\underline{\xi}},\mathbb{Q})=\begin{cases}\mathbb{Q},\quad&k=0\\ \mathbb{Q}^{2g},\quad&k=1\\ \mathbb{Q}^{l(n-1)+2},\quad&k=2\end{cases}

Then we have the long exact sequence

Hck(Sξ¯,)Hk(Zξ¯,)Hk(Yξ¯,)k=00k=102g2gk=2?nl+2l(n1)+2k=3?2g0k=40\begin{array}[]{c|ccc}&H^{k}_{c}(S_{{\underline{\xi}}},\mathbb{Q})&H^{k}(Z_{\underline{\xi}},\mathbb{Q})&H^{k}(Y_{\underline{\xi}},\mathbb{Q})\\ \hline\cr k=0&0&\mathbb{Q}&\mathbb{Q}\\ k=1&0&\mathbb{Q}^{2g}&\mathbb{Q}^{2g}\\ k=2&?&\mathbb{Q}^{nl+2}&\mathbb{Q}^{l(n-1)+2}\\ k=3&?&\mathbb{Q}^{2g}&0\\ k=4&\mathbb{Q}&\mathbb{Q}&0\end{array}

By iteratively applying Lefschetz hyperplane theorem, one can see that the morphism Hk(Zξ¯,)Hk(Yξ¯,)H^{k}(Z_{\underline{\xi}},\mathbb{Q})\to H^{k}(Y_{\underline{\xi}},\mathbb{Q}) is surjective for k<2k<2, hence \mathbb{Q}\to\mathbb{Q} and 2g2g\mathbb{Q}^{2g}\to\mathbb{Q}^{2g} in the first and second rows are isomorphisms. Also, clearly Hc4(Sξ¯,)=H^{4}_{c}(S_{\underline{\xi}},\mathbb{Q})=\mathbb{Q}. To determine Hck(Sξ¯,)H^{k}_{c}(S_{\underline{\xi}},\mathbb{Q}) for k=2,3k=2,3, it suffices to show that the pullback map H2(Zξ¯,)H2(Yξ¯,)H^{2}(Z_{\underline{\xi}},\mathbb{Q})\to H^{2}(Y_{\underline{\xi}},\mathbb{Q}) is surjective. Note that H2(Yξ¯,)H^{2}(Y_{\underline{\xi}},\mathbb{Q}) can be written as a direct sum of the second cohomology group of each component, which belongs to the image of the pullback map. Therefore we have Hc2(Sξ¯,)=lH^{2}_{c}(S_{\underline{\xi}},\mathbb{Q})=\mathbb{Q}^{l} and Hc3(Sξ¯,)=2gH^{3}_{c}(S_{\underline{\xi}},\mathbb{Q})=\mathbb{Q}^{2g}. Now the proposition follows from Poincaré duality.

Recall that the pure part of the cohomology of a variety XX is defined to be Hpurek(X,):=GrkWHk(X,)H^{k}_{\textrm{pure}}(X,\mathbb{Q}):=\textrm{Gr}^{W}_{k}H^{k}(X,\mathbb{Q}) with respect to the mixed Hodge structure on Hk(X,).H^{k}(X,\mathbb{Q}). In particular, when XX is smooth, the direct sum of the pure part H(X,)H^{*}(X,\mathbb{Q}) is a subalgebra of H(X,)H^{*}(X,\mathbb{Q}) since GrkWHk(X,)=WkHk(X).\textrm{Gr}^{W}_{k}H^{k}(X,\mathbb{Q})=W_{k}H^{k}(X). Alternatively, if i:XX¯i:X\hookrightarrow\overline{X} is any smooth compactification, then Hpure(X,)H^{*}_{\textrm{pure}}(X,\mathbb{Q}) can also be defined as the image of the homomorphism i:H(X¯)H(X).i^{*}:H^{*}(\overline{X})\to H^{*}(X).

Coming back to the previous case, it is easy to see that H2(Zξ¯,)=Hpure2(Zξ¯,)H^{2}(Z_{\underline{\xi}},\mathbb{Q})=H^{2}_{\textrm{pure}}(Z_{\underline{\xi}},\mathbb{Q}). Moreover, in the proof of Proposition 3.1, the long exact sequence of cohomology groups of the pair (Zξ¯,Yξ¯)(Z_{\underline{\xi}},Y_{\underline{\xi}}) is compatible with mixed Hodge structures and we showed that the restriction morphism Hk(Zξ¯)Hk(Yξ¯)H^{k}(Z_{\underline{\xi}})\to H^{k}(Y_{\underline{\xi}}) is surjective for all k0k\geq 0. This implies that GrqWHck(Sξ¯,)=0\textrm{Gr}^{W}_{q}H^{k}_{c}(S_{\underline{\xi}},\mathbb{Q})=0 except for q=kq=k, hence we have Hc,pure(Sξ¯)=Hc(Sξ¯)H^{*}_{c,\textrm{pure}}(S_{\underline{\xi}})=H_{c}^{*}(S_{\underline{\xi}}). By Poincaré duality, we have the following proposition.

Proposition 3.2.

The cohomology of the surface Sξ¯S_{\underline{\xi}} is of pure type. In other words, Hpure(Sξ¯,)=H(Sξ¯,)H^{*}_{\textrm{pure}}(S_{\underline{\xi}},\mathbb{Q})=H^{*}(S_{\underline{\xi}},\mathbb{Q}).

3.2. Generators

In this section, we study the cohomology of the moduli space ξ¯:=P1(ξ¯)\mathcal{H}_{\underline{\xi}}:=P^{-1}({\underline{\xi}}) for a generic ξ¯.{\underline{\xi}}. Assume that r,dr,d are coprime such that there exist a universal bundles ξ¯\mathcal{E}_{\underline{\xi}} on ξ¯×C\mathcal{H}_{\underline{\xi}}\times C and a universal flag of subbundles ξ¯×D:0=ξ¯×D0ξ¯×Dl=(ξ¯)|ξ¯×D\mathcal{E}^{\bullet}_{\mathcal{H}_{\underline{\xi}}\times D}:0=\mathcal{E}^{0}_{\mathcal{H}_{\underline{\xi}}\times D}\subset...\subset\mathcal{E}^{l}_{\mathcal{H}_{\underline{\xi}}\times D}=(\mathcal{E}_{{\underline{\xi}}})|_{\mathcal{H}_{\underline{\xi}}\times D} on ξ¯×D\mathcal{H}_{\underline{\xi}}\times D. Let ξ¯×p:0=ξ¯×p0ξ¯×pl=(ξ¯)|ξ¯×p\mathcal{E}^{\bullet}_{\mathcal{H}_{\underline{\xi}}\times p}:0=\mathcal{E}^{0}_{\mathcal{H}_{\underline{\xi}}\times p}\subset...\subset\mathcal{E}^{l}_{\mathcal{H}_{\underline{\xi}}\times p}=(\mathcal{E}_{{\underline{\xi}}})|_{\mathcal{H}_{\underline{\xi}}\times p} be the restriction of ξ¯×D\mathcal{E}^{\bullet}_{\mathcal{H}_{\underline{\xi}}\times D} to ξ¯×{p}=ξ¯\mathcal{H}_{\underline{\xi}}\times\{p\}=\mathcal{H}_{\underline{\xi}}, then we define the vector bundle Qξ¯i=ξ¯×pi/ξ¯×pi1Q_{\underline{\xi}}^{i}=\mathcal{E}^{i}_{\mathcal{H}_{\underline{\xi}}\times p}/\mathcal{E}^{i-1}_{\mathcal{H}_{\underline{\xi}}\times p} on ξ¯\mathcal{H}_{\underline{\xi}}.

