This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Generalized Weighted Survival and Failure Entropies and their Dynamic Versions

Siddhartha Chakraborty, Biswabrata Pradhan
Abstract

The weighted forms of generalized survival and failure entropies of order (α,β\alpha,\beta) are proposed and some properties are obtained. We further propose the dynamic versions of weighted generalized survival and failures entropies and obtained some properties and bounds. Characterization for Rayleigh and power distributions are done by dynamic weighted generalized entropies. We further consider the empirical versions of generalized weighted survival and failure entropies and using the difference between theoretical and empirical survival entropies a test for exponentiality is considered.

1 Introduction

\citeA

shannon1948mathematical introduced the concept of differential entropy and since then it has been playing an improtant role in the field of information theory, thermodynamics, statistical mechanics and reliability. Let XX be a non-negative absolutely continuous random variable (rv) having cumulative distribution function (cdf) F(x)F(x) and probability density function (pdf) f(x)f(x), Then Shannon entropy of XX is given by

H(X)=0f(x)logf(x)𝑑x.\displaystyle H(X)=-\int_{0}^{\infty}f(x)\text{log}f(x)dx. (1)

There are various generalizations of Shannon entropy considered by many authors. Two most important ones are due to \citeArenyi1961measures and \citeAvarma1966generalizations. Reyni’s entropy of XX is given by

Hα(X)=11αlog0fα(x)𝑑x,α(1)>0H_{\alpha}(X)=\frac{1}{1-\alpha}\text{log}\int_{0}^{\infty}f^{\alpha}(x)dx,\;\alpha(\neq 1)>0

and Verma’s entropy of X is defined as

Hα,β(X)=1βαlog0fα+β1(x)𝑑x,β1,β1<α<β.H_{\alpha,\beta}(X)=\frac{1}{\beta-\alpha}\text{log}\int_{0}^{\infty}f^{\alpha+\beta-1}(x)dx,\;\beta\geq 1,\;\beta-1\;<\alpha<\;\beta.

When α1\alpha\to 1, Hα(X)H(X)H_{\alpha}(X)\to H(X). For β=1\beta=1, Hα,β(X)H_{\alpha,\beta}(X) reduces to Hα(X)H_{\alpha}(X) and when both α,β\alpha,\beta tends to 1, Hα,β(X)H_{\alpha,\beta}(X) tends to H(X)H(X).

If an item has survived time tt then in order to incorporate the residual lifetime of the item, \citeAebrahimi1996measure proposed dynamic entropy as H(X;t)=tf(x)F¯(t)logf(x)F¯(t)𝑑xH(X;t)=-\int_{t}^{\infty}\frac{f(x)}{\bar{F}(t)}\text{log}\frac{f(x)}{\bar{F}(t)}dx, where F¯(x)=1F(x)\bar{F}(x)=1-F(x) is the survival function (sf) of XX. \citeAdi2002entropy proposed the concept of dynamic past entropy measure as H¯(X;t)=0tf(x)F(t)logf(x)F(t)𝑑x\bar{H}(X;t)=-\int_{0}^{t}\frac{f(x)}{F(t)}\text{log}\frac{f(x)}{F(t)}dx.

Recently \shortciteArao2004cumulative and \shortciteArao2005more have proposed cumulative residual entropy measure as
ϵ(X)=0F¯(x)logF¯(x)𝑑x\epsilon(X)=-\int_{0}^{\infty}\bar{F}(x)\text{log}\bar{F}(x)dx. It may be noted that ϵ(X)\epsilon(X) measures the uncertainty when cdf exists but pdf does not. \citeAasadi2007dynamic proposed the dynamic form of ϵ(X)\epsilon(X) and \citeAdi2009cumulative proposed cumulative entropy ϵ¯(X)=0F(x)logF(x)𝑑x\bar{\epsilon}(X)=-\int_{0}^{\infty}F(x)\text{log}F(x)dx. Zografos \BBA Nadarajah (\APACyear2005) proposed survival entropy of order α\alpha as ξα(X)=11αlog0F¯α(x)𝑑x,α(1)>0\xi_{\alpha}(X)=\frac{1}{1-\alpha}\text{log}\int_{0}^{\infty}\bar{F}^{\alpha}(x)dx,\;\alpha(\neq 1)>0 and \shortciteAabbasnejad2010dynamic obtained its dynamic version. \citeAabbasnejad2011some introduced the failure entropy of order α\alpha as fξα(X)=11αlog0Fα(x)𝑑xf\xi_{\alpha}(X)=\frac{1}{1-\alpha}\text{log}\int_{0}^{\infty}F^{\alpha}(x)dx and also obtained its dynamic version.

Motivated from \citeAzografos2005survival, \shortciteAabbasnejad2010dynamic and \shortciteAabbasnejad2011some, \citeAkayal2015generalized proposed generalized survival and failure entropies of order (α,β)(\alpha,\beta) as

ξα,β(X)=1βαlog0F¯α+β1(x)𝑑x,β1,β1<α<β\displaystyle\xi_{\alpha,\beta}(X)=\frac{1}{\beta-\alpha}\text{log}\int_{0}^{\infty}\bar{F}^{\alpha+\beta-1}(x)dx,\;\beta\geq 1,\;\beta-1\;<\alpha<\;\beta (2)

and

fξα,β(X)=1βαlog0Fα+β1(x)𝑑x,β1,β1<α<β.\displaystyle f\xi_{\alpha,\beta}(X)=\frac{1}{\beta-\alpha}\text{log}\int_{0}^{\infty}{F}^{\alpha+\beta-1}(x)dx,\;\beta\geq 1,\;\beta-1\;<\alpha<\;\beta. (3)

They also considered their dynamic versions and obtained characterization results for exponential, pareto and power distributions.
All these above measures are shift independent and gives equal weights to the occurance of events. But in practical situations such as communication theory and Reliability, a shift dependent measure is often required. To incorporate this issue, \citeAbelis1968quantitative have introduced the concept of weighted entropy as Hw(X)=0xf(x)logx𝑑xH^{w}(X)=-\int_{0}^{\infty}xf(x)\text{log}xdx. Since then, several works have been done on weighted entropies. One may refer to \shortciteAmisagh2011weighted, \shortciteAmirali2017weighted, \shortciteAmirali2017dynamic,mirali2017some, \shortciteArajesh2017dynamic, \shortciteAnair2017study, \citeAkhammar2018weighted, \citeAdas2017weighted and \shortciteAnourbakhsh2016weighted, for details on weightes entriopy measures.

In this article, we propose generalized weighted survival and failure entropies of order (θ1,θ2)(\theta_{1},\theta_{2}) and their dynamic versions. The properties of the proposed entropy measures are discussed. The rest of the paper is organized as follows. In section 2, we introduce generalized weighted survival entropy and obtain its properties. The dynamic versions of generalized weighted survival entropy is discussed in section 3. Characterization results for Rayleigh distribution are obtained using generalized dynamic weighted survival entropy in section 4. We propose generalized weighted failure entropy and dynamic failure entropy in section 5. Characterization results for power distribution are obtained based on generalized dynamic weighted failure entropy. We obtain some inequalities and bounds for the proposed entropy measures in section 6. The empirical generalized weighted survival and failure entropies are provided in section 7. A goodness-of-fit test for exponential distribution is discussed in section 8. Finally, we conclude the paper in section 9.

2 Generalized weighted survival entropy of order (α,β)(\alpha,\beta)

Here we introduce generalized weighted survival entropy and obtain some properties.

Definition 2.1.

Generalized weighted survival entropy (GWSE) of order (α,β)(\alpha,\beta) is proposed as

ξα,βw(X)=1βαlog0xF¯α+β1(x)𝑑x,β1,β1<α<β.\displaystyle\xi_{\alpha,\beta}^{w}(X)=\frac{1}{\beta-\alpha}\log\int_{0}^{\infty}x\bar{F}^{\alpha+\beta-1}(x)dx,\;\beta\geq 1,\;\beta-1\;<\alpha<\;\beta. (4)

To illustrate the usefulness of the proposed entropy measure, we consider the following example.

Example 2.1.

Suppose XX and YY have pdfs f(x)=1ba,a<x<bf(x)=\frac{1}{b-a},\;a<x<b and g(y)=1ba,a+h<y<b+h,h>0g(y)=\frac{1}{b-a},\;a+h<y<b+h,\;h>0, respectively. From (2), we have ξα,β(X)=ξα,β(Y)=1βαlogbaα+β\xi_{\alpha,\beta}(X)=\xi_{\alpha,\beta}(Y)=\frac{1}{\beta-\alpha}\log\frac{b-a}{\alpha+\beta}. From (4) we get,

ξα,βw(X)\displaystyle\xi_{\alpha,\beta}^{w}(X) =1βαlog[(βα)(a(α+β)+b)(α+β)(α+β+1)],\displaystyle=\frac{1}{\beta-\alpha}\log\left[\dfrac{(\beta-\alpha)(a(\alpha+\beta)+b)}{(\alpha+\beta)(\alpha+\beta+1)}\right],
ξα,βw(Y)\displaystyle\xi_{\alpha,\beta}^{w}(Y) =1βαlog[(βα)(a(α+β)+b+h(α+β+1))(α+β)(α+β+1)].\displaystyle=\frac{1}{\beta-\alpha}\log\left[\dfrac{(\beta-\alpha)(a(\alpha+\beta)+b+h(\alpha+\beta+1))}{(\alpha+\beta)(\alpha+\beta+1)}\right].

So we see that, ξα,β(X)=ξα,β(Y)\xi_{\alpha,\beta}(X)=\xi_{\alpha,\beta}(Y) but GWSE of XX is smaller than GWSE of YY.

The following lemma shows that ξα,βw(X)\xi_{\alpha,\beta}^{w}(X) is shift-dependent measure.

Lemma 2.1.

Consider the linear transformation Z=aX+bZ=aX+b, where a>0a>0 and b0b\geq 0, then

exp[(βα)ξα,βw(Z)]=a2exp[(βα)ξα,βw(X)]+abexp[(βα)ξα,β(X)]\displaystyle\exp[(\beta-\alpha)\xi_{\alpha,\beta}^{w}(Z)]=a^{2}\;\exp[(\beta-\alpha)\xi_{\alpha,\beta}^{w}(X)]+ab\;\exp[(\beta-\alpha)\xi_{\alpha,\beta}(X)] (5)
Proof.

The results follows using F¯aX+b(x)=F¯X(xba)\bar{F}_{aX+b}(x)=\bar{F}_{X}(\frac{x-b}{a}), xRx\in R. ∎

Let F¯Xθ(x)\bar{F}_{X_{\theta}}(x) and F¯(x)\bar{F}(x) denote the sfs of the rvs XθX_{\theta} and XX, respectively. XθX_{\theta} and XX satisfy proportional hazard rate model i.e F¯Xθ(x)=[F¯(x)]θ\bar{F}_{X_{\theta}}(x)=[\bar{F}(x)]^{\theta}, θ(>0)\theta(>0). The following lemma compares the GWSE of XX, XθX_{\theta} and θX\theta X. Proofs are omitted.

Lemma 2.2.

