This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Generators for Group Homology and a Vanishing Conjecture

Joshua Roberts
Abstract

Letting G=F/RG=F/R be a finitely-presented group, Hopf’s formula expresses the second integral homology of GG in terms of FF and RR. Expanding on previous work, we explain how to find generators of H2(G;𝔽p)H_{2}(G;\mathbb{F}_{p}). The context of the problem, which is related to a conjecture of Quillen, is presented, as well as example calculations.

1 Introduction

Exploiting a classical theorem due to Hopf, we presented a series of algorithms in [14] that give upper bounds on group homology in homological dimensions one and two, provided coefficients are taken in a finite field. In particular, examples confirmed the results in [3], as well a new result, concerning the rank two special linear group over rings of number theoretic interest. This paper can be viewed as both a sequel and expansion of the results in [14].

The initial motivation for constructing the algorithms was to gain insight into special cases of a conjecture originally given by Quillen in 1971, which we briefly discuss in Section 2. However, since the algorithms in [14] depend only upon Hopf’s formula for H2H_{2}, the usefulness of these algorithms extends to groups beyond the scope of Quillen’s Conjecture. Moreover, the algorithms are distinct from existing methods of calculating low dimensional group homology in that they give an upper bound on the homology of any finitely-presented group, though the upper bound is, at times, very large.

The main contribution of this paper is in Section 3 wherein we present a technique that expounds on the algorithms in [14] to find explicit generators of these homology groups. The technique relies heavily upon the above mentioned Hopf’s formula for the second homology group of a finitely-presented group; the calculations are carried out with the computational algebra program GAP [6].

As a byproduct of the calculations related to Quillen’s Conjecture we are involved in a long term project of preparing a database for low dimensional group homology of linear groups over number fields and their rings of integers. This work will be extended to other classes of finitely-presented groups of interest to computational group theory and algebraic topology. The first set of these calculations is found in Section 4.

We note that when it is clear from the context, we occasionally omit explicitly writing the ground ring of linear groups as well as homology coefficients.

2 A Vanishing Conjecture

One motivational problem for low dimensional group homology, which is related to algebraic K-theory, is the study of homology for groups GLj(R)GL_{j}(R), where GLjGL_{j} is a finite rank jj general linear group and RR is the ring of integers in a number field. An approach to this problem is to consider the diagonal matrices inside GLjGL_{j}. Let DjD_{j} denote the subgroup formed by these matrices. Then the canonical inclusions DjGLjD_{j}\subset GL_{j} for j=0,1,j=0,1,... induce homomorphisms on group homology with kk-coefficients

ρ:Hi(Dj(R);k)Hi(GLj(R);k).\rho:H_{i}(D_{j}(R);k)\to H_{i}(GL_{j}(R);k). (2.1)

In [13] Quillen conjectured:

Conjecture 2.1.

The homomorphism ρ\rho, as given above, is an epimorphism for R=[ζp,1/p]R=\mathbb{Z}[\zeta_{p},1/p], pp a regular odd prime, ζp\zeta_{p} a primitive ppth root of unity, k=𝔽pk=\mathbb{F}_{p} and any values of ii and jj.

Conjecture 2.1 has been proved in a few cases and disproved in infinitely many other cases. For R=[1/2]R={\mathbb{Z}}[1/2] it was proved by Mitchel in [12] for j=2j=2 and by Henn in [8] for j=3j=3. Anton gave a proof for R=[1/3,ζ3]R={\mathbb{Z}}[1/3,\zeta_{3}] and j=2j=2 in [1].

Dwyer gave a disproof for the conjecture for R=[1/2]R={\mathbb{Z}}[1/2] and j=32j=32 in [5] which Henn and Lannes improved to j=14j=14 in [9]; this is an improvement in light of Henn’s result in [7] that states that if Conjecture 2.1 is false for j0j_{0} then it is false for all jj0j\geq j_{0}. Anton disproved the conjecture for R=[1/3,ζ3]R={\mathbb{Z}}[1/3,\zeta_{3}] and j27j\geq 27 also in [1]. The interested reader should consult [10] for more details.

This conjecture was reformulated and, in a sense, corrected by Anton:

Conjecture 2.2.

[2] Given p,kp,k and RR as above,

H2(GL2(R);k)H2(D1(R);k).H_{2}(GL_{2}(R);k)\cong H_{2}(D_{1}(R);k). (2.2)

Anton’s conjecture led to a proof of Conjecture 2.1 for [1/5,ζ5]{\mathbb{Z}}[1/5,\zeta_{5}] and i=j=2i=j=2. For a survey on the current status of conjectures 2.1 and 2.2 we cite [3].

2.1 Reduction via a Spectral Sequence

Given a group extension

1NGQ11\to N\to G\to Q\to 1

there is the Hochschild-Serre Spectral Sequence [11, p. 341] with

Ep,q2Hp(Q;Hq(N;k))Hp+q(G;k),E^{2}_{p,q}\cong H_{p}(Q;H_{q}(N;k))\Longrightarrow H_{p+q}(G;k), (2.3)

where we take coefficients in a field kk regarded as a trivial GG-module. We use this spectral sequence to reduce a special case of Quillen’s conjecture to an exercise in linear algebra.