Let ξ¯\mathcal{M}_{\underline{\xi}} to be the moduli space of β\beta-twisted AA-Gieseker stable sheaves on Zξ¯Z_{\underline{\xi}} with fixed Chern characters (ch0(F),ch1(F),ch2(F))=(0,Σm¯,c)(\textrm{ch}_{0}(F),\textrm{ch}_{1}(F),\textrm{ch}_{2}(F))=(0,\Sigma_{\underline{m}},c) where Σm¯=rΣ0i=1lmiΔi\Sigma_{\underline{m}}=r\Sigma_{0}-\sum^{l}_{i=1}m_{i}\Delta_{i}. Assume that β\beta and AA are chosen generic enough such that every β\beta-twisted AA-Gieseker semistable sheaf is β\beta-twisted AA-Gieseker stable. In particular, ξ¯\mathcal{M}_{\underline{\xi}} is projective. Moreover, the moduli space ξ¯\mathcal{H}_{\underline{\xi}} is an open subset in ξ¯\mathcal{M}_{{\underline{\xi}}} via the spectral correspondence. Since the ample divisor AA is chosen such that AA restricted to Sξ¯S_{\underline{\xi}} is π(κp)\pi^{*}(\kappa p) for some sufficiently large κ\kappa, we have P(F,t)=P(πF,κt)=rκt+d+r(1g)P(F,t)=P(\pi_{*}F,\kappa t)=r\kappa t+d+r(1-g) for each Fξ¯F\in\mathcal{M}_{\underline{\xi}}. By applying [HL97, Corollary 4.6.6], the assumption of rr and dd being coprime implies that there exists a universal sheaf ξ¯\mathcal{F}_{\mathcal{M}_{{\underline{\xi}}}} on ξ¯×Zξ¯\mathcal{M}_{{\underline{\xi}}}\times Z_{\underline{\xi}}. We will denote by \mathcal{F} its restriction to ξ¯×Zξ¯\mathcal{H}_{\underline{\xi}}\times Z_{\underline{\xi}}.

Proposition 3.3.

The Künneth components of the Chern classes of \mathcal{F} generate Hpure(ξ¯,).H_{\textrm{pure}}^{*}(\mathcal{H}_{\underline{\xi}},\mathbb{Q}).

Proof.

Let Hch()(ξ¯,)H(ξ¯,)H^{*}_{\textrm{ch}(\mathcal{F})}(\mathcal{H}_{\underline{\xi}},\mathbb{Q})\subset H^{*}(\mathcal{H}_{\underline{\xi}},\mathbb{Q}) be the subring generated by the Künneth component of the Chern classes of \mathcal{F}. Then it is clear that Hch()(ξ¯,)Hpure(ξ¯,)H^{*}_{\textrm{ch}(\mathcal{F})}(\mathcal{H}_{\underline{\xi}},\mathbb{Q})\subset H^{*}_{\textrm{pure}}(\mathcal{H}_{\underline{\xi}},\mathbb{Q}). Recall that each Fξ¯F\in\mathcal{H}_{{\underline{\xi}}} viewed as a β\beta-twisted AA-Gieseker stable sheaf via the spectral correspondence is supported on the open surface Sξ¯Zξ¯S_{{\underline{\xi}}}\subset Z_{{\underline{\xi}}} and Sξ¯S_{{\underline{\xi}}} is holomorphic symplectic. In particular, we have FKZξ¯FKSξ¯F.F\otimes K_{Z_{{\underline{\xi}}}}\cong F\otimes K_{S_{{\underline{\xi}}}}\cong F. Then this is the setup where we can apply the argument and result of Markman [Mar02, Section 4].

If GG is another β\beta-twisted AA-Gieseker stable sheaf in ξ¯\mathcal{M}_{{\underline{\xi}}}, we have

(3) ExtZξ¯2(F,G)\displaystyle\textrm{Ext}^{2}_{Z_{{\underline{\xi}}}}(F,G) Hom(G,FKZξ¯)Hom(G,F);\displaystyle\cong\textrm{Hom}(G,F\otimes K_{Z_{{\underline{\xi}}}})^{\vee}\cong\textrm{Hom}(G,F)^{\vee};
(4) ExtZξ¯2(G,F)\displaystyle\textrm{Ext}^{2}_{Z_{{\underline{\xi}}}}(G,F) Hom(F,GKZξ¯)Hom(FKZξ¯1,G)Hom(F,G).\displaystyle\cong\textrm{Hom}(F,G\otimes K_{Z_{{\underline{\xi}}}})^{\vee}\cong\textrm{Hom}(F\otimes K_{Z_{{\underline{\xi}}}}^{-1},G)^{\vee}\cong\textrm{Hom}(F,G)^{\vee}.

Let us denote by πij\pi_{ij} the projection from ξ¯×Zξ¯×ξ¯\mathcal{M}_{{\underline{\xi}}}\times Z_{{\underline{\xi}}}\times\mathcal{H}_{{\underline{\xi}}} to the product of the ii-th and jj-th factors. For any flat projective morphism f:XYf:X\to Y and coherent sheaves F1,F2F_{1},F_{2} on XX, we denote by xtfi(F1,F2):=Rifom(F1,F2)\mathcal{E}xt^{i}_{f}(F_{1},F_{2}):=R^{i}f_{*}\mathcal{H}om(F_{1},F_{2}) the ii-th relative extension sheaf on YY and xtf!(F1,F2):=(1)ixtfi(F1,F2)\mathcal{E}xt^{!}_{f}(F_{1},F_{2}):=\sum(-1)^{i}\mathcal{E}xt^{i}_{f}(F_{1},F_{2}) the corresponding class in the Grothendieck group of YY. Then the identities (3) and (4) above imply that the following relative extension sheaves

xtπ132(π12ξ¯,π23),xtπ132(π23,π12ξ¯)\displaystyle\mathcal{E}xt^{2}_{\pi_{13}}(\pi_{12}^{*}\mathcal{F}_{\mathcal{M}_{{\underline{\xi}}}},\pi_{23}^{*}\mathcal{F}),\quad\mathcal{E}xt^{2}_{\pi_{13}}(\pi_{23}^{*}\mathcal{F},\pi_{12}^{*}\mathcal{F}_{\mathcal{M}_{{\underline{\xi}}}})

are supported as line bundles on the graph Δξ¯×ξ¯\Delta\subset\mathcal{M}_{{\underline{\xi}}}\times\mathcal{H}_{{\underline{\xi}}} of ξ¯ξ¯\mathcal{H}_{\underline{\xi}}\hookrightarrow\mathcal{M}_{\underline{\xi}}. Then we can apply the proof of [Mar02, Theorem 1] verbatim to Δξ¯×ξ¯\Delta\subset\mathcal{M}_{\underline{\xi}}\times\mathcal{H}_{\underline{\xi}} to show that the class of Δ\Delta in the Borel-Moore homology is given by the image of the Poincaré-duality map of

(5) cm[xtπ13!(π12ξ¯,π23)].c_{m}[-\mathcal{E}xt^{!}_{\pi_{13}}(\pi^{*}_{12}\mathcal{F}_{\mathcal{M}_{\underline{\xi}}},\pi^{*}_{23}\mathcal{F})].

As remarked in [Mar02, Section 4], the argument for the equality (5) does not require the smoothness of ξ¯\mathcal{M}_{\underline{\xi}}.

Let f:ξ¯~ξ¯f:\widetilde{\mathcal{M}_{{\underline{\xi}}}}\to\mathcal{M}_{\underline{\xi}} be a resolution of ξ¯\mathcal{M}_{\underline{\xi}} which is a then a smooth compactification of ξ¯\mathcal{H}_{\underline{\xi}}. Denote the inclusion by i:ξ¯ξ¯~i:\mathcal{H}_{\underline{\xi}}\hookrightarrow\widetilde{\mathcal{M}_{\underline{\xi}}} and its graph by Δ~ξ¯~×ξ¯\widetilde{\Delta}\subset\widetilde{\mathcal{M}_{\underline{\xi}}}\times\mathcal{H}_{\underline{\xi}}. Let HΔ~(ξ¯,)H(ξ¯,)H^{*}_{\widetilde{\Delta}}(\mathcal{H}_{\underline{\xi}},\mathbb{Q})\subset H^{*}(\mathcal{H}_{\underline{\xi}},\mathbb{Q}) be the linear subspace spanned by the right hand Künneth components of the class of Δ~\widetilde{\Delta}. Since Hpure(ξ¯,)=Im(H(ξ¯~,)H(ξ¯,))H^{*}_{\textrm{pure}}(\mathcal{H}_{\underline{\xi}},\mathbb{Q})=Im(H^{*}(\widetilde{\mathcal{M}_{\underline{\xi}}},\mathbb{Q})\to H^{*}(\mathcal{H}_{\underline{\xi}},\mathbb{Q})), a standard argument [MN18, Proposition 2.1] shows that Hpure(ξ¯,)HΔ~(ξ¯,)H_{\textrm{pure}}^{*}(\mathcal{H}_{\underline{\xi}},\mathbb{Q})\subset H_{\widetilde{\Delta}}^{*}(\mathcal{H}_{\underline{\xi}},\mathbb{Q}). Finally, since Δ\Delta is pulled back to Δ~\widetilde{\Delta} under the natural map f×Id:ξ¯~×ξ¯ξ¯×ξ¯f\times\textrm{Id}:\widetilde{\mathcal{M}_{\underline{\xi}}}\times\mathcal{H}_{\underline{\xi}}\to\mathcal{M}_{\underline{\xi}}\times\mathcal{H}_{\underline{\xi}}, the class of Δ~\widetilde{\Delta} is given by cm[xtπ13!((f×Id×Id)π12ξ¯,π23)].c_{m}[-\mathcal{E}xt^{!}_{\pi_{13}}((f\times\textrm{Id}\times\textrm{Id})^{*}\pi^{*}_{12}\mathcal{F}_{\mathcal{M}_{\underline{\xi}}},\pi^{*}_{23}\mathcal{F})]. It follows that HΔ~(ξ¯,)Hch()(ξ¯,)H^{*}_{\widetilde{\Delta}}(\mathcal{H}_{\underline{\xi}},\mathbb{Q})\subset H^{*}_{\textrm{ch}(\mathcal{F})}(\mathcal{H}_{\underline{\xi}},\mathbb{Q}) (see [Mar02, Corollary 2]). Combining the inclusions of subrings, we conclude that Hch()(ξ¯,)=Hpure(ξ¯,)H^{*}_{\textrm{ch}(\mathcal{F})}(\mathcal{H}_{\underline{\xi}},\mathbb{Q})=H^{*}_{\textrm{pure}}(\mathcal{H}_{\underline{\xi}},\mathbb{Q}). ∎