The following statements hold:

(a)ξα,βw(Xθ)=(θβθαθ+1βα)ξθα,θβθ+1w(X)\displaystyle(a)\;\xi_{\alpha,\beta}^{w}(X_{\theta})=\left(\dfrac{\theta\beta-\theta\alpha-\theta+1}{\beta-\alpha}\right)\xi_{\theta\alpha,\theta\beta-\theta+1}^{w}(X)
(b)ξα,βw(Xθ)ξα,βw(X)ξα,βw(θX),ifθ>1\displaystyle(b)\;\xi_{\alpha,\beta}^{w}(X_{\theta})\leq\xi_{\alpha,\beta}^{w}(X)\leq\xi_{\alpha,\beta}^{w}(\theta X),\;if\;\theta>1
(c)ξα,βw(Xθ)ξα,βw(X)ξα,βw(θX),if 0<θ<1\displaystyle(c)\;\xi_{\alpha,\beta}^{w}(X_{\theta})\geq\xi_{\alpha,\beta}^{w}(X)\geq\xi_{\alpha,\beta}^{w}(\theta X),\;if\;0<\theta<1

We provide GWSE for exponential and Pareto distributions as examples in Table 1 to verify Lemma 2.2, where γ=α+β1\gamma=\alpha+\beta-1.

Table 1: GWSE for exponential and Pareto distribution
cdf (βα)ξα,βw(X)(\beta-\alpha)\xi_{\alpha,\beta}^{w}(X) (βα)ξα,βw(Xθ)(\beta-\alpha)\xi_{\alpha,\beta}^{w}(X_{\theta}) (βα)ξα,βw(θX)(\beta-\alpha)\xi_{\alpha,\beta}^{w}(\theta X)
F(x)=1e(λx);x>0,λ>0F(x)=1-e^{-(\lambda x)};\;x>0,\lambda>0 2log(λγ);λ>0-2\text{log}(\lambda\gamma);\;\lambda>0 2log(λθγ);λ>0-2\text{log}(\lambda\theta\gamma);\;\lambda>0 2logθ2log(λγ);λ>02\text{log}\theta-2\text{log}(\lambda\gamma);\;\lambda>0
F(x)=1(bx)a;xb>0,a>0F(x)=1-\left(\frac{b}{x}\right)^{a};\;x\geq b>0,a>0 logb2aγ2;aγ>2\text{log}\frac{b^{2}}{a\gamma-2};\;a\gamma>2 logb2aθγ2;aθγ>2\text{log}\frac{b^{2}}{a\theta\gamma-2};\;a\theta\gamma>2 logb2θ2θγ2;aγ>2\text{log}\frac{b^{2}\theta^{2}}{\theta\gamma-2};\;a\gamma>2

Definition 2.2.

Let XX be a continuous non-negative rv with sf F¯(x)\bar{F}(x), then the weighted mean residual life (WMRL) of XX is given by

mF(t)=txF¯(x)F¯(t)𝑑x,F¯(t)>0.\displaystyle m^{*}_{F}(t)=\int_{t}^{\infty}x\frac{\bar{F}(x)}{\bar{F}(t)}dx,\;\;\bar{F}(t)>0. (6)

Note that, mF(0)=0xF¯(x)𝑑x=12E(X2)m^{*}_{F}(0)=\int_{0}^{\infty}x\bar{F}(x)dx=\frac{1}{2}E(X^{2}). In the following theorem we provide a bound for GWSE in terms of mF(0)m^{*}_{F}(0).

Theorem 2.1.

Let XX be a continuous non-negative rv having WMRL mF(t)m^{*}_{F}(t) and GWSE ξα,βw(X)\xi_{\alpha,\beta}^{w}(X), then

ξα,βw(X)1βαlogmF(0).\displaystyle\xi_{\alpha,\beta}^{w}(X)\leq\frac{1}{\beta-\alpha}\log m^{*}_{F}(0).
Proof.

Since xF¯α+β1(x)xF¯(x)x\bar{F}^{\alpha+\beta-1}(x)\leq x\bar{F}(x), taking integral on both sides and dividing by (βα)(\beta-\alpha) we get the result. ∎

3 Generalized dynamic weighted survival entropy of order (α,β)(\alpha,\beta)

Now we define the dynamic version of GWSE to study the uncertainty in the residual life of a component XX. Which is the GWSE of the rv [Xt|X>t],t>0[X-t|X>t],\;t>0.

Definition 3.1.

Generalized dynamic weighted survival entropy (GDWSE) of order (α,β)(\alpha,\beta) of a continuous rv XX is defined as

ξα,βw(X;t)=1βαlogtxF¯α+β1(x)F¯α+β1(t)𝑑x,β1,β1<α<β.\displaystyle\xi_{\alpha,\beta}^{w}(X;t)=\frac{1}{\beta-\alpha}\log\int_{t}^{\infty}x\dfrac{\bar{F}^{\alpha+\beta-1}(x)}{\bar{F}^{\alpha+\beta-1}(t)}dx,\;\beta\geq 1,\;\beta-1\;<\alpha<\;\beta. (7)

Note that, ξα,βw(X;0)=ξα,βw(X)\xi_{\alpha,\beta}^{w}(X;0)=\xi_{\alpha,\beta}^{w}(X).

Lemma 3.1.

Suppose Z=aX+bZ=aX+b, where a>0a>0 and b0b\geq 0, then

exp[(βα)ξα,βw(Z;t)]\displaystyle\exp[(\beta-\alpha)\xi_{\alpha,\beta}^{w}(Z;t)] =a2exp[(βα)ξα,βw(X;tba)]\displaystyle=a^{2}\exp\left[(\beta-\alpha)\xi_{\alpha,\beta}^{w}\left(X;\frac{t-b}{a}\right)\right]
+abexp[(βα)ξα,β(X;tba)].\displaystyle+ab\exp\left[(\beta-\alpha)\xi_{\alpha,\beta}\left(X;\frac{t-b}{a}\right)\right].
Proof.

The proof is similar to lemma 2.1. ∎

Remark 3.1.

If b=0b=0, then from Lemma 2.4 we have

ξα,βw(Y;t)=2logaβα+ξα,βw(X;ta)\displaystyle\xi_{\alpha,\beta}^{w}(Y;t)=\frac{2\log a}{\beta-\alpha}+\xi_{\alpha,\beta}^{w}\left(X;\frac{t}{a}\right) (8)

Now we provide a bound for ξα,βw(X;t)\xi_{\alpha,\beta}^{w}(X;t) in terms of WMRL.

Theorem 3.1.

Let XX be a continuous non-negative rv with WMRL mF(t)m^{*}_{F}(t) and GDWSE ξα,βw(X;t)\xi_{\alpha,\beta}^{w}(X;t), then

ξα,βw(X;t)1βαlogmF(t).\displaystyle\xi_{\alpha,\beta}^{w}(X;t)\leq\frac{1}{\beta-\alpha}\log m^{*}_{F}(t).
Proof.

Since F¯(x)F¯(t)<1\dfrac{\bar{F}(x)}{\bar{F}(t)}<1 for x>tx>t, we have (F¯(x)F¯(t))α+β1<F¯(x)F¯(t)\left(\dfrac{\bar{F}(x)}{\bar{F}(t)}\right)^{\alpha+\beta-1}<\dfrac{\bar{F}(x)}{\bar{F}(t)}. Taking integral on both sides and dividing by (βα)(\beta-\alpha) and then using (7) we get the result. ∎

To verify Theorem 2.1 and 2.2 we consider exponential and pareto distributions. The results are given in Table 2, where γ=α+β1\gamma=\alpha+\beta-1.

Table 2: GWSE for exponential and Pareto distribution
cdf ξα,βw(X)\xi_{\alpha,\beta}^{w}(X) mF(0)m_{F}^{*}(0) (ξα,βw(X;t)(\xi_{\alpha,\beta}^{w}(X;t) mF(t)m_{F}^{*}(t)
F(x)=1e(λx);x>0,λ>0F(x)=1-e^{-(\lambda x)};\;x>0,\lambda>0 2βαlog(1λγ);λγ>1\frac{2}{\beta-\alpha}\text{log}(\frac{1}{\lambda\gamma});\;\lambda\gamma>1 1λ2\frac{1}{\lambda^{2}} 1βαlog(1+tλγλ2γ2);λγ>0\frac{1}{\beta-\alpha}\text{log}\left(\frac{1+t\lambda\gamma}{\lambda^{2}\gamma^{2}}\right);\;\lambda\gamma>0 1+tλλ2\frac{1+t\lambda}{\lambda^{2}}
F(x)=1(bx)a;xb>0,a>0F(x)=1-\left(\frac{b}{x}\right)^{a};\;x\geq b>0,a>0 1βαlogb2aγ2;aγ>2\frac{1}{\beta-\alpha}\text{log}\frac{b^{2}}{a\gamma-2};\;a\gamma>2 b2a2;a>2\frac{b^{2}}{a-2};\;a>2 logt2aγ2;aγ>2\text{log}\frac{t^{2}}{a\gamma-2};\;a\gamma>2 t2aa2;a>2\frac{t^{2}-a}{a-2};\;a>2

Where γ=(α+β1)\gamma=(\alpha+\beta-1).
Definition 3.2.

A non-negative continuous rv XX is said to be increasing (decreasing) generalized dynamic weighted survival entropy (IGDWSE (DGDWSE)), if ξα,βw(X;t)\xi_{\alpha,\beta}^{w}(X;t) is increasing (decreasing) in t(0)t\;(\geq 0).

Theorem 3.2.

A non-negative continuous rv XX is IGDWSE (DGDWSE) if and only if
λF(t)()tα+β1exp[(βα)ξα,βw(X;t)]\lambda_{F}(t)\geq(\leq)\dfrac{t}{\alpha+\beta-1}exp[-(\beta-\alpha)\xi_{\alpha,\beta}^{w}(X;t)], t0\forall t\geq 0, where λF(t)=f(t)F¯(t)\lambda_{F}(t)=\frac{f(t)}{\bar{F}(t)}, is the hazard function.

Proof.

We have

(βα)ξα,βw(X;t)=log[txF¯α+β1(x)𝑑x](α+β1)logF¯(t).\displaystyle(\beta-\alpha)\xi_{\alpha,\beta}^{w}(X;t)=\text{log}\left[\int_{t}^{\infty}x\bar{F}^{\alpha+\beta-1}(x)dx\right]-(\alpha+\beta-1)\text{log}\bar{F}(t). (9)

Differentiating (9) with respect to t we get,

(βα)ξα,βw(X;t)=(α+β1)λF(t)tF¯(α+β1)(t)txF¯(α+β1)(x)𝑑x.\displaystyle(\beta-\alpha)\xi_{\alpha,\beta}^{\prime w}(X;t)=(\alpha+\beta-1)\lambda_{F}(t)-t\dfrac{\bar{F}^{(\alpha+\beta-1)}(t)}{\int_{t}^{\infty}x\bar{F}^{(\alpha+\beta-1)}(x)dx}.

Using (7) we get,

(βα)ξα,βw(X;t)=(α+β1)λF(t)texp[(βα)ξα,βw(X;t)]\displaystyle(\beta-\alpha)\xi_{\alpha,\beta}^{\prime w}(X;t)=(\alpha+\beta-1)\lambda_{F}(t)-t\exp[-(\beta-\alpha)\xi_{\alpha,\beta}^{w}(X;t)] (10)

and the result follows from (10).

Definition 3.3 (Shaked and Shantikumar 2007).