Lemma 2.3.

Fix R=SL2([ζp,1/p])R=SL_{2}({\mathbb{Z}}[\zeta_{p},1/p]) and field of coefficients k=𝔽pk={\mathbb{F}}_{p},

H2(GL2(R);k)(H2(SL2(R);k)GL1(R)/Im(τ)H2(GL1(R);k),H_{2}(GL_{2}(R);k)\cong(H_{2}(SL_{2}(R);k)_{GL_{1}(R)}/Im(\tau)\oplus H_{2}(GL_{1}(R);k), (2.4)

where, for a group GG and a GG-module MM, MGM_{G} is the group of co-invariants and τ\tau is the transgression map E3,03E0,23E^{3}_{3,0}\to E^{3}_{0,2}.

Proof.

We first note that RR is a Euclidean ring [4], which, by Lemma 7.2 [2] implies that SL2(R)SL_{2}(R) is a perfect group. Thus, applying the spectral sequence 2.3 to the extension

1SL2(R)GL2(R)GL1(R)1,1\to SL_{2}(R)\to GL_{2}(R)\to GL_{1}(R)\to 1, (2.5)

we see that the entries Ep,12E^{2}_{p,1} are all 0. Thus for q<3q<3 the E3E^{3} page is equal to the E2E^{2} page.

We also note that

GL1(R)D1(R)R×,GL_{1}(R)\cong D_{1}(R)\cong R^{\times}, (2.6)

where R×R^{\times} is the group of units of RR.

Refer to caption
Figure 1: E2E^{2} page with τ:E3,03E0,23\tau:E^{3}_{3,0}\to E^{3}_{0,2} displayed

Figure 1 displays the E2E^{2} page of this spectral sequence, and we have included the transgression τ:E3,03E0,23\tau:E^{3}_{3,0}\to E^{3}_{0,2} for reference. Note that since Ep,q2Ep,q3E^{2}_{p,q}\cong E^{3}_{p,q} for all pp and for all q<3q<3 then Ep,12Ep,1E^{2}_{p,1}\cong E^{\infty}_{p,1}. Moreover, Ep,q4Ep,qE^{4}_{p,q}\cong E^{\infty}_{p,q} for p,q+1<4p,q+1<4 and E0,24H2(SL2(R))GL1(R)/Im(τ)E^{4}_{0,2}\cong H_{2}(SL_{2}(R))_{GL_{1}(R)}/Im(\tau). Since we have chosen field coefficients, any extension problems are trivial. Thus we have the following decomposition.

H2(GL2(R))\displaystyle H_{2}(GL_{2}(R)) E2,04E1,14E0,24\displaystyle\cong E^{4}_{2,0}\oplus E^{4}_{1,1}\oplus E^{4}_{0,2} (2.7)
H2(SL2(R))GL1(R)/Im(τ)H2(GL1(R)).\displaystyle\cong H_{2}(SL_{2}(R))_{GL_{1}(R)}/Im(\tau)\oplus H_{2}(GL_{1}(R)). (2.8)

This immediately implies the following corollary.

Corollary 2.4.

As vector spaces over kk,

dim H2(GL2(R);k)dim H2(GL1(R);k)\text{dim }H_{2}(GL_{2}(R);k)\geq\text{dim }H_{2}(GL_{1}(R);k) (2.9)

Recall from Section 2 that the Quillen Conjecture implies that the map induced by inclusion

H2(D2(R))H2(GL2(R))H_{2}(D_{2}(R))\twoheadrightarrow H_{2}(GL_{2}(R)) (2.10)

is surjective. Anton’s reformulation of Quillen’s conjecture in [3] and results in [2] imply that map 2.10 factorizes thusly:

H2(D2)H2(GL2)H2(D1).\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 18.52986pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-18.52986pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{H_{2}(D_{2})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 103.58958pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern-3.0pt\lower 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 45.04312pt\raise-29.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 58.05972pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 103.58958pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{H_{2}(GL_{2})}$}}}}}}}{\hbox{\kern-3.0pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 42.52986pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{H_{2}(D_{1})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 116.36104pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern-2.54512pt\lower 1.58821pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 122.175pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}\ignorespaces}}}}\ignorespaces. (2.11)

Then H2(D1(R))H2(GL2(R))H_{2}(D_{1}(R))\twoheadrightarrow H_{2}(GL_{2}(R)) is surjective and

dim H2(D1)dim H2(GL2).\text{dim }H_{2}(D_{1})\geq\text{dim }H_{2}(GL_{2}). (2.12)

Then equations 2.9, 2.12, and 2.6 imply Conjecture 2.2

H2(GL2(R))H2(GL1(R)),H_{2}(GL_{2}(R))\cong H_{2}(GL_{1}(R)), (2.13)

which, by Equation 2.8, is equivalent to

H2(SL2(R))GL1(R)Im(τ),H_{2}(SL_{2}(R))_{GL_{1}(R)}\cong Im(\tau), (2.14)

which is true if and only if τ\tau is surjective. Moreover, for Conjecture 2.2 to be true, it is sufficient for the finitely-presented group SL2([1/p,ζp])SL_{2}({\mathbb{Z}}[1/p,\zeta_{p}]) to have trivial second dimensional 𝔽p{\mathbb{F}}_{p}-homology.