Define the linear map

ch():H(Zξ¯,)H(ξ¯,),αqξ¯,{ch()qZξ¯(αTdZξ¯)}.\textrm{ch}_{\mathcal{F}}(-):H^{*}(Z_{\underline{\xi}},\mathbb{Q})\to H^{*}(\mathcal{H}_{\underline{\xi}},\mathbb{Q}),\quad\alpha\mapsto q_{\mathcal{H}_{\underline{\xi}},*}\{\textrm{ch}(\mathcal{F})\cdot q^{*}_{Z_{\underline{\xi}}}(\alpha\cdot\textrm{Td}_{Z_{\underline{\xi}}})\}.

Note that the Künneth components of the Chern classes of \mathcal{F} in Hk(ξ¯,)H^{k}(\mathcal{H}_{\underline{\xi}},\mathbb{Q}) can always be expressed as the projection of the image of ch()\textrm{ch}_{\mathcal{F}}(-) from H(ξ¯,)H^{*}(\mathcal{H}_{\underline{\xi}},\mathbb{Q}) to Hk(ξ¯,)H^{k}(\mathcal{H}_{\underline{\xi}},\mathbb{Q}). If αK=ker(H(Zξ¯,)H(Sξ¯,))\alpha\in K=\textrm{ker}(H^{*}(Z_{\underline{\xi}},\mathbb{Q})\to H^{*}(S_{\underline{\xi}},\mathbb{Q})), then ch()qZξ¯(α)\textrm{ch}(\mathcal{F})\cdot q^{*}_{Z_{\underline{\xi}}}(\alpha) vanishes since the universal sheaf \mathcal{F} is supported on the open subset ξ¯×Sξ¯ξ¯×Zξ¯\mathcal{H}_{{\underline{\xi}}}\times S_{\underline{\xi}}\subset\mathcal{H}_{{\underline{\xi}}}\times Z_{\underline{\xi}}. It follows that the map ch()\textrm{ch}_{\mathcal{F}}(-) factors through H(Zξ¯,)/KHpure(Sξ¯)H^{*}(Z_{\underline{\xi}},\mathbb{Q})/K\cong H^{*}_{\textrm{pure}}(S_{\underline{\xi}}) i.e. the pure part of H(Sξ¯,)H^{*}(S_{\underline{\xi}},\mathbb{Q}), which is H(Sξ¯,)H^{*}(S_{\underline{\xi}},\mathbb{Q}) itself due to Proposition 3.2. So we can also write ch():H(Sξ¯,)H(ξ¯,)\textrm{ch}_{\mathcal{F}}(-):H^{*}(S_{\underline{\xi}},\mathbb{Q})\to H^{*}(\mathcal{H}_{\underline{\xi}},\mathbb{Q}). Since H(Sξ¯,)H(C,)i=1l[Ξn,i]H^{*}(S_{\underline{\xi}},\mathbb{Q})\cong H^{*}(C,\mathbb{Q})\oplus\bigoplus_{i=1}^{l}\mathbb{Q}[\Xi_{n,i}] by Proposition 3.1, we are going to describe the image of each component under ch()\textrm{ch}_{\mathcal{F}}(-).

Recall the following notations: π:Zξ¯C\pi:Z_{{\underline{\xi}}}\to C is the composition of the blow-up morphism and the projection Zξ¯M¯CZ_{\underline{\xi}}\to\overline{M}\to C. Let νi:Ξn,iZξ¯\nu_{i}:\Xi_{n,i}\to Z_{\underline{\xi}} be the closed embedding of the exceptional divisor for 1il.1\leq i\leq l. Denote by qξ¯,qZξ¯q_{\mathcal{H}_{\underline{\xi}}},q_{Z_{\underline{\xi}}} the projection from ξ¯×Zξ¯\mathcal{H}_{\underline{\xi}}\times Z_{\underline{\xi}} to the corresponding factors and pξ¯,pCp_{\mathcal{H}_{\underline{\xi}}},p_{C} the projection from ξ¯×C\mathcal{H}_{\underline{\xi}}\times C to the corresponding factors. The notation is summarized in the following diagram.

ξ¯{\mathcal{H}_{\underline{\xi}}}ξ¯×Zξ¯{\mathcal{H}_{\underline{\xi}}\times Z_{\underline{\xi}}}Zξ¯{Z_{\underline{\xi}}}ξ¯{\mathcal{H}_{\underline{\xi}}}ξ¯×C{\mathcal{H}_{\underline{\xi}}\times C}C{C}qξ¯\scriptstyle{q_{\mathcal{H}_{\underline{\xi}}}}Id×π\scriptstyle{\textrm{Id}\times\pi}qZξ¯\scriptstyle{q_{Z_{\underline{\xi}}}}π\scriptstyle{\pi}pξ¯\scriptstyle{p_{\mathcal{H}_{\underline{\xi}}}}pC\scriptstyle{p_{C}}
Lemma 3.4.

Every element in the image ch(H(C,))H(ξ¯,)\textrm{ch}_{\mathcal{F}}(H^{*}(C,\mathbb{Q}))\subset H^{*}(\mathcal{H}_{\underline{\xi}},\mathbb{Q}) can be written as a linear combination of the Künneth components of the Chern classes of ξ¯\mathcal{E}_{\underline{\xi}}.

Proof.

Note that by the spectral correspondence, (Id×π)=ξ¯(\textrm{Id}\times\pi)_{*}\mathcal{F}=\mathcal{E}_{\underline{\xi}}. Suppose π(x)H(Sξ¯,)\pi^{*}(x)\in H^{*}(S_{\underline{\xi}},\mathbb{Q}) is a class from H(C,)H^{*}(C,\mathbb{Q}). Using qξ¯=pξ¯(Id×π)q_{\mathcal{H}_{\underline{\xi}}}=p_{\mathcal{H}_{\underline{\xi}}}\circ(\textrm{Id}\times\pi) and πqZξ¯=pC(Id×π)\pi\circ q_{Z_{\underline{\xi}}}=p_{C}\circ(\textrm{Id}\times\pi), we have

ch(π(x))\displaystyle\textrm{ch}_{\mathcal{F}}(\pi^{*}(x)) =qξ¯,{ch()qZξ¯(π(x)TdZξ¯)}\displaystyle=q_{\mathcal{H}_{\underline{\xi}},*}\{\textrm{ch}(\mathcal{F})\cdot q^{*}_{Z_{\underline{\xi}}}(\pi^{*}(x)\cdot\textrm{Td}_{Z_{\underline{\xi}}})\}
=pξ¯,(Id×π){ch()qZξ¯TdZξ¯(Id×π)pC(x)}\displaystyle=p_{\mathcal{H}_{\underline{\xi}},*}\circ(\textrm{Id}\times\pi)_{*}\{\textrm{ch}(\mathcal{F})\cdot q^{*}_{Z_{\underline{\xi}}}\textrm{Td}_{Z_{\underline{\xi}}}\cdot(\textrm{Id}\times\pi)^{*}p_{C}^{*}(x)\}
=pξ¯,{(Id×π)(ch()qZξ¯TdZξ¯)pC(x)}\displaystyle=p_{\mathcal{H}_{\underline{\xi}},*}\{(\textrm{Id}\times\pi)_{*}(\textrm{ch}(\mathcal{F})\cdot q^{*}_{Z_{\underline{\xi}}}\textrm{Td}_{Z_{\underline{\xi}}})\cdot p^{*}_{C}(x)\}
=pξ¯,{ch(ξ¯)pCTdCpC(x)}\displaystyle=p_{\mathcal{H}_{\underline{\xi}},*}\{\textrm{ch}(\mathcal{E}_{\underline{\xi}})\cdot p_{C}^{*}\textrm{Td}_{C}\cdot p^{*}_{C}(x)\}

where we used the projection formula for the second equality and the Grothendieck-Riemann-Roch theorem for the third equality.