Let XX and YY be two rvs with sfs F¯(x)\bar{F}(x) and G¯(x)\bar{G}(x), respectively. Then XX is said to be smaller than YY in the usual stochastic ordering, denoted by XYst\stackrel{{\scriptstyle st}}{{X\leq Y}}, if F¯(x)G¯(x)\bar{F}(x)\leq\bar{G}(x), for all x.

Definition 3.4.

XX is said to be smaller than YY in generalized weighted survival entropy ordering, denoted by XYwse\stackrel{{\scriptstyle wse}}{{X\leq Y}}, if ξα,βw(X)ξα,βw(Y)\xi_{\alpha,\beta}^{w}(X)\leq\xi_{\alpha,\beta}^{w}(Y).

Theorem 3.3.

Let XX and YY be two non-negative continuous rvs with sfs F¯(x)\bar{F}(x) and G¯(x)\bar{G}(x), respectively, then XYstXYwse\stackrel{{\scriptstyle st}}{{X\leq Y}}\implies\stackrel{{\scriptstyle wse}}{{X\leq Y}}.

Proof.

Proof easily follows using the definition of GWSE. ∎

Definition 3.5 (Shaked and Shantikumar (2007)).

XX is said to be smaller than YY in hazard rate ordering, denoted by XYhr\stackrel{{\scriptstyle hr}}{{X\leq Y}}, if λF(t)λG(t)\lambda_{F}(t)\geq\lambda_{G}(t), t0\forall t\geq 0 or equivalently G¯(t)F¯(t)\frac{\bar{G}(t)}{\bar{F}(t)} is increasing in tt.

Definition 3.6.

XX is said to be smaller than YY in generalized dynamic weighted survival entropy ordering, denoted by XYdwse\stackrel{{\scriptstyle dwse}}{{X\leq Y}}, if ξα,βw(X;t)ξα,βw(Y;t)\xi_{\alpha,\beta}^{w}(X;t)\leq\xi_{\alpha,\beta}^{w}(Y;t).

Theorem 3.4.

Let XX and YY be two non-negative continuous rvs with sfs F¯(x)\bar{F}(x) and G¯(x)\bar{G}(x) and hazard rate functions λF(t)\lambda_{F}(t) and λG(t)\lambda_{G}(t), respectively. If XYhr\stackrel{{\scriptstyle hr}}{{X\leq Y}} then XYdwse\stackrel{{\scriptstyle dwse}}{{X\leq Y}}.

Proof.

Proof follows using the fact that, F¯(x)F¯(t)G¯(x)G¯(t)\frac{\bar{F}(x)}{\bar{F}(t)}\leq\frac{\bar{G}(x)}{\bar{G}(t)} xt\forall x\geq t. ∎

Theorem 3.5.

Let XX and YY be two non-negative continuous rvs and X()Ydwse\stackrel{{\scriptstyle dwse}}{{X\leq(\geq)Y}}. Let Z1=a1XZ_{1}=a_{1}X and Z2=a2YZ_{2}=a_{2}Y, where a1,a2>0a_{1},a_{2}>0. Then Z1()Z2dwse\stackrel{{\scriptstyle dwse}}{{Z_{1}\leq(\geq)Z_{2}}}, if ξα,βw(X;t)\xi_{\alpha,\beta}^{w}(X;t) is decreasing in t>0t>0 and a1()a2a_{1}\leq(\geq)a_{2}.

Proof.

Suppose a1a2a_{1}\leq a_{2}. Since ξα,βw(X;t)\xi_{\alpha,\beta}^{w}(X;t) is decresasing in tt, we have, ξα,βw(X;ta1)ξα,βw(X;ta2)\xi_{\alpha,\beta}^{w}(X;\frac{t}{a_{1}})\leq\xi_{\alpha,\beta}^{w}(X;\frac{t}{a_{2}}). Again, ξα,βw(X;ta2)ξα,βw(Y;ta2)\xi_{\alpha,\beta}^{w}(X;\frac{t}{a_{2}})\leq\xi_{\alpha,\beta}^{w}(Y;\frac{t}{a_{2}}) since XYdwse\stackrel{{\scriptstyle dwse}}{{X\leq Y}}. Combining these two inequalities we have

ξα,βw(Z1;t)=2loga1βα+ξα,βw(X;ta1)2loga2βα+ξα,βw(Y;ta2)=ξα,βw(Z2;t).\xi_{\alpha,\beta}^{w}(Z_{1};t)=\frac{2\text{log}a_{1}}{\beta-\alpha}+\xi_{\alpha,\beta}^{w}(X;\frac{t}{a_{1}})\leq\frac{2\text{log}a_{2}}{\beta-\alpha}+\xi_{\alpha,\beta}^{w}(Y;\frac{t}{a_{2}})=\xi_{\alpha,\beta}^{w}(Z_{2};t).

Hence the results. Similarly, when a1a2a_{1}\geq a_{2}, it can be easily shown that Z1Z2dwse\stackrel{{\scriptstyle dwse}}{{Z_{1}\geq Z_{2}}}. ∎

The next theorem shows that, ξα,βw(X;t)\xi_{\alpha,\beta}^{w}(X;t) uniquely determines the underlying survival function.

Theorem 3.6.

Let XX be a non-negative continuous rv having pdf f(x)f(x) and sf F¯(x)\bar{F}(x). Assume that ξα,βw(X;t)<;t0,β1<α<β,β1\xi_{\alpha,\beta}^{w}(X;t)<\infty;\;t\geq 0,\;\beta-1<\alpha<\beta,\;\beta\geq 1. Then ξα,βw(X;t)\xi_{\alpha,\beta}^{w}(X;t) uniquely determines the sf of XX.

Proof.

From (10) we have

λF(t)=1α+β1((βα)ξα,βw(X;t)+texp[(βα)ξα,βw(X;t)]).\displaystyle\lambda_{F}(t)=\frac{1}{\alpha+\beta-1}((\beta-\alpha)\xi_{\alpha,\beta}^{\prime w}(X;t)+t\exp[-(\beta-\alpha)\xi_{\alpha,\beta}^{w}(X;t)]). (11)

Now let X1X_{1} and X2X_{2} be two rvs with sfs F¯1(t)\bar{F}_{1}(t) and F¯2(t)\bar{F}_{2}(t), GDWSEs ξα,βw(X1;t)\xi_{\alpha,\beta}^{w}(X_{1};t) and ξα,βw(X2;t)\xi_{\alpha,\beta}^{w}(X_{2};t) and hazard functions λF1(t)\lambda_{F_{1}}(t) and λF2(t)\lambda_{F_{2}}(t), respectively.
Suppose,

ξα,βw(X1;t)=ξα,βw(X2;t),\xi_{\alpha,\beta}^{w}(X_{1};t)=\xi_{\alpha,\beta}^{w}(X_{2};t),

then from (11) we get λF1(t)=λF2(t)\lambda_{F_{1}}(t)=\lambda_{F_{2}}(t). Since hazard function uniquely determines the survival function of the underlying distribution, we conclude that,

F¯1(t)=F¯2(t)\bar{F}_{1}(t)=\bar{F}_{2}(t)

. ∎

4 Characterization Results Based on GDWSE

In this section, we obtain some characterization results for Rayleigh distribution based on GDWSE.

Theorem 4.1.

The rv XX has constant GDWSE if and only if it has a Rayleigh distribution with survival function F¯(x)=eλx2;x0\bar{F}(x)=e^{-\lambda x^{2}};\;x\geq 0.

Proof.

The if part of the theorem can be easily obtained by using (7). For the only if part let us assume that ξα,βw(X;t)=c.\xi_{\alpha,\beta}^{w}(X;t)=c. Differentiating with respect to tt we have

(α+β1)λF(t)texp[(βα)ξα,βw(X;t)]=0.(\alpha+\beta-1)\lambda_{F}(t)-t\exp[-(\beta-\alpha)\xi_{\alpha,\beta}^{w}(X;t)]=0.

This implies λF(t)=e(αβ)cα+β1t\lambda_{F}(t)=\dfrac{e^{(\alpha-\beta)c}}{\alpha+\beta-1}t, which is the hazard function of a Rayleigh distribution with survival function F¯(t)=eλt2;t0\bar{F}(t)=e^{-\lambda t^{2}};\;t\geq 0, where λ=e(αβ)c2(α+β1)>0\lambda=\dfrac{e^{(\alpha-\beta)c}}{2(\alpha+\beta-1)}>0 as α+β>1\alpha+\beta>1. ∎

Theorem 4.2.

Let XX be a continuous rv with absolutely continuous survival function F¯\bar{F}. Then the relation (βα)ξα,βw(X;t)=logmF(t)log(α+β1)(\beta-\alpha)\xi_{\alpha,\beta}^{w}(X;t)=\log m_{F}^{*}(t)-\text{log}(\alpha+\beta-1) holds if and only if XX has a Rayleigh distribution.

Proof.

If part of the theorem is straight-forward. For the only if part, assume (βα)ξα,βw(X;t)=logmF(t)log(α+β1)(\beta-\alpha)\xi_{\alpha,\beta}^{w}(X;t)=\text{log}m_{F}^{*}(t)-\text{log}(\alpha+\beta-1) holds. Differentiating with respect to tt we get

(βα)ξα,βw(X;t)=mF(t)mF(t).(\beta-\alpha)\xi_{\alpha,\beta}^{\prime w}(X;t)=\frac{m_{F}^{\prime*}(t)}{m_{F}^{*}(t)}.

Then by using (10) we have

(α+β1)λF(t)texp[(βα)ξα,βw(X;t)]=mF(t)mF(t).\displaystyle(\alpha+\beta-1)\lambda_{F}(t)-t\;exp[-(\beta-\alpha)\xi_{\alpha,\beta}^{w}(X;t)]=\frac{m_{F}^{\prime*}(t)}{m_{F}^{*}(t)}. (12)

Note that mF(t)=txF¯(x)F¯(t)𝑑x.m^{*}_{F}(t)=\int_{t}^{\infty}x\frac{\bar{F}(x)}{\bar{F}(t)}dx. This implies

mF(t)=λF(t)mF(t)t.\displaystyle m_{F}^{\prime*}(t)=\lambda_{F}(t)m_{F}^{*}(t)-t. (13)

By putting (13) in (12), after simplification, we get

λF(t)mF(t)=t,\displaystyle\lambda_{F}(t)m_{F}^{*}(t)=t, (14)

Combining (13) and (14), we get mF(t)=0m_{F}^{\prime*}(t)=0, This implies

mF(t)=c,\displaystyle m_{F}^{*}(t)=c, (15)

where c is a constant. Using (14) and (15) we obtain, λF(t)=tc\lambda_{F}(t)=\frac{t}{c}, which is the hazard function of a Rayleigh distribution with survival function F¯(t)=et2c\bar{F}(t)=e^{\frac{-t^{2}}{c}}.