In this context, the purpose of [14] was to give a series of algorithms that estimated the second homology group of any finitely-presented group. More precisely, given a finitely-presented group GG and a finite field kk, the second homology group H2(G;k)H_{2}(G;k) with coefficients in kk is a finite dimensional vector space over kk. Our algorithms give an upper bound for the dimension of H2(G;k)H_{2}(G;k) and, in particular cases, the algorithms calculate precisely this dimension.

The algorithms confirmed results by Anton that Conjecture 2.1 holds for R=SL2([1/p,ζp])R=SL_{2}({\mathbb{Z}}[1/p,\zeta_{p}]) and k=𝔽pk={\mathbb{F}}_{p} for p=3p=3 and p=5p=5 ([2] and [3]).

3 Generators of Homology Groups

Let 1KiFqG11\to K\stackrel{{\scriptstyle i}}{{\to}}F\stackrel{{\scriptstyle q}}{{\to}}G\to 1 be an exact sequence of groups where FF is a finitely generated free group and KK is finitely generated as an FF-module with the FF-action given by conjugation, ii and qq denote inclusion and quotient homomorphism, respectively. That is, GG has finite presentation given by the generators of FF modulo then normal closure of KK in FF.

Theorem 3.1 (Hopf).

Given G,F,KG,F,K as above, there is an exact sequence

1[F,R][F,F]H2(G,)1.1\to[F,R]\to[F,F]\to H_{2}(G,\mathbb{Z})\to 1.

This gives an exact sequence

1H2(G,)R[F,R]F[F,F]FR[F,F]1.1\to H_{2}(G,\mathbb{Z})\to\frac{\textstyle R}{\textstyle[F,R]}\to\frac{\textstyle F}{\textstyle[F,F]}\to\frac{\textstyle F}{\textstyle R[F,F]}\to 1.

The last two terms are finitely generated abelian groups and algorithms exist to give their structure. Also in [14], we explain how to use this exact sequence to find an upper bound on the dimension of H2(G;k)H_{2}(G;k), where kk is the finite field of prime characteristic pp.

The inclusion homomorphism i:KFi:K\to F induces a homomorphism i:ABi_{*}:A\to B where we have denoted K/Kp[F,K]K/K^{p}[F,K] by AA and F/Kp[F,F]F/K^{p}[F,F] by BB. Note that for kKk\in K and fFf\in F we have that [k,f]=kfk1=1[k,f]=k^{f}k^{-1}=1 in AA. Thus kf=kk^{f}=k in AA which gives that AA is a trivial FF-module. Let SKS_{K} be the set of generators of KK as an FF-module.

We note that the image of ii_{*} is generated by the set of all i(k)i_{*}(k) for kSKk\in S_{K}. Then since BB is a vector space over kk, there is a subset SKSKS_{K}^{\prime}\subset S_{K} such that i(k)i_{*}(k^{\prime}) with kSKk\in S_{K}^{\prime} is a basis for the image of ii_{*}.

The primary interest is on the kernel of ii_{*}, which is isomorphic to H2(G;k)H_{2}(G;k). As stated above, a previous paper gives an upper bound nn on the dimension of this vector space. We seek an explicit description of these nn elements of SKS_{K}. To this end, we restate two facts:

  • AA is a vector space that is spanned by SKS_{K}

  • SKSKS_{K}^{\prime}\subset S_{K} is a subset with i(SK)i_{*}(S_{K}^{\prime}) a basis for the image of ii_{*} in BB

Let vAv\in A, then v=λSKcλλv=\displaystyle\sum_{\lambda\in S_{K}}c_{\lambda}\lambda, where cλkc_{\lambda}\in k, by (1)(1). Note that i(v)=0i_{*}(v)=0 is equivalent to λSKcλi(λ)=0\displaystyle\sum_{\lambda\in S_{K}}c_{\lambda}i_{*}(\lambda)=0 in BB.

Moreover, each i(λ)=μSKaλ,μi(μ)i_{*}(\lambda)=\displaystyle\sum_{\mu\in S_{K}^{\prime}}a_{\lambda,\mu}i_{*}(\mu), where aλ,μka_{\lambda,\mu}\in k, by (2)(2). Therefore, i(v)=0i_{*}(v)=0 in BB if and only if

μSK(λSKcλaλ,μ)i(μ)=0 in B,\displaystyle\sum_{\mu\in S_{K}^{\prime}}\left(\displaystyle\sum_{\lambda\in S_{K}}c_{\lambda}a_{\lambda,\mu}\right)i_{*}(\mu)=0\text{ in }B,

which is true if and only if

λSKcλaλ,μ=0\displaystyle\sum_{\lambda\in S_{K}}c_{\lambda}a_{\lambda,\mu}=0

for all μSK\mu\in S_{K}^{\prime}. So we need to solve for the cλc_{\lambda}’s and find a basis for the solutions.