Lemma 3.5.

The image ch([Ξn,i])\textrm{ch}_{\mathcal{F}}([\Xi_{n,i}]) in H(ξ¯,)H^{*}(\mathcal{H}_{\underline{\xi}},\mathbb{Q}) is equal to ch(Qξ¯i)\textrm{ch}(Q_{\underline{\xi}}^{i}).

Proof.

Denote by ι:ξ¯×{p}ξ¯×C\iota:\mathcal{H}_{\underline{\xi}}\times\{p\}\to\mathcal{H}_{\underline{\xi}}\times C the inclusion and pξ¯:ξ¯×{p}ξ¯p^{\prime}_{\mathcal{H}_{\underline{\xi}}}:\mathcal{H}_{\underline{\xi}}\times\{p\}\to\mathcal{H}_{\underline{\xi}} the projection. Note that

ch(Qξ¯i)=pξ¯{(pξ¯)ch(Qξ¯i)}=pξ¯,ι{(pξ¯)ch(Qξ¯i)}=pξ¯{ch(ιQξ¯i)pCTdC}\textrm{ch}(Q_{\underline{\xi}}^{i})=p^{\prime}_{\mathcal{H}_{\underline{\xi}}*}\left\{(p^{\prime}_{\mathcal{H}_{\underline{\xi}}})^{*}\textrm{ch}(Q_{\underline{\xi}}^{i})\right\}=p_{\mathcal{H}_{\underline{\xi}},*}\iota_{*}\{(p^{\prime}_{\mathcal{H}_{\underline{\xi}}})^{*}\textrm{ch}(Q_{\underline{\xi}}^{i})\}=p_{\mathcal{H}_{\underline{\xi}}*}\left\{\textrm{ch}\left(\iota_{*}Q_{\underline{\xi}}^{i}\right)\cdot p^{*}_{C}\textrm{Td}_{C}\right\}

where we apply the Grothendieck-Riemann-Roch theorem to the last equality.

By the construction of the spectral correspondence and Remark A.1, we have

ιQξ¯i(Id×π)((Id×νi)𝒪ξ¯×Ξn,i)\iota_{*}Q_{\underline{\xi}}^{i}\cong(\textrm{Id}\times\pi)_{*}(\mathcal{F}\otimes(\textrm{Id}\times\nu_{i})_{*}\mathcal{O}_{\mathcal{H}_{\underline{\xi}}\times\Xi_{n,i}})

Then

pξ¯{ch(ιQξ¯i)pCTdC}\displaystyle p_{\mathcal{H}_{\underline{\xi}}*}\left\{\textrm{ch}\left(\iota_{*}Q_{\underline{\xi}}^{i}\right)\cdot p^{*}_{C}\textrm{Td}_{C}\right\} =pξ¯{ch((Id×π)((Id×νi)𝒪ξ¯×Ξn,i))pCTdC}\displaystyle=p_{\mathcal{H}_{\underline{\xi}}*}\left\{\textrm{ch}\left((\textrm{Id}\times\pi)_{*}(\mathcal{F}\otimes(\textrm{Id}\times\nu_{i})_{*}\mathcal{O}_{\mathcal{H}_{\underline{\xi}}\times\Xi_{n,i}})\right)\cdot p^{*}_{C}\textrm{Td}_{C}\right\}
=pξ¯{(Id×π)(ch((Id×νi)𝒪ξ¯×Ξn,i)qZξ¯TdZξ¯)}\displaystyle=p_{\mathcal{H}_{\underline{\xi}}*}\left\{(\textrm{Id}\times\pi)_{*}\left(\textrm{ch}(\mathcal{F}\otimes(\textrm{Id}\times\nu_{i})_{*}\mathcal{O}_{\mathcal{H}_{\underline{\xi}}\times\Xi_{n,i}})\cdot q^{*}_{Z_{\underline{\xi}}}\textrm{Td}_{Z_{\underline{\xi}}}\right)\right\}
=qξ¯{ch()[ξ¯×Ξn,i]qZξ¯TdZξ¯}\displaystyle=q_{\mathcal{H}_{\underline{\xi}}*}\{\textrm{ch}(\mathcal{F})\cdot[\mathcal{H}_{\underline{\xi}}\times\Xi_{n,i}]\cdot q^{*}_{Z_{\underline{\xi}}}\textrm{Td}_{Z_{\underline{\xi}}}\}
=qξ¯{ch()qZξ¯[Ξn,i]qZξ¯TdZξ¯}=ch([Ξn,i]).\displaystyle=q_{\mathcal{H}_{\underline{\xi}}*}\{\textrm{ch}(\mathcal{F})\cdot q_{Z_{\underline{\xi}}}^{*}[\Xi_{n,i}]\cdot q^{*}_{Z_{\underline{\xi}}}\textrm{Td}_{Z_{\underline{\xi}}}\}=\textrm{ch}_{\mathcal{F}}([\Xi_{n,i}]).

where the second equality follows from the Grothendieck-Riemann-Roch theorem and the third inequality we use the fact that ch(f𝒪Y)=[Y]\textrm{ch}(f_{*}\mathcal{O}_{Y})=[Y] for a Cartier divisor f:YXf:Y\hookrightarrow X. Therefore, the expressions above combine to give ch(Qξ¯i)=ch([Ξn,i])\textrm{ch}(Q_{\underline{\xi}}^{i})=\textrm{ch}_{\mathcal{F}}([\Xi_{n,i}]). ∎

Combining Proposition 3.3 with the two previous lemmas, we obtain our main theorem.

Theorem 3.6.

Let ξ¯{\underline{\xi}} be generic. The pure cohomology Hpure(ξ¯,)H^{*}_{pure}(\mathcal{H}_{\underline{\xi}},\mathbb{Q}) is generated by the Künneth components of the Chern classes of ξ¯\mathcal{E}_{\underline{\xi}} and the Chern classes of Qξ¯iQ_{\underline{\xi}}^{i}, where 1il.1\leq i\leq l.

3.3. Purity

In this section, we study the purity of the \mathbb{Q}-mixed Hodge structure on H(ξ¯,)H^{*}(\mathcal{H}_{\underline{\xi}},\mathbb{Q}) in the regular full-flag case. For simplicity, we write =(C,p;r,d,α¯,1¯)\mathcal{H}={\bf\mathcal{H}}(C,p;r,d,\underline{\alpha},\underline{1}), 𝒩=𝒩(l,p)\mathcal{N}=\mathcal{N}(l,p), P:𝒩P:\mathcal{H}\to\mathcal{N}, ξ¯=P1(ξ¯)\mathcal{H}_{\underline{\xi}}=P^{-1}({\underline{\xi}}), =(C,p;r,d,α¯,1¯)\mathcal{M}=\mathcal{M}(C,p;r,d,{\underline{\alpha}},\underline{1}) and 0=0(C,p;r,d,α¯,1¯)\mathcal{M}_{0}=\mathcal{M}_{0}(C,p;r,d,{\underline{\alpha}},\underline{1}). Recall that by Proposition 2.8, we have \mathcal{H}\cong\mathcal{M}. Also, by definition, we have 0=P1(0)\mathcal{M}_{0}=P^{-1}(0).

Theorem 3.7.

In the regular full-flag case, for any ξ¯𝒩{\underline{\xi}}\in\mathcal{N}, the restriction morphism

ιξ¯:H(,)H(ξ¯,)\iota_{\underline{\xi}}^{*}:H^{*}(\mathcal{H},\mathbb{Q})\to H^{*}(\mathcal{H}_{\underline{\xi}},\mathbb{Q})

is an isomorphism of \mathbb{Q}-mixed Hodge structures where ιξ¯:ξ¯\iota_{\underline{\xi}}:\mathcal{H}_{\underline{\xi}}\hookrightarrow\mathcal{H} is the canonical inclusion. In particular, both are of pure type.