Now we obtaine a characterization result of the first order statistics based on GWSE. Let Let X1,X2,,XnX_{1},X_{2},...,X_{n} be a random sample of size nn from F(x)F(x). Denote the corresponding order statistics as X1:n,X2:n,,Xn:nX_{1:n},X_{2:n},...,X_{n:n}, where Xi:n(1in)X_{i:n}(1\leq i\leq n) is the ithi^{th} order statistic. The sf of X1:nX_{1:n} is given by, F¯1:n(x)=F¯n(x)\bar{F}_{1:n}(x)=\bar{F}^{n}(x) and GWSE of X1:nX_{1:n} is obtained as

ξα,βw(X1:n)\displaystyle\xi_{\alpha,\beta}^{w}(X_{1:n}) =1βαlog0xF¯n(α+β1)(x)𝑑x\displaystyle=\frac{1}{\beta-\alpha}\text{log}\int_{0}^{\infty}x\bar{F}^{n(\alpha+\beta-1)}(x)dx
=1βαlog01vn(α+β1)F1(1v)f(F1(1v))𝑑v.\displaystyle=\frac{1}{\beta-\alpha}\text{log}\int_{0}^{1}\dfrac{v^{n(\alpha+\beta-1)}F^{-1}(1-v)}{f(F^{-1}(1-v))}dv. (16)

The following lemma Mirali \BBA Baratpour (\APACyear2017\APACexlab\BCnt2) is useful to obtain the characterization results.

Lemma 4.1.

If η\eta is a continuous function on [0,1][0,1], such that 01xnη(x)𝑑x=0\int_{0}^{1}x^{n}\eta(x)dx=0, for n0n\geq 0, then η(x)=0\eta(x)=0, x[0,1]\forall x\in[0,1].

Theorem 4.3.

Let XX and YY be two non-negative continuous rvs having common support [0,)[0,\infty) with cdfs F(x)F(x) and G(x)G(x), respectively. Then F(x)=G(x)F(x)=G(x) if and only if ξα,βw(X1:n)=ξα,βw(Y1:n)\xi_{\alpha,\beta}^{w}(X_{1:n})=\xi_{\alpha,\beta}^{w}(Y_{1:n}), n\forall n.

Proof.

”If” ξα,βw(X1:n)=ξα,βw(Y1:n)\xi_{\alpha,\beta}^{w}(X_{1:n})=\xi_{\alpha,\beta}^{w}(Y_{1:n}), then from (4) we have

01vn(α+β1)[F1(1v)f(F1(1v))G1(1v)g(G1(1v))]𝑑v=0.\displaystyle\int_{0}^{1}v^{n(\alpha+\beta-1)}\left[\dfrac{F^{-1}(1-v)}{f(F^{-1}(1-v))}-\dfrac{G^{-1}(1-v)}{g(G^{-1}(1-v))}\right]dv=0.

Then from Lemma 3.1 we have F1(1v)f(F1(1v))=G1(1v)g(G1(1v))\dfrac{F^{-1}(1-v)}{f(F^{-1}(1-v))}=\dfrac{G^{-1}(1-v)}{g(G^{-1}(1-v))} for almost all v(0,1)v\in(0,1). This reduces to F1(w)ddwF1(w)=G1(w)ddwG1(w)F^{-1}(w)\frac{d}{dw}F^{-1}(w)=G^{-1}(w)\frac{d}{dw}G^{-1}(w), where w=1vw=1-v and ddwF1(w)=1f(F1(w)\frac{d}{dw}F^{-1}(w)=\frac{1}{f(F^{-1}(w)}. Since XX and YY have common support [0,)[0,\infty), we conclude that F1(w)=G1(w),0w1F^{-1}(w)=G^{-1}(w),0\leq w\leq 1. Hence the proof. ∎

5 Generalized Weighted Failure and Dynamic Failure Entropy of Order (α,β)(\alpha,\beta)

Definition 5.1.

Generalized weighted failure entropy (GWFE) of order (α,β)(\alpha,\beta) is defined as

fξα,βw(X)=1βαlog0xFα+β1(x)𝑑x,β1,β1<α<β.\displaystyle f\xi_{\alpha,\beta}^{w}(X)=\frac{1}{\beta-\alpha}\log\int_{0}^{\infty}x{F}^{\alpha+\beta-1}(x)dx,\;\beta\geq 1,\;\beta-1\;<\alpha<\;\beta. (17)
Example 5.1.

Let XX and YY be two rvs with pdfs f(u)=1a, 0<u<af(u)=\frac{1}{a},\;0<u<a and g(u)=1a,h<u<a+h,h>0g(u)=\frac{1}{a},\;h<u<a+h,\;h>0, respectively. From (3) we have, fξα,β(X)=fξα,β(Y)=1βαlogaα+βf\xi_{\alpha,\beta}(X)=f\xi_{\alpha,\beta}(Y)=\frac{1}{\beta-\alpha}\log\frac{a}{\alpha+\beta}. From (17) we get,

fξα,βw(X)\displaystyle f\xi_{\alpha,\beta}^{w}(X) =1βαlog[a2α+β+1],\displaystyle=\frac{1}{\beta-\alpha}\log\left[\frac{a^{2}}{\alpha+\beta+1}\right],
fξα,βw(Y)\displaystyle f\xi_{\alpha,\beta}^{w}(Y) =1βαlog[a(a(α+β)+h(α+β+1))(α+β)(α+β+1)].\displaystyle=\frac{1}{\beta-\alpha}\log\left[\dfrac{a(a(\alpha+\beta)+h(\alpha+\beta+1))}{(\alpha+\beta)(\alpha+\beta+1)}\right].

Although fξα,β(X)=fξα,β(Y)f\xi_{\alpha,\beta}(X)=f\xi_{\alpha,\beta}(Y) but fξα,βw(X)fξα,βw(Y)f\xi_{\alpha,\beta}^{w}(X)\neq f\xi_{\alpha,\beta}^{w}(Y). The following lemma shows the shift-dependency of GWFE.

Lemma 5.1.

Suppose Z=aX+bZ=aX+b, where a>0a>0 and b0b\geq 0, then

exp[(βα)fξα,βw(Z)]=a2exp[(βα)fξα,βw(X)]+abexp[(βα)fξα,β(X)].\displaystyle\exp[(\beta-\alpha)f\xi_{\alpha,\beta}^{w}(Z)]=a^{2}\exp[(\beta-\alpha)f\xi_{\alpha,\beta}^{w}(X)]+ab\exp[(\beta-\alpha)f\xi_{\alpha,\beta}(X)]. (18)

Let FXθ(x){F}_{X_{\theta}}(x) and F(x){F}(x) denote the distribution functions of the rvs XθX_{\theta} and XX, respectively, then proportional reverse hazard rate model is described by the relation FXθ(x)=[F(x)]θ{F}_{X_{\theta}}(x)=[{F}(x)]^{\theta} θ(>0)\theta(>0). The following lemma compares the GWFE of XX, XθX_{\theta} and θX\theta X. Proofs are omitted.

Lemma 5.2.

The following statements hold:

(a)fξα,βw(Xθ)=(θβθαθ+1βα)fξθα,θβθ+1w(X).\displaystyle(a)\;f\xi_{\alpha,\beta}^{w}(X_{\theta})=\left(\dfrac{\theta\beta-\theta\alpha-\theta+1}{\beta-\alpha}\right)f\xi_{\theta\alpha,\theta\beta-\theta+1}^{w}(X).
(b)fξα,βw(Xθ)fξα,βw(X)fξα,βw(θX),ifθ>1.\displaystyle(b)\;f\xi_{\alpha,\beta}^{w}(X_{\theta})\leq f\xi_{\alpha,\beta}^{w}(X)\leq f\xi_{\alpha,\beta}^{w}(\theta X),\;if\theta>1.
(c)fξα,βw(Xθ)fξα,βw(X)fξα,βw(θX),if0<θ<1.\displaystyle(c)\;f\xi_{\alpha,\beta}^{w}(X_{\theta})\geq f\xi_{\alpha,\beta}^{w}(X)\geq f\xi_{\alpha,\beta}^{w}(\theta X),\;if0<\theta<1.

For illustration we consider exponential and Pareto distributions. Lemma 5.2 can be easily verified by using the results in Table 3.

Table 3: GWFE for uniform and Power distribution where γ=α+β1\gamma=\alpha+\beta-1.
cdf (βα)fξα,βw(X)(\beta-\alpha)f\xi_{\alpha,\beta}^{w}(X) (βα)fξα,βw(Xθ)(\beta-\alpha)f\xi_{\alpha,\beta}^{w}(X_{\theta}) (βα)fξα,βw(θX)(\beta-\alpha)f\xi_{\alpha,\beta}^{w}(\theta X)
F(x)=xa; 0<x<a,a>0F(x)=\frac{x}{a};\;0<x<a,\;a>0 loga22+γ\text{log}\frac{a^{2}}{2+\gamma} loga22+γθ\text{log}\frac{a^{2}}{2+\gamma\theta} loga2θ22+γ\text{log}\frac{a^{2}\theta^{2}}{2+\gamma}
F(x)=xc; 0<x<1;c>0F(x)=x^{c};\;0<x<1;\;c>0 log12+γc\text{log}\frac{1}{2+\gamma c} log12+γθc\text{log}\frac{1}{2+\gamma\theta c} logθ22+γc\text{log}\frac{\theta^{2}}{2+\gamma c}

Definition 5.2.

Generalized dynamic weighted failure entropy (GDWFE) of order (α,β)(\alpha,\beta) a rv XX is the GWFE of the rv [tX|X<t],t>0[t-X|X<t],\;t>0. GDWFE of XX is defined as

fξα,βw(X;t)=1βαlog0txFα+β1(x)Fα+β1(t)𝑑x,β1,β1<α<β.\displaystyle f\xi_{\alpha,\beta}^{w}(X;t)=\frac{1}{\beta-\alpha}\log\int_{0}^{t}x\dfrac{{F}^{\alpha+\beta-1}(x)}{{F}^{\alpha+\beta-1}(t)}dx,\;\beta\geq 1,\;\beta-1\;<\alpha<\;\beta. (19)

Note that, fξα,βw(X;)=ξα,βw(X)f\xi_{\alpha,\beta}^{w}(X;\infty)=\xi_{\alpha,\beta}^{w}(X).

Lemma 5.3.

Suppose Z=aX+bZ=aX+b, where a>0a>0 and b0b\geq 0, then

exp[(βα)fξα,βw(Y;t)]\displaystyle\exp[(\beta-\alpha)f\xi_{\alpha,\beta}^{w}(Y;t)] =a2exp[(βα)fξα,βw(X;tba)]\displaystyle=a^{2}\exp\left[(\beta-\alpha)f\xi_{\alpha,\beta}^{w}\left(X;\frac{t-b}{a}\right)\right]
+abexp[(βα)fξα,β(X;tba)].\displaystyle+ab\exp\left[(\beta-\alpha)f\xi_{\alpha,\beta}\left(X;\frac{t-b}{a}\right)\right].
Remark 5.1.

If b=0b=0, then from Lemma 5.3 we have

fξα,βw(Y;t)=2logaβα+fξα,βw(X;ta).\displaystyle f\xi_{\alpha,\beta}^{w}(Y;t)=\frac{2\text{log}a}{\beta-\alpha}+f\xi_{\alpha,\beta}^{w}\left(X;\frac{t}{a}\right). (20)

Now we provide some bounds of GWFE and GDWFE in terms of weighted mean inactivity time (WMIT).

Definition 5.3.