If aAa\in A then a=k1f1k2f2=k1k2=k1+k2+a=k_{1}^{f_{1}}k_{2}^{f_{2}}\cdots=k_{1}k_{2}\cdots=k_{1}+k_{2}+\cdots in 𝔽p\mathbb{F}_{p}. We want to use linear algebra in BB to find a basis for the image of ii_{*} {i(k):kK0}\left\{i_{*}(k):k\in K_{0}\right\}.

FKp[F,F]\textstyle{\frac{\textstyle F}{\textstyle K^{p}[F,F]}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}KKp[F,K]\textstyle{\frac{\textstyle K}{\textstyle K^{p}[F,K]}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i\scriptstyle{i_{*}}j\scriptstyle{j_{*}}FKp[F,K]\textstyle{\frac{\textstyle F}{\textstyle K^{p}[F,K]}}

3.1 At the prime 7

We consider the group G=SL2([1/7,ζ7])G=SL_{2}({\mathbb{Z}}[1/7,\zeta_{7}]), where ζp\zeta_{p} is a primitive ppth root of unity. In [3] it is proven that this group is generated by

S={z,u1,u2,u3,a,b,b0,b1,b2,b3,b4,b5,b6,w}S=\{z,u_{1},u_{2},u_{3},a,b,b_{0},b_{1},b_{2},b_{3},b_{4},b_{5},b_{6},w\}

modulo the relations

R={bt1z3tbz3ta,w1z4u1u2u3,z7,[z,ui],[ui,uj],a4,[a2,z],[a2,ui],a1zaz,a1uiaui,[bs,bt],b3a2,b3b0b1b2b3b4b5b6,bt7w1bt1w,(b0b11a1u1)3,(b0b21a1u2)3,(b0b31a1u3)3,(b0b11b21b3a1u1u2)3,(b0b11b31b4a1u1u3)3,(b0b21b31b5a1u2u3)3,(b0b11b21b3b4b5b61a1u1u2u3)3,a2b1uibz3ib1b01z3ibziui}\begin{array}[]{lcl}R&=&\{b_{t}^{-1}z^{3t}bz^{3t}a,w^{-1}z^{4}u_{1}u_{2}u_{3},z^{7},[z,u_{i}],[u_{i},u_{j}],a^{4},[a^{2},z],[a^{2},u_{i}],\\ &&a^{-1}zaz,a^{-1}u_{i}au_{i},\left[b_{s},b_{t}\right],b^{-3}a^{2},b^{-3}b_{0}b_{1}b_{2}b_{3}b_{4}b_{5}b_{6},b^{-7}_{t}w^{-1}b_{t}^{-1}w,\\ &&(b_{0}b_{1}^{-1}a^{-1}u_{1})^{3},(b_{0}b_{2}^{-1}a^{-1}u_{2})^{3},(b_{0}b_{3}^{-1}a^{-1}u_{3})^{3},\\ &&(b_{0}b_{1}^{-1}b_{2}^{-1}b_{3}a^{-1}u_{1}u_{2})^{3},(b_{0}b_{1}^{-1}b_{3}^{-1}b_{4}a^{-1}u_{1}u_{3})^{3},(b_{0}b_{2}^{-1}b_{3}^{-1}b_{5}a^{-1}u_{2}u_{3})^{3},\\ &&(b_{0}b_{1}^{-1}b_{2}^{-1}b_{3}b_{4}b_{5}b_{6}^{-1}a^{-1}u_{1}u_{2}u_{3})^{3},a^{-2}b^{-1}u_{i}bz^{-3i}b^{-1}b_{0}^{-1}z^{3i}bz^{-i}u_{i}\}\end{array}

where i,j{1,2,3}i,j\in\{1,2,3\} and s,t{1,2,3,4,5,6}s,t\in\{1,2,3,4,5,6\}.

That is, there is a short exact sequence 1N(R)F(S)G11\to N(R)\to F(S)\to G\to 1 with the set SS generating the free group F(S)F(S) and the set RR normally generating the subgroup N(R)F(S)N(R)\subset F(S).

We begin by reducing the number of generators and relators in F(S)/N(R)F(S)/N(R) in order to simplify the final calculations. Via GAP, it is easy to verify the following.

Proposition 3.2.

There is an isomorphism of finitely-presented groups that maps the generators of the free group F(S)F(S) to the free group generated by S={z,u1,u2,u3,a,b1}S^{\prime}=\{z,u_{1},u_{2},u_{3},a,b_{1}\} in the following way:

zzu1u1u2u2u3u3aabz3b1z3a1b0z3b1z3b1b1b2z3b1z3b3z1b1zb4z2b1z2b5z2b1z2b6zb1z1wz2u1z1u2u3.\begin{array}[]{lcl}z&\mapsto&z\\ u_{1}&\mapsto&u_{1}\\ u_{2}&\mapsto&u_{2}\\ u_{3}&\mapsto&u_{3}\\ a&\mapsto&a\\ b&\mapsto&z^{-3}b_{1}z^{3}a^{-1}\\ b_{0}&\mapsto&z^{-3}b_{1}z^{3}\\ b_{1}&\mapsto&b_{1}\\ b_{2}&\mapsto&z^{3}b_{1}z^{-3}\\ b_{3}&\mapsto&z^{-1}b_{1}z\\ b_{4}&\mapsto&z^{2}b_{1}z^{-2}\\ b_{5}&\mapsto&z^{-2}b_{1}z^{2}\\ b_{6}&\mapsto&zb_{1}z^{-1}\\ w&\mapsto&z^{-2}u_{1}z^{-1}u_{2}u_{3}.\\ \end{array}