The proof relies on the property of semi-projective varieties.

Definition 3.8.

[HR15, Definition 1.1.1] Let XX be a non-singular quasi-projective variety over \mathbb{C} with a \mathbb{C}^{\ast}-action. We call XX semi-projective if the following two conditions hold:

  1. (1)

    the fixed point set XX^{\mathbb{C}^{\ast}} is proper

  2. (2)

    for every xXx\in X, the limit limλ0λx\lim_{\lambda\to 0}\lambda x exists for λ\lambda\in\mathbb{C}^{\ast}.

Proposition 3.9.

[HR15, Corollary 1.3.3] Let XX be a non-singular complex algebraic variety and f:Xf:X\to\mathbb{C} is a smooth morphism. Also, suppose that XX is semi-projective with a \mathbb{C}^{\ast}-action making ff equivariant covering a linear action of \mathbb{C}^{\ast} on \mathbb{C} with positive weight. Then the fibers Xc:=f1(c)X_{c}:=f^{-1}(c) have isomorphic cohomology supporting pure mixed Hodge structures.

Lemma 3.10.

In the regular full-flag case, the relative moduli space \mathcal{H} is semi-projective.

Proof.

First, note that we have a natural scaling \mathbb{C}^{\ast}-action on \mathcal{H}: for tt\in\mathbb{C}^{\ast}, (E,ED,α,Φ)(E,E_{D}^{\bullet},\alpha,\Phi)\in\mathcal{H}, the action is defined as t(E,ED,α,Φ):=(E,ED,α,tΦ)t\cdot(E,E_{D}^{\bullet},\alpha,\Phi):=(E,E_{D}^{\bullet},\alpha,t\Phi). Similarly, there is a scaling \mathbb{C}^{\ast}-action on \mathcal{M} such that the isomorphism \mathcal{H}\cong\mathcal{M} we showed in Proposition 2.8 is compatible with these scaling \mathbb{C}^{\ast}-actions. The conclusion follows from the properness of the Hitchin morphism hh [Yok93, Corollary 5.12] which shows that \mathcal{M} is semi-projective with respect to the scaling \mathbb{C}^{\ast}-action. ∎

Proof of Theorem 3.7.

By iteratively applying Proposition 3.9 to the canonical morphism P:𝒩P:\mathcal{H}\to\mathcal{N}, we achieve the purity of the \mathbb{Q}-mixed Hodge structure on H(ξ¯)H^{*}(\mathcal{H}_{\underline{\xi}}) for any ξ¯𝒩{\underline{\xi}}\in\mathcal{N}. Since PP is smooth by Corollary 2.11, the pullback morphism

ιξ¯:H()H(ξ¯)\iota_{\underline{\xi}}^{*}:H^{*}(\mathcal{H})\to H^{*}(\mathcal{H}_{\underline{\xi}})

induced by the canonical inclusion ιξ¯:ξ¯\iota_{\underline{\xi}}:\mathcal{H}_{\underline{\xi}}\hookrightarrow\mathcal{H} is an isomorphism of \mathbb{Q}-mixed Hodge structures by the proof of [HR15, Corollary 1.3.3]. This completes the proof. ∎

Remark 3.11.

In the work of Komyo [Kom17] and [Hau+22],a similar argument was used to show that the cohomology of the coarse moduli space of regular parabolic Higgs bundles is of pure type.

Following from Theorem 3.6, we have the following generation result for the cohomology ring of the coarse moduli space of regular (strongly) parabolic Higgs bundles of the full-flag type.

Corollary 3.12.

The cohomology of the coarse moduli space of stable regular parabolic (resp. strongly parabolic) Higgs bundles \mathcal{M} (resp. 0\mathcal{M}_{0}) of the full-flag type is generated by the Künneth components of the Chern classes of a universal bundle and the Chern classes of successive quotients of a universal flag of subbundles.

Proof.

Recall that by Proposition 2.8, we have \mathcal{H}\cong\mathcal{M}. Choose a generic ξ¯{\underline{\xi}} and denote by ιξ¯:ξ¯\iota^{\prime}_{{\underline{\xi}}}:\mathcal{H}_{\underline{\xi}}\to\mathcal{H}\xrightarrow{\sim}\mathcal{M} the composition. Let \mathcal{E} be a universal bundle on ×C\mathcal{M}\times C and ξ¯\mathcal{E}_{{\underline{\xi}}} be a universal bundle on ξ¯×C\mathcal{H}_{\underline{\xi}}\times C such that (ιξ¯×Id)=ξ¯(\iota^{\prime}_{\underline{\xi}}\times\textrm{Id})^{*}\mathcal{E}=\mathcal{E}_{\underline{\xi}}. Let ×p\mathcal{E}^{\bullet}_{\mathcal{M}\times p} (resp. ξ¯×p\mathcal{E}^{\bullet}_{\mathcal{H}_{\underline{\xi}}\times p}) be the universal flag of subbundles of \mathcal{E} (resp. ξ¯\mathcal{E}_{\underline{\xi}}) on ×p\mathcal{M}\times p (resp. ξ¯×p\mathcal{H}_{\underline{\xi}}\times p). Let Qi:=×pi/×pi1Q^{i}:=\mathcal{E}^{i}_{\mathcal{M}\times p}/\mathcal{E}^{i-1}_{\mathcal{M}\times p} and Qξ¯i:=ξ¯×pi/ξ¯×pi1Q^{i}_{\underline{\xi}}:=\mathcal{E}^{i}_{\mathcal{H}_{\underline{\xi}}\times p}/\mathcal{E}^{i-1}_{\mathcal{H}_{\underline{\xi}}\times p} be their associated quotients respectively. Clearly, (ιξ¯)×p=ξ¯×p(\iota^{\prime}_{\underline{\xi}})^{*}\mathcal{E}^{\bullet}_{\mathcal{M}\times p}=\mathcal{E}^{\bullet}_{\mathcal{H}_{\underline{\xi}}\times p} and Qξ¯iQ^{i}_{\underline{\xi}} is isomorphic to (ι)ξ¯Qi(\iota^{\prime})_{\underline{\xi}}^{*}Q^{i}. It is easy to see that the left-hand Künneth components of the Chern classes of ξ¯\mathcal{E}_{\underline{\xi}} in H(ξ¯)H^{*}(\mathcal{H}_{\underline{\xi}}) are exactly the pullback of the left-hand Künneth components of the Chern classes of \mathcal{E} in H()H^{*}(\mathcal{H}) along ιξ¯×Id\iota^{\prime}_{\underline{\xi}}\times\textrm{Id}. Moreover, we have (ιξ¯)ch(Qi)=ch((ιξ¯)Qi)=ch(Qξ¯i).(\iota^{\prime}_{\underline{\xi}})^{*}\textrm{ch}(Q^{i})=\textrm{ch}((\iota^{\prime}_{\underline{\xi}})^{*}Q^{i})=\textrm{ch}(Q^{i}_{\underline{\xi}}). Since (ιξ¯):H()H(ξ¯)(\iota^{\prime}_{\underline{\xi}})^{*}:H^{*}(\mathcal{M})\to H^{*}(\mathcal{H}_{\underline{\xi}}) is an isomorphism by Theorem 3.7, it follows from the generation result of H(ξ¯)H^{*}(\mathcal{H}_{\underline{\xi}}) (Theorem 3.6) that H()H^{*}(\mathcal{M}) is also generated by the Künneth components of the Chern classes of \mathcal{E} and the Chern classes of QiQ^{i}, where 1il.1\leq i\leq l.