The weighted mean inactivity time of a rv XX is defined as

μF(t)=0txF(x)F(t)𝑑x,F(t)>0.\displaystyle\mu^{*}_{F}(t)=\int_{0}^{t}x\frac{{F}(x)}{{F}(t)}dx,\;F(t)>0. (21)

Note that μF()=limtμF(t)=0xF(x)𝑑x\mu^{*}_{F}(\infty)=\lim_{t\to\infty}\mu_{F}^{*}(t)=\int_{0}^{\infty}x{F}(x)dx.

Theorem 5.1.

Let XX be a non-negative continuous rv with WMIT μF(t)\mu_{F}^{*}(t), GWFE fξα,βw(X)f\xi_{\alpha,\beta}^{w}(X) and GDWFE fξα,βw(X;t)f\xi_{\alpha,\beta}^{w}(X;t). Then

(i)fξα,βw(X)1βαlog[μF()].\displaystyle(i)f\xi_{\alpha,\beta}^{w}(X)\leq\frac{1}{\beta-\alpha}\log[\mu_{F}^{*}(\infty)].
(ii)fξα,βw(X;t)1βαlog[μF(t)].\displaystyle(ii)f\xi_{\alpha,\beta}^{w}(X;t)\leq\frac{1}{\beta-\alpha}\log[\mu_{F}^{*}(t)].
Proof.

Proofs are similar to that of theorems 2.1 and 2.2. ∎

Definition 5.4.

A non-negative rv XX is said to be increasing (decreasing) generalized dynamic weighted failure entropy (IGDWFE (DGDWFE)), if fξα,βw(X;t)f\xi_{\alpha,\beta}^{w}(X;t) is increasing (decreasing) in t(0)t\;(\geq 0).

Theorem 5.2.

A non-negative continuous rv XX is IGDWFE (DGDWFE) if and only if

rF(t)()tα+β1exp[(βα)fξα,βw(X;t)],t0,r_{F}(t)\geq(\leq)\dfrac{t}{\alpha+\beta-1}\exp[-(\beta-\alpha)f\xi_{\alpha,\beta}^{w}(X;t)],\;\forall t\geq 0,

where rF(t)=f(t)F(t)r_{F}(t)=\frac{f(t)}{{F}(t)} is the reverse hazard function.

Proof.

Differentiating (19) we get,

(βα)fξα,βw(X;t)=texp[(βα)fξα,βw(X;t)](α+β1)rF(t).\displaystyle(\beta-\alpha)f\xi_{\alpha,\beta}^{\prime w}(X;t)=t\text{exp}[-(\beta-\alpha)f\xi_{\alpha,\beta}^{w}(X;t)]-(\alpha+\beta-1)r_{F}(t). (22)

The result follows from (22). ∎

Definition 5.5.

XX is said to be smaller than YY in generalized weighted failure entropy ordering, denoted by XYwfe\stackrel{{\scriptstyle wfe}}{{X\leq Y}}, if fξα,βw(X)fξα,βw(Y)f\xi_{\alpha,\beta}^{w}(X)\leq f\xi_{\alpha,\beta}^{w}(Y).

Definition 5.6 (Shaked and Shantikumar (2007)).

XX is said to be smaller than YY in reversed hazard rate ordering, denoted by XYrh\stackrel{{\scriptstyle rh}}{{X\leq Y}}, if rF(t)rG(t)r_{F}(t)\leq r_{G}(t), t0\forall t\geq 0 or equivalently G(t)F(t)\frac{{G}(t)}{{F}(t)} is increasing in tt.

Definition 5.7.

XX is said to be smaller than YY in generalized dynamic weighted failure entropy ordering, denoted by XYdwfe\stackrel{{\scriptstyle dwfe}}{{X\leq Y}}, if fξα,βw(X;t)fξα,βw(Y;t)f\xi_{\alpha,\beta}^{w}(X;t)\leq f\xi_{\alpha,\beta}^{w}(Y;t), for t>0t>0.

Theorem 5.3.

Let XX and YY be two non-negative continuous rvs with cdfs FF and GG, respectively then XYst\stackrel{{\scriptstyle st}}{{X\leq Y}} \implies XYwfe\stackrel{{\scriptstyle wfe}}{{X\geq Y}}.

Theorem 5.4.

Let XX and YY be two non-negative continuous rvs with cdfs FF and GG and reversed hazard functions rF(t)r_{F}(t) and rG(t)r_{G}(t), respectively then XYhr\stackrel{{\scriptstyle hr}}{{X\leq Y}} \implies XYdwfe\stackrel{{\scriptstyle dwfe}}{{X\geq Y}}.

Proof.

Proof follows using the fact if XYhr\stackrel{{\scriptstyle hr}}{{X\leq Y}} then F(x)F(t)>G(x)G(t)\frac{F(x)}{F(t)}>\frac{G(x)}{G(t)}. ∎

Theorem 5.5.

Let XX and YY be two non-negative continuous rvs and X()Ydwfe\stackrel{{\scriptstyle dwfe}}{{X\leq(\geq)Y}}. Let Z1=a1XZ_{1}=a_{1}X and Z2=a2YZ_{2}=a_{2}Y, where a1,a2>0a_{1},a_{2}>0. Then Z1()Z2dwfe\stackrel{{\scriptstyle dwfe}}{{Z_{1}\leq(\geq)Z_{2}}}, if ξα,βw(X;t)\xi_{\alpha,\beta}^{w}(X;t) is decreasing in t>0t>0 and a1()a2a_{1}\leq(\geq)a_{2}.

Proof.

Proof follows along the same line as Theorem 2.6. ∎

Next theorem shows that GDWFE uniquely determines the distribution function of the underlying distribution.

Theorem 5.6.

Let XX be a non-negative continuous rv having pdf f(x)f(x) and distribution function F(x){F}(x). Assume that, fξα,βw(X;t)<;t0,β1<α<β,β1f\xi_{\alpha,\beta}^{w}(X;t)<\infty;\;t\geq 0,\;\forall\beta-1<\alpha<\beta,\;\beta\geq 1. Then for each α\alpha and β\beta, fξα,βw(X;t)f\xi_{\alpha,\beta}^{w}(X;t) uniquely determines the cdf of XX.

Proof.

From (22) we have

rF()t=1α+β1(texp[(βα)fξα,βw(X;t)](βα)fξα,βw(X;t)).\displaystyle r_{F}()t=\frac{1}{\alpha+\beta-1}(t\text{exp}[-(\beta-\alpha)f\xi_{\alpha,\beta}^{w}(X;t)]-(\beta-\alpha)f\xi_{\alpha,\beta}^{\prime w}(X;t)). (23)

Let F1(t)F_{1}(t) and F2(t)F_{2}(t)be two distribution functions with generalized dynamic weighted failure entropies as fξα,βw(X1;t)f\xi_{\alpha,\beta}^{w}(X_{1};t) and fξα,βw(X2;t)f\xi_{\alpha,\beta}^{w}(X_{2};t) and the reverse hazard rate functions rF1(t)r_{F_{1}}(t) and rF2(t)r_{F_{2}}(t), respectively. Assume that fξα,βw(X1;t)=fξα,βw(X2;t)f\xi_{\alpha,\beta}^{w}(X_{1};t)=f\xi_{\alpha,\beta}^{w}(X_{2};t) holds. Then from (23) we have rF1(t)=rF2(t)r_{F_{1}(t)}=r_{F_{2}(t)}. Since reverse haxzard rate uniquely determines the distribution function of the underlying distribution, we obtain F1(t)=F2(t)F_{1}(t)=F_{2}(t). ∎

Now we provide some characterization results for power distribution based on GDWFE.

Theorem 5.7.

Let XX be a non-negative rv having support (0,b)(0,b), with absolutely continuous distribution function F(x)F(x) and reversed hazard rate function rF(x)r_{F}(x). Then XX has a power distribution with F(x)=(xb)c, 0<x<b,c>0F(x)=\left(\frac{x}{b}\right)^{c},\;0<x<b,\;c>0 if and only if

(βα)fξα,βw(X;t)=logk+logμF(t),(\beta-\alpha)f\xi_{\alpha,\beta}^{w}(X;t)=\log k+\log\mu_{F}^{*}(t),

where μF(t)\mu_{F}^{*}(t) is the WMIT function of XX and k(>0)k(>0) is a constant.

Proof.

If part is straight-forward. Suppose the relation (βα)fξα,βw(X;t)=logk+logμF(t)(\beta-\alpha)f\xi_{\alpha,\beta}^{w}(X;t)=\text{log}k+\text{log}\mu_{F}^{*}(t) holds. Differentiating with respect to tt we get

texp[(βα)fξα,βw(X;t)](α+β1)rF(t)=μF(t)μF(t).\displaystyle t\text{exp}[-(\beta-\alpha)f\xi_{\alpha,\beta}^{w}(X;t)]-(\alpha+\beta-1)r_{F}(t)=\frac{\mu_{F}^{\prime*}(t)}{\mu_{F}^{*}(t)}. (24)

Substituting the value of (βα)fξα,βw(X;t)(\beta-\alpha)f\xi_{\alpha,\beta}^{w}(X;t) in (24) and using the fact that μF(t)=ddtμF(t)=trF(t)μF(t)μF(t)\mu_{F}^{\prime*}(t)=\frac{d}{dt}\mu_{F}(t)=\frac{t-r_{F}(t)\mu_{F}^{*}(t)}{\mu_{F}^{*}(t)} and after some calculation (24) reduces to

rF(t)μF(t)=1kk(α+β2)t.\displaystyle r_{F}(t)\mu_{F}^{*}(t)=\frac{1-k}{k(\alpha+\beta-2)}t. (25)

This implies

μF(t)=k(α+β1)1k(α+β2)t.\mu_{F}^{*}(t)=\frac{k(\alpha+\beta-1)-1}{k(\alpha+\beta-2)}t.

Integrating with respect to tt and taking μF(0)=0\mu_{F}^{*}(0)=0 we get,

μF(t)=1kk(α+β2)t22.\mu_{F}^{*}(t)=\frac{1-k}{k(\alpha+\beta-2)}\frac{t^{2}}{2}.

From (25) we obtain

rF(t)=2(1k)k(α+β1)11t=ctr_{F}(t)=\frac{2(1-k)}{k(\alpha+\beta-1)-1}\frac{1}{t}=\frac{c}{t}

where c=2(1k)k(α+β1)1>0c=\frac{2(1-k)}{k(\alpha+\beta-1)-1}>0, for 1>k>1α+β11>k>\frac{1}{\alpha+\beta-1}. So we see that rF(t)r_{F}(t) is the reverse hazard rate function of the power distribution with distriution function F(x)=(xb)c, 0<x<b,c>0F(x)=\left(\frac{x}{b}\right)^{c},\;0<x<b,\;c>0. Hence the result. ∎

Next we obtain a characterization result of largest order statistic based on GDWFE. The cdf of Xn:nX_{n:n} is given by Fn:n(x)=Fn(x)F_{n:n}(x)=F^{n}(x) and the GDWFE of Xn:nX_{n:n} is obtained as

fξα,βw(Xn:n;t)\displaystyle f\xi_{\alpha,\beta}^{w}(X_{n:n};t) =1βαlog0xFn(α+β1)(x)𝑑x\displaystyle=\frac{1}{\beta-\alpha}\text{log}\int_{0}^{\infty}xF^{n(\alpha+\beta-1)}(x)dx
=1βαlog01vn(α+β1)F1(v)f(F1(v))𝑑v.\displaystyle=\frac{1}{\beta-\alpha}\text{log}\int_{0}^{1}\frac{v^{n(\alpha+\beta-1)}F^{-1}(v)}{f(F^{-1}(v))}dv. (26)
Theorem 5.8.