Moreover, the isomorphic finitely-presented group has set of 32 relations

R={zu3z1u31,u2u3u21u31,u1u2u11u21,u3au3a1,u1au1a1,zu2z1u21,a4,u1u3u11u31,zaza1,zu1z1u11,u2au2a1,z7,b1z1b1zb11z1b11z,b1z2b1z2b11z2b11z2,z3b1z1a1b1z1a1b1z3a,b1z3b1z2b12z1a1u3a1z1b11u3,b1z1b12z1b1a1z3u2a1z2b11u2,b1z1b1z3b12z1u11a2z2b11u1,b1z3b1z3b11z3b11z3,z1b17zu21zu31u11zb11z1u1z1u2u3,b17u21zu31u11z2b11z3u1u2u3,z3b17z1u21z2u31u11z1b11u1u2u3, zb17u21u31u11z3b11z3u1z1u2u3,z3b17u21z2u31u11z2b11zu1u2u3,z2b1z3b1z3b1zb1zb1z3b1z1b1a2,z3b1z1b11u21a1b1z1b11z3u21 a1z3b1z1b11z3u21a1,z1b11z2b1z3u31a1z1b11z2b1z3 u31a1z1b11z2b1z3u31a1,b11z3b1za1z2u1b11z3b1z3u11a1 b11z3b1z3u11a1,b11z1b1z2b1z1b11a1z3u1u2z3b11 zb1z2b1zb11u11a1u2z3b11zb1z2b1zb11 u11a1u2,b11z1b11z2b1z2b1z1u11z1a1u3 z3b1z2b11zb11z2b1u11z2a1u3z1b11z2 b1z3b11z2b1u11z2a1u3,b11z3b11z1b1z1b1za1 z2u3u2z3b1z1b11z2b1zb11z u31a1u2z3b1z1b11z2b1zb11zu31a1u2z3,zb1z3b11z3b1zu11za1u2u3z3b1z1b11 z1b1z3b1z2b11zb11z1u11a1u2u3z3b1z1 b11z1b1z3b1z2b11zb11z1u11a1u2 u3b11z2b1zb11}.R^{\prime}=\{zu_{3}z^{-1}u_{3}^{-1},u_{2}u_{3}u_{2}^{-1}u_{3}^{-1},\\ u_{1}u_{2}u_{1}^{-1}u_{2}^{-1},\\ u_{3}au_{3}a^{-1},\\ u_{1}au_{1}a^{-1},\\ zu_{2}z^{-1}u_{2}^{-1},\\ a^{4},\\ u_{1}u_{3}u_{1}^{-1}u_{3}^{-1},\\ zaza^{-1},\\ zu_{1}z^{-1}u_{1}^{-1},\\ u_{2}au_{2}a^{-1},\\ z^{7},\\ b_{1}z^{-1}b_{1}zb_{1}^{-1}z^{-1}b_{1}^{-1}z,\\ b_{1}z^{-2}b_{1}z^{2}b_{1}^{-1}z^{-2}b_{1}^{-1}z^{2},\\ z^{-3}b_{1}z^{-1}a^{-1}b_{1}z^{-1}a^{-1}b_{1}z^{3}a,\\ b_{1}z^{-3}b_{1}z^{-2}b_{1}^{-2}z^{-1}a^{-1}u_{3}a^{-1}z^{-1}b_{1}^{-1}u_{3},\\ b_{1}z^{-1}b_{1}^{-2}z^{-1}b_{1}a^{-1}z^{3}u_{2}a^{-1}z^{-2}b_{1}^{-1}u_{2},\\ b_{1}z^{-1}b_{1}z^{-3}b_{1}^{-2}z^{-1}u_{1}^{-1}a^{-2}z^{-2}b_{1}^{-1}u_{1},\\ b_{1}z^{-3}b_{1}z^{3}b_{1}^{-1}z^{-3}b_{1}^{-1}z^{3},\\ z^{-1}b_{1}^{-}7zu_{2}^{-1}zu_{3}^{-1}u_{1}^{-1}zb_{1}^{-1}z^{-1}u_{1}z^{-1}u_{2}u_{3},\\ b_{1}^{-}7u_{2}^{-1}zu_{3}^{-1}u_{1}^{-1}z^{2}b_{1}^{-1}z^{-3}u_{1}u_{2}u_{3},\\ z^{-3}b_{1}^{-}7z^{-1}u_{2}^{-1}z^{-2}u_{3}^{-1}u_{1}^{-1}z^{-1}b_{1}^{-1}u_{1}u_{2}u_{3},\\ \text{ \hskip 14.22636pt }zb_{1}^{-}7u_{2}^{-1}u_{3}^{-1}u_{1}^{-1}z^{3}b_{1}^{-1}z^{-3}u_{1}z^{-1}u_{2}u_{3},\\ z^{3}b_{1}^{-}7u_{2}^{-1}z^{-2}u_{3}^{-1}u_{1}^{-1}z^{-2}b_{1}^{-1}zu_{1}u_{2}u_{3},\\ z^{2}b_{1}z^{-3}b_{1}z^{-3}b_{1}zb_{1}zb_{1}z^{3}b_{1}z^{-1}b_{1}a^{-2},\\ z^{-3}b_{1}z^{-1}b_{1}^{-1}u_{2}^{-1}a^{-1}b_{1}z^{-1}b_{1}^{-1}z^{-3}u_{2}^{-1}\\ \text{ \hskip 14.22636pt }a^{-1}z^{-3}b_{1}z^{-1}b_{1}^{-1}z^{-3}u_{2}^{-1}a^{-1},\\ z^{-1}b_{1}^{-1}z^{-2}b_{1}z^{3}u_{3}^{-1}a^{-1}z^{-1}b_{1}^{-1}z^{-2}b_{1}z^{3}\\ \text{ \hskip 14.22636pt }u_{3}^{-1}a^{-1}z^{-1}b_{1}^{-1}z^{-2}b_{1}z^{3}u_{3}^{-1}a^{-1},\\ b_{1}^{-1}z^{-3}b_{1}za^{-1}z^{-2}u_{1}b_{1}^{-1}z^{-3}b_{1}z^{3}u_{1}^{-1}a^{-1}\\ \text{ \hskip 14.22636pt }b_{1}^{-1}z^{-3}b_{1}z^{3}u_{1}^{-1}a^{-1},\\ b_{1}^{-1}z^{-1}b_{1}z^{-2}b_{1}z^{-1}b_{1}^{-1}a^{-1}z^{3}u_{1}u_{2}z^{3}b_{1}^{-1}\\ \text{ \hskip 14.22636pt }zb_{1}z^{2}b_{1}zb_{1}^{-1}u_{1}^{-1}a^{-1}u_{2}z^{3}b_{1}^{-1}zb_{1}z^{2}b_{1}zb_{1}^{-1}\\ \text{ \hskip 14.22636pt }u_{1}^{-1}a^{-1}u_{2},\\ b_{1}^{-1}z^{-1}b_{1}^{-1}z^{-2}b_{1}z^{-2}b_{1}z^{-1}u_{1}^{-1}z^{-1}a^{-1}u_{3}\\ \text{ \hskip 14.22636pt }z^{-3}b_{1}z^{2}b_{1}^{-1}zb_{1}^{-1}z^{2}b_{1}u_{1}^{-1}z^{-2}a^{-1}u_{3}z^{-1}b_{1}^{-1}z^{-2}\\ \text{ \hskip 14.22636pt }b_{1}z^{3}b_{1}^{-1}z^{2}b_{1}u_{1}^{-1}z^{-2}a^{-1}u_{3},\\ b_{1}^{-1}z^{3}b_{1}^{-1}z^{-1}b_{1}z^{-1}b_{1}za^{-1}\\ \text{ \hskip 14.22636pt }z^{-2}u_{3}u_{2}z^{-3}b_{1}z^{-1}b_{1}^{-1}z^{2}b_{1}zb_{1}^{-1}z\\ \text{ \hskip 14.22636pt }u_{3}^{-1}a^{-1}u_{2}z^{-3}b_{1}z^{-1}b_{1}^{-1}z^{2}b_{1}zb_{1}^{-1}zu_{3}^{-1}a^{-1}u_{2}z^{3},\\ zb_{1}z^{-3}b_{1}^{-1}z^{-3}b_{1}zu_{1}^{-1}za^{-1}u_{2}u_{3}z^{-3}b_{1}z^{-1}b_{1}^{-1}\\ \text{ \hskip 14.22636pt }z^{-1}b_{1}z^{3}b_{1}z^{2}b_{1}^{-1}zb_{1}^{-1}z^{-1}u_{1}^{-1}a^{-1}u_{2}u_{3}z^{-3}b_{1}z^{-1}\\ \text{ \hskip 14.22636pt }b_{1}^{-1}z^{-1}b_{1}z^{3}b_{1}z^{2}b_{1}^{-1}zb_{1}^{-1}z^{-1}u_{1}^{-1}a^{-1}u_{2}\\ \text{ \hskip 14.22636pt }u_{3}b_{1}^{-1}z^{2}b_{1}zb_{1}^{-1}\}.