For the case of the coarse moduli space 0\mathcal{M}_{0} of stable regular strongly parabolic Higgs bundles of the full-flag type, note that 0=P1(0)\mathcal{M}_{0}=P^{-1}(0). So Theorem 3.7 again implies that H()H(0)H^{*}(\mathcal{H})\cong H^{*}(\mathcal{M}_{0}). Applying the same argument as above shows the desired result. ∎

We conclude this section by explaining why the same method is not applicable to study the purity when n>1n>1. The issue is that 𝓗(C,D;r,d,α¯,m¯)\bm{\mathcal{H}}(C,D;r,d,\underline{\alpha},\underline{m}) is not neccessarily semi-projective because the locus of fixed point 𝓗(C,D;r,d,α¯,m¯)\bm{\mathcal{H}}(C,D;r,d,\underline{\alpha},\underline{m})^{\mathbb{C}^{\ast}} may not be proper: consider the morphism G:𝓗(C,D;r,d,α¯,m¯)(C,D;r,d,α¯,m¯)G:\bm{\mathcal{H}}(C,D;r,d,\underline{\alpha},\underline{m})\to\mathcal{M}(C,D;r,d,\underline{\alpha},\underline{m}), introduced in Remark 2.9. It is easy to see that GG is \mathbb{C}^{\ast}-equivariant. Also, since the scaling \mathbb{C}^{\ast}-action is equivariant with respect to the Hitchin morphism h:(C,D;r,d,α¯,m¯)Bh:\mathcal{M}(C,D;r,d,\underline{\alpha},\underline{m})\to B, the fixed locus belongs to P1(0)h1(0)P^{-1}(0)\cap h^{-1}(0). While h1(0)h^{-1}(0) is proper, the intersection P1(0)h1(0)P^{-1}(0)\cap h^{-1}(0) is in general open. This is because the freeness condition on the successive quotients of the flag EDE_{D}^{\bullet} is an open condition. For example, take D=3pD=3p, m¯=(3,3)\underline{m}=(3,3) and EE is a trivial bundle of rank 22. The restriction EDE_{D} is a free k[t]/t3k[t]/t^{3}-module of rank 2, k[t]/t3k[t]/t3k[t]/t^{3}\oplus k[t]/t^{3}. Let Φ\Phi be a Higgs field whose local form at DD is

Φ|D=[0t00]\Phi|_{D}=\begin{bmatrix}0&t\\ 0&0\end{bmatrix}

Choose a filtration 0ED1ED0\subset E_{D}^{1}\subset E_{D} where ED1=(t2)(t)E_{D}^{1}=(t^{2})\oplus(t). This filtration is preserved by Φ\Phi while the quotient ED/ED1E_{D}/E_{D}^{1} is not free.

On the other hand, for a generic ξ¯{\underline{\xi}}, it can be shown that that the freeness of successive quotients EDi/EDi1E_{D}^{i}/E_{D}^{i-1} follows automatically from the ξ¯{\underline{\xi}}-parabolic condition. This implies that ξ¯\mathcal{H}_{\underline{\xi}} is a closed subscheme in (C,D;r,d,α¯,m¯)\mathcal{M}(C,D;r,d,\underline{\alpha},\underline{m}).

Conjecture 3.13.

When n>1n>1, the \mathbb{Q}-mixed Hodge structure on H(ξ¯)H^{*}(\mathcal{H}_{\underline{\xi}}) is of pure type for any generic ξ¯{\underline{\xi}}.

Appendix A Proof of spectral correspondence

In this appendix, we provide a proof of the spectral correspondence (Theorem 2.14) as presented in [DDP18] (in one direction) with a slight modification on the stability conditions. We will follow the notations in Section 2.2.

Let F𝔐(Sξ¯;(0,Σm¯,c),β,A)F\in\mathfrak{M}(S_{\underline{\xi}};(0,\Sigma_{\underline{m}},c),\beta,A) be a pure dimension one sheaf on Sξ¯S_{\underline{\xi}}. Then we get a Higgs bundle E=πFE=\pi_{*}F on CC with Higgs field Φ:EEKC(D)\Phi:E\to E\otimes K_{C}(D) obtained from the direct image of the multiplication map FF𝒪Sξ¯(Σ0)F\to F\otimes\mathcal{O}_{S_{\underline{\xi}}}(\Sigma_{0}). The filtration on EDE_{D} is obtained as follows. First, observe that there are the surjections pi1:FF𝒪nΞn,ip_{i-1}:F\twoheadrightarrow F\otimes\mathcal{O}_{n\Xi_{n,i}} for 1il.1\leq i\leq l. We can then define Fl1:=ker(pl1).F_{l-1}:=\textrm{ker}(p_{l-1}). Since the divisors Ξn,i\Xi_{n,i} are mutually disjoint, the composition Fl1ιl1Fpl2F𝒪nΞn,l2F_{l-1}\xrightarrow{\iota_{l-1}}F\xrightarrow{p_{l-2}}F\otimes\mathcal{O}_{n\Xi_{n,l-2}} is also surjective and we define Fl2F_{l-2} to be ker(pl2ιl1)\textrm{ker}(p_{l-2}\circ\iota_{l-1}) which is contained in Fl1F_{l-1}. By constrction, we have Fl1/Fl2=F𝒪nΞn,l1F_{l-1}/F_{l-2}=F\otimes\mathcal{O}_{n\Xi_{n,l-1}}. Repeating this construction, we obtain a filtration of sheaves

F:F0F1Fl1FF^{\bullet}:F_{0}\subset F_{1}\subset...\subset F_{l-1}\subset F

such that Fi/Fi1F𝒪nΞn,iF_{i}/F_{i-1}\cong F\otimes\mathcal{O}_{n\Xi_{n,i}}.

Since π\pi restricted to Sξ¯S_{\underline{\xi}} is affine, the functor (π|Sξ¯)(\pi|_{S_{\underline{\xi}}})_{*} is exact. Since the sheaf FF is supported in Sξ¯S_{\underline{\xi}}, applying the functor π\pi_{*} and tensoring with 𝒪D\mathcal{O}_{D} to the surjection FF𝒪nΞn,lF\to F\otimes\mathcal{O}_{n\Xi_{n,l}}, we obtain the surjection

ql1:ED=(πF)Dπ(F𝒪nΞn,l)𝒪Dq_{l-1}:E_{D}=(\pi_{*}F)_{D}\twoheadrightarrow\pi_{*}(F\otimes\mathcal{O}_{n\Xi_{n,l}})\otimes\mathcal{O}_{D}

Note that π(F𝒪nΞn,l)𝒪Dπ(F𝒪nΞn,l)\pi_{*}(F\otimes\mathcal{O}_{n\Xi_{n,l}})\otimes\mathcal{O}_{D}\cong\pi_{*}(F\otimes\mathcal{O}_{n\Xi_{n,l}}) since π(F𝒪nΞn,l)=μ(πνiF)\pi_{*}(F\otimes\mathcal{O}_{n\Xi_{n,l}})=\mu_{*}(\pi_{*}\nu_{i}^{*}F) where μ:DC\mu:D\to C and νi:nΞn,iZξ¯\nu_{i}:n\Xi_{n,i}\to Z_{\underline{\xi}} denote the closed embeddings. We define EDl1:=ker(ql1)EDE^{l-1}_{D}:=\textrm{ker}(q_{l-1})\subset E_{D} as the first step in the filtration. The second step of the filtration is induced from the surjection Fl1ιl1Fpl2F𝒪nΞn,l1F_{l-1}\xrightarrow{\iota_{l-1}}F\xrightarrow{p_{l-2}}F\otimes\mathcal{O}_{n\Xi_{n,l-1}}. We apply π\pi_{*} followed by tensoring with 𝒪D\mathcal{O}_{D} to pl2ιl1p_{l-2}\circ\iota_{l-1} as before and obtain the surjection

(El1)DEDπ(F𝒪nΞn,l1)(E_{l-1})_{D}\to E_{D}\to\pi_{*}(F\otimes\mathcal{O}_{n\Xi_{n,l-1}})

where El1:=π(Fl1)E_{l-1}:=\pi_{*}(F_{l-1}). Since the composition (El1)DEDql1π(F𝒪n,Ξn,l)(E_{l-1})_{D}\to E_{D}\xrightarrow{q_{l-1}}\pi_{*}(F\otimes\mathcal{O}_{n,\Xi_{n,l}}) is zero, the map (El1)DED(E_{l-1})_{D}\to E_{D} factors through EDl1E^{l-1}_{D}. Then we define EDl2:=ker(EDl1EDπ(F𝒪nΞn,l1))E^{l-2}_{D}:=\textrm{ker}(E^{l-1}_{D}\to E_{D}\to\pi_{*}(F\otimes\mathcal{O}_{n\Xi_{n,l-1}})). Proceed iteratively, we get a filtration

ED:0ED1EDl1ED.E_{D}^{\bullet}:0\subset E^{1}_{D}\subset...\subset E^{l-1}_{D}\subset E_{D}.

Note that by construction EDi/EDi1π(F𝒪nΞn,i).E^{i}_{D}/E^{i-1}_{D}\cong\pi_{*}(F\otimes\mathcal{O}_{n\Xi_{n,i}}). Since the Higgs field is induced from the multiplication map FFSξ¯𝒪ξ¯(Σ0)F\to F\otimes_{S_{\underline{\xi}}}\mathcal{O}_{{\underline{\xi}}}(\Sigma_{0}) which preserves the filtration FF^{\bullet}, it follows that the Higgs field also preserves EDE_{D}^{\bullet}.