Let XX and YY be two non-negative continuous rvs having common support (0,)(0,\infty) with cdfs F(x)F(x) and G(x)G(x), respectively. Then F(x)=G(x)F(x)=G(x) if and only if fξα,βw(Xn:n;t)=fξα,βw(Yn:n;t)f\xi_{\alpha,\beta}^{w}(X_{n:n};t)=f\xi_{\alpha,\beta}^{w}(Y_{n:n};t), n\forall n.

Proof.

The ”only if” part is straight forward. For the ”if” part assume that, fξα,βw(Xn:n;t)=fξα,βw(Yn:n;t)f\xi_{\alpha,\beta}^{w}(X_{n:n};t)=f\xi_{\alpha,\beta}^{w}(Y_{n:n};t) holds. Now from (5) we have,

01vn(α+β1)[F1(v)f(F1(v))G1(v)g(G1(v))]𝑑v.\displaystyle\int_{0}^{1}v^{n(\alpha+\beta-1)}\left[\frac{F^{-1}(v)}{f(F^{-1}(v))}-\frac{G^{-1}(v)}{g(G^{-1}(v))}\right]dv.

Then from Lemma 4.1 we have, F1(v)f(F1(v))=G1(v)g(G1(v))\frac{F^{-1}(v)}{f(F^{-1}(v))}=\frac{G^{-1}(v)}{g(G^{-1}(v))} for almost all v(0,1)v\in(0,1). The rest of the proof is similar to the proof of Theorem 3.3.

6 Some Inequalities and Bounds

In this section we provide some upper and lower bounds for generalized weighted survival and failure entropies and their dynamic versions.

Theorem 6.1.

Let XX be a non-negative continuous random variable with pdf f(x)f(x), cdf F(x)F(x) and sf F¯(x)\bar{F}(x). The following inequalities holds:

(i)(βα)ξα,βw(X)+(α+β1)H(X)+E(logX).\displaystyle(i)\;(\beta-\alpha)\xi_{\alpha,\beta}^{w}(X)+(\alpha+\beta-1)\geq H(X)+E(\text{log}X).
(ii)(βα)fξα,βw(X)+(α+β1)H(X)+E(logX).\displaystyle(ii)\;(\beta-\alpha)f\xi_{\alpha,\beta}^{w}(X)+(\alpha+\beta-1)\geq H(X)+E(\text{log}X).
Proof.

Using log-sum inequality we have

0f(x)logf(x)xF¯α+β1(x)𝑑x\displaystyle\int_{0}^{\infty}f(x)\text{log}\frac{f(x)}{x\bar{F}^{\alpha+\beta-1}(x)}dx log0f(x)𝑑x0xF¯α+β1(x)𝑑x0f(x)𝑑x\displaystyle\geq\text{log}\dfrac{\int_{0}^{\infty}f(x)dx}{\int_{0}^{\infty}x\bar{F}^{\alpha+\beta-1}(x)dx}\int_{0}^{\infty}f(x)dx
=log0xF¯α+β1(x)𝑑x\displaystyle=-\text{log}\int_{0}^{\infty}x\bar{F}^{\alpha+\beta-1}(x)dx
=(βα)ξα,βw(X)\displaystyle=-(\beta-\alpha)\xi_{\alpha,\beta}^{w}(X) (27)

Now the L.H.S of (6) equals

0(logf(x))f(x)𝑑x0(logx)f(x)𝑑x(α+β1)0logF¯(x)f(x)𝑑x,\displaystyle\int_{0}^{\infty}(\text{log}f(x))f(x)dx-\int_{0}^{\infty}(\text{log}x)f(x)dx-(\alpha+\beta-1)\int_{0}^{\infty}\text{log}\bar{F}(x)f(x)dx,

which reduces to H(X)E(logX)+(α+β1)-H(X)-E(\text{log}X)+(\alpha+\beta-1). The result follows from (6). Part (ii) follows along the same line as part (i). ∎

In the next theorem we provide lower bound for GDWSE and GDWFE.

Theorem 6.2.

Under the assumptions of Theorem 5.1, the following inequalities holds:

(i)(βα)ξα,βw(X;t)+(α+β1)H(X;t)+tf(x)F¯(t)log(x)𝑑x\displaystyle(i)\;(\beta-\alpha)\xi_{\alpha,\beta}^{w}(X;t)+(\alpha+\beta-1)\geq H(X;t)+\int_{t}^{\infty}\frac{f(x)}{\bar{F}(t)}\log(x)\;dx
(ii)(βα)fξα,βw(X;t)+(α+β1)H¯(X;t)+0tf(x)F(t)log(x)𝑑x\displaystyle(ii)\;(\beta-\alpha)f\xi_{\alpha,\beta}^{w}(X;t)+(\alpha+\beta-1)\geq\bar{H}(X;t)+\int_{0}^{t}\frac{f(x)}{F(t)}\log(x)\;dx
Proof.

(i).(i). From log-sum inequality we get

tf(x)logf(x)x(F¯(x)F¯(t))α+β1𝑑x\displaystyle\int_{t}^{\infty}f(x)\text{log}\frac{f(x)}{x\left(\frac{\bar{F}(x)}{\bar{F}(t)}\right)^{\alpha+\beta-1}}dx logtf(x)𝑑xtx(F¯(x)F¯(t))α+β1𝑑x0f(x)𝑑x\displaystyle\geq\text{log}\dfrac{\int_{t}^{\infty}f(x)dx}{\int_{t}^{\infty}x\left(\frac{\bar{F}(x)}{\bar{F}(t)}\right)^{\alpha+\beta-1}dx}\int_{0}^{\infty}f(x)dx
=F¯(t)[logF¯(t)(βα)ξα,βw(X;t)]\displaystyle=\bar{F}(t)[\text{log}\bar{F}(t)-(\beta-\alpha)\xi_{\alpha,\beta}^{w}(X;t)] (28)

After some simplifications, R.H.S of (6) reduces to t(logf(x))f(x)𝑑xt(logx)f(x)𝑑x+(α+β1)F¯(t)\int_{t}^{\infty}(\text{log}f(x))f(x)dx-\int_{t}^{\infty}(\text{log}x)f(x)dx+(\alpha+\beta-1)\bar{F}(t). Using the definition of H(X;t)H(X;t) and after some simpifications, the results follows from (6). Proof of part (ii)(ii) follows similarly.

Now we provide an upper bound for GDWSE and GDWFE.

Theorem 6.3.

Under the assumptions of Theorem 5.1 and XX having support [0,b][0,b], the following inequality holds:

ξα,βw(X;t)tbx(F¯(x)F¯(t))(α+β1)log[x(F¯(x)F¯(t))(α+β1)]𝑑x(βα)tbx(F¯(x)F¯(t))(α+β1)𝑑x+log(bt)βα,t<b.\xi_{\alpha,\beta}^{w}(X;t)\leq\frac{\int_{t}^{b}x\left(\frac{\bar{F}(x)}{\bar{F}(t)}\right)^{(\alpha+\beta-1)}\text{log}\left[x\left(\frac{\bar{F}(x)}{\bar{F}(t)}\right)^{(\alpha+\beta-1)}\right]dx}{(\beta-\alpha)\int_{t}^{b}x\left(\frac{\bar{F}(x)}{\bar{F}(t)}\right)^{(\alpha+\beta-1)}dx}+\frac{\log(b-t)}{\beta-\alpha},\;t<b.
Proof.

Using log-sum inequality we get,

tbx(F¯(x)F¯(t))\displaystyle\int_{t}^{b}x\left(\frac{\bar{F}(x)}{\bar{F}(t)}\right) log(α+β1)[x(F¯(x)F¯(t))(α+β1)]dx{}^{(\alpha+\beta-1)}\text{log}\left[x\left(\frac{\bar{F}(x)}{\bar{F}(t)}\right)^{(\alpha+\beta-1)}\right]dx
logtbx(F¯(x)F¯(t))(α+β1)𝑑xbttbx(F¯(x)F¯(t))(α+β1)𝑑x\displaystyle\geq\text{log}\dfrac{\int_{t}^{b}x\left(\frac{\bar{F}(x)}{\bar{F}(t)}\right)^{(\alpha+\beta-1)}dx}{b-t}\int_{t}^{b}x\left(\frac{\bar{F}(x)}{\bar{F}(t)}\right)^{(\alpha+\beta-1)}dx
=[(βα)ξα,βw(X;t)log(bt)]tbx(F¯(x)F¯(t))(α+β1)𝑑x.\displaystyle=[(\beta-\alpha)\xi_{\alpha,\beta}^{w}(X;t)-\text{log}(b-t)]\int_{t}^{b}x\left(\frac{\bar{F}(x)}{\bar{F}(t)}\right)^{(\alpha+\beta-1)}dx. (29)

The proof follows from (6). ∎

Proposition 6.1.

Under the assumptions of Theorem 5.1, the following inequality holds:

fξα,βw(X;t)0tx(F(x)F(t))(α+β1)log[x(F(x)F(t))(α+β1)]𝑑x(βα)0tx(F(x)F(t))(α+β1)𝑑x+log(t)βα.f\xi_{\alpha,\beta}^{w}(X;t)\leq\frac{\int_{0}^{t}x\left(\frac{{F}(x)}{{F}(t)}\right)^{(\alpha+\beta-1)}\text{log}\left[x\left(\frac{{F}(x)}{{F}(t)}\right)^{(\alpha+\beta-1)}\right]dx}{(\beta-\alpha)\int_{0}^{t}x\left(\frac{{F}(x)}{{F}(t)}\right)^{(\alpha+\beta-1)}dx}+\frac{\text{log}(t)}{\beta-\alpha}.
Proof.

Proof is similar to Theorem 5.3. ∎

7 Empirical GWSE and GWFE

Let X1,X2,,XnX_{1},X_{2},...,X_{n} be a random sample of size nn drawn from a distribution with cdf F(x)F(x), sf F¯(x)\bar{F}(x) and X1:nX2:nXn:nX_{1:n}\leq X_{2:n}\leq...\leq X_{n:n} be the corresponding order statistics. Let Fn(x)F_{n}(x) be the empirical distribution function of XX then for Xi:nx<X(i+1):nX_{i:n}\leq x<X_{(i+1):n}

Fn(x)=in;i=1,2,n1.\displaystyle F_{n}(x)=\frac{i}{n};\;i=1,2,\cdots n-1.