By [14], the dimension of H2(G;𝔽7)H_{2}(G;{\mathbb{F}}_{7}) as a vector space over 𝔽7{\mathbb{F}}_{7} is at most 6. We now seek generators of of this vector space. For simplicity, we denote F(S)F(S^{\prime}) by FF and N(R)N(R^{\prime}) by NN. An application of the FindBasis algorithm from the same paper gives that NN7[F,N]\frac{\textstyle N}{\textstyle N^{7}[F,N]} is generated by the 12 elements

[ f1*f5*f1*f5^-1,
f2*f3*f2^-1*f3^-1,
f2*f5*f2*f5^-1,
f7*f5^-1*f7*f5^-1*f7*f5,
f3*f7*f1^-2*f7*f1*f7^-2*f5^-1*f3*f1^-1*f5^-1*f7^-1,
f4*f7*f1^2*f7^-2*f1^2*f7*f5^-1*f1^-2*f4*f1^-1*f5^-1*f7^-1,
f2*f7*f1*f5^-1*f1^-2*f5*f7^-2*f1^3*f7*f5^-1*f2*f1^-1*f5^-1*f7^-1,
f1^2*f7^-7*f1^-1*f3^-1*f1^-1*f4^-1*f2^-1*f1^-2*f7^-1*f1^2*f2*f3*f4,
f7*f1*f7*f1^2*f7*f1*f7*f1^2*f7*f1^3*f7*f1^3*f7*f1*f5^-1*f1^-1*f5^-1,
f7*f1^2*f7^-1*f1^-1*f4^-1*f1^-1*f5^-1*f7*f1^2*f7^-1*f4^-1*f1^-2*
        f5^-1*f7*f1^2*f7^-1*f4^-1*f1^-2*f5^-1,
f1^-1*f7^-1*f1*f7*f1*f7*f1*f7^-1*f4^-1*f5^-1*f3*f1*f7^-1*f1*f7*f1^2*
        f7^-1*f1^-1*f7*f1^-1*f4^-1*f5^-1*f3*f1^-1*f7^-1*f1*f7*f1^2*f7^-1*
        f1^-1*f7*f1^-1*f4^-1*f5^-1*f3,
f7*f1^-2*f7*f1*f7^-1*f1^2*f7*f1^2*f7^-1*f1*f7^-1*f1*f5^-1*f1^-2*f2*f3*
        f4*f7*f1^-2*f7*f1*f7^-1*f1^2*f7*f1^2*f7^-1*f1*f7^-1*f5^-1*f1^-3
        *f2*f3*f4*f7*f1^-2*f7*f1*f7^-1*f1^2*f7*f1^2*f7^-1*f1*
        f7^-1*f5^-1*f1^-3*f2*f3*f4 ]

By reducing these elements in F[F,F]N7\frac{\textstyle F}{\textstyle[F,F]N^{7}} we obtain

[ <identity ...>, <identity ...>, <identity ...>,
<identity ...>, <identity ...>, <identity ...>,
f1^3, f7^-1, f2^-1, f1*f2, f1, f1^-1 ]

Thus the last six elements form a basis for the 6-dimensional vector space over 𝔽7{\mathbb{F}}_{7}, F/[F,F]N7F/[F,F]N^{7}. This implies that the 6 vanishing elements are in the kernel of

NN7[F,N]FN7[F,F]\frac{\textstyle N}{\textstyle N^{7}[F,N]}\to\frac{\textstyle F}{\textstyle N^{7}[F,F]}

and therefore are generators of H2H_{2}. That is, the following is an explicit list of generators of H2(SL2([1/7,ζ7];𝔽7)H_{2}\left(SL_{2}({\mathbb{Z}}[1/7,\zeta_{7}];{\mathbb{F}}_{7}\right).

{zaza1,u1u2u11u21,u1au1a1,b1a1b1a1b1a,u2b1z2b1zb12a1u2z1a1b11,u3b1z2b12z2b1a1z2u3z1a1b11}\begin{array}[]{l}\{zaza^{-1},\\ u_{1}u_{2}u_{1}^{-1}u_{2}^{-1},\\ u_{1}au_{1}a^{-1},\\ b_{1}a^{-1}b_{1}a^{-1}b_{1}a,\\ u_{2}b_{1}z^{-2}b_{1}zb_{1}^{-2}a^{-1}u_{2}z^{-1}a^{-1}b_{1}^{-1},\\ u_{3}b_{1}z^{2}b_{1}^{-2}z^{2}b_{1}a^{-1}z^{-2}u_{3}z^{-1}a^{-1}b_{1}^{-1}\}\end{array}

However, the possibility still exists that any, or all, of these may be trivial in H2H_{2}.

4 Homology Calculations

The following tables give the results of the algorithms in [14] applied to various linear groups. For the second table, a “less than” symbols indicates that the rewriting system involved in the calculation was not confluent, so only an upper bound was found. Otherwise, the rewriting system was confluent and the exact dimension was found; the code to implement these groups in GAP is given below. We note that while none of the results in the table below are new, the previous results were found by a wide variety of methods, many of which are not computational in nature.