To see that (E,ED,Φ)(E,E_{D}^{\bullet},\Phi) is ξ¯{\underline{\xi}}-parabolic, we write the Higgs field in local coordinate. Choose an affine coordinate chart (U,u,z)(U,u,z) on MM with horizantal coordinate zz and vertical coordinate uu centered at the intersection between the zero section and MpM_{p}. Let yH0(M,ρM)y\in H^{0}(M,\rho^{*}M) be the tautological section. Then we can write

y|U=udzzny|_{U}=u\frac{dz}{z^{n}}

where dz/zndz/z^{n} is viewed as a local frame. Fix the integer ii. It suffices to check the condition (1) around the point 𝔭1,i\mathfrak{p}_{1,i} and restrict the simultaneous blow-up at ll points in each step to blowing up at a single point each step. We denote the nn blow-ups by UnUn1U1UU_{n}\to U_{n-1}\to...\to U_{1}\to U and (uj,zj)(u_{j},z_{j}), j=1,,nj=1,...,n, the affine coordinate for UjU_{j}. Set u0=u,z0=zu_{0}=u,z_{0}=z.

Each ξi\xi_{i} can be represented as

ξi=(λi,n+λi,n1z++λi,1zn1)dzzn\xi_{i}=\left(\lambda_{i,n}+\lambda_{i,n-1}z+...+\lambda_{i,1}z^{n-1}\right)\frac{dz}{z^{n}}

where λi,k\lambda_{i,k}\in\mathbb{C}. Then the first blow-up is given in an affine chart as

u0λi,n=u1z0,z1=z0u_{0}-\lambda_{i,n}=u_{1}z_{0},\quad z_{1}=z_{0}

Similarly, for each 1jn1\leq j\leq n, we have

ujλi,nj=uj+1zj,zj=zj+1u_{j}-\lambda_{i,n-j}=u_{j+1}z_{j},\quad z_{j}=z_{j+1}

Combining the equations, we get that

u=u1z1+λi,n=(u2z2+λi,n1)z2+λi,n==unznn+λi,1znn1++λi,n1zn+λi,n,z=znu=u_{1}z_{1}+\lambda_{i,n}=(u_{2}z_{2}+\lambda_{i,n-1})z_{2}+\lambda_{i,n}=...=u_{n}z_{n}^{n}+\lambda_{i,1}z^{n-1}_{n}+...+\lambda_{i,n-1}z_{n}+\lambda_{i,n},\quad z=z_{n}

The equations u=unznn+λi,1znn1++λi,n1zn+λi,nu=u_{n}z_{n}^{n}+\lambda_{i,1}z^{n-1}_{n}+...+\lambda_{i,n-1}z_{n}+\lambda_{i,n} and z=znz=z_{n} define the morphism between the affine neighbourhoods of UnU_{n} and UU. Note that

udzzn=undz+(λi,1dzz++λi,n1dzzn1+λi,ndzzn)u\frac{dz}{z^{n}}=u_{n}dz+\left(\lambda_{i,1}\frac{dz}{z}+...+\lambda_{i,n-1}\frac{dz}{z^{n-1}}+\lambda_{i,n}\frac{dz}{z^{n}}\right)

The space of sections of FF in UnU_{n} is a [un,z]\mathbb{C}[u_{n},z]-module ΥF\Upsilon_{F}. By [DDP18, Appendix A.3], π(F𝒪nΞn,i)\pi_{*}(F\otimes\mathcal{O}_{n\Xi_{n,i}}) is a locally free 𝒪D\mathcal{O}_{D}-module, which implies that its space of sections ΥF[un,z][un,z]/(zn)Bmi\Upsilon_{F}\otimes_{\mathbb{C}[u_{n},z]}\mathbb{C}[u_{n},z]/(z^{n})\cong B^{\oplus m_{i}} where B=[z]/(zn)B=\mathbb{C}[z]/(z^{n}). Then the Higgs field restricted to DD is a BB-module homomorphism ΦD,i:BmiBmidz/zn\Phi_{D,i}:B^{\oplus m_{i}}\to B^{\oplus m_{i}}\otimes dz/z^{n} given by multiplication by udzznu\frac{dz}{z^{n}}. But

u=λi,1znn1++λi,n1zn+λi,nmod Bu=\lambda_{i,1}z^{n-1}_{n}+...+\lambda_{i,n-1}z_{n}+\lambda_{i,n}\qquad\textrm{mod }B

Therefore, multiplication by udz/znudz/z^{n} is the same as multiplication by ξiIdBmi\xi_{i}\otimes\textrm{Id}_{B^{\oplus m_{i}}} and ΦD,i=ξiIdEDi/EDi1\Phi_{D,i}=\xi_{i}\otimes\textrm{Id}_{E^{i}_{D}/E^{i-1}_{D}}. This concludes the assignment of an irregular ξ¯{\underline{\xi}}-parabolic Higgs bundle for each F𝔐(Sξ¯;(0,Σm¯,c),β,A)F\in\mathfrak{M}(S_{\underline{\xi}};(0,\Sigma_{\underline{m}},c),\beta,A). For the other direction, we refer the readers to [DDP18, Section 3.3].

The equivalence of the stability conditions of both sides can be seen as follows. Recall that β=i=1lβiΞn,i\beta=\sum^{l}_{i=1}\beta_{i}\Xi_{n,i} for some choice of βi,1il\beta_{i},1\leq i\leq l. Then the difference between Pβ(F,t)P_{\beta}(F,t) and P(F,t)P(F,t) becomes

Xβch1(F(t))=Xβch1(F)=βΣm¯=βimi\int_{X}\beta\cdot\textrm{ch}_{1}(F(t))=\int_{X}\beta\cdot\textrm{ch}_{1}(F)=\int\beta\cdot\Sigma_{\underline{m}}=\sum\beta_{i}m_{i}

Moreover, note that nmi=χ(F𝒪nΞn,i)=χ(π(F𝒪nΞn,i))=χ(EDi/EDi1)nm_{i}=\chi(F\otimes\mathcal{O}_{n\Xi_{n,i}})=\chi(\pi_{*}(F\otimes\mathcal{O}_{n\Xi_{n,i}}))=\chi(E^{i}_{D}/E^{i-1}_{D}). If β\beta is chosen such that αi=βi/n\alpha_{i}=\beta_{i}/n, then

(6) Xβch1(F(t))=i=1lαiχ(EDi/EDi1)\int_{X}\beta\cdot\textrm{ch}_{1}(F(t))=\sum_{i=1}^{l}\alpha_{i}\chi(E^{i}_{D}/E^{i-1}_{D})

Recall that the ample divisor AA is chosen such that AA restricted to Sξ¯S_{\underline{\xi}} is π(κp)\pi^{*}(\kappa p) for some sufficiently large κ\kappa, so we have P(F,t)=P(πF,κt)P(F,t)=P(\pi_{*}F,\kappa t). Therefore, combining with the equality (6) above combine yields

(7) pβ(F,t)=par-Pα(πF,κt).p_{\beta}(F,t)=\textrm{par-}P_{\alpha}(\pi_{*}F,\kappa t).

Now, the proof in [DDP18, Section 3] also shows that under the correspondence, proper coherent subsheaves FF^{\prime} of FF of pure dimension one on Sξ¯S_{\underline{\xi}} correspond to proper coherent subsheaves E=πFE^{\prime}=\pi_{*}F^{\prime} of E=πFE=\pi_{*}F on CC preserved by Φ\Phi with the induced filtration FD.F^{\prime\bullet}_{D}. Since scaling the variable in a polynomial preserves the order, the equality (7) implies the equivalence of the β\beta-twisted AA-Gieseker (semi)stability and the stability of irregular parabolic Higgs bundles.

Remark A.1.

Note that if we replace 𝒪nΞn,i\mathcal{O}_{n\Xi_{n,i}} in the proof above by 𝒪Ξn,i\mathcal{O}_{\Xi_{n,i}}, then the construction of the filtration yields a filtration of vector spaces Ep:0Ep1Epl1EpE^{\bullet}_{p}:0\subset E^{1}_{p}\subset\dots\subset E^{l-1}_{p}\subset E_{p} such that Epi/Epi1π(F𝒪Ξn,i).E^{i}_{p}/E^{i-1}_{p}\cong\pi_{*}(F\otimes\mathcal{O}_{\Xi_{n,i}}). Also, it is clear that the restriction of EDE^{\bullet}_{D} to pp is EpE^{\bullet}_{p}.