The emperical GWSE is defined as

ξ^α,βw(X)=1βαlog0xFn¯α+β1(x)𝑑x,β1,β1<α<β.\displaystyle\hat{\xi}_{\alpha,\beta}^{w}(X)=\frac{1}{\beta-\alpha}\text{log}\int_{0}^{\infty}x\bar{F_{n}}^{\alpha+\beta-1}(x)dx,\;\beta\geq 1,\;\beta-1\;<\alpha<\;\beta. (30)

Substituting F¯n(x)=1in,i=1,2,n1,)\bar{F}_{n}(x)=1-\frac{i}{n},\;i=1,2,\cdots n-1,) in (30) we get,

ξ^α,βw(X)\displaystyle\hat{\xi}_{\alpha,\beta}^{w}(X) =1βαlog[i=1n1Xi:nX(i+1):nxFn¯α+β1(x)𝑑x]\displaystyle=\frac{1}{\beta-\alpha}\text{log}\left[\sum_{i=1}^{n-1}\int_{X_{i:n}}^{X_{(i+1):n}}x\bar{F_{n}}^{\alpha+\beta-1}(x)dx\right]
=1βαlog[i=1n1X(i+1):n2Xi:n22(1in)α+β1]\displaystyle=\frac{1}{\beta-\alpha}\text{log}\left[\sum_{i=1}^{n-1}\dfrac{X^{2}_{(i+1):n}-X^{2}_{i:n}}{2}\left(1-\frac{i}{n}\right)^{\alpha+\beta-1}\right]
=1βαlog[12i=1n1Ui+1(1in)α+β1],\displaystyle=\frac{1}{\beta-\alpha}\text{log}\left[\frac{1}{2}\sum_{i=1}^{n-1}U_{i+1}\left(1-\frac{i}{n}\right)^{\alpha+\beta-1}\right], (31)

where Ui+1=X(i+1):n2Xi:n22U_{i+1}=\dfrac{X^{2}_{(i+1):n}-X^{2}_{i:n}}{2} and U1=X1:nU_{1}=X_{1:n}. Similarly, emperical GWFE can be obtained as

fξ^α,βw(X)=1βαlog[12i=1n1Ui+1(in)α+β1].\displaystyle\hat{f\xi}_{\alpha,\beta}^{w}(X)=\frac{1}{\beta-\alpha}\text{log}\left[\frac{1}{2}\sum_{i=1}^{n-1}U_{i+1}\left(\frac{i}{n}\right)^{\alpha+\beta-1}\right]. (32)

8 Application

In this section we consider the difference between ξα,βw(X)\xi_{\alpha,\beta}^{w}(X) and its empirical version ξ^α,βw(X)\hat{\xi}_{\alpha,\beta}^{w}(X) as a test statistic for testing exponentiality. Let X1,X2,,XnX_{1},X_{2},\cdots,X_{n} be iid rvs from a non-negative absolutely continuous cdf FF. Let F0(x,λ)=1eλx,x>0,λ>0F_{0}(x,\lambda)=1-e^{-\lambda x},\;x>0,\;\lambda>0, denote the cdf of a exponential distribution with parameter λ\lambda. We want to test the hypothesis

H0:F(x)=F0(x,λ)vs.H1:F(x)F0(x,λ).\displaystyle H_{0}:F(x)=F_{0}(x,\lambda)\;\;\;\;vs.\;\;\;\;H_{1}:F(x)\neq F_{0}(x,\lambda).

Now consider the absolute difference between ξα,βw(X)\xi_{\alpha,\beta}^{w}(X) and ξ^α,βw(X)\hat{\xi}_{\alpha,\beta}^{w}(X) as D=ξα,βw(X)ξ^α,βw(X)D=\mid\xi_{\alpha,\beta}^{w}(X)-\hat{\xi}_{\alpha,\beta}^{w}(X)\mid. If Xexp(λ)X\sim\exp(\lambda) then ξα,βw(X)=2αβlog(λ(α+β1))\xi_{\alpha,\beta}^{w}(X)=\frac{2}{\alpha-\beta}\text{log}(\lambda(\alpha+\beta-1)) and DD reduces to D=ξ^α,βw(X)2αβlog(λ^(α+β1))D=\mid\hat{\xi}_{\alpha,\beta}^{w}(X)-\frac{2}{\alpha-\beta}\text{log}(\hat{\lambda}(\alpha+\beta-1))\mid, where λ^=1/X¯\hat{\lambda}=1/\bar{X} is the maximum likelihood estimatir (mle) of λ\lambda. DD measures the distance between GWSE and empirical GWSE and large values of DD indicates that the sample is from a non-exponential family. Now consider the monotone transformation T=exp(D)T=\exp(-D), where 0<T<10<T<1. Under the null hypothesis, D𝑝0D\overset{p}{\to}0 and hence T𝑝1T\overset{p}{\to}1. So we reject H0H_{0} at the significance level γ\gamma if T<Tγ,nT<T_{\gamma,n}, where T<Tγ,nT<T_{\gamma,n} is the lower γ\gamma-quantile of the edf of TT.

The sampling distribution of TT under H0H_{0} is intractable. So to obtain the critical points Tγ,nT_{\gamma,n} by simulations we generate 10000 samples of size nn from a standard exponential distribution has been generated for n=1(1)30, 30(5)50n=1(1)30,\;30(5)50 and 50(10)10050(10)100. For each nn the lower γ\gamma-quantile of the edf of TT is used to determine Tγ,nT_{\gamma,n}. The critical points varies for different choice of (α,β)(\alpha,\beta). The critical points of 90%, 95% and 99% are presented in the table 4 for α=0.26\alpha=0.26 and β=1.25\beta=1.25.

Table 4: Critical values of T
nn T0.01,nT_{0.01,n} T0.05,nT_{0.05,n} T0.10,nT_{0.10,n} nn T0.01,nT_{0.01,n} T0.05,nT_{0.05,n} T0.10,nT_{0.10,n}
4 0.07666 0.13727 0.16981 22 0.30434 0.35431 0.38425
5 0.12145 0.17263 0.20185 23 0.30909 0.35696 0.39035
6 0.14906 0.19960 0.22662 24 0.31098 0.36215 0.39297
7 0.16893 0.21810 0.24337 25 0.31807 0.21810 0.37008
8 0.19024 0.23468 0.26113 26 0.32124 0.37164 0.40463
9 0.20317 0.24861 0.27558 27 0.32314 0.37540 0.40856
10 0.21687 0.26026 0.28849 28 0.32846 0.37966 0.41360
11 0.22709 0.27192 0.30025 29 0.33505 0.38617 0.41831
12 0.23581 0.28305 0.31134 30 0.34131 0.38831 0.42192
13 0.24587 0.28878 0.31884 35 0.35224 0.40191 0.43525
14 0.25436 0.29767 0.32693 40 0.37268 0.42064 0.45580
15 0.26067 0.30454 0.33363 45 0.38505 0.43506 0.47251
16 0.26468 0.31550 0.34597 50 0.39104 0.44952 0.48579
17 0.27219 0.32203 0.35480 60 0.41437 0.47008 0.50450
18 0.28200 0.33075 0.36135 70 0.43474 0.48912 0.52189
19 0.28674 0.33222 0.36592 80 0.44990 0.50518 0.54231
20 0.28955 0.33686 0.36894 90 0.46394 0.51954 0.55417
21 0.29881 0.34701 0.37865 100 0.47300 0.52891 0.56268

We computhe the power of the test for Weibull and Gamma alternative. We observe through simulation, that the power of test does not changes significantly for different choices of the scale parameters of the alternative distributions. So we take the scale parameters to be 1 in both cases.

We calculated the powers of the test based on 10000 samples of size n=5(5)30n=5(5)30. We obtained the powers for significance level γ=0.01\gamma=0.01, γ=0.05\gamma=0.05 and γ=0.10\gamma=0.10. From table 6 and 6 we see that as sample size increases the power of the test also increases, as expected. Also the power We calculated the powers of the tests based on 10000 samples of size n=10(5)25n=10(5)25. We obtained the powers for significance level α=0.01\alpha=0.01 and α=0.05\alpha=0.05. For power computation we consider two alternative distributions Weibull (p,1) with pdf fW(x)=pxp1exp,x,p>0f_{W}(x)=px^{p-1}e^{-x^{p}},\;x,p>0 and Gamma (q,1) with pdf fGA(x)=exxq1Γ(q),x,q>0f_{GA}(x)=\frac{e^{-x}x^{q-1}}{\Gamma(q)},\;x,q>0. The powers for Weibull and gamma alternatives are proposed in tables 6 and 6, respectively. It is observed that the powers of the test TT is higher than that of TT^{*} but slightly lower than that of KLmnKL_{mn} for small sample size nn = 10. However, for moderate to large sample sizes the proposed test TT behaves similar to KLmnKL_{mn} and TT^{*}. when the shape parameters increases in both cases. The power is very high even for small sample sizes. So this test can be used as a goodness of fit test for exponential distribution.

Table 5: Power of the test when the alternative is Weibull(p,1)
nn p γ=0.01\gamma=0.01 γ=0.05\gamma=0.05 γ=0.10\gamma=0.10
5 2 0.1243 0.3830 0.5597
3 0.3748 0.7520 0.8843
4 0.6376 0.9300 0.9823
10 2 0.3819 0.6981 0.8237
3 0.8936 0.9859 0.9962
4 0.9948 1 1
15 2 0.5962 0.8305 0.9254
3 0.9896 0.9997 1
4 1 1 1
20 2 0.7348 0.9204 0.9680
3 0.9987 1 1
4 1 1 1
25 2 0.8552 0.9686 0.9890
3 1 1 1
4 1 1 1
30 2 0.9231 0.9837 0.9953
3 1 1 1
4 1 1 1
Table 6: Power of the test when the alternative is Gamma(q,1)
nn p γ=0.01\gamma=0.01 γ=0.05\gamma=0.05 γ=0.10\gamma=0.10
5 5 0.2316 0.5855 0.7674
6 0.3101 0.6913 0.8434
7 0.3745 0.7731 0.8992
10 5 0.6516 0.8746 0.9392
6 0.7787 0.9377 0.9699
7 0.8625 0.9712 0.9870
15 5 0.8233 0.9452 0.9724
6 0.9206 0.9796 0.9918
7 0.9591 0.9930 0.9968
20 5 0.9046 0.9739 0.9900
6 0.9608 0.9917 0.9973
7 0.9869 0.9984 0.9998
25 5 0.9556 0.9909 0.9960
6 0.9869 0.9983 0.9990
7 0.9961 0.9997 1
30 5 0.9771 0.9928 0.9986
6 0.9943 0.9990 0.9996
7 0.9986 1 1

9 Conclusion

Generalized weighted survival and failure entropies and their dynamic versions are considered. We provide several properties of the said measures and obtained characterizations results for Rayleigh and power distributions based on the dynamic versions. We also provide the empirical versions of the entropy measures and using the difference between GWSE and its empirical version we perform test of exponentiality. The test depends on the choice of α\alpha and β\beta. Optimal choice of α\alpha and β\beta is an important issue. One can choose (α,β)(\alpha,\beta) in such a way that the asymptotic variances of the empirical generalized weighted survival and failure entropies are minimum. More work will be needed in this direction.

References

  • Abbasnejad (\APACyear2011) \APACinsertmetastarabbasnejad2011some{APACrefauthors}Abbasnejad, M.  \APACrefYearMonthDay2011. \BBOQ\APACrefatitleSome characterization results based on dynamic survival and failure entropies Some characterization results based on dynamic survival and failure entropies.\BBCQ \APACjournalVolNumPagesCommunications for Statistical Applications and Methods186787–798. \PrintBackRefs\CurrentBib
  • Abbasnejad \BOthers. (\APACyear2010) \APACinsertmetastarabbasnejad2010dynamic{APACrefauthors}Abbasnejad, M., Arghami, N\BPBIR., Morgenthaler, S.\BCBL \BBA Borzadaran, G\BPBIM.  \APACrefYearMonthDay2010. \BBOQ\APACrefatitleOn the dynamic survival entropy On the dynamic survival entropy.\BBCQ \APACjournalVolNumPagesStatistics & probability letters8023-241962–1971. \PrintBackRefs\CurrentBib
  • Asadi \BBA Zohrevand (\APACyear2007) \APACinsertmetastarasadi2007dynamic{APACrefauthors}Asadi, M.\BCBT \BBA Zohrevand, Y.  \APACrefYearMonthDay2007. \BBOQ\APACrefatitleOn the dynamic cumulative residual entropy On the dynamic cumulative residual entropy.\BBCQ \APACjournalVolNumPagesJournal of Statistical Planning and Inference13761931–1941. \PrintBackRefs\CurrentBib
  • Belis \BBA Guiasu (\APACyear1968) \APACinsertmetastarbelis1968quantitative{APACrefauthors}Belis, M.\BCBT \BBA Guiasu, S.  \APACrefYearMonthDay1968. \BBOQ\APACrefatitleA quantitative-qualitative measure of information in cybernetic systems (Corresp.) A quantitative-qualitative measure of information in cybernetic systems (corresp.).\BBCQ \APACjournalVolNumPagesIEEE Transactions on Information Theory144593–594. \PrintBackRefs\CurrentBib
  • Das (\APACyear2017) \APACinsertmetastardas2017weighted{APACrefauthors}Das, S.  \APACrefYearMonthDay2017. \BBOQ\APACrefatitleOn weighted generalized entropy On weighted generalized entropy.\BBCQ \APACjournalVolNumPagesCommunications in Statistics-Theory and Methods46125707–5727. \PrintBackRefs\CurrentBib
  • Di Crescenzo \BBA Longobardi (\APACyear2002) \APACinsertmetastardi2002entropy{APACrefauthors}Di Crescenzo, A.\BCBT \BBA Longobardi, M.  \APACrefYearMonthDay2002. \BBOQ\APACrefatitleEntropy-based measure of uncertainty in past lifetime distributions Entropy-based measure of uncertainty in past lifetime distributions.\BBCQ \APACjournalVolNumPagesJournal of Applied Probability392434–440. \PrintBackRefs\CurrentBib
  • Di Crescenzo \BBA Longobardi (\APACyear2009) \APACinsertmetastardi2009cumulative{APACrefauthors}Di Crescenzo, A.\BCBT \BBA Longobardi, M.  \APACrefYearMonthDay2009. \BBOQ\APACrefatitleOn cumulative entropies On cumulative entropies.\BBCQ \APACjournalVolNumPagesJournal of Statistical Planning and Inference139124072–4087. \PrintBackRefs\CurrentBib
  • Ebrahimi (\APACyear1996) \APACinsertmetastarebrahimi1996measure{APACrefauthors}Ebrahimi, N.  \APACrefYearMonthDay1996. \BBOQ\APACrefatitleHow to measure uncertainty in the residual life time distribution How to measure uncertainty in the residual life time distribution.\BBCQ \APACjournalVolNumPagesSankhyā: The Indian Journal of Statistics, Series A48–56. \PrintBackRefs\CurrentBib
  • Grubbs (\APACyear1971) \APACinsertmetastargrubbs1971approximate{APACrefauthors}Grubbs, F\BPBIE.  \APACrefYearMonthDay1971. \BBOQ\APACrefatitleApproximate fiducial bounds on reliability for the two parameter negative exponential distribution Approximate fiducial bounds on reliability for the two parameter negative exponential distribution.\BBCQ \APACjournalVolNumPagesTechnometrics134873–876. \PrintBackRefs\CurrentBib
  • Kayal (\APACyear2015) \APACinsertmetastarkayal2015generalized{APACrefauthors}Kayal, S.  \APACrefYearMonthDay2015. \BBOQ\APACrefatitleOn generalized dynamic survival and failure entropies of order (α\alpha, β\beta) On generalized dynamic survival and failure entropies of order (α\alpha, β\beta).\BBCQ \APACjournalVolNumPagesStatistics & Probability Letters96123–132. \PrintBackRefs\CurrentBib
  • Khammar \BBA Jahanshahi (\APACyear2018) \APACinsertmetastarkhammar2018weighted{APACrefauthors}Khammar, A.\BCBT \BBA Jahanshahi, S.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleOn weighted cumulative residual Tsallis entropy and its dynamic version On weighted cumulative residual tsallis entropy and its dynamic version.\BBCQ \APACjournalVolNumPagesPhysica A: Statistical Mechanics and its Applications491678–692. \PrintBackRefs\CurrentBib
  • Mirali \BBA Baratpour (\APACyear2017\APACexlab\BCnt1) \APACinsertmetastarmirali2017dynamic{APACrefauthors}Mirali, M.\BCBT \BBA Baratpour, S.  \APACrefYearMonthDay2017\BCnt1. \BBOQ\APACrefatitleDynamic version of weighted cumulative residual entropy Dynamic version of weighted cumulative residual entropy.\BBCQ \APACjournalVolNumPagesCommunications in Statistics-Theory and Methods462211047–11059. \PrintBackRefs\CurrentBib
  • Mirali \BBA Baratpour (\APACyear2017\APACexlab\BCnt2) \APACinsertmetastarmirali2017some{APACrefauthors}Mirali, M.\BCBT \BBA Baratpour, S.  \APACrefYearMonthDay2017\BCnt2. \BBOQ\APACrefatitleSome results on weighted cumulative entropy Some results on weighted cumulative entropy.\BBCQ \APACjournalVolNumPagesJournal of the Iranian Statistical Society16221–32. \PrintBackRefs\CurrentBib
  • Mirali \BOthers. (\APACyear2017) \APACinsertmetastarmirali2017weighted{APACrefauthors}Mirali, M., Baratpour, S.\BCBL \BBA Fakoor, V.  \APACrefYearMonthDay2017. \BBOQ\APACrefatitleOn weighted cumulative residual entropy On weighted cumulative residual entropy.\BBCQ \APACjournalVolNumPagesCommunications in Statistics-Theory and Methods4662857–2869. \PrintBackRefs\CurrentBib
  • Misagh \BOthers. (\APACyear2011) \APACinsertmetastarmisagh2011weighted{APACrefauthors}Misagh, F., Panahi, Y., Yari, G.\BCBL \BBA Shahi, R.  \APACrefYearMonthDay2011. \BBOQ\APACrefatitleWeighted cumulative entropy and its estimation Weighted cumulative entropy and its estimation.\BBCQ \BIn \APACrefbtitle2011 IEEE International Conference on Quality and Reliability 2011 ieee international conference on quality and reliability (\BPGS 477–480). \PrintBackRefs\CurrentBib
  • Nair \BOthers. (\APACyear2017) \APACinsertmetastarnair2017study{APACrefauthors}Nair, R\BPBIS., Abdul-Sathar, E.\BCBL \BBA Rajesh, G.  \APACrefYearMonthDay2017. \BBOQ\APACrefatitleA study on dynamic weighted failure entropy of order α\alpha A study on dynamic weighted failure entropy of order α\alpha.\BBCQ \APACjournalVolNumPagesAmerican Journal of Mathematical and Management Sciences362137–149. \PrintBackRefs\CurrentBib
  • Nourbakhsh \BOthers. (\APACyear2016) \APACinsertmetastarnourbakhsh2016weighted{APACrefauthors}Nourbakhsh, M., Yari, G.\BCBL \BBA Mehrali, Y.  \APACrefYearMonthDay2016. \BBOQ\APACrefatitleWeighted entropies and their estimations Weighted entropies and their estimations.\BBCQ \APACjournalVolNumPagesCommunications in Statistics-Simulation and Computationjust-accepted. \PrintBackRefs\CurrentBib
  • Rajesh \BOthers. (\APACyear2017) \APACinsertmetastarrajesh2017dynamic{APACrefauthors}Rajesh, G., Abdul-Sathar, E.\BCBL \BBA Rohini, S\BPBIN.  \APACrefYearMonthDay2017. \BBOQ\APACrefatitleOn dynamic weighted survival entropy of order α\alpha On dynamic weighted survival entropy of order α\alpha.\BBCQ \APACjournalVolNumPagesCommunications in Statistics-Theory and Methods4652139–2150. \PrintBackRefs\CurrentBib
  • Rao (\APACyear2005) \APACinsertmetastarrao2005more{APACrefauthors}Rao, M.  \APACrefYearMonthDay2005. \BBOQ\APACrefatitleMore on a new concept of entropy and information More on a new concept of entropy and information.\BBCQ \APACjournalVolNumPagesJournal of Theoretical Probability184967–981. \PrintBackRefs\CurrentBib
  • Rao \BOthers. (\APACyear2004) \APACinsertmetastarrao2004cumulative{APACrefauthors}Rao, M., Chen, Y., Vemuri, B\BPBIC.\BCBL \BBA Wang, F.  \APACrefYearMonthDay2004. \BBOQ\APACrefatitleCumulative residual entropy: a new measure of information Cumulative residual entropy: a new measure of information.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Information Theory5061220–1228. \PrintBackRefs\CurrentBib
  • Rényi \BOthers. (\APACyear1961) \APACinsertmetastarrenyi1961measures{APACrefauthors}Rényi, A.\BCBT \BOthersPeriod.   \APACrefYearMonthDay1961. \BBOQ\APACrefatitleOn measures of entropy and information On measures of entropy and information.\BBCQ \BIn \APACrefbtitleProceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics. Proceedings of the fourth berkeley symposium on mathematical statistics and probability, volume 1: Contributions to the theory of statistics. \PrintBackRefs\CurrentBib
  • Shaked \BBA Shanthikumar (\APACyear2007) \APACinsertmetastarshaked2007stochastic{APACrefauthors}Shaked, M.\BCBT \BBA Shanthikumar, J\BPBIG.  \APACrefYear2007. \APACrefbtitleStochastic orders Stochastic orders. \APACaddressPublisherSpringer Science & Business Media. \PrintBackRefs\CurrentBib
  • Shannon (\APACyear1948) \APACinsertmetastarshannon1948mathematical{APACrefauthors}Shannon, C\BPBIE.  \APACrefYearMonthDay1948. \BBOQ\APACrefatitleA mathematical theory of communication A mathematical theory of communication.\BBCQ \APACjournalVolNumPagesBell System Technical Journal273379–423. \PrintBackRefs\CurrentBib
  • Varma (\APACyear1966) \APACinsertmetastarvarma1966generalizations{APACrefauthors}Varma, R.  \APACrefYearMonthDay1966. \BBOQ\APACrefatitleGeneralizations of Renyi’s entropy of order α\alpha Generalizations of renyi’s entropy of order α\alpha.\BBCQ \APACjournalVolNumPagesJournal of Mathematical Sciences134–48. \PrintBackRefs\CurrentBib
  • Zografos \BBA Nadarajah (\APACyear2005) \APACinsertmetastarzografos2005survival{APACrefauthors}Zografos, K.\BCBT \BBA Nadarajah, S.  \APACrefYearMonthDay2005. \BBOQ\APACrefatitleSurvival exponential entropies Survival exponential entropies.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Information Theory5131239–1246. \PrintBackRefs\CurrentBib