H1(;𝔽2)H1(;𝔽3)H1(;𝔽5)H1(;𝔽7)GL2()2000SL2()1100SL2(2)1000SL2(3)0100SL2(5)0010SL2([i])1000SL2([ω]),ω3=10100SL2([5])3211PSL2()1100\begin{array}[]{|l|c|c|c|c|}\hline\cr&H_{1}(-;{\mathbb{F}}_{2})&H_{1}(-;{\mathbb{F}}_{3})&H_{1}(-;{\mathbb{F}}_{5})&H_{1}(-;{\mathbb{F}}_{7})\\ \hline\cr GL_{2}({\mathbb{Z}})&2&0&0&0\\ \hline\cr SL_{2}({\mathbb{Z}})&1&1&0&0\\ \hline\cr SL_{2}({\mathbb{Z}}_{2})&1&0&0&0\\ \hline\cr SL_{2}({\mathbb{Z}}_{3})&0&1&0&0\\ \hline\cr SL_{2}({\mathbb{Z}}_{5})&0&0&1&0\\ \hline\cr SL_{2}({\mathbb{Z}}[i])&1&0&0&0\\ \hline\cr SL_{2}({\mathbb{Z}}[\omega]),\omega^{3}=-1&0&1&0&0\\ \hline\cr SL_{2}({\mathbb{Z}}[\sqrt{-5}])&3&2&1&1\\ \hline\cr PSL_{2}({\mathbb{Z}})&1&1&0&0\\ \hline\cr\end{array}
Table 1: Dimensions of First Homology Groups
H2(;𝔽2)H2(;𝔽3)H2(;𝔽5)H2(;𝔽7)GL2()4222SL2()2211SL2(2)1000SL2(3)0100SL2(5)0010SL2([i])1000SL2([ω]),ω3=11211SL2([5])3300PSL2()1100\begin{array}[]{|l|c|c|c|c|}\hline\cr&H_{2}(-;{\mathbb{F}}_{2})&H_{2}(-;{\mathbb{F}}_{3})&H_{2}(-;{\mathbb{F}}_{5})&H_{2}(-;{\mathbb{F}}_{7})\\ \hline\cr GL_{2}({\mathbb{Z}})&\leq 4&\leq 2&\leq 2&\leq 2\\ \hline\cr SL_{2}({\mathbb{Z}})&\leq 2&\leq 2&\leq 1&\leq 1\\ \hline\cr SL_{2}({\mathbb{Z}}_{2})&1&0&0&0\\ \hline\cr SL_{2}({\mathbb{Z}}_{3})&0&1&0&0\\ \hline\cr SL_{2}({\mathbb{Z}}_{5})&0&0&1&0\\ \hline\cr SL_{2}({\mathbb{Z}}[i])&1&0&0&0\\ \hline\cr SL_{2}({\mathbb{Z}}[\omega]),\omega^{3}=-1&\leq 1&\leq 2&\leq 1&\leq 1\\ \hline\cr SL_{2}({\mathbb{Z}}[\sqrt{-5}])&\leq 3&\leq 3&0&0\\ \hline\cr PSL_{2}({\mathbb{Z}})&\leq 1&\leq 1&0&0\\ \hline\cr\end{array}
Table 2: Dimensions of Second Homology Groups

5 Conclusion

The motivation for the algorithm used in the paper grew from work on Quillen’s conjecture. The utility of these algorithms is more general. In theory, they can be used to calculate or estimate the first and second homology of any finitely-presented group, provided homology coefficients are in a finite field.

Future work will involve refining and using the algorithms on a larger collection of sets with the goal of constructing the aforementioned database of calculations. In the context of the original problem, however, work to calculate the image of the transgression τ\tau in Figure 1 is necessary to make progress on the conjecture.

References

  • [1] M. F. Anton. On a conjecture of Quillen at the prime 33. J. Pure Appl. Algebra, 144(1):1–20, 1999.
  • [2] M. F. Anton. An elementary invariant problem and general linear group cohomology restricted to the diagonal subgroup. Trans. Amer. Math. Soc., 355(6):2327–2340 (electronic), 2003.
  • [3] M. F. Anton. Homological symbols and the Quillen conjecture. J. Pure Appl. Algebra, 213(4):440–453, 2009.
  • [4] P. M. Cohn. On the structure of the GL2{GL}_{2} of a ring. Inst. Hautes Études Sci. Publ. Math., (30):5–53, 1966.
  • [5] W. G. Dwyer. Exotic cohomology for GLn(Z[1/2]){GL}_{n}({\textbf{Z}}[1/2]). Proc. Amer. Math. Soc., 126(7):2159–2167, 1998.
  • [6] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.4.10, 2007. URL http://www.gap-system.org.
  • [7] H.-W. Henn. Commutative algebra of unstable KK-modules, Lannes’ TT-functor and equivariant mod-pp cohomology. J. Reine Angew. Math., 478:189–215, 1996.
  • [8] H.-W. Henn. The cohomology of SL3(Z[1/2]){SL}_{3}(\textbf{Z}[1/2]). KK-Theory, 16(4):299–359, 1999.
  • [9] H.-W. Henn, J. Lannes, and L. Schwartz. Localizations of unstable AA-modules and equivariant mod pp cohomology. Math. Ann., 301(1):23–68, 1995.
  • [10] K. P. Knudson. Homology of linear groups, volume 193 of Progress in Mathematics. Birkhäuser Verlag, Basel, 2001.
  • [11] J. McCleary. A user’s guide to spectral sequences, volume 58 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 2001.
  • [12] S. A. Mitchell. On the plus construction for BGLZ[12]B{GL}\,{\textbf{Z}}[\frac{1}{2}] at the prime 22. Math. Z., 209(2):205–222, 1992.
  • [13] D. Quillen. The spectrum of an equivariant cohomology ring. I, II. Ann. of Math. (2), 94:549–572; ibid. (2) 94 (1971), 573–602, 1971.
  • [14] J. Roberts. An algorithm for low dimensional group homology. Homology, Homotopy and Applications, 12:27–37, 2010. URL http://www.intlpress.com/HHA/v12/n1/a3/.