Acknowledgement

We would like to thank Philip Boalch, Michi-aki Inaba, Tony Pantev, Qizheng Yin for many useful discussions. The second author gratefully acknowledges the financial support received from the Leverhulme Trust.

References

  • [AB83] M.. Atiyah and R. Bott “The Yang-Mills equations over Riemann surfaces” In Philos. Trans. Roy. Soc. London Ser. A 308.1505, 1983, pp. 523–615 DOI: 10.1098/rsta.1983.0017
  • [BM14] Arend Bayer and Emanuele Macrì “Projectivity and birational geometry of Bridgeland moduli spaces” In J. Amer. Math. Soc. 27.3, 2014, pp. 707–752 DOI: 10.1090/S0894-0347-2014-00790-6
  • [Bea95] Arnaud Beauville “Sur la cohomologie de certains espaces de modules de fibrés vectoriels” In Geometry and analysis (Bombay, 1992) Tata Inst. Fund. Res., Bombay, 1995, pp. 37–40
  • [BB04] Olivier Biquard and Philip Boalch “Wild non-abelian Hodge theory on curves” In Compos. Math. 140.1, 2004, pp. 179–204 DOI: 10.1112/S0010437X03000010
  • [BR96] Indranil Biswas and N. Raghavendra “Canonical generators of the cohomology of moduli of parabolic bundles on curves” In Math. Ann. 306.1, 1996, pp. 1–14 DOI: 10.1007/BF01445239
  • [Boa12] Philip Boalch “Hyperkahler manifolds and nonabelian Hodge theory of (irregular) curves”, 2012 arXiv:1203.6607 [math.AG]
  • [CHM12] Mark Andrea A. Cataldo, Tamás Hausel and Luca Migliorini “Topology of Hitchin systems and Hodge theory of character varieties: the case A1A_{1} In Ann. of Math. (2) 175.3, 2012, pp. 1329–1407 DOI: 10.4007/annals.2012.175.3.7
  • [DDP18] Duiliu-Emanuel Diaconescu, Ron Donagi and Tony Pantev “BPS States, Torus Links and Wild Character Varieties” In Communications in Mathematical Physics 359.3 Springer ScienceBusiness Media LLC, 2018, pp. 1027–1078 DOI: 10.1007/s00220-018-3097-9
  • [ES93] Geir Ellingsrud and Stein Arild Stromme “Towards the Chow ring of the Hilbert scheme of 𝐏2{\mathbf{P}}^{2} In J. Reine Angew. Math. 441, 1993, pp. 33–44
  • [Hau+22] Tamas Hausel, Anton Mellit, Alexandre Minets and Olivier Schiffmann P=WP=W via H2H_{2}”, 2022 arXiv:2209.05429 [math.AG]
  • [HR15] Tamás Hausel and Fernando Rodriguez Villegas “Cohomology of large semiprojective hyperkähler varieties” In Astérisque, 2015, pp. 113–156
  • [HL97] Daniel Huybrechts and Manfred Lehn “The geometry of moduli spaces of sheaves” E31, Aspects of Mathematics Friedr. Vieweg & Sohn, Braunschweig, 1997, pp. xiv+269 DOI: 10.1007/978-3-663-11624-0
  • [IS13] Michi-aki Inaba and Masa-Hiko Saito “Moduli of unramified irregular singular parabolic connections on a smooth projective curve” In Kyoto J. Math. 53.2, 2013, pp. 433–482 DOI: 10.1215/21562261-2081261
  • [Kom17] Arata Komyo “Mixed Hodge structures of the moduli spaces of parabolic connections” In Nagoya Math. J. 225, 2017, pp. 185–206 DOI: 10.1017/nmj.2016.38
  • [KS14] Maxim Kontsevich and Yan Soibelman “Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and mirror symmetry” In Homological mirror symmetry and tropical geometry 15, Lect. Notes Unione Mat. Ital. Springer, Cham, 2014, pp. 197–308 DOI: 10.1007/978-3-319-06514-4“˙6
  • [Küc96] Oliver Küchle “Ample line bundles on blown up surfaces” In Math. Ann. 304.1, 1996, pp. 151–155 DOI: 10.1007/BF01446289
  • [Mar02] Eyal Markman “Generators of the cohomology ring of moduli spaces of sheaves on symplectic surfaces” In J. Reine Angew. Math. 544, 2002, pp. 61–82 DOI: 10.1515/crll.2002.028
  • [Mar07] Eyal Markman “Integral generators for the cohomology ring of moduli spaces of sheaves over Poisson surfaces” In Adv. Math. 208.2, 2007, pp. 622–646 DOI: 10.1016/j.aim.2006.03.006
  • [MY92] M. Maruyama and K. Yokogawa “Moduli of parabolic stable sheaves” In Math. Ann. 293.1, 1992, pp. 77–99 DOI: 10.1007/BF01444704
  • [MW97] Kenji Matsuki and Richard Wentworth “Mumford-Thaddeus principle on the moduli space of vector bundles on an algebraic surface” In Internat. J. Math. 8.1, 1997, pp. 97–148 DOI: 10.1142/S0129167X97000068
  • [MS22] Davesh Maulik and Junliang Shen “The P=WP=W conjecture for GLn\mathrm{GL}_{n}”, 2022 arXiv:2209.02568 [math.AG]
  • [MSY23] Davesh Maulik, Junliang Shen and Qizheng Yin “Perverse filtrations and Fourier transforms”, 2023 arXiv:2308.13160 [math.AG]
  • [MN18] Kevin McGerty and Thomas Nevins “Kirwan surjectivity for quiver varieties” In Invent. Math. 212.1, 2018, pp. 161–187 DOI: 10.1007/s00222-017-0765-x
  • [New78] P.. Newstead “Introduction to moduli problems and orbit spaces” 51, Tata Institute of Fundamental Research Lectures on Mathematics and Physics Tata Institute of Fundamental Research, Bombay; Narosa Publishing House, New Delhi, 1978, pp. vi+183
  • [OY17] Alexei Oblomkov and Zhiwei Yun “The cohomology ring of certain compactified Jacobians”, 2017 arXiv:1710.05391 [math.AG]
  • [Sab99] Claude Sabbah “Harmonic metrics and connections with irregular singularities” In Ann. Inst. Fourier (Grenoble) 49.4, 1999, pp. 1265–1291 URL: http://www.numdam.org/item?id=AIF_1999__49_4_1265_0
  • [SM] Junliang Shen and Davesh Maulik “The P=W conjecture for GLnGL_{n}” https://arxiv.org/abs/2209.02568
  • [SZ21] Junliang Shen and Zili Zhang “Perverse filtrations, Hilbert schemes, and the P=WP=W conjecture for parabolic Higgs bundles” In Algebr. Geom. 8.4, 2021, pp. 465–489 DOI: 10.14231/ag-2021-014
  • [Sim90] Carlos T. Simpson “Harmonic bundles on noncompact curves” In J. Amer. Math. Soc. 3.3, 1990, pp. 713–770 DOI: 10.2307/1990935
  • [Sza17] Szilárd Szabó “The birational geometry of unramified irregular Higgs bundles on curves” In International Journal of Mathematics 28, 2017, pp. 1750045 URL: https://api.semanticscholar.org/CorpusID:125343111
  • [Sza21] Szilárd Szabó “Perversity equals weight for Painlevé spaces” In Adv. Math. 383, 2021, pp. Paper No. 107667\bibrangessep45 DOI: 10.1016/j.aim.2021.107667
  • [Sza23] Szilárd Szabó “Hitchin WKB-problem and P=WP=W conjecture in lowest degree for rank 2 over the 5-punctured sphere” In Q. J. Math. 74.2, 2023, pp. 687–746 DOI: 10.1093/qmath/haac037
  • [Yok93] Kôji Yokogawa “Compactification of moduli of parabolic sheaves and moduli of parabolic Higgs sheaves” In J. Math. Kyoto Univ. 33.2, 1993, pp. 451–504 DOI: 10.1215/kjm/1250519269
  • [Yok95] Kôji Yokogawa “Infinitesimal deformation of parabolic Higgs sheaves” In Internat. J. Math. 6.1, 1995, pp. 125–148 DOI: 10.1142/S0129167X95000092
  • [Yun11] Zhiwei Yun “Global Springer theory” In Adv. Math. 228.1, 2011, pp. 266–328 DOI: 10.1016/j.aim.2011.05